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    Resumo  

A capacidade de aquisição de resistência a antibióticos de várias espécies bacterianas vem 

ganhando destaque, dia após dia, devido tanto ao aumento nas taxas de incidência quanto as 

possíveis consequências relacionadas. Dentre as espeícies bacterianas capazes de desenvolver 

resistência a antibióticos, Staphylococcus aureus, Pseudomonas aeruginosa e Klebsiella 

pneumonia são potenciais patógenos oportunistas em infecções hospitalares (IACS). Cada cepa 

bacteriana relacionado com essa estudo é capaz de gerar diferentes perfis de resistência contra 

diferentes agentes antimicrobianos, dentre elas, a formação de biofilme por estas bactérias 

dificulta sua eliminação e pode atuar como barreira protetora contra várias condições de estresse 

geradas pelo ambiente externo. Biomateriais ou implantes contaminados com essas bactérias 

geralmente necessitam de condições severas de tratamento para sua esterilização, o que pode 

levar a perda de integridade. Tendo em mente este agravante, o uso de uma técnica alternativa 

acoplada à alta pressão hidrostática (HHP) pode ser uma abordagem muito favorável ao 

processo de esterilização de biomateriais hospitalares. Neste estudo, duas cepas diferentes de 

bactérias gram-positivas (S. aureus) e gram-negativas (P. aeruginosa e K. pneumoniae) foram 

submetidas à HHP, combinadas ou não com Glutaraldeído (GA), a temperatura moderada por 

10 min. Após o tratamento de células do fitoplâncto e biofilme em crescimento sob material 

transportador (fragmentos de catétere e lente), observamos a completa inativação / erradicação 

das cepas de S. aureus e K. pneumoniae e de uma cepa de P. aeruginosa NM 31 na faixa de 

0,01- 0,5 mM de GA, 300 MPa de alta pressão a 50 ℃ por 10 min. Entretanto, quando expostas 

a essas condições individualmente, tal redução do crescimento bacteriano das cepas não foi 

observada. A cepa ATCC 27853 de P. aeruginosa, foi observada maior sensibilidade desta, 

quando comparada as demais, ao tratamento apenas em HHP temperatura ambiente e sua 

completa inativação a 200 MPa a 25 ℃. O biofilme formado pela cepa ATCC P. aeruginosa 

em fragmentos de catéteres demonstrou-se altamente resistente a todas as exposições 

realizadas, sendo erradicado completamente apenas sob ≥ 3,67 mM, 300 MPa a 50 ℃ em 10 

min.  

 Como outra técnica alternativa a esterilização de biomateriais,  desafiamos cepas de S. aureus 

e P. aeruginosa com nanopartículas de prata biogênicas (AgNPs) associadas ou não com HHP. 

Neste tratamento, os resultados demonstraram redução de ≥ 70% das bacterias presentes nas 

cepas quando expostas a 200 µM de AgNPs sob pressão de 300 MPa a 25 ℃ por 15 minutos. 

Modificações superficiais e estruturais significativas nas cepas e nos biofilmes foram 



 
 

observadas após o tratamento em análises de microscopia eletrônica de transmissão (MET) e 

microscopia de força atômica (AFM). A massiva inativação de diferentes cepas bacterianas 

garantida por este método ressalta sua possível aplicação na esterilização rotineira de 

biomateriais e implantes sem perda de integridade. Este tipo de técnica de esterilização 

moderada é favorável a eliminação de biofilme multi-espécies de  materiais sensíveis à alta 

temperatura. Dada a importância da integridade destes biomaterias para a biomedicina e 

profissionais de saúde, a análise das propriedades superficiais do material exposto a estas 

condições pode ser uma perspectiva para futuros estudos. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

     



 
 

    Abstract  

Antibiotic resistance acquiring the capability of several bacterial species is gaining attention 

day by day due to increase in incident rate and related consequences. Staphylococcus aureus, 

Pseudomonas aeruginosa and Klebsiella pneumonia are potential opportunistic pathogen 

concerning Hospital-Acquired Infections (HAIs). All bacterial species concerning this work 

obtained different resistant profiles against various antimicrobial agents, however, the 

characteristic feature of biofilm formation of these bacteria, making them difficult to eliminate. 

For instance, biofilm produce from these bacteria correspondingly acts as a protective barrier 

against several external stress conditions. Biomaterials or implants contaminated with these 

bacteria often need harsh or extreme treatment condition for sterilization, which can ultimately 

compromise the properties of the biomaterial. In this concern, the use of an alternative technique 

coupled with High Hydrostatic Pressure (HHP) can be a very favourable approach for an 

adequate sterilization procedure. In this study, two different strains of gram-positive (S. 

aureus), and gram-negative (P. aeruginosa and K. pneumoniae) bacteria were subjected to HHP 

with or without combining to a disinfectant Glutaraldehyde (GA) at the moderate temperature 

(50℃) for 10 min. After treatment of both phytoplankton cells and biofilm grown on carrier 

material (lens and catheter fragments), we observed complete inactivation/eradication of both 

S. aureus and K. pneumoniae strains and one strain of P. aeruginosa NM 31 in the range of 

0.01- 0.5 mM of GA, 300 MPa of high pressure at 50 ℃ for 10 min but showed negligible 

reduction in bacterial growth when exposed to these conditions individually. In the case of P. 

aeruginosa strain ATCC 27853, exhibited more sensitivity to only HHP at room temperature 

and completely inactivated at 200 MPa at 25℃. The biofilm of P. aeruginosa ATCC on carrier 

material (catheter fragments) strain demonstrated as high resistance to all such exposures and 

enabled to eradicate completely under ≥ 3.67 mM, 300 MPa at 50 ℃ in 10 min. We tested both 

strains of S. aureus and P. aeruginosa with another antibacterial agent i.e. Biogenic Silver 

Nanoparticles (AgNPs) uniquely and with HHP, aiming to reduce or minimize the utilization 

of AgNPs in high concentrations, comparing to conventional use. The results indicated ≥ 70% 

magnitude of bacterial reduction using 200 µM of AgNPs, 300 MPa pressure at 25℃ for 15 

min of exposure. Transmission electron microscopy (TEM) and Atomic force microscopy 

(AFM) revealed significant surface and structural modifications before and after subsequent 

treatments equally in cells and biofilm. Achievement of such massive inactivation suggestive 

to the application of this methodology for routine biomaterial and implants sterilization with 



 
 

negligible or no damage. This kind of moderate sterilization technique is approachable for 

multi-species biofilm obliteration for the materials sensitive to high temperature. Surface 

properties analysis of material expose with such conditions can be a perspective for future 

studies to ensure its importance for biomedical and health-related practitioners. 
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CHAPTER: 1 
 

INTRODUCTION 

Hospital-acquired infections: challenges of disease and risk factors 

All the infections established in a patient after/during hospitalization stay of two days (48 hours) 

at a hospital, which did not exist before, are termed as Hospital acquired infections (HAIs). 

These infections have been believed to be contributing highly to the growing medical  

 

 

Figure 1.1.  Nomogram: This nomogram can be used to calculate yearly in-hospital costs 

attributable to infections due to multi-drug resistant bacteria with various values for the total 

number of infections, the average extra length of hospital stays per infection and the average 

cost per day of hospitalization. Source: (ECDC et al. 2007).   
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expenses, time of hospitalization, high mortality rate (Figure 1). Some policies have been 

developed recently, to alleviate the consequences of these infections (Kelly and Monson 2012). 

In this context, the reuse of medical devices in hospitals raises additional difficulties for 

sterilization, such as the presence of biofilm, that may require more drastic conditions for 

efficient treatment (Ntsama-Essomba et al. 1997; Rutala and Weber 2016). 

 

‘’Biofilms’’: A protective barrier against external stress  

Biofilm formation is crucial for chronic and refractory infections that organize organisms, 

cement cells to surface and possesses extracellular polymeric matrix made by 

exopolysaccharide, nucleic acid and proteins. Biofilm are extremely resistant to both innate and 

specific host immune system. On the other hand, due to exopolysaccharide thick matrix and 

decreased metabolic rate, biofilm-grown bacteria are less susceptible to phagocytic 

macrophages and resistant to antibiotic that attack on dividing cells (Bendouah et al. 2006) or 

may develop a specific-biocide resistance phenotype, owing the heterogeneous nature of 

biofilm showing multiple resistant mechanism with in a community (Mah and O’Toole 2001). 

 

Conventional sterilization methods 

All invasive procedures involve contact by a medical device or surgical instrument with pa- 

tients’ sterile tissue or mucous membrane. Therefore, the high or low-level sterilization is 

mandatory depending on use of critical (items that contact sterile tissue, such as surgical 

instrument) semi-critical (items that contact mucous membranes, such as endoscopes) or 

noncritical (items that contact only intact skin, such as stethoscopes) objects. Cleaning prior to 

disinfection and sterilization (Figure 1.2). Use of cutting-edge technologies (e.g. hydrogen per 

oxide mist) and its practice must to updated to the health-care practitioners and awareness with 

environmental factors responsible for infections (e.g. endoscopes) (Rutala and Weber 2016). 

Several other  conventional methods of sterilization, such as steam autoclaving (Baier et al. 

1982), gamma radiation, oxygen plasma and ultraviolet (UV) light, can compromise the 

properties of biomedical implants by changing the surface properties of the material, leading to 

the deposition of harmful substances and the stimulation of an exacerbated cellular response 

(Park et al. 2012).  
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Figure 1.2. Illustration of events at the Ti surface during cleaning, sterilization, and 

implantation. Source: (Park et al. 2012). 

 

1. Glutaraldehyde  

Glutaraldehyde (GA) is a strong disinfectant that is commonly used in hospital settings for 

surface cleaning and sterilization, as well as for tissue fixation before transplantation; GA acts 

by cross-linking with amine, amide and thiol groups of proteins (Takigawa and Endo 2006; 

Reddy et al. 2015). Figure 1.3. explains in what manner Glutaraldehyde polymerizes and then 

interact with amino acids in proteins (left) or in peptidoglycan (right). As a result, the proteins 

are alkylated and cross-linked to other proteins, subsequently, inactivates bacteria. The amino 

acids in peptidoglycan are also alkylated and cross-linked, which prevents them from 

participating in other chemical reactions such as those involved in peptidoglycan synthesis. 

This fixation results in toxicity and sensitization of the eyes, skin and respiratory tract that make 

it difficult to manage GA-induced damage (Mcdonnel and Russell 2005; Takigawa and Endo 

2006; Reddy et al. 2015). GA also leaves residues on material surfaces that can cause the 

calcification of implants treated with this agent (Kim et al. 1999; Yang et al. 2017). A 2% 

buffered solution of glutaraldehyde solution is recommended for 10 minutes by FDA for 

hospital and laboratory equipment effective disinfection but may require 12 hr. exposure to 

destroy all spores, virus and bacterial inactivation (Rutala and Weber 2004). 
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Figure 1.3. Effect of Glutaraldehyde. Source: Prescott’s microbiology, 8th edition, 2008.  

 

2. Biogenic silver nano particles (AgNPs)  

Particle size less than 100 nanometres generally called nanoparticles (Durán et al. 2015). which 

deals with matter that ranges from one half the diameter of DNA is  the nanotechnology 

(Dingman 2008). Biogenic silver nanoparticles (AgNPs) are another agent that is gaining 

attention progressively due to its antimicrobial activity, although its mechanism of action is not 

well understood but there is the indication of cell wall damage, inhibition of 30S ribosomal 

subunit, attachment with cell membrane, formation of free radicles, intercalation in nitrogenous 

bases of DNA by adhering on cell surface against multi-drug resistant (MDR) microorganisms 

(Durán et al. 2016). That’s why we incorporated in this project to check its antibacterial activity 

with and without exposure to HHP. Baring the idea to minimize the use of silver nanoparticle 

in higher concentration by making combination with HHP as up to some range it (AgNP) 

possesses toxicity to human cells, by causing damage to mitochondria, DNA and increased 

production of reactive oxygen species (ROS) in a dose-dependent manner by reducing ATP 

content (P. V. AshaRani et al. 2009). 
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Mechanism of AgNPs antibacterial activity 

The antibacterial activity of AgNPs working in several different manners, which has been 

extensively studied by various researchers along the last two decades. AgNPs may serve as a 

vehicle to deliver Ag+ more effectively (being less susceptible to binding and reduced 

bioavailability by common natural ligands) to the bacteria cytoplasm and membrane, whose 

proton motive force would decrease the local pH (as low as pH 3.0) and enhance Ag+ release 

(Figure 1.4. A). On the other hand, proposed a number of mechanisms of antibacterial action of 

silver nanoparticles: 1—electrostatic attraction, 2—production of free radicals, changes in 

permeability, disturbance of respiration, leakage of intracellular content, 3—modulation of 

phosphotyrosine profiles of proteins, involved in the cell cycle progression and in the synthesis 

of capsular polysaccharides, 4—interaction with SH-groups; inhibition of protein synthesis and 

function, 5—interaction with phosphorus-containing molecules (DNA) (Figure 1.4. B) (Durán 

et al. 2016) . 

 

 Figure 1.4. (A) Schematic representation of AgNPs, Ag+, and cell interactions. (B) Proposed 

mechanism of antibacterial action of silver ion (Durán et al. 2016). 

 

https://www.sciencedirect.com/topics/medicine-and-dentistry/bioavailability
https://www.sciencedirect.com/topics/medicine-and-dentistry/cytoplasm
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/antibiotics
https://www.sciencedirect.com/topics/medicine-and-dentistry/free-radical
https://www.sciencedirect.com/topics/medicine-and-dentistry/cell-cycle
https://www.sciencedirect.com/topics/materials-science/polysaccharides
https://www.sciencedirect.com/topics/medicine-and-dentistry/thiol
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/protein-function
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/protein-function
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/antibiotics
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Staphylococcus aureus 

Staphylococcus aureus is a gram-positive bacterium that inhabits human body, thus 

contributing to the normal human bacterial flora. It is also considered as a virulent pathogen 

that escapes detection by the host tissue by secreting various surface proteins that acts as 

biofilms and special capsules around it. In addition to these surface proteins, Staphylococcus 

aureus also secretes chemotaxis inhibitory proteins and leucocidins among many others which 

leads to infections in the host body (Kelly and Monson 2012). Figure 1.4. showed that S. aureus 

surface protein G (SasG), S. aureus surface protein C (SasC), Staphylococcus aureus protein A 

(Spa), as well as the cell surface extracellular matrix binding protein (Embp) and extracellular 

adherence protein (Eap), release of extracellular DNA based lysis controlled by autolysin are 

factors for biofilm formation (Zapotoczna et al. 2016). S. aureus is a pathogen that can form 

biofilm similarly on implants and medical devices. Central to biofilm formation is a very tight 

interaction between microbial surface proteins called adhesions and components of the 

extracellular matrix of the host. Thus, these adhesins can attach to their target with exceptionally 

resilient mechanostability, virtually independent of peptide side chains (Milles et al. 2018). 

 

 

Figure 1.4.  Major mechanisms of biofilm expressed by S. aureus. Source: (Zapotoczna et al. 

2016).  
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Pseudomonas aeruginosa  

Pseudomonas aeruginosa inhabits both biotic and abiotic environments, by virtue of its 

versatile metabolic activity. P aeruginosa is a leading cause of opportunistic infection in the 

eye (contact lenses), wounds, urinary tract, and burns (Figure 1.5). In a special situation it 

colonizes the respiratory tract of persons with cystic fibrosis by formation of a biofilm. Being 

capable of secreting biofilms and due to antibiotic resistance, this bacteria is a potential cause 

of various acute and chronic infections in human body (Balasubramanian et al. 2013). Specially 

in hospital settings, P. aeruginosa is responsible for biofilm formation on indwelling catheter 

causing catheter-associated urinary tract infections (CAUTIs) by utilizing urea (urine 

constituent) and propagate by the proclamation of extracellular DNA as support system (Cole 

et al. 2014).  

                

 

 

 

 

 

 

 

 

 

 

 

Figure 1.5. Pseudomonas disease overview. Source: Ryan KJ, Ray CG: Sherri’s medical 

microbiology, 5th edition.  
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Klebsiella pneumoniae 

Klebsiella pneumoniae is a widespread pervasive pathogen found in clinical and even 

nonclinical setups, which is believed to be associated with a wide range of infections related to 

urinary tract, respiratory system, and surgical wounds in individuals with suppressed immune 

system (Figure 1.4) (Janda 2015) . Their biofilm formation capability aids them in carrying out 

the pathogenic processes which causes infections in patients with weak immunity systems even 

in microgravity environment which is a stressful condition (Wang et al. 2016). An encapsulated 

bacterium a significant cause of hospital-acquired pneumonia. These virulence characteristics 

include capsule formation, iron scavenging systems, biofilm formation, allantoin metabolism, 

and serum resistance (McIver and Janda 2008; Shon et al. 2013). 

       

 

 

 

 

 

 

 

 

 

 

 

Figure 1.6.  Diagrammatic representation of traditional and emerging diseases associated with 

the genus Klebsiella. Source: (Janda 2015). 
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Emerging Antibiotic resistance strains 

Antibiotic resistance is a growing issue, which is considered to driven by the use of antibiotics 

which exert main selective pressure in increasing resistance. Consequently, a wide flora of 

commensal bacteria that exist on skin and other systems including digestive and excretory tract, 

have surfaced as pathogens (Alekshun and Levy 2004; Goossens et al. 2005), become 

opportunistic. Methicillin- resistant Staphylococcus aureus (MRSA) which is a notorious 

antibiotic resistant bacterium, can be found ubiquitously. In 2002, soon after the 

aforementioned microbe acquired five-gene plasmid cassette, vancomycin-resistant 

Staphylococcus aureus (VRSA) received attention. Almost 20,000 people in U.S are believed 

to die every year because of MRSA infections, which is more than mortality rate caused by 

HIV/AIDS (Walsh and Fischbach 2009). In addition, Klebsiella pneumoniae and Pseudomonas 

aeruginosa developed resistance against all the clinically available drugs by virtue of their 

double cell membrane and its complexity (ECDC et al. 2007). Besides, it also acquires 

resistance to last line antimicrobial agents e.g. Polymixins A (Chávez-Jacobo et al. 2018; Xu et 

al. 2018).  

High hydrostatic pressure technology (HHP) and its Working principles  

The application of high hydrostatic pressure (HHP) treatments to preserve food was first 

described only 23 years later. In 1899, Hite tried to find alternative preservation methods for 

heat sensitive food and was able to demonstrate that HHP treatments at approximately 700 MPa 

can significantly increase the shelf-life of milk with less detrimental effects on sensorial 

properties than heat treatments (Hite B.H 1899). Pressure is defined as the force per unit area 

applied on a surface in a direction perpendicular to this surface: mathematically: 

 

P = F / A 

 

In which P is the pressure, F is the normal force applied to the surface and A is the area of the 

surface. The official pressure unit is the Pascal (Pa) (1 Pa=1 N/1 m2=10−5 bar). The Newton 

representing a small force and 1 m2 corresponding to a large surface, the Pascal unit is a very 

small pressure unit. Consequently, the Mega Pascal (MPa) [1MPa=106 Pa] is the pressure unit 

commonly used in high pressure studies. The conversion from MPa to other pressure units is 

given in the Table 1. Below, adapted from (Rivalain et al. 2010). This widespread approach 

reflected in the wealth of the equipment, which now ranges from laboratory and industrial Scale 
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HHP generators to systems that are able to invade the HHP biosphere, such as submersibles 

used to sample piezophilic organisms in the deep sea. While laboratory scale generators have 

vessels with sample volume as low as 8 mL and a maximum achievable pressure of 

approximately 800 MPa (Aertsen et al. 2009). Pressure is a thermodynamic parameter whose 

unique effects on biological systems are increasingly being studied in a growing number of 

scientific fields. As such, the effects of high pressure are currently being investigated at 

different levels, ranging from proteins, enzymes and viruses to microorganisms, mammalian 

cells and tissues. From past years (figure 1.6.), the use of HHP in biological and 

biotechnological applications is seeking more attention e.g. vaccine preparation, protein 

disaggregation and modulation of food to check its functionality and processing (Aertsen et al. 

2009). At the same time, sterilization of bones grafts and implants by high pressure prior to 

transplantation gave another hope to biomedical practitioners to render proper solution to 

contamination consequences preserving biomechanical properties of tissues (van de Sande et 

al. 2017), blood and its derivatives (Yang et al. 2016). As HHP do not break covalent bond but 

weak ionic bonds so, the organoleptic properties are therefore not modified and stay quite close 

to fresh like product (Demazeau and Rivalain 2011). The effect of high pressure for bacterial 

inactivation (E. coli and S. aureus) was first studied in 1895 by Royer H. cited in (Rivalain et 

al. 2010). High pressure exerts many effects on living organisms, affecting not only cell 

structural organization but also its metabolic processes, which makes it difficult to pinpoint 

pressure effects in cell growth and viability (Bartlett 2002) and its damaging effect on bacteria 

and fungus, elevate with the increment in high pressure (Park et al. 2003). Illustrative figures 

1.5. A, B & C are representing instrumental design of the HHP system originally of our 

laboratory of Protein Thermodynamics situated in Department of Biochemistry and tissue 

biology, State university of Campinas, that was utilized to this study.  

