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Abstract:

Constitutive heterochromatin typically exhibits low gene density and is 
commonly found adjacent or close to the nuclear periphery, in contrast 
to transcriptionally active genes concentrated in the innermost nuclear 
region. In Triatoma infestans cells, conspicuous constitutive 
heterochromatin forms deeply stained structures named chromocenters. 
However, to the best of our knowledge, no information exists regarding 
whether these chromocenters acquire a precise topology in the cell 
nuclei or whether their 18S rDNA, which is important for ribosome 
function, faces the nuclear center preferentially. In this work, the spatial 
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distribution of fluorescent Feulgen-stained chromocenters and the 
distribution of their 18S rDNA were analyzed in Malpighian tubule cells of 
T. infestans using confocal microscopy. The chromocenters were shown 
to be spatially positioned relatively close to the nuclear periphery, 
though not adjacent to it. The variable distance between the 
chromocenters and the nuclear periphery suggests mobility of these 
bodies within the cell nuclei. The distribution of 18S rDNA at the edge of 
the chromocenters was not found to face the nuclear interior exclusively. 
Because the genome regions containing18S rDNA in the chromocenters 
also face the nuclear periphery, the proximity of the chromocenters to 
this nuclear region is not assumed to be associated with gene silencing.
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Abstract

Constitutive heterochromatin typically exhibits low gene density and is commonly 

found adjacent or close to the nuclear periphery, in contrast to transcriptionally active 

genes concentrated in the innermost nuclear region. In Triatoma infestans cells, 

conspicuous constitutive heterochromatin forms deeply stained structures named 

chromocenters. However, to the best of our knowledge, no information exists regarding 

whether these chromocenters acquire a precise topology in the cell nuclei or whether 

their 18S rDNA, which is important for ribosome function, faces the nuclear center 

preferentially. In this work, the spatial distribution of fluorescent Feulgen-stained 

chromocenters and the distribution of their 18S rDNA were analyzed in Malpighian 

tubule cells of T. infestans using confocal microscopy. The chromocenters were shown 

to be spatially positioned relatively close to the nuclear periphery, though not adjacent 

to it. The variable distance between the chromocenters and the nuclear periphery 

suggests mobility of these bodies within the cell nuclei. The distribution of 18S rDNA 

at the edge of the chromocenters was not found to face the nuclear interior exclusively. 

Because the genome regions containing18S rDNA in the chromocenters also face the 

nuclear periphery, the proximity of the chromocenters to this nuclear region is not 

assumed to be associated with overall gene silencing.

Key words: confocal microscopy, chromatin topology, chromocenter, FISH, 

heterochromatin, rDNA 18S
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Introduction

Chromosomes are not randomly distributed within the cell nuclei (Ellison & Howard, 

1981; Hochstrasser et al., 1986; Cryderman et al., 1999; Cremer et al., 2000, 2001; 

Olszewska et al., 2008; Jost et al., 2015). Even in the decondensed state of chromatin, it 

follows an organized distribution and certain nuclear positions within chromosome 

territories (Cremer & Cremer, 2001, 2010). Although the nucleus is not subdivided into 

compartments that are attached to its peripheral envelope, the regulatory machinery for 

transcription, replication and repair is organized into subnuclear domains with specific 

functions (Fritz et al., 2016).

Recent reports state that the spatial positioning of heterochromatin would be 

regulated such that it would be preferentially located at the nuclear periphery, whereas 

euchromatin would be positioned in the nuclear interior. In various cell types, this 

organization has been associated with gene density, with gene-rich chromosome 

territories and/or chromatin containing transcriptionally active genes occupying the 

nuclear interior, while gene-poor chromosome domains and/or chromatin with a 

relatively high amount of gene silencing are closer to the nuclear periphery (Croft et al., 

1999; Küpper et al., 2007; Bártova et al., 2008; Boyle et al., 2011; Bickmore, 2013). 

