
Universidade Estadual de Campinas
Instituto de Computação

INSTITUTO DE
COMPUTAÇÃO

Carla Doris Cardoso Cusihuallpa

Improving Text Recognition Accuracy using
Syntax-based Techniques

Melhorando a Precisão do Reconhecimento de Texto
usando Técnicas Baseadas em Sintaxe

CAMPINAS
2020

Carla Doris Cardoso Cusihuallpa

Improving Text Recognition Accuracy using Syntax-based
Techniques

Melhorando a Precisão do Reconhecimento de Texto usando
Técnicas Baseadas em Sintaxe

Dissertação apresentada ao Instituto de
Computação da Universidade Estadual de
Campinas como parte dos requisitos para a
obtenção do título de Mestra em Ciência da
Computação.

Dissertation presented to the Institute of
Computing of the University of Campinas in
partial fulfillment of the requirements for the
degree of Master in Computer Science.

Supervisor/Orientador: Prof. Dr. Guido Costa Souza de Araújo
Co-supervisor/Coorientador: Dr. Marcio Machado Pereira

Este exemplar corresponde à versão final da
Dissertação defendida por Carla Doris
Cardoso Cusihuallpa e orientada pelo Prof.
Dr. Guido Costa Souza de Araújo.

CAMPINAS
2020

Ficha catalográfica
Universidade Estadual de Campinas

Biblioteca do Instituto de Matemática, Estatística e Computação Científica
Ana Regina Machado - CRB 8/5467

 Cardoso Cusihuallpa, Carla Doris, 1995-
 C179i CarImproving text recognition accuracy using syntax-based techniques / Carla

Doris Cardoso Cusihuallpa. – Campinas, SP : [s.n.], 2020.

 CarOrientador: Guido Costa Souza de Araújo.
 CarCoorientador: Marcio Machado Pereira.
 CarDissertação (mestrado) – Universidade Estadual de Campinas, Instituto de

Computação.

 Car1. Visão por computador. 2. Reconhecimento de texto. I. Araújo, Guido

Costa Souza de, 1962-. II. Pereira, Marcio Machado, 1959-. III. Universidade
Estadual de Campinas. Instituto de Computação. IV. Título.

Informações para Biblioteca Digital

Título em outro idioma: Melhorando a precisão do reconhecimento de texto usando
técnicas baseadas em sintaxe
Palavras-chave em inglês:
Computer vision
Text recognition
Área de concentração: Ciência da Computação
Titulação: Mestra em Ciência da Computação
Banca examinadora:
Guido Costa Souza de Araújo [Orientador]
Fábio Augusto Menocci Cappabianco
Ricardo da Silva Torres
Data de defesa: 26-03-2020
Programa de Pós-Graduação: Ciência da Computação

Identificação e informações acadêmicas do(a) aluno(a)
- ORCID do autor: https://orcid.org/0000-0002-8011-2365
- Currículo Lattes do autor: http://lattes.cnpq.br/1663107015123141

Powered by TCPDF (www.tcpdf.org)

Universidade Estadual de Campinas
Instituto de Computação

INSTITUTO DE
COMPUTAÇÃO

Carla Doris Cardoso Cusihuallpa

Improving Text Recognition Accuracy using Syntax-based
Techniques

Melhorando a Precisão do Reconhecimento de Texto usando
Técnicas Baseadas em Sintaxe

Banca Examinadora:

• Prof. Dr. Guido Costa Souza de Araújo
IC/UNICAMP

• Prof. Dr. Fábio Augusto Menocci Cappabianco
Universidade Federal De São Paulo (UNIFESP)

• Prof. Dr. Ricardo da Silva Torres
Institute of Computing - UNICAMP

A ata da defesa, assinada pelos membros da Comissão Examinadora, consta no
SIGA/Sistema de Fluxo de Dissertação/Tese e na Secretaria do Programa da Unidade.

Campinas, 26 de março de 2020

Acknowledgements

First of all, I thank God and Saint Ignatius of Loyola for giving me this opportunity in
my life to improve personally and professionally.

I am thankful to my parents Sergio and Doris for their advice, unconditional support,
patience, love and always being with me. Moreover, I thank my siblings Carola, Ignacio,
and Camila, and my aunt Candy for always been there for me and being my best friends.
To my grandmother Eulogia for taking care of my family and my grandparents Nicanor
and María Esther, my angels who always take care of me.

Especially, I would like to thank Prof. Guido and co-adviser Prof. Marcio for their
advice, guidance, experience, and knowledge which enabled me to finish this stage of my
life.

I thank all my friends that I made during these two years, especially those from the
Computer Systems Laboratory (LSC), for sharing their knowledge. I would also like
to thank my boyfriend for helping me at this stage of my life and always being there
when I need it. And especially to the IC secretary, for helping me with the processes at
UNICAMP.

This work was supported by Samsung.
This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal

de Nível Superior - Brasil (CAPES) - Finance Code 001.

Resumo

Devido à grande quantidade de informações visuais disponíveis atualmente, a detecção
e o reconhecimento de texto em imagens de cenas naturais começaram a ganhar impor-
tância nos últimos tempos. Seu objetivo é localizar regiões da imagem onde há texto e
reconhecê-lo. Essas tarefas geralmente são divididas em duas partes: detecção de texto
e reconhecimento de texto. Embora as técnicas para resolver esse problema tenham me-
lhorado nos últimos anos, o uso excessivo de recursos de hardware e seus altos custos
computacionais impactaram significativamente a execução de tais tarefas em sistemas in-
tegrados altamente restritos (por exemplo, celulares e TVs inteligentes). Embora existam
métodos de detecção e reconhecimento de texto executados em tais sistemas, eles não
apresentam bom desempenho quando comparados à soluções de ponta em outras plata-
formas de computação. Embora atualmente existam vários métodos de pós-correção que
melhoram os resultados em documentos históricos digitalizados, há poucas explorações
sobre o seu uso nos resultados de imagens de cenas naturais. Neste trabalho, exploramos
um conjunto de métodos de pós-correção, bem como propusemos novas heuríticas para
melhorar os resultados em imagens de cenas naturais, tendo como base de prototipação
o software de reconhecimento de textos Tesseract. Realizamos uma análise com os prin-
cipais métodos disponíveis na literatura para correção dos erros e encontramos a melhor
combinação que incluiu os métodos de substituição, eliminação nos últimos caracteres e
composição. Somado a isto, os resultados mostraram uma melhora quando introduzimos
uma nova heurística baseada na frequência com que os possíveis resultados aparecem em
bases de dados de magazines, jornais, textos de ficção, web, etc. Para localizar erros e
evitar overcorrection foram consideradas diferentes restrições obtidas através do treina-
mento da base de dados do Tesseract. Selecionamos como melhor restrição a incerteza
do melhor resultado obtido pelo Tesseract. Os experimentos foram realizados com sete
banco de dados usados em sites de competição na área, considerando tanto banco de dados
para desafio em reconhecimento de texto e aqueles com o desafio de detecção e reconhe-
cimento de texto. Em todos os bancos de dados, tanto nos dados de treinamento como
de testes, os resultados do Tesseract com o método proposto de pós-correção melhorou
consideravelmente em comparação com os resultados obtidos somente com o Tesseract.

Abstract

Due to a large amount of visual information available today, Text Detection and Recog-
nition in scene images have begun to receive an increasing importance. The goal of this
task is to locate regions of the image where there is text and recognize them. Such tasks
are typically divided into two parts: Text Detection and Text Recognition. Although
the techniques to solve this problem have improved in recent years, the excessive usage
of hardware resources and its corresponding high computational costs have considerably
impacted the execution of such tasks in highly constrained embedded systems (e.g., cell-
phones and smart TVs). Although there are Text Detection and Recognition methods
that run in such systems they do not have good performance when compared to state-
of-the-art solutions in other computing platforms. Although there are currently various
post-correction methods to improve the results of scanned documents, there is a little ef-
fort in applying them on scene images. In this work, we explored a set of post-correction
methods, as well as proposed new heuristics to improve the results in scene images, using
the Tesseract text recognition software as a prototyping base. We performed an analysis
with the main methods available in the literature to correct errors and found the best
combination that included the methods of substitution, elimination in the last characters,
and compounder. In addition, results showed an improvement when we introduced a new
heuristic based on the frequency with which the possible results appear in the frequency
databases for categories such as magazines, newspapers, fiction texts, web, etc. In order
to locate errors and avoid overcorrection, different restrictions were considered through
Tesseract with the training database. We selected as the best restriction the certainty
of the best result obtained by Tesseract. The experiments were carried out with seven
databases used in Text Recognition and Text Detection/Recognition competitions. In
all databases, for both training and testing, the results of Tesseract with the proposed
post-correction method considerably improved when compared to the results obtained
only with Tesseract.

List of Figures

1.1 Examples of various types of noise in document images: (a) Regular shaped
nontextual noise. (b) Textual and irregular shaped nontextual noise. (Ex-
tracted from [5]) . 19

2.1 Scene Text Detection and Recognition problem. All the possible texts are
found, the outputs being the sequence that characters. 21

2.2 Tesseract OCR 3.4.x engine architecture [50]. 25
2.3 The Tesseract input is a binary image focused on the text. 25
2.4 Block diagram of Tesseract word recognition [50]. 26
2.5 (a) The Tesseract input image. (b) How blobs represent the word in the

image (a). 26
2.6 Segmentation graph. 27
2.7 Shrinking features: (a) Nanofeatures (b) Picofeatures [51]. 27
2.8 The Viterbi algorithm executed in the segmentation graph of Figure 2.5.

Created words are “Analysis” and “malyn”. 29
2.9 (a) WERD_CHOICEs that were formed with the Viterbi algorithm. (b)

The best chosen WERD_CHOICE considering the word with the lowest
rating word. (c) Remove all WERD_CHOICE that are not in a reasonable
range. (d) The final results. 30

2.10 DAWG for all forms of the verbs play and work. 31
2.11 Trie for all forms of the verbs play and work. Trie that represents the

Dawg in Figure 2.10. 31
2.12 (a) Distribution of the 64 bits that represent an edge in DAWG in an

English dictionary. (b) Representation of the edge to node 3 of the Figure
2.10. 31

3.1 Correction using the method proposed in [3]. 34

4.1 Edit distance with images from the ICDAR 2013 Database. Blue charac-
ters indicate substitutions, red characters deletions, and green characters
insertions. 41

4.2 Annotated code for word_in_dawg method of Tesseract [?], that deter-
mines if the word is in the dictionary and a Dawg that represents the
words: are, play, and plays. 42

4.3 Annotated code for spelling_correction method. 43
4.4 An image where Libccv library does not achieve good Text Detection. . 43

4.5 Engine architecture Tesseract OCR 3.4.x with the new methods Com-
pounder and Spelling Correction. 44

4.6 Annotated code for NodeChildVector structure of Tesseract. 44
4.7 Annotated code for substitution method. 45
4.8 Annotated code for find_last_unichar method. A Dawg that represents

the words: play, plays, plan, and place. 46
4.9 Annotated code for find_unichar method to find all characters considering

the next character of the word. 47
4.10 How the find_unichar method finds potential characters, analyzing the

following character. 47
4.11 (a) Annotated code for find__unichar method considering all characters

after the node. (b) A Dawg that represents the words: play, plays, plan,
and place. 48

4.12 Annotated code for insertion method. 48
4.13 How the insertion method finds potential characters using the find_unichar

method with analyzing the following character. 49
4.14 Annotated code for elimination method. 50
4.15 Annotated code for compounder method. 50
4.16 New distribution of the 64 bits that represent the same edge of Figure 2.12 53
4.17 Representation of the decimal number 2.7 in a float variable. 53
4.18 Representation of the decimal number 2.7 that it will store in the structure

Dawg. 53
4.19 The code how of a decimal number is obtained to store in the structure of

Tesseract dictionary. 54
4.20 The code how of a decimal number is obtained to store in the structure of

Tesseract dictionary. 55
4.21 The problem of using different frequencies for the same word with different

letter cases. 55
4.22 Image from the ICDAR2013 Database, where the ground truth is “Tres-

passing” and the result of Tesseract is “trespasslng”. 56
4.23 Dictionary formed by words “actually”, “hungry”, and “unruly” with their

respective frequencies 95, 75, and 30. The left side shows how the dictio-
nary uses the Trie structure. The right side shows how the dictionary uses
the Dawg structure. 56

4.24 Tesseract with the spelling_correction method gives an incorrect result
because the recognized word is not in the dictionary. 57

4.25 Annotated code for the AcceptableResult method of Tesseract. 57
4.26 Decision Tree with training data from the section databases 5.1. The

sklearn library with python was used to obtain the Decision Tree. 59
4.27 Annotated code for the spelling_correction_final method. 59

5.1 Images cloud of the 4 databases. From top to bottom, from right to left:
ICDAR 2003, ICDAR 2013, INCIDENTAL SCENE TEXT 2015, and IIT
5K - WORD. 62

5.2 Images cloud of the three databases. From top to bottom, from right to
left: ICDAR 2015, The Street View Text (SVT), and KAIST Scene Text. 64

5.3 Examples of Text Recognition metrics. 65
5.4 Results obtained Tesseract with the substitution method. 70
5.5 Results obtained Libccv and Tesseract with the substitution method. . . 71
5.6 Problems where insertion can be used to correct errors. 73
5.7 Problems where deletion can be used to correct errors. 74
5.8 Results obtained Tesseract with the spelling_correction method. 81
5.9 Results obtained Libccv and Tesseract with the spelling_correction method.

. 82
5.10 Results obtained Tesseract with the frequency method. 86
5.11 Results obtained Libccv and Tesseract with the frequency method. . . . 87
5.12 Results obtained Tesseract with the combined method. 92
5.13 Results obtained Libccv and Tesseract with the combined method. . . . 93

List of Tables

3.1 Similarities and differences between the proposed method and those de-
scribed above. 37

4.1 Number of words that failed in Scene Text Recognition. 41
4.2 How various dictionary of Latin and Germanic origin languages provided

by Tesseract use the 64 bits of every edge. 52

5.1 Four databases for the Scene Text Recognition task. 62
5.2 Three databases for the Scene Text Detection and Recognition task. . . . 63
5.3 Results of the substitution method considering the analysis of the next

character. 67
5.4 Results of the substitution method considering the analysis of all the char-

acters. 67
5.5 Results of the substitution method considering the analysis of the next

character with Tesseract restriction. 68
5.6 Results of the substitution method considering the analysis of all the char-

acters with Tesseract restriction. 68
5.7 Results of the substitution method considering the analysis of the next

character with certainty restriction. 69
5.8 Results of the substitution method considering the analysis of all the char-

acters with certainty restriction. 69
5.9 Words corrected by using an analysis of the next character or all characters. 72
5.10 Words that cannot be corrected by the proposed substitutions method. . 72
5.11 Results of the insertion method. 74
5.12 Results of the deletion method. 74
5.13 Example with the insertion method. 75
5.14 Example with the deletion method. 75
5.15 Results of the compounder method. 76
5.16 Example of coumponder method. 76
5.17 Results of the spelling_correction method considering the analysis of the

next character. 77
5.18 Results of the spelling_correction method considering the analysis of all

the characters. 78
5.19 Results of the spelling_correction method considering the analysis of the

next character with Tesseract restriction. 78
5.20 Results of the spelling_correction method considering the analysis of all

the characters with Tesseract restriction. 79

5.21 Results of the spelling_correction method considering the analysis of the
next character with certainty restriction. 79

5.22 Results of the substitution method considering the analysis of all the char-
acters with certainty restriction. 80

5.23 Results of the frequency in Tesseract. 83
5.24 Example of frequency method. 84
5.25 Results of the frequency method with Tesseract restriction. 84
5.26 Results of the frequency method with certainty restriction. 85
5.27 Results of the combination of spelling_correction and frequency methods

considering the analysis of the next character. 88
5.28 Results of the combination of spelling_correction and frequency methods

considering the analysis of all the characters. 88
5.29 Results of the combination of spelling_correction and frequency methods

considering the analysis of the next character with Tesseract restriction. . 89
5.30 Results of the combination of spelling_correction and frequency methods

considering the analysis of all the characters with Tesseract restriction. . 90
5.31 Results of the combination of spelling_correction and frequency methods

considering the analysis of the next character with certainty restriction. . 90
5.32 Results of the combination of spelling_correction and frequency methods

considering the analysis of all the characters with certainty restriction. . 91
5.33 Results with Testing Data considering the analysis of the next character. 94
5.34 Results with Testing Data considering the analysis of all the characters. . 94

List of Abbreviations

API Application Programming Interface
CC Connected Components
COCA Corpus of Contemporary American English
DAWG Directed Acyclic Word Graph
DP Distributed Proofreaders
EAST Efficient accurate Scene Text Detector
ED Edit Distance
EP Edit Probability
ER Extremal Regions
FSM Weighted Finite-State
HMM Hiden Markov Model
ICDAR International Conference on Document Analysis and Recognition
IND Incidental Scene Text
kNN k-Nearest Neighbor
LSH Locality Sensitive Hashing
LSMT Long short-term memory
MSER Maximally Stable Extremal Region
OCR Optical Character Recognition
ROVER Error voting technique
SMT Statistical Machine Translation
STD Scene Text Detection
STDR Scene Text Detection and Recognition
STR Scene Text Recognition
SVM Support Vector Machine
SVT Street View Text
SWT Stroke Width Transform

VLMM Variable Memory Length Markov Model
YOLO You Only Look Once
WRA Word recognition accuracy

Contents

List of Figures 8

List of Tables 11

1 Introduction 17
1.1 Problem and Motivation . 17
1.2 Objectives . 19
1.3 Contributions . 20
1.4 Organization . 20

2 Background 21
2.1 Scene Text Detection and Recognition (STDR) 21

2.1.1 Scene Text Detection . 22
2.1.2 Scene Text Recognition . 23

2.2 Tesseract . 23
2.2.1 A Brief History of Tesseract . 24
2.2.2 Tesseract Overview . 24

3 Related Work 33

4 Syntax-Based Techniques 40
4.1 Spelling correction . 40

4.1.1 Substitution . 44
4.1.2 Insertion . 48
4.1.3 Deletion . 49
4.1.4 Compounder . 50

4.2 Frequency . 51
4.3 Finding the error . 56

4.3.1 Tesseract decision . 57
4.3.2 Tree best variable . 58

5 Experimental Evaluation 61
5.1 Dataset . 62
5.2 Evaluation Metrics . 65

5.2.1 Scene Text Recognition . 65
5.3 Spelling correction . 66

5.3.1 Substitution . 66

5.3.2 Insertion and Deletion . 73
5.3.3 Compounder . 76
5.3.4 Best methods to correct errors . 77

5.4 Frequency . 83
5.5 Spelling correction and Frequency . 87

6 Conclusions and Future Works 95

Bibliography 96

17

Chapter 1

Introduction

Each year a large amount of data is generated thanks to the various electronic devices,
which encourages the development of methods for its analysis and subsequent use in other
applications. Millions of images, videos, text, publications are produced per minute, feed-
ing with data various areas such as Visual Computing, Machine Learning, Natural Lan-
guage Processing. These applications solve problems such as the recognition or scanning
of images, analysis of large volumes of data, facial recognition, recognition of abnormal
events, among others.

One of the most complex challenges that have begun to take relevance in recent times
is Text Detection and Recognition in natural scenes from images and videos. Scene Text
Detection and Recognition aims to find all the regions in an image that a human being
considers to have a text, framing that region into a bounding box and associating it
with its corresponding characters. The result (a sequence of characters) can be easily
processed by a computer. Since it has to face many challenges [57], methods that solve
this problem divide it into two major tasks: Scene Text Detection (STD) and Scene Text
Recognition (STR).

STD locates the text in an image. The result of this step are boxes that surround
the region where there is a potential text. STR returns the sequence of characters of the
text contained inside the region. In this work, we seek to bring contributions to improve
the accuracy of STR.

1.1 Problem and Motivation
Methods to recognize text arose from the need to manipulate the scanned documents
without the user having to transcribe them. The first methods known as OCR (Optical
Character Recognize) were very precarious since they could only recognize the text in
documents well scanned without problems of noise, lighting, or blur. The process con-
sisted in recognizing the characters of the scanned document and returning the text as a
result.

With the advancement of computing, other techniques started to be used, in addi-

18
tion to recognition, such as the formation of the word. However, the results were not
as expected. To improve that, several techniques began to be used both in the input
and output data to improve the results. Techniques used in the input data focused on
improving the quality of the scanned document, while the techniques in the output data
corrected the words that OCR recognized incorrectly.

It has reached a point where the results achieved by the OCR methods in scanned
documents have become quite acceptable [19, 33, 39], moving the research efforts towards
addressing other problems of text recognition, such as text in images from natural scenes.

Text Recognition solutions for natural scenarios (or Scene Text Recognition - STR),
similarly as what happened early on for OCR, started producing very poor results. The
first methods consisted of three basic steps to segment the region of text, recognize each
character, and then form the word. Over time, several methods began to solve the STR
problem. In order to know which was the most efficient method, several competitions
arose, such as the ICDAR [32, 44, 26, 25, 8, 41].

The methods for STR began to test techniques that in other areas have given good
results, such as neural networks. The use of neural networks improved the results, but not
as expected, since they began to add new challenges to the problem such as orientation,
multilingual, unfocused text, among others [10, 57, 59]. Currently, the best results for
STR without challenges are recurrent neural networks, resulting in a 94.2% accuracy for
the ICDAR 2013 dataset [7].

