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1. Introduction

The Navier-Stokes equations have been derived, more than one century ago, by the engineer C. L.
Navier to describe the motion of an incompressible Newtonian fluid. Later, they have been
reformulated by the mathematician-physicist G. H. Stokes. Since that time, these equations continue
to attract a great deal of attention due to their mathematical and physical importance. In a seminal
paper [16], Leray proved the global existence of a weak solution with finite energy. It is well known
that weak solutions are unique and regular in two spatial dimensions. In three dimensions, however,
the question of regularity and uniqueness of weak solutions is an outstanding open problem in
mathematical fluid mechanics, we refer to excellent monographs [15], [17] and [20].

More recently, stochastic versions of the Navier-Stokes equations have been considered in the
literature; first by introducing a stochastic forcing term which comes from a Brownian motion (see,
e.g., the first results in [2, 22]). The addition of the white noise driven term to the basic governing
equations is natural for both practical and theoretical applications to take into account for numerical
and empirical uncertainties, and have been proposed as a model for turbulence. Later on other kinds
of noises have been studied.

http://www.aimspress.com/journal/Math
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In this paper we consider the the Navier-Stokes equations with a stochastic forcing term modelled
by a fractional Brownian motion

∂tu(t, x) =
(
ν∆u(t, x) − [u(t, x) · ∇]u(t, x) − ∇π(t, x)

)
dt + Φ∂tWH (t, x)

div u(t, x) = 0
u(0, x) = u0(x)

(1.1)

We fix a smooth bounded domain D ⊂ Rd (d = 2 or 3) and consider the homogeneous Dirichlet
boundary condition for the velocity. In the equation above, u(t, x) ∈ Rd denotes the vector velocity
field at time t and position x ∈ D, π(t, x) denotes the pressure field, ν > 0 is the viscosity coefficient. In
the random forcing term there appears a Hilbert space-valued cylindrical fractional Brownian motion
WH with Hurst parameter H ∈ (0, 1) and a linear operator Φ to characterize the spatial covariance of
the noise.

When H = 1
2 , i.e. W

1
2 is the Wiener process, there is a large amount of literature on the stochastic

Navier-Stokes equation (1.1) and its abstract setting. For an overview of the known results, recent
developments, as well as further references, we refer to [1], [8], [14] and [22]. On the other hand,
when 0 < H < 1 there are results by Fang, Sundar and Viens; in [6] they prove when d = 2 the
existence of a unique global solution which is L4 in time and in space by assuming that the Hurst
parameterH satisfies a condition involving the regularity of Φ.

Our aim is to deal with Lp-solutions of the Navier-Stokes systems (1.1) for p > d. Our approach to
study Lp-solutions is based on the concept of mild solution as in [6]; but we deal with dimension d = 2
as well as with d = 3 and any p > d.

We shall prove a local existence and uniqueness result. Some remarks on global solutions will also
be given. Let us recall also that results on the local existence of mild Lp-solutions in the deterministic
setting were established in the papers [9–13, 23].

In more details, in Section 2 we shall introduce the mathematical setting, in Section 3 we shall deal
with the linear problem and in Section 4 we shall prove our main result.

2. Functional setting

In this section we introduce the functional setting to rewrite system (1.1) in abstract form.

2.1. The functional spaces

Let D be a bounded domain in Rd (d ≥ 2) with smooth boundary ∂D. For 1 ≤ p < ∞ we denote

Lp
σ = the closure in [Lp(D)]d of {u ∈ [C∞0 (D)]d, div u = 0}

and
Gp = {∇q, q ∈ W1,p(D)}.

We then have the following Helmholtz decomposition

[Lp(D)]d = Lp
σ ⊕Gp,

where the notation ⊕ stands for the direct sum. In the case p = 2 the sum above reduces to the
orthogonal decomposition and L2

σ is a separable Hilbert space, whose scalar product is denoted by
(·, ·).

AIMS Mathematics Volume 3, Issue 4, 539–553
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2.2. The Stokes operator

Let us recall some results on the Stokes operator (see, e.g., [20]).
Now we fix p. Let P be the continuous projection from [Lp(D)]d onto Lp

σ and let ∆ be the Laplace
operator in Lp with zero boundary condition, so that D(∆) = {u ∈ [W2,p(D)]d : u|∂D = 0}.