However, this hypothesis has not been consistently supported either experimentally or 

simply based on descriptive terms (Kurz et al., 1996; Harnicarova et al., 2006; Finlan et 

al., 2008; Deniaud & Bickmore, 2009; Dieudonné et al., 2009; Solovei et al., 2009; 

Bickmore, 2013; Meister & Taddei, 2013). There are reports indicating that the nuclear 

periphery would not be refractory to genes and that it would participate in the 

modulation of certain genes in such a way that the repressive nature of the nuclear 

periphery would result from epigenetic modifications on histones (dimethylated- and 

trimethylated-lysine in histone H3, for instance) anchored in the nuclear envelope and 

leading to an increased concentration of silencing factors (Ruault et al., 2008; Towbin et 

al., 2009, 2013; Meister & Taddei, 2013). Therefore, the localization of 

heterochromatin, as is the case with the facultative type, when adjacent to the nuclear 

lamina (Ruault et al., 2008), would be associated with the perinuclear anchorage 

positioning of modified histones that would act on the epigenetic propagation of 

transcriptional repression (Towbin et al., 2013). 

Regarding the spatial distribution of chromocenters that are constitutive 

heterochromatin bodies and that compartmentalize their components from the rest of the 
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genome, there is information indicating that the topology of chromocenters in certain 

organisms is not incidental. In the salivary glands of Drosophila melanogaster, for 

instance, one repetitive DNA-rich chromocenter is always positioned at the nuclear 

periphery and adhered to the nuclear envelope (Hochstrasser et al., 1986; Cryderman et 

al., 1999). It was proposed that this chromocenter participates in the control of the 

availability of repressive elements of the overall gene activity, such as proteins of the 

HP1 family (Cryderman et al., 1999). In early embryos of D. virilis, in which the 

chromocenter acquires the same position as in D. melanogaster (Ellison et al., 1981), it 

faces the exterior of the organism, whereas in the salivary glands of D. melanogaster, 

the chromocenter exhibits variable positions in relation to the organ lumen 

(Hochstrasser et al., 1986). 

In plants such as Arabidopsis thaliana, the localization of 6 to 10 chromocenters 

that are rich in methylated DNA has also been reported to be close to the nuclear 

periphery (Franz et al., 2002; Fang & Spector, 2005; Berr & Schubert, 2007; De Nooijer 

et al., 2009). In human sperm cells, the centromeric and telomeric chromosome regions 

that constitute chromocenters acquire a nonrandom position. While the telomeres face 

the nuclear periphery, the centromeres face the nuclear center (Olszewska et al., 2008; 

Zalenskaya & Zalensky, 2004; Ioannou & Griffin, 2011; Alladin et al., 2013). There are 

reports indicating that changes in this topological pattern may be associated with male 

infertility (Ioannou & Griffin, 2011; Alladin et al., 2013). 

In somatic cells of Triatoma infestans, which is one of the most important 

vectors of Chagas disease, chromocenters are highly conspicuous bodies (Mello, 1971, 

1978) that are composed of at least three pairs of autosomes and sex chromosomes 

(Schreiber et al., 1972; Solari, 1979). These heterochromatin bodies contain AT-rich 

DNA (Alvarenga et al., 2011) and are circumscribed by the nucleolus (Mello et al., 

1990). In the highly polyploid Malpighian tubule cell nuclei of T. infestans, one 

chromocenter is observed up to the 3rd nymphal instar; from this phase onward, a 

portion of the cells exhibit multichromocentered nuclei (Mello, 1971, 1978). This 

phenomenon is not associated with any known specific physiological change; the 

excretory function of the Malpighian tubules and the insect blood feeding processes do 

not change over the course of the insect’s lifetime (Wigglesworth, 1984). Regarding the 

spatial distribution of these chromocenters, there is no conclusive information about 

whether it has a preferential or variable location inside the cell nuclei and whether it 

varies with insect development (Mello, 2013). In addition, there is no information on 
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whether a given gene positioned in the chromocenter surface or in contact with it would 

present a preferential position, facing only the nuclear interior. This knowledge would 

be relevant for a comparison with the spatial distribution of chromocenters in other cell 

systems, and for investigating whether these bodies contain an overall noncodifying 

chromatin (Mello, 1971).

In the present study, the spatial distribution of chromocenters in the cell nuclei 

of Malpighian tubule cells of T. infestans was investigated at various developmental 

phases. The chromocenter surface facing the nuclear interior was also investigated with 

regard to the positioning of 18S rDNA, which is part of an essential gene that acts in 

ribosome biogenesis. The chromocenters in nymphal and adult specimens were found to 

be positioned with relative proximity to the nuclear periphery, though not adjacent to it. 

