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Abstract: Citrus are vulnerable to the postharvest decay caused by Penicillium digitatum, Penicillium
italicum, and Geotrichum citri-aurantii, which are responsible for the green mold, blue mold, and sour
rot post-harvest disease, respectively. The widespread economic losses in citriculture caused by these
phytopathogens are minimized with the use of synthetic fungicides such as imazalil, thiabendazole,
pyrimethanil, and fludioxonil, which are mainly employed as control agents and may have harmful
effects on human health and environment. To date, numerous non-chemical postharvest treatments
have been investigated for the control of these pathogens. Several studies demonstrated that biological
control using microbial antagonists and natural products can be effective in controlling postharvest
diseases in citrus, as well as the most used commercial fungicides. Therefore, microbial agents
represent a considerably safer and low toxicity alternative to synthetic fungicides. In the present
review, these biological control strategies as alternative to the chemical fungicides are summarized
here and new challenges regarding the development of shelf-stable formulated biocontrol products
are also discussed.

Keywords: biological control; post-harvest phytopathogen; Penicillium digitatum; Penicillium italicum;
Geothrichum citri-aurantii

Key Contribution: This review demonstrates the potential of alternative methods for the control of
diseases that occur in the postharvest of citrus.

1. Introduction

Citrus is one of the most produced fruit genus. Grown in more than 100 countries, this group
is composed by several species, including oranges, tangerines, mandarins, grapefruits, lemons, and
limes [1]. The impact of citrus agroindustry in the international economy is huge. Besides their value
as commodities, they also provide employment in many segments involved in its production cycle:
harvesting, handling, transportation, and storage. In 2017, the global orange production reached
47.6 million metric tons (tons) and is expected to expand 4.2 million in 2018/2019 due to favorable
weather in Brazil and United States, two of the most important orange producers in the world [2].

Over 20 different kinds of postharvest diseases have been reported in citrus and they are the main
cause of fruit spoilage, resulting in massive economic losses [3]. Moreover, fungal growth in fruit
may lead to production of mycotoxins, including potential carcinogenic agents such as citrinin and
patulin [4], as well as tremorgenic compounds, for example tryptoquivalines [5], therefore representing
a threat to human and animal life.
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Green mold, blue mold, and sour rot, caused by Penicillium digitatum, P. italicum, and
Geotrichum citri-aurantii, respectively, are the main citrus postharvest diseases [6]. P. digitatum,
alone, is responsible for approximately 90% of total postharvest losses [7]. The fruits are contaminated
through skin postharvest damage during their picking, packaging, storage, and transportation [3].

The interaction between citrus fruit and these phytopathogens is not fully understood, but some
factors are known to affect this interaction in order to increase the fungus pathogenicity. P. digitatum
and P. italicum are known to secrete organic acids during infection, leading to an optimal pH for its cell
wall-degrading enzymes, such as polygalacturonases (PG) [8,9]. Moreover, P. digitatum also produce
catalase during infection, an antioxidant enzyme that decomposes hydrogen peroxide, the main defense
mechanism in citrus [10].

In order to deal with these fungi, chemical fungicides have been the main focus of research over
the past decades. P. digitatum and P. italicum can be efficiently controlled by imazalil, thiabendazole,
or pyrimethanil, but these fungicides are not effective against sour rot. For the control of G. citri-aurantii,
guazatine, and propiconazole can be applied, although they are not allowed in some producing
countries such as Brazil [11]. However, widespread use of chemical fungicides has caused the
proliferation of resistant strains of these phytophatogens, compromising the effectiveness of these
treatments [12]. Furthermore, concerns about environmental contamination and risks associated to
human health have been raised around the accumulation of their residues in food.

Finding commercially viable, effective, alternative control methods has been a leading challenge
for researchers, especially for controlling G. citri-aurantii, since there are fewer options available of
acceptable chemical fungicides. Many alternatives have been proposed, including the application of
antagonistic microorganisms and natural antimicrobial substances. Natural antimicrobial substances,
especially plant extracts, are considered relatively safe, presenting low toxicity and high decomposability
due to their natural origin, raising particular interest for use in these natural products [13].

Thus, the application of biocontrol agents has been an alternative for synthetic chemical fungicides.
However, more research is necessary to understand their mechanism of action and effectiveness in
different infection levels; this knowledge is crucial to implement their use as practical control agents.
Therefore, the use of alternative postharvest biological control methods, both non-polluting and
possessing low toxicity are reviewed here, highlighting advances presented in the literature in the
recent years.