Now, we define the Stokes operator A in Lp
σ by A = −P∆ with domain H2,p := Lp

σ ∩ D(∆). The
operator −A generates a bounded analytic semigroup {S (t)}t≥0 of class C0 in Lp

σ.
In particular, for p = 2 we set H2 = H2,2 and the Stokes operator A : H2 → L2

σ is an isomorphism,
the inverse operator A−1 is self-adjoint and compact in L2

σ. Thus, there exists an orthonormal basis
{e j}

∞
j=1 ⊂ H2 of L2

σ consisting of the eingenfunctions of A−1 and such that the sequence of eigenvalues
{λ−1

j }
∞
j=1, with λ j > 0, converges to zero as j → ∞. In particular, λ j behaves as j

2
d for j → ∞. Then,

{e j} j is also the sequence of eingenfunctions of A corresponding to the eigenvalues {λ j} j. Moreover
A a is positive, selfadjoint and densely defined operator in L2

σ. Using the spectral decomposition, we
construct positive and negative fractional power operators Aβ, β ∈ R. For β ≥ 0 we have the following
representation for (Aβ,D(Aβ)) as a linear operator in L2

σ

D(Aβ) =
{
v ∈ L2

σ : ‖v‖2D(Aβ) =

∞∑
j=1

λ
2β
j |(v, e j)|2 < ∞

}
,

Aβv =

∞∑
j=1

λ
β
j(v, e j)e j.

For negative exponents, we get the dual space: D(A−β) = (D(Aβ))′. We set H s = D(A
s
2 ). Let us point

out that the operator A−β is an Hilbert-Schmidt operator in L2
σ for any β > d

4 ; indeed, denoting by
‖ · ‖γ(L2

σ,L2
σ) the Hilbert-Schmidt norm, we have

‖A−β‖2
γ(L2

σ,L2
σ) :=

∞∑
j=1

‖A−βe j‖
2
L2
σ

=

∞∑
j=1

λ
−2β
j ∼

∞∑
j=1

j−2β 2
d

and the latter series in convergent for 2β 2
d > 1.

We also recall (see, e.g., [23]) that for any t > 0 we have

‖S (t)u‖Lp
σ
≤

M

t
d
2 ( 1

r −
1
p )
‖u‖Lr

σ
for 1 < r ≤ p < ∞ (2.1)

‖AαS (t)u‖Lr
σ
≤

M
tα
‖u‖Lr

σ
for 1 < r < ∞, α > 0 (2.2)

for any u ∈ Lr
σ, where M denotes different constants depending on the parameters. Moreover we have

the following result on the Hilbert-Schmidt norm of the semigroup, that we shall use later on. What is
important is the behaviour for t close to 0, let us say for t ∈ (0, 1).

Lemma 2.1. We have
‖S (t)‖

γ(H
d
2 ;L2

σ)
≤ M(2 − ln t) ∀t ∈ (0, 1)

and for q < d
2

‖S (t)‖γ(Hq;L2
σ) ≤

M

t
d
4−

q
2

∀t > 0 (2.3)
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Proof. The Hilbert-Schmidt norm of the semigroup can be computed. Recall that { e j

λ
q/2
j
} j is an

orthonormal basis of Hq. Thus

‖S (t)‖2
γ(Hq,L2

σ) =

∞∑
j=1

‖S (t)
e j

λ
q/2
j

‖2L2
σ

=

∞∑
j=1

1
λ

q
j

‖e−λ jte j‖
2
L2
σ

=

∞∑
j=1

e−2λ jt

λ
q
j

.

Since λ j ∼ j
2
d as j→ ∞, we estimate

‖S (t)‖2
γ(Hq,L2

σ) ≤ C
∞∑
j=1

e−2 j
2
d t

j
2q
d

.

Therefore we analyse the series sq(t) =

∞∑
j=1

e−2 j
2
d t

j
2q
d

. Let us consider different values of the parameter q.

•When q = d
2 the series becomes

s d
2
(t) =

∞∑
j=1

j−1e−2 j
2
d t = e−2t +

∞∑
j=2

j−1e−2 j
2
d t ≤ e−2t +

∫ ∞

1

1
x

e−2x
2
d tdx.

The integral is computed by means of the change of variable x = ydt−
d
2 so to get∫ ∞

1

1
x

e−2x
2
d tdx =

∫ ∞

√
t

d
y

e−2y2
dy.