Because of the relatively variable position of the chromocenters, they are thought to be 

susceptible to mobility inside the cell nuclei. The 18S rDNA sites placed on 

chromocenter regions that could face the nuclear interior and the nuclear periphery 

suggest that the proximity of the chromocenters to the nuclear periphery is not entirely a 

gene-silencing phenomenon.

Material and Methods

Insects

Male fifth instar nymphs and adults and third instar nymphs of an unknown sex of 

Triatoma infestans (Klug) were supplied by the insect facility of the Superintendence 

for Control of Endemic Diseases of the state of São Paulo (SUCEN) at Mogi-Guaçu 

(Brazil). These insects originated from natural populations of insects that have been 

collected in the north of the state of Minas Gerais (Vale do Jequitinhonha) 

(approximately between latitudes 16 °S and 18 °S and longitudes 41 °W and 43 °W) 

since 1980. In the SUCEN facility, the insects were fed chicken blood once every two 

weeks and reared at 30 °C and 80% relative humidity following the animal care and 

ethic procedures registered at the National Council of Animal Experimentation Control 

(COBEA) from the Brazilian Ministry of Science, Technology and Innovation under 

accreditation protocol no. 01200.003280/2014-28. The SUCEN Scientific and Ethics 

Committee approved this investigation (Protocol no. 64405/2015). Three to five 

specimens of each developmental stage were used for each assay.
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Cell Fixation and Cytochemistry for Chromocenter Spatial Localization Using 

Confocal Microscopy

Whole-mounted Malpighian tubules were fixed in a mixture of absolute ethanol and 

glacial acetic acid (3:1, v/v) solution for 1 min, rinsed in 70% ethanol for 5 min and 

subjected to the fluorescent Feulgen reaction, which is a cytochemical assay specific for 

DNA (Mello & Vidal, 2017). The acid hydrolysis step of the Feulgen reaction was 

performed in 4 M HCl for 65 min at 25 °C (Mello et al., 2001). The Schiff reagent was 

diluted in sulfurous water (1:9, v/v). Following treatment with the Schiff reagent, the 

preparations were rinsed in three baths of sulfurous water (5 min each), rinsed in 

distilled water, air-dried, cleared in xylene for 10 min and mounted in 

VECTASHIELD® (Vector Laboratories, Burlingame, CA, USA). Malpighian tubules 

were used as the study organ because of their well-known cell biology, cytogenetics, 

fine structure and physiological and epigenetic characteristics (Mello, 1971, 1989; 

Mello & Dolder, 1977; Wigglesworth, 1984; Mello et al., 1995, 2001; Campos et al., 

2002; Alvarenga et al., 2011, 2016).

Confocal Microscopy

The fluorescent images were examined using a Leica TS SP5 II broadband confocal 

microscope (Wetzlar, Germany) equipped with argonium and 543-nm and 633-nm 

helium-neonium lasers, 63-x and 100-x objectives, and the Leica Application Suite AF 

(Leica Microsystems) software at the LACTAD facilities (Unicamp, Campinas, Brazil). 

A spacing of 0.13 µm between optical sections was used for each nucleus. Because the 

nuclear size varies as a function of the insect developmental phase, further spacing 

compensation was performed with the software during the 3-D reconstruction. Twenty-

six nuclei from 3rd instar nymphs, 69 nuclei (48 of which were single-chromocentered 

nuclei) from 5th instar nymphs and 30 nuclei (19 of which were single-chromocentered 

nuclei) from adults were analyzed.

Image Analysis and Statistics
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The proximal (shorter) and distal (longer) axial distances between the chromocenters 

and the nuclear periphery were measured in the X, Y and Z axes using Image Pro-Plus 7 

(Media Cybernetics, Inc.) software. A schematic representation of these axes is shown 

in Fig. 1. Comparisons were made through the Kruskal-Wallis and Mann-Whitney tests 

using Minitab 18™ (State College, PA, USA) software.