2. Alternative Control Methods

2.1. Microrganisms

Besides fungicides, other agricultural practices such as irradiation application (light emitting diode,
gamma radiation, or UV radiation) [14–17], thermotherapy [18–20], biocontrol agents (BCA) [21–23],
and salt solution [24,25] may be used to control postharvest diseases. In the past thirty years, there have
been extensive research activities to explore and develop strategies based on microbial antagonists to
biologically control postharvest pathogens [26–30]. This section focuses on the natural products and
BCA described to be effective to control postharvest diseases.

BCA have been used in post-harvested fruits and its mechanism of action is poorly described in the
literature for the majority of microorganisms (either bacteria or yeasts). However, it is supposed that
more than one control mechanism could be acting simultaneously over the host-pathogen-antagonist
and environment interactions [30]; others include: antibiosis [30,31], competition for nutrients or
space [32], induction of resistance in citrus fruits [33,34], secretion of specific enzymes [35], stimulation
of ROS in host tissues [36], mycoparasitism, and biofilm formation [37,38].

The use of yeasts as antagonists has been extensively studied, due to their high inhibitory capacity
and the ability to colonize surfaces for a long period. The so-called “killer yeasts” yeast strains have
the ‘killer’ phenotype (K+) and can produce the “killer proteins” that are potential antifungal agents;
this feature is a biological advantage against others competing microbial [39–41]. Ferraz et al. reported



Toxins 2019, 11, 460 3 of 22

that Rhodotorula minuta, Candida azyma, and Aureobasidium pullulans presented killer activity against the
citrus pathogen G. citri-aurantii, deforming fungal hyphae and suppressing pathogen development [11].
Saccharomyces cerevisiae is another example of yeast that often presents killer activity [40,42–44].

Besides yeasts, bacteria are also promising BCA: Bacillus [45,46], Lactobacillus [47,48], and
Streptomyces sp. [49,50] genus have been studied as BCA against citrus pathogens. Bacteria of
Bacillus genus can act as antagonist through antibiotics or volatile organic compound (VOC) production
that can induce the increase of plants resistance. Leelasuphakul et al. verified that strains of
Bacillus subtilis found in soil were able to delay the spore germination of Penicillium digitatum by the
action of water-soluble antibiotic secondary metabolites, proteins, enzymes, and VOC production [45].
As for Lactobacillus, metabolites such as 3-phenyllactic acid and allyl phenylacetate isolated from
L. plantarum IMAU10014 had their antifungal activities against Penicillium digitatum observed in vitro
by Wang et al. [47]. Finally, Streptomyces sp. had been tested in vitro and in vivo against P. digitatum and
other pathogens [49,50]. Metabolites from Streptomyces RO3 cultures with molecular masses higher
than 2000 Da showed fungicidal action and in vivo tests indicated that the green mold disease incidence
decreased when treated with Streptomyces RO3 metabolites [49].

Among the alternatives reported in the literature, the induction of host resistance to pathogen by
microorganisms with ‘killer’ activity has been pointed as a promising option for plant disease control,
since they are active against a broad spectrum of pathogens and are safer than other alternatives [41,51].
For example, Parafati et al. related that the yeasts Wickerhamomyces anomalus, Metschnikowia pulcherrima,
and A. pullulans increased the activities of peroxidase and superoxide dismutase in mandarins,
reducing the incidence and severity of blue mold on these fruits [52]. Unfortunately, the activities and
mechanisms of interaction of most ‘killers’ have not yet been well elucidated [11,41,44], being an open
research field.

Another gap in the search for BCA against citrus pathogens is that the majority of the studies
focuses only in P. digitatum and the other citrus pathogens such as P. italicum and G. citri-aurantii are less
studied and also represent a problem for citriculture. As mentioned before, there are few fungicides
active against sour rot and other approaches such as BCA could be explored to discover alternative
methods to control this phytopathogen. However, few BCA are reported to control this disease. One
possibility to solve this problem could be the evaluation of BCA already pointed as active against
P. digitatum or other phytopathogens to control G. citri-aurantii.

Table 1 lists some known biocontrol agents and their mode of action against P. digitatum, P. italicum,
and G. citri-aurantii.
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Table 1. Biocontrol agents (BCA) used against P. digitatum, P. italicum, and G. citri-aurantii.