Currently, the state-of-the-art solutions that present the best results are sequence-
based methods. For example, experiments carried out with Focusing Attention Network,
proposed by Z. Cheng et al. [7] as a contribution over the state-of-the-art attention-
mechanism for character recognition, and running on a work-station with one Intel
Xeon(R) E5-2650 2.30GHz CPU, an NVIDIA Tesla M40 GPU, and 128GB RAM for
the ICDAR2013 data set, resulted in an accuracy of up to 94.2%. Unfortunately, the
excessive usage of hardware resources and its corresponding high computational costs
have considerably impacted the execution of such tasks in highly constrained embedded
systems (e.g. cellphones or smart TVs), demanding the design of faster methods which
cannot achieve the same accuray as in more powerful platforms. For example, experi-
ments carried out with Tesseract v3.04 running on Artik 530 1 hardware for the ICDAR
2013 data set resulted in an accuracy of only 43.48%.

Therefore, solutions that enable fast STD and STR in embedded systems need to use
methods that do not consume much memory or energy such as those in the Libccv or
OpenCV libraries for Text Detection, or traditional methods such as Tesseract for Text
Recognition. Unfortunately the accuracy of the results produced by such methods is very
low when compared to those obtained with neural networks.

Although researchers continue trying to solve the various challenges that STR presents,
another text recognition problem has begun to emerge. The OCR methods that are con-
sidered good for scanned documents show deficiencies in scanned documents of historical

1The Artik 530 features are: High performance, 4-core, 32-bit ARM Cortex A-9 processor @ 1.2GHz;
ARM Mali GPU for multimedia, 512MB RAM, and 4GB flash (eMMC).

19

Figure 1.1: Examples of various types of noise in document images: (a) Regular shaped
nontextual noise. (b) Textual and irregular shaped nontextual noise. (Extracted from
[5])

books, where the sheets are very worn, small pieces are missing, or do not exist (Figure
1.1).

G. Chiron et al. conducted an investigation where they show that the OCR methods
available in the market are deficient for historical documents [9]. To solve the problem,
attention begun to focus on methods that correct the results from OCR, known as post-
correction. These methods are divided into two tasks: to find the wrong word and correct
it. Although the methods proved to be efficient in the OCR area, there are not many
post-correction methods developed for STR.

1.2 Objectives
This work aims to investigate and evaluate the existing post-correction methods as well as
to propose new methods or heuristics to improve the accuracy of Tesseract when working
on STR problems. The experiments were performed on several databases (Chapter 5).
A comparative analysis of the results produced by the original Tesseract and Tesseract
modified by the proposed method is presented and discussed.

In addition to the general objective, this work also aims at the following specific goals:

• Carry out a bibliographic investigation of the main post-correction methods in OCR
and Scene Text Recognition.

• Conduct a study of the Tesseract Text Recognition tool, specifically of its language
model.

• Explore the various post-correction methods and try out possible combinations.

• Implement the selected post-correction methods in Tesseract to improve its accu-
racy.

20
• Demonstrate that using these selected post-correction methods improve the accu-

racy in scene image text recognition.

• Conduct experiments on different databases for Text Recognition and for Text
Detection and Recognition.

1.3 Contributions
In order to address the above described problem this work makes the following contribu-
tions:

• An analysis of the problems presented by the results of Tesseract v.3.4 in images of
natural scenes. Tesseract is one of the most used tools to recognize text in scanned
documents, but in Scenes images results are not good. The analysis of the results
produced by Tesseract v.3.4 in scene images reveal many spelling errors, errors that
are brought from the Text Detection stage, and errors in proper names. This work
analyzes the most common errors and shows how to address them.

• Improvement of the accuracy of the Tesseract in scene images using post-correction
methods. We have implemented several error correction methods in Tesseract to
improve the results in scene images. The results of such methods show improvement
with respect to the original Tesseract for all the tested databases.

• We show that post-correction methods can be used to improve the results in scenes
images. Normally post-correction methods are used in scanned documents since
context can be used to avoid overcorrection. However, we demonstrate that using
other restrictions provided by the same text recognition methods overcorrection can
be avoided, greatly improving the obtained results.

1.4 Organization
The rest of the work is organized as follows. Chapter 2 describes relevant concepts of
Text Detection and Recognition, and Tesseract. Chapter 3 presents related work on
Text Recognition. Chapter 4 describes the proposed approaches. Chapter 5 describes
the testing databases and the experimental setup and analyses the results achieved by
the proposed methods. Chapter 6 concludes with final remarks and directions for future
work.

21

Chapter 2

Background

2.1 Scene Text Detection and Recognition (STDR)
Scene Text Detection and Recognition is a very complex image analysis problems in
recent times. The task consisting of extracting text from scene images (Figure 2.1). The
resulting text can be easily processed by a computer, thus allowing various applications
such as urban navigation, help for people with visual impairment, automatic translation,
indexing and search of image databases by text content, among others [34].

Figure 2.1: Scene Text Detection and Recognition problem. All the possible texts are
found, the outputs being the sequence that characters.

STDR is known as a complex problem since it has to face many challenges [10, 57, 59].
The most common challenges are:

• Text occupies only a part of the image.

• Text is in a non-uniform background scene. In images and videos of natural scenes,
objects such as signs, fences, bricks, buildings, symbols, among others, may look
similar to a text, making it difficult to distinguish the text from such objects.

• To detect and recognize texts in images and videos of natural scenes one must
consider light, noise, occlusion, blur, distortion, low resolution, and reflection.

22
• Texts may contain more than one type of letter fonts, colors, scales or distance be-

tween words and characters. This makes the detection and recognition of characters
difficult when the number of classes of characters is large [34].

• Contemplate different orientations of the text.

• Multilingual environments. Although the languages that come from Latin are very
similar, other languages differ completely [28], like Japanese, Chinese or Korean
which have many different types of characters. For example, in Arabic writing,
characters are connected, changing their shape according to the context. In Hindu
millions of shapes can be built from its alphabet, each representing a distinct syl-
lable.

2.1.1 Scene Text Detection
Scene Text Detection (STD) identifies texts regions (regions of the image where there
is a text) and marks its location in the image. The result of this step are polygonal
bounding boxes that surround text regions. Depending on the solution, the bounding
box can contain a line of a text or a word. STD has two primary goals: (a) to locate all
possible candidates for texts in the image; and (b) to verify which of these candidates are
a text or not.

The first techniques that appear in the literature detect all possible candidates for the
text through two widely used methods: connected components (CC) and sliding windows
[57]. CC-based methods extract regions of the image based on the characteristics (color,
texture, strokes, borders) of the pixels. The most commonly used methods of this type
are those based on MSER (Maximally Stable Extremal Region) [34] and ER (Extremal
regions) [11]. In the sliding window methods, a window of different sizes passes along
the image to find possible candidates for the text. The sliding window leads to a compu-
tational cost and inefficiency since the method looks for different rectangles in different
sizes, radius, and rotation perspectives. To verify whether the detected candidates are
texts or not, candidates must meet certain restrictions, such as: if a group of candidates
has the same color, size, and width of the stroke, that group of candidates is considered
as a word. Another way to verify that is to use classifiers such as Super Vector Machine
[47] or Ada Boost [29] to determine if the candidate is a letter or not.

The most popular libraries for Text Detection that use CC and sliding-windows are
OpenCV and Libccv. OpenCV is an open-source machine learning software library that
includes over 2500 algorithms. OpenCV implements some algorithms to detect and rec-
ognize texts in images1. These algorithms are based on the work of L. Neumann et al.
[35, 36] for images having only horizontal words. To deal with images with vertical, hor-
izontal or inclined words, OpenCV implements the work of L. Gómez et al. [20] . Libccv
uses the operator Stroke Width Transform (SWT) [14] for Text Detection. SWT uses the
stroke widths of the pixels to form CC. SWT depends largely on the detection of edges.

1https://github.com/opencv/opencv_contrib, last accessed on 12/12/2019

https://github.com/opencv/opencv_contrib

23
With the appearance of neural networks, some techniques started using YOLO (You

Only Look Once) [40] approaches to detect text regions in a scene image. YOLO is a
neural network that uses convolution layers to find objects. YOLO works similarly to
sliding windows, but unlike sliding windows, it only goes through the image once. It finds
all the possible candidate text, and then classifies the region as having a text or not.

The methods that use neural networks to detect texts became so popular that some
famous libraries started using them as well. OpenCV implements EAST (Efficient ac-
curate Scene Text Detector) [58] in its newer versions. EAST is a robust deep learning
method that can find horizontal and rotated text.

2.1.2 Scene Text Recognition
Scene Text Recognition (STR) converts image regions to strings. Several STR methods
have been proposed that they can be grouped into three types: traditional methods, deep
neural-network-based methods, and sequence-based methods [1].

In traditional methods, handcrafted visual features are extracted to recognize indi-
vidual characters one by one. Then the words are formulated using statistical models in
terms of low-level features and high-level language [34]. Typically, a post-processing pass
is included to correct syntactic errors, remove ambiguous recognition or segmentation
errors so as to improve recognition accuracy.

With the emergence of deep neural networks, more robust characteristics began to be
extracted, but post-processing was still necessary to give better results. As an evolution
of this research line, the problem of STR has started to be viewed as a sequence of two
machine learning problems: (1) first a deep neural network that encodes a text image into
a sequence of characteristics; and (2) a sequence recognition solver based on a recurrent
neural network that recovers the character sequence.

There is a number of library APIs that recognize texts in the scene image. The most
famous is Google’s APIs know as Tesseract. Although Tesseract was initially developed to
recognize texts in scanned documents, it can currently be used to recognize scene images.
Alchemy Visionn’s APIs2 is an IBM-owned company that uses machine learning and
computer vision to recognize texts. Microsoft’s Vision APIs3 is used to extract printed
and handwritten texts in the Microsoft Azure Cloud.

2.2 Tesseract
In this section, we perform a Tesseract analysis of version 3.04. Although the best and
stable version is currently version 4, we use version 3.04, because it uses traditional
methods to recognize text.

2https://www.ibm.com/blogs/cloud-archive/2016/05/alchemy-and-watson-visual-recognition-api/,
last accessed on 01/11/2019

3https://azure.microsoft.com/es-es/services/cognitive-services/computer-vision/, last
accessed on 03/11/2019

https://www.ibm.com/blogs/cloud-archive/2016/05/alchemy-and-watson-visual-recognition-api/
https://azure.microsoft.com/es-es/services/cognitive-services/computer-vision/

24
2.2.1 A Brief History of Tesseract
Tesseract is an open-source OCR engine, initially developed by HP between 1985 and
1995 [51]. Tesseract was developed to improve the quality of the HP scanners given
the bad performance of the commercial OCR engines of those days while scanning poor
quality documents.

The first time Tesseract appeared in a competition was at the annual UNLV OCR
precision test of 1995. Although it showed superior results, it was set aside for 10 years
[48]. In 2005 HP released Tesseract as open source tool and in 2006 Google started
improving it.

From its first version (1.x) to the last (4.x), Tesseract has evolved to make it more
robust and efficient. Among the improvements of each version are:

• Version 1.x focused on the problems of grayscale images.

• Version 2.x, languages born from Latin were added.

• Versions 3.0.x and 3.01.x, the analysis of page design was improved, that is, Tesser-
act begins to consider vertical texts and with slopes greater than 15 degrees; re-
sources were added to recognize languages such as Arabic and Hindi; segmentation
was improved to be able to recognize languages with a large number of characters
such as Chinese and Japanese.

• Version 3.02.x and 3.03.x, the ability to recognize right-to-left written languages as
Hebrew was added; the language model is added to improve accuracy.

• For versions 3.4.x and 3.5.x, Tesseract could recognize 100 languages simultaneously,
though one still must indicate the language to be recognized.

• In version 4.x, Tesseract starts using a long short-term memory (LSMT) neural
network, recognizing 123 languages with good results for scanned documents in the
majority of languages.

• Version 5.x is in an alpha version, and it aims at eliminating all errors observed in
version 4.x.

2.2.2 Tesseract Overview
In the beginning, Tesseract was designed for scanned documents. Therefore Tesseract
OCR engine architecture is intended for scanned documents. Over time it has been mod-
ified to remain one of the most used text recognition frameworks. Currently, Tesseract
4.x uses a recurrent neural network LSMT to recognize the characters and form the final
results, but most of the architecture is based on the Tesseract 3.4.x. Figure 2.2 shows
the Tesseract OCR 3.4.x engine architecture that is currently used. In all that remains
of the section, we describe the showed components in Figure 2.2.

25

Figure 2.2: Tesseract OCR 3.4.x engine architecture [50].

Since it began to be developed at HP Labs, Tesseract does not perform STD. There-
fore, Tesseract assumes that the input is a binary image of the text regions of the image
to be analyzed (Figure 2.3).

Figure 2.3: The Tesseract input is a binary image focused on the text.

Layout Preprocessing

The first step of Tesseract 3.x is layout analysis. The layout analysis was designed so
that in all the following steps the text is analyzed horizontally. As Tesseract is designed
for scanned documents, it is considered that parts of the document can be horizontal
or vertical [43, 54]. First, the automatic orientation detection finds all the orientations
of the text regions. Then all vertical blocks are converted to horizontal, considering a
rotation of 90 degrees, and the blocks of text regions are passed to the next step. For
images in natural scenes, it works in the same way but the background complicates the
detection of orientation.

When text regions are normalized, Tesseract recognizes connected components (CC).
For recognizing all texts, CC is recognized in a white background and a black background.
Then CC is joint to form blobs. Blobs are considered as a putative classifiable unit, which
can be one or more CCs that overlap horizontally and their internal contours or nested
holes. Later the text line finder detects lines of text by the vertical overlap of adjacent
characters. With text lines, blobs in a line are organized into recognition units, to move
on to the next step.

Word Recognition

The next step is to recognize the characters and form the words. Figure 2.4 shows how
Tesseract 3.x performs this step. Recognition begins with image segmentation (Character

26
Chopper stage). If the chopper cut too much the characters, Tesseract considers putting
the components together (Character Associator stage). Then a static and an adaptive
classifier classify them. Once classified, Tesseract forms the word and chooses the best
result. If the result is not the desired one, Tesseract does the process again, changing the
parameters.

Figure 2.4: Block diagram of Tesseract word recognition [50].

Blobs do not always represent a character (Figure 2.5). A blob can contain more than
one character, in which case they need to be separated, or it can not represent a character,
in which case blobs are joined to form a character. Tesseract uses the best-first search
strategy on the segmentation graph to find characters but grows exponentially according
to the length of the blob sequence. A character width restriction is incorporated to avoid
exponential growth, thus reducing the segmentation points to be evaluated.

Figure 2.5: (a) The Tesseract input image. (b) How blobs represent the word in the
image (a).

Figure 2.6 shows the segmentation graph of the image in Figure 2.5a, after classifying
each blob or group of blobs representing a character. In Figure 2.5b, the nodes represent
the spaces between the blobs, and the edges are all possible characters that the blob or
a group of blobs represent. That is, the edge that goes from the first node to the second
node represents all the characters that the classifier recognizes with blob number 1. The
edge that goes from the first node to the third node represents all the characters that the
classifier recognizes by joining blobs 1 and 2.

To recognize the characters, the first step is to extract features. Tesseract uses shrink-
ing features. Shrinking features are segments of a polygonal contour approximation (Fig-
ure 2.7). There are two types of shrinking features: nanofeatures and picofeatures. They

27

(a) Division of the word Analysis into components known as Blob.

(b) The segmentation graph creating, Tesseract considers recognized characters for each
component or a set of them.

Figure 2.6: Segmentation graph.

can be nanofeatures if 4 dimensions are considered: x, y, direction, and length (Fig-
ure 2.7a). If the previous segmentations are of a fixed length, it is known as picofea-
tures(Figure 2.7b).

Figure 2.7: Shrinking features: (a) Nanofeatures (b) Picofeatures [51].

Tesseract version 3.x uses an optimized k-Nearest Neighbor (kNN) classifier to rec-
ognize characters. KNN is a supervised method of Machine Learning used to classify
or predict values [27]. KNN searches the observations closest to the item that is trying
to predict. Then KNN classifies the item depending on the majority of data around it.
KNN classifies a new item as follows:

1. Calculate the distance between the new item and the rest of the data in the training
dataset.

2. Select the k-nearest elements.

3. Make a majority vote between the k points, that is, the class that dominates between
the k points will be the resulting class.

28
In Tesseract, to perform step 1, the Euclidean distance is used as shown in Equation

2.1.

argmin(k) 1
M + Jk

(
∑
l,i

(xil − µijk)2 +
∑
j,i

(xil − µijk)2) (2.1)

Where: k: the number of neighboring points to perform the classification. −→X l =
xi,l : i ∈ [1, n], l ∈ [1,M]: the characteristics of the training data. µ: characteristics of
the item to be classified. The indexes: i = entity dimension, j = cluster, k = character
class, and l = unknown entity index.

Equation 2.1 considers two Euclidean distances. The first summation calculates the
characteristics that are allowed by the cluster while the second summation calculates the
characteristics that are required. The second summation is added to prevent characters
such as ‘c’ from being classified in class ‘e’. Since all the characteristics of ‘c’ are allowed
in ‘e’, but ‘c’ does not have all the characteristics required to be classified as ‘e’ [51].

The complexity of calculating the distance between the new item and all training
data is O(JkKMn). For example for the English language, where each character has
an average of 100 features, each feature has dimension 3, there are 3520 classes (110
characters-set ∗ 32 trained fonts), and each class has 50 training data, calculate distance
is O(1018). The complexity increases more in languages where there are more classes such
as in Chinese, Japanese or Thai.

An additional stage is considered before using KNN to reduce complexity. This stage
is called class pruner, which reduces the character set to a small list of 1-10 characters.
The class pruner is relatively fast since it uses a method related to Locality Sensitive
Hashing (LSH) [12].

At the end of the recognition, each character has the following values: rating (the
classifier distance weighted by the length of the outline in the blob), certainty (indicates
the classifier certainty of the choice), script (in Tesseract, it is a group of languages that
come from the same origin or share similarities as characters), a gap after or before
character, and height of the character.

Language Model

The Viterbi algorithm [17] is used in the segmentation graph to form the words. The
objective of the Viterbi algorithm is to find the lowest cost path, that is, the path that
best combines the recognized characters (Figure 2.8). The cost in the segmentation graph
is determined by the language model components and the properties of the cut between
the blobs of the path.

If results are not good enough, a list of pain points is constructed. Paint points are
the points along the way of the character that do not seem to be consistent with the
neighboring. With the new Pain points, Tesseract does the process again until the results
are good enough.

The result of the word-formation process is a list of all possible words that the

29

Figure 2.8: The Viterbi algorithm executed in the segmentation graph of Figure 2.5.
Created words are “Analysis” and “malyn”.

Viterbi algorithm considers as reasonable good. These words in Tesseract are known
as WERD_CHOICE. Sometimes some WERD_CHOICEs are not good. The word rat-
ing that calculates the word defect is considered to filter these words.

Word Rating is calculated by considering the uncertainty of each character that forms
the word and the inconsistencies that the word presents. Equation 2.2 shows how Tesser-
act calculates the rating for the word w of length l.

rating(w) = factor(w)×
l−1∑
i=0

uncertainty(ci) (2.2)

Where: ci ∈ w, the uncertainty method calculates the uncertainty of each character
of the word, and the factor method calculates the general defect of the w word. Equation
2.3 shows the factor method.

factor(w) = 1 + frequency(w) + dictionary(w)+
length(w) + shape(w) (2.3)

The frequency method calculates if w is among the most frequent words of Tesseract.
The dictionary method calculates if w is among the Tesseract dictionaries. The length
method determines whether l does not exceed the common size of words of the language.

When Tesseract calculates the word rating for all WERD_CHOICEs, the best word
is recognized, which is the one with the lowest word rating (Figure 2.9b). Then all the
WERD_CHOICEs that are not in a reasonable range of the best option are removed
(Figure 2.9c). Since all WERD_CHOICEs represent the same text of the image, they
form a Tesseract variable known as WERD_RES.

Finally, Tesseract calculates some attributes of each WERD_RES, such as, tess_data.
tess_data determines whether WERD_RES is regarded as “reasonable good”. If the
variable is true, Tesseract terminates, and the best WERD_CHOICE is the final re-
sult. Otherwise, the same recognition procedure is performed again but with modified

30

Figure 2.9: (a) WERD_CHOICEs that were formed with the Viterbi algorithm. (b) The
best chosen WERD_CHOICE considering the word with the lowest rating word. (c)
Remove all WERD_CHOICE that are not in a reasonable range. (d) The final results.

parameters.

Dictionary

Dictionaries are important in the process of Text Recognition in an image. Among the
dictionaries that Tesseract uses are:

• word-dawg: made from dictionary words from the language.

• freq-dawg: made from the most frequency words.

• punc-dawg: made from punctuation patterns found around words.

• number-dawg: made from tokens which originally contained digits.

• bigram-dawg: A dawg of word bigrams where the words are separated by a space
and each digit is replaced by a “?”.

• user-words: A list of additional words to add to the dictionary.

The dictionary is represented through a DAWG (Directed Acyclic Word Graph) struc-
ture. DAWG is compact, so it takes up little memory, and words are easy to find [50]
(Figure 2.10). In the DAWG, each edge is labeled with a character. The characters along
a path from the root to a node are the substring which the node represents. For example,
node 6 in the Figure 2.10 represents “wor”. The initial node, node 0, represents an empty
string, and the final node represents a word that exists in the dictionary.