 

Table 1.1. Conversion of the different units used for pressure. Source: (Rivalain et al. 2010). 
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Figure 1.7. (A) high pressure engine, (B) high pressure chamber for sample loading and, (C) 

Schematic Representation of High Hydrostatic Pressure instrument. 

A 

B 

C B 
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Figure 1.8. Development and increase in number of high-pressure machines around the world 

in the last 20 years. Source reviewed (Bermúdez-Aguirre and Barbosa-Cánovas 2011). 

 

High hydrostatic pressure (HHP) effect and applications 

The synergism is the process when any factor appears to facilitate other factor to achieve the 

goal. The synergism of HHP is being study in various systems e.g. with temperature, CO2, nitric 

oxide, and water for food preservation (Pyatkovskyy et al. 2018), in biomaterial sterilization 

(Gollwitzer et al. 2009), inanimate objects (clothes, mobile phone and usb) (Calvo and Casas 

2018) was reported recently headed for sterilized by HHP to avoid biohazards occurred due to 

bacterial contamination. Before selecting sterilization methods, the nature of material and 

evaluation of sterilization technique’s effect is very sensitive issue to be keeping in mind, 

highlighting modification concerning the biomechanical, physiological and structural 

properties of material of interest to be sterilized. Park et al. (2012) studied the surface properties 

and immune response as a result of different cleaning and sterilization methods were implied 

on implants High hydrostatic Pressure inactivation of biological agents is expected to be 

applicable to sterilization of fragile biopharmaceuticals, or medical compounds. The enhanced 

immunogenicity of some pressure-killed bacteria and viruses could be applied for making new 

vaccines. Finally, storage at sub-zero temperatures without freezing is another potential 
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application of HP for cells, animal tissues, blood cells, organs for transplant, and so forth 

(Masson et al. 2001). HHP has potential to initiate various biotechnological developments for 

example change in its effect on biomolecules such as proteins, carbohydrates and fatty acids 

using isostatic pressure where the pressure value remains contact in all direction in liquid either 

water or alcohol (Rivalain et al. 2010). High pressure effect was also evaluated in mammalian 

cells by applying high hydrostatic pressure on different cell lines where around 100 MPa was 

observed in mammalian cell which activated intrinsic and extrinsic pathways apoptotic 

signalling during high pressure induced cell death (Takano et al. 1997; Agar et al. 2006; 

Yamaguchi et al. 2008), for such reason, pressure selection decision is very important to keep 

in mind prior to biomaterial treatment.  

           Mechanical stresses and cellular deformation was also observed in Saccharomyces 

cerevisiae under lower and higher level of pressure and presented by the help of simulation and 

modelling (Hartmann et al. 2006). In general, low temperature and high pressure have related 

effects on biological membranes, since both largely affect its fluidity (Royer 1995). With 

increasing pressure, lipid bilayers lose fluidity and became rapidly impermeable to water and 

other molecules, while protein–lipid interactions essential to the optimal function of the 

membrane are weakened (Winter and Jeworrek 2009). In general, all pressure effects arise from 

a single influence, which corresponds to the volume reduction of the biological system, 

favouring the acquisition of more compact structural forms. Besides the structural alterations 

in biomolecules, pressure also disturbs the equilibrium of (bio) chemical reactions (Mota et al. 

2013). 
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High hydrostatic pressure interactions in biological systems 

For various reasons, pressure appears as an important tool for the investigation of biological 

systems (Winter and Dzwolak 2005). 

 

▪ The change in the volume and thermal energy in biological system induced by 

atmospheric pressure affected by temperature, so high pressure can be appropriate 

tool for such studies. 

▪ Non-covalent interactions play an important role in the stabilization of biological 

systems. Due to the low energy developed by pressure, high pressure alteration of 

weak bonds (in particular weak bonds characterized by a negative ΔV value) can play 

a crucial role in the investigation of the mechanisms of this stabilization. Pressure 

affects also chemical equilibria and reaction rates but all these parameters are 

governed by the Le-Chatelier's rule leading to the stabilization of the state 

corresponding to the smallest volume. 

▪ Due to the existence of hydrogen bonds, the specific pressure temperature diagram of 

water (the most common solvent in biological systems) favours the liquid state until 

−20 °C if the pressure value is high enough (−20 °C, 200 MPa). Consequently, 

experiments at sub-zero temperature in liquid phase are possible. 

▪ The change in volume ΔV can also open doors to execute new methods at ambient 

pressure. 

 

High pressure targets specific effect: Biomolecules 

 

1. Pressure effects on proteins  

Denaturation of proteins is induced by different factors: (i) heat, (ii) chemicals, and (iii) 

pressure. Temperature and/or chemicals lead to protein denaturation and often irreversibly 

unfold the complete protein because of covalent bond breaking and/or aggregation of the 

molecule. Indeed, works of Zhang et al. demonstrated, for example, that pressure denatured 

ribonuclease A preserved some partial secondary structure contrary to the heat unfolded one. 

The preservation of some β-like structures was also observed for pressure denatured 

staphylococcal nuclease (Zhang et al. 1995; Winter and Dzwolak 2005). High pressure can 

maintain some parts of the molecule unchanged due to the fact that only weak bonds are affected 

(and only weak bonds characterized by a negative ΔV value). Consequently, the denaturation 

mechanisms induced by pressure are different from the ones observed using temperature or 
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chemicals (Rivalain et al. 2010). HHP also responsible for causing conformational changes in 

proteins and ribosomes which has been considered as limiting factors for both microbial growth 

and survival under high pressure (Gayán et al. 2017).  

Among the weak interactions stabilizing the protein conformation, hydrophobic interactions are 

the ones characterized by the most negative ΔV value and therefore the most pressure sensitive. 

These interactions play a major role in the stabilization of the tertiary structure and in protein–

protein interactions. Columbic interactions are not favoured by pressure and hydrophobic 

interactions are destabilized by pressure (Table 2). 

 

Table 1.2. Susceptibility to high pressure of chemical interactions. Adapted source: (Rivalain 

et al. 2010) originally from Federighi et al. 1995. 

 

 

High hydrostatic pressure is a unique tool to study hydration, as increases in water binding 

usually lead to decreases in volume. Pressure changes can favour the formation or disassembly 

of amyloids depending on the volume changes associated with protein folding and misfolding/ 

aggregation. The packing and formation of cavities will also contribute to changes in volume, 

and therefore, to sensitivity to pressure. Therefore, the formation of water-excluding cavities is 

predicted to be an important event in folding and aggregation landscapes (Silva and Foguel 

2009). 

2. High pressure effect on lipids and bio-membranes 

Lipids are the most sensitive biomolecular system to high pressure specially in presence of 

water e.g. phospholipids (Winter and Dzwolak 2005). These lipids displays a large structural 

polymorphism subject to different factors: their molecular structure, water content, pH, ionic 

strength, temperature and pressure (Rivalain et al. 2010). The basic structural element of 

biological membranes consists of a lamellar phospholipids bilayer matrix (Winter and Dzwolak 

2005). When saturated phospholipids are placed into water, two phase transitions take place: a 
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gel-to-gel pretransition (Lβ′–Pβ′) and a gel-to-liquid- crystalline (Pβ′–Lα) main transition. The 

compression of the phospholipidic bilayer is anisotropic. Under high pressure conditions, the 

acyl chains straighten which result in a lateral shrinking and an increase in thickness. This 

phenomenon is also accompanied by a phase transition from the liquid–crystalline to the gel 

phase (Winter and Jeworrek 2009). On the other hand, barophilic organism also exists and they 

have membranes that are more fluid, and this is partly due to an increase of the unsaturated to 

saturated lipid ratio. Because of the sensitivity of lipids against pressure, these biological 

components are often considered as the main target in the pressure inactivation of micro-

organisms (Winter and Jeworrek 2009). 

 

3. High pressure effects on nucleic acids 

Due to the stabilizing effect of high pressure on hydrogen bonds and in particular DNA 

hydrogen bonds, the duplex to single strand transition temperature (melting temperature TM) is 

increased by pressure (Rivalain et al. 2010). The changes of RNA induced by pressure were not 

visible in the case of cells in the stationary phase. The degradation of DNA isolated from 

pressure treated E. coli strains from the exponential as well as from the stationary phase of 

growth was not observed (Malinowska-Pańczyk et al. 2011). Though the HHP cause DNA 

condensation and inhibit septum formation, however, cells could grow continuously (T. Sato et 

al. 2002). Past research on the physiology and molecular biology of deep-sea barophilic bacteria 

has identified pressure-regulated operons and shown that microbial growth is influenced by the 

relationship between temperature and pressure in the deep-sea environment e.g. Pseudomonas 

strains (Horikoshi 1998).  

 

High pressure resistance 

There are many bacteria that acquired resistance against high pressure.  Research presented on 

the isolation of pressure-resistant mutants, high-pressure regulation of gene expression, the role 

of membrane lipids and proteins in determining growth ability at high pressure, pressure effects 

on DNA replication and topology as well as on cell division, and the role of extrinsic factors in 

modulating enzyme activity at high pressure (Bartlett 2002). Different bacterial species 

examined under extreme higher-pressure ranges and observed attainment of pressure resistance 

only in E. coli strains and mechanistically concluded that, HHP resistance was not essentially 

connected to de-repression of the heat shock genes and was not related to the phenomenon of 

persistence and its resistance stability maintained >80 generations (Vanlint et al. 2012). 



31 
 

Objectives of the study 

The aims of the study are to investigate inactivation profile and surface level structural changes 

on S. aureus, P. aeruginosa and K. pneumonia and their biofilm, with and without treatment 

with the various physical; temperature and chemical; Glutaraldehyde and Silver-Nanoparticles 

(AgNPs) agents under high hydrostatic pressure (HHP) aiming to safe biomaterial sterilization. 

Specific objectives 

▪ To find the temperature resistance profile of all bacterial strains of S. aureus, K. 

pneumoniae and P. aeruginosa for 10 min of exposure time.  

▪ To Investigate the inactivation of one or more strains of S. aureus, K. 

pneumoniae and P. aeruginosa by disinfectant as glutaraldehyde at different 

concentrations for 10 min of exposure time. 

▪ Inactivation kinetics analysis of above-mentioned bacteria by HHP for different 

time of exposure. 

▪ To investigate the combined effect of disinfectant; Glutaraldehyde and HHP on 

the inactivation of these bacteria. 

▪ Investigate the biofilm formation by the above-mentioned bacterial strains and 

the effect of HHP and/or disinfectant in the respective contaminated carrier 

materials (lens and catheter fragments).  

▪ Investigation of the effect of different physical and chemical conditions in 

combination with disinfectants and HHP, at different temperatures. 

▪ Investigate the antibacterial effect of biogenic silver nanoparticles (AgNPs) with 

and without a combination of HHP against S. aureus and P. aeruginosa strains. 

▪ Transmission electron microscopy (TEM) analysis of treated and untreated S. 

aureus and P. aeruginosa strains.  

▪ Atomic force microscopy (AFM) of P. aeruginosa (ATCC 27853 & NM 31) 

and K. pneumoniae (ATCC BAA 1705 & ATCC 4352) strains to observe 

morphological and structural modifications after HHP treatment. 
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Abstract 

The sterilization of transplant and medical devices should be effective but not detrimental to 

the structural properties of the materials used. In this study, we examined the effectiveness of 

chemical and physical agents for inactivating Staphylococcus aureus, a gram-positive 

bacterium and important cause of infections and biofilm production. The treatment conditions 

in this work were chosen to facilitate their subsequent use with sensitive materials. The effects 

of temperature, high hydrostatic pressure and glutaraldehyde disinfectant on the growth of two 

strains of S. aureus (ATCC 25923 and BEC 9393) were investigated individually and/or in 

combinations. A low concentration of glutaraldehyde (0.5 mM), high hydrostatic pressure (300 

MPa for 10 min) and moderate temperature (50 oC), when used in combination, significantly 

potentiated the inactivation of both bacterial strains by >8 orders of magnitude. Transmission 

electron microscopy revealed structural damage and changes in area that correlated with the use 

of pressure in the presence of glutaraldehyde at room temperature in both strains. Biofilm from 

strain ATCC 25923 was particularly susceptible to inactivation. The conditions used here 

provided effective sterilization that can be applied to sensitive surgical devices and 

biomaterials, with negligible damage. The use of this experimental approach to investigate 

other pathogens could lead to the adoption of this procedure for sterilizing sensitive materials. 

 

Keywords 

Biofilms, Glutaraldehyde, High hydrostatic pressure, Nosocomial infections, Staphylococcus 

aureus, Sterilization.  
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Introduction   

The continuing increase in the occurrence of antimicrobial-resistant bacteria continues 

to be a major health problem worldwide. In this context, biomaterial sterilization is always an 

important consideration, with a need to ensure the efficiency of the process and its effect on the 

biomaterials being sterilized prior to medical interventions (Park et al. 2012). The 

decontamination of medical materials is essential for the control and prevention of diseases 

caused by pathogenic microorganisms (Cozad and Jones 2003; Rivalain et al. 2010). Several 

conventional methods of cleaning and sterilization, such as gamma radiation, steam 

autoclaving, oxygen plasma and ultraviolet (UV) light, can compromise the properties of 

biomedical implants by changing the surface properties of the material, leading to the deposition 

of harmful substances and the stimulation of an exacerbated cellular response (Park et al. 2012). 

The reuse of medical devices raises additional difficulties for sterilization, such as the presence 

of biofilm that may require more drastic conditions for efficient sterilization (Ntsama-Essomba 

et al. 1997; Rutala and Weber 2016). In view of these concerns, it is important to investigate 

new sterilization methods that cause minimal damage to the target materials.  

Glutaraldehyde (GA) is a strong disinfectant that is commonly used in hospital settings 

for surface cleaning and sterilization, as well as for tissue fixation before transplantation. GA 

acts by cross-linking with amine, amide and thiol groups of proteins (Takigawa and Endo 2006; 

Reddy et al. 2015). This fixation results in toxicity and sensitization of the eyes, skin and 

respiratory tract that make it difficult to manage GA-induced damage (Mcdonnel and Russell 

2005; Takigawa and Endo 2006). GA also leaves residues on material surfaces that can cause 

the calcification of implants treated using this agent (Kim et al. 1999; Yang et al. 2017).  

For materials sensitive to high temperature, alternative physical and/or chemical 

methods of disinfection and sterilization can be used, e.g., vaporizing hydrogen peroxide, 

ozone, peracetic acid vapor, ionizing radiation and light pulses (Rutala and Weber 2016). The 

use of high hydrostatic pressure (HHP) causes less damage to materials and therefore has 

important advantages for surgical materials, biopharmaceuticals, hemo-derivatives and 

implants (Gollwitzer et al. 2009; Rivalain et al. 2010; Durães-Carvalho et al. 2012). HHP can 

be used in association with other conditions, such as moderate temperatures (up to 60 oC), for 

more general pathogen inactivation involving sporulated and more resistant bacteria (Naal et 

al. 2008; De Souza et al. 2013).  
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In this work, we examined the impact of sterilization processes on strains of 

Staphylococcus aureus, an important pathogen that causes a wide range of clinical infections 

(Tong et al. 2015). Staphylococci are non-sporulating, gram-positive facultative aerobic cocci 

that occur in clusters and are generally resistant to desiccation and several antibiotics; these 

bacteria also tolerate high salt concentration in artificial growth medium (Parfentjev and Catelli 

1964). Several S. aureus strains can form biofilms, an important resistance barrier to external 

stressors such as antibiotics, the host’s immune defense and the disinfection of materials by 

antimicrobials and biocides (Götz F. 2002; Shin et al. 2013; Zapotoczna et al. 2016).  There is 

a correlation between strains with a higher capacity for forming biofilm and greater density of 

S. aureus  (Shin et al. 2013), as well as unfavorable evolution of clinical infections (Bendouah 

et al. 2006). Here, we investigated the effectiveness of the inactivation of two strains of S. 

aureus in suspension and in biofilm by HHP in combination with very low concentrations of 

GA and moderate temperature. The results demonstrate the high efficacy of a combination of 

conditions used to sterilize medical-surgical supplies and biopharmaceuticals. 

 

Materials and methods 

Bacterial strains, culture conditions and quantification 

Staphylococcus aureus strains ATCC® 25923 MINIPACK™ and Brazilian epidemic 

clone (BEC) 9393 were kindly provided by the Laboratory of Biotechnology of the Institute of 

Biology at UNICAMP. The cells were initially cultured in 5 mL of tryptic soy broth (TSB; 

Difco-BD) at 37 °C for 24 h. The bacteria were sub-cultured by inoculation in TSB followed 

by incubation for 16 h, with subsequent centrifugation (Fanem® 206R centrifuge) at 4,000 g for 

15 min; the resulting supernatant was discarded. Pellet bacterial cells were suspended in 0.9% 

(w/v) saline to achieve an estimated concentration of 109 cells/mL, which corresponds to an 

optical density of 1.5 (Beckman DU640, Beckman Instruments, CA, USA), to be used in the 

experiments.  

Quantification of bacteria was done by serial dilution in 0.9% saline (1:10) followed by 

plating on TSB agar plates. Bacterial growth was expressed as colony forming units (CFU/mL) 

after a 24 h incubation at 37 oC in an incubator. 
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Treatment at different temperatures, GA and HHP 

Bacterial suspensions were subject to different temperatures and GA conditions 

typically for 10 min in a water bath. Glutaraldehyde from a 25% stock solution (J.T. Baker®) 

was diluted to 0.21 M (2% v/v) in 0.10 M phosphate-buffered saline (PBS), pH 7.0. A bacterial 

suspension and biofilm in carrier material (see next section) were treated in 0.1 M Tris-HCl, 

pH 8.0, with different concentrations of GA up to 8 mM  (Mcdonnel and Russell 2005; Sehmi 

et al. 2016), typically for 10 min. GA was neutralized by adding 0.4 M (3%, v/v) glycine 

(Sigma®) for 2 min in a 9:1 ratio of glycine solution (Cheung and Brown 1982) and 

subsequently quantified. 

The HHP equipment and water bath supply, as well as the experimental method used in 

this study have been described before (Silva et al. 1989; Santos et al. 2004; Bispo et al. 2007; 

De Souza et al. 2013). The time required to increase the pressure from atmospheric pressure to 

300 MPa was 1.5 min and that required to return to atmospheric pressure was 1 min. A 

polyethylene bag (Polisilk®) filled with the sample was sealed at high temperature and placed 

in the high-pressure chamber. The samples treated with HHP, GA and temperature were 

exposed to the combination of treatments for 10 min.  

All results were expressed as mean values ± standard deviation of at least triplicate 

independent experiments.  All data analyses were done using OriginPro 8 software. 

 

Carrier materials and applications for sterilization 

Previous studies (Fux et al. 2004; Wells et al. 2011) have shown that S. aureus ATCC 

25923 strain is a biofilm producer. This strain was therefore used in experiments to examine 

biofilm formation on carrier materials in vitro. Sterilized contact lenses (SoftLens®, Sauflon 

Pharmaceuticals Ltd., Twickenham, United Kingdom) and catheters (Jiangsu Jichun Medical 

Devices Co. Ltd., Jiangsu Province, China) were used as carrier materials. For biofilm 

formation in vitro, carrier materials were incubated with the ATCC 25923 strain (108 CFU/mL) 

for 24 h at 37 °C in TSB with 1% (w/v) glucose (Marques et al. 2007; Chaieb et al. 2011). The 

appearance of turbidity in the medium and thick polysaccharide material on the surface of the 

carrier material confirmed bacterial proliferation and biofilm formation. The carrier materials 

were subsequently removed, washed with sterile distilled water and then exposed to different 

conditions. For HHP treatment, the experiments were done using polyethylene bags (Polisilk®), 
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in a manner similar to the experiments with cell suspensions. The treated carrier materials were 

again incubated in fresh TSB for 24 h at 37 oC, with visual monitoring of turbidity. The presence 

of bacteria was confirmed by collecting 100 µL of the treated or untreated samples, followed 

by plating and incubation (24 h at 37 oC). The positive control corresponded to contaminated 

materials without treatment. After the treatments, the materials were transferred to new tubes 

containing fresh TSB under sterile conditions and bacterial growth was monitored at 37 oC for 

24-48 h.  

 

Kirby-Bauer Disc diffusion method for antibiotic susceptibility 

The antibiotic susceptibility of the S. aureus strains was assessed using the Kirby-Bauer 

disc diffusion method (DDM). Primary brain heart infusion (BHI) broth (Neogen-Acumedia) 

was prepared and S. aureus were allowed to grow for 12-14 h overnight at 37 oC, followed by 

sub-culturing in BHI broth until a turbidity of 0.5 MacFarlane units was achieved. Mueller 

Hinton agar (MHA) (Difco-BD) plates were prepared by dissolving 38 g of MHA in 1 L of 

distilled water, sterilized and cooled to 45 oC, and 20 mL of the molten agar was poured into 

pre-sterilized petri plates. The plates were checked for sterility by incubating them at 37 oC for 

6-7 h before use. Approximately 106 cells of S. aureus were spread on the plates followed by 

the introduction of antibiotic discs and incubation at 37 °C for 16-18 h to allow zone 

development. The inhibition zones were classified into one of three categories based on the 

criteria of the “Clinical and Laboratory Standards Institute” (CLSI), namely, susceptible (S), 

intermediate (I) and resistant (R). The antibiotic concentrations were kept accordingly for the 

same standards of CLSI and the results were interpreted by measuring the clear inhibition zone  

(Alagumaruthanayagam et al. 2009). 