Antagonist Agent Mechanism Target Pathogen References

Yeast

Wickerhamomyces anomalus (or
Pichia anomala)

Antibiosis, competition for nutrients, fruit resistance
induction and ‘killer’ activity P. digitatum P. italicum [39–41,52]

Saccharomyces cerevisiae Competition for nutrients or space and ‘killer’ activity P. digitatum P. italicum [40,41,43,44]

Candida oleophila
Resistance induction. Increase phenylalanine ammonia lyase
activity and accumulation of the phytoalexins such as
scoparone, scopoletin, and umbelliferone

P. digitatum P. italicum [33,53]

Saccharomycopsis crataegensis +
sodium bicarbonate Not specified P. digitatum [54]

Kluyveromyces marxianus +
sodium bicarbonate

Competition for nutrient and space. The salt stimulates K.
marxianus growth and it inhibits fungal spore germination P. digitatum [55]

Rhodosporidium paludigenum Fruit resistance induction. Increase in ethylene production
and expression of defensive genes P. digitatum [56]

Pichia membranifaciens Competition for nutrients or space P. digitatum [57]

Metschnikowia pulcherrima, and
Aureobasidium pullulans

Competition for nutrients and fruit resistance induction by
influencing peroxidase and superoxide dismutase activities P. digitatum P. italicum [52]

Candida stellimalicola ‘Killer’ activity, production of chitinase, and inhibition of
conidial germination P. italicum [44]

Cryptococcus laurentii associated
with cinnamic acid

Different influence of cinnamic acid on the antagonistic yeast
and the pathogen, leading to synergistic effect P. italicum [58]

Metschnikowia citriensis Biofilm formation, adhesion to mycelia, and iron depletion P. digitatum P. italicum [53]

Pseudozyma antarctica Direct parasitism P. digitatum P. italicum [53]

Rhodotorula minuta, Candida azyma,
and Aureobasidium pullulans ‘Killer’ activity and hydrolytic enzyme production G. citri-aurantii [11]

Debaryomyces hansenii Competition for space and nutrients P. digitatum P. italicum [32,59,60]

Kazachstania exígua and
Pichia fermentans ‘Killer’ activity P. digitatum P. italicum [41]

Bacillus subtilis Water soluble antibiotics, proteins, enzymes, and
VOC production P. digitatum [43,45]
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Table 1. Cont.

Antagonist Agent Mechanism Target Pathogen References

Bacteria

Bacillus amyloliquefaciens Great amounts of antibiotics produced in vitro, however, still
not effective for green mold control in vivo P. digitatum [46]

Lactobacillus plantarum Metabolites 3-phenyllactic acid and benzeneacetic acid,
2-propenyl ester with antifungal activity P. digitatum [47,48]

Streptomyces sp. Metabolites with higher mass than 2000 and fungicidal effect P. digitatum G. citri-aurantii [49,50]

Streptomyces violascens Extracellular antifungal compounds that inhibits fungal spore
germination and antibiosis G. citri-aurantii [61]
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2.2. Natural Products

Besides BCA, the use of chemicals isolated from natural sources may be an interesting approach
to control P. digitatum; these include alkaloids [62], chitosan [26,63–66], carvacrol and thymol [67],
citral [68], citronellal [69], and several other compounds isolated from essential oils (EOs) and plant
extracts [22,70,71].

Olmedo et al. assessed the antifungal activity of six β-carboline alkaloids (harmine, harmol,
norharmane, harmane, harmaline, and harmalol) against P. digitatum and Botrytis cinerea. They observed
that harmol is more active than harmaline and harmalol, due to the differences in properties such as
aromaticity, acidity, planarity, and polarity [62]. Table 2 shows some plant natural products that have
been currently studied as control strategies against P. digitatum, P. italicum, and G. citri-aurantii; lists
that are more extensive can be found in [22,71].

The natural products highlighted in Table 2 are summarized in Figure 1. The global Venn
diagram (Figure 1) displays natural products activity distribution against P. italicum, P. digitatum,
and G. citri-aurantii. The Venn diagram clearly indicates a significant number of natural products
active against P. digitatum and P. italicum; however, few natural products have been studied to control
G. citri-aurantii.
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Table 2. Natural products extracted in plants as control strategies against P. digitatum, P. italicum, and G. citri-aurantii.