Tesseract builds dictionaries from a list of words in alphabetical order. First, it forms
a Trie structure with the words [18]. Trie is a tree-like structure that allows information
retrieval (Figure 2.11). Unlike DAWG, Trie takes up more memory space since it has more
nodes to store. After Tesseract constructs the Trie, some repeating nodes are reduced,
thus forming the final DAWG. For example, the paths from node 7 to nodes 10, 13, and
14 is equal to the paths from node 8 to nodes 18, 19, and 20. Therefore it is reduced as
shown in the paths from node 7 to node 12 of the DAWG in Figure 2.10.

31

Figure 2.10: DAWG for all forms of the verbs play and work.

Figure 2.11: Trie for all forms of the verbs play and work. Trie that represents the Dawg
in Figure 2.10.

Tesseract represents DAWG as an array of edges. Each edge is stored in a 64-bit
variable. The first n bits on the right are reserved for the character identifier, n depends
on how many characters exist in the language of the dictionary. The next 3 bits represent
edge specifications. The first represents the marker flag of this edge, the second bit
represents the direction flag of this edge, and the last bit represents if this edge marks
the end of a word. The last bits represent the next node visited by following this edge.
Figure 2.12a shows how the 64 bits are distributed for a dictionary in English.

(a) (b)

Figure 2.12: (a) Distribution of the 64 bits that represent an edge in DAWG in an English
dictionary. (b) Representation of the edge to node 3 of the Figure 2.10.

Figure 2.12b represents the edge that goes to node 3. Given that the English language
has 111 ≈ 27 characters with lowercase, uppercase, digits, and punctuation marks, so
character identifier = 7. ‘a’ is represented by 21 = 0101. The next three bits represent
specifications of the formed substring: the first bit is 0 since the next node is not marked;

32
the second bit is 0 since the word is forming from left to right and the third bit is 0
because the formed substring in node 3 is not a final word in the dictionary. The next
node represents the node that the edge is going to, in this case, 3 = 0111.

33

Chapter 3

Related Work

In this chapter, we briefly describe some relevant works related to post-correction methods
in Optimal Character Recognition (OCR) and Scene Text Recognition (STR).

According to Y. Bassil et al. [2], error correction methods are generally categorized
into three main classes: (a) manual error correction; (b) dictionary-based error correction;
and (c) context-based error correction.

Manual error correction

The idea of manual correction, as the same name says, is that people correct the results
manually. For example, in 2000, a project known as Distributed Proofreaders (DP) was
launched on the web 1, for the review of e-books in the Project Gutenberg2. The idea of
the project DP was that volunteers around the world would compare scanned documents
with their corresponding OCR results. As the first volunteers were not expected to correct
all the errors, the corrected text would be corrected again by another volunteer. When
volunteers observed that there were no more errors to correct, corrected texts were stored
in the digital archives of the Project Gutenberg.

Errors can be easily corrected, but they are prone to human errors. For example,
people may not notice some errors, especially if there are a large number of reviews to be
done, as in scanned documents. Therefore, methods that automatically correct spelling
errors began to be developed.

Dictionary-based error correction

Dictionary-based methods, known as lexical error correction, are those in which errors
can be corrected using a dictionary or lexicon.

Dictionary-based correction methods date back to the beginning of OCR methods in
scanned documents. V. Levenshtein proposes a theoretical model to solve the insertion
and deletion, considering them as binary problems [30]. The idea of from 0 to 1 is the

1https://www.pgdp.net/c/, last accessed on 11/12/2019
2Project Gutenberg is a library of over 60,000 free eBooks. https://www.gutenberg.org/, last

accessed on 15/01/2020.

https://www.pgdp.net/c/
https://www.gutenberg.org/

34
insertion, and from 1 to 0 the deletion where 0 is a null string and 1 some character of the
language. If there is more than one word that can replace the original, it is considered
the word that has the lowest edit distance from the original.

The method of V. Levenshtein is not the only way to correct the words; other al-
gorithms use finite-state automata theory. I. Guyon et al. propose a linguistic post-
processor to correct characters that OCR recognizes incorrectly [21]. The system uses
a Variable Memory Length Markov Model (VLMM) trained with a dictionary that gen-
erates the candidates with the help of the language syntactic properties. The approach
passes characters to an automaton that predicts which are the possible next characters. If
the next character of the word does not match, a new candidate is created. The authors
also extended their VLMM to correct proper names by adding them into the dictionary.
Unlike ours, this method only allows substitutions; deletion and insertion are not possible.

R. Beaufort et al. propose a method to make word corrections depending on character
recognition [3]. The method performs the correction using a Finite-State Machine (FSM)
and three lexicons: a normal dictionary, a confusion list, and an alphabetical mapping.
FSM is created online, depending on the word, and weights are calculated from the
lexicons. The method considers the best results as the route of the characters with the
greatest weight. The method assumes that characters with which the word must be
corrected must always be in the recognized character set, unlike our proposed method
in which the characters with which it is corrected are not necessarily in the recognized
character set. Figure 3.1 shows an example of how the explained method does not find
the correct word. The correct word is “Management”, but the method using FSM does
not correct since the ‘t’ character is not found among the characters recognized for the
last character of the word.

Figure 3.1: Correction using the method proposed in [3].

K. Taghva et al. propose an error correction system for documents recognized by OCR
[53]. The correction is based on chain approximations and n-gram analysis in Bayesian
systems based on statistics. The dictionary is stored in hash tables, at first, the system
has a medium amount of words but more and more information is collected as the user
interactively reviews the errors corrected by the method.

Methods that use a lexicon with the most common words of the language showed
incorrect results in proper nouns or words that were not in the dictionary. J. Feild et

35
al. propose to eliminate these errors by incorporating language information using a large
web-based lexicon (Web IT) [16]. When the method obtains the first initial label and the
probabilities of bigram between characters, new words begin to be generated considering
the words with distance edition of two and the frequency of the word obtaining with the
most common websites. Then the method chooses the word with the highest probability
(the sum of all the probabilities of characters by the frequency of the word). Unlike our
proposed method, all words pass the post-processing, if the correct word is the initial
label, a double effort is done to achieve the same result. Our proposed method tries to
avoid the double-work.

F. Bai et al. propose Edit Probability (EP) to eliminate misalignment between ground
truth and output caused by unrecognizable, missing, or superfluous characters to effec-
tively train models based on attention [1]. EP estimates the probability of generating
a string from the output sequence of the probability distribution conditioned on the in-
put image. EP also predicts the possible word with the probability found analyzing two
cases without lexicon or with the information of a lexicon (edit probability Trie). EP
was designed only for methods that use attention-based models such as LMST since the
probability is obtained using information from internal states.

N. Sharma et al. propose a text recognition method for multi-lingual videos (English,
Hindi, and Bengali) [45]. The method uses Spatial Pyramid Matching to identify the
script; SIFT to extract the characters; Support Vector Machine (SVM) to classify the
characters; Hiden Markov Model (HMM) to form words from the characters and finally
post-processing. The post-processing calculates the minimum edit distance between the
words obtained and the entries in the lexicon, forming a list of the three main suggestions
that are the final results. Unlike our proposed method, the lexicon is formed by the 2000
most common words of languages, that is, words that are not common to give errors.
Also, post-processing is done for all words, even for those words which are not in the
dictionary, and end up been recognized, thus resulting in false-positive recognition.

D. Chen et al. propose a method with post-processing to deal with low-resolution
video frames [6]. Post-processing uses the error voting technique (ROVER) at the char-
acter level to find the final result. ROVER aligns the results of all the frames that make
up the same shot. The final result is calculated as the concatenation of the characters of
each position with the greatest frequency.

There are studies on whether post-correction methods should be performed, or it is
better to improve the input or the process to obtain better results. L. Liu et al. propose
a study on the benefits of correcting errors after performing OCR, also proposing a post-
correction method [31]. The analyses showed that it is more efficient both in cost and
in accuracy to correct errors after the OCR method, considering that if it is done in the
beginning or middle, more problems will arise which will be more difficult to solve. The
proposed post-correction method uses the idea of self-learning and knowledge acquisition
during its process to correct errors. Techniques are the conservation map, character pair
matrix, lists of error-prone characters, and set of characters that can be confused. At first,
these techniques are trained with the dictionary, but when OCR engine starts correcting,

36
it learns from errors and stores them.

T. Novikova et al. try to show that the accumulation of errors in previous stages
makes errors not manageable in post-processing [38]. Authors propose to introduce pro-
cessing in word-formation, similar to the post-processing described in other methods.
The processing uses a lexicon and an n-gram based on the occurrences of characters to
correct word errors. Although they try to show that their method is better than methods
that use post-processing, the two cases produce similar results.

R. Smith proposes a study on whether doing post-processing after performing Tesser-
act v.2.x on scanned documents improves their results [49]. Tesseract uses a dictionary
to find words, but for post-processing, it adds a new variable where the frequency of
the words is stored. The post-processing corrects ambiguities that the language model
cannot correct. Results show that using the dictionary and the frequency can improve
some results but in those specialized documents results worsened. Also, considering the
use of memory to store the new frequency, it is not feasible to perform post-correction.
It is better to strengthen the Tesseract language model to improve the results, which
was done at Tesseract v.3.04. In the proposed method, the frequency is stored in the
structure of the dictionary, also, that all words do not go through post-correction, only
those which do not meet some restrictions.

Although many methods presented show an improvement in accuracy using a dic-
tionary, vocabulary, or lexicon, all presented the same problem: the accuracy worsened
when the word does not exist in the dictionary or the words are proper names. According
to M. Strohmaier et al. [52], for a dictionary to be perfect for post-correction, it would
have to meet these three requirements:

1. The dictionary must contain all words to be searched, ensuring that any incorrectly
recognized words can be corrected.

2. The dictionary should only contain the words you want to search, avoiding inap-
propriate corrections.

3. The dictionary must store the frequency of each word, to disambiguate among
several possible candidates.

Table 5.13 shows the similarities and differences between the proposed methods and
the dictionary-based post-correction methods.

Context-based error correction

Since dictionary-based methods were deficient for words that do not exist in the dictionary
or proper names, researchers began to look for other ways to correct the errors efficiently.
Thus, context-based methods began to develop. Beginning to be more relevant when the
ICDAR 2017 [8] and 2019 [41] competitions started with the Post-OCR Text Correction
challenge.

37
Table 3.1: Similarities and differences between the proposed method and those described
above.

Methods Similarity Difference
V. Leven-
shtein [30]

Consider insertion and deletion to
correct words. Use edit distance to
choose the result.

It is a theoretical proposal. The
proposed method considers substi-
tution, compound, and frequency to
correct the word.

I. Guyon et
al. [21]

They also consider the incorrect
word as a possible result.

They use a VLMM to store the dic-
tionary. They only allow substitu-
tion.

R. Beau-
fort et al.
[3]

They use more than one dictionary
to correct the words.

Only the characters recognized by
the classifier are candidates for cor-
recting errors.

K. Taghva
et al. [53]

They bases on chain approxima-
tions.

Human interaction helps to learn the
errors of the system.

J. Feild et
al. [16]

They use the frequency to choose the
best result.

All recognized words pass the post-
processing.

F. Bai et
al. [1]

They use the Trie structure to cor-
rect errors.

They use information from internal
states of their deep neural network.

N. Sharma
et al. [45]

They calculate the minimum ED to
form the suggestions.

They use a lexicon with the 2000
most common words of the main lan-
guages.

H. Niwa et al. propose a post OCR method for scanned documents [37]. The correc-
tion depends on the grammar, vocabulary, and content of the documents. First, random
words are extracted from the document, thus obtaining the topic of the document. Then
errors are corrected considering the vocabulary and grammar of the language. Finally,
the most appropriate candidate is selected, depending on the topic of the document. As
there is no control over choosing keywords, sometimes they result in generic words or
misrecognized words, which do not help to choose a topic. Our proposed method cannot
use the topic of the text to be corrected since there is not enough information infer it.

Methods to correct the scanned documents use information from them to improve
results. M. Bokser proposes an OCR engine that they divide into four phases: segmenta-
tion, image recognition, document analysis, and ambiguity resolution [4]. The ambiguity
resolution stage corrects various errors in words that are found by the classification stage.
The OCR engine uses the dictionary, the specific knowledge of the language and proper-
ties of the document to correct the errors.

Y. Bassil et al. propose an OCR post-correction method based on the question “Did
you mean ..?’ to enable online error correction with Google [2]. The process consists of
fragmenting text blocks of 5 words each, considering that if there are sentences of 4 or
6 words, the method groups those sentences into blocks of 4 or 6. These blocks are sent
as a query to the Google search engine if the result returns “Did you mean ..?”, so the
original block is considered misspelled, and replaced with the suggested block, otherwise,

38
the original block is retained. This method avoids using dictionaries since they are not
dynamic elements, new words cannot be added, in addition to not supporting proper
names.

For S. Schulz et al., the post-correction OCR can solve errors as a problem of trans-
lating incorrect text to correct text [42]. They propose to use an integrated Statistical
Machine Translation model (SMT) at the token and character level. The model tries to
assign each word of the original text a corrected word that will be considered as its exact
translation. To avoid overcorrection (avoid incorrect alternation of an initially correct
word), the word studied must appear in the corpus (a collection of written or spoken
material used to discover how language is used) in combination with the previous and
subsequent ones. With this information and with other document information, SMT de-
cides if the original word should not be translated. The same dynamic approach is also
used to choose the best candidate.

H. Hammarström et al. propose a language-independent Post-correction system, with-
out supervision or human intervention to improve OCR results in historical documents
[22]. The idea of the method is based on the fact that two words are variants of each
other if their distribution similarity exceeds what is expected by chance of their similarity
of form. If two words are similar, the change is made. Unlike many methods, this does
not use a dictionary but information obtained from each line of the document that is
stored in a vocabulary. Results prove to be very good at avoiding overcorrection, but it
also leaves many errors that language information can correct.

J. Evershed et al. describe an unsupervised OCR correction system [15]. The system
analyzes every 3 words to detect and correct errors. When an error is detected, the
confusion matrix generates possible words. The confusion matrix is filled with the errors
found in the training data without any human interaction. The method must train the
confusion matrix with the training data of each database to have good results. If it does
not retrain the results get worse.

Despite using the information in the document to correct the errors instead of isolated
words, most approach still suffer from the ability to handle proper names. Jean-Caurant
et al. propose an approach to correct errors in entity names from scanned documents
[23]. The method consists of constructing a bi-similar graph in which entities found
in the training are saved with their respective variations, for example, “Washington”
and “Washingtan”. Then, entities are related depending on the relationships found in
training. Results show great improvement in the errors of entities, even in those in which
the human could not recognize. This is due to the relationships that a graph builds
between entities. Nevertheless, the quality of the results depends a lot on the training.
If an incorrectly recognized entity is not in training, it cannot be corrected accordingly.
The training is done with many databases and scanned documents to prevent this from
happening.

Unlike dictionary-based methods, these methods can only be used when you have
a lot of information about the text from the scanned documents. The best results are
obtained with methods where not only the word but the text is analyzed. These methods

39
cannot be applied directly to STR since these problems need a lot of information to work
properly.

40

Chapter 4

Syntax-Based Techniques

As explained in Section 2.2.2, Tesseract returns a set of characters that represent a
word for every bounding box. Tesseract also returns information of the words and every
character that form the word. In this work, we show that using information from Tesseract
and the dictionary, the accuracy of Scene Text Recognition can be improved.

4.1 Spelling correction
Tesseract 3.4 has good results in scanned documents, whether the text is presented in
tables, in the vertical orientation, or in languages such as Japanese, Chinese, Hindu. But
in scene images, the results are not relatively good as those that currently exist in the
literature [7, 1, 46]. A careful analysis shows that some incorrect results of Tesseract 3.4
can be corrected through spelling techniques since various incorrect results have an Edit
Distance of one or two when compared to the ground truth.

ED is used to measure the dissimilarity of a pair of strings by counting the number
of operations required to transform one string into the other [1]. Correction actions,
like substitution, insertion, or deletion, can leverage on ED to fix words according to
the analyzed problem. For example, in Figure 4.1a, the word “FREEDUM” and ground
truth “FREEDOM” have an edit distance of 1 since we need to replace the ‘U’ for the
‘O’. In Figure 4.1b, the word “WARNNGI” and ground truth “WARNING!” have an edit
distance of 2 since we need to replace the ‘I’ for the ‘!’ and insert the ‘I’. In Figure 4.1c,
the word “CULCHESJ’ER” and ground truth “COLCHESTER” have an edit distance
of 3 since we need to replace the ‘U’ for the ‘O’ and the ‘J’ for the ‘T’ and delete the ‘
’ ’.

Table 4.1 shows the number of words that failed, considering edit distance of one,
two and three, after running Tesseract 3.4 on the databases used in this work (Section
5.1). In columns ED ≤ 1, ED ≤ 2, and ED ≤ 3 of Table 4.1, we show the number of
words with edit distance of columns 1, 2, and 3 respectively between the incorrect results
of Tesseract and the ground truth. Substitution, insertion, and deletion actions are
considered to calculate the edit distance. Also, the table shows the increase in accuracy

41

Figure 4.1: Edit distance with images from the ICDAR 2013 Database. Blue characters
indicate substitutions, red characters deletions, and green characters insertions.

if the errors were corrected. Libccv library is used for STD and Tesseract is used for
STR, as explained in the Chapter 5.

Table 4.1: Number of words that failed in Scene Text Recognition.

Data Accuracy ED ED ED
Base Text recognition ≤ 1 ≤ 2 ≤ 3

ICDAR 2003 50.11% 95(7.16%) 141(10.63%) 149(11.23%)
ICDAR 2013 55.66% 162(19.10%) 300(35.38%) 386(45.52%)

IIIT5K 26.1% 211(10.55%) 299(14.95%) 331(16.55%)
IND 7.9% 166(3.69%) 303(6.74%) 971(21.60%)

ICDAR 2015 59.22% 35(6.52%) 57(10.61%) 64(11.92%)
KAIST 60.05% 33(8.51%) 51(13.14%) 63(16.24%)
SVT 32.84% 4(5.97%) 10(14.93%) 15(22.39%)

The accuracy of STR could be increased by running spelling actions on the incorrect
results, as shown in Table 4.1. The structure of the dictionary and the code provided by
Tesseract (word_in_dawg method - Algorithm 4.19) was used to implement the spelling
corrections.

Listing 4.2a shows the word_in_dawg method, which determines whether the word
(WERD_CHOICE) is in the dictionary or not. The word_in_dawg method relies on
the structure of Tesseract dictionaries to search for the word. The algorithm starts by
determining if the searched word is an empty string or not, considering the word length
(l) (line 2). If l > 0, the word is formed in the DAWG (lines 4 to 13). The method uses
the NODE_REF variable to determine in which node is currently being analyzed. For
each character from character1 until characterl−1, the method edge_char_of calculates
the next node to visit using the current node and characteri (line 5). If the edge is
NO_EDGE, it returns false, because the edge that leaves the indicated node with the
specified character does not exist (line 6). For example, in Figure 4.2b, the word “plot”
does not exist, since considering i = 3 in node 5 of the DAWG, no edge represents

42
character “o”. Line 9 calculates the next node that the algorithm has to follow to form
the searched word. If the node is 0, it returns false, because there are no words that
can be formed since the previous node (line 10). For example, in DAWG 4.2b, the word
“aren’t” does not exist since there is no path after node 0 painted in green. Finally, after
the last character is consumed, the algorithms tests if it has reached an end node, line
14.

1 bool word_in_dawg (WERD_CHOICE &word) {
2 if (word. length () == 0) return false;
3 NODE_REF node = 0;
4 for (int i = 1; i < word. length (); i

++) {
5 EDGE_REF edge = edge_char_of (node ,

word. unichar_id (i));
6 if (edge == NO_EDGE) {
7 return false;
8 }
9 node = next_node (edge);

10 if (node == 0) {
11 return false;
12 }
13 }
14 return edge_char_of (node , word.

unichar_id (word. length ())) !=
NO_EDGE ;

15 }

(a) Code
(b) Dawg

Figure 4.2: Annotated code for word_in_dawg method of Tesseract [?], that determines
if the word is in the dictionary and a Dawg that represents the words: are, play, and
plays.

The spelling_correction method (described in Figure 4.3) uses the same idea as the
one adopted by the method described above. The inputs are the words to be analyzed,
which are stored into word. The algorithm starts at characterstart and goes until the
characterstart−1, the node that represents the substring is stored into node_start, and
edit_dist which means how many modifications have been made to the original word.
We use the instruction spelling_correction(word,0,0,0) to call the method for the first
time. The output is the corrected word or the same word depending on the errors the
method finds.

Unlike word_in_dawg, if the spelling_correction method does not find a character
(line 7), the algorithm must correct that character. Corrections may use the substitution
method (Section 4.1.1), insertion method (Section 4.1.2), or the deletion method (Section
4.1.3). After correcting the character, these methods call the spelling_correction method
again to continue the process for the missing characters of the word. Every method
returns a word with all the modifications and its edit distance (edit_dist variable) (line
9). The best_replacement method determines the best replacement which is the word

43
with the smallest edit distance (line 11). If the edit distance is greater than 40% of the
word length, it will consider eliminating that process (line 3). All other parts of the
algorithm are similar to the word_in_dawg method, considering that if the corrected
word is not yet found in dictionaries, all the changes made must be discarded.

Line 3 in Figure 4.3 states that if the algorithm is allowed to modify more than half
of the word’s characters this would make the spelling_correction method guess the word
with few characters as clues. If more than 40% of the characters are modified, the method
assumes that the word found by Tesseract is correct or Tesseract recognized symbols that
are not words. In such case, the algorithm chooses to keep the word without making any
modifications.