Transmission electron microscopy 

For transmission electron microscopy (TEM), treated and non-treated bacterial pellets 

were initially incubated for 3 h at room temperature in 1 M sodium cacodylate, pH 7.2, 

containing 2.5% glutaraldehyde and 1% tannic acid and centrifuged for 15 min at 7,000 g. The 

pellets was then washed and the samples were prepared as previously described (Durães-

Carvalho et al. 2012). 
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Morphometric analysis  

For morphometric analysis, bacterial samples that had or had not been treated with 300 

MPa HHP, 0.5 mM GA at 25 oC for 10 min were subjected to TEM and five images of treated 

and non-treated S. aureus ATCC 25923 and BEC 9393 strains were selected using the same 

magnification (46,460x). Fifty bacterial cells were selected from the images for measurement 

of the surface area using ImageJ software. Polygonal measurements of each cell were used to 

determine the area (Watanabe et al. 2013) and graphs were plotted using GraphPad Prism v.6 

software. Statistical comparisons were done using Student´s paired t-test with p<0.05 indicating 

significance. 

Results 

Effect of temperature  

Fig. 1 shows the inactivation patterns of S. aureus strains BEC 9393 and ATCC 25923 

at different temperatures. The sensitivity of both strains was very similar: significant 

inactivation occurred at >55 °C and total inactivation at ≥65 °C. There was also a significant 

reduction in the colony sizes of both strains after incubation for 24 h and 72 h at 55 °C compared 

to lower temperatures (Supplementary Figure S1); this finding may reflect a significant 

phenotypic change in these experimental conditions. 
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Fig. 1    Survival curves of S. aureus strains ATCC 25923 (closed symbols) and BEC 9393 

(open symbols) after exposure to different temperatures for 10 min in absence of GA. Asterisk: 

no bacteria detected. The error bars represent standard deviations (n=3).  

 

Combined effect of GA and temperature  

The combination effect of a very low GA concentration with temperature and HHP on 

bacterial inactivation was investigated. The potentiation of GA inactivation would be highly 

useful because the presence of residual disinfectant from cleaning and sterilization of some 

materials in hospitals represents a risk factor for toxicity. The GA concentrations used here was 

about 100 times lower than those currently used for disinfection, which may reach up to 2% 

(212 mM). Fig. 2 shows that S. aureus strains ATCC 25923 and BEC 9393 were inactivated at 

a GA concentration of 2 mM and 3 mM, respectively, at 25 oC. At higher temperatures, the 

inactivation of both strains occurred at significantly lower GA concentrations. Whereas, total 

inactivation of both strains was seen at 65 oC, even in the absence of GA (Fig. 1).  
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Fig. 2    Effect of GA on the inactivation of S. aureus strains ATCC 25923 and BEC 9393 at 

different temperatures (10 min exposure, pH 8.0). Asterisk: no bacteria detected. The error bars 

represent standard deviations (n=3).  

 

Effect of HHP and GA on S. aureus inactivation at different temperatures 

The effect of HHP (300 MPa) on both S. aureus strains at different temperatures and 

GA concentrations (10 min exposure) is shown in Fig. 3. There was negligible inactivation by 

HHP at 25 oC and, was not affected by increasing the length of treatment to 60 min. At moderate 

temperature (50 oC), HHP caused inactivation in both strains that was 4-5 orders of magnitude 

greater than at 25 oC (Fig. 3). At 25 oC, GA (up to 1 mM) did not significantly inactivate either 

strain, but the effect of GA was significantly potentiated at moderate temperature and/or by 

HHP. At 50 oC and 300 MPa, 0.16 mM GA totally inactivated both strains, whereas, when 

tested separately, these conditions caused little or no inactivation.    
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Fig. 3    Combined effect of HHP, GA and moderate temperature (50 oC) on the inactivation of 

S. aureus strains ATCC 25923 and BEC 9393 after 10 min incubation. Asterisk: no bacteria 

detected. The error bars represent standard deviations (n=3). Patm: atmospheric pressure.  

Effect of GA, HHP and moderate temperature on S. aureus in biofilm  

 Staphylococcus aureus strain ATCC 25923 was used to screen for biofilm eradication 

because of its ability to produce biofilm. Table 1 shows the results for the lenses and catheter 

fragments treated with HHP, moderate temperature and different concentrations of GA, 

compared with bacterial suspensions. Overall, the biofilm did not significantly protect S. aureus 

strain ATCC 25923 against inactivation by HHP and glutaraldehyde at moderate temperatures.  

Supplementary Figures S2 and S3 show representative images on which Table 1 is based. 

Figure S2 shows that the exposure of lenses with biofilm to 0.5 mM GA and 300 MPa at 50 oC 

prevented bacterial growth after 24 h (tube 2 and plate 2), compared with the positive control 

(lens without treatment that showed turbidity; tube 1 and plate 1). Figure S3 shows the catheter 

fragments treated with different concentrations of GA at 50 oC and HHP, and the respective 

untreated control. Total inactivation was observed in catheter with the same conditions of 

lenses.   
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Table 1. Comparison of the inactivation of S. aureus strain ATCC 25923 present in biofilm in 

carrier materials (lens or catheter) with the inactivation of a bacterial suspension of the same 

strain by different concentrations of GA at moderate temperatures and an atmospheric pressure 

of 300 MPa. 

 

 Treatment conditions 

 
50 °C, Patm   50 °C, 300 MPa  

 (up to 24 h) 

55 °C, Patm 

(up to 24 h) 

55 °C, 300 MPa 

 (up to 24 h) 

GA  

(mM) 

BS  

 

Lens           BS 

 

Catheter      BS  

 

Catheter      BS 

  

8  -  N.D.              - -                -     -                - 

4  -  N.D.              - -                - -                 - 

2  -  N.D.              - -                - -                 - 

1  +     -                 - -                -     -                - 

0.5  +     -                 - +               +  -                - 

0.25  +   N.D.              - +               +     -*              - 

0.16  +     +                - +               +     +                - 

0.125  +     +                + +               +   +                + 

0.08  + +               + +               +  N.D.          N.D. 

0.06  + +               + +               +  +                + 

0.04  + +               + +               +  N.D.          N.D. 

BS: bacterial suspension. Patm: atmospheric pressure. 

A positive sign for the carrier materials indicates turbidity in TSB medium after 24 h and BS 

assayed on TSB plates, with inactivation >8 log CFU/mL, if negative.  

*: appearance of bacterial growth after 48 h.  

The responses were assessed after a 10 min exposure to the above indicated conditions. 

Obs: All experiments in lens and catheter with absence of growth at 24 h were monitored up to 

48 h to check the sterilization. N.D.: Experiments Not Done. 
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Antibiotic susceptibility 

The disc diffusion method (DDM) was used to assess the antibiotic susceptibility of the 

two strains of S. aureus. Strain BEC 9393 was significantly resistant to most of the antibiotics 

tested, in contrast to strain ATCC 25923 that was not (Figure S4). BEC 9393 was completely 

susceptible to vancomycin but showed intermediate resistance to tetracycline and rifampicin 

and complete resistance to the other tested antibiotics. ATCC 25923 strain, which is used as a 

quality control strain by the CLSI, showed intermediate resistance to amikacin, gentamycin, 

ampicillin, oxacillin and vancomycin, and complete susceptibility to the other antibiotics.  

 

Transmission electron microscopy   

Fig. 4a-d shows the morphological alterations induced by HHP in synergism with GA 

at room temperature. TEM analysis of non-treated samples of S. aureus (ATCC 25923 and BEC 

9393) revealed an intact cell walls and membranes with no alterations suggestive of 

morphological damage. In contrast, the exposure of both strains of S. aureus to 0.5 mM GA 

plus 300 MPa HHP at 25 oC for 10 min resulted in substantial cellular damage that included the 

disruption of cellular structures, the leakage of cytoplasmic content to the surrounding 

environment, disrupted cell division, intracellular vacuole formation and a change in cell shape. 

 

Fig. 4    TEM images of S. aureus ATCC 25923 (control (a) and pressurized (b) samples) and 

BEC 9393 (control (c) and pressurized (d) samples). The pressurization conditions for both 

strains were 300 MPa HHP at 25 oC for 10 min in the presence of 0.5 mM GA. The arrows 

indicate morphological changes on the bacteria. The scale bars correspond to 200 nm.  
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Surface area measurements  

Surface area measurements allowed the conversion of qualitative data to quantitative 

data, as well as the comparison of bacterial cells before and after treatment with 0.5 mM GA in 

conjunction with 300 MPa HHP at 25 oC for 10 min; this treatment combination no longer 

allowed bacteria to grow, even on enriched media such as TSB plates. Morphometric analysis 

of TEM images revealed a significant difference in the surface area of both strains of bacteria 

after treatment. In S. aureus ATCC 25923, a major decrease in area resulted from the lack of 

cell wall and cell membrane and the appearance of hair-like structures outside the cells (Fig. 

5a-c). In S. aureus BEC 9393, the treatment produced structural modifications that ensued in 

bean-shaped cells caused by the release of cytoplasmic content including significant increase 

in surface area (Fig. 5d-f). The data of five images (50 bacterial cells) of treated or non-treated 

cells of both strains were analyzed with Student´s paired t-test and showed a significant effect 

of treatment (p<0.05). 
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Fig. 5    Morphometric analysis of bacterial TEM images based on the change in bacterial 

surface area (nm2) without (control) and with treatment with 0.5 mM GA and 300 MPa HHP 

and 25 oC for 10 min of S. aureus ATCC 25923 (a) and BEC 9393 strain (d). The control and 

treated images are shown respectively in (b) and (c) for ATCC 25923 strain, and (e) and (f) for 

BEC 9393 strain. Arrows indicate the altered area in both strains in c and f. The scale bars 

correspond to 200 nm. ***p<0,05 compared to the corresponding control. 

 

Discussions   

The use of HHP for microorganism inactivation has been described in several systems 

and its application in food processing allows preservation of the molecular characteristics of a 

variety of products, including organoleptic properties (Heinz and Buckow 2009).  
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The sterilization of medical materials requires the elimination of different pathogenic 

microorganisms that occasionally demonstrate broad-spectrum resistance to antibiotics. At the 

same time, preservation of the properties of these materials is an important distress. In this 

work, we examined the usefulness of combinations of conditions for inactivating 

microorganisms. For this, we used strains of S. aureus, a bacteria that is often the cause of 

hospital-acquired infections and may show resistance to multiple antimicrobial agents (Korting 

et al. 1998; Sievert et al. 2013; González-Arenzana et al. 2016; Kpeli et al. 2016). 

Staphylococcus aureus is of clinical importance because it causes opportunistic infections in 

patients with chronic diseases, immune deficiency and those who undergo surgical 

interventions leading to infective endocarditis and prosthetic device infections (Tong et al. 

2015), hospital-acquired pneumonia (Herkel et al. 2016) and scalded skin syndrome in neonates 

(Bhavsar et al. 2016).  

Staphylococcus aureus strains found in medical centers often show multi-resistance to 

antibiotics that is an important cause of hospital-acquired infections (Poorabbas et al. 2015). 

The confirmation here that S. aureus BEC was resistant to most of the antibiotics tested in this 

work (Fig. 4S) stresses the need for alternative methods for sterilization or bacterial inactivation 

since contamination by antibiotic-resistant strains can result in severe morbidity. Rochford et 

al. (2014) have previously shown that the proliferation and propagation of S. aureus on surgical 

material is enhanced by increasing the surface roughness of polyetheretherketone (PEEK) 

implants through treatment with oxygen plasma. This observation indicates the need to consider 

the possibility that the surface roughness of the material of interest may be influenced by the 

sterilization process used. Whereas treatment with HHP (300 MPa) for 10 min did not 

significantly affect the viability of either strain, however synergism between a low GA 

concentration and an HHP of 300 MPa lead to the eradication of S. aureus, with a 10-min 

treatment being sufficient to completely inactivate the bacteria and their biofilm. Additionally, 

the use of 3% glycine intended to neutralization and removal of GA traces, would be beneficial 

for avoiding its toxicity. Such synergism provided a less time-consuming and more cost-

effective means of sterilizing surgical material and bio-materials. Synergism between nitric 

oxide and HHP has been reported for the inactivation of Escherichia coli and Listeria 

monocytogenes prior to food processing and resulted in a ~6-log reduction in the bacterial 

counts (De Alba et al. 2013).  

Recent kinetic work with several strains of S. aureus have shown that HHP inactivation 

was more significant after 20 min of treatment at 450 MPa (Cebrián et al. 2010); another strain 
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tested for 2.5 h at 500 MPa showed total inactivation (>8 orders of magnitude) (Rigaldie et al. 

2007). Mechanistically, HHP affects several cellular targets in E. coli, including the barrier 

properties of the outer membrane, the intactness of the cytoplasmic membrane, the activity of 

membrane-bound enzymes and the intactness of ribosomes, as suggested by the TEM analysis 

of bacteria after treatment (Fig. 4a-d). HHP also stimulates the formation of reactive oxygen 

species and cell death. The morphometric analysis of images is an appropriate method for 

assessing the effects of any treatment. A previous study used images to measure the area and 

volume of bacteria (Massana et al. 1997) and we used a similar approach to examine the effect 

of GA, HHP and moderate temperature on bacterial survival (Fig. 5a-f). This image analysis 

revealed clear changes in bacterial area and shape. The significant difference between the two 

strains in response to the same treatments suggests important biochemical/genetic differences 

that deserve investigation in the future.  

Misfolded proteins in inclusion bodies can increase the sensitivity to HHP. The 

resistance of E. coli to HHP may be related to the over-expression of stress proteins (Ganzle 

and Liu 2015). Staphylococcus aureus is the most prevalent pathogenic bacterium in domestic 

refrigerators and different thermal inactivation schemes for this bacterium in food have been 

proposed, e.g. 70 oC for 2 min or 75 oC for 1 min (Kennedy et al. 2005). Our temperature 

experiments showed marked bacterial inactivation between 55 oC and 60 oC, so we investigated 

the possible potentiation of HHP at a lower temperature (50 oC) and the use of a very low 

concentration of disinfectant for the treatment of sensitive medical materials. We have 

previously shown that the pressure-induced inactivation of Aeromonas hydrophila was much 

more efficient at 40 oC (15 min treatment at 250 MPa) (Durães-Carvalho et al. 2012), whereas 

Mycobacterium abscesses inactivation was achieved by using a combination involving other 

conditions, such as moderately high temperature (60 oC), or pH 4.0 or pH 9.0, and was less 

efficient at subzero temperature (-15 oC) (De Souza et al. 2013).  Previously (Bonafe et al. 1998) 

the dissociation of the classic tobacco mosaic virus by HHP was significantly observed only in 

the presence of urea or at subzero temperatures (less than -19 oC). Such report illustrates the 

potential of synergism between HHP and other favoring condition for an effective dissociation. 

HHP and dissolved CO2 act synergistically to inactivate S. aureus and E. coli (Wang et 

al. 2010). We therefore considered that the use of a very low concentration of disinfectant could 

improve pressure-induced inactivation and be very suitable for sterilizing medical materials. 

GA is a disinfectant used to sterilize medical equipment and has the advantage of not being 

corrosive to metal and of not causing damage to lensed instruments, rubber or plastics. 
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However, the use of GA, even for non-critical surface cleaning, is controversial because of its 

toxicity (Takigawa and Endo 2006). In the present study, we tested GA at a concentration less 

than one tenth of that typically used in hospitals, i.e., 53-212 mM (0.5-2%) (Rutala and Weber 

2016). Both strains of S. aureus were inactivated by 2-3 mM GA at room temperature (25 oC), 

as also reported by Gorman et al. (Gorman et al. 1980). The action of GA was very sensitive to 

an increase in temperature from 50 oC to 60 oC and with HHP (Figs. 2 and 3). As shown in Fig. 

3, total bacterial inactivation was observed in both strains (a reduction of >8 orders of 

magnitude) treated with 0.16 mM GA at 50 oC and 300 MPa, even though individually neither 

of these conditions significantly reduced the bacterial population.  

 Another important challenge in sterilization is the presence of biofilm, classically 

present in reused medical devices. The microorganisms in such biofilms are less susceptible to 

inactivation because of the protective barrier that biofilm provides (Zapotoczna et al. 2016). 

We have previously reported total inactivation of M. abscesses in biofilm present on PVC 

fragments after treatment for 45 min at 250 MPa and 60 oC (De Souza et al. 2013), indicating 

a synergistic effect of pressure and moderate temperature. The presence of low concentrations 

of GA should further enhance bacterial inactivation in this situation. In contrast, HHP 350 MPa 

alone or in combination with antibiotics did not significantly reduce the number of gram-

negative bacteria in cell suspensions or in biofilm on human ossicle explants from 

cholesteatoma patients (Dommerich et al. 2012).  

GA is considered the most practical crosslinking agent and is suitable for treating 

biomaterials made from biomolecules and synthetic biopolymers. A limitation to its use is the 

difficulty in handling and its cytotoxicity at high concentrations (Reddy et al. 2015). Thus, 

protocols involving HHP in the presence of low concentrations of GA could be more effective 

in inducing crosslinking reactions, with a decrease in the risks associated with handling and 

cytotoxicity. The successful treatment of materials contaminated with S. aureus biofilm 

suggests the possibility of treating different systems that use biomaterials of biotechnological 

interest. The synergistic effect observed here represents a powerful tool for sterilization with 

high efficiency and low damage. 
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ABSTRACT  

In the hospital environment, the bacterium Pseudomonas aeruginosa is considered an important 

opportunistic pathogen, which is highly resistant, often causing infections in 

immunocompromised patients, as well as responsible for post-surgical infections, partly due to 

the inadequate sterilization and contamination of surgical equipment and biopharmaceutical 

solutions. There is a great concern for efficient sterilization of these materials, so the use of a 

technique called as high hydrostatic pressure (HHP) to inactivate microorganisms could be very 

effective, especially for the sterilization of temperature sensitive materials. Although the 

mechanisms of inactivation of microorganisms involved are not yet well established, yet there 

exists an indication of significant damage in the cell wall, ribosomes, cellular content and 

plasma membrane. In this study, we aimed to use high hydrostatic pressure treatment separately 

and in combination with disinfectant (glutaraldehyde) in low concentration and moderate 

temperature to check the synergistic effect for the sterilization of bacteria Pseudomonas 

aeruginosa (strains ATCC 27853 & NM 31). With subsequent treatments the observations 

detailed the sensitivity of ATCC 27853 strain only with 250 MPa HHP at 25℃ while NM 31 

kept resistant. The synergistic combination treatment completely inactivates both bacterial 

strains on 0.01 mM GA, 150-300 MPa HHP at 50℃ in 10 min of exposure suggesting high 

efficacy of this method. High-resolution Transmission electron and Atomic Force Microscopy 

observations further supplemented the high impact of subsequent treatments for bacterial 

planktonic cell as well as biofilm. This technique draws attention to the biotechnological 

aspects of bacterial classification and certainly quality control measures including safe 

sterilization of the medical and biopharmaceutical manipulations.  

 

KEY WORDS: 

Pseudomonas aeruginosa, High hydrostatic pressure-sensitivity, Atomic force microscopy, 

transmission electron microscopy, synergistic effect, Biofilm.  
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▪ INTRODUCTION  

              Pseudomonas aeruginosa is a gram-negative pathogen that has become an important 

cause of infections, especially in patients with compromised defence mechanisms. It is 

frequently related to nosocomial infections such as pneumonia, urinary tract infections (UTIs) 

and bacteraemia. The biofilm formed by the bacteria allow them to adhere to any surface, living 

or non-living and thus Pseudomonas infections can occur in any part of the body. Further, the 

adaptive and genetic changes of the micro-organisms within the biofilm make them resistant to 

all known antimicrobial agents making the Pseudomonas infections complicated and life 

threatening (Sharma et al. 2014). In medical and surgical materials, several bacteria make 

biofilms. This work is based on inactivation of some pathogenic bacteria Pseudomonas 

aeruginosa that are responsible for making biofilm in medically important materials and 

biopharmaceutical solutions by forming thick exopolysaccharide (EPS) matrix, which helps 

them to escape from external stress environment and shocks i.e. antibiotics, phagocytosis and 

majorly host immune system by acquiring resistance genetically. These environmental bacteria 

can form biofilms on a variety of living and non-living surfaces such as the mucous plugs of 

the CF lung, contaminated catheters, and contact lenses (Toole et al. 2000; Høiby et al. 2010). 