Plant/Fruit Pathogen (s) Extract/Method Natural Products Details References

Chinese propolis P. italicum
1) Ethyl acetate (3 times);
2) chloroform; 3) ethanol
and water; 4) methanol

Pinocembrin
Pinocembrin acts against P. italicum through
inhibition on respiration and interference of
energy homeostasis

[72]

Citrus aurantium P. digitatum
P. italicum

Hydrodistillation (peels,
leaves, and flowers)

α-terpineol, terpinen-4-ol,
linalool, and limonene

Essential oils (EOs) of flowers and leaves
reduced the growth of pathogen, while EO of
peels was inactive

[73]

Citrus eticulate Blanco P. digitatum - Citral
Antifungal activity of citral was tested in vitro
and in vivo and combined with the wax showed
potential for control applications

[68]

Citrus fruits P. italicum
P. digitatum Commercial product Octanal Octanal inhibits the fungal mycelial growth [74]

Citrus fruits P. italicum Commercial product Citral Citral inhibits the mycelial growth of P. italicum
causing disruption of cell membrane integrity [75]

Citrus paradise Macf.
(Grapefruit fruit) P. digitatum - Chitosan and salicylic acid

Chitosan combined with salicylic acid had better
treatment of green mold than these isolated
compounds, without compromising the quality
of fruit.

[26]

Citrus sinensis Osbeck P. digitatum Commercial product Citronellal

Citronellal was able to inhibit spores
germination and mycelial growth. Just as citral,
the compound combined with wax reduced the
incidence rate

[69]

Laminaceae spp. P. digitatum
P. italicum - Carvacrol and thymol

The mechanisms that have been proposed for
these compounds are: 1) morphological
deformation and deterioration of the conidia
and hyphae; 2) hydroxyl group and systems
with delocalized electrons has important role for
antimicrobial effect

[69]
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Table 2. Cont.

Plant/Fruit Pathogen (s) Extract/Method Natural Products Details References

Peganum harmala L.
(harmal seeds) P. italicum Ethanol Harmine, harmaline, and

tetrahydroharmine (THH)

Harmal extracts showed strong antifungal
activity against P. italicum and its activity is
related to alkaloids harmine, harmaline e THH

[76]

Peganum harmala L. P. digitatum Commercial product Harmol, harmaline, harmalol,
harmane, and norharmane

It was tested the antifungal activity of
β-carbolines against P. digitatum and Botrytis
cinerea. Harmol showed highest antifungal
activity after 24 h.

[63]

Pimpinella anisum and
Carum carvi P. digitatum Hydrodistillation (seeds)

trans-anethole, estragole
(anise oil), cuminaldehyde,
and perillaldehyde (black

caraway)

EO were able in vitro of reduce the germination,
the mycelial growth of pathogen and the
incidence of disease symptoms

[77]

Populus × euramericana
cv. ‘Neva’ (poplar

buds)
P. italicum Dichloromethane Flavonoids of pinocembrin,

chrysin, and galangin

Antifungal compounds from poplar buds active
fraction, identified by HPLC–MS, had antifungal
effect in the fungal hyphae analyzed by scanning
electron microscopy and transmission electron
microscopy images

[78]

Punica Granatum P. digitatum Ethanol/water (4:1) Phenolic compounds with a
prevalence of punicalagins

Pomegranate peel extract has a broad range of
antifungal activity [13]

Ramulus cinnamomi
P. digitatum P.

italicum G.
citri-aurantii

Ethyl acetate and
n-buthanol

Cinnamic acid and
cinnamaldehyde

Through 1H-NMR-based metabolomics it was
identified the extracts related to antifungal
activity of Ramulus cinnamomi after 4, 8, and 12 h.
The antifungal mechanism of cinnamaldehyde it
was also analyzed by 1H-NMR

[79]

Rosmarinus officinalis L. P. digitatum Hydrodistillation (for EO)
and methanol

Flavonoids, polyphenols, and
essential oils

EO act in the fungal cells by disrupting the
membrane permeability and the osmotic balance [80]

Salvia fruticosa Mill. P. digitatum Ethyl acetate Carnosic acid, carnosol, and
hispidulin

Compounds that have antifungal properties,
according to its compositions, structures/activity,
and literature

[81]
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Table 2. Cont.