Hence, for t ∈ (0, 1) we get

s d
2
(t) ≤ e−2t + d

∫ 1

√
t

1
y

dy +

∫ ∞

1
e−2y2

dy ≤ 1 −
d
2

ln t + C.

•When 0 ≤ q < d
2 then the sequence of the addends is monotone decreasing and therefore we estimate

the series by an integral:
∞∑
j=1

e−2 j
2
d t

j
2q
d

≤

∫ ∞

0

e−2x
2
d t

x
2q
d

dx.

Again, by the change of variable x = ydt−
d
2 we calculate the integral and get

∞∑
j=1

e−2 j
2
d t

j
2q
d

≤ tq− d
2 d

∫ ∞

0
yd−2q−1e−2y2

dy.

The latter integral is convergent since d − 2q − 1 > −1 by the assumption that q < d
2 . Hence we get the

bound (2.3) for the Hilbert-Schmidt norm of S (t).
•When q < 0 the sequence of the addends in the series sq(t) is first increasing and then decreasing. Let
us notice that t 7→ sq(t) (defined for t > 0) is a continuous decreasing positive function converging to 0
as t → +∞. Hence to estimate it for t → 0+ it is enough to get an estimate over a sequence tn → 0+. We
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choose this sequence in such a way that the maximal value of the function at(x) := x−
2q
d e−2x

2
d t (defined

for x > 0) is attained at the integer value n = (− q
2tn

)
d
2 ∈ N. In this way we can estimate the series by

means of an integral:

sq(tn) ≡
∞∑
j=1

atn( j) ≤
∫ n

1
atn(x)dx + atn(n) +

∫ ∞

n
atn(x)dx

=

∫ ∞

1
x−

2q
d e−2x

2
d tndx + n−

2q
d e−2n

2
d tn

≤ d
( ∫ ∞

0
yd−1−2qe−2y2

dy
)

tq− d
2

n + Cqtq
n

where we have computed the integral by means of the change of variable x = ydt−
d
2

n as before. Hence,
we get that

sq(tn) ≤ C̃tq− d
2

n for any n

and therefore for t → 0+

sq(t) ≤
C

t
d
2−q

.

This proves (2.3) when q < 0. �

2.3. The bilinear term

Let us define the nonlinear term by B(u, v) = −P[(u · ∇)v]. Following [20], this is first defined on
smooth divergence free vectors fields with compact support and one proves by integration by parts that

〈B(u, v), z〉 = −〈B(u, z), v〉, 〈B(u, v), v〉 = 0 (2.4)

Then one specifies that B is continuous with respect to suitable topologies. In particular, Hölder
inequality provides

‖B(u, v)‖H−1 ≤ ‖u‖L4
σ
‖v‖L4

σ

and thus B : L4
σ × L4

σ → H−1 is continuous.
Since u is a divergence free vector field, we also have the representation B(u, v) = −P[div (u ⊗ v)]

which will be useful later on (again this holds for smooth entries and then is extended for u and v
suitably regular).

For short we shall write B(u) instead of B(u, u).

2.4. Fractional Brownian motion

First, we recall that a real fractional Brownian motion (fBm) {BH (t)}t≥0 with Hurst parameter H ∈
(0, 1) is a centered Gaussian process with covariance function

E[BH (t)BH (s)] := RH (t, s) =
1
2

(t2H + s2H − |t − s|2H ), s, t ≥ 0 (2.5)

For more details see [18].
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We are interested in the infinite dimensional fractional Brownian motion. We consider the separable
Hilbert space L2

σ and its orthonormal basis {e j}
∞
j=1. Then we define

WH (t) =

∞∑
j=1

e jβ
H
j (t) (2.6)

where {βHj } j is a family of independent real fBm’s defined on a complete filtered probability space
(Ω,F, {Ft}t,P). This is the so called L2

σ-cylindrical fractional Brownian motion. Moreover we consider
a linear operator Φ defined in L2

σ. Notice that the series in (2.6) does not converge in L2
σ.

We need to define the integral of the form
∫ t

0
S (t − s)ΦdWH (s), appearing in the definition of mild

solution; we will analyze this stochastic integral in Section 3.

2.5. Abstract equation

Applying the projection operator P to (1.1) we get rid of the pressure term; setting ν = 1, equation
(1.1) becomes du(t) + Au(t) dt = B(u(t)) dt + ΦdWH (t), t > 0

u(0) = u0
(2.7)

We consider its mild solution on the time interval [0,T ] (for any finite T ).