Fluorescence in Situ Hybridization (FISH): Probe Design, Hybridization and 

Detection

DNA was isolated from the leg muscles of four adult T. infestans specimens using the 

Wizard Genome DNA Purification kit (Promega, Madison, USA). The 18S rDNA 

fragments were amplified. The primer sets used for PCR were as follows: Sca 18SF (5’ 

CCC CGT AAT CGG AAT GAG TA) and Sca 18SR (5’ GAG GTT TCC CGT GTT 

GAG TC) (Cabral-de-Mello et al., 2010). The PCR products were labeled via nick-

translation using biotin-14-dATP (Invitrogen, Carlsbad, USA). The Malpighian tubules 

of five 5th instar nymphs of T. infestans were fixed in an absolute ethanol-glacial acetic 

acid (3:1, v/v) solution for 1 min, squashed in a drop of 50% acetic acid aqueous 

solution, dehydrated in an ethanol series, and air-dried. The preparations were then 

subjected to treatment with 100 µg/mL RNase A (Sigma, St. Louis, MO, USA) for 1 h 

at 37°C, rinsed in a 2 x SSC solution for 10 min, postfixed in 4% formaldehyde for 10 

min at room temperature and rinsed again in the 2 x SSC solution for 10 min. The 

samples were subsequently treated with 30 µL of the hybridization mixture, which 

contained 100 ng of the labeled probe, followed by denaturation/renaturation cycles and 

posthybridization rinses. The detailed protocol was previously described (Pinkel et al., 

1986; Alvarenga et al., 2018). The probe was detected using a solution composed of 5 

µg/mL streptavidin-Alexa Fluor 488 conjugate (Invitrogen) and 5% BSA/4SSC/0.2% 

Tween 20 (1:100, v/v) for 1 h in a moist chamber. Then, the preparations were rinsed in 

4-x SSC/0.2% Tween 20 at room temperature, counterstained with DAPI and mounted 

in VECTASHIELD® (Vector Laboratories).

FISH: Ordinary Fluorescence Microscopy

The nuclear images of at least 20 nuclei were captured (12 of which were single-

chromocentered nuclei) using an Olympus BX61 microscope equipped with the 
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appropriate filters and a DP70 digital camera. Image merging was performed using 

Adobe Photoshop CS5. 

FISH: Confocal Microscopy

3-D observations were made using a Leica TS SP5 II broadband confocal microscope 

(Wetzlar, Germany) equipped with argonium and helium-neonium lasers, 63-x and 100- 

x objectives, and the Leica Application Suite AF (Leica Microsystems) software. At 

least 20 nuclei were examined.

Results

Chromocenter Topology

The chromocenters of the single- and multichromocentered nuclei in the Feulgen-

stained Malpighian tubules of T. infestans consistently presented a deeper fluorescence 

in comparison with euchromatin (Fig. 2). All the examined nuclei exhibited an 

ellipsoidal shape with a shorter nucleus axis in the Z-coordinate, and the diameters of 

the X- and Y-axes differing from each other (Fig. 3; Table 1 and Suppl. Table S1). 

Examples of the nuclear images, image gallery and 3D-nuclear reconstitution of the 

Feulgen-stained preparations are shown in Supplementary Figs. S1-S3 and Video 1. The 

nuclei of the adult specimens are similar to those of the 5th instar nymphs. The 

measurements taken using confocal microscopy demonstrated a tendency of the 

chromocenters to be close to the nuclear periphery based on the significant difference in 

the proximal and distal distances between the chromocenters and the nuclear periphery 

(Fig. 3; Table 1). However, there is no strict contiguity between the chromocenters and 

the nuclear periphery. 

The values of the proximal and distal distances between the chromocenters and 

the nuclear periphery in the X-, Y- and Z-axes were highly variable (Table 1). These 

distances in the X- and Y-axes increase along nymphal development (Fig. 3, Table 1 

and Suppl. Table S2), but those in the adult phase and the 5th nymphal instar do not 

differ from each other with the exception of the distance in the Y-axis in single-

chromocentered nuclei (Suppl. Table S2). In the Z-axis, the proximal and distal 

distances between the chromocenters and the nuclear periphery do not significantly 
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change with the progress of nymphal development but they increase in the single-

chromocentered nuclei of the adult specimens (Table 1 and Suppl. Table S2). 