Plant/Fruit Pathogen (s) Extract/Method Natural Products Details References

Sapium baccatum P. digitatum Commercial product Tannic acid

In vitro antifungal activity to P. digitatum was
verified between 400 and 1000 µg mL−1 of tannic
acid inoculated in Ponkan fruit was sufficient to
inhibit the mycelial growth of 45% to 100%

[82]

Solanum nigrum P. digitatum Aqueous extract (leaves)
Alkaloids, flavonoids,

saponins, steroids, glycosides,
terpenoids, and tannins

Bioactive compounds that has pharmacological
prospects for development of drugs [83]

Thymus species (T.
leptobotris, T. riatarum,
T. broussonnetii subsp.

hannonis, and T.
satureioides subsp.
pseudomastichina)

P. digitatum P.
italicum G.

citri-aurantii
Hydrodistillation Thymol, carvacrol, geraniol,

eugenol, octanal, and citral

EO of four Thymus species showed antifungal
activity. Through GC–MS, MIC, and previous
studies determined the principal active
compounds

[84]

Thymus leptobotris
P. digitatum P.

italicum G.
citri-aurantii

Methanol, chloroform Thymol and carvacrol

The antifungal screening from EO obtained from
21 plants showed that the EO from Thymus
leptobotris had the highest fungistatic effect. The
active compounds were identified in previous
studies.

[85]

Thymus vulgaris L. P. italicum P.
digitatum - Thymol

EO of thyme inhibited the mycelium growth
(MIC 0.13 µL mL−1) and spore germination
(MIC 0.50 µL mL−1) in vitro and in vivo

[86]

Withania somnifera +
Acacia seyal P. digitatum

Methanol/acetone/water—7:7:1,
v/v (dried plant

powder—1:20 w/v)

Insoluble and soluble
phenolic compounds

Application of plants extract (W. somnifera and A.
seyal) in the sick host, induced plant resistance
through change of phenolic concentration
(phenylpropanoid pathway)

[87]
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Garlic [88], neem [89], Withania somnifera L. and Acacia seyal L. [87], mustard, and radish [90] also
have been reported as effective in controlling P. digitatum. Recently, Zhu et al. reported the antifungal
activity of tannic acid on P. digitatum. In vivo tests showed significant decrease of disease signals of
P. digitatum by inhibiting its mycelial growth and spore germination. Storage tests shown that tannins
reduce the severity of green mold on citrus by 70%. The authors suggest that antifungal activity
mechanism of tannic acid is related to the disruption of the cell walls and the plasmatic membrane,
causing leakage of intracellular contents such as sugars [82].

Extracts from chili peppers and ginger were also proposed to control or inhibit postharvest diseases
in citrus [91]. Singh et al. tested different concentrations of the plant extracts of the Zingier officinale L.
(Ginger) and Capsicum frutescence L. (Chilly) against P. digitatum, Aspergillus niger, and Fusarium sp.
isolated from naturally infected citrus. P. digitatum, specifically, had a reduction on colony development
with inhibition zones of 51.5%, 69.2%, 74%, and 83.1% for Zingier officinale L. extract, and 56.4%,
64,1%, 76.6%, and 100% for Capsicum frutescence L. at concentration of 500, 1000, 2000, and 3000 ppm,
respectively [91].

Besides the above-mentioned natural products used against P. digitatum, synergism between
compounds have also been tested. Shi et al. studied the effects of chitosan and salicylic acid (SA),
both isolated and mixed, on the control of green mold decay in grapefruit. The results showed that
combination of chitosan with SA was effective to control green mold than either compound alone
(significant efficacy of biocontrol agents against green mold decay induced by SA application in citrus
fruits have previously been studied) [26]. Furthermore, significant reduction on lesion diameter and
disease incidence was observed. Additionally, it was observed that treatment with chitosan/SA blends
increased the content on ascorbic acid and total soluble solids in the fruits, providing a longer shelf
life [26].

P. italicum causes the blue mold decay and represents one of the most problematic postharvest
citrus infection, compromising fruit integrity during storage and transportation [92]. Currently,
the blue mold is primarily controlled by the synthetic fungicide applications, such as thiabendazole
and imazalil [44]. Regarding Imazalil-resistant biotypes P. digitatum is more common, whereas resistant
P. italicum is rare [93].

Plant extracts studied as an alternative or complementary control agents to currently used
fungicides may be attractive because of their potential antifungal activity, non-phytotoxicity and
biodegradability [94–97]. Askarne et al. evaluated the antifungal activity of 50 species of plants
collected in different regions of southern Morocco. In vitro antifungal activity showed that among
them, Anvillea radiata and Thymus leptobotrys completely inhibited mycelial growth of P. italicum at
concentrations of 10% m/v [98]. In addition, Asteriscus graveolens, Bubonium odorum, Ighermia pinifolia,
Inula viscosa, Halimium umbellatum, Hammada scoparia, Rubus ulmifolius, Sanguisorba minor, and
Ceratonia siliqua were also effective against P. italicum with inhibition of mycelial growth greater
than 75%. The species on in vitro studies were also tested in vivo against the blue mold in citrus.
The incidence of blue mold was significantly reduced to 5 and 25% when oranges were treated with
aqueous extracts of H. umbellatum and I. viscosa (compared to 98% in the control), indicating the
antifungal potential of these materials against P. italicum.