Definition 2.2. A measurable function u : Ω × [0,T ]→ Lp
σ is a mild Lp-solution of equation (2.7) if

• u ∈ C([0,T ]; Lp
σ), P-a.s.

• for all t ∈ (0,T ], we have

u(t) = S (t)u0 +

∫ t

0
S (t − s)B(u(s)) ds +

∫ t

0
S (t − s)ΦdWH (s) (2.8)

P-a.s.

3. The linear equation

Now we consider the linear problem associated to the Navier-Stokes equation (2.7), that is

dz(t) + Az(t) dt = ΦdWH (t) (3.1)

When the initial condition is z(0) = 0, its mild solution is the stochastic convolution

z(t) =

∫ t

0
S (t − s)Φ dWH (s). (3.2)

To analyze its regularity we appeal to the following result.

Proposition 1. Let 0 < H < 1.
If there exist λ, α ≥ 0 such that

‖S (t)Φ‖γ(L2
σ,L2

σ) ≤
C
tλ

∀t > 0 (3.3)
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and
λ +

α

2
< H (3.4)

then z has a version which belongs to C([0,T ]; Hα).

Proof. This is a well known result for H = 1
2 . Moreover, the case H < 1

2 is proved in Theorem
11.11 of [19] and the case H > 1

2 in Corollary 3.1 of [5], by assuming that the semigroup {S (t)}t is
analytic. �

Now we use this result with α = d( 1
2 −

1
p ) for p > 2; by means of the Sobolev embedding

Hd( 1
2−

1
p )(D) ⊂ Lp(D), this provides that z has a version which belongs to C([0,T ]; Lp

σ).
We have our regularity result for the stochastic convolution by assuming that Φ ∈ L(L2

σ; Hq) for
some q ∈ R, as e.g. when Φ = A−

q
2 .

Proposition 2. Let 0 < H < 1, 2 < p < ∞ and Φ ∈ L(L2
σ,H

q) for some q ∈ R. If the parameters fulfil

d
2

(1 −
1
p

) −
q
2
< H (3.5)

then the process z given by (3.2) has a version which belongs to C([0,T ]; Hd( 1
2−

1
p )). By Sobolev

embedding this version is in C([0,T ]; Lp
σ) too.

Proof. According to Proposition 1 we have to estimate the Hilbert-Schmidt norm of the operator S (t)Φ.
We recall that the product of two linear operators is Hilbert-Schmidt if at least one of them is of Hilbert-
Schmidt type.

Bearing in mind Lemma 2.1, when q < d
2 we get

‖S (t)Φ‖γ(L2
σ,L2

σ) ≤ ‖S (t)‖γ(Hq,L2
σ)‖Φ‖L(L2

σ,Hq) ≤
C

t
d
4−

q
2

(3.6)

and when q = d
2 we get

‖S (t)Φ‖γ(L2
σ,L2

σ) ≤ ‖S (t)‖
γ(H

d
2 ,L2

σ)
‖Φ‖

L(L2
σ,H

d
2 )
≤

C
ta (3.7)

for any a > 0 (here the constant depends also on a). Therefore when q < d
2 we choose λ = d

4 −
q
2 ,

α = d( 1
2 −

1
p ) and condition λ + α

2 < H becomes (3.5); when q = d
2 we choose λ = a, α = d(1

2 −
1
p ) and

since a is arbitrarily small we get again (3.5).
Otherwise, when q > d

2 we have that Φ is a Hilbert-Schmidt operator in L2
σ (since ‖Φ‖γ(L2

σ,L2
σ) ≤

‖A−
q
2 ‖γ(L2

σ,L2
σ)‖A

q
2 Φ‖L(L2

σ,L2
σ)) and we estimate

‖S (t)Φ‖γ(L2
σ,L2

σ) ≤ ‖S (t)‖L(L2
σ,L2

σ)‖Φ‖γ(L2
σ,L2

σ) ≤ C (3.8)

for all t ≥ 0. Actually we can prove something more; we write A
1
2 (q− d

2 ) = AεA−
d
4−εA

q
2 and for any ε > 0

we have

‖S (t)A
1
2 (q− d

2 )Φ‖γ(L2
σ,L2

σ) ≤ ‖A
εS (t)‖L(L2

σ,L2
σ)‖A

− d
4−ε‖γ(L2

σ,L2
σ)‖A

q
2 ‖L(Hq,L2

σ)‖Φ‖L(L2
σ;Hq)

≤
M
tε
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According to Proposition 1, choosing γ = ε and α = d( 1
2 −

1
p ) − (q − d

2 ) we obtain that the process∫ t

0
S (t − s)A

1
2 (q− d

2 )Φ dWH (s), t ∈ [0,T ]

has a C([0,T ]; Hd( 1
2−

1
p )−(q− d

2 ))-valued version if

ε +
1
2

[d(
1
2
−

1
p

) − (q −
d
2

)] < H < 1

i.e. choosing ε very small, if
d
2

(1 −
1
p

) −
q
2
< H < 1.