The nuclear diameters in the X- and Y-axes also increase with the progress of 

nymphal development, but they decrease slightly in the adult phase (Table 1 and Suppl. 

Table S2). The nuclear diameter in the Z-axis increases with the progress of nymphal 

development but it does not change in the adult phase (Table 1 and Suppl. Table S2).

18S rDNA Sites

The fluorescent signals for 18S rDNA examined using fluorescence microscopy 

followed by observations with confocal microscopy (Fig. 4a, b) and 3-D reconstitution 

(Videos 2 and 3), were more intense on the surface of the chromocenters. In other 

nuclear areas, fluorescent signals were also observed and, in certain cases, corresponded 

to heterochromatic corpuscles that were apparently budding from the large 

chromocenter body, where multichromocentered bodies were in the process of 

formation (Video 3). The fluorescent signals on the chromocenter areas face not only 

the interior but also the periphery of the cell nuclei (Videos 2 and 3).

Discussion

Because the fluorescent Feulgen reaction permits the identification, localization and 

quantification of DNA (Mello & Vidal, 2017), the distribution of global chromatin and 

of the heterochromatic bodies that constitute chromocenters in the nuclei of the 

Malpighian tubules of T. infestans could be adequately analyzed using confocal 

microscopy. The red fluorescence emitted by chromatin apurinic acid using the Feulgen 

reaction against the black background enables efficient establishment of the nuclear 

periphery. 

The morphometric results obtained in the present work demonstrated a tendency 

of the chromocenters to locate with proximity to the nuclear periphery during the 

nymphal stages and adult phase, as the proximal and distal distances between the 

chromocenters and the nuclear periphery differed especially in the X- and Y-optical 

axes. The proximity of the chromocenters to the nuclear periphery, as assessed using 

confocal microscopy, is consistent with images obtained using ordinary microscopy 

observations of nonfluorescent Feulgen-stained cells (Suppl. Fig. S4a) and electron 
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microscopy images, one of which is shown in Supplementary Fig. S4b. Previous data 

using a mathematical descriptor (AD2 = average square distance) after computation of 

absorbances obtained using a Zeiss Universal double-beam automatic scanning 

microspectrophotometer (UMSP-I, University of Freiburg, Germany) demonstrated that 

the chromocenter areas come farther from the center of the nuclear image in Malpighian 

tubule cells of 4th and 5th instar nymphs of T. infestans (Mello, 1978). The AD2 

descriptor compares the peripheral property of a given collection of points before and 

after “cleaning” of the absorbances of noncondensed chromatin areas using Moore’s 

squares ratio method which searches for the maximal contrast cutoff point for 

distinguishing heterochromatin from euchromatin (Vidal et al., 1973).

The present confocal microscopy results are also consistent with reports of 

other organisms although in such cases, the chromocenters appeared adjacent or 

considerably closer to the nuclear envelope (Ellison & Howard, 1981; Hochstrasser et 

al., 1986; Cryderman et al., 1999; Fransz et al., 2002; Fang & Spector, 2005; Berr & 

Schubert, 2007; De Nooijer et al., 2009).

The fact that the proximal and distal distances between the chromocenters and 

the nuclear periphery increased with nymphal development, whereas these distances 

remained constant in the adult stage, is likely related to the increased polyploidy that is 

demonstrated in the Malpighian tubule cell nuclei during nymphal development; the 

doubling of the DNA content ceases in adult individuals (Mello, 1971, 1975, 1978). 

When these distances continue to increase or even decrease in adult specimens, such 

factors as a variable presence of nonhistone proteins and/or rRNA transcripts due to 

functional requirements, may be responsible. Variable hydration levels are also known 

to contribute to the nuclear volume (Mello, 1972).

Considering that there is variability in proximal and distal distances between the 

chromocenters and the nuclear edge in the studied developmental phases and the adult 

stage of the Malpighian tubules of T. infestans, it is hypothesized that the chromocenters 

may exhibit movement within the cell nuclei. This phenomenon might occur due to the 

physical pressure exerted by the euchromatin mass and/or the variability in the HP1-α 

content or nucleolar masses that have been reported to occur associated with these 

heterochromatic bodies (Mello et al., 1990; Alvarenga et al., 2016). Clearly, to 

demonstrate that chromocenter motions occur within the nuclei in vivo observations 

monitored by microcinematography may be relevant.