Kanan and Al-Najar reported the effective in vitro and in vivo antifungal activity of fenugreek
(Trigonella foenum-graecum L.), harmal seeds (Peganum harmala L.), garlic cloves (Allium sativum L.),
cinnamon bark (Cinnamomum cassia L.), sticky fleabane leaves (Inula viscose L.), nightshade leaves, and
fruits (Solanum nigrum L.) against P. italicum isolates. Cinnamon, garlic, and sticky fleabane methanolic
fractions resulted in complete inhibition of this pathogen [76].

The high antifungal activity against P. italicum of crude extracts cinnamon, as well as the
corresponding methanolic, hexanic, and aqueous fractions was related to the high content of
cinnamaldehyde, eugenol, cinnamic acid, flavonoids, alkaloids, tannins, anthraquinones, and phenolic
compounds, some of them reported before as active antifungal agents. Among them, eugenol
and cinnamaldehyde have been consistently reported to be the main antifungal components of
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cinnamon [79,99], representing potential, environmentally benign candidates for postharvest disease
control. In addition, harmal extract was pointed also as highly effective extract against P. italicum in vitro.
The activity of the harmal crude extracts may be related to the content of alkaloids such as harmine,
harmaline, and tetrahydroharmine besides phenolic compounds that can alter the permeability of
fungal cells [76]. The exact mechanism of action of phenols has not yet been determined; however,
it is already known that they can inactivate essential enzymes and disrupt function of the genetic
material [100].

Several studies have reported natural antifungal compounds against P. italicum produced by
different sources. Essential oils, for instance, represent a low-toxic effects alternative and are reported
to possess strong inhibitory effects on crop contaminated by P. italicum [74]. Among the major
volatile constituents are limonene, β-linalool, α-terpineol, citral, and octanal, the latter reportedly
exhibits antifungal activity against some postharvest pathogens such as P. digitatum, P. italicum, and
P. ulaiense [101,102]. Regarding the mode of action, Tao et al. attributed its activity against mycelial
growth of P. italicum and P. digitatum to the disruption of the cell membrane integrity and leakage of ions
and other cell contents [74]. A similar mechanism of activity against postharvest citrus pathogens was
attributed to citral, present in citrus EO that is able to alter the morphology of P. italicum hyphae [75].

Chinese propolis has been pointed as active against blue mold and the flavonoid pinocembrin
(5,7-dihydroxyflavanone) was identified as one of its main active antifungal constituents. Peng et al.
studied the inhibitory effect of this compound on P. italicum with particular attention to its response to
the mycelial growth and energy metabolism by interfering in energy homeostasis and cell membrane
damage of the pathogen. They observed that mycelial growth and spore germination were nearly
completely inhibited with inhibitive percentage up to 93 and 97%, respectively, for pinocembrin
concentrations of 400 mg/L [72].

Figure 2 shows the structures of the above mentioned antifungal compounds found in natural
extracts and essential oils.

Sour rot of citrus, caused by Geotrichum citri-aurantii, represents another potentially devastating
storage disease [103]. Pathogenicity of Geotrichum citri-aurantii on citrus fruit involves secretion
of extracellular endo-polygalacturonases (PG) that aid in the rapid breakdown of infected tissues
facilitating the disease [104]. The usual fungicides, with the partial exception of sodium o-phenylphenate
(SOPP) and propiconazole [105], cannot actively controlled this disease. Yin et al. revealed the first time
that cytosporone B—a compound isolated from the endophytic fungus Cytospora sp. and presenting a
wide range of antitumor and antimicrobiotic activities—has a promising effect on the control of citrus
decay caused by this pathogen, being comparable to that of fungicide prochloraz. Its mechanism
of action is suggested to be related to the alteration of the morphology of pathogen cells, causing
distortion of the mycelia and loss of membrane integrity [106].

Talibi et al. demonstrated that methanolic extracts Cistus villosus, C. siliqua, and H. umbellatum
successfully reduced the disease incidence in vitro caused by G. citri-aurantii with no phytotoxic effects
recorded on citrus; on the other hand, ethyl acetate extracts of A. radiata, C. villosus, and C. siliqua proved
to be the best inhibitors of mycelial growth [107]. Other studies concerning the antifungal properties of
organic extracts of plants include materials from Cistus L. species [108] and from extremophile plants
from the Argentine Puna [109]. Incidence of sour rot was described to reduce significantly when fruits
were treated with Cistus populifolius and Cistus ladanifer methanol extracts [108].