The first stage of biofilm formation is attachment with the surface followed by micro-colony 

formation, maturation to form mushroom shaped structures, extension and propagation. Once 

the cells attach onto the surface, the micro-colonies pledge differentiating into a complex 

structure with overruling water channels (Müsken et al. 2010). There are some risk factors 

involved in  P. aeruginosa infections for example, the use of antimicrobial drugs and the 

number of days of antibiotic therapy before positive blood culture in neonates intensive care 

unit (NICUs), exposure to particular health-care personnel, transfusion to blood products and 

intravenous injections (Jefferies et al. 2012). They are also responsible for ventilator and, 

bronchitis-associated pneumonia in adults (Fujitani et al. 2011).  

            P. aeruginosa multi-drug resistance independently predicted higher hospital costs with 

a more than 70% increase per admission compared with non-resistant strains (Morales et al. 

2012). Clinical isolate exhibits increased resistance to antibiotics making it almost impossible 

to treat Pseudomonas infection e.g. resistance to ciprofloxacin (last-line antibacterial drug) 

(Chávez-Jacobo et al. 2018). Ultimately, this bacterium fetching reason for high 

epidemiological events. i.e. a quarter of hospital-acquired infections occurred due to prevalence 

of Extensively-Drug Resistant P. aeruginosa (XDR-PA) and higher mortality (Bendouah et al. 

2006; Palavutitotai et al. 2018). Therefore, proper sterilization procedures of the temperature 
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sensitive medical instruments and biopharmaceutical materials are of great importance for the 

inactivation of pathogenic bacteria to minimize the risk factors associated with occurrence of 

infections (De Souza et al. 2013).  

             High hydrostatic pressure (HHP) is alternative technique of non-thermal sterilization 

and exploration of its working in different systems is being carried out extensively since last 

two decades. The application of high hydrostatic pressure (HHP) in medical and pharmaceutical 

industries has also been researched in the preservation of biopharmaceuticals, blood products, 

cells and organs for transplantation, being a promising technique in the near future (Masson et 

al. 2001; Gollwitzer et al. 2009; Rivalain et al. 2010). Various wild type or mutant strains of 

bacteria showed survival against HHP (Hauben et al. 1997; Vanlint et al. 2011; Hazael et al. 

2014). Previously done physiological and molecular biology research of deep-sea barophilic 

bacteria evident occurrence of pressure resistant operon responsible for resistance to HHP 

(Horikoshi 1998).  

              Another factor of consideration is Glutaraldehyde (GA) disinfection for inactivation 

of pressure-resistant strains. Glutaraldehyde is a convincing disinfectant that is normally used 

to sanitize and fix tissues of organs and inanimate entities, medical and surgical materials, but 

it has some toxic effects similar to it deposition on the surfaces, it may cause eye, lung and 

respiratory tract irritation and spontaneous abortion. It causes blood coagulation. All of these 

features should be taken into account once represent a serious risk in health settings (Takigawa 

and Endo 2006). 

             Atomic Force Microscopy is a versatile image analysis technique, which provides 

significant images besides measuring various surface properties of organism on nanoscale level, 

for example: morphology, topography, molecular interactions over membranes, damages as a 

result of stress conditions (Eaton et al. 2008) or chemical treatments (Camesano et al. 2000). In 

addition, this can observe the molecular determinants (Razatos et al. 1998), and force that a 

bacterium possesses to adhere on any surface either animate or inanimate (Milles et al. 2018), 

from single cell to bacteria in community i.e. in biofilm (Wright et al. 2010). We studied two 

strains of Pseudomonas aeruginosa ATCC 27853 and NM 31 (non-mucoid strain) to check 

their sensitivity and resistance, with an aim to achieve total inactivation by High hydrostatic 

pressure followed by determination of structural changes on bacterial cell surface by virtue of 

AFM. 
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▪ EXPERIMENTAL SECTION 

 

         Bacterial strains, inoculum preparation and quantification  

             For this study, strains of Pseudomonas aeruginosa ATCC® 27853™ and NM 31 were 

collected from department of Biotechnology, Institute of Biology, and Hospital das Clínicas 

(HC), UNICAMP, respectively. Bacterial isolates were cultured in BHI (Brain heart infusion) 

broth to prepare stocks by incubating overnight at 37 ℃, next day these cultures were added 

with glycerol in 1:10 ratio and stored at -80℃ in bio freezer for forthcoming experiments. 

Inoculum for each experiment was prepared by adding stock bacterial suspension in 5 mL of 

tryptic soy broth (TSB; Difco-BD) at 37 ℃ for 24 h. The bacteria were sub-cultured by 

inoculation in TSB, followed by incubation for 16 h, with subsequent centrifugation (Fanem® 

206R centrifuge) at 4,000 g for 15 min; the resulting supernatant was discarded. Pellet bacterial 

cells were suspended in 0.9% (w/v) saline solution to achieve an estimated concentration of 109 

cells/mL, which corresponds to an OD660 of 1.5 (Beckman DU640, Beckman Instruments, CA, 

USA), to be used in the experiments.  

            Quantification of bacterial viability was done by serial dilution in 0.9% saline (1:10) 

followed by plating on TSB agar plates. Bacterial growth was expressed as colony forming 

units (CFU/mL) after 18-22 h incubation at 37 oC in a biosafety incubator. All graphs were 

plotted on origin8 pro software by using mean and standard deviation of at least 3 independent 

experiments.  

 

      Temperature kinetics profiling 

            Survival profile of P. aeruginosa strains against different temperatures was analysed 

using 16-18 hr stationary phase bacterial cultures in TSB medium from above mentioned stock 

cultures. Bacterial suspension was exposed to different ranges of temperatures categorized as 

moderate i.e. ranges from 40 ℃ to 65 ℃ for 10 min in water bath and controls were kept 

untreated at room temperature. Both temperature exposed and unexposed samples were then 

serially diluted in 0.9% saline solution followed by plating on TSB plates and incubation at 37 

℃ for 24h. After 24 hr of incubation bacterial colonies were counted as colony forming unit 

(CFU/mL). 
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       Effect of different GA concentrations at room temperature 

            The methodology for GA analysis was adopted to preserve the approach to minimize 

the use of higher concentrations of GA to reduce its toxic effects. The bacterial suspension of 

1.4 OD660 that corresponds to 1.27x109 cells/ mL was used to find survival kinetics against 

different concentrations of GA at room temperature (25 ℃). For this purpose, GA (J.T. Baker®) 

solution was prepared in sterilized distilled water from 0.001 to 29.4 mM final concentration 

from 25% stock solution. Before each treatment, GA solution was added with PBS of pH= 8.0 

to activate for 2 min and then bacterial suspension was added for 10 min to check its 

antibacterial activity (Mcdonnel and Russell 2005; De Souza et al. 2013; Sehmi et al. 2016). 

After 10 min, 100 µL of this mixture was added to 900 µL of 3% glycine (Sigma®) solution to 

neutralize the effect of GA, as GA possess time dependent activity (Cheung and Brown 1982). 

The untreated and treated neutralized mixture was then serially diluted in 0.9% saline solution 

and plated on TSB plated for 24 h at 37 ℃.  

      Exposure to moderate temperature with GA   

            Antibacterial activity kinetics of P. aeruginosa strains was studied in this work by 

incubating bacterial suspension to six selected GA concentrations (0.001, 0.010, 0.100, 0.900, 

1.000 and 2.000 mM) with and without combination with moderate temperature i.e. 55 ℃ for 

10 min of exposure time using water bath. Afterwards, neutralization with 3% glycine was 

carried out as mentioned in earlier GA inhibitory assay. Subsequently samples were diluted in 

0.9% saline, plated on TSB plates and incubated for 24 h at 37 ℃. Quantification was made 

using CFU/mL criteria.  

      High hydrostatic pressure (HHP) system 

           The HHP equipment (HIP model 37-5.75-60; Erie, PA, USA) connected with water bath 

(Marconi) supplied with controlled temperature, as well as the experimental method used in 

this study have been described earlier (Silva et al. 1989; Santos et al. 2004; Bispo et al. 2007; 

De Souza et al. 2013). The pressure and temperature were continuously monitored during assay, 

whereas, the sample used were sealed in pressure shock proof polyethylene bags.  

          The bacteria were treated under high pressure for different time of exposure in the 

suspension prepared with 0.9% saline because it exhibited negligible effect on bacterial 

surrounding medium.  
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       P. aeruginosa exposure to HHP under different time ranges  

           Both above mentioned strains of P. aeruginosa ( ATCC 27853 & NM 31) in suspension 

of 1.4 OD660 turbidity 2.70x 109 cells CFU/mL, were subjected to 250 and 300 MPa HHP for 5, 

15, 30, and 60 minutes time of exposure in high pressure chamber at room temperature i.e. 25 

℃ (De Souza et al. 2013). 

       P. aeruginosa ATCC 27853 sensitivity testing to HHP  

Sensitivity test of ATCC 27853 strain of P. aeruginosa was carried out by exposing bacterial 

suspension to different ranges of HHP (50, 100, 150, 200, 250 and 350 MPa) (Dommerich et 

al. 2012; Yang et al. 2016) for constant time i.e. 10 min, and controls were remained untreated.  

Later on, both treated and untreated samples were serially diluted in saline and plated on TSB 

plates followed by incubation for 24 h at 37 ℃.  

        Combined HHP, temperature and GA treatments  

After exclusive temperature, GA and HHP survival sketching of both strains of P. aeruginosa 

(De Souza et al. 2013), selected values of all these factors were critically perceived to acquire 

complete inactivation and synergistic effect was observed in relation to temperature, GA and 

HHP. 

        In vitro Biofilm assays with catheter fragments  

In previous studies, P. aeruginosa ATCC 27853 strain was reported  as strong biofilm 

producer (Joe J. Harrison and Ceri 2005; Piasecki et al. 2013). So we utilized this ATCC 27853 

strain to perform  in vitro biofilm assay on carrier material with certain modification from Cole 

et al. (2014). Carrier material utilized was catheter (Jiangsu Jichun Medical Devices Co. Ltd., 

Jiangsu Province, China) fragments of 1 cm length. For in vitro biofilm formation, carrier 

materials were incubated with the ATCC 27853 strain (108 CFU/mL) for 24 h at 37 °C in TSB 

with 1% (w/v) glucose (Marques et al. 2007; Chaieb et al. 2011). The appearance of turbidity 

in the medium and thick polysaccharide material on the surface of the carrier material confirmed 

bacterial proliferation and biofilm formation. The carrier materials were cautiously removed, 

washed with sterile distilled water and then exposed to different conditions. For HHP treatment, 

the experiments were done using polyethylene bags (Polisilk®), in a manner similar to the 

treatment with cell suspensions. The treated carrier materials were again incubated in fresh TSB 

for 24 h at 37 °C, through visual monitoring of turbidity. The presence of bacteria was 
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confirmed by collecting 100 µL of the treated or untreated samples, followed by plating and 

incubation (24 h at 37 °C). The positive control corresponded to contaminated materials without 

treatment. After the treatment, the materials were transferred to new tubes containing fresh TSB 

under sterile conditions and bacterial growth was monitored at 37 °C for 24-48 h.  

      Transmission electron microscopy  

For transmission electron microscopy (TEM), both ATCC & NM strains of P. 

aeruginosa were treated with 300 MPa for 10 min at 25 ℃. Treated and untreated bacterial 

pellets were initially incubated for 3 h at room temperature in 1 M sodium cacodylate, pH 7.2, 

containing 2.5% glutaraldehyde and 1% tannic acid and centrifuged for 15 min at 7,000 g. The 

pellets were then washed and the samples were prepared as previously described (Durães-

Carvalho et al. 2012).  

      Bacterial preparations & immobilization for AFM  

          For mapping bacterial cell morphology and to evaluate their mechanical properties with 

atomic force microscopy. Park NX10, Park Systems Inc. Santa Clara, CA, USA and Nanosurf 

AG, Gräubernstrasse, Liestal, Switzerland was used. Both strains of P. aeruginosa in 

suspensions were tested in the presence of milli-Q water instead of saline to avoid salt crystal 

interference while capturing images. These suspensions of 0.4-0.5 OD600 were subjected to 300 

MPA at 25 ℃ for 10 min in high pressure chamber, subsequent to removal from HHP chamber, 

5 µL of exposed and unexposed samples were deposited on the fresh cleaved mica surface and 

allowed to dry for 10 min. Biofilm was formed using ATCC 27853 strain, inoculate overnight 

in BHI broth for 24 h at 37℃, next day thick exopolysaccharide biofilm material was exposed 

to 3.67 mM of GA, 300 MPa at 50℃ for 10 min. The untreated and treated biofilm material 

were then reinoculated to fresh BHI broth for 24 h incubation at 37℃.  Material from these 

tubes were separated by help of loop, fixed over the surface on mica for AFM analysis. After 

the exposures (or following the exposure), ATCC 27853 treated and untreated biofilm material 

was fixed over mica surface by putting with the help of loop and allowed to dry for 10 min prior 

to imaging. Both bacterial suspension and biofilm fixed mica surfaces were analyzed on tapping 

mode. Each image took almost 20-25 min to appear completely on computer screen. The tip 

model was PPP-FMR from Nanosensors with nominal resonance 75kHz and nominal force 

constant 2.8 N/m (Xie et al. 2016). The bacterial plantonic cells (ATCC 27853 & NM 31) 

images were initially measured in 15 µm and finally with 5 µm resolution and ATCC 27853 

biofilm was observed in 20 µm, capturing the fields that contained large number cells in that 
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confined area to the isolated cell to study surface topology of single cell. To treat AFM images 

offline, Gwyddion 2.50 software was used, distance across cells verses height was measured in 

the treated and untreated biofilm surface.  

 

      Antibiotic susceptibility testing 

The antibiotic susceptibility of the P. aeruginosa strains was assessed using the Kirby-

Bauer Disc Diffusion Method (DDM). Primary brain heart infusion (BHI) broth (Neogen-

Acumedia) was prepared and S. aureus were allowed to grow for overnight (12-14 h) at 37 ℃, 

followed by sub-culturing in BHI broth until a turbidity of 0.5 MacFarlane units was achieved. 

Mueller Hinton agar (MHA) (Difco-BD) plates were prepared by dissolving 38 g of MHA in 1 

L of distilled water, sterilized and cooled to 45 ℃, and 20 mL of the molten agar was poured 

into pre-sterilized petri plates. The plates were checked for sterility by incubating them at 37 

oC for 6-7 h before use. Approximately 106 cells of S. aureus were spread on the plates followed 

by the introduction of antibiotic discs and incubation at 37 °C for 16-18 h to allow zone 

development. The inhibition zones were classified into one of three categories based on the 

criteria of the “Clinical and Laboratory Standards Institute” (CLSI), namely, susceptible (S), 

intermediate (I) and resistant (R). The antibiotic concentrations were kept accordingly for the 

same standards of CLSI and the results were interpreted by measuring the clear inhibition zone  

(Alagumaruthanayagam et al. 2009). 

 

▪ RESULTS AND DISCUSSION 

          To analyse the effect of combination of HHP with other factors, chemical, 

Gluataraldehyde and physical, temperature, the survival profiling against each factor was 

performed. Starting from the very first physical and an abiotic factor i.e. temperature, the results 

obtained showed a preserved survival profile of both strains from 25 to 55 ℃, after this range 

drastic decrease in growth of both strains was prominently recorded at 60 and 65 ℃, that leads 

to total bacterial inactivation (Figure 1). The untreated controls for both strains were noted at 

room temperature (25 ℃). Various studies already mentioned P. aeruginosa growth conditions 

in relation to different temperature where,  P. aeruginosa PAO1 grows well at 37℃ (Chan et 

al. 2016). Contrarily, the growth starts reducing with the increase in temperature. However, in 

observation of this recent result, P. aeruginosa, both NM 31 and ATCC 27853 strains showed 
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stable growth in the range of 40-55 ℃, bearing characteristic resistance to elevated temperature 

(Figure 1). 

 

 

Figure 1. Effect of temperature on survival of Pseudomonas aeruginosa strains. Error bars 

corresponds to mean and standard deviation, Where n= 3. And total inactivation of bacterial is 

indicated with (⁕) asterisks.   

 

          Glutaraldehyde (GA), being an efficient disinfectant has very fast antibacterial activity 

i.e. 1-10 min for different microorganism like bacteria (vegetative cell and spores), viruses and 

fungi through 2% alkaline aqueous solution (Gorman et al. 1980). However, it is being widely 

used as cross-linking agent when it comes to improvement in biomaterials prior to 

transplantation though possession of cytotoxicity as well (Reddy et al. 2015). GA has time 

dependent activity against microorganisms and 3% glycine is normally used to neutralize its 

effects (Cheung and Brown 1982). In this study, GA was evaluated for its bactericidal activity, 

the resulting total inactivation of both strains of P. aeruginosa was achieved with 3.67 mM 

concentration of GA at 25 ℃ in 10 min, with the reduction of ≥8 log magnitude in bacterial 
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growth (Figure 2). In comparison with (Gorman et al. 1980), the results are relatively similar 

which comprises that up to 4 mM concentration of GA inactivate P. aeruginosa and other 

bacterial species.  

 

Figure 2. Survival curves of Pseudomonas aeruginosa strains ATCC 27853 and NM 31 under 

exposure of different concentration of disinfectant Glutaraldehyde at room temperature 25 ℃. 

Error bars corresponds to mean and standard deviation, Where n= 3. And total inactivation of 

bacterial is indicated with (⁕) asterisks. 

   

In order to verify the combination of moderate temperature and GA, both strains of P. 

aeruginosa were subjected to 55 ℃ in the presence of different concentrations of alkaline GA 

solution, consequently, the total inactivation of ≥ 8 logs CFU/mL was noted in lesser 

concentration i.e. 2mM of GA in comparison to total elimination observed at room temperature 

(25 ℃) (Figure 3). The temperature more than ≥ 54 ℃ was evaluated previously (Sierra and 

Boucher 1971), in synergism with lower concentrations of GA, which results in high-density 

inactivation of bacterial spores. Such studies were conducted to overcome the hazards directly 

or indirectly ended up with environmental fate, (Leung 2001) which demonstrated the toxic 

effects of GA to marine life after its disposal. Although the current study demonstrates its 
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novelty as GA was never investigated before in combination with moderate temperature and 

HHP for bacterial inactivation. In another literature (Blenkinsopp et al. 1992), low-strength 

electric current was applied in the presence of lower concentration (lower than normally 

required without combination with low-density current) of GA to eliminate P. aeruginosa 

biofilm developed over stainless steel. After analysing GA and temperature effect we select 

50℃ to further treat in the combination of HHP to gain complete inactivation on maximum 

moderate conditions of treatment.  

 

Figure 3. Evaluation of GA effect in combination with moderate temperature (55 ℃) for P. 

aeruginosa strains for 10 min. Error bars corresponds to mean and standard deviation, Where, 

n= 3 individual experiments and total inactivation of bacterial is denoted with (⁕) asterisks. 

 

Different bacteria respond variably towards varying stress conditions, acquiring 

resistance or showing sensitivity. High hydrostatic pressure stress sensitivity was examined 

using both recruited strains and applied 250 and 300 MPa pressure at 25 ℃ for different time 

of exposure, after the treatment, serial dilution and plating, 24 h incubation results showed 

ATCC 27853 strain completely sensitive to 250 MPa even with 5 min exposure and onwards, 
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which is a significant property of this strain. whereas NM 31 strain remained prominently 

resistant to both 250 and 300 MPa from 5- 60 min exposures and showed a neglected reduction 

of one log magnitude in bacterial growth (Figure 4). A past study (Govers and Aertsen 2015) 

suggested dominant inactivation of E. coli bacteria from lower to elevated level of high 

hydrostatic pressure by the help of time-lapse fluorescence microscopy revealing increased 

protein aggregation and change in cellular dynamics after 15 min of contact time. Related level 

of HHP was analysed previously by Durães-Carvalho et al. (2012) using 250 and 350 MPa at 

25 ℃ and up to 30 min of exposure, total inactivation of A. hydrophila strain AH 191 was 

highly distinguished. Discussing the difference from the past reviews about HHP sensitivity 

among gram-negative bacteria, (Pilavtepe-Çelik et al. 2008) concluded that gram negative 

bacteria are more sensitive to HHP with the reason of having less cell wall content but the 

resistance of NM 31 being gram-negative bacteria, from current work completely differ with 

this image (Figure 4).  

Figure 4.  Assessment of HHP sensitivity of both P. aeruginosa strains ATCC 27853 and NM 

31 to 250 & 300 MPa at room temperature (25 ℃) for different time of exposure. Errors bars 

corresponds to mean and standard deviation, where n= 3 individual experiments and total 

inactivation of bacterial is denoted with (⁕) asterisks. 
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Sensitivity of ATCC 27853 strain to elevated pressures prompted testing at gradually 

lowered levels of high pressure. In this regard, above mentioned Pseudomonas strain was 

challenged with different ranges of HHP for 10 min, the results show a continued resistance of 

bacterial growth from 50-150 MPa pressure while after 200 MPa starts declining (4 log 

CFU/mL) significantly, although, pressure of 250 MPa and onwards showed overall 

inactivation of ≥ 8 log CFU/mL magnitude (Figure 5). Previous study also reported this type of 

inactivation of Mycobacterium abscessus at 250 MPa and higher pressure, showing drastic 

decrease in inactivation following total elimination of bacteria (De Souza et al. 2013). 