#1
#2

#1
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Although the euchromatin in the Malpighian tubules of T. infestans exhibits 

acetylation of lysine 9 in histone H3 (H3K9ac) and lysine 8 and 16 in histone H4 

(H4K8ac and H4K16ac), as well as mono- and di-methylation of lysine 9 in histone H3 

(H3K9me and H3K9me2) and lysine 20 in histone H4 (H4K20me and H4K20me2), 

these epigenetic marks have not been encountered in chromocenters (Alvarenga et al., 

2016). However, the H3K9ac, H4K8ac and H3K9me marks were shown to be 

concentrated around the chromocenter in single-chromocentered nuclei (Alvarenga et 

al., 2016). This report leads to the hypothesis that in the chromocenter periphery or in 

the euchromatin in close contact with the chromocenter, transcriptional activity may 

occur, as several authors have described the enrichment in these marks in the promoters 

of active genes (Sterner & Berger, 2000; Talasz et al., 2005; Wu et al., 2005; Bártova et 

al., 2008). Particularly in T. infestans, these marks may be related to rDNA 

transcription, as the nucleolar mass closely circumscribes the chromocenter(s) (Mello et 

al., 1990). This hypothesis was confirmed by the present FISH results, as assessed using 

confocal microscopy and 3-D image videos, in which 18S rDNA signals were revealed 

in the periphery of the chromocenter(s). During the formation of multichromocentered 

nuclei, when small chromocenters bud from a large chromocenter body, the 18S rDNA 

signals follow the surface of all these structures.

According to Pita et al. (2017), the lineage of T. infestans currently found in 

Brazil has an Andean origin. In this lineage, chromatin regions containing 45S rDNA 

are assumed to occur in only one of the large autosome pairs; in contrast, in the non-

Andean lineage, these regions would be present in the X sex chromosomes (Panzera et 

al., 2012). The large A, B and C autosome pairs and the X and Y sex chromosomes 

form the chromocenters of T. infestans (Schreiber et al., 1972; Solari, 1979). Therefore, 

regardless of the evolutionary origin of the T. infestans specimens analyzed in the 

present work, the nucleolus organizer region containing the 18S rDNA is assumed to 

compose part of their chromocenter(s) while also being distributed in various points of 

chromatin outside of the chromocenters. The integration of the nucleolus organizer in 

the chromocenter(s) could be concluded after a genomic analysis of the structure 

isolated through microdissection, which is a matter for further investigation.

In conclusion, the position that the chromocenters of T. infestans occupy within 

Malpighian tubule cell nuclei is nonrandomly distributed and it may be susceptible to 

dynamic motions. Genome regions containing 18S rDNA appear to be distributed in the 

periphery of these chromocenters. Despite the relative proximity of the chromocenters #1
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to the nuclear periphery, there is no association of a relevant gene locus for cell function 

as that of the 18S rDNA facing a preferential central or peripheral nuclear position. 

Because genome regions containing 18S rDNA were also present in chromocenter 

regions facing the nuclear periphery, the proximity of the chromocenters to this nuclear 

region is not assumed to be associated with an overall gene silencing. What triggers a 

chromocenter heterochromatin, such as that of T. infestans, to nuclear peripheric sites 

and enables transcription at the chromocenters’ periphery are still unanswered questions 

as noted recently by Allshire and Madhani (2018).
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Legends for figures

Fig. 1. Tri-dimensional model of a structure similar to a Malpighian tubule nucleus of T. 

infestans, as a reference to represent the proximal (p) and distal (d) distances in the X, Y 

and Z coordinates between a chromocenter body (white c) and the nuclear periphery. 

The whole nucleus schematic structure (a) and the optical section plans (b, c) are shown.

Fig. 2. Fluorescent Feulgen-stained nuclei of T. infestans 5th instar nymphs. The images 

show part of the galleries that were obtained for single- (a) and multichromocentered (b) 

nuclei using confocal microscopy. The arrows indicate the chromocenter(s).