Zhou et al. also reported citral, octanal, andα-terpineol to have strong inhibition on G. citri-aurantii,
being the former the most potent among them. They induced a decrease on the total lipid content of
the cells, indicating the destruction of cellular membranes, disruption of cell membrane integrity, and
leakage of cell components [110].

Liu et al. studied the antifungal activity of thyme (Thymus sp.) EO against postharvest sour rot
on citrus fruit. It was shown that G. citri-aurantii cells treated with thyme EO showed morphology
alteration (collapsed mycelia and arthroconidia structures); additionally, a marked enlargement of
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hypha wall thickness was observed [111]. Those effects can be assigned specially to the presence of
thymol (a volatile terpenoid ubiquous in plants with strong, widespread antifungal activities).Toxins 2019, 11, x FOR PEER REVIEW 11 of 21 
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Regnier et al. screened 59 commercially available EO, as well as their major components,
to determine their effects on mycelial growth of G. citri-aurantii [6]. Lemong (Cymbopogon citratus)
was found to be the most cost-effective option; it was also found that a blend of the lemongrass and
spearmint (Mentha spicata) EO could be an alternative for effective multi-target protection against
G. citri-aurantii, P. digitatum, and P. italicum [6].

Xu et al. found that cassia (Cassia sp.) EOs have the ability to control postharvest pathogens and
diseases, but their poor solubility in water might prevent its effective use. In order to circumvent
this problem, they presented an aqueous microemulsion formulation of cassia EO with ethanol
as co-surfactant and Tween 20 as surfactant as antifungal agent against G. citri-aurantii. Both
in vitro and in vivo assays showed that cassia EO had stronger activity when encapsulated in the
microemulsion [112].
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The structure of some compounds above listed with activity against G. citri-aurantii are shown in
Figure 3.
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Considering that most plant-derived compounds are usually much less toxic to humans and fauna
in general, as well as generally environmentally-friend when compared to fungicides, they should
be considered safer and may represent a promising alternative to the existing chemical pesticides in
the control of fungal diseases. However, it should be noted that there is a lack of studies concerning
non-chemical postharvest treatment against G. citri-aurantii and very little research has been carried
out to investigate the use of natural products to control citrus sour rot; therefore, special attention
towards this pathogen is needed. Despite the promising antifungal activity of organic extracts of
plants, the active antifungal compounds are frequently not identified; the knowledge of the substances
accountable for the antifungal activity is fundamental to formulate viable commercial products and
develop advanced biofungicides formulations as alternatives to synthetic fungicides to control the
citrus postharvest diseases.

2.3. Commercial Biofungicides

Biofungicide is the general name given to microorganisms and naturally occurring compounds
that possess the ability to control plant diseases [113]. Although the mechanisms of biocontrol in
postharvest diseases have not been fully explained in many cases, effective colonization of wounds and
competition for nutrients appear to be significant factors for many antagonists. Many microorganisms
have shown good potential as basis for commercial biocontrol products due to their efficacy against
fungal pathogens in field conditions. Although much research is being conducted in this area, a limited
number of biofungicides are available commercially [114–116].

Several commercial biological control formulations based on Trichoderma harzianum, A. pullulans,
Bacillus subtilis, Streptomyces griseoviridis, and Gliocladium virens [113,117] have been reported for
application against different plant fungal pathogens. Most studies have focused on application of
individual biocontrol agents without evaluating their combination with other microorganisms or even
with chemical components. Nevertheless, combination BCA that are compatible with each other could
offer a new and effective approach improving plant diseases control [114,118].

The major drawback in the commercialization of bioproducts based on BCA is the advancement
in the production of shelf-stable formulated products that maintain biocontrol activity similar to that
of the fresh cells. Although biofungicides have good action background against host pathogens, there
are limitations to their use and effectiveness in the field. Growing demand and interest in bioproducts
have led to many marketable brands but the absence of field application reliability of biofungicides
has been a significant obstacle in the adoption of these approaches. Despite the remarkable results
obtained with biofungicides in the laboratory experiments, some failed to provide consistent disease
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control in field conditions. Thus, these factors are potential contributors to the low dissemination of
these products on the market [113,115,116].