1 WERD_CHOICE spelling_correction (WERD_CHOICE word , int start , NODE_REF
node_start , int & edit_dist){

2 if (word. length () == 0) return word;
3 if (edit_dist < word. length () *0.40) return word;
4 NODE_REF node = node_start ;
5 for (int i = start; i < word. length () ; i++) {
6 ...
7 if (edge == NO_EDGE) {
8 int new_ed = edit_dist + 1;
9 WERD_CHOICE word_subs = substitution (word ,node ,i, new_ed);
10 ...
11 word = best_replacement (...);
12 return word;
13 }
14 ...
15 }
16 return word;
17 }

Figure 4.3: Annotated code for spelling_correction method.

Figure 4.4: An image where Libccv library does not achieve good Text Detection.

We have noticed that problems show up when STD is used before Tesseract, as shown
in Figure 4.4. These problems occur when characters in the word are irregularly separated,

44
causing bounding boxes to not correctly recognize the word limits. We have considered a
new method to solve this problem called compounder (Section 4.1.4). Unlike substitution,
insertion, and deletion, compounder is done at end of the Tesseract recognition phase,
so it can leverage on the recognition information provided by it. Figure 4.5 shows the
flowchart of Tesseract with the new methods described above.

Figure 4.5: Engine architecture Tesseract OCR 3.4.x with the new methods Compounder
and Spelling Correction.

4.1.1 Substitution
Substitution involves replacing characters so that the word gets corrected. Figure 4.1a
shows an example where the “U” character is replaced by “O” so that FREEDUM be-
comes FREEDOM.

Several structures in Tesseract can help in the implementation of substitution. But to
make it more efficient, the NodeChildVector structure will be used, since it has variables to
store the necessary information. Figure 4.6 shows the NodeChildVector structure imple-
mented by Tesseract [?]. NodeChildVector is a vector of NodeChilds (line 5). NodeChild
is a structure that stores the character identifier (UNICHAR_ID) and the edge that the
character represents in the dawg (EDGE_REF).

1 struct NodeChild {
2 UNICHAR_ID unichar_id ;
3 EDGE_REF edge_ref ;
4 };
5 typedef GenericVector <NodeChild > NodeChildVector ;

Figure 4.6: Annotated code for NodeChildVector structure of Tesseract.

Figure 4.7 shows the implementation code of the substitution method. As input, the
method receives the same data as the spelling_correction method. The output is the
modified word and the edit distance of the corrected word. To find the character to be
replaced, it must verify if 1 ≤ i ≤ l − 1 or i = l, where i represents the position of the
character to be modified and l the word length.

45

1 WERD_CHOICE substitution (WERD_CHOICE word , NODE_REF node ,int i,int &
edit_dist)

2 {
3 NodeChildVector new_character ;
4 if (word. length () == i){
5 new_character = find_last_unichar (node);
6 if (new_character .size () > 0){
7 edit_dist = edit_dist + 1;
8 word. unichar_id (i) = new_character [0]. unichar_id ;
9 return word;
10 }
11 } else {
12 new_character = find_unichar (node ,word. unichar_id (i+1));
13 if (new_character .size () > 0){
14 edit_dist = edit_dist + 1;
15 WERD_CHOICE word_replace , word_new = word;
16 int edit_dist_better = 0 , dist;
17 for (int j=0;j< new_character .size ();j++){
18 dist= edit_dist ;
19 word_new . unichar_id (i) = new_character [j]. unichar_id ;
20 word_new = spelling_correction (word_new , next_node (

new_character [j]. edge_ref),i+1, dist);
21 if (dist < edit_dist_better){
22 word_replace = word_new ;
23 edit_dist_better = dist;
24 }
25 }
26 return word_replace ;
27 }
28 }
29 edit_dist = word. length ();
30 return word;
31 }

Figure 4.7: Annotated code for substitution method.

In the case of the last character of the word (i = l), the method uses find_last_unichar
to find all possible characters to correct the word (lines 4 to 10 from Figure 4.7). If
the find_last_unichar method returns more than one character, as there is no way to
tiebreaker two values (they have the same edit distance), the first character found is
chosen (line 8 from Figure 4.7).

The find_last_unichar method explained in Listing 4.8a, receives as input the node
representing the string formed from character1 to characterl−1 and produces as output
a NodeChildVector, where all the edges that can correct the word with their respective
characters are stored. First, find_last_unichar finds all edges that leave the node using
the unichar_ids_of method, storing all the resulting edges in the children variable (line
3). Given that find_last_unichar looks for the last character of the word, only the edges
leading to a final node are stored (line 5). Figure 4.8b shows a DAWG that represents the
words “play”, “plays”, “plan”, and “place”. The word found by Tesseract was “plad”, but

46
since it does not exist in the dictionary, the spelling_correction method will correct it.
Since the substring “pla” exists in the dictionary (node 3), only the last character needs
to be corrected. The unichar_ids_of method gets 3 edges that leave node 3, which are
“c”, “y”, and “n”. But only the edges represented by “y” and “n” are those that reach a
final node, so they are the possible characters that can replace “d”.

1 NodeChildVector find_last_unichar (
NODE_REF node){

2 NodeChildVector children ,
children_return ;

3 unichar_ids_of (node ,& children);
4 for (int i = 0; i < children .size ();

i++) {
5 if (end_of_word (children [i].

edge_ref)){
6 children_return . push_back (

NodeChild (children [i].
unichar_id , children [i].
edge_ref));

7 }
8 }
9 return children_return ;

10 }

(a) Code
(b) Dawg

Figure 4.8: Annotated code for find_last_unichar method. A Dawg that represents the
words: play, plays, plan, and place.

If the character to be replaced is between positions 1 to l − 1 (lines 10 to 27 from
Figure 4.7), the substitution method uses the find_unichar method to find all possible
characters that can replace it. As there are still other characters to be analyzed after the
replacement (line 18 from Figure 4.7), the substitution method calls spelling_correction
to analyze the missing characters (i+1 to l). The substitution method uses edit distance
to choose the best among the corrected words, which means the word with the lowest
edit distance is the result. If the substitution method does not find characters, the edit
distance takes the value of the word length and returns the word without any modification.
The find_unichar method can be implemented in two ways: (a) by analyzing the next
character of the word; or (b) by considering all characters after the node.

Figure 4.9 shows the implementation of the find_unichar method with the analysis
of the next character of the word. The node that represents the formed substring until
characteri−1 and the unichar_id of the characteri+1 are the inputs. First, find_unichar
finds edges that leave the analyzed node (line 3). Then, for each such edges, find_unichar
traverses the reached nodes and finds again edges that leave them (line 5). Finally,
find_unichar compares the characters associated with the traversed edges are compared
with the searched character, producing the matching edges as the method result (line 8).

Figure 4.10 explains how the find_unichar method finds potential characters. The

47

1 NodeChildVector find_unichar (NODE_REF node , UNICHAR_ID unichar_id){
2 NodeChildVector children , children_return , children_in ;
3 unichar_ids_of (node , & children);
4 for (int i = 0; i < children .size (); i++) {
5 unichar_ids_of (next_node (children [i]. edge_ref), & children_in);
6 for (int j = 0; j < children_in .size (); j++)
7 if (unichar_id == children_in [j]. unichar_id){
8 children_return . push_back (NodeChild (children [i]. unichar_id ,

children [i]. edge_ref));
9 break;
10 }
11 }
12 return children_return ;
13 }

Figure 4.9: Annotated code for find_unichar method to find all characters considering
the next character of the word.

Figure 4.10: How the find_unichar method finds potential characters, analyzing the
following character.

top-left Dawg represents the words: “play”, “plot”, “pocket”, “pray”, and “precision”. The
substitution method seeks to find all possible characters to replace the second character
of the word “ptays” recognized by Tesseract, so that the method find_unichar(1, “a”) is
called. The top-right DAWG shows the edges that leave node 1. The bottom-left DAWG
shows shows edges that match the “a” character. Finally, the bottom-right DAWG
exposes edges that are potential replacements for the “t” character.

Listing 4.11a shows the implementation of the find_unichar method, when considering
all the characters after the node. Unlike the method that analyzes the following character,
this method returns all the edges that follow the analyzed node without any restriction.
If we continue with the example of Figure 4.10, the results are the edges of “l”, “o” and

48

1 NodeChildVector find_unichar (NODE_REF
node){

2 NodeChildVector children ;
3 unichar_ids_of (node , & children);
4 return children ;
5 }

(a) Code (b) Dawg

Figure 4.11: (a) Annotated code for find__unichar method considering all characters
after the node. (b) A Dawg that represents the words: play, plays, plan, and place.

“r”, as shown in Figure 4.11b. Notice that the edit distance is an important metric to
determine the correct word when using this method.

4.1.2 Insertion
Insertion involves including a new character into the word to correct it. Figure 4.1b
shows an example, where the “I” character is inserted between the “N” characters so
that “WARNNG” becomes “WARNING”.

1 WERD_CHOICE substitution (WERD_CHOICE word , NODE_REF node ,int i,int &
edit_dist)

2 {
3 WERD_CHOICE word_res = word;
4 word_res . length () = word. length () + 1;
5 NodeChildVector new_character ;
6 if (word. length () == i){
7 new_character = find_last_unichar (node);
8 if (new_character .size () > 0){
9 edit_dist = edit_dist + 1;
10 word_res . unichar_id (i+1) = new_character [0]. unichar_id ;
11 return word_res ;
12 }
13 } else {
14 for (int k = i; k< word. length (); k++)
15 word_res . unichar_id (k+1) = word. unichar_id (k);
16 new_character = find_unichar (node , word_res . unichar_id (i));
17 if (new_character .size () > 0){
18 ...
19 return word_replace ;
20 }
21 }
22 edit_dist = word. length ();
23 return word;
24 }

Figure 4.12: Annotated code for insertion method.

The insertion algorithm (Figure 4.12) is similar to the one for the substitution method,

49
given its specific features. The input and output data are the same as for the substitution
method. The first difference is in line 4. Given that the method inserts a new character
the word length must be increased by one. If the inserted character is in the last position
of the word, the only thing that would change is the position in which the method stores
the new value, which would be i + 1 and not i (line 10). If the character position is
between 1 to l− 1, the characters after the position are moved to the right (line 14). The
rest of the code is similar to the substitution method. In the insertion, you can also use
two ways to find the missing character: (a) by analyzing the following character; or (b)
by considering all the characters after the node.

Figure 4.13: How the insertion method finds potential characters using the find_unichar
method with analyzing the following character.

Using the same example from Figure 4.10, Tesseract recognizes the word “pate” in-
stead of “plate”. The spelling_correction method recognizes that after node 1, there is no
edge with the character ‘a’ (right-top Figure 4.13). Then spelling_correction happens to
make substitution, insertion, and elimination. Like the insertion is not in the last charac-
ter, the insertion method moves all characters from “a” to “e”, one position to the right
(left-bottom Figure 4.13). When the insertion method uses find_character to analyze
the following character, it only returns the edges “l” and “r” as a result, since they are
the only ones that have character “a” labeled at its outgoing edges (right-bottom Figure
4.13) . Finally, the spelling correction will analyze “plate” and “prate” words.

4.1.3 Deletion
Deletion involves removing the character from the word to correct it. Figure 4.1c shows
an example, where the “ ’ ” character is removed and also two characters are replaced so
that “culchesj’er” becomes “colchester”.

50

1 WERD_CHOICE elimination (WERD_CHOICE word , NODE_REF node ,int i,int &
edit_dist){

2 for (int k = i+1; k< word. length (); k++)
3 word. unichar_id (k -1) = word. unichar_id (k);
4 word. length () = word. length () - 1;
5 edit_dist = edit_dist +1;
6 return spelling_correction (word ,node ,i, edit_dist);
7 }

Figure 4.14: Annotated code for elimination method.

Figure 4.14 shows the implementation code of the elimination method. The idea is
that all characters from the position i + 1 to l move one position to the left (line 2).
Then to eliminate the remaining position, the word length is reduced by one (line 4).
Finally, spelling_correction is called again to analyze the missing characters and return
the corrected word.

4.1.4 Compounder
The compounder method aims at joining two string to form a single word. It is post-
correction method that corrects the errors which were dragged from STD. Figure 4.4
shows an example. The idea is to use the values found in Text Detection and Text Recog-
nition to join two strings. If they have any errors to correct, using spelling_correction
might correct the word.

1 void join(vector <string > &words ,vector <Box > &boxes){
2 for (int i = 0; i < words.size ();i++){
3 for (int j= i + 1; j < words.size ();j++){
4 if (together (boxes[i],boxes[j])){
5 string new_word = words[i] + words[j];
6 if(word_in_dawg (new_word)==0)
7 new_word = spelling_corrrection (new_word ,0 ,0 ,0);
8 if(word_in_dawg (new_word)){
9 words[i] = new_word ;
10 boxes[i].w = boxes[i].w + boxes[j].w;
11 boxes[i].h = boxes[i].h > boxes[j].h ? boxes[i].h :

boxes[j].h;
12 words.erase(words.begin () + j);
13 boxes.erase(boxes.begin () + j);
14 }
15 }
16 }
17 }
18 }

Figure 4.15: Annotated code for compounder method.

Figure 4.15 shows the implementation of the compounder method. As the method

51
tries to join words, it will go through the list of twice. The first for goes through all
the words being considered (line 2). The second for goes through the words that can be
joined with the word of the first for (line 3). For each pair of words, the compounder
method determines whether the bounding boxes of the words are together or interposed
through the together method (line 4). If the bounding boxes meet all the conditions of
the together method, the compounder method creates the new word. If this new word
is not in the dictionary, the spelling_correction method corrects it (line 7). If the new
corrected word is in the dictionary, it is stored (line 9). Also, the method modifies the
width and height values of the new word (lines 10 and 11). If the new word is not in the
dictionary or spelling_correction cannot correct it, the method discards all the changes
and continues to the next word.

4.2 Frequency
Spelling_correction only uses edit distance to decide which is the best word among the
corrected words. When two or more words have the same edit distance and they exist in
the dictionary, there is no way to decide which one is the best. For example, in Figure
4.10, spelling_correction can replace “ptay” by “pray” or “play” since both exist in the
dictionary and have an edit distance of 1. One way to decide the tiebreaker between the
words could be the frequency of the words. Considering also that Tesseract can generate
more than one valid result in the dictionary, we can use the frequency in addition to the
Tesseract rating to choose the best word. The frequencies of the words determine how
many times a word appeared in a corpus. This work will use the Corpus of Contemporary
American English (COCA) [13]. This corpus is probably the most widely-used corpus of
English since it contains more than 560 million words of text. But how will Tesseract
store the frequencies?

As other researches show, a direct acyclic graph can store other information in addition
to the dictionary information, such as word frequency, cost of a function, among others.
It depends on how the graph is implemented to store this new information. It can use
another structure or modify the structure of the graph. For example, Tesseract uses the
same DAWG structure to store additional information like, for example, if the direction
of the word is stored inverted or not. Therefore to add a new information into Tesseract,
it would be more convenient to store it into the DAWG structure, given that Tesseract’s
code assumes that all the information that composes the dictionary is in a set of bit fields
tagged at the DAWG edges. Moreover, adding a new structure would involve taking up
more space in memory and increasing the time to retrieve the information from the new
data structure.

The first versions of Tesseract stored information at the DAWG edge as 8 bits valued
tags. This 8 bits tags worked fine for language dictionaries with few characters. But
when Tesseract added languages with multi-character graphemes, 8 bits were insufficient
to store a complete dictionary or relevant information to help with its handling. That’s

52
why in the latest versions, Tesseract stores such edge tags into 64 bits, even though in
languages that have few characters such as Latin or Germanic script, several bits are not
used.

Table 4.2: How various dictionary of Latin and Germanic origin languages provided by
Tesseract use the 64 bits of every edge.

Languages Number of Next Bits
characters Node without use

English 111 ≈ 27 2, 329, 466 ≈ 222 32
Portuguese 119 ≈ 27 1, 057, 083 ≈ 220 34
Spanish 110 ≈ 27 1, 402, 329 ≈ 221 33

Spanish Old 137 ≈ 28 1, 553, 611 ≈ 221 32
French 143 ≈ 28 1, 239, 817 ≈ 221 32
Italian 123 ≈ 27 933, 074 ≈ 219 35

Romanian 106 ≈ 27 468, 943 ≈ 218 36
German 118 ≈ 27 1, 376, 864 ≈ 220 34
Dutch 153 ≈ 28 1, 332, 559 ≈ 220 33
Polish 116 ≈ 27 823, 601 ≈ 219 35

Norwegian 103 ≈ 27 471, 985 ≈ 218 36
Albanian 107 ≈ 27 350, 225 ≈ 218 36
Danish 103 ≈ 27 355, 498 ≈ 218 36

Bulgarian 96 ≈ 26 334, 929 ≈ 218 37

Table 4.2 shows how several languages use the 64 bits at every edge. The second
column represents how many characters the language has. For example, the English
language has 111 characters meaning that 7 bits are used to represent all the characters.
The third column shows how many nodes Tesseract are needed to represent the dictionary.
The fourth column describes how many edge tag bits remain unused, considering those
used to represent the characters, the 3 bits used as flags, and the bits used to store the
next node.

Table 4.2 shows that there are 32 bits left at the edge that can be used to store new
information in Tesseract dictionaries for languages of Latin origin (Portuguese, Span-
ish, French, among others) and languages of Germanic origin (English, Polish, German,
among others). Acknowledging that the number of nodes is proportional to the number
of words that exist in the dictionary, using 32 bits would exclude those dictionaries that
have more words than the already formed Tesseract dictionaries. To avoid problems with
dictionaries that have more words Tesseract, 23 bits will be taken after the flag to store
the frequency. Figure 4.16 shows the new distribution of the 64 bits.

Since the new edge tag is a decimal number (single precision floating point), its values
range from 3.4×10−38 to 3.4×1038. A decimal stored into a floating variable considering
IEEE 754, occupies a 32-bit memory space, which is divided into a sign (1 bit), exponent
(8 bits), and mantissa (23 bits) [56]. Figure 4.17 shows the distribution of a decimal
number. The sign bit determines if the decimal is positive (zero) or negative (one). The

53

Figure 4.16: New distribution of the 64 bits that represent the same edge of Figure 2.12

exponent represents the exponential power. The mantissa is the actual number. The
portion after the decimal point in the mantissa is obtained by adding each digit of the
number by multiplying each digit by a power of two.

(−1)Sign × 1.(Mantissa)× 2Exponent = (−1)0 × 1.01011001100110011001101× 210000000

Figure 4.17: Representation of the decimal number 2.7 in a float variable.

Some bits must be removed, without changing the representation of the decimal num-
ber, so as to fit 32 bits into 23 bits. An accuracy analysis of the mantissa and exponent
is required in order to evaluate the impact of fitting the 32 bits into 23. If the stored tag
is always only positive or negative numbers, the sign bit can be eliminated. If any bit in
the exponent is removed, it would completely modify the value. If the bits are removed
at the end of the mantissa, some precision decimals are lost. Therefore, in our specific
case, the sign bit could be discard and 8 bits removed at the end of the mantissa. Figure
4.18 shows how the decimal number 2.7 would store a tag into an DAWG edge structure.
As some precision bits of the mantissa are eliminated, the value represents 2.69995 ≈ 2.7.

Figure 4.18: Representation of the decimal number 2.7 that it will store in the structure
Dawg.

Figure 4.19 shows how the representation of a decimal number is transformed to be
stored as a frequency tag into a DAWG’s edge. The set_frequency_in_edge method

54
receives as inputs the new decimal number and the respective edge identifier represented
by the EDGE_RECORD variable. The bit values of the mantissa and the exponent are
determined (lines 5 and 6). The mantissais reduced by 9 bits (line 8). The edge tag
is created, and the mantissa and exponent variables are packed (line 11). Finally the
frequency tag is stored into the corresponding edge in the graph (lines 13 and 14).

1 # define NUM_MANTISSA_BIT 23
2 # define NUM_REDUCE_MANTISSA 8
3 # define NUM_EXPONENT_BIT 8
4 void set_frequency_in_edge (EDGE_RECORD *edge_rec , float weight){
5 // Obtain mantissa and exponent of float
6 uinT64 mantissa = get_mantissa (weight);
7 uinT64 exponent = get_exponent (weight);
8 // Find new value of mantissa
9 mantissa = mantissa >> NUM_REDUCE_MANTISSA ;
10 // Obtain new value
11 uinT64 number_weight = mantissa | (exponent << (exponent_start_bit_

- NUM_EXPONENT_BIT));
12 // Store the new value in the edge
13 * edge_rec &= (~ weight_mask_);
14 * edge_rec |= ((static_cast < EDGE_RECORD >(number_weight) <<

weight_start_bit_) & weight_mask_);
15 }

Figure 4.19: The code how of a decimal number is obtained to store in the structure of
Tesseract dictionary.

Figure 4.20 shows the code used to store the edge data. Represent the split of a float
variable into its sign, exponent, and mantissa (lines 5 through 13). The get_frequency
method receives as input the identifier of the edge from which we want to obtain the
data. Retrieves the representation of the edge information (line 16). Retrieve the sign,
exponent, and mantissa (lines 18 to 21). The sign is zero since the stored frequency tag
is always positive. Eight leading zeros are added to the right to complete the mantissa
to 23 bits. Finally, method returns the float (line 23).