Application of 200- 250 MPa high-pressure was made to inactivate different pathogens 

(bacteria and viruses) in plasma preceding to transfusion, results from their study confirmed the 

inactivation of 7.5-8 log reduction of E. coli and B. subtilis conserving porcine parvo virus and 

S. aureus resistant closer to 0 ℃ (Yang et al. 2016).   

Figure 5.  Sensitivity of P. aeruginosa ATCC 27853 strain at different values of High 

hydrostatic pressure (MPa) for 10 mins time of exposure at 25 ℃. Errors bars corresponds to 

mean and standard deviation, where n= 3 individual experiments and total inactivation of 

bacterial is denoted with (⁕) asterisks. 
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Previously assessed HHP, GA and temperature kinetic curves of both P. aeruginosa 

strains of our study were employed to hand-picked the values that exhibit 75% bacterial growth, 

furthermore, moderate for biomaterial treatment to associate all three factors together aiming 

overall inactivation. Consequently, strain NM 31 when experienced treatment with 0.01 mM 

GA, and 300 MPa pressure at 50 ℃ for 10 min suffered reduction of ≥8 log CFU/mL magnitude 

in bacterial growth, while when these conditions were implemented individually, demonstrated 

no difference in decrease in growth. Moreover, treatment of NM strain with 300 MPa at 50℃ 

showed significant difference and presented 5 log CFU/mL reduction in 10 min. Although other 

combinations of abovementioned stress conditions did not yield substantial difference (Figure 

6).  

 

Figure 6. Representative synergistic effect of 0.01 mM GA, and 300 MPa high pressure at 

moderate temperature 50 ℃ on bacterial inactivation with all controls of GA, temperature and 

HHP exclusive and in combinations. Errors bars demonstrating the mean and standard deviation 

of n= 3 individual experiments and asterisks (⁕) showing total inactivation. 
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In case of ATCC 27853 strain, we selected 150 MPa pressure value when we consider 

to combine with lower GA concentration i.e.  0.01 mM at 50℃, as this strain was already 

sensitive to ≤ 250 MPa, we observed its (ATCC strain) sensitivity to various combined factors 

simultaneously. The resultant inactivation measured was ≥ 8 log CFU/mL magnitude in 

bacterial survival. The ATCC strain comparatively demonstrated the 4-5 log CFU/mL reduction 

when 150 MPa was combined in 0.01 mM GA and 50℃ separately (Figure 7), we used this 

pressure as ATCC 27853 strain is already sensitive to pressure > 200 MPa. In past several 

studies, researchers implemented HHP in various combinations for example mild heat, Carbon 

dioxide (CO2), nitric acid etc. Synergism of mild heat was assessed in many schemes in order 

to potentialize the bactericidal activity, in a recently reported study (de Carvalho et al. 2018) 

developed a methodology by collecting essential oils (Nano-emulsions of peppermint), pulse 

electric field (PEF), mild heat and HHP to inactivate E. coli, the treatment of 15 min exposure 

to this method results in 5- log10 reduction in bacterial inactivation cycles. This kind of 

cooperative interaction was gauged earlier in another work  (Moody et al. 2014) consuming 

HHP, pulsed electric fields and ultrasound against E. coli aimed to food preservation, they 

concluded that the best treatment that show 7 log decrease in bacterial survival was HHP (300- 

600 MPa for 1 min). Food model based HHP conducted study  is important as biomaterials are 

sharing same sensitivity to high temperature exposures concerning bacterial inactivation. 

(Patterson et al. 1995) Tested different vegetative pathogens in phosphate-buffer saline solution 

under different ranges of HHP 275-700 MPa for 15 min and observed Yersinia enterocolitica 

as most sensitive at 275 MPa, while rest of pathogens (S. typhimurium, L. monocytogenes, S. 

aureus and E. coli) needed elevated pressure treatment for 15 min. Additive effect of HHP, 

pulse electric field (PEF) and sonication was screened at 400 MPa for 100 sec resulted in 

reduction of 8 log CFU of Listeria innocua in water (Pyatkovskyy et al. 2018).      
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Figure 7.  Illustrative synergistic effect of 0.01 mM GA, and 300 MPa high pressure at 

moderate temperature 50 ℃ on bacterial inactivation with all controls of GA, temperature and 

HHP exclusive and in combinations. Errors bars demonstrating the mean and standard deviation 

of n= 3 individual experiments and asterisks (⁕) showing total inactivation.  

To identify structural and morphological changes among both strains, we performed 

transmission electron microscopy (TEM) before and after treatment with 300 MPa for 10 min, 

the observation from analysis depicted morphological damages inside cell cytoplasm and 

ribosomes. Moreover, it caused noticeable destruction of cell wall and membrane in ATCC 

(HHP sensitive) strain. Contrarily, NM 31 strain reserved its integrity overall before and after 

treatment with HHP, proving its resistance property (Figure 8). Mycobacterium strains (De 

Souza et al. 2013) and Aeromonas AH 191 (Durães-Carvalho et al. 2012) were studied under 

transmission electron microscopy after HHP exposure, that revealed distinctive damage to cell 

membrane and leakage of cell cytoplasmic content to surrounding, suggestive of sensitivity to 

HHP. This correlation of HHP treatment with cellular damage was described using S. 

epidermidis illustrating significant change in cell shape and structure after 10 min exposure 

with 540 MPa (Dommerich et al. 2012). 
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Figure 8. Transmission electron microscopic observations of P. aeruginosa strains incubated 

under 300 MPa, at room temperature for 10 min; ATCC 27853 untreated cells kept intact (A), 

while treated cells demonstrated prominent damages (B) indicated with arrow. NM 31 strain 

exhibited comprehensive resistance sharing among both control (C) and treated cells (D). The 

Scale bars indicating 2 µm.  

         Another type of microscopic technique, useful for three-dimensional image to study 

biological structures is called Atomic force microscopy, is exploited in this work. Figure 9 

represents cell suspension of untreated and treated bacteria (ATCC 27853 and NM 31) with 

300 MPa pressure at 25 ℃ for 10 min. The untreated bacterial cells in Milli-Q water displayed 

reproducible and intact surface structure, furthermore, the bacterial polar flagella appeared 

undamaged (Figure 9A and 9C), whereas, treated cells of ATCC strain showed significant 

irregular surface, damages and abnormalities as well as leakage of cytoplasmic content due to 

multiple cleavages (Figure 9B). NM 31 strain showed no damage on surface and structural 

properties for being resistant to HHP treatment. The centre of each cell was considered as a 

reference point to capture the whole image to give 3D impression. Changes in bacterial surface 

properties vary from species to specie, Xie et al. (2016) previously verified change is pattern of 

surface properties in E. coli and B. subtilis after high-pressure jet treatment. The importance of 

analysing bacterial adherence to different surfaces is gaining attention due to biomedical and 

pharmaceutical applications, for example, drug designing and antimicrobial surface attachment 

targets. Sahoo et al. (2016) frameworked single bacterial cell of Xylella fastidiosa adhesiveness 

using nanowires arrays to understand biofilm propagation on surface starting by single cell 

anchoring via atomic force microscopy. Through AFM imaging several surfaces can also be 

spotted to verify its properties and mode of action, in such intention examination of ultra-thin 

films and nanofilms of polyethylenimine and Hyaluronan/chitosan was performed respectively, 
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to find antibacterial effect against S. aureus and P. aeruginosa (Hernandez-Montelongo et al. 

2016; Hernandez-Montelongo et al. 2017).  

 

 

 

 

 

 

 

 

 

 

 

Figure 9. AFM investigation of P. aeruginosa strains with and without treatment under 300 

MPa HHP at 25 ℃ for 10 min, showing (A) untreated (B) treated ATCC 27853 cells whereas 

(C) untreated and (D) treated NM 31 cells.  

 

         Biofilm formed by both strains of P. aeruginosa over the catheter surface was tested with 

different GA concentrations, 300 MPa at 50 ℃ for 10 min and reinoculated in fresh TSB liquid 

medium for 24 h. After 24-48 incubation, the recorded results exhibit that biofilm moulded by 

ATCC 27853 strain is much more resistance as compared to NM 31, later we associated these 

outcomes with bacterial suspension growth records and found that ATCC strain in biofilm is 

more resistant to external shocks since in cell suspension the total inactivation was achieved 

with less harsh condition i.e. 0.01 mM GA, 150 MPa at 50 ℃ for 10 min however, to inactivate 

biofilm embedded cells 3.67 mM GA, 300 MPa at 50 ℃ for 10 min was required. On the other 

hand, NM 31 strain remained sensitive at the same conditions that was critical to inactivate cells 

in suspension (Table 1, Appendix III). The inhibition of P. aeruginosa planktonic cells and 
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biofilm was evaluated earlier by epifluorescence microscopic method to find the effect of  

chlorine disinfectant and they determined that biofilms are more tolerant towards disinfectant 

than planktonic cells (Olszewska et al. 2016). Different cationic metals were assessed to 

eradicate P. aeruginosa ATCC 27853 planktonic cells and biofilm for 2 and 4 h exposure, 

resulting observations also again shows that biofilm thick material in 2-25 times more resistant 

to cationic metals effect in comparison with planktonic bacteria (Harrison et al. 2005).  

Test with biofilm formed by ATCC 27853 strain was similarly analysed using AFM with and 

without treatment with 3.67 mM GA, 300 MPa HHP at 50 ℃ for 10 min in air. We selected 

these conditions as we attained inactivation of biofilm embedded cells in abovementioned 

conditions. Figure 10 expressed very well the changes in cells surrounded in biofilm before and 

after treatment, showing complete eradication of polysaccharide material in Figure 10B as 

compared to untreated sample. (Figure 10A) presents unbroken and compactly attached cells 

within biofilm. The cells that underwent combined GA, HHP and 50 ℃ treatments, display 

distinctive morphological changes, loss of agglomeration and detachment from biofilm 

material. Biofilm was measured using 20 µm resolution which is indicated with scale bar in 

both untreated and treated image. (Pelling et al. 2005) successfully visualized and characterized 

the bacterial cell and its extracellular components under AFM of Myxococcus xanthus in their 

native environment in fluid, highlighting the importance of AFM analysis capable of expressing 

ultrastructural and nanomechanical properties of bacteria. Streptococcus mutans, a main 

etiological agent of dental carries was observed in biofilm using AFM imaging to check their 

ability to acquired resistance against different antibiotics by identifying surface protein 

responsible for mutation (Cross et al. 2006).  
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Figure 10. Topographical representation of P. aeruginosa ATCC 27853 biofilm, untreated (A) 

and treated (B) with 3.67 mM GA, 300 MPa high pressure at 50 ℃ for 10 min.  

         Antibiotic resistance for fifteen different antibiotics were profiled against both strains of 

P. aeruginosa ATCC 27853 and NM 31, the concluded results displayed high resistance of 

ATCC strain then NM towards gram negative specific antibiotics. NM 31 strain showed 

resistance only towards Ceftazidime and Aztreonam while staying susceptible and intermediate 

susceptible to all tested antibiotics (Appendix I-Table 2 or Figure 3S). The purpose to perform 

antibiogram for these strains was to check its susceptibility or resistance assuring these strains 

as threat to environment and to highlight the need of preventive measures against these bacterial 

strains meanwhile justifying and supplementing our work. P. aeruginosa is a common cause of 

hospital-acquired infection, therefore, the validation and review of epidemiological aspects is 

very important for disease management and control (Fujitani et al. 2011).   

 

▪ CONCLUSIONS 

On the basis of TEM and AFM analyses, we were able to visualize the surface and membrane 

level damages due to HHP synergistic combination effects. Material surface imaging can add 

valuable remarks to study this combination effects as well. P. aeruginosa inactivation with HHP 

and its combinations has broken the resistance standpoint and can open doors towards 

evaluating other bacterial species with such conditions. This preparation technique can be 

interesting for use in AFM analysis without limiting chemical interference for bacteria as well 

as for other variety of cells.  
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▪ ABTRACT 

Klebsiella pneumoniae is an opportunistic pathogen, important cause of hospital-acquired 

infections due to its capability of attaining resistance to multiple antibiotic, some of them are 

classified as MDR-KP (Multi-drug resistance Klebsiella pneumoniae) and carbapenems-

resistant Klebsiella. Concerning to high risk factor for infection and resistance to several 

biocides and disinfectants, emphasized other alternative technique to combat with their 

infections. High hydrostatic pressure is a cold sterilization technique, its impact varies from 

specie to specie among bacteria. In this study, we assessed two different strains of Klebsiella 

pneumoniae with HHP separate and/or in combination with glutaraldehyde at moderate 

temperature to find its susceptibility with these exposures. Our findings show that solely 300 

MPa of HHP is able to give significant inactivation of only ATCC BAA 1705 strain up to 5 log 

CFU/mL in 10 min of exposure, but in combination with 0.01- 0.05 mM GA at 50 ℃ for 10 

min, 300 MPa hydrostatic pressure enabled to completely eliminate all bacterial cells with 

indicative reduction of ≥8 log CFU/mL magnitude. The alteration in Klebsiella treated cell 

surface provides indication of loss of viability and integrity of cell structures was analyzed 

using AFM. High pressure effect accoupled with AFM analysis suggest its impact on single 

bacterial cell and directing its attention towards biotechnological aspects and their impact to 

study nanotechnological parameters.  

 

▪ Keywords  

Klebsiella pneumoniae inactivation, high hydrostatic pressure, synergistic effect, AFM, 

surface and membrane damages.   
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▪ INTRODUCTION  

         The genus Klebsiella and its most significant species, K. pneumoniae, have long been 

familiar as an important human pathogen. This specie has a longstanding association with 

serious hospital-associated infectious progressions including blood stream infections (BSI), 

respiratory tract ailments such as pneumonia and urinary tract infections. The majority of these 

infectious processes in the past have been linked to long-term hospitalization and/or invasive 

medical procedures in general acute care hospitals (Janda 2015). Klebsiella pneumoniae 

including other Enterobacteriaceae members also acquired resistance to last-line antibiotics 

e.g. Polymyxin by horizontal gene transfer (Liu et al. 2016) and their ability to produce 

carbapenemase enzyme i.e. KPC strains, these properties are making difficult to treat their 

infections (Beirão et al. 2011; Band et al. 2018), accounting almost 70% of infections prevalent  

in hospital setting (Batchoun et al. 2009; Cerqueira et al. 2017). With this concern, the 

prophylactic measures to control these infections are of great importance to search some 

alternative ways. 

        Glutaraldehyde (GA), is an efficient disinfectant and crosslinking agent, which has been 

utilizing routinely in hospital settings, but has some controversial background due to its toxicity, 

difficult handling and residues formation on material and tissue surfaces (Gorman et al. 1980; 

Leung 2001; Reddy et al. 2015).  

                  High hydrostatic pressure is an emerging biotechnological technique that coupled 

with other chemical and physical factors, shows very promising effects when it concern to  

sterilization of biomaterials for example Lens, tissues and bone etc. or materials sensitive to 

high temperature treatment (De Souza et al. 2013). HHP effect has indication of different kind 

of damages to bacterial cell for example, loss of protein content, enzyme dysfunctionality, and 

membrane damage ultimately loss of cell viability (Klotz et al. 2010).  

         Atomic force microscopy in tapping mode is helpful for analyzing surface based damages 

on confined cell selected from the group of bacterial cells as a result of certain physical and 

chemical application (Camesano et al. 2000).  It provides delicate details of images on 

nanoscale resolution using sharp cantilever tip and laser beam, indicating cell-surface 

interaction (Razatos et al. 1998). In this study, we are aiming to evaluate the surface and 

membrane level damages, while two Klebsiella pneumoniae strains (ATCC BAA 1705 & 
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ATCC 4352) experienced inactivation as matter of HHP synergistic effect in combination with 

GA at moderate 50 ℃ by using AFM.  

▪ EXPERIMENTAL SECTIONS 

Bacterial strains preparation and quantification  

             For this study strains of Klebsiella pneumoniae ATCC BAA 1705 and ATCC  4352 

were granted by Prof. Marcello Lancelotti from department of Biotechnology. Bacterial isolates 

were cultured in BHI (Brain heart infusion) broth to prepared stocks by incubating overnight at 

37 ℃ and next day these cultures were added with glycerol in 1:10 ratio and stored at -80 ℃ in 

bio freezer for upcoming experiments. Inoculum for each experiment was prepared by adding 

stock bacterial suspension in 5 mL of tryptic soy broth (TSB; Difco-BD) at 37℃ for 24 h. The 

bacteria were sub-cultured by inoculation in TSB followed by incubation for 16 h, with 

subsequent centrifugation (Fanem® 206R centrifuge) at 4,000 g for 15 min; the resulting 

supernatant was discarded. Bacterial pellet cells were suspended in 0.9% (w/v) saline to achieve 

an estimated concentration of 109 cells/mL, which corresponds to an OD660 of 1.4 (Beckman 

DU640, Beckman Instruments, CA, USA), to be used in the experiments.  

             Quantification of bacterial viability was done by serial dilution in 0.9% saline (1:10) 

followed by plating on TSB agar plates. Bacterial growth was expressed as colony forming 

units (CFU/mL) after 18-22 h incubation at 37 oC in a biosafety incubator. All graphs were 

plotted on origin8 pro software by using mean and standard deviation of at least 3 independent 

experiments.  

Temperature exposures 

            Survival profile of K. pneumoniae strains against different temperatures was analyzed 

using 16-18 h stationary phase bacterial cultures in TSB medium from above mentioned stock 

cultures. Bacterial suspension was exposed to different ranges of temperatures categorized as 

moderate i.e. from 40 to 60 ℃ for 10 min in water bath and controls was remained untreated at 

room temperature. Both temperature exposed and unexposed samples were then serially diluted 

in 0.9% saline solution followed by plating on TSB plates and incubation at 37 ℃ for 24 h. 

After 24 h of incubation bacterial colonies were counted as colony forming unit (CFU/mL). 
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Bacterial evaluations using glutaraldehyde and temperature  

Due to bactericidal activity of GA, we have treated both strains of K. pneumoniae with its 

different concentrations. Glutaraldehyde from a 25% stock solution (J.T. Baker®) was diluted 

to 0.21 M (2% v/v) in 0.10 M phosphate-buffered saline (PBS), pH 7.0. A bacterial suspensions 

of 1x109 were treated in 0.1 M Tris-HCl, pH 8.0, with different concentrations of GA up to 8 

mM (Mcdonnel and Russell 2005; Sehmi et al. 2016), typically for 10 min. GA was neutralized 

by adding 0.4 M (3%, v/v) glycine (Sigma®) for 2 min in a 9:1 ratio of glycine solution (Cheung 

and Brown 1982), and qualified subsequently.   

           Afterwards GA profiling at room temperature both Klebsiella pneumoniae strains were 

studied by incubating bacterial suspension to four selected GA concentrations (0.001, 0.010, 

0.100, and 1.000 mM) with and without combination with moderate temperature i.e. 55 ℃ for 

10 min of exposure time using water bath. Afterwards the treatment, neutralization with 3% 

glycine was carried out as mentioned in earlier GA effect assay. Subsequently samples were 

diluted in 0.9% saline, plated on TSB plates and incubated for 24 h at 37 ℃. Quantification was 

carried out using CFU/mL standards. 

 

Exposures to 300 MPa high hydrostatic pressure 

To find susceptibility of both bacterial strains (ATCC BAA 1705 & ATCC 4352) of Klebsiella, 

300 MPa pressure was exerted for different periods of time (5, 15, 30 and 60 min) at room 

temperature. The bacterial suspension of 5x109 CFU/mL was prepared in 0.9% saline solution. 

The HHP equipment with water bath supply, as well as the experimental method used in this 

study have been described before (Silva et al. 1989; Durães-Carvalho et al. 2012; De Souza et 

al. 2013). The time required to elevate and remove the pressure till and from the 300 MPa limit 

is 1 min, were not included in time of exposure. A polyethylene bag (Polisilk®) filled with the 

sample was sealed at high temperature and placed in the high-pressure chamber. After the 

exposure samples were diluted and plated to incubate at 37 ℃ for 24 h for next day CFU/mL 

bacterial counts.  

All results were expressed as mean values ± standard deviation of at least triplicate independent 

experiments.  All data analyses were done using OriginPro 8 software. 
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Bacterial suspension treatments with GA, HHP at moderate temperature 

To find the correlation between isolated and combination treatments 0.01 and 0.05 mM GA 

concentrations for ATCC BAA 1705 and ATCC 4352 strains respectively, were used with and 

without 300 MPa pressure combination at 50 ℃. The bacterial suspension concentration was 

adjusted at 1.4 OD660 that corresponds to 5x109 cells CFU/mL. All the treatments were applied 

for 10 min to measure comparisons. Quantification afterwards exposure was performed as 

above-mentioned pattern. 