Although a reasonable number of studies take into account the exploration of new bioactive
compounds that may specifically act against citrus phytopathogens, few products come to
commercialization and are widely marketed. In addition to the above problems, the workflow
that starts with the discovery of the bioactive compound to the effective elaboration of the final product
is still quite complex and is usually a long, iterative process that involves several steps. Figure 4 shows
a usual workflow that could be involved in the development of a postharvest biofungicide.
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According to Nunes, biocontrol agent development is comprised of two main steps: discovery and
commercial development. Summarizing the required phases, the first one concerns the isolation and
efficacy of the laboratory-based compounds to pilot tests. In this phase must be included evaluation of
the action mechanism of the microorganisms, growth media required, improvements in biocontrol
activity, and legal procedures involving the patent for the employment of the microorganism as a
biopesticide. The commercial development of BCA involves steps including scale-up production,
product formulation, biosafety of the microorganism, and registration [119]. The detailed workflow
will not be discussed in detail but can be found in previous papers [116,119–121].

Indeed, the complex workflow is a weak point for the development of new products based on
biomolecules. Moreover, the high cost of the production and the regulatory barriers to BCA registration
in different countries do not encourage their dissemination and recurring issues that need to be
overcome [119–122]. To date, four commercially biofungicides, based on microorganisms, were found
for the control of postharvest citrus fruit. The yeast Metschnikowia fructicola, for instance, was reported
as an efficient biological control agent of postharvest diseases of fruits and vegetables, and it is the bases
of the commercial formulated product “Shemer” [122]. Its effect has been reported as a good control
of decay in oranges being equivalent to oranges treated with the chemical fungicide, imazalil [123].
Nevertheless, just a few antagonists have achieved the commercial development stage as commercial
products. Some of these biofungicides are represented in Table 3.
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Table 3. Commercial biofungicides, based on microorganisms, for the control of postharvest citrus fruit.

Microorganism Product Targeted Pathogens References

Candida oleophila Aspire Botrytis, Penicillium [117]
Metschnikowia fructicola Shemer Botrytis, Penicillium, Rhizopus, Aspergillus [124]

Pantoea agglomerans Pantovital Penicillium, Botrytis, Monilinia [125]
Pseudomonas syringae Biosave Penicillium, Botrytis, Mucor [126]

Aspire™, based on Candida oleophila [117], has been commercialized for some years but did
not prevail due to low and inconsistent efficacy under commercial conditions, difficulties in market
penetration, and perception of the customers and industry [113]. Other products, such as Shemer™
(based on the yeast M. fructicola), have been more successful [27], and are being used for both pre-
and postharvest application on various fruits and vegetables, including citrus fruit, grapes, peaches,
peppers, strawberries, and sweet potatoes.

Despite limited numbers of specific biofungicides, the demand for these products in agriculture as
alternatives to synthetic pesticides has increased over the last few years. The adoption and widespread
use of biofungicide will make it possible to produce food that are exempt from or have low values
of chemical residues. This will contribute to the consumption of more natural, healthy, and safe
foods with respect to fungicide usage [116,127]. Thus, both regulatory barriers and workflow-related
procedures must be improved in order to overcome the challenges in the biofungicide market.

3. Conclusions

The information presented in this review reports the potential of alternative methods for the
control of postharvest citrus diseases. Despite all the drawbacks regarding the development of new
products, a considerable number of studies have been conducted concerning biocontrol strategies
of citrus postharvest phytopathogens. Several studies have reported antifungal compounds, mostly
against P. digitatum, which is responsible for the most important disease found in citrus fruits. Another
interesting approach, with good results against green mold, is the application of the biocontrol agent
in a mixture with low doses of chemical fungicides during citrus fruit processing. Nevertheless,
few studies treat individually the particularities of each fungus and, therefore, many strategies of
biocontrol still need to be studied taking into account the different metabolic and enzymatic fungi
profile. In this context, there is a lack of studies on postharvest non-chemical treatment against
G. citri-aurantii, which causes a decay not controlled by the conventional treatments, and therefore
special attention toward this pathogen is necessary. It is very clear that in recent years the interest
in biocontrol strategies that minimize the use of chemical pesticides is a worldwide trend, which
has driven research in this field. Compounds from biological sources are usually much less toxic to
humans as well as environmentally-friendly when compared to synthetic fungicides; for this reason
they represent a promising alternative to the existing chemical pesticides in the treatment of fungal
diseases. However, as discussed here, several challenges related to the workflow procedures and
development of biofungicides still need to be overcome so that new technology can be employed
during citrus fruit processing in order to lead to a commercially viable strategy that meets the needs of
the producers.
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