Our analysis of Tesseract’s recognition phase revealed other problems besides stor-
ing the frequency tag at the DAWG edges. A recurrent one show up when differ-
ent frequency values associated with the same word, which are written using different
letter cases. For example, the frequency of “are” or “Are” is 2568218 while, the fre-
quency of “ARE” is 181. Figure 4.21 shows a problem if Tesseract recognizes “ARE” as
“ARW”. spelling_correction corrects the word and considers ARC or ARE as possible
replacements for “ARW”. Since “ARC” and “ARE” have an edit distance of one from
“ARW”, spelling_correction uses the frequency as a tiebreaker. As the frequencies of
“ARE” and “ARC” are 181 and 5450 respectively, the final result is “ARC”. Method
spelling_correction should choose “ARe” since “are” is one of the most popular words in
English, but given that “ARE” is in uppercase, spelling_correction cannot choose it.

Using different letter cases in a dictionary formed through DAWG causes the words

55

1 # define MANTISSA_START_BIT 0
2 # define NUM_EXPONENT_BIT 8
3 int weight_mask_ , weight_start_bit_ , exponent_mask_ , mantissa_mask_ ;
4 // To obtain mantissa . exponent and sign of a variable float
5 typedef union {
6 float f;
7 struct
8 {
9 unsigned int mantissa : 23;
10 unsigned int exponent : 8;
11 unsigned int sign : 1;
12 } val;
13 } myfloat ;
14 float get_frequency (EDGE_RECORD & edge_rec){
15 // Get the value of the new information in the edge
16 uinT64 num_weight =((edge_rec & weight_mask_) >> weight_start_bit_)

<< NUM_EXPONENT_BIT ;
17 // Get the sign , exponent and mantissa
18 myfloat var;
19 var.val.sign =0;
20 var.val. mantissa =((num_weight & mantissa_mask_)>>

MANTISSA_START_BIT);
21 var.val. exponent =((num_weight & exponent_mask_)>>

exponent_start_bit_);
22 // Return value
23 return var.f;
24 }

Figure 4.20: The code how of a decimal number is obtained to store in the structure of
Tesseract dictionary.

Figure 4.21: The problem of using different frequencies for the same word with different
letter cases.

“ARE” , “Are” , and “are” to be considered by Tesseract as different. That means,
if Tesseract recognizes “ArE” , “ARe” , or “aRe”, it keeps looking for a good result
because the previous results are not in the dictionary so they are not good results.
Also, this problem can result in errors in the spelling_correction method. For exam-
ple, Tesseract recognized the text in Figure 4.22 as “trespasslng” . As recognition is
wrong, spelling_correction corrects it. But in the dictionary, there is no “trespassing”
but “Trespassing”, so the final result of spelling_correction is “trespass”, which is a wrong
result.

In order to address this problem, we pre-process the dictionary accesses so that all

56

Figure 4.22: Image from the ICDAR2013 Database, where the ground truth is “Trespass-
ing” and the result of Tesseract is “trespasslng”.

words and their corresponding frequencies are stored in lower case. The final frequency
of the word would be the result of Equation 4.1. If two words share the same final state
(Figure 4.23), DAWG will add all frequencies and store in the graph. Tesseract code is
modified so that each time the dictionary is accessed, all words are converted to lowercase.
Also, recognized words are stored in lowercase to avoid the problem of recognizing the
same word but with different cases.

Frequencytotal = Frequencyupper_case + Frequencylower_case (4.1)

Figure 4.23: Dictionary formed by words “actually”, “hungry”, and “unruly” with their
respective frequencies 95, 75, and 30. The left side shows how the dictionary uses the
Trie structure. The right side shows how the dictionary uses the Dawg structure.

4.3 Finding the error
Tesseract does not perform a spelling correction of its word output, because the correction
with a binary dictionary (if the word exists or does not exist in the dictionary), depends
on the size of the dictionary [49]. Notice that for Tesseract, a recognized word may not
necessarily be in the dictionary. For example, street names, store names, proper names,
technical words, among others, are not in Tesseract’s dictionary. Consider, the example
of Figure 4.24. It shows that Tesseract correctly recognizes the word NAD, but in the
Tesseract dictionary for the English language, there is no NAD word. As it does not exist
in the dictionary, the spelling_correction method tries to correct the word and returns
the word MAD. So Tesseract with spelling_correction gives a final incorrect result. As a
consequence, a new approach to deal with such error needs to be developed.

In order to work properly, method spelling_correction depends on the fact that the
ground truth exists in the dictionary and that it includes all words in the language. But

57

Figure 4.24: Tesseract with the spelling_correction method gives an incorrect result
because the recognized word is not in the dictionary.

since a dictionary cannot include all words, a way must be found to prevent all words
recognized by Tesseract from being corrected by spelling_correction.

4.3.1 Tesseract decision
As explained in the Section 2.2.2, the WERD_RES variable stores all the information
of the text that Tesseract recognizes. WERD_CHOICE stores every possible text that
represents the image. At the end, WERD_RES can have one or more WERD_CHOICE,
given that Tesseract’s classifier can recognize a symbol as more than one character, and
the Language model can generate more than one possible word.

Tesseract has a way of knowing if a WER_RES can be accepted as a good result
or not. Figure 4.25 shows the AcceptableResult method where Tesseract decides if a
WERD_RES is a good result. AcceptableResult uses variables such as stopper_nondict_
certainty_base, reject_offset_, stopper_smallword_size, stopper_certainty_per_char which
consolidate information obtained from its Machine Learning model training phase. Tesser-
act decides if WER_RES is a good result if the best WERD_CHOICE of WER_RES
is greater than a threshold (CertaintyThreshold) (line 9). Finally, Tesseract stores this
value into tess_accepted, so it can be used in other methods.

1 bool AcceptableResult (WERD_RES * word) {
2 float CertaintyThreshold = stopper_nondict_certainty_base -

reject_offset_ ;
3 if (valid_word (*word -> best_choice) && case_ok (*word -> best_choice)) {
4 int WordSize = LengthOfShortestAlphaRun (*word -> best_choice);
5 WordSize -= stopper_smallword_size ;
6 if (WordSize < 0)
7 CertaintyThreshold += WordSize * stopper_certainty_per_char ;
8 }
9 if (word -> best_choice -> certainty () > CertaintyThreshold)
10 return true;
11 else
12 return false;
13 }

Figure 4.25: Annotated code for the AcceptableResult method of Tesseract.

Using the tess_accepted variable, Tesseract can restrict the use of the correction_spelling

58
method. If tess_accepted == 1 (Tesseract considers WERD_RES as good result),
spelling_correction does not correct WERD_RES. If tess_accepted == 0 (Tesseract con-
siders WERD_RES as bad result), spelling_correction corrects WERD_RES. Despite
using tess_accepted, to restrict the use of spelling_correction, it still fixes words correctly
recognized by Tesseract that do not exist in the dictionary, given that tess_accepted
depends on whether the word exists in the dictionary or not (word_in_dawg).

4.3.2 Tree best variable
Another way to decide if WERD_RES is a good result or not is to use all the information
that WERD_RES stores. But since WERD_RES does not store the information of the
text that represents the image, it is also necessary to use the information of the best
WERD_CHOICE. Using the information provided by Tesseract, we can construct a
model to determine which WERD_RES is a correct result and which is not.

The information of WERD_RES used to construct the model are: tess_accepted (if
the result is good), x_height (the average height of the characters), caps_height (the
average height of the characters upper cases), blob_widths (the average width of the
characters), and blob_gaps (the average gaps between the characters). The information of
the best WERD_CHOICE used to construct the model are: rating (the sum of the ratings
of the individual blobs in the word), certainty (the certainty of the word), certainties
(the sum of certainty of each character that forms the text), adjust_factor (a factor that
was used to adjust the rating), min_x_height (the minimum height of the characters),
and max_x_height (the maximum height of the characters).

The models created to decide whether a WERD_RES is a good result or not are
logistic regression and Support Vector Machine (SVM). These models are trained with
the training data of various databases shown in the Section 5.1. Other models were
trained since the results of both logistic regression and SVM are similar to the results of
the tess_accepted variable.

A preliminary analysis of these variables revealed that tess_accepted is the most
important variable, but when we use the Decision Tree method to see which is the most
important variable, it does not show the tess_accepted. Figure 4.26 shows the most
important condition to define whether a result is correct or not with the Decision Tree
method using the same training data used to create the Machine Learning models.

We used all the training words from the databases to carry out the model. The word
characteristics used are all the information Tesseract provides, Section 2.2 shows them.
We classified manually of results of the training images between correctly recognized and
incorrectly recognized to perform the model training.

After manual classification, we obtained 9365 data. 3314 data (35.39%) were correctly
recognized, while 6051 data (64.61%) were incorrectly recognized. So the model will al-
ways favor that the recognized result is incorrect. Although the ideal would have been
half correctly recognized words half wrong. Tesseract 3.04.1 does not have a good clas-
sifier, so increasing more databases would imply increasing more incorrectly recognized

59
words.

The characteristics of the model generated by Decision Tree are:

• The function to measure the quality of a division is “gini” [24].

• We do not consider any depth of the tree. The nodes expanded until the leaves
were pure.

• No method of pruning is used.

The most representative variable to determine if a WERD_RES result will be con-
sidered as good or not is the certainty variable of the best WERD_CHOICE of the
WERD_RED. Using this information, we can create a condition to decide if WERD_RES
can be considered as the final result or has to go through the correction to get a good
result.

Figure 4.26: Decision Tree with training data from the section databases 5.1. The sklearn
library with python was used to obtain the Decision Tree.

1 void spelling_correction_final (WERD_RES word){
2 WERD_CHOICE_IT choice_it (&word -> best_choices);
3 if (word_in_dawg (word -> best_choice))
4 return ;
5 if (word -> tess_accepted)
6 return ;
7 if (word -> best_choice -> certainty ()> -5.47)
8 return ;
9 for (choice_it . mark_cycle_pt (); ! choice_it . cycled_list (); choice_it .

forward ()) {
10 WERD_CHOICE text = choice_it .data ();
11 text = spelling_correction (text ,0 ,0 ,0);
12 }
13 dictionary_correction_pass (word);
14 }

Figure 4.27: Annotated code for the spelling_correction_final method.

60
Figure 4.27 shows the final implementation of spelling_correction_final, which is

the method that other Tesseract methods will call. The input is WERD_RES. It has
no output since the method corrects the WERD_CHOICEs in place at WERD_RES
itself. Line 2 shows variable WERD_CHOICE_IT that is used to iterate over all
the WERD_CHOICEs of WERD_RES. If the best WERD_CHOICE is in the dic-
tionary, spelling_correction does not correct the WERD_RES (line 3). Line 5 and
7 show the conditions that WERD_RES must meet so that the spelling corrects it.
The restriction on line 5 shows that if WERD_RES is a good result, it will no longer
make modifications. The restriction of line 7 is found by using the Decision Trees. If
WERD_RES does not have any restrictions, the spelling_correction method tries to
correct all the WERD_CHOICEs (lines between 9 and 12). Finally, Tesseract’s dictio-
nary_correction_pass method is used, which modifies the results of WERD_RES so that
the best WERD_CHOICE is a word in the dictionary.

61

Chapter 5

Experimental Evaluation

This chapter describes and analyzes the experimental results achieved from the techniques
proposed in the previous chapter. Seven databases are used to evaluate the effectiveness
of the proposed spelling correction methods and frequency. The main findings from this
evaluation are:

• Tesseract incorrectly recognizes some word’s characters, due to various problems
in the image such as noise, blur, lighting, or symbols close to characters. The
substitution method can solve this problem, but using the substitution in all words
that do not exist in the dictionary can causes overcorrection.

• Sometimes the Text Detection library does not locate all characters in the word,
Tesseract does not find all blobs to form words, nor it recognizes symbols as charac-
ters of the word. These new or missing characters usually occur in the first or last
part of the word. To correct it, we can use the insertion and deletion methods. We
cannot use restrictions like the substitution method, because restrictions depend
on the characters that exist in the word.

• Scene Text Detection sometimes finds a word separately, that is, two bounding
boxes covering the same word. Sometimes Text Detection detects the first part of
the word as a result and the remaining characters as another different result. It
also happens with Tesseract that two WERD_RES represent the same word: one
that contains the first part of the word and the other the second. The compounder
method connects these two parts of the word to correct the problem.

• Tesseract uses a metric known as rating to choose the best WORD CHOICE. The
lower the rating the more suitable for correctness the word is. This rating uses the
uncertainty of each character as well as an adjustment. This adjustment depends a
lot on whether the word exists in the Tesseract dictionary or not. Sometimes when
two words are in the dictionary, Tesseract rests exclusively upon the uncertainty of
the characters to come up with a decision. In this work, when this problem occurs,
we use the word frequency as a tie-breaker or even replace the rating as a decision
metric.

62
5.1 Dataset
Four out of the the seven used databases are focused on the Text Recognition task, that
is, the images are already cropped texts. As images are only text, they do not need to go
through the Scene Text Detection, so they are passed directly to Tesseract. Figure 5.1
shows the features of these four databases.

Figure 5.1: Images cloud of the 4 databases. From top to bottom, from right to left:
ICDAR 2003, ICDAR 2013, INCIDENTAL SCENE TEXT 2015, and IIT 5K - WORD.

Table 5.1 reports a summary of the four databases for the Scene Text Recognition
task.

Table 5.1: Four databases for the Scene Text Recognition task.

Database # training # testing Accuracy (%)
1 ICDAR 2003 [32] 1327 529 50.11%
2 ICDAR 2013 [26] 848 1095 55.66%
3 INCIDENTAL SCENE [25] 4468 2077 7.90%
4 IIIT 5K-WORD 2000 3000 26.10%

The ICDAR 2003 database was created for the competition with the same name. The
images were captured from a wide variety of digital cameras, to have images with different
resolutions. The ICDAR 2013 competition was developed for 3 tasks: Text Locating,
Character Recognition, and Word Recognition. The objective of the word recognition
is to find a system that allows reading a single word extracted from a captured scene.
Two entries are given for this task, the images that a word contains to recognize and a
dictionary with all the words in the database. The result with Tesseract was 50.11%,
despite having good resolution images, there are also very low-resolution images that
Tesseract cannot correctly recognize.

63
The ICDAR 2013 database, also known as Focused Scene Text, was developed for the

competition with the same name. ICDAR 2013, like the ICDAR 2003 competition, has
3 challenges: Reading Text in Born-digital Images, Reading Text in Scene Images, and
Reading Text in Videos. For this task, only the databases of the second challenge (Read-
ing Text in Scene Images) are used. The images generally present reasonably focused
text, and in most cases, they have a horizontal orientation. The result with Tesseract
was 55.66%.

Incidental Scene Text 2015 (IND), is a database similar to ICDAR 2013. Unlike
the ICDAR 2013 database, the images are text cut from real scene images where the
user does not consider any previous action so that the text has good quality as the text
centered on the photo. Therefore, images are low resolution, without good lighting and
indistinguishable text. The result with Tesseract was 7.90%. Its low result was because
the images are of very low resolution, some are so small that not even the human eye can
recognize, and most of the images are proper names, where Tesseract does not recognize
correctly.

The 5K words IIIT database was obtained from Google image search. This database
focuses on collecting words like billboards, signboard, house numbers, house name plates,
movie posters, and proper nouns that are found on the street. Words in images were
manually annotated with bounding boxes and corresponding ground truth words. The
result with Tesseract was 26.10%. Its low result was because the images are of very low
resolution since most of the images are proper names. Also, they have a lot of noise, since
they are from the street.

Three of the seven databases are specific to the Scene Text Detection and Recognition
task. In order to use Tesseract in these databases, it is necessary to first use a library
that does Scene Text Detection to obtain the bounding boxes that contain the text of
the analyzed images. Figure 5.2 shows some examples of images from these databases for
Scene Text Detection and Recognition.

Table 5.2 shows a summary of the three databases for the Scene Text Detection and
Recognition task.

Table 5.2: Three databases for the Scene Text Detection and Recognition task.

Database # Images # Images Accuracy (%)
training testing

1 ICDAR 2015 [25] 233 (1080) 229 (1025) 59.22%
2 SVT [55] 100 (257) 249 (647) 32.84%
3 KAIST 1 278 (704) 120 (303) 60.05%

ICDAR 2015 for the End-to-End challenge is a database developed for the ICDAR
2015 competition. Unlike other ICDAR competitions, this database is for End-to-End
systems, that is, those that perform Scene Text Detection and Recognition. In addition to
the images with their respective transcriptions and location ground truth, the database
provides a generic vocabulary of 90k word. This vocabulary does not include all the

64

Figure 5.2: Images cloud of the three databases. From top to bottom, from right to left:
ICDAR 2015, The Street View Text (SVT), and KAIST Scene Text.

words in the images since this vocabulary does not contain alphanumeric structures and
punctuation marks. The result with Tesseract was 59.22%. Its result was because the
images have a complex background.

The Street View Text (SVT) dataset consists of a group of images obtained from
Google Street View. The images have three characteristics: all are from the street, all
are from business signage, and have a low resolution. The objective of the database is:
given a street view image, identify nearby business words. The result with Tesseract was
32.84%. Its result was because the images have a lot of noise since they are extracted
from Google street. They have a complex background and also low-resolution.

KAIST scene text dataset contains images obtained from the streets and shops in
Korea. KAIST is categorized into 3 languages: Korean, English, and mixed. The im-
ages were captured considering outdoors and indoors scenes, different lighting conditions
(daylight, night, artificial light, among others), and with different resolutions (digital
cameras with high resolution or cameras with low resolution). The result with Tesseract
was 60.05%. Its result was because the images have different resolutions and lightings.

As Scene Text Detection does not always find all the texts in the image, especially
in images that are low resolution. A manual cropped is done to all the images in the
databases with the Scene Text Detection and Recognition tasks to generate only images
focused on a word. This enables the use of all image texts to test the proposed methods.

In the following sections, the images present in the described datasets are used to
conduct the experiments required to evaluate the methods proposed in this work. All
experiments were implemented in the C++ programming language version 2.7.6 with

65
the following libraries: Tesseract v3.4 2, OpenCV 3, and Libccv 4. The experiments
were conducted on a machine with ×86_64 processor (8 cores, hyper-threading enabled),
31GB of RAM and clocked at 2.82GHZ. The machine runs a standard Ubuntu OS 16.04
LTS.

5.2 Evaluation Metrics
Benchmarks such as ICDARmake separate evaluations of Text Detection and Text Recog-
nition, since both tasks have their challenges, results and metrics.

5.2.1 Scene Text Recognition
Metrics that are used to determine if the method has a good result for Scene Text Recog-
nition are: (a) Total Edit Distance; (b) Word recognition accuracy; and (c) Correct Full
Sequences [57]. Figure 5.3 shows examples of these metrics.

Figure 5.3: Examples of Text Recognition metrics.

Word recognition accuracy (WRA) is calculated by the formula:

WRA = |correct recognized words|
|ground truth number| (5.1)

In the databases for Scene Text Detection and Recognition, STR results depend on
how many words were found by Scene Text Detection. In these cases, WRA is calculated
by the formula:

WRA = |correct recognized words|
|correct found word by Text Detection| (5.2)

Correctly Recognized Sequence (CFS) is calculated by the formula:

CRS = |correct recognized sequences|
|number of sequences| (5.3)

2https://github.com/tesseract-ocr, last accessed on 15/01/2020
3https://opencv.org/, last accessed on 15/01/2019
4http://libccv.org/, last accessed on 01/12/2018

https://github.com/tesseract-ocr
https://opencv.org/
http://libccv.org/

66
As the image texts of databases are recognized as individual words, the CRS metric

cannot be used. If individual words were considered sentences, the same WRA metric
results would be obtained. Therefore, this work only uses the WRA metric.

5.3 Spelling correction
In this section, we describe the results obtained using the spelling correction methods,
as well as the combination of them. Experiments running on Scene Text Recognition
databases and Scene Text Detection and Recognition databases are typically used in
different ways. We only use Tesseract databases for the task of Text Recognition. In
such case, for databases where Text Detection is necessary to recognize the text (e.g.
SVT and KAIST), the original images are cut manually to produce text focused images
in order to have more data for training and test.

In this work, we use Libccv and Tesseract on Text Detection and Recognition databases.
In all cases, only the training data is used to perform the analysis.

5.3.1 Substitution
In this subsection, we present the results obtained using only the substitution method
(Figure 4.7) to correct errors through spelling. (Figure 4.3). In our experiments, we
consider the two methods to find the new character: analyzing the next character of the
word and analyzing all the characters. Case sensitivity problems, the results of Tesseract
and the ground truth are always converted to lowercase. Hence, words like “GlASS” or
“GLAss” will be recognized as correct when compared to “GLASS”.

The aim of this experiment is to show that the Tesseract classification does not always
correctly recognize the characters. Moreover, we show that when the Tesseract Language
Model does not form correct words, replacing some incorrectly recognized characters can
improve its accuracy.

Tables 5.3 and 5.4 present the results obtained after doing so. The first seven databases
use only Tesseract, while the next three use the Libccv library to perform Text Detection.
We do not show the results of Text Detection since the substitution method does not
modify the formation of the bounding boxes.

In some databases, the accuracy improved, although, in other databases, this was
not the case. For example, in the IND database, accuracy improved only by 0.29%
(Table 5.3), while in the ICDAR 2013 database, accuracy got worse by 1.18% (Table 5.4).
Improvements obtained depend on the number of images in the database. If there are
more images in the database, the greater the probability that Tesseract will fail and that
the proposed method can correct them.