Fig. 3. Comparison of the distances in the X, Y and Z axes between the chromocenters 

and the nuclear periphery in Feulgen-stained cell nuclei of Malpighian tubules of T. 

infestans. Nuclear diameters (axes) were also compared. Vertical lines on the bars 

indicate the mean standard deviations; horizontal lines in the bars indicate the median 

values. * and ●, differences significant at P 0.05 between compared groups. Statistical 

comparisons are listed in Supplementary Tables 1 and 2. M, multichromocentered 

nuclei; S, single-chromocentered nuclei.

Fig. 4. FISH with 18S rDNA probe signals (green color) in 5th instar nymphs of T. 

infestans. These signals are especially intense on the surface of the chromocenters.

Video 1. A 3-D view from a fluorescent Feulgen-stained single-chromocentered nucleus 

of a 5th instar nymph.

Videos 2 and 3. 3-D views from FISH-treated nuclei of T. infestans reveal the spatial 

distribution of the 18S rDNA sites especially with respect to the chromocenters (green 

color). The preparations were counterstained with DAPI (blue color).
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Fig. 1. A tri-dimensional model of a structure similar to a Malpighian tubule nucleus of T. infestans, as a 
reference to represent the proximal (p) and distal (d) distances in the X, Y and Z coordinates between a 

chromocenter body (white c) and the nuclear periphery. The whole nucleus schematic structure (a) and the 
optical section plans (b,c) are shown. 
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Fig. 2. Fluorescent Feulgen-stained nuclei of T. infestans 5th instar nymphs. The images show part of the 
galleries that were obtained for single- (a) and multi-chromocentered (b) nuclei using confocal microscopy. 

The arrows indicate the chromocenter(s). 

150x69mm (300 x 300 DPI) 

Page 22 of 33

Cambridge University Press

Microscopy and Microanalysis



For Peer Review

 

Fig. 3. Comparison of the distances in the X, Y and Z axes between the chromocenters and the nuclear 
periphery in Feulgen-stained cell nuclei of Malpighian tubules of T. infestans. Nuclear diameters (axes) were 
also compared. Vertical lines on the bars indicate the mean standard deviations; horizontal lines in the bars 
indicate the median values. * and ●, differences significant at P 0.05 between compared groups. Statistical 

comparisons are listed in Supplementary Tables 1 and 2. M, multi-chromocentered nuclei; S, single-
chromocentered nuclei. 
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Table 1. Proximal and distal distances between the chromocenters and the nuclear periphery in Malpighian tubule cells of T. infestans.

Distances Axes 3rd instar nymphs 5th instar nymphs Adults

(µm) Single-

chromocentered 

nuclei (n = 26)

Single-

chromocentered

nuclei (n = 48)

Multi-

chromocentered

nuclei (n = 21)

Single-

chromocentered

nuclei (n = 19)

Multi-

chromocentered

nuclei (n = 11)

X SD CV (%) X SD CV (%) X SD (CV %) X SD (CV %) X SD (CV %)

Proximal X 1.26 0.70 52.57 3.25 1.32 40.59 3.07 1.17 38.23 2.96 1.00 33.26 3.19 1.51 47.50

Y 1.62 0.73 44.83 5.41 2.07 38.28 5.30 2.00 37.94 5.79 1.64 28.31 5.15 1.66 32.12

Z 0.52 0.13 25.65 0.58 0.38 65.90 0.71 0.44 61.40 1.03 0.50 46.88 0.88 0.42 47.60

Distal X 2.58 0.99 38.44 5.80 1.92 33.14 6.72 1.92 28.68 5.38 1.46 27.19 5.84 1.50 25.52

Y 3.20 0.90 27.57 9.26 2.90 31.26 11.77 2.50 21.29 9.05 2.14 23.70 8.68 3.73 43.00

Z 0.83 0.22 26.87 0.93 0.66 71.56 1.31 0.96 70.94 1.75 0.70 40.07 1.76 0.90 50.59

Nuclear X 7.22 1.35 18.62 15.68 2.86 18.23 14.93 2.40 16.10 12.72 2.21 17.37 13.69 4.80 34.86

diameter Y 9.37 1.32 14.06 23.27 3.80 16.34 24.16 3.04 12.60 20.47 3.18 15.53 19.84 5.67 28.60

Z 3.12 0.78 24.90 4.53 1.08 23.85 4.80 1.26 26.70 5.06 1.45 28.72 5.26 2.33 44.43

CV, coefficient of variability; SD, standard deviation; X, arithmetic means
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Fig. 4. FISH with 18S rDNA probe signals (green color) in 5th instar nymphs of T. infestans. These signals 
are especially intense in the surface of the chromocenters. 
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Table S1. Proximal and distal distances between the chromocenter (s) and the nuclear 

periphery in Feulgen-stained cell nuclei of Malpighian tubules of T. infestans compared 

in the X-, Y- and Z- optical axes.