Since S (t) and A
1
2 (q− d

2 ) commute, we get as usual that the result holds for the process A
1
2 (q− d

2 )z. Therefore
z has a C([0,T ]; Hd( 1

2−
1
p ))-version. Actually this holds when α = d(1

2 −
1
p ) − (q − d

2 ) ≥ 0, that is when
q ≤ d(1− 1

p ). For larger values of q the regularising effect of the operator Φ is even better and the result
holds true for any 0 < H < 1. �

Remark 1. Instead of appealing to the Sobolev embedding Hd( 1
2−

1
p )
⊂ Lp

σ, we could look directly for
an Lp-mild solution z, that is a process with P-a.e. path in C([0,T ]; Lp

σ). Let us check if this approach
would be better.

There are results providing the regularity in Banach spaces; see e.g. Corollary 4.4. in the paper [4]
by Čoupek, Maslowski, and Ondreját. They involve the γ-radonifying norm instead of the
Hilbert-Schmidt norm (see, e.g., [21] for the definition of these norms). However the estimate of the
γ-radonifying norm of the operator S (t)Φ is not trivial. The estimates involved lead anyway to work
in a Hilbert space setting. Let us provide some details about this fact.

According to [4], assuming 1
2 < H < 1 and 1 ≤ pH < ∞ one should verify that there exists

λ ∈ [0,H) such that

‖S (t)Φ‖γ(L2
σ,L

p
σ) ≤

C
tλ

∀t > 0

Given Φ ∈ L(L2; Hq) we just have to estimate the γ(Hq, Lp
σ)-norm of S (t), since

‖S (t)Φ‖γ(L2
σ,L

p
σ) ≤ ‖Φ‖L(L2

σ,Hq)‖S (t)‖γ(Hq,Lp
σ).

The γ(Hq, Lp
σ)-norm of S (t) is equivalent to∫

D

( ∞∑
j=1

|S (t)
e j(x)

λ
q/2
j

|2
) p

2 dx


1/p

since { e j

λ
q/2
j
} j is an orthonormal basis of Hq.

Therefore, we estimate the integral. Let us do it for p ∈ 2N. We have∫
D

( ∞∑
j=1

|S (t)
e j(x)

λ
q/2
j

|2
) p

2 dx =

∫
D

( ∞∑
j=1

λ
−q
j e−2λ jt|e j(x)|2

) p
2 dx

=

∫
D

Π
p/2
n=1(

∞∑
jn=1

λ
−q
jn

e−2λ jn t|e jn(x)|2)dx
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Using the Hölder inequality, we get∫
D
|e j1(x)|2|e j2(x)|2 · · · |e jp/2(x)|2dx ≤ ‖e j1‖

2
Lp‖e j2‖

2
Lp · · · ‖e jp/2‖

2
Lp

Hence ∫
D

( ∞∑
j=1

|S (t)
e j(x)

λ
q/2
j

|2
) p

2 dx ≤

 ∞∑
j=1

λ
−q
j e−2λ jt‖e j‖

2
Lp


p/2

How to estimate ‖e j‖Lp? Again using the Sobolev embedding Hd( 1
2−

1
p )
⊂ Lp. Actually we are back

again to Hilbert spaces and we obtain nothing different with respect to our procedure which started in
the Hilbert spaces since the beginning. We leave the details to the reader.

Finally, let us point out that for 0 < H < 1
2 , an Lp-mild solution z can be obtained in the Banach

setting by means of Theorem 5.5 in [3]; this requires the operator Φ to be a γ-radonifying operator from
L2
σ to Lp

σ, which is a quite strong assumption. Our method exploits the properties of the semigroup S (t)
so to allow weaker assumptions on the operator Φ.