Although results improved in most of the databases with training data, the results
can improve more. For example, in the IIIT5K database, there were 56 words that
substitution method correctly corrected, increasing accuracy by 2.8%. Nevertheless, it
improved only 0.83% of accuracy (Table 5.4). This happened because in addition to the

67
Table 5.3: Results of the substitution method considering the analysis of the next char-
acter.

Database WRA (%) WRA (%) Improvement Enhanced Worsened
original substitution Words Words

ICDAR 2003 50.11% 50.49% 0.38% 15 10
ICDAR 2013 55.66% 54.72% -0.94% 12 20

IND 7.90% 8.19% 0.29% 25 12
IIIT5K 26.10% 27.70% 1.60% 48 16
SVT 15.95% 16.73% 0.78% 4 2

KAIST 47.20% 47.35% 0.15% 11 10
ICDAR 2015 59.22% 61.08% 1.86% 14 4

SVT 32.84% 28.36% -4.48% 0 3
KAIST 60.05% 60.82% 0.77% 9 6

Table 5.4: Results of the substitution method considering the analysis of all the charac-
ters.

Database WRA (%) WRA (%) Improvement Enhanced Worsened
original substitution Words Words

ICDAR 2003 50.11% 49.81% -0.30% 16 20
ICDAR 2013 55.66% 54.36% -1.30% 14 25

IND 7.90% 8.19% 0.29% 28 15
IIIT5K 26.10% 27.60 % 1.50% 45 15
SVT 15.96% 16.73% 0.78% 4 2

KAIST 47.20% 47.04% -0.16% 12 13
ICDAR 2015 59.22% 60.89% 1.67% 17 8

SVT 32.84% 26.87% -5.97% 0 4
KAIST 60.05% 60.31% 0.26% 9 8

words correctly corrected, the spelling correction method corrects words that Tesseract
correctly recognized, but they do not exist in the dictionary. This problem also happens
in the databases where the results got worse. For example, in ICDAR 2013, accuracy got
worse by 0.94% since the words that did not need to be corrected exceeded the words
that were corrected. For this reason, in the following experiments we use restrictions to
avoid spelling overcorrection.

Tables 5.5 and 5.6 present the results with the training data using only the sub-
stitutions method to correct the errors. The substitution method with the Tesseract
restriction only corrects results that Tesseract considers that they are not words to avoid
avercorrection.

Compared to the results of Tables 5.3 and 5.4, in most databases the WRA improved
considerably. As observed in Tables 5.3 and 5.4, many results with the substitution
method got worse than the original Tesseract results. Using the restrictions from Tesser-
act the results improved when comparing to the original, except for the SVT database
with Libccv. For example, in ICDAR 2013, the accuracy improved from −1.18% to

68
Table 5.5: Results of the substitution method considering the analysis of the next char-
acter with Tesseract restriction.

Database WRA (%) WRA (%) Improvement Enhanced Worsened
original substitution Words Words

ICDAR 2003 50.11% 50.87% 0.76% 14 4
ICDAR 2013 55.66% 55.78% 0.12% 12 11

IND 7.90% 8.26% 0.36% 25 9
IIIT5K 26.10% 27.45% 1.35% 41 14
SVT 15.95% 16.73% 0.78% 4 2

KAIST 47.20% 47.66% 0.46% 9 6
ICDAR 2015 59.22% 60.89% 1.67% 12 3

SVT 32.84% 29.85% -2.99% 0 2
KAIST 60.05% 61.34% 1.29% 8 3

Table 5.6: Results of the substitution method considering the analysis of all the characters
with Tesseract restriction.

Database WRA (%) WRA (%) Improvement Enhanced Worsened
original substitution Words Words

ICDAR 2003 50.11% 50.64% 0.53% 9 2
ICDAR 2013 55.66% 56.60% 0.94% 10 2

IND 7.90% 8.34% 0.44% 26 6
IIIT5K 26.10% 27.55 % 1.45% 31 2
SVT 15.96% 16.73% 0.78% 2 0

KAIST 47.20% 47.82% 0.62% 7 3
ICDAR 2015 59.22% 61.08% 1.86% 15 5

SVT 32.84% 28.36% -4.48% 0 3
KAIST 60.05% 61.08% 1.03% 8 4

0.94%. This occurs since the number of words that the substitution method incorrectly
corrected decreased. But it also witnessed a decrease in some databases. For example,
in ICDAR 2015, without any restriction, the method obtained an improvement of 1.86%,
while with the Tesseract restriction, an increase of 1.67% was measured. Since, the 14
words that were corrected without any restrictions, only 12 words were corrected, with
the restriction.

Although results improved with Tesseract decision, there were still several words that
Tesseract recognized well, but the spelling correction corrected it. For example, the
ITT5TK database had 14 words that the spelling correction method should not correct
(Table 5.5). These 14 words were equivalent to 0.45% of accuracy.

To address that issue we looked for another restriction, since the Tesseract variable
that determines whether a result is correct or not, independents whether the word is in
the Tesseract dictionaries or not. This restriction could reduce the correct results that
the proposed method should not correct without reducing the number of words that the
method needs to correct.

69
Tables 5.7 and 5.8 present the results of using Tesseract with the substitution method,

considering the certainty restriction. The certainty restriction considers that words that
exceed −5.47 of certainty should not be corrected. Results with this restriction improved
in many databases.

Table 5.7: Results of the substitution method considering the analysis of the next char-
acter with certainty restriction.

Database WRA (%) WRA (%) Improvement Enhanced Worsened
original substitution Words Words

ICDAR 2003 50.11% 50.64% 0.53% 9 2
ICDAR 2013 55.66% 56.37% 0.71% 7 1

IND 7.90% 8.28% 0.38% 21 4
IIIT5K 26.10% 27.50% 1.40% 30 2
SVT 15.95% 16.73% 0.78% 2 0

KAIST 47.20% 47.98% 0.78% 7 2
ICDAR 2015 59.22% 60.52% 1.30% 8 1

SVT 32.84% 29.85% -2.99% 0 2
KAIST 60.05% 60.82% 0.77% 3 0

Database WRA (%) WRA (%) Improvement Enhanced Worsened
original substitution Words Words

ICDAR 2003 50.11% 50.64% 0.53% 9 2
ICDAR 2013 55.66% 56.60% 0.94% 10 2

IND 7.90% 8.34% 0.44% 26 6
IIIT5K 26.10% 27.55 % 1.45% 31 2
SVT 15.96% 16.73% 0.78% 2 0

KAIST 47.20% 47.82% 0.62% 7 3
ICDAR 2015 59.22% 61.08% 1.86% 11 1

SVT 32.84% 29.85% -2.99% 0 2
KAIST 60.05% 60.31% 0.26% 3 2

Table 5.8: Results of the substitution method considering the analysis of all the characters
with certainty restriction.

From the Tables, we noticed that both, correctly corrected words and words that
should not be corrected, decreased. Although both have decreased, the number of words
that should not be corrected decreased significantly, improving the results of six out
of nine databases. For example, results of ICDAR 2003 improved from 0.38% without
any restriction, to 0.76% when considering the Tesseract restriction, and to 0.83% when
considering the certainty restriction. But there are also the databases in which using the
certainty restriction the accuracy decreased when compared to the Tesseract restriction.
As explained above, his happens because the restriction also decreases the number of
correctly corrected words. For example, the results of ICDAR 2015 improve by 1.86%

70
without any restriction, 1.67% when considering the Tesseract restriction and 1.30% when
considering the certainty restriction.

Figure 5.4: Results obtained Tesseract with the substitution method.

Figures 5.4 and 5.5 show a comparison between all the obtained results. We observe
that in all databases, the proposed method with substitution improved the Tesseract
results.

In Figure 5.4, the best results for ICDAR 2003, ICDAR 2013, IND and SVT (crop
manually for Text Detection) databases are achieved when using the certainty restriction,
since it considerably decreases the number of words that the proposed method should not

71

Figure 5.5: Results obtained Libccv and Tesseract with the substitution method.

correct. For the IIIT5K database, the best result is the substitution without any restric-
tion. Due to the number of correctly corrected words decreased more than words with
overcorrection with the Tesseract and certainty restrictions. For example, the proposed
method without any restriction corrects forty-eight correct and sixteen incorrect words.
With the Tesseract restriction, it improves forty-one and worsens fourteen, which means,
the results decrease seven correct and only two incorrect words. For the SVT database,
cropped manually for Text Detection, the results using any restriction or without using
them do not vary, since the difference between the correct and incorrect word is the same
in all of them.

In Figure 5.5, the best result for the ICDAR 2015 database is the proposed method
without restriction, this case is the same explained with the IIIT5K database. For the
KAIST database, the best result is using the method proposed with the Tesseract re-
striction. With this restriction, only words that the method should not correct decreased
significantly, while correct words did not decrease. For the SVT database, results always
worsen, since in this case there are no words that the substitution method can correct.
However, there are words that it should not correct that neither the restrictions presented
can prevent the method from correcting.

Figures 5.4 and 5.5 also show a comparison between the methods that were used to
find the new character: analysis of the next character and analysis of all characters.

72
Table 5.9: Words corrected by using an analysis of the next character or all characters.

Ground Original Analysis of Analysis of
Truth Results the next character all characters

Manchester Mancfiéiter Mancfiéiter Manchester
panasonic panasom’c panasom’c panasonic
considering consiantinl consiantinl considering

the tfle tfle the
yellow yellll yellll yellow
tesco tesol tesco tesol
shafait shafail shafait shaffer
steele steetm steele steers
insead insepd insead insert
indla india india index

For the ICDAR 2013, IIIT5K, KAIST (cropped manually for Text Detection), ICDAR
2015, and KAIST databases, the best result is with the analysis of the next character.
For example, in ICDAR 2013, the substitution method without any restriction with the
analysis of the following character achieved a gain of 0.38% while using the other analyzes
the results worsened by 0.60%,when compared to the original Tesseract results.

For the ICDAR 2013, IND, and SVT databases, the best result is obtained when
using all character analysis. Although for some databases one analysis was better than
the other, the difference between the use of one or the other is minimal. Since the majority
of corrected words are the same they reached the same results. But there are words that
only one of the methods could fix correctly. Table 5.9 shows some examples where only
one analysis can correct the word.

Table 5.10: Words that cannot be corrected by the proposed substitutions method.

Ground Truth Tesseract recognition
restaurant fn’u’u’n’u’n’

wahlwiederh. uflnrufliste
riverside ri’oi-tered
superstar nmmuvansnk
natwest [iequeu

When we carried out experiments using the method of substitution with the analysis
of all the characters, some words spent a lot of time to find the best result. We observed
this problem more frequently if the method must replace the first character. This happens
because, during this analysis, the algorithm must follow all paths to find the best word,
unlike the analysis of the next character in which there are only one or two paths to follow.
Images with this problem were removed to finish the experiments. Table 5.10 shows an
example of some words that produce this problem. As observed, there are words that the
distance is greater or equal to the ground truth word so they cannot be corrected even
with the analysis of the following character.

73
Experiments using the substitution method show that there are many cases in which

Tesseract does not correctly recognize characters that can be correctly replaced by other
characters. But if the word does not exist in the dictionary, the substitution methods
make overcorrection. The Tesseract and certainty restrictions can avoid it.

5.3.2 Insertion and Deletion
In this subsection, we present the results obtained using the insertion and deletion meth-
ods to correct the errors. The aim of this experiment in databases for Scene Text Recog-
nition is to demonstrate if Tesseract recognizes all the characters, that is, if it finds all
blobs. In databases for Scene Text Detection and Recognition, the aim of the experiment
is to show how important Text Detection is for Tesseract to function properly.

We noticed that insertion only happens at the beginning or end of the word (Figure
5.6). Since there are problems with the image, such as lighting, Text Detection only
detects, or Tesseract only recognizes a small part of the text. If Text Detection detects
an initial and final part of the image, it will detect them as separate words. This problem
is detailed in Section 5.3.3.

Figure 5.6: Problems where insertion can be used to correct errors.

We noticed that deletion only happens at the end of the word (Figure 5.7). The image
has problems, such as noise. Text Detection detects symbols along with the word, and
Tesseract recognizes these symbols as part of the word.

For these experiments, the insertion method uses only the analysis of the next char-
acter. Using the analysis with all characters produces infinite loops in errors that sub-
stitution method can correct, especially if the error is the first character. If the error is
in the last character, there is no difference between using either method. As the deletion
method does not seek a better character, it is not necessary to use some of the above
analysis.

Table 5.11 and 5.12 present the results of using the insertion and deletion respectively
in the spelling_correction method.

Results of the insertion method (Table 5.11), show that all databases get worse since
more words are incorrectly corrected, than correctly corrected words. For example, in the

74

Figure 5.7: Problems where deletion can be used to correct errors.

Table 5.11: Results of the insertion method.

Database WRA (%) WRA (%) Improvement Enhanced Worsened
original insertion Words Words

ICDAR 2003 50.11% 49.81% -0.30% 2 6
ICDAR 2013 55.66% 55.42% -0.24% 3 5

IND 7.90% 7.63% -0.27% 2 14
IIIT5K 26.10% 25.75 % -0.35% 4 11
SVT 15.96% 15.96% 0.00% 0 0

KAIST 47.20% 46.42% -0.78% 0 2
ICDAR 2015 59.22% 58.50% -0.74% 5 13

SVT 32.84% 31.40% -1.44% 0 4
KAIST 60.05% 59.27% -0.79% 1 3

Table 5.12: Results of the deletion method.

Database WRA (%) WRA (%) Improvement Enhanced Worsened
original deletion Words Words

ICDAR 2003 50.11% 50.34% 0.23% 3 0
ICDAR 2013 55.66% 55.77% 0.11% 1 0

IND 7.90% 7.92% 0.02% 3 2
IIIT5K 26.10% 26.11 % 0.01% 5 3
SVT 15.96% 15.96% 0.00% 0 0

KAIST 47.20% 47.20% 0.00% 0 0
ICDAR 2015 59.22% 59.50% 0,28% 4 1

SVT 32.84% 32.84% 0.00% 0 0
KAIST 60.05% 60.05% 0.00% 0 0

IIIT5K database, the insertion method corrects four words correctly, but eleven words
incorrectly. Results of the deletion method (Table 5.12) show that all databases improve
minimally. For example, in the ICDAR 2013 database, there is only one word that is
corrected.

The upper part of Table 5.13 presents some examples in which the insertion method
corrected the results of Tesseract correctly, while the lower part presents examples in

75
which there was overcorrection with the insertion method. It can be seen that the prob-
lems of the insertion method occur in proper names and acronyms.

Table 5.13: Example with the insertion method.

Original Results Insertion
futur future

programm programme
valv valve
NAD NADA

KENCO KENTON
DE DEC

The upper part of Table 5.14 presents some examples in which the deletion method
corrected the results of Tesseract correctly, while the lower part presents examples in
which there was overcorrection with the deletion method. Results that the deletion
method improved are those that resulting from noise which led Tesseract recognize them
as extra characters.

Table 5.14: Example with the deletion method.

Original Results Insertion
chrisjian/ christian

Checkmate) Checkmate
Premium‘ Premium
Trespassing Trespass
TUFFIN TURF
Anfield Annie

Results of Tables 5.11 and 5.12 cannot be improved using restricted substitution
since Tesseract and certainty restrictions depend on the characters that exist in the
word. It is not viable finding a restriction that attempts to decrease the number of words
corrected erroneously without decreasing the number of words correctly corrected since
both methods do not correct enough words like the substitution method.

Results of the insertion and deletion methods show that there are not many cases in
which Scene Text Detection locate a word but not the first nor the last character. If there
are a lot of errors in the Scene Text Detection step, it is because it does not find the
word in the image or find a small piece of text that spelling_correct method can not use
to correct the word. In the Scene Text Recognition databases with the task, Tesseract
does not always recognize all characters in the image, because texts in the image are not
focused or there is noise of the image.

Based on the results, the insertion method will be discarded in the following experi-
ments, and the deletion method will only be used if there are more characters at the end
of the word.

76
5.3.3 Compounder
In this subsection, we present the results obtained using the compounder method to
correct the errors. This experiment aims to verify if the method can join characters of
the same word that Scene Text Detection found in different bounding boxes or if Tesseract
recognized as different words, but it is the same word. Also, it also aims to demonstrate
whether these errors occur frequently in databases.

The compounder method, as explained in subsection 4.1.4, is performed after Tesseract
has finished recognizing and forming the word since the compounder method needs some
data from both Text Detection and Tesseract. Also, the compounder method needs the
spelling_correction method to be able to correct the words that it joins. In this case, the
spelling_correction method includes the substitution and deletion methods to correct the
errors.

Table 5.15 presents the final results obtained, in which we can observe an improvement
in many of benchmarks while in others the results do not change. For example, in the
IDCAR 2003 database, accuracy improved by 0.46%. While in the IIIT5K database,
accuracy improved by 0.30%.

Table 5.15: Results of the compounder method.

Database WRA (%) WRA (%) Improvement Enhanced Worsened
original compounder Words Words

ICDAR 2003 50.11% 50.57% 0.46% 6 0
ICDAR 2013 55.66% 55.78% 0.12% 1 0

IND 7.90% 7.94% 0.04% 2 0
IIIT5K 26.10% 26.40% 0.30% 6 0
SVT 15.95% 15.95% 0.00% 0 0

KAIST 47.20% 47.66% 0.46% 3 0
ICDAR 2015 59.22% 60.15% 0.93% 5 0

SVT 32.84% 24.33% 1.49% 1 0
KAIST 60.05% 60.57% 0.52% 2 0

In all the studied databases, the compounder method does not correct any word that
it should not, since the restrictions that must be met by both the characters to be joined
and the formed word prevents this from happening. Cases where the formed word is in the
dictionary, the bounding boxes are together or superimposed, among others. Table 5.16
shows some examples of the compounder method.

Table 5.16: Example of coumponder method.

Results Original Compounder
8401 950 8401950
Gat ates Gates

COMMONW EALTH COMMONWEALTH
CON DlTIONED CONDITIONED

77
The results of Table 5.15 are from the experiment that was carried out considering the

substitution method without any restriction with the analysis of the following character.
The experiments that were carried out considering restrictions and the analysis of all the
characters for the substitution method, presented the same result as in Table 5.15.

Results of the compounder method show that it can successfully correct the errors that
Scene Text Detection and Tesseract present when they find or recognize the same word
in different bounding boxes or words, respectively. Based on the results, the compounder
method will be used in the following experiments because this method only improves
results without producing words that should not be corrected.

5.3.4 Best methods to correct errors
In this subsection, we present the results obtained by combining the best methods dis-
cussed so far, which are: (a) substitution; (b) deletion in the last character; and (c)
compounder. This experiment aims to demonstrate if the combination of these methods
improve the results of Tesseract than the methods applied separately.

Tables 5.17 and 5.18 present the results obtained with substitution, deletion in the last
character, and compounder methods. The substitution method is implemented without
any restrictions, with the analysis of the next character, and the analysis of all characters,
respectively.

Table 5.17: Results of the spelling_correction method considering the analysis of the
next character.

Database WRA (%) WRA (%) Improvement Enhanced Worsened
original combinated Words Words

ICDAR 2003 50.11% 50.94% 0.83% 21 10
ICDAR 2013 55.66% 54.83% -0.83% 13 20

IND 7.90% 8.23% 0.33% 27 12
IIIT5K 26.10% 28.00% 1.90% 54 16
SVT 15.95% 16.73% 0.78% 4 2

KAIST 47.20% 47.82% 0.62% 14 10
ICDAR 2015 59.22% 62.01% 2.79% 19 4

SVT 32.84% 29.85% -2.99% 1 3
KAIST 60.05% 61.34% 1.29% 11 6

For example, in the IND database, only the substitution method improved the output
by 0.29%, the compounder method alone improved it by 0.04%, and methods together
generated an improvement of 0.33%. The only database that produced the same result
with the substitution is the SVT.

Tables 5.19 and 5.20 present the results with the training data using substitution,
deletion in the last character, and compounder methods. We implement the substitution
method to correct only words that are not considered words by Tesseract. Table 5.19

78
Table 5.18: Results of the spelling_correction method considering the analysis of all the
characters.

Database WRA (%) WRA (%) Improvement Enhanced Worsened
original combinated Words Words

ICDAR 2003 50.11% 50.26% 0.15% 22 20
ICDAR 2013 55.66% 54.48% -1.18% 15 25

IND 7.90% 8.23% 0.33% 30 15
IIIT5K 26.10% 27.90 % 1.80% 51 15
SVT 15.96% 16.73% 0.78% 4 2

KAIST 47.20% 47.51% 0.31% 15 13
ICDAR 2015 59.22% 61.82% 2.60% 22 8

SVT 32.84% 28.36% -4.48% 1 4
KAIST 60.05% 60.57% 0.52% 10 8

presents the results of the substitution with the analysis of the next character and Ta-
ble 5.20 presents the substitution with the analysis of all characters.

Table 5.19: Results of the spelling_correction method considering the analysis of the
next character with Tesseract restriction.

Database WRA (%) WRA (%) Improvement Enhanced Worsened
original combinated Words Words

ICDAR 2003 50.11% 51.32% 1.21% 20 4
ICDAR 2013 55.66% 55.90% 0.24% 13 11

IND 7.90% 8.30% 0.40% 27 9
IIIT5K 26.10% 27.75% 1.65% 47 14
SVT 15.95% 16.73% 0.78% 4 2

KAIST 47.20% 48.13% 0.93% 12 6
ICDAR 2015 59.22% 61.82% 2.60% 17 3

SVT 32.84% 31.34% -1.50% 1 2
KAIST 60.05% 61.86% 1.81% 10 3

When comparing the results from Tables 5.3, 5.4, 5.17, and 5.18, in all databases, one
can notice the WRA improved considerably. For example, in ICDAR 2015 databases,
only the substitution method with the Tesseract restriction improves the result by 1.6%,
the compounder method improves by 0.93%, the together methods without restrictions
improve the results by 1.86%, and all together methods together with the Tesseract re-
striction improves the result by 2.60%. This means a 1.00% improvement when compared
to only using the substitution method.