 

Atomic force microscopy (AFM)  

To perform AFM analysis, 1x108 CFU/mL concentrated bacterial suspension was prepared 

using sterilized Nano-pure water to avoid interference during imaging. Both K. pneumoniae 

strains were treated with their respective inactivation conditions i.e. ATCC BA 1705 (0.01 mM 

GA) and ATCC 4352 (0.05 mM GA) with 300 MPa at 50 ℃ for 10 min exposure. To analyze, 

5 µL of bacterial suspension were deposited on free cleaved mica substrate. For mapping 

bacterial cell morphology and to evaluate their mechanical properties with atomic force 

microscopy. Park NX10, Park Systems Inc. Santa Clara, CA, USA and Nanosurf AG, 

Gräubernstrasse, Liestal, Switzerland was used. Each image took almost 20-25 min to appear 

completely on computer screen. The tip model was PPP-FMR from Nanosensors with nominal 

resonance 75kHz and nominal force constant 2.8 N/m (Xie et al. 2016). All the klebsiella cell 

were initially measured at 10 µm and finally on 4 µm, when confined to single cell observation. 

Gwyddion 2.50 software was used to treat AFM retrieved images.  

 

Antibiotic susceptibility testing 

The antibiotic susceptibility of the K. pneumoniae strains was evaluated using the Kirby-Bauer 

disc diffusion method (DDM). Initially brain heart infusion (BHI) broth (Neogen-Acumedia) 

was prepared and S. aureus were allowed to grow for overnight (12-14 h) at 37 ℃, followed by 

sub-culturing in BHI broth until a turbidity of 0.5 MacFarlane units was achieved. Mueller 

Hinton agar (MHA) (Difco-BD) plates were prepared by dissolving 38 g of MHA in 1 L of 

distilled water, sterilized and cooled to 45 ℃, and 20 mL of the molten agar was poured into 

pre-sterilized petri plates. The plates were checked for sterility by incubating them at 37 oC for 

6-7 h before use. Approximately 106 cells of S. aureus were spread on the plates followed by 
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the introduction of antibiotic discs and incubation at 37 °C for 16-18 h to allow zone 

development. The inhibition zones were classified into one of three categories based on the 

criteria of the “Clinical and Laboratory Standards Institute” (CLSI), namely, susceptible (S), 

intermediate (I) and resistant (R). The antibiotic concentrations were kept accordingly for the 

same standards of CLSI and the results were interpreted by measuring the clear inhibition zone  

(Alagumaruthanayagam et al. 2009). 

 

▪ RESULTS AND DISCUSSIONS  

Effect of temperature on K. pneumoniae strains  

Temperature resistance analysis was made using both strains of K. pneumoniae and the resultant 

findings showed significant reduction in growth with 55 ℃ and total inactivation of both strains 

were recorded at 60℃ (Figure 1). Temperature always works as control system in various 

applications, (Hennecke and Shanmugam 1979) reported that optimal temperature for K. 

pneumoniae is 37℃ and can resist at 39℃ to growth but with elevated temperature, decline in 

growth and propagation of various growth factors were noticed. In this study, we outlined 

temperature effect to select moderate temperature condition to be used in combination treatment 

as it plays deleterious effect to biomaterials and implants, when utilized in high ranges e.g. 

steam autoclaving (Park et al. 2012). 
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Figure 1. Measurement of survival curve of Klebsiella pneumoniae strains using different 

temperature ranges. (⁕) indicated complete inactivation. The data is represented using mean and 

standard deviation values of 3 individual experiments.  

 

Glutaraldehyde effect with and without moderate temperature  

The effect of Glutaraldehyde was well assessed in past studies (Gorman et al. 1980; Sehmi et 

al. 2016) showing its optimal efficacy for all forms or microorganisms from 0.5- 2% which is 

a higher concentration in terms of leaving traces and making cross-linkage with different 

proteins and carbohydrates ions, (Reddy et al. 2015) ultimately lessens the life span of 

biomaterial and implants while change their surface properties as well as its cytoxicity. In this 

concern Klebsiella strains were evaluated to bactericidal activity of GA with the different 

concentrations at room temperature i.e. 25℃ and with 55℃. The bactericidal activity at room 

temperature results in inactivation of both strains ATCC BAA 1705 and ATCC 4352 was found 

at 3.67 mM (Figure 2) giving ≥ 8 log magnitude reduction.  
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Figure 2. Glutaraldehyde effect using different concentrations at room temperature for 10 min 

against both strains of K. pneumoniae, (⁕) represents total inactivation while the data is plotted 

using mean and standard deviation values of 3 individual experiments.  
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Figure 3. Effect of different concentrations of GA on room temperature and 55 ℃ for 10 min 

time of exposure. (⁕) showing total inactivation of bacteria while mean and standard deviation 

values of 3 individual experiment were used to plot graph.  

 

The combination with 55℃ the bacterial strains completely reduced at 1.0 mM GA (Figure 3) 

representing ≥8 log CFU/mL reduction in bacterial growth. These indicative results 

demonstrate benefit of combination treatment and their correlation. This type of combination 

was studied earlier by Sierra and Boucher (1971), to inactivate bacterial spores by using GA 

with 54℃. After treatment GA exposure 3% glycine neutralization was also recommended 

(Cheung and Brown 1982) to remove its residues.   
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K. pneumoniae strains outcomes through HHP treatment 

18 h cultures of K. pneumoniae was subjected to 300 MPa for different time of exposure after 

preparing with 0.9% sterilized saline, the bacterial cells concentration was adjusted at 1.4 OD660 

that corresponds to 1x109 CFU/mL. As a result of treatment ATCC 4352 strain display 

reduction of 5 log CFU/mL while, ATCC BAA 1705 strain kept resistant after all exposure and 

only showed fluctuation in growth, which can be considered as negligible effect for this strain 

(Figure 4). Phuvasate and Su (2015) tested two strains of vibrio parahaemolyticus with same 

range of high pressure and observed significant surface damages and alteration in quantity of 

protein content using SEM and SDS-PAGE, respectively. In Previously showed data, 

contaminated femur bone was disinfected prior to transplantation under 300 and 600 MPa, after 

treatment no bacterial growth was observed after sub-culturing of bone fragments (van de Sande 

et al. 2017). 

 

 

Figure 4. Effect of high hydrostatic pressure for different time of exposure at room temperature. 

Error bars indicting mean and standard deviation values of 3 individual test performed using 

300 MPa to find K. pneumoniae survival profile.  
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Bacterial inactivation through HHP synergism  

Figure 5 and 6 are representative of high hydrostatic pressure-induced inactivation of both K. 

pneumoniae strains, where ATCC BAA 1705 strain showed total inactivation with 0.01 mM 

GA and ATCC 4352 by 0.05 mM GA after subjecting to 300 MPa pressure at 50 ℃, for 10 min 

of exposure highlighted the advantage of this methodology to implement for routine 

sterilization procedures. HHP in combination with mild and low temperature was previously 

reported in both case conditions the antibacterial activity was noticed (Malinowska-Pańczyk et 

al. 2011; De Souza et al. 2013; Meng et al. 2016). Same combination we detected in case of 

ATCC BAA 1705 strain that inactivated completely in 300 MPa with 50℃ temperature 

treatment group (Figure 5). 

 

Figure 5. Bar diagram of combined assessment of 300 MPa HHP with 0.01 mM GA at 50 ℃ 

and individual group showing K. pneumoniae ATCC BAA 1705 survival. (⁕) indicating no 

growth observed on such condition. Error bars exhibiting mean and standard deviation values 

of 3 individual experiments.  
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 In comparison, ATCC 4352 strain showed slight (about 4 log CFU/mL) reduction towards 

300MPa and 50 ℃ temperature contact (Figure 6). Earlier experiments of  tobacco mosaic virus 

with urea using 2.5kbar pressure at -19 ℃ revealed 18% of protein dissociation (Bonafe et al. 

1998). In several arrangements HHP is capable of exerting its effect, aim to various applications 

similarly vaccine preparation , alterations in enzyme functionality and modulation of food and 

pharmaceuticals (Aertsen et al. 2009). Klebsiella pneumoniae is causative agent of blood stream 

infection so sterilization of blood products and factors are of great importance as (Yang et al. 

2016) described HHP effectiveness by treating blood plasma and factors to noticeable 

inactivation of 7.5-8 log and 8.5 logs of bacterial and viral species respectively after treating  

between 200-250 MPa at 0 ℃ in ice-water bath. Mañas and Pagán (2005) reviewed the 

observation of Casadei et al. 2002 to discuss the mechanism around HHP resistance, stated that 

membranes with more fluidity exhibit more resistance towards high pressure due to unclear 

reasons.    

Figure 6. Representative illustration showing combination treatment of HHP, Ga and moderate 

temperature towards K. pneumoniae ATCC 4352 strain. Treatment condition sare mentioned 

below each group. (⁕) presence above the bar displaying complete bacterial elimination while 

error bars sketching mean and standard deviation of three individual experimentations.   
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AFM analysis of HHP altered K. pneumoniae cells  

Surface structure analysis has benefit in both ways once to provide sensitive detail about 

substrate on which bacteria can be establish and second to evaluate topography of bacterial 

surface to study the change as a result of any treatment or external shock.  In Figure 7. The 

observed topography of bacterial cell surface showing significant change upon HHP treatment 

in both strains as compared to their untreated bacteria cells.  Figure 7 A and C showing untreated 

sample of both ATCC BAA and ATCC 4352 strains, respectively, where bacteria were kept 

preserve intact in their native state in. However, in Figure 7B, ATCC BAA 1705 strain suffered 

shrinking showing release of cell content and bursting. Contrarily, ATCC 4352 strain 

demonstrated membrane damage and cellular debris around while cell become swollen by 

known reason, Figure 7D. Boyd and Verran (2002) analyzed the change in surface roughness 

and topography effect on bacterial adhesion, and concluded that increase in surface roughness 

increases the bacterial adherence and retention. Razatos et al. (1998) extended the 

understanding of bacterial and biomaterial surface interaction by directly depositing E. coli 

growth on cantilever, showing the sensitivity of AFM analysis that is capable of analyze the 

establishment of single cell to the formation of thick biofilm structures.  

 

 

  



85 
 

 

Figure 7. AFM results obtained by representative gram-negative bacteria K. pneumoniae. 

Images collected before and after treatment of both strains with 0.01/0.05 mM GA 

concentration with 300 MPa HHP association at 50 ℃. (A) ATCC BAA 1705 and (C) ATCC 

4352 described, untreated bacterial cells, whereas, (B) ATCC BAA  1705 and (D) ATCC 4352 

represents strain tested under above-mentioned conditions displaying difference in topography 

and surface structure as compared to untreated cells.  

 

Antibiotic resistance profiling    

Resistance to antibiotics is main global health risk factor. The results of disc diffusion 

antibiotics susceptibility showed high prevalence of resistance of ATCC BAA 1705, which is 

also standard strain recommended by CLSI manual for antibiotics testing. Moreover, ATCC 

4352 strain displayed partial resistant and susceptible profile with for-mentioned tested 

antibiotics (Figure 4S).  



86 
 

K le b s ie l la  p n e u m o n ia e
A

n
t
ib

io
t
ic

 S
u

s
c

e
p

t
ib

il
it

y
 (

m
m

)

C
F

L
 

G
E

N

A
M

P
A

M
I

C
P

M
T

E
T

C
R

O

A
M

C

S
U

T
C

IP

C
A

Z

C
L

O

A
T

M
P

IT

C
F

O

0

5

1 0

1 5

2 0

2 5

3 0

3 5

4 0

4 5

5 0

A T C C  4 3 5 2

A T C C  B A A  1 7 0 5

S ta n d a rd  v a lu e

 

Figure 4S Antibiotic susceptibility testing of K. pneumoniae ATCC BAA 1705 & ATCC 4352 

strains showing zone of inhibition (mm) against 15 antibiotics. Antibiotics symbols: CFL 

(Cephalothin, 30 µg), GEN Gentamycin, 10 µg), AMP (Ampicilin, 10 µg), AMI (Amikacin, 30 

µg), CPM (Cefepime, 30 µg), TET (Tetracyclin, 30 µg), CRO (Ceftriaxone, 30 µg), AMC 

(Amoxilin-clavulanic acid, 20/10 µg), SUT (trimethoprim-sulfamethoxazole, 1.25/23.75 µg), 

CIP (Ciprofloxacin, 5 µg), CAZ (Ceftazidime, 30 µg), CLO (Chloramphenicol, 30 µg), ATM 

(Aztreonam, 30 µg), PIT (Piperacilin- tazobactum, 100/10 µg) and CFO  (cefoxitin, 30 µg). 

Standard values adopted by CLSI manual, 2017. 

 

▪ CONCLUSIONS 

With the help of obtained results and observations, we assume that HHP combination with 

glutaraldehyde and moderate temperature can be interesting for biomaterial sterilization and 

AFM technique can equally benefit to explore HHP impact on biomaterials as well as bacterial 

surface. Klebsiella pneumoniae is a bacterium resistant to several antibiotics, so preventive 

measures and their influence on environments should be extensively studied for future 

perceptions.   
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▪ ABSTRACT 

The antimicrobial activity of biogenic silver nanoparticles (AgNPs) against S. aureus (gram- 

positive) and P. aeruginosa (gram-negative) was investigated as a model bacterial strain. For 

this purpose, 96-well plate method was used to evaluate using different concentrations (µM) of 

AgNPs with and without combination of high hydrostatic pressure (HHP). Exponential phase 

bacterial cultures of two different strains of S. aureus and P. aeruginosa in BHI medium was 

tested. After 15 min HHP exposure and subsequent incubation of 24 hr with AgNP the results 

were noted on the basis of appearance of turbidity at 600 wave length, the obtained results show 

that 200 µM/mL of silver nanoparticle displayed ≥ 70 % inhibition of bacterial growth in the 

presence of 150-300 MPa of HHP. Suggesting the use of HHP accoupled with silver 

nanoparticle can be interesting to minimize the use of high concentrations of AgNPs as these 

particles bares toxicity up to certain limit. This methodology can be used as model for testing 

effect of other nanoparticle in combination with HHP.  

 

▪ KEYWORDS  

Biogenic silver nanoparticles, S. aureus and P. aeruginosa, high hydrostatic pressure- 

application, disinfection, synergism.  
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▪ INTRODUCTION  

          One of the main causes of death and public health concern in the worldwide is different 

type of infection in health settings and there is a chance it will be increase in near future due 

increasing in population.  The development of nanocarriers has provided a new hope in the fight 

against this terrible disease. Drugs have long been used to improve health and extend lives. One 

of the main fact that people developing the drug delivery carriers, sometime must face that the 

delivery systems may be harmful to healthy tissues. The side effects are often not good for 

health and gets fatal sometime. Nanocarrier systems with cell targeting ability offer site 

specificity and deliver cargos directly to infected sites with much less damage to healthy tissues, 

thus improving therapeutic efficacy (Jain 2010; Sasidharan et al. 2013).  

              Particle size less than 100 nanometres generally called nanoparticles (Silvera Batista 

et al. 2015), which deals with matter that ranges from one half the diameter of DNA is  the 

nanotechnology (Dingman 2008). The size of nanoparticles are so small, even like bacteria 

would need a microscope to see them (Sekhon 2010). Nanoparticle can be used as an 

appropriate surface for molecular assembly and can also be composed of inorganic or polymeric 

materials. In some cases, the size and size distribution might be important specially when 

quantum-sized effects are used to control material properties. The surface of nanoparticles can 

be decorated with several molecules in order to reach their target more efficiently (Pauwels et 

al. 2008; Gary-Bobo et al. 2012). 

                One of the most important materials in the nanotechnology industry is silver 

nanoparticles. Recently, it received a great attention because of its distinctive physicochemical 

and biological properties. Silver nanoparticles are exceptionally small and has potential 

antibacterial effect and it can be used in many different products (Durán et al. 2015). Silver 

plays a vital role in antimicrobial, catalytic and biological systems among the other metals and 

the synthesis of silver nanoparticles as an antimicrobial agent has gained more importance 

against the increasing threat posed by antibiotic resistant microbes (Reddy et al. 2014). 

                Some studies reported that AgNP size, shape, surface charge, surface coating, 

solution chemistry and solubility affect AgNPs’ toxicity (Zhang et al. 2016; Liu et al. 2018). 

However, the extent to which these factors affected toxicity directly by influencing particle-

specific biological effects or indirectly by affecting silver ion release remains an open question. 

Discerning the relative importance of a particle-specific effect in the antibacterial activity of 

AgNPs requires careful quantification of the silver ion concentration contributed by the 

nanoparticle, as well as the role that complexing ligands present in the exposure media could 
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have on silver ion and particle bioavailability. One fundamental aspect that remains to be 

established concerns the identification of exactly which of the physical and chemical properties 

of Nano-Ag are responsible for the effective manner in which they deliver their antimicrobial 

activities.  

                 Synthesis of silver nanoparticles is of much interest to the scientific community 

because of their wide range of applications. Chemical reduction is the most frequently applied 

method for the preparation of silver nanoparticles (AgNPs) as stable, colloidal dispersions in 

water or organic solvents. Commonly used reductants are borohydride, citrate, ascorbate, and 

elemental hydrogen. The reduction of silver ions (Ag+) in aqueous solution generally yields 

colloidal silver with particle diameters of several nanometres (Sharma et al. 2009). These silver 

nanoparticles are being successfully used in the cancer diagnosis and treatment as well.(Ahmed 

et al. 2016). In addition, there is growing interest in utilization of Nano-Ag as a special class of 

biocidal agents, owing to the extraordinary antimicrobial properties of silver. like wound 

dressings containing sputtered nanocrystalline silver materials are currently used in clinical 

practice to suppress the microbial infection of burn wounds. There are also a number of silver 

composite materials that contain Nano-Ag as the active antimicrobial ingredient (Lok et al. 

2007). 

             High hydrostatic pressure (HHP) is thermodynamic parameter, by virtue of its effect 

we can be able to control and manipulation the influence different other agents for 

biotechnological applications. It is capable to exerting its effect with various combination, this 

approach has been utilized in several previous studies (Silva et al. 1989; Bonafe et al. 1998; 

Rivalain et al. 2010; De Souza et al. 2013). In this study, we aimed to discover the inhibitory 

effect of silver nanoparticles (AgNPs) with and without combination with HHP to minimize the 

use of AgNPs, for this purpose two different strains of Staphylococcus aureus and 

Pseudomonas aeruginosa were tested.  
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▪ EXPERIMENTAL SECTION  

Synthesis of biogenic silver nanoparticles (AgNPs) 

For this work, silver nanoparticle was synthesized using protocol of Durán et al. (2005) 

consuming Fusarium oxysporum to check its antibacterial activity with and without HHP 

induction.   

Bacterial strains and inoculum preparation for AgNPs testing 

                  Bacterial strains were pre-inoculated in BHI broth overnight at 37oC, after 12 -13 

hrs bacterial growth was re-inoculated in fresh BHI medium to achieve exponential phase cell 

after 6 hrs about 5x105 CFU/mL or 0.4 O. D turbidity was measured in spectrophotometer. 

Second day bacterial suspension of 0.4 O. D from spectrophotometer, adjusted in BHI broth. 

140 µL of two-fold diluted silver nanoparticles from the stock of concentration of 10mM. The 

antibacterial activity of bacteria was tested with 50, 100, 150, 200 and 250 µM/mL 

concentrations of biogenic AgNPs to find its inhibitory concentration (IC). 10µL of bacterial 

suspension was pipetted to each well of flat bottom 96-well microtiter plate. Incubated plate 

aerobically at 37 oC for 24 hrs in dark. Next day absorbance of each well was measured cytation 

5 reader (BioTek, USA) after 1 min sonication step by using 600 nm wavelength. Positive 

controls were run by inoculating bacteria in BHI broth medium and PBS pH= 7.2 and negative 

controls included BHI with AgNPs. After measuring turbidity at 600nm, 100 µL of each AgNPs 

tested bacterial suspension was collected  in sterile conditions, serially diluted and spread on 

TSB plates for further growth estimation. (Raghupathi et al. 2011; Holtz et al. 2012).  

AgNPs treatment with HHP  

            Above mentioned AgNP concentrations were tested with both S. aureus and P. 

aeruginosa strains cultures in BHI broth, sealed in polyethylene bags (Polisilk®) under 300 

MPa high pressure for 15 min at room temperature. Afterwards sample were loaded in high 

pressure chamber. Next to treatment, the samples were added in respective wells and incubate 

96-well plate for 24 h at 37℃. The procedure for HHP treatment was already described earlier 

(Durães-Carvalho et al. 2012; De Souza et al. 2013).  

All results were expressed as average percentage of at least triplicate independent 

experiments.  All data analysis was done using Graphpad Prism 6 software.  