4. Existence and uniqueness results

In this section we study the Navier-Stokes initial problem (2.7) in the space Lp
σ. We prove first the

local existence result and then the pathwise uniqueness.

4.1. Local existence

Following [7], we set v = u − z, where z is the mild solution of the linear equation (3.1). Therefore
dv
dt

(t) + Av(t) = B(v(t) + z(t)), t > 0

v(0) = u0

(4.1)

and we get an existence result for u by looking for an existence result for v. This is given in the
following theorem.

Theorem 4.1. Let 0 < H < 1, d < p < ∞ and Φ ∈ L(L2
σ,H

q) for some q ∈ R.
Given u0 ∈ Lp

σ, if the parameters fulfil

d
2

(1 −
1
p

) −
q
2
< H (4.2)

then there exists a local mild Lp-solution to equation (2.7).

Proof. From Proposition 2 we know that z has a version which belongs to C([0,T ]; Lp
σ).

Now we observe that to find a mild solution (2.8) to equation (2.7) is equivalent to find a mild
solution

v(t) = S (t)u0 +

∫ t

0
S (t − s)B(v(s) + z(s))ds

to equation (4.1).
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We work pathwise and define a sequence by iterations: first v0 = u0 and inductively

v j+1(t) = S (t)u0 +

∫ t

0
S (t − s)B(z(s) + v j(s)) ds, t ∈ [0,T ]

for j = 0, 1, 2, . . ..
Let us denote by K0 the random constant

K0 = max
(
‖u0‖Lp

σ
, sup

t∈[0,T ]
‖z(t)‖Lp

σ

)
.

We shall show that there exists a random time τ > 0 such that sup
t∈[0,τ]

‖v j(t)‖Lp
σ
≤ 2K0 for all j ≥ 1. We

have

‖v j+1(t)‖Lp
σ
≤ ‖S (t)u0‖Lp

σ
+

∫ t

0
‖S (t − s)B(v j(s) + z(s))‖Lp

σ
ds

We observe that from (2.1) and (2.2) we get

‖S (t)u0‖Lp
σ
≤ ‖u0‖Lp

σ
(4.3)

and ∫ t

0
‖S (t − s)B((v j(s) + z(s))‖Lp

σ
ds

≤

∫ t

0
‖A

1
2 S (t − s)A−

1
2 P div ((v j(s) + z(s)) ⊗ (v j(s) + z(s)))‖Lp

σ
ds,

≤

∫ t

0

1

(t − s)
1
2

‖S (t − s)A−
1
2 P div ((v j(s) + z(s)) ⊗ (v j(s) + z(s)))‖Lp

σ
ds

≤

∫ t

0

M

(t − s)
1
2 + d

2p

‖A−
1
2 P div ((v j(s) + z(s)) ⊗ (v j(s) + z(s)))‖Lp/2

σ
ds

≤

∫ t

0

M

(t − s)
1
2 + d

2p

‖(v j(s) + z(s)) ⊗ (v j(s) + z(s))‖Lp/2
σ

ds

≤

∫ t

0

M

(t − s)
1
2 + d

2p

‖v j(s) + z(s)‖2Lp
σ

ds

(4.4)

From (4.3) and (4.4) we deduce that

‖v j+1(t)‖Lp
σ
≤ K0 +

∫ t

0

M

(t − s)
1
2 + d

2p

‖v j(s) + z(s)‖2Lp
σ

ds

≤ K0 +

∫ t

0

2M

(t − s)
1
2 + d

2p

‖z(s)‖2Lp
σ

ds +

∫ t

0

2M

(t − s)
1
2 + d

2p

‖v j(s)‖2Lp
σ

ds

Thus, when 1
2 + d

2p < 1 (i.e. p > d) we get

sup
t∈[0,T ]

‖v j+1(t)‖Lp
σ
≤ K0 + 2M

T
1
2−

d
2p

1
2 −

d
2p

sup
t∈[0,T ]

‖z(t)‖2Lp
σ

+ 2M
T

1
2−

d
2p

1
2 −

d
2p

( sup
t∈[0,T ]

‖v j(t)‖Lp
σ
)2

≤ K0 +
4pM
p − d

T
1
2−

d
2p K2

0 +
4pM
p − d

T
1
2−

d
2p ( sup

t∈[0,T ]
‖v j(t)‖Lp

σ
)2
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Now we show that if sup
t∈[0,T ]

‖v j(t)‖Lp
σ
≤ 2K0, then sup

t∈[0,T ]
‖v j+1(t)‖Lp

σ
≤ 2K0 on a suitable time interval.