Similarly as in the usage of the substitution method in spelling_correction, thanks
to the Tesseract restriction, the number of words that the method should not correct
decreased considerably, but also the number of correctly corrected words decreased. To
improve that in the following we describe experiments that use the Tesseract certainty
restriction.

79
Table 5.20: Results of the spelling_correction method considering the analysis of all the
characters with Tesseract restriction.

Database WRA (%) WRA (%) Improvement Enhanced Worsened
original combinated Words Words

ICDAR 2003 50.11% 51.09% 0.98% 15 2
ICDAR 2013 55.66% 56.72% 1.06% 11 2

IND 7.90% 8.39% 0.49% 28 6
IIIT5K 26.10% 27.85 % 1.75% 37 2
SVT 15.96% 16.73% 0.78% 2 0

KAIST 47.20% 47.98% 0.78% 12 3
ICDAR 2015 59.22% 62.01% 2.79% 20 5

SVT 32.84% 29.85% -2.99% 1 3
KAIST 60.05% 61.60% 1.55% 10 4

Tables 5.21 and 5.22 present the results using the substitution, deletion in the last
character, and compounder methods to correct the errors, when considering the certainty
restriction. Results with this restriction improved in many databases.

Table 5.21: Results of the spelling_correction method considering the analysis of the
next character with certainty restriction.

Database WRA (%) WRA (%) Improvement Enhanced Worsened
original combinated Words Words

ICDAR 2003 50.11% 51.09% 0.98% 15 2
ICDAR 2013 55.66% 56.49% 0.83% 8 1

IND 7.90% 8.32% 0.42% 23 4
IIIT5K 26.10% 27.80% 1.70% 36 2
SVT 15.95% 16.73% 0.78% 2 0

KAIST 47.20% 48.44% 1.24% 10 2
ICDAR 2015 59.22% 61.45% 2.23% 13 1

SVT 32.84% 31.34% -1.50% 1 2
KAIST 60.05% 61.34% 1.29% 5 0

Similar to the results obtained with the substitution method, some databases im-
proved with the certainty restriction but others give better results with the Tesseract
restriction. For example, KAIST (crop manually for Text Detection) database obtained
an improvement of 1.24% with the certainty restriction, while ICDAR 2013 better result
is 1.21% with the Tesseract restriction.

Figures 5.8 and 5.9 show a comparison between the original results of Tesseract (Orig-
inal), substitution method with the analysis of the next character (S + Next Charac-
ter), substitution method with the analysis of all characters (S + All Characters), the
spelling_correction method considering the substitution, deletion and compounder with
the analysis of the next character (S + J + Next Character) and the spelling_correction
method considering the substitution, deletion and compounder with the analysis of all

80
Table 5.22: Results of the substitution method considering the analysis of all the char-
acters with certainty restriction.

Database WRA (%) WRA (%) Improvement Enhanced Worsened
original combinated Words Words

ICDAR 2003 50.11% 51.09% 0.98% 15 2
ICDAR 2013 55.66% 56.72% 1.06% 11 2

IND 7.90% 8.39% 0.49% 28 6
IIIT5K 26.10% 27.85 % 1.75% 37 2
SVT 15.96% 16.73% 0.78% 2 0

KAIST 47.20% 48.29% 1.09% 3 0
ICDAR 2015 59.22% 62.01% 2.79% 16 1

SVT 32.84% 31.34% -1.50% 1 2
KAIST 60.05% 60.82% 0.77% 5 2

the characters (S + J + All Character). We compare these methods when consider-
ing: no restrictions (Normal), Tesseract restriction (Tesseract), and certainty restriction
(Certainty).

Results show that for some databases, the best results were with the Tesseract restric-
tion and certainty restriction. All obtained a better result by combining the substitution
and compounder methods than using the methods separately. Also, the compounder
method attached to the substitution method does not increase the number of words that
spelling_correction should notcorrect, that is, only the correctly corrected words were
increased, which improves the accuracy.

With Figures 5.8 and 5.9, we can conclude that each database there is a specific
combination that leads to the best solution:

• The best result for the ICDAR 2003 database is obtained with the spelling_correction
method with substitution, deletion, and compounder methods. In this case the
substitution method uses the analysis of the next character and with the Tesseract
restriction (Tesseract - S + J + Next Character). The improvement is 1.21%.

• For the ICDAR 2013 database, the best result improves by 1.06%, by using Tesseract
without certainty restrictions. The spelling_correction method considers substitu-
tion, deletion, and compounder methods to correct errors, and substitution uses
analysis of all characters. (Tesseract - S + J + All Character and Certainty - S +
J + All Character).

• For the IND database, like in the ICDAR 2013 database case, Tesseract with cer-
tainty restrictions and spelling_correction based on substitution, deletion, and com-
pounder and analysis of all characters (Tesseract - S + J + All Character and Cer-
tainty - S + J + All Character) produce the best result. improvement of the best
result is 0.49%.

81

Figure 5.8: Results obtained Tesseract with the spelling_correction method.

• For the IIIT5K database, the spelling_correction method with substitution, dele-
tion, and compounder methods, cand analysis of the next character without any
restriction, achieves the best result, an improvement of 1.9% (Normal - S + J +
Next Character).

• For the SVT database where images were cut manually for Text Detection, all
methods obtained the same improvement that is 0.78%.

• For the KAIST database where images were cut manually for Text Detection, the

82

Figure 5.9: Results obtained Libccv and Tesseract with the spelling_correction method.

best improvement is 2.23%. This improvement is obtained with certainty restriction
with the analysis of the next character and the spelling_correction method with
the combination of the substitution, deletion and compounder methods to correct
the errors (Certainty - S + J + Next Character).

• For the ICDAR 2015 database, there are three combinations where the improvement
reaches 2.79%. (Normal - S + J + Next Character, Tesseract - S + J + All
Character, and Certainty - S + J + All Character).

• For the SVT database, no combination managed to improve the original result.
This is because there are only words that Tesseract recognized correctly, but given
that they are not in the dictionary, the spelling_correction method corrected them,
making the result incorrect.

• For the KAIST database, the Tesseract restriction with the analysis of the next
character and with the spelling_correction considering substitution, deletion, and
compounder achieved the best results, with an improvement of 1.81%.

The results showed that the best combination in general, considering all the databases,
was the substitution, the deletion only in final characters and compounder, considering
the Tesseract and certainty restrictions.

83
5.4 Frequency
In this section, we describe the results obtained when the representation of the dictio-
nary is modified, and we use the frequency as a way to correct the errors described in
Section 4.2. The same conditions as in the previous section were used in this section.

This experiment aims to demonstrate that using frequency as a way to choose the
best WERD_CHOICE is a better way than using the rating provided by Tesseract or
a combination between them. Also, we want to demonstrate that using some bits that
represent the edges formed by the DAWG to store information does not worsen the results.

Table 5.23 presents the results using the frequency method to choose the best among
the WERD_CHOICES of the WERD_RES. That means the experiment uses the fre-
quency as a way to choose the WERD_CHOICE in all the words instead of the rating
of Tesseract.

Table 5.23: Results of the frequency in Tesseract.

Database WRA (%) WRA (%) Improvement Enhanced Worsened
original frequency Words Words

ICDAR 2003 50.11% 51.77% 1.66% 33 11
ICDAR 2013 55.66% 56.25% 0.59% 19 14

IND 7.90% 8.48% 0.58% 53 27
IIIT5K 26.10% 27.55 % 1.45% 44 15
SVT 15.96% 17.51% 1.56% 5 1

KAIST 47.20% 47.51% 0.31% 13 11
ICDAR 2015 59.22% 60.34% 1.12% 12 6

SVT 32.84% 37.31% 4.47% 5 2
KAIST 60.05% 58.76% -1.29% 6 11

Results in Table 5.23 show that in all databases, except KAIST, better results than
the original were achieved. In some cases, results with the frequency produced a better
accuracy than when using the spelling_correction method. For example, in the IND
database, with the frequency we achieved a accuracy of 8.48% which means an improve-
ment of 0.58%. The best combination of the spelling correction method only obtained
an improvement of 0.49%, showing that there was a improvement of 0.09% between the
two methods.

The improvement resulting from using the frequency method is due to two reasons.
The first reason is that the frequency method chooses the WERD_CHOICE, that has
the highest frequency among the possible words that Tesseract recognized for an image
text. Table 5.24 shows some examples. The list in the column WERD_CHOICE is
words that Tesseract recognizes in the order in which it returns the words. The first
WERD_CHOICE is the result produced by Tesseract. The WERD_CHOICE in red is
the result given by original Tesseract, and the WERD_CHOICE in green is the Tesseract
result using the frequency method. The Rating column shows the value of the variable
that Tesseract uses to decide which the best among the WERD_CHOICE. The Frequency

84
column shows the frequency of the words recognized by Tesseract. In each group, the
value that is in bold is the best.

Table 5.24: Example of frequency method.

Ground WERD_CHOICEs Rating Frequency
Truth Tesserct
value .value, 68.21 0.00

.value 72.42 0.00
value, 78.50 0.00
value 82.78 0.00013
valu5, 129.03 0.00

orange ore/vga 117.85 0.00
ora/vga 114.13 0.00
orange 124.82 0.000052
ora/ng: 133.46 0.00

up uf 28.89 0.00
up 29.85 0.002393
vf 31.71 0.00000014
nf 33.85 0.00000041
hf 36.53 0.00000065

The second reason is that to use the frequency method, Tesseract needs a dictionary,
in which all the characters are in a lower case. Hence, at the time of forming the word,
Tesseract has more possibilities of not failing.

As in the substitution method, we can optimize the result if restrictions are used so
that the frequency method does not modify the results that Tesseract correctly recognized.

Table 5.25 presents the results obtained when considering the Tesseract restriction
and the frequency method to choose the best among the WERD_CHOICES of the
WERD_RES. That means the experiment uses the frequency as a way to choose the
WERD_CHOICE in all the WERD_RES that Tesseract considers as bad word.

Table 5.25: Results of the frequency method with Tesseract restriction.

Database WRA (%) WRA (%) Improvement Enhanced Worsened
original frequency Words Words

ICDAR 2003 50.11% 51.77% 1.66% 33 11
ICDAR 2013 55.66% 56.37% 0.71% 19 13

IND 7.90% 8.50% 0.60% 53 26
IIIT5K 26.10% 27.50 % 1.40% 44 16
SVT 15.96% 17.51% 1.56% 5 1

KAIST 47.20% 47.35% 0.15% 13 12
ICDAR 2015 59.22% 60.15% 0.93% 12 7

SVT 32.84% 37.31% 4.47% 5 2
KAIST 60.05% 59.02% -1.03% 6 10

85
Results in Table 5.25 show that for some databases, the result improves when com-

pared to the results of the frequency method without restriction. But this improvement
is a minimal amount when compared to the results that the restriction has with the sub-
stitution method. For example, the IND database had a gain of 0.02% compared to the
frequency method without restriction, while the substitution method using the Tesser-
act restriction achieves an improvement of 0.25% when compared to the substitution
method without any restriction. There are also databases in which the result worsens
when compared to the results of the frequency method without restriction. For example,
the IIIT5K database worsens 0.05% compared to the results of the frequency method
without restriction.

Table 5.26 presents the results when considering the Tesseract restriction, for the
frequency method to choose the best among the WERD_CHOICES of the WERD_RES.
That means the experiment uses the frequency as a way to choose the WERD_CHOICE
in all the WERD_RES that its best WERD_CHOICE has a certainty less than −5.29.

Table 5.26: Results of the frequency method with certainty restriction.

Database WRA (%) WRA (%) Improvement Enhanced Worsened
original frequency Words Words

ICDAR 2003 50.11% 51.70% 1.59% 29 8
ICDAR 2013 55.66% 56.60% 0.94% 15 7

IND 7.90% 8.52% 0.62% 47 19
IIIT5K 26.10% 27.45 % 1.35% 33 6
SVT 15.96% 17.90% 1.95% 5 0

KAIST 47.20% 48.13% 0.93% 9 3
ICDAR 2015 59.22% 61.08% 1.86% 11 1

SVT 32.84% 37.31% 4.47% 4 1
KAIST 60.05% 61.34% 1.29% 6 1

Results in the Table 5.26 compare with the results of Table 5.25 show a great improve-
ment in all databases like, although there are databases in which the result are worse ,
and in the SVT database, the result remains the same. For example, in the ICDAR 2015
database, the WERD_RES that should not be changed is reduced to one word, thus
achieving an improvement of 1.89%.

Figures 5.10 and 5.11 show a comparison between the original results of Tesseract
(Original), the best result using the spelling_correction method for every database (Best
spelling_correction), and the frequency method (Frequency). We compare them consid-
ering: without any restriction (Normal), Tesseract restriction (Tesseract), and certainty
restriction (Certainty).

In the ICDAR 2003, IND, SVT (cut manually for Text Detection), and SVT databases,
the results of the frequency method achieved better results than the better combinations
of the spelling_correction method. In the SVT database, the spelling_correction method
does not improve the results, but with the frequency method, we obtain an improvement.
In the other databases, although the frequency method does not improve the results, it

86

Figure 5.10: Results obtained Tesseract with the frequency method.

almost reaches the result of the spelling correction method. In the next section, we com-
bined the results of the frequency and spelling correction method. With this combination,
it is possible to increase the WRA of the databases.

Experiments show that the frequency method can replace the Tesseract rating, but
using a combination between the Tesseract rating and the frequency method with the
Tesseract and certainty restrictions, results improve considerably. Results also showed
that the use of a dictionary with lowercase letters does not make the results worse.

87

Figure 5.11: Results obtained Libccv and Tesseract with the frequency method.

5.5 Spelling correction and Frequency
In this section, we present the results obtained from combining the spelling_correction
method and the frequency method. In addition, we present an analysis to determine
which is the best combination to obtain the best results in training data and run the
testing data with the best combination to have the final results for each database.

This experiment aims to demonstrate that the combination of the proposed meth-
ods can improve the results obtained by them separately. Also, a combination of them
improves the original results of Tesseract using the testing data.

Based on the results described in the other sections, we carried out experiments con-
sidering the combination of the frequency method with the spelling_correction method
using the substitution, deletion, and compounder methods to correct errors. As the ex-
periments use the substitution method, we consider the two analyzes: analysis of the
next character and analysis of all characters. In addition, we consider carrying out the
experiments in the three cases: without restrictions, Tesseract restriction, and certainty
restriction.

Tables 5.27 and 5.28 present the results of using the frequency method with the
spelling_correction method without any restrictions. Table 5.27 shows the results with
the analysis of the next character, and Table 5.28 presents the results with the analysis

88
of all characters.

Table 5.27: Results of the combination of spelling_correction and frequency methods
considering the analysis of the next character.

Database WRA (%) WRA (%) Improvement Enhanced Worsened
original combinated Words Words

ICDAR 2003 50.11% 52.45% 2.34% 56 25
ICDAR 2013 55.66% 54.72% -0.94% 31 39

IND 7.90% 8.57% 0.67% 71 41
IIIT5K 26.10% 29.80% 3.70% 96 22
SVT 15.95% 17.51% 1.56% 6 2

KAIST 47.20% 47.66% 0.46% 28 25
ICDAR 2015 59.22% 62.94% 3.72% 30 10

SVT 32.84% 35.82% 2.98% 6 4
KAIST 60.05% 59.79% -0.26% 20 21

Table 5.28: Results of the combination of spelling_correction and frequency methods
considering the analysis of all the characters.

Database WRA (%) WRA (%) Improvement Enhanced Worsened
original combinated Words Words

ICDAR 2003 50.11% 51.24% 1.13% 53 38
ICDAR 2013 55.66% 53.42% -2.24% 26 45

IND 7.90% 8.66% 0.79% 77 43
IIIT5K 26.10% 29.30 % 3.20% 92 28
SVT 15.96% 17.12% 1.17% 6 3

KAIST 47.20% 47.04% -0.16% 27 28
ICDAR 2015 59.22% 62.20% 2.98% 29 13

SVT 32.84% 35.82% 2.98% 6 4
KAIST 60.05% 59.02% -1.03% 22 26

In the ICDAR 2003, IND, IIIT5K, SVT (crop manually for Text Detection), and IC-
DAR 2015 databases, results improve compared to the frequency and spelling_correction
methods separately. In the KAIST (crop manually for Text Detection) and SVT databases,
although the results are not better when compared to the methods separately, they are
better when compared to the original Tesseract results. Finally, in the ICDAR 2013 and
KAIST databases, the combined methods worsen the results, what does not occur with
the methods separately. Making a comparison between the analysis of the next character
and all characters depends on the database to decide which analysis is better. With all
characters, the spelling_correction can correct errors that the next character can not.
But the problem with all characters is sometimes spent a lot of time trying to correct
some words that spelling_correction can not correct it like “nmmuvansnk” (ground truth
“superstar”). While the next character finds quickly that spelling_correction can not
correct them

89
In these experiments, words that the substitution and frequency methods correctly

correct them are considerably larger compared to the methods separately. For example,
in the ITTT5K database, the method of substitution with the analysis of the following
character corrects forty-eight words. The combination of the spelling_correction and
frequency methods with the analysis of the next character corrects ninety-six words.
Words that the method should not correct go from sixteen words to twenty. As one
can see, the corrected correctly words increase in relation to the words that get worse.
Therefore, in many databases, the improvement increases considerably when compared to
the frequency method or the spelling_correction separately. Similar to the substitution
or frequency method, results may improve even more if the proposed method is restricted
to those words that Tesseract incorrectly recognized, considering the restrictions that are
in the substitution method.

Tables 5.29 and 5.30 present the results of using the frequency method with the
spelling_correction method with the Tesseract restriction. Table 5.29 shows the results
with the analysis of the next character, and Table 5.30 presents the results with the
analysis of all characters.

Table 5.29: Results of the combination of spelling_correction and frequency methods
considering the analysis of the next character with Tesseract restriction.

Database WRA (%) WRA (%) Improvement Enhanced Worsened
original combinated Words Words

ICDAR 2003 50.11% 52.52% 2.41% 55 23
ICDAR 2013 55.66% 54.83% -0.83% 21 28

IND 7.90% 8.63% 0.73% 71 38
IIIT5K 26.10% 29.60% 3.50% 90 20
SVT 15.95% 17.90% 1.95% 6 2

KAIST 47.20% 47.66% 0.46% 25 22
ICDAR 2015 59.22% 62.76% 3.54% 28 9

SVT 32.84% 35.82% 2.98% 6 4
KAIST 60.05% 60.57% 0.52% 19 17

In the ICDAR 2003, ICDAR 2013, IND, and KAIST databases, the results improve for
both the following character analysis and all character analysis compared to the combined
methods without any restrictions. Tesseract restriction reduces more the words that the
method should not correct than words that it correctly correct. For example, in the
IND databases, without any restriction with analysis of the next character, the proposed
method corrects seventy-one but it makes overcorrection in forty-one incorrect word.
While when the method uses the Tesseract restriction, it corrects seventy-one words and
makes overcorrection in thirty-eighth. As we can observe in the previous example, the
correct words remain the same while incorrect ones decrease by three.

In the SVT (crop manually for Text Detection) and SVT databases, results do not
change in any of the analyses. This is because words that the combined method should
not correct are minimal, that is, only three words.

90
Table 5.30: Results of the combination of spelling_correction and frequency methods
considering the analysis of all the characters with Tesseract restriction.

Database WRA (%) WRA (%) Improvement Enhanced Worsened
original combinated Words Words

ICDAR 2003 50.11% 51.47% 1.36% 52 34
ICDAR 2013 55.66% 54.83% -0.83% 26 33

IND 7.90% 8.72% 0.82% 77 40
IIIT5K 26.10% 29.15 % 3.05% 86 25
SVT 15.96% 17.12% 1.17% 6 3

KAIST 47.20% 47.20% 0.00% 24 24
ICDAR 2015 59.22% 62.57% 3.35% 19 2

SVT 32.84% 35.82% 2.98% 6 4
KAIST 60.05% 60.57% 0.52% 19 17

In the other IIIT5K, KAIST (crop manually for Text Detection), and ICDAR 2015
databases, results get worse with both analyzes compared to the results without any
restrictions. Since words that the combined method must correct correctly decreased
more than words that it should not correct. For example, the results of ICDAR 2015
without any restrictions were thirty-one correct and ten incorrect. Results with the
Tesseract restriction are twenty-eight words correctly corrected and nine overcorrection.
The proposed method with Tesseract restriction decreases three correct words and only
one incorrect compare with dictionary restriction.

Tables 5.31 and 5.32 present the results of using the frequency method with the
spelling_correction method with the certainty restriction. Table 5.31 shows the results
with the analysis of the next character, and Table 5.32 presents the results with the
analysis of all characters.

Table 5.31: Results of the combination of spelling_correction and frequency methods
considering the analysis of the next character with certainty restriction.

Database WRA (%) WRA (%) Improvement Enhanced Worsened
original substitution Words Words

ICDAR 2003 50.11% 52.45% 2.34% 46 15
ICDAR 2013 55.66% 56.96% 1.30% 23 12

IND 7.90% 8.81% 0.91% 67 26
IIIT5K 26.10% 29.35% 3.25% 73 8
SVT 15.95% 17.90% 1.95% 5 0

KAIST 47.20% 49.53% 2.33% 20 5
ICDAR 2015 59.22% 63.50% 4.28% 25 2

SVT 32.84% 38.81% 5.97% 6 2
KAIST 60.05% 62.63% 2.58% 14 4

With the certainty restriction, the majority of the database obtains their best results,
except ICDAR 2003 and IIIT5K databases, since words corrected correctly decrease con-

91
Table 5.32: Results of the combination of spelling_correction and frequency methods
considering the analysis of all the characters with certainty restriction.