 

 



92 
 

▪ RESULTS AND DISCUSSIONS  

Antibacterial activity of silver nanoparticles with and without HHP exposure  

 Duran and collaborators previously tested S. aureus to discover antibacterial activity of 

biogenic silver nanoparticles by producing cotton clothes incorporated with silver nanoparticle 

and they observe significant antibacterial activity towards S. aureus (Durán et al. 2007). In this 

study, we used different concentration of silver nanoparticles with and without 300 MPa high 

pressure for 15 min at room temperature followed by 24 hr incubation of bacterial cells in the 

presence of silver nanoparticles to exert its effect. The resultant observations revealed that 

efficiency of antibacterial activity of AgNPs can be increased with the use of 300 MPa high 

pressure as shown in figure 1. P. aeruginosa strain ATCC 27853 is susceptible to AgNP equally 

without HHP combination for 15 min exposure however, NM 31 strain showed significant 

difference in reduction when exposed to AgNPs combined with 300 MPa pressure (Figure 1). 

 

 

Figure 1. Antibacterial activity of biogenic silver nanoparticles with and without HHP. 

Curves showing percentage (%) decrease in bacterial viability of Pseudomonas aeruginosa 

strains in graph (A) ATCC 27853 and (B) NM 31. Error bars elucidating percentage of average 

values of experiments in triplicate for 15 min exposure time at room temperature. 
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HHP exceeded AgNPs effect almost from 50 % to 70 %, when combined with HHP for NM 31 

strain. Figure 2. A and B showed the same isolated and combined effect of AgNPs and HHP 

activity, resulting in reduction of 70% and 80% bacterial viability for S. aureus BEC 9393 and 

ATCC 27853 respectively. Thus, 200 µM of AgNP appeared to be the Inhibitory concentration 

required to combine with HHP to achieve significant inactivation of both S. aureus and P. 

aeruginosa strain whereas, ATCC 27853 strain of P. aeruginosa Is showing its sensitivity even 

at lower concentrations of biogenic silver nanoparticle. We combined AgNPs with 150 MPa of 

pressure for P. aeruginosa ATCC strain as this strain is already sensitive to pressure less than 

200 MPa (results from chapter 2 and 3 can be consulted in HHP effect section).  

 

 

Figure 2. Antibacterial activity of silver nanoparticles with and without HHP 

combination. Illustrations showing effect on Staphylococcus aureus strains (A) BEC 9393 and 

(B) ATCC 25923. Curves showing percentage reduction in bacterial viability and error bars 

displaying average percentage of 3 individual experiments subjected for 15 min of exposure at 

room temperature. 

 

Inhibitory concentration corresponds to give 50% reduction is called IC50, which is represented 

in Table 1. for each bacterial strain, expressing the decrease in AgNPs need when combined 

with 150 and 300 MPa for their respective conditions. The effect of in situ high-pressure small-

angle X-ray scattering was first studied by using gold nanoparticles through mechanical 

annealing to improve in structural properties, suggesting HHP as thermodynamically helpful 

for various transformations (Wu et al. 2014). ZnO nanoparticles was previously utilized to 

check its antibacterial activity to reduce P. aeruginosa biofilm and virulence factors and found 

extensive inhibition without affecting cell propagation (Lee et al. 2014). Effect of silver 
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nanoparticles was evaluated against E. coli, the observation by TEM  indicated the deposition 

of particles on bacterial membrane, causing high membrane permeability and ultimate cell 

death (Sondi and Salopek-Sondi 2004).  Biosynthesized silver nanoparticles were tested earlier 

for E. coli and P. aeruginosa, showed that 4.7 and 2.7 µg/mL of nanoparticles inhibited 100% 

growth of both bacteria, respectively (Ramalingam et al. 2016). Since the results from our study 

evident inactivation of both S. aureus and P. aeruginosa strains on even lesser AgNPs 

concentration due to HHP combination effect.   

 

Table 1. IC50 values of silver nanoparticle for bacterial strains. 
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CHAPTER: 6 

 

Effect of High hydrostatic pressure combination treatment for the 

inactivation of Bacillus Subtilis spores 

 

▪ INTRODUCTION  

           High hydrostatic pressure (HPT) sterilization processes have several advantages in 

comparison with conventional (thermal) autoclaving, particularly, less detrimental effects on 

organoleptic and nutritional food quality and other materials. One major reason for this can be 

found in the lack of knowledge on basic mechanisms for the inactivation of pathogenic spore-

forming organisms such as Bacillus subtilis. The aim of this study was to contribute to closing 

the knowledge gap regarding the HHP-mediated inactivation of spores from B. subtilis ATCC 

6633, which primarily cause of environmental contaminant. Is a threat for several preparation 

either food or other biopharmaceutical solutions. 

       Morphological changes during sporulation putatively occur in a similar manner in Bacillus 

species and lead to a stepwise development of the extreme resistance of spores. Although 

sporulation is a continuous process and intermediate forms do not present discrete entities in 

which a sporulating cell remains, this developmental process is commonly divided into eight 

stages of sporulation. According to the favorable conditions the sporulated bacteria change in 

to vegetative cell for further propagation. Formation of highly resistant spores is a concern for 

the safety of low-acid foods as they are a perfect vehicle for food spoilage and/or human 

infection. For spore inactivation, the strategy usually applied in the food industry is the 

intensification of traditional preservation methods to sterilization levels, which is often 

accompanied by decreases of nutritional and sensory properties (Lopes et al. 2018). For this 

concern, alternative technique is being utilized in industries i.e. high pressure. Our approach in 

this study is to evaluated the effect of novel methodology that we observe inactivation of 

Bacillus subtilis spores. High hydrostatic pressure (HHP) is the most-widely adopted novel non-

thermal technology for the commercial pasteurization of foods. However, HHP-induced 
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inactivation of bacterial spores remains a challenge due to spore resistance to the treatment 

limits of currently available industrial HHP units (i.e. ~650 MPa at 50 ℃). The germination of 

bacillus through HHP is common and HHP cause many transformations while making cells 

more susceptible to treatment (Sarker et al. 2013). Keeping the view of Bacillus resistance, we 

tried the methodology that we test with our bacterial species and their strains in form of 

planktonic cell and biofilm and achieved total inactivation. The methodology we developed in 

the combination of HHP, lower concentration of glutaraldehyde and moderate temperature (i.e. 

50 ℃) for 10 min of exposure.  

 

▪ EXPERIMENTAL SECTION  

Media preparation for Bacillus subtilis sporulation  

To sporulate bacteria, we inoculated Bacillus subtilis ATCC 6633 strain on Nutrient agar 

medium that contain metal using (glycerol contained stock stored at -80 ℃) to proliferate the 

sporulation and incubate for 24-48 h at 37 ℃. After incubation, bacterial growth was collected 

to make suspension of 0.4 OD660 that corresponds to 12x109 CFU/mL for subsequent 

experiments.  The confirmation of spore formation, we performed by spore staining with 

malachite green staining.    

Bacterial spore suspensions were subject to different temperatures and GA conditions 

typically for 10 min in a water bath. Glutaraldehyde from a 25% stock solution (J.T. Baker®) 

was diluted to 0.21 M (2% v/v) in 0.10 M phosphate-buffered saline (PBS), pH 7.0 were treated 

in 0.1 M Tris-HCl, pH 8.0, with 5 different concentrations of GA in the range of 0.5- 14.7 mM  

(Mcdonnel and Russell 2005; Sehmi et al. 2016), typically for 10 min. GA was neutralized by 

adding 0.4 M (3%, v/v) glycine (Sigma®) for 2 min in a 9:1 ratio of glycine solution (Cheung 

and Brown 1982) and subsequently quantified. 

The HHP equipment and water bath supply, as well as the experimental method used in 

this study have been described before (Silva et al. 1989; Santos et al. 2004; Bispo et al. 2007; 

De Souza et al. 2013). The time required to increase the pressure from atmospheric pressure to 

300 MPa was 1.5 min and that required to return to atmospheric pressure was 1 min. A 

polyethylene bag (Polisilk®) filled with the sample was sealed at high temperature and placed 

in the high-pressure chamber. The samples treated with HHP, GA and temperature were 

exposed to the combination of treatments for 10 min.  
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All results were expressed as mean values ± standard deviation of at least triplicate 

independent experiments.  All data analyses were done using OriginPro 8 software. 

 

▪ RESULTS AND DISCUSSION 

Figure 1. Showed the survival of B. subtilis ATCC 6633 spore under different concentrations 

of GA, 300 MPa at 50 ℃ for 10 min of exposure, the results admit the resistance of bacillus 

spore to such conditions though, there is significant reduction of 6-7 log CFU/mL magnitude 

of bacterial spore concentration, but we are unable to achieve total inactivation with our 

subsequent treatments. Inactivation spore and their germination is well known under high 

temperature and pressure (Reineke et al. 2013). But here in this study we did not aim to use 

extreme conditions to inactivate bacteria. Bacterial spores are more resistant forms, reflecting 

the approach to use more harsh conditions for total inactivation. Ahn et al. (2007) reported the 

high temperature and high-pressure mediated 7-8 log inactivation of different species of 

Bacillus under 0.1 and 700 MPa pressure at the range of 101-121 ℃ high temperature, these 

results expressing the demand of using very extreme conditions to achieve total spore 

inactivation.  
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Figure 1. Survival of Bacillus subtilis with the treatment of different concentrations of GA, 300 

MPa at 50℃ for 10 min of exposure. Error bar represents mean and standard deviation of three 

individual experiments.  
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MAIN CONCLUSIONS OF STUDY 

This PhD project investigated the effect of synergism between moderate temperature, 

disinfectant; Glutaraldehyde (GA) and High hydrostatic pressure to inactivate three different 

bacteria S. aureus, P. aeruginosa and K. pneumoniae strains. The effects were compared using 

both planktonic and biofilm embedded bacterial cells to observed microbial survival profiles 

by using carrier materials. On the other hand, transmission electron microscopy and Atomic 

force microscopy revealed significant cell membrane damage and cytoplasmic content leakage 

appeared to be very promising tools for measuring effects of different treatment on bacterial 

cell.  Overall results indicated that the novel mechanisms examined in this study could offer an 

opportunity for achieving moderate sterilization conditions compared to traditional heat 

autoclaving of temperature sensitive medical and pharmaceutical materials. Results from this 

thesis can be beneficial for designing validation studies on similar products and optimization 

of GA, temperature and high hydrostatic pressure can be helpful to modulate the inactivation 

profile of different bacteria and their biofilms aiming surgical and biomaterial sterilization. The 

quality control testing of novel method with bacillus subtilis spores also showed its significance 

as the obtained spore inactivation was at significant level but was not enough to achieve 

complete inactivation. 
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APPENDIX I 

Table 1. Antibiotic susceptibility profile of Pseudmonas aeruginosa, Staphylococcus aureus 

and Klebsiella pneumoniae strains. 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Abbreviation: R= Resistant, I= Intermediate, S= Susceptible, and SDD= Susceptibility dose 

dependent. 
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APPENDIX II 

SUPPLEMENTARY DATA (CHAPTER 2) 

  

Figure 1S.   S. aureus strain ATCC 25923 showing decrease in size of colonies. (a) control 

colonies not subjected to temperature treatment and (b) treated with 55 °C temperature for 10 

min.     

 



132 
 

Figure 2S: Tube 1: positive control corresponding to lens contaminated with S. aureus strain 

ATCC 25923 without further treatment, and tube 2: lens contaminated with S. aureus strain 

ATCC 25923 and treated with 0.5 mM glutaraldehyde, 300 MPa HHP and 50 °C for 10 min. 

Plates 1 and 2 correspond to the lenses taken from tubes 1 and 2, respectively.  

 

 

Figure 3S: Tubes containing catheter fragments previously inoculated with S. aureus strain 

ATCC 25923 and incubated for (a) 24 h and (b) 48 h at 37° C. From left to right: catheter 

fragments treated with glutaraldehyde (0.060-4 mM) in association with 300 MPa HHP at 50 

°C for 10 min. The control is a catheter fragment only washed with sterile distilled water 

without above mentioned treatments. 
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Figure. 4S: Antibiotic susceptibility testing of S. aureus ATCC 25923 & BEC 9393 strains showing zone of 

inhibition (mm) against 15 antibiotics. Antibiotics symbols: PEN (Penicillin, 10 units), TET (Tetracycline, 30 

µg), CFO (Cephoxitin, 30 µg), AMC (Amoxilin-clavulanic acid, 20/10 µg), SUT (Trimethoprim-

sulfamethoxazole, 1.25/23.75 µg), CIP (Ciprofloxacin, 5 µg), CFL (Cephalothin, 30 µg), GEN (Gentamycin, 10 

µg), AMP (Ampicillin, 10 µg), OXA (Oxacylin, 1 µg), ERI (Erythromycin, 15 µg), CLO (Chloramphenicol, 30 

µg), RIF (Rifampicin, 5 µg), VAN (Vancomycin, 30 µg) and CLI (Clindamycin, 2 µg). Standard values adopted 

by CLSI manual (J B. Patel, M P. Weinstein, G M. Eliopoulos, Sandra S. Richter and George M. Eliopoulos and 

S 2017).     
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APPENDIX III 

Table 1. Comparison of the inactivation of P. aeruginosa strain ATCC 27853 present in biofilm 

in carrier material (catheter fragments) with the inactivation of a bacterial suspension of the 

same strain by different concentrations of GA at moderate temperatures and pressure of 300 

MPa. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A Positive sign for the carrier materials indicates turbidity in TSB medium after 24 h and BS 

assayed on TSB plates, with inactivation >8 log CFU/mL, if negative.  

The responses were assessed after a 10 min exposure to the above indicated conditions. 

Obs: All experiments with catheter with absence of growth at 24 h were monitored up to 48 h 

to check the sterilization. 

 

         BIOFILM TREATMENT CONDITIONS 

              ATCC 27853                                         NM 31 

 

GA (mM) 

50 °C, 300 MPa 

(up to 24-48 h) 

50 °C, 300 MPa 

(up to 24-48 h) 

14.70 - - 

7.34 - - 

3.67 - - 

2.0 + - 

1.0 + - 

0.5 + - 

0.16 + + 

0.08 + + 

0.04 + + 

0.01 + + 
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Figure 3S Antibiotic susceptibility testing of P. aeruginosa ATCC 27853 & NM 31 strains 

showing zone of inhibition (mm) against 15 antibiotics. Antibiotics symbols: CFL 

(Cephalothin, 30 µg), GEN Gentamycin, 10 µg), AMP (Ampicilin, 10 µg), AMI (Amikacin, 30 

µg), CPM (Cefepime, 30 µg), TET (Tetracyclin, 30 µg), CRO (Ceftriaxone, 30 µg), AMC 

(Amoxilin-clavulanic acid, 20/10 µg), SUT (trimethoprim-sulfamethoxazole, 1.25/23.75 µg), 

CIP (Ciprofloxacin, 5 µg), CAZ (Ceftazidime, 30 µg), CLO (Chloramphenicol, 30 µg), ATM 

(Aztreonam, 30 µg), PIT (Piperacilin- tazobactum, 100/10 µg) and CFO  (cefoxitin, 30 µg). 

Standard values adopted by CLSI manual, 2017. 
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Abstract
The sterilization of transplant and medical devices should be effective but not detrimental to the structural properties of the
materials used. In this study, we examined the effectiveness of chemical and physical agents for inactivating Staphylococcus
aureus, a gram-positive bacterium and important cause of infections and biofilm production. The treatment conditions in this
work were chosen to facilitate their subsequent use with sensitive materials. The effects of temperature, high hydrostatic pressure,
and glutaraldehyde disinfectant on the growth of two strains of S. aureus (ATCC 25923 and BEC 9393) were investigated
individually and/or in combinations. A low concentration of glutaraldehyde (0.5 mM), high hydrostatic pressure (300 MPa for
10 min), and moderate temperature (50 °C), when used in combination, significantly potentiated the inactivation of both bacterial
strains by > 8 orders of magnitude. Transmission electron microscopy revealed structural damage and changes in area that
correlated with the use of pressure in the presence of glutaraldehyde at room temperature in both strains. Biofilm from strain
ATCC 25923 was particularly susceptible to inactivation. The conditions used here provided effective sterilization that can be
applied to sensitive surgical devices and biomaterials, with negligible damage. The use of this experimental approach to
investigate other pathogens could lead to the adoption of this procedure for sterilizing sensitive materials.

Keywords Biofilms . Glutaraldehyde . High hydrostatic pressure . Nosocomial infections . Staphylococcus aureus . Sterilization

Introduction

The continuing increase in the occurrence of antimicrobial-
resistant bacteria continues to be a major health problemworld-
wide. In this context, biomaterial sterilization is always an im-
portant consideration, with a need to ensure the efficiency of
the process and its effect on the biomaterials being sterilized

prior to medical interventions (Park et al. 2012). The decon-
tamination of medical materials is essential for the control and
prevention of diseases caused by pathogenic microorganisms
(Cozad and Jones 2003; Rivalain et al. 2010). Several conven-
tional methods of cleaning and sterilization, such as gamma
radiation, steam autoclaving, oxygen plasma, and ultraviolet
(UV) light, can compromise the properties of biomedical im-
plants by changing the surface properties of the material, lead-
ing to the deposition of harmful substances and the stimulation
of an exacerbated cellular response (Park et al. 2012). The reuse
of medical devices raises additional difficulties for sterilization,
such as the presence of biofilm that may require more drastic
conditions for efficient sterilization (Ntsama-Essomba et al.
1997; Rutala and Weber 2016). In view of these concerns, it
is important to investigate new sterilization methods that cause
minimal damage to the target materials.

Glutaraldehyde (GA) is a strong disinfectant that is com-
monly used in hospital settings for surface cleaning and steril-
ization, as well as for tissue fixation before transplantation. GA
acts by cross-linking with amine, amide, and thiol groups of
proteins (Takigawa and Endo 2006; Reddy et al. 2015). This
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fixation results in toxicity and sensitization of the eyes, skin,
and respiratory tract that make it difficult to manage GA-
induced damage (Mcdonnel and Russell 2005; Takigawa and
Endo 2006). GA also leaves residues on material surfaces that
can cause the calcification of implants treated using this agent
(Kim et al. 1999; Yang et al. 2017).

For materials sensitive to high temperature, alternative
physical and/or chemical methods of disinfection and sterili-
zation can be used, e.g., vaporizing hydrogen peroxide, ozone,
peracetic acid vapor, ionizing radiation, and light pulses
(Rutala andWeber 2016). The use of high hydrostatic pressure
(HHP) causes less damage to materials and therefore has im-
portant advantages for surgical materials, biopharmaceuticals,
hemo-derivatives, and implants (Gollwitzer et al. 2009;
Rivalain et al. 2010; Durães-Carvalho et al. 2012). HHP can
be used in association with other conditions, such as moderate
temperatures (up to 60 °C), for more general pathogen inacti-
vation involving sporulated and more resistant bacteria (Naal
et al. 2008; De Souza et al. 2013).

In this work, we examined the impact of sterilization pro-
cesses on strains of Staphylococcus aureus, an important path-
ogen that causes a wide range of clinical infections (Tong et al.
2015). Staphylococci are non-sporulating, gram-positive facul-
tative aerobic cocci that occur in clusters and are generally
resistant to desiccation and several antibiotics; these bacteria
also tolerate high salt concentration in artificial growthmedium
(Parfentjev and Catelli 1964). Several S. aureus strains can
form biofilms, an important resistance barrier to external
stressors such as antibiotics, the host’s immune defense and
the disinfection of materials by antimicrobials and biocides
(Götz F. 2002; Shin et al. 2013; Zapotoczna et al. 2016).
There is a correlation between strains with a higher capacity
for forming biofilm and greater density of S. aureus (Shin et al.
2013), as well as unfavorable evolution of clinical infections
(Bendouah et al. 2006). Here, we investigated the effectiveness
of the inactivation of two strains of S. aureus in suspension and
in biofilm by HHP in combination with very low concentra-
tions of GA andmoderate temperature. The results demonstrate
the high efficacy of a combination of conditions used to steril-
ize medical-surgical supplies and biopharmaceuticals.

Materials and methods

Bacterial strains, culture conditions,
and quantification

Staphylococcus aureus strains ATCC® 25923 MINIPACK™
and Brazilian epidemic clone (BEC) 9393 were kindly pro-
vided by the Laboratory of Biotechnology of the Institute of
Biology at UNICAMP. The cells were initially cultured in
5 mL of tryptic soy broth (TSB; Difco-BD) at 37 °C for
24 h. The bacteria were sub-cultured by inoculation in TSB

followed by incubation for 16 h, with subsequent centrifuga-
tion (Fanem® 206R centrifuge) at 4000g for 15 min; the
resulting supernatant was discarded. Pellet bacterial cells were
suspended in 0.9% (w/v) saline to achieve an estimated con-
centration of 109 cells/mL, which corresponds to an optical
density of 1.5 (Beckman DU640, Beckman Instruments, CA,
USA), to be used in the experiments.

Quantification of bacteria was done by serial dilution in
0.9% saline (1:10) followed by plating on TSB agar plates.
Bacterial growth was expressed as colony-forming units
(CFU/mL) after a 24-h incubation at 37 °C in an incubator.