Indeed, from the latter relationship we get

sup
t∈[0,T ]

‖v j+1(t)‖Lp
σ
≤ K0 +

4pM
p − d

T
1
2−

d
2p K2

0 +
4pM
p − d

T
1
2−

d
2p 4K2

0

= 2K0

(
1
2

+
1
2

20pM
p − d

T
1
2−

d
2p K0

)
.

Hence, when T is such that
20pM
p − d

T
1
2−

d
2p K0 ≤ 1

we obtain the required bound. Therefore we define the stopping time

τ = min
{
T,

(
p − d

20pMK0

) 2p
p−d }

(4.5)

so that
20pM
p − d

τ
1
2−

d
2p K0 ≤ 1 (4.6)

and obtain that
sup

t∈[0,τ]
‖v j(t)‖Lp

σ
≤ 2K0 ∀ j. (4.7)

Now, we shall show the convergence of the sequence v j. First, notice that

B(v j+1 + z) − B(v j + z)
= −Pdiv

(
(v j+1 − v j) ⊗ v j+1 + v j ⊗ (v j+1 − v j) + (v j+1 − v j) ⊗ z + z ⊗ (v j+1 − v j)

)
.

We proceed as in (4.4) and get

‖v j+2(t)−v j+1(t)‖Lp
σ

≤

∫ t

0
‖S (t − s)

(
B(v j+1(s) + z(s)) − B(v j(s) + z(s))

)
‖Lp

σ
ds

≤

∫ t

0

M

(t − s)
1
2 + d

2p

(
‖v j+1(s)‖Lp

σ
+ ‖v j(s)‖Lp

σ
+ 2‖z(s)‖Lp

σ

)
‖v j+1(s) − v j(s)‖Lp

σ
ds

Hence, using (4.7) we get

sup
t∈[0,τ]

‖v j+2(t) − v j+1(t)‖Lp
σ
≤

∫ τ

0

M6K0

(t − s)
1
2 + d

2p

ds
(

sup
s∈[0,τ]

‖v j+1(s) − v j(s)‖Lp
σ

)
=

12pMK0

p − d
τ

1
2−

d
2p

(
sup

t∈[0,τ]
‖v j+1(t) − v j(t)‖Lp

σ

)
Setting C0 =

12pMK0
p−d τ

1
2−

d
2p , from (4.5)-(4.6) we obtain that C0 < 1. Moreover

sup
t∈[0,τ]

‖v j+2(t) − v j+1(t)‖Lp
σ
≤ C0 sup

t∈[0,τ]
‖v j+1(t) − v j(t)‖Lp

σ

≤ C j+1
0 sup

t∈[0,τ]
‖v1(t) − v0(t)‖Lp

σ

AIMS Mathematics Volume 3, Issue 4, 539–553



550

Therefore {v j} j is a Cauchy sequence; hence it converges, that is there exists v ∈ C([0, τ]; Lp
σ) such that

v j → v in C([0, τ]; Lp
σ). This proves the existence of a unique local mild Lp-solution v for equation

(4.1).
Since u = v + z, we have got a local mild Lp-solution u for equation (2.7). �

Remark 2. We briefly discuss the case of cylindrical noise, i.e. Φ = Id. Bearing in mind Theorem
4.1, the parameters fulfil

d
2

(1 −
1
p

) < H < 1. (4.8)

When 2 = d < p, this means that p andH must be chosen in such a way that

1 −
1
p
< H < 1 (4.9)

This means thatH must be at least larger than 1
2 . On the other hand, when 3 = d < p we cannot apply

our procedure, since d
2 (1 − 1

p ) > 1 and therefore the set of conditions (4.8) is void.

4.2. Uniqueness

Now we show pathwise uniqueness of the solution given in Theorem 4.1.

Theorem 4.2. Let 0 < H < 1, d < p < ∞ and Φ ∈ L(L2
σ,H

q) for some q ∈ R.
Given u0 ∈ Lp

σ, if the parameters fulfil

d
2

(1 −
1
p

) −
q
2
< H

then the local mild Lp-solution to equation (2.7) given in Theorem 4.1 is pathwise unique.