Database WRA (%) WRA (%) Improvement Enhanced Worsened
original substitution Words Words

ICDAR 2003 50.11% 52.15% 2.04% 44 17
ICDAR 2013 55.66% 56.37% 0.71% 20 14

IND 7.90% 8.92% 1.02% 72 26
IIIT5K 26.10% 29.10 % 3.00% 70 10
SVT 15.96% 17.90% 1.95% 5 0

KAIST 47.20% 49.22% 2.02% 19 6
ICDAR 2015 59.22% 63.50% 4.28% 25 2

SVT 32.84% 38.81% 5.97% 6 2
KAIST 60.05% 62.89% 2.84% 16 5

siderably, while word with overcorrection not decreased.
Figures 5.12 and 5.13 show a comparison between the original results of Tesseract

(Original), the best result using the spelling_correction method for every database (Best
spelling correction), the frequency method (Frequency), the combined method with the
analysis of the next character (F + M_S + Next Charater), and the combined method
with the analysis of the all character (F + M_S + All Charater). We compare consid-
ering: without any restriction (Normal), Tesseract restriction (Tesseract), and certainty
restriction (Certainty).

Figures 5.12 and 5.13 show that the combination method obtains the best results.
But it depends on each database, what restriction or analysis is the best.

• In the ICDAR 2003 database, the best result is with the method combined with
the Tesseract restriction with the analysis of the next character. The final result is
52.52%, which means an increase of 2.41%, 32 words of 1327.

• In the ICDAR 2013 database, the best result is with the method combined with
the certainty restriction with the analysis of the next character. The final result is
56.96%, which means an increase of 1.30%, 11 words of 848.

• In the IND database, the best result is with the method combined with the certainty
restriction with the analysis of the all characters. The final result is 8.92%, which
means an increase of 1.02%, 46 words of 4494.

• In the IIIT5K database, the best result is with the method combined without the
restriction with the analysis of the next character. The final result is 29.80%, which
means an increase of 3.70%, 74 words of 2000.

• In the SVT database, crop manually for Text Detection, the best result is with
the method combined with the certainty restriction with the analysis of the all
characters. The final result is 18.29%, which means an increase of 2.34%, 6 words
of 257.

92

Figure 5.12: Results obtained Tesseract with the combined method.

• In the KAIST database, crop manually for Text Detection, the best result is with
the method combined with the certainty restriction with the analysis of the next
character. The final result is 49.53%, which means an increase of 2.33%, 15 words
of 642.

• In the ICDAR 2015 database, the best result is with the method combined with the
certainty restriction with the analysis of the next character and with the method
combined with the certainty restriction with the analysis of all characters. The final
result is 63.50%, which means an increase of 4.28%, 23 words of 537.

93

Figure 5.13: Results obtained Libccv and Tesseract with the combined method.

• In the SVT database, the best result is with the method combined with the certainty
restriction with the analysis of the next character and with the method combined
with the certainty restriction with the analysis of all characters. The final result is
38.81%, which means an increase of 5.97%, 18 words of 67.

• In the KAIST database, the best result is with the method combined with the
certainty restriction with the analysis of all characters. The final result is 62.89%,
which means an increase of 2.84%, 11 words of 388.

The best method is a combination of the spelling_correction and frequency methods
considering the substitution, deletion, and compounder methods to correct errors. The
best restriction is with the certainty restriction. For the best analysis, there is a tie
between the analysis of the next character and all characters. Therefore, to obtain the
results with the testing data, we use the combined methods, with the certainty restriction,
and the two analyzes for the substitution method.

Tables 5.33 and 5.34 present the results of the testing data with the best combination
obtained with the training data. Table 5.33 presents results with the analysis of the next
character and Table 5.34 with the analysis of all characters.

Tables 5.33 and 5.34 show that the method combined with the certainty restriction
improved the original results of the Tesseract in all databases.

94

Table 5.33: Results with Testing Data considering the analysis of the next character.

Database WRA (%) WRA (%) Improvement Enhanced Worsened
original combinated Words Words

ICDAR 2003 30.06% 30.81% 0.75% 10 6
ICDAR 2013 43.84% 46.48% 2.64% 39 10

IND 7.05% 8.06% 1.01% 30 9
IIIT5K 19.57% 22.20% 2.63% 96 17
SVT 21.48% 23.34% 1.86% 18 6

KAIST 42.14% 44.85% 2.71% 19 5
ICDAR 2015 62.46% 66.19% 3.73% 23 2

SVT 46.86% 49.71% 2.85% 6 1
KAIST 61.22% 63.78% 2.56% 6 1

Table 5.34: Results with Testing Data considering the analysis of all the characters.

Database WRA (%) WRA (%) Improvement Enhanced Worsened
original combinated Words Words

ICDAR 2003 30.06% 30.81% 0.75% 11 7
ICDAR 2013 43.84% 46.21% 2.37% 36 10

IND 7.05% 8.06% 1.01% 30 9
IIIT5K 19.57% 22.20 % 2.63% 96 17
SVT 21.48% 22.72% 1.24% 15 7

KAIST 42.14% 44.66% 2.52% 19 6
ICDAR 2015 62.46% 66.19% 3.73% 23 2

SVT 46.89% 49.14% 2.28% 6 2
KAIST 61.22% 63.78% 2.05% 5 1

95

Chapter 6

Conclusions and Future Works

This work described and evaluated post-correction methods to improve the results of
Tesseract in scene images. We performed an analysis of the results obtained from Tesser-
act to determine which post-correction methods were the most appropriate for Tesseract,
allowing to obtain a better accuracy of the most common errors in Tesseract results.

Experiments carried out in different databases showed that post-correction methods in
the final results of Tesseract improved its accuracy. Showing that pos-correction methods
can be successfully implemented in Scene Text Recognition methods, where the results
are not as expected.

We conclude that the best post-correction method for Tesseract is the combination of
spelling correction techniques, frequency, and Tesseract restrictions. Among the spelling
correction methods, the best combination is the substitution, which corrected the classi-
fication problems, the deletion in the last characters that corrected the noise in images,
and the compounder that corrects Text Detection errors and errors produced by the space
between characters. The word frequency proved to be an efficient way to choose the best
result for the image among a group of candidates when all candidates are present in the
dictionary.

Different restrictions were applied to the correction of errors in the results to avoid
overcorrection. The restrictions were obtained by analyzing the training data as obtained
from Tesseract. Restrictions improved results as it reduced the words that should not be
corrected without decreasing the correctly corrected words.

With the restrictions implemented in techniques that correct the errors, the results
showed that the post-correction methods can be used in results of scenes images where
there is no more information than the word and the information provided by the method
that recognizes the text.

As future work, we intend to extend the post-correction method presented with other
text recognition methods, which use modern techniques to recognize the text. For exam-
ple, neural networks. We could start by performing the experiments on the most current
versions of Tesseract, where LSMT is used to recognize the text.

96

Bibliography

[1] Fan Bai, Zhanzhan Cheng, Yi Niu, Shiliang Pu, and Shuigeng Zhou. Edit probability
for scene text recognition. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 1508–1516, 2018.

[2] Youssef Bassil and Mohammad Alwani. Ocr post-processing error correction algo-
rithm using google online spelling suggestion. arXiv preprint arXiv:1204.0191, 2012.

[3] Richard Beaufort and Céline Mancas-Thillou. A weighted finite-state framework
for correcting errors in natural scene ocr. In Ninth International Conference on
Document Analysis and Recognition (ICDAR 2007), volume 2, pages 889–893. IEEE,
2007.

[4] M. Bokser. Omnidocument technologies. Proceedings of the IEEE, 80(7):1066–1078,
1992.

[5] Arpita Chakraborty and Michael Blumenstein. Marginal noise reduction in histor-
ical handwritten documents–a survey. In 2016 12th IAPR Workshop on Document
Analysis Systems (DAS), pages 323–328. IEEE, 2016.

[6] Datong Chen and Jean-Marc Odobez. Video text recognition using sequential monte
carlo and error voting methods. Pattern Recognition Letters, 26(9):1386–1403, 2005.

[7] Zhanzhan Cheng, Fan Bai, Yunlu Xu, Gang Zheng, Shiliang Pu, and Shuigeng Zhou.
Focusing attention: Towards accurate text recognition in natural images. In Pro-
ceedings of the IEEE international conference on computer vision, pages 5076–5084,
2017.

[8] Guillaume Chiron, Antoine Doucet, Mickaël Coustaty, and Jean-Philippe Moreux.
Icdar2017 competition on post-ocr text correction. In 2017 14th IAPR International
Conference on Document Analysis and Recognition (ICDAR), volume 1, pages 1423–
1428. IEEE, 2017.

[9] Guillaume Chiron, Antoine Doucet, Mickaël Coustaty, Muriel Visani, and Jean-
Philippe Moreux. Impact of ocr errors on the use of digital libraries: towards a better
access to information. In 2017 ACM/IEEE Joint Conference on Digital Libraries
(JCDL), pages 1–4. IEEE, 2017.

97
[10] Chee Kheng Ch’ng and Chee Seng Chan. Total-text: A comprehensive dataset for

scene text detection and recognition. In 2017 14th IAPR International Conference
on Document Analysis and Recognition (ICDAR), volume 1, pages 935–942. IEEE,
2017.

[11] Hojin Cho, Myungchul Sung, and Bongjin Jun. Canny text detector: Fast and
robust scene text localization algorithm. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 3566–3573, 2016.

[12] Mayur Datar, Nicole Immorlica, Piotr Indyk, and Vahab S Mirrokni. Locality-
sensitive hashing scheme based on p-stable distributions. In Proceedings of the twen-
tieth annual symposium on Computational geometry, pages 253–262, 2004.

[13] Mark Davies. The 385+ million word corpus of contemporary american english
(1990–2008+): Design, architecture, and linguistic insights. International journal of
corpus linguistics, 14(2):159–190, 2009.

[14] Boris Epshtein, Eyal Ofek, and Yonatan Wexler. Detecting text in natural scenes
with stroke width transform. In Computer Vision and Pattern Recognition (CVPR),
2010 IEEE Conference on, pages 2963–2970. IEEE, 2010.

[15] John Evershed and Kent Fitch. Correcting noisy ocr: Context beats confusion.
In Proceedings of the First International Conference on Digital Access to Textual
Cultural Heritage, pages 45–51, 2014.

[16] Jacqueline L Feild and Erik G Learned-Miller. Improving open-vocabulary scene
text recognition. In 2013 12th International Conference on Document Analysis and
Recognition, pages 604–608. IEEE, 2013.

[17] G David Forney. The viterbi algorithm. Proceedings of the IEEE, 61(3):268–278,
1973.

[18] Edward Fredkin. Trie memory. Communications of the ACM, 3(9):490–499, 1960.

[19] Mehrdad J Gangeh, Sunil R Tiyyagura, Sridhar V Dasaratha, Hamid Motahari, and
Nigel P Duffy. Document enhancement system using auto-encoders. 2019.

[20] Lluis Gomez and Dimosthenis Karatzas. Multi-script text extraction from natural
scenes. In Proc. ICDAR, pages 467–471, 2013.

[21] Isabelle Guyon and Fernando Pereira. Design of a linguistic postprocessor using vari-
able memory length markov models. In Proceedings of 3rd International Conference
on Document Analysis and Recognition, volume 1, pages 454–457. IEEE, 1995.

[22] Harald Hammarström, Shafqat Mumtaz Virk, and Markus Forsberg. Poor man’s
ocr post-correction: Unsupervised recognition of variant spelling applied to a multi-
lingual document collection. In Proceedings of the 2nd International Conference on
Digital Access to Textual Cultural Heritage, pages 71–75, 2017.

98
[23] Axel Jean-Caurant, Nouredine Tamani, Vincent Courboulay, and Jean-Christophe

Burie. Lexicographical-based order for post-ocr correction of named entities. In
2017 14th IAPR International Conference on Document Analysis and Recognition
(ICDAR), volume 1, pages 1192–1197. IEEE, 2017.

[24] Longquan Jiang, Bo Zhang, Qin Ni, Xuan Sun, and Pingping Dong. Prediction
of snp sequences via gini impurity based gradient boosting method. IEEE Access,
7:12647–12657, 2019.

[25] Dimosthenis Karatzas, Lluis Gomez-Bigorda, Anguelos Nicolaou, Suman Ghosh, An-
drew Bagdanov, Masakazu Iwamura, Jiri Matas, Lukas Neumann, Vijay Ramase-
shan Chandrasekhar, Shijian Lu, et al. Icdar 2015 competition on robust reading.
In 2015 13th International Conference on Document Analysis and Recognition (IC-
DAR), pages 1156–1160. IEEE, 2015.

[26] Dimosthenis Karatzas, Faisal Shafait, Seiichi Uchida, Masakazu Iwamura,
Lluis Gomez i Bigorda, Sergi Robles Mestre, Joan Mas, David Fernandez Mota,
Jon Almazan Almazan, and Lluis Pere De Las Heras. Icdar 2013 robust reading
competition. In 2013 12th International Conference on Document Analysis and
Recognition, pages 1484–1493. IEEE, 2013.

[27] James M Keller, Michael R Gray, and James A Givens. A fuzzy k-nearest neighbor
algorithm. IEEE transactions on systems, man, and cybernetics, (4):580–585, 1985.

[28] Dar-Shyang Lee and Ray Smith. Improving book ocr by adaptive language and
image models. In 2012 10th IAPR International Workshop on Document Analysis
Systems, pages 115–119. IEEE, 2012.

[29] Jung-Jin Lee, Pyoung-Hean Lee, Seong-Whan Lee, Alan Yuille, and Christof Koch.
Adaboost for text detection in natural scene. In 2011 International Conference on
Document Analysis and Recognition, pages 429–434. IEEE, 2011.

[30] Vladimir I Levenshtein. Binary codes capable of correcting deletions, insertions, and
reversals. In Soviet physics doklady, volume 10, pages 707–710, 1966.

[31] Lon-Mu Liu, Yair M Babad, Wei Sun, and Ki-Kan Chan. Adaptive post-processing
of ocr text via knowledge acquisition. In Proceedings of the 19th annual conference
on Computer Science, pages 558–569, 1991.

[32] Simon M Lucas, Alex Panaretos, Luis Sosa, Anthony Tang, Shirley Wong, and
Robert Young. Icdar 2003 robust reading competitions. In Seventh International
Conference on Document Analysis and Recognition, 2003. Proceedings., pages 682–
687. Citeseer, 2003.

[33] Shashank Mujumdar, Nitin Gupta, Abhinav Jain, and Douglas Burdick. Simulta-
neous optimisation of image quality improvement and text content extraction from

99
scanned documents. In 2019 International Conference on Document Analysis and
Recognition (ICDAR), pages 1169–1174. IEEE, 2019.

[34] Lukáš Neumann. Scene text localization and recognition in images and videos. 2017.

[35] Lukas Neumann and Jiri Matas. Text localization in real-world images using effi-
ciently pruned exhaustive search. In Document Analysis and Recognition (ICDAR),
2011 International Conference on, pages 687–691. IEEE, 2011.

[36] Lukáš Neumann and Jiří Matas. Real-time scene text localization and recognition.
In Computer Vision and Pattern Recognition (CVPR), 2012 IEEE Conference on,
pages 3538–3545. IEEE, 2012.

[37] Hisao Niwa, Kazuhiro Kayashima, and Yasuharu Shimeki. Postprocessing for char-
acter recognition using keyword information. In MVA, pages 519–522, 1992.

[38] Tatiana Novikova, Olga Barinova, Pushmeet Kohli, and Victor Lempitsky. Large-
lexicon attribute-consistent text recognition in natural images. In European confer-
ence on computer vision, pages 752–765. Springer, 2012.

[39] Remus Petrescu, Sergiu Manolache, Costin-Anton Boiangiu, Giorgiana Violeta
Vlăsceanu, Cristian Avatavului, Marcel Prodan, and Ion Bucur. Combining tesseract
and asprise results to improve ocr text detection accuracy. Journal of Information
Systems & Operations Management, pages 57–64, 2019.

[40] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. You only look
once: Unified, real-time object detection. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 779–788, 2016.

[41] Christophe Rigaud, Antoine Doucet, Mickaël Coustaty, and Jean-Philippe Moreux.
Icdar 2019 competition on post-ocr text correction. 2019.

[42] Sarah Schulz and Jonas Kuhn. Multi-modular domain-tailored ocr post-correction.
In Proceedings of the 2017 Conference on Empirical Methods in Natural Language
Processing, pages 2716–2726, 2017.

[43] Faisal Shafait and Ray Smith. Table detection in heterogeneous documents. In
Proceedings of the 9th IAPR International Workshop on Document Analysis Systems,
pages 65–72. ACM, 2010.

[44] Asif Shahab, Faisal Shafait, and Andreas Dengel. Icdar 2011 robust reading compe-
tition challenge 2: Reading text in scene images. In 2011 international conference
on document analysis and recognition, pages 1491–1496. IEEE, 2011.

[45] Nabin Sharma, Ranju Mandal, Rabi Sharma, Partha P Roy, Umapada Pal, and
Michael Blumenstein. Multi-lingual text recognition from video frames. In 2015

100
13th International Conference on Document Analysis and Recognition (ICDAR),
pages 951–955. IEEE, 2015.

[46] Baoguang Shi, Mingkun Yang, Xinggang Wang, Pengyuan Lyu, Cong Yao, and
Xiang Bai. Aster: An attentional scene text recognizer with flexible rectification.
IEEE transactions on pattern analysis and machine intelligence, 41(9):2035–2048,
2018.

[47] CS Shin, KI Kim, MH Park, and Hang Joon Kim. Support vector machine-based text
detection in digital video. In Neural Networks for Signal Processing X. Proceedings of
the 2000 IEEE Signal Processing Society Workshop (Cat. No. 00TH8501), volume 2,
pages 634–641. IEEE, 2000.

[48] Ray Smith. An overview of the tesseract ocr engine. In Ninth International Con-
ference on Document Analysis and Recognition (ICDAR 2007), volume 2, pages
629–633. IEEE, 2007.

[49] Ray Smith. Limits on the application of frequency-based language models to ocr. In
2011 International Conference on Document Analysis and Recognition, pages 538–
542. IEEE, 2011.

[50] Ray Smith, Daria Antonova, and Dar-Shyang Lee. Adapting the tesseract open
source ocr engine for multilingual ocr. In Proceedings of the International Workshop
on Multilingual OCR, page 1. ACM, 2009.

[51] Ray W Smith. History of the tesseract ocr engine: what worked and what didn’t. In
Document Recognition and Retrieval XX, volume 8658, page 865802. International
Society for Optics and Photonics, 2013.

[52] Christian M Strohmaier, Christoph Ringlstetter, Klaus U Schulz, and Stoyan Mihov.
Lexical postcorrection of ocr-results: The web as a dynamic secondary dictionary?
In Seventh International Conference on Document Analysis and Recognition, 2003.
Proceedings., pages 1133–1137. Citeseer, 2003.

[53] Kazem Taghva and Eric Stofsky. Ocrspell: an interactive spelling correction system
for ocr errors in text. International Journal on Document Analysis and Recognition,
3(3):125–137, 2001.

[54] Ranjith Unnikrishnan and Ray Smith. Combined script and page orientation esti-
mation using the tesseract ocr engine. In Proceedings of the International Workshop
on Multilingual OCR, page 6. ACM, 2009.

[55] Kai Wang and Serge Belongie. Word spotting in the wild. In European Conference
on Computer Vision, pages 591–604. Springer, 2010.

101
[56] Liang-Kai Wang, Charles Tsen, Michael J Schulte, and Divya Jhalani. Benchmarks

and performance analysis of decimal floating-point applications. In 2007 25th Inter-
national Conference on Computer Design, pages 164–170. IEEE, 2007.

[57] Qixiang Ye and David Doermann. Text detection and recognition in imagery: A
survey. IEEE transactions on pattern analysis and machine intelligence, 37(7):1480–
1500, 2015.

[58] Xinyu Zhou, Cong Yao, He Wen, Yuzhi Wang, Shuchang Zhou, Weiran He, and
Jiajun Liang. East: an efficient and accurate scene text detector. In Proceedings of
the IEEE conference on Computer Vision and Pattern Recognition, pages 5551–5560,
2017.

[59] Yingying Zhu, Cong Yao, and Xiang Bai. Scene text detection and recognition:
Recent advances and future trends. Frontiers of Computer Science, 10(1):19–36,
2016.

	List of Figures
	List of Tables
	Introduction
	Problem and Motivation
	Objectives
	Contributions
	Organization

	Background
	Scene Text Detection and Recognition (STDR)
	Scene Text Detection
	Scene Text Recognition

	Tesseract
	A Brief History of Tesseract
	Tesseract Overview

	Related Work
	Syntax-Based Techniques
	Spelling correction
	Substitution
	Insertion
	Deletion
	Compounder

	Frequency
	Finding the error
	Tesseract decision
	Tree best variable

	Experimental Evaluation
	Dataset
	Evaluation Metrics
	Scene Text Recognition

	Spelling correction
	Substitution
	Insertion and Deletion
	Compounder
	Best methods to correct errors

	Frequency
	Spelling correction and Frequency

	Conclusions and Future Works
	Bibliography