Treatment at different temperatures, GA, and HHP

Bacterial suspensions were subject to different temperatures
and GA conditions typically for 10 min in a water bath.
Glutaraldehyde from a 25% stock solution (J.T. Baker®) was
diluted to 0.21M (2% v/v) in 0.10M phosphate-buffered saline
(PBS), pH 7.0. A bacterial suspension and biofilm in carrier
material (see next section) were treated in 0.1 M Tris-HCl,
pH 8.0, with different concentrations of GA up to 8 mM
(Mcdonnel and Russell 2005; Sehmi et al. 2016), typically
for 10 min. GA was neutralized by adding 0.4 M (3%, v/v)
glycine (Sigma®) for 2 min in a 9:1 ratio of glycine solution
(Cheung and Brown 1982) and subsequently quantified.

The HHP equipment and water bath supply as well as the
experimental method used in this study have been described
before (Silva et al. 1989; Santos et al. 2004; Bispo et al. 2007;
De Souza et al. 2013). The time required to increase the pres-
sure from atmospheric pressure to 300 MPa was 1.5 min and
that required to return to atmospheric pressure was 1 min. A
polyethylene bag (Polisilk®) filled with the sample was sealed
at high temperature and placed in the high-pressure chamber.
The samples treated with HHP, GA, and temperature were
exposed to the combination of treatments for 10 min.

All results were expressed as mean values ± standard de-
viation of at least triplicate independent experiments. All data
analyses were done using OriginPro 8 software.

Carrier materials and applications for sterilization

Previous studies (Fux et al. 2004;Wells et al. 2011) have shown
that S. aureus ATCC 25923 strain is a biofilm producer. This
strain was therefore used in experiments to examine biofilm
formation on carrier materials in vitro. Sterilized contact lenses
(SoftLens®, Sauflon Pharmaceuticals Ltd., Twickenham, UK)
and catheters (Jiangsu Jichun Medical Devices Co. Ltd.,
Jiangsu Province, China) were used as carrier materials. For
biofilm formation in vitro, carrier materials were incubated with
the ATCC 25923 strain (108 CFU/mL) for 24 h at 37 °C in TSB
with 1% (w/v) glucose (Marques et al. 2007; Chaieb et al.
2011). The appearance of turbidity in the medium and thick
polysaccharide material on the surface of the carrier material
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confirmed bacterial proliferation and biofilm formation. The
carrier materials were subsequently removed, washed with ster-
ile distilled water, and then exposed to different conditions. For
HHP treatment, the experiments were done using polyethylene
bags (Polisilk®), in a manner similar to the experiments with
cell suspensions. The treated carrier materials were again incu-
bated in fresh TSB for 24 h at 37 °C, with visual monitoring of
turbidity. The presence of bacteria was confirmed by collecting
100 μL of the treated or untreated samples, followed by plating
and incubation (24 h at 37 °C). The positive control
corresponded to contaminated materials without treatment.
After the treatments, the materials were transferred to new tubes
containing fresh TSB under sterile conditions and bacterial
growth was monitored at 37 °C for 24–48 h.

Kirby-Bauer disc diffusion method for antibiotic
susceptibility

The antibiotic susceptibility of the S. aureus strains was assessed
using the Kirby-Bauer disc diffusion method (DDM). Primary
brain heart infusion (BHI) broth (Neogen-Acumedia) was pre-
pared and S. aureuswere allowed to grow for 12–14 h overnight
at 37 °C, followed by sub-culturing in BHI broth until a turbidity
of 0.5 MacFarlane units was achieved. Mueller Hinton agar
(MHA) (Difco-BD) plates were prepared by dissolving 38 g of
MHA in 1 L of distilledwater, sterilized and cooled to 45 °C, and
20 mL of the molten agar was poured into pre-sterilized petri
plates. The plates were checked for sterility by incubating them
at 37 °C for 6–7 h before use. Approximately 106 cells of S.
aureuswere spread on the plates followed by the introduction of
antibiotic discs and incubation at 37 °C for 16–18 h to allow
zone development. The inhibition zones were classified into one
of three categories based on the criteria of the BClinical and
Laboratory Standards Institute^ (CLSI), namely, susceptible
(S), intermediate (I), and resistant (R). The antibiotic concentra-
tions were kept accordingly for the same standards of CLSI and
the results were interpreted by measuring the clear inhibition
zone (Alagumaruthanayagams et al. 2009).

Transmission electron microscopy

For transmission electron microscopy (TEM), treated and
non-treated bacterial pellets were initially incubated for 3 h
at room temperature in 1 M sodium cacodylate, pH 7.2, con-
taining 2.5% glutaraldehyde and 1% tannic acid and centri-
fuged for 15 min at 7000g. The pellets were then washed and
the samples were prepared as previously described (Durães-
Carvalho et al. 2012).

Morphometric analysis

For morphometric analysis, bacterial samples that had or had
not been treated with 300 MPa HHP, 0.5 mMGA at 25 °C for

10 min were subjected to TEM and five images of treated and
non-treated S. aureus ATCC 25923 and BEC 9393 strains
were selected using the same magnification (× 46,460). Fifty
bacterial cells were selected from the images for measurement
of the surface area using ImageJ software. Polygonal measure-
ments of each cell were used to determine the area (Watanabe
et al. 2013) and graphs were plotted using GraphPad Prism v.6
software. Statistical comparisons were done using Student’s
paired t test with p < 0.05 indicating significance.

Results

Effect of temperature

Figure 1 shows the inactivation patterns of S. aureus strains
BEC 9393 and ATCC 25923 at different temperatures. The
sensitivity of both strains was very similar: significant inacti-
vation occurred at > 55 °C and total inactivation at ≥ 65 °C.
There was also a significant reduction in the colony sizes of
both strains after incubation for 24 h and 72 h at 55 °C com-
pared to lower temperatures (Supplementary Fig. S1); this
finding may reflect a significant phenotypic change in these
experimental conditions.

Combined effect of GA and temperature

The combination effect of a very low GA concentration with
temperature and HHP on bacterial inactivation was investigat-
ed. The potentiation of GA inactivation would be highly use-
ful because the presence of residual disinfectant from cleaning
and sterilization of some materials in hospitals represents a
risk factor for toxicity. The GA concentrations used here

Fig. 1 Survival curves of S. aureus strains ATCC 25923 (closed symbols)
and BEC 9393 (open symbols) after exposure to different temperatures for
10 min in the absence of GA. Asterisk: no bacteria detected. The error
bars represent standard deviations (n = 3)
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was about 100 times lower than those currently used for dis-
infection, which may reach up to 2% (212 mM). Figure 2
shows that S. aureus strains ATCC 25923 and BEC 9393were
inactivated at a GA concentration of 2 mM and 3 mM, respec-
tively, at 25 °C. At higher temperatures, the inactivation of
both strains occurred at significantly lower GA concentra-
tions, whereas total inactivation of both strains was seen at
65 °C, even in the absence of GA (Fig. 1).

Effect of HHP and GA on S. aureus inactivation
at different temperatures

The effect of HHP (300 MPa) on both S. aureus strains at
different temperatures and GA concentrations (10-min
exposure) is shown in Fig. 3. There was negligible inactiva-
tion by HHP at 25 °C and was not affected by increasing the
length of treatment to 60 min. At moderate temperature
(50 °C), HHP caused inactivation in both strains that was 4–
5 orders of magnitude greater than at 25 °C (Fig. 3). At 25 °C,
GA (up to 1 mM) did not significantly inactivate either strain,
but the effect of GAwas significantly potentiated at moderate
temperature and/or by HHP. At 50 °C and 300MPa, 0.16 mM
GA totally inactivated both strains, whereas, when tested sep-
arately, these conditions caused little or no inactivation.

Effect of GA, HHP, and moderate temperature on S.
aureus in biofilm

Staphylococcus aureus strain ATCC 25923 was used to screen
for biofilm eradication because of its ability to produce bio-
film. Table 1 shows the results for the lenses and catheter
fragments treated with HHP, moderate temperature, and

different concentrations of GA, compared with bacterial sus-
pensions. Overall, the biofilm did not significantly protect S.
aureus strain ATCC 25923 against inactivation by HHP and
glutaraldehyde at moderate temperatures. Supplementary
Figures S2 and S3 show representative images on which
Table 1 is based. Figure S2 shows that the exposure of lenses
with biofilm to 0.5 mM GA and 300 MPa at 50 °C prevented
bacterial growth after 24 h (tube 2 and plate 2), compared with
the positive control (lens without treatment that showed tur-
bidity; tube 1 and plate 1). Figure S3 shows the catheter frag-
ments treated with different concentrations of GA at 50 °C and
HHP, and the respective untreated control. Total inactivation
was observed in catheter with the same conditions of lenses.

Antibiotic susceptibility

The disc diffusion method (DDM) was used to assess the
antibiotic susceptibility of the two strains of S. aureus. Strain
BEC 9393 was significantly resistant to most of the antibiotics
tested, in contrast to strain ATCC 25923 that was not (Fig. S4).
BEC 9393 was completely susceptible to vancomycin but
showed intermediate resistance to tetracycline and rifampicin
and complete resistance to the other tested antibiotics. ATCC
25923 strain, which is used as a quality control strain by the
CLSI, showed intermediate resistance to amikacin,
gentamycin, ampicillin, oxacillin, and vancomycin, and com-
plete susceptibility to the other antibiotics.

Transmission electron microscopy

Figure 4a–d shows the morphological alterations induced
by HHP in synergism with GA at room temperature. TEM

Fig. 2 Effect of GA on the
inactivation of S. aureus strains
ATCC 25923 and BEC 9393 at
different temperatures (10-min
exposure, pH 8.0). Asterisk: no
bacteria detected. The error bars
represent standard deviations (n =
3)
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analysis of non-treated samples of S. aureus (ATCC 25923
and BEC 9393) revealed an intact cell walls and mem-
branes with no alterations suggestive of morphological
damage. In contrast, the exposure of both strains of S.
aureus to 0.5 mM GA plus 300 MPa HHP at 25 °C for

10 min resulted in substantial cellular damage that includ-
ed the disruption of cellular structures, the leakage of cy-
toplasmic content to the surrounding environment,
disrupted cell division, intracellular vacuole formation,
and a change in cell shape.

Table 1 Comparison of the
inactivation of S. aureus strain
ATCC 25923 present in biofilm in
carrier materials (lens or catheter)
with the inactivation of a bacterial
suspension of the same strain by
different concentrations of GA at
moderate temperatures and an
atmospheric pressure of 300 MPa

Treatment conditions

50 °C, Patm 50 °C, 300 MPa (up to
24 h)

55 °C, Patm (up to
24 h)

55 °C, 300 MPa (up to
24 h)

GA (mM) BS Lens BS Catheter BS Catheter BS

8 − N.D. − − − − −
4 − N.D. − − − − −
2 − N.D. − − − − −
1 + − − − – − −
0.5 + − − + + − −
0.25 + N.D. − + + −* −
0.16 + + − + + + −
0.125 + + + + + + +

0.08 + + + + + N.D. N.D.

0.06 + + + + + + +

0.04 + + + + + N.D. N.D.

A positive sign for the carrier materials indicates turbidity in TSB medium after 24 h and BS assayed on TSB
plates, with inactivation > 8 log CFU/mL, if negative. The responses were assessed after a 10-min exposure to the
above indicated conditions. Obs: All experiments in lens and catheter with absence of growth at 24 h were
monitored up to 48 h to check the sterilization

BS bacterial suspension, Patm atmospheric pressure, N.D. experiments not done

*Appearance of bacterial growth after 48 h

Fig. 3 Combined effect of HHP,
GA, and moderate temperature
(50 °C) on the inactivation of S.
aureus strains ATCC 25923 and
BEC 9393 after 10-min
incubation. Asterisk: no bacteria
detected. The error bars represent
standard deviations (n = 3). Patm
atmospheric pressure
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Surface area measurements

Surface area measurements allowed the conversion of quali-
tative data to quantitative data, as well as the comparison of
bacterial cells before and after treatment with 0.5 mM GA in
conjunction with 300 MPa HHP at 25 °C for 10 min; this
treatment combination no longer allowed bacteria to grow,
even on enriched media such as TSB plates. Morphometric
analysis of TEM images revealed a significant difference in
the surface area of both strains of bacteria after treatment. In S.
aureus ATCC 25923, a major decrease in area resulted from
the lack of cell wall and cell membrane and the appearance of
hair-like structures outside the cells (Fig. 5(a–c)). In S. aureus
BEC 9393, the treatment produced structural modifications
that ensued in bean-shaped cells caused by the release of cy-
toplasmic content including significant increase in surface ar-
ea (Fig. 5(d–f)). The data of five images (50 bacterial cells) of
treated or non-treated cells of both strains were analyzed with
Student’s paired t test and showed a significant effect of treat-
ment (p < 0.05).

Discussion

The use of HHP for microorganism inactivation has been de-
scribed in several systems and its application in food process-
ing allows preservation of the molecular characteristics of a
variety of products, including organoleptic properties (Heinz
and Buckow 2009).

The sterilization of medical materials requires the elimina-
tion of different pathogenic microorganisms that occasionally
demonstrate broad-spectrum resistance to antibiotics. At the
same time, preservation of the properties of these materials is
an important distress. In this work, we examined the useful-
ness of combinations of conditions for inactivating microor-
ganisms. For this, we used strains of S. aureus, a bacterium
that is often the cause of hospital-acquired infections and may

show resistance to multiple antimicrobial agents (Korting et
al. 1998; Sievert et al. 2013; González-Arenzana et al. 2016;
Kpeli et al. 2016). Staphylococcus aureus is of clinical impor-
tance because it causes opportunistic infections in patients
with chronic diseases, immune deficiency and those who un-
dergo surgical interventions leading to infective endocarditis
and prosthetic device infections (Tong et al. 2015), hospital-
acquired pneumonia (Herkel et al. 2016), and scalded skin
syndrome in neonates (Bhavsar et al. 2016).

Staphylococcus aureus strains found in medical centers of-
ten show multi-resistance to antibiotics that is an important
cause of hospital-acquired infections (Poorabbas et al. 2015).
The confirmation here that S. aureusBECwas resistant to most
of the antibiotics tested in this work (Fig. S4) stresses the need
for alternative methods for sterilization or bacterial inactivation
since contamination by antibiotic-resistant strains can result in
severe morbidity. Rochford et al. (2014) have previously
shown that the proliferation and propagation of S. aureus on
surgical material is enhanced by increasing the surface rough-
ness of polyetheretherketone (PEEK) implants through treat-
ment with oxygen plasma. This observation indicates the need
to consider the possibility that the surface roughness of the
material of interest may be influenced by the sterilization pro-
cess used. Whereas treatment with HHP (300 MPa) for 10 min
did not significantly affect the viability of either strain, howev-
er, synergism between a low GA concentration and an HHP of
300 MPa lead to the eradication of S. aureus, with a 10-min
treatment being sufficient to completely inactivate the bacteria
and their biofilm. Additionally, the use of 3% glycine intended
to neutralization and removal of GA traces would be beneficial
for avoiding its toxicity. Such synergism provided a less time-
consuming and more cost-effective means of sterilizing surgi-
cal material and biomaterials. Synergism between nitric oxide
and HHP has been reported for the inactivation of Escherichia
coli and Listeria monocytogenes prior to food processing and
resulted in a ~ 6-log reduction in the bacterial counts (De Alba
et al. 2013).

Fig. 4 TEM images of S. aureus ATCC 25923 (control (a) and
pressurized (b) samples) and BEC 9393 (control (c) and pressurized (d)
samples). The pressurization conditions for both strains were 300 MPa

HHP at 25 °C for 10 min in the presence of 0.5 mM GA. The arrows
indicate morphological changes on the bacteria. The scale bars
correspond to 200 nm
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Recent kinetic work with several strains of S. aureus have
shown that HHP inactivation was more significant after
20 min of treatment at 450 MPa (Cebrián et al. 2010); another
strain tested for 2.5 h at 500 MPa showed total inactivation (>
8 orders of magnitude) (Rigaldie et al. 2007). Mechanistically,
HHP affects several cellular targets in E. coli, including the
barrier properties of the outer membrane, the intactness of the
cytoplasmic membrane, the activity of membrane-bound en-
zymes, and the intactness of ribosomes, as suggested by the
TEM analysis of bacteria after treatment (Fig. 4a–d). HHP
also stimulates the formation of reactive oxygen species and
cell death. The morphometric analysis of images is an appro-
priate method for assessing the effects of any treatment. A
previous study used images to measure the area and volume
of bacteria (Massana et al. 1997) and we used a similar ap-
proach to examine the effect of GA, HHP, and moderate tem-
perature on bacterial survival (Fig. 5(a–f)). This image analy-
sis revealed clear changes in bacterial area and shape. The
significant difference between the two strains in response to
the same treatments suggests important biochemical/genetic
differences that deserve investigation in the future.

Misfolded proteins in inclusion bodies can increase the
sensitivity to HHP. The resistance of E. coli to HHP may be
related to the over-expression of stress proteins (Ganzle and
Liu 2015). Staphylococcus aureus is the most prevalent path-
ogenic bacterium in domestic refrigerators and different

thermal inactivation schemes for this bacterium in food have
been proposed, e.g., 70 °C for 2 min or 75 °C for 1 min
(Kennedy et al. 2005). Our temperature experiments showed
marked bacterial inactivation between 55 and 60 °C, so we
investigated the possible potentiation of HHP at a lower tem-
perature (50 °C) and the use of a very low concentration of
disinfectant for the treatment of sensitive medical materials.
We have previously shown that the pressure-induced inactiva-
tion of Aeromonas hydrophila was much more efficient at
40 °C (15-min treatment at 250 MPa) (Durães-Carvalho et
al. 2012), whereas Mycobacterium abscesses inactivation
was achieved by using a combination involving other condi-
tions, such as moderately high temperature (60 °C), or pH 4.0
or pH 9.0, and was less efficient at subzero temperature (−
15 °C) (De Souza et al. 2013). Previously (Bonafe et al. 1998),
the dissociation of the classic tobacco mosaic virus by HHP
was significantly observed only in the presence of urea or at
subzero temperatures (less than − 19 °C). Such report illus-
trates the potential of synergism between HHP and other fa-
voring condition for an effective dissociation.

HHP and dissolved CO2 act synergistically to inactivate S.
aureus and E. coli (Wang et al. 2010).We therefore considered
that the use of a very low concentration of disinfectant could
improve pressure-induced inactivation and be very suitable
for sterilizing medical materials. GA is a disinfectant used to
sterilize medical equipment and has the advantage of not

Fig. 5 Morphometric analysis of
bacterial TEM images based on
the change in bacterial surface
area (nm2) without (control) and
with treatment with 0.5 mM GA
and 300 MPa HHP and 25 °C for
10 min of S. aureus ATCC 25923
(a) and BEC 9393 strain (d). The
control and treated images are
shown respectively in (b) and (c)
for ATCC 25923 strain, and (e)
and (f) for BEC 9393 strain.
Arrows indicate the altered area in
both strains in c and f. The scale
bars correspond to 200 nm. ***p
< 0.05 compared to the
corresponding control
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being corrosive to metal and of not causing damage to lensed
instruments, rubber or plastics. However, the use of GA, even
for non-critical surface cleaning, is controversial because of its
toxicity (Takigawa and Endo 2006). In the present study, we
tested GA at a concentration less than one tenth of that typi-
cally used in hospitals, i.e., 53–212 mM (0.5–2%) (Rutala and
Weber 2016). Both strains of S. aureuswere inactivated by 2–
3 mM GA at room temperature (25 °C), as also reported by
Gorman et al. (1980). The action of GAwas very sensitive to
an increase in temperature from 50 to 60 °C and with HHP
(Figs. 2 and 3). As shown in Fig. 3, total bacterial inactivation
was observed in both strains (a reduction of > 8 orders of
magnitude) treated with 0.16 mM GA at 50 °C and
300MPa, even though individually neither of these conditions
significantly reduced the bacterial population.

Another important challenge in sterilization is the presence
of biofilm, classically present in reused medical devices. The
microorganisms in such biofilms are less susceptible to inac-
tivation because of the protective barrier that biofilm provides
(Zapotoczna et al. 2016). We have previously reported total
inactivation of M. abscesses in biofilm present on PVC frag-
ments after treatment for 45 min at 250 MPa and 60 °C (De
Souza et al. 2013), indicating a synergistic effect of pressure
and moderate temperature. The presence of low concentra-
tions of GA should further enhance bacterial inactivation in
this situation. In contrast, HHP 350 MPa alone or in combi-
nation with antibiotics did not significantly reduce the number
of gram-negative bacteria in cell suspensions or in biofilm on
human ossicle explants from cholesteatoma patients
(Dommerich et al. 2012).

GA is considered the most practical cross-linking
agent and is suitable for treating biomaterials made from
biomolecules and synthetic biopolymers. A limitation to
its use is the difficulty in handling and its cytotoxicity
at high concentrations (Reddy et al. 2015). Thus, proto-
cols involving HHP in the presence of low concentra-
tions of GA could be more effective in inducing cross-
linking reactions, with a decrease in the risks associated
with handling and cytotoxicity. The successful treatment
of materials contaminated with S. aureus biofilm sug-
gests the possibility of treating different systems that
use biomaterials of biotechnological interest. The syner-
gistic effect observed here represents a powerful tool for
sterilization with high efficiency and low damage.
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