Proof. Let u and ũ be two mild solutions of equation (2.7) with the same fBm and the same initial
velocity. Their difference satisfies an equation where the noise has disappeared. Hence we work
pathwise. We get

u(t) − ũ(t) =

∫ t

0
S (t − s)

(
B(u(s)) − B(ũ(s))

)
ds.

Writing B(u) − B(ũ) = B(u − ũ, u) + B(ũ, u − ũ), by classical estimations as before we have

‖u(t) − ũ(t)‖Lp
σ
≤

∫ t

0
‖S (t − s)

(
B(u(s)) − B(ũ(s))

)
‖Lp

σ
ds

≤

∫ t

0

M

(t − s)
1
2 + d

2p

(‖u(s)‖Lp
σ

+ ‖ũ(s)‖Lp
σ
)‖u(s) − ũ(s)‖Lp

σ
ds

Thus

sup
[0,τ]
‖u(t) − ũ(t)‖Lp

σ
≤ 4K0M

τ
1
2−

d
2p

1
2 −

d
2p

sup
t∈[0,τ]

‖u(t) − ũ(t)‖Lp
σ
.

Keeping in mind the definition (4.5) of τ and (4.6) we get

sup
[0,τ]
‖u(t) − ũ(t)‖Lp

σ
≤

2
5

sup
[0,τ]
‖u(t) − ũ(t)‖Lp

σ

which implies u(t) = ũ(t) for any t ∈ [0, τ]. �
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4.3. Global existence

Let us recall that [6] proved global existence an uniqueness of an L4((0,T ) × D)-valued solution. A
similar result of global existence for a less regular (in time) solution holds in our setting.

Let us begin with the case d = 2 and consider a process solving equation (2.7) whose paths are in
L

2p
p−2 (0,T ; Lp

σ). Its local existence comes from the previous results. However we can prove an a priori
bound leading to global existence.

Let us multiply equation (4.1) by v in L2
σ; we obtain by classical techniques (see Lemma 4.1 of [8])

1
2

d
dt
‖v(t)‖2L2

σ
+ ‖∇v(t)‖2L2 = 〈B(v(t) + z(t), z(t)), v(t)〉

≤ ‖v(t) + z(t)‖L4
σ
‖z(t)‖L4

σ
‖∇v(t)‖L2

≤
1
2
‖∇v(t)‖2L2 +

C
2
‖z(t)‖4L4

σ
‖v(t)‖2L2

σ
+

C
2
‖z(t)‖4L4

σ

Hence
d
dt
‖v(t)‖2L2

σ
≤ C‖z(t)‖4L4

σ
‖v(t)‖2L2

σ
+ C‖z(t)‖4L4

σ
.

As soon as z is a C([0,T ]; L4
σ)-valued process we get by means of Gronwall lemma that

v ∈ L∞(0,T ; L2
σ). And integrating in time the first inequality we also obtain that v ∈ L2(0,T ; H1). By

interpolation L∞(0,T ; L2
σ) ∩ L2(0,T ; H1) ⊂ L

2p
p−2 (0,T ; H1− 2

p ) for 2 < p < ∞. Using the Sobolev
embedding H1− 2

p ⊂ Lp
σ, we have the a priori estimate for v in the L

2p
p−2 (0,T ; Lp

σ) norm, which provides
the global existence of v and hence of u. This holds for d = 2 and 4 ≤ p < ∞, since the global
estimate holds when z is C([0,T ]; L4

σ)-valued at least.
Notice that for d = 2 and p = 4 we obtain the same result as by Fang, Sundar and Viens (see
Corollary 4.3 in [6]).

Similarly one proceeds when d = 3. The change is in the Sobolev embedding, which depends
on the spatial dimension. Thus from v ∈ L∞(0,T ; L2

σ) ∩ L2(0,T ; H1) we get by interpolation that
v ∈ L

4p
3(p−2) (0,T ; H3 p−2

2p ) for 2 < p ≤ 6. Using the Sobolev embedding H3 p−2
2p ⊂ Lp

σ we conclude that the
L

4p
3(p−2) (0,T ; Lp

σ)-norm of v is bounded. Hence the global existence of a solution v ∈ L
4p

3(p−2) (0,T ; Lp
σ) for

4 ≤ p ≤ 6 as well as of a solution u ∈ L
4p

3(p−2) (0,T ; Lp
σ).
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2. A. Bensoussan, R. Temam, Équations stochastiques du type Navier-Stokes, J. Funct. Anal., 13
(1973), 195–222.
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