Developmental

stage

Nuclear

phenotype

Parameters Axis

comparison

Test P Decision

Nymphal 3rd 
instar

SC Proximal 
distance

X x Y x Z KW 0.0000 SS

X x Y MW 0.0590 NS
X x Z MW 0.0000 SS
Y x Z MW 0.0000 SS

Distal
distance

X x Y x Z KW 0.0000 SS

X x Y MW 0.0270 S
X x Z MW 0.0000 SS
Y x Z MW 0.0000 SS

Nucleus axis X x Y x Z KW 0.0000 SS
X x Y MW 0.0000 SS
X x Z MW 0.0000 SS
Y x Z MW 0.0000 SS

Nymphal 5th 
instar

SC Proximal 
distance

X x Y x Z KW 0.0000 SS

X x Y MW 0.0000 SS
X x Z MW 0.0000 SS
Y x Z MW 0.0000 SS

Distal
distance

X x Y x Z KW 0.0000 SS

X x Y MW 0.0000 SS
X x Z MW 0.0000 SS
Y x Z MW 0.0000 SS

Nucleus axis X x Y x Z KW 0.0000 SS
X x Y MW 0.0000 SS
X x Z MW 0.0000 SS
Y x Z MW 0.0000 SS

MC Proximal 
distance

X x Y x Z KW 0.0000 SS

X x Y MW 0.0020 SS
X x Z MW 0.0000 SS
Y x Z MW 0.0000 SS

Distal
distance

X x Y x Z KW 0.0000 SS

X x Y MW 0.0000 SS
X x Z MW 0.0000 SS
Y x Z MW 0.0000 SS

Nucleus axis X x Y x Z KW 0.0000 SS
X x Y MW 0.0000 SS
X x Z MW 0.0000 SS
Y x Z MW 0.0000 SS
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Adult SC Proximal 
distance

X x Y x Z KW 0.0000 SS

X x Y MW 0.0000 SS
X x Z MW 0.0000 SS
Y x Z MW 0.0000 SS

Distal
distance

X x Y x Z KW 0.0000 SS

X x Y MW 0.0000 SS
X x Z MW 0.0000 SS
Y x Z MW 0.0000 SS

Nucleus axis X x Y x Z KW 0.0000 SS
X x Y MW 0.0000 SS
X x Z MW 0.0000 SS
Y x Z MW 0.0000 SS

MC Proximal 
distance

X x Y x Z KW 0.0000 SS

X x Y MW 0.0000 SS
X x Z MW 0.0000 SS
Y x Z MW 0.0000 SS

Distal
distance

X x Y x Z KW 0.0000 SS

X x Y MW 0.0200 S
X x Z MW 0.0000 SS
Y x Z MW 0.0000 SS

Nucleus axis X x Y x Z KW 0.0000 SS
X x Y MW 0.0010 SS
X x Z MW 0.0000 SS
Y x Z MW 0.0000 SS

KS, Kruskal-Wallis; MC, multi-chromocentered nuclei; MW, Mann-Whitney; NS, non- 
significant; SC, single-chromocentered nuclei; S, significant; SS, highly significant.
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Table S2. Proximal and distal distances between the chromocenter (s) and the nuclear 

periphery in the X, Y, and Z optical axes in Feulgen-stained cell nuclei of Malpighian 

tubules of T. infestans compared between developmental stages.

Parameters Developmental 
stage comparison

Nuclear 
phenotype

Test P Decision

X-axis 
proximal 
distance

3rd x 5th instar 
nymphs x adults

SC KW 0.0000 SS

3rd x 5th instar 
nymphs

SC MW 0.0000 SS

3rd instar nymphs 
x adults

SC MW 0.0000 SS

5th instar nymphs 
x adults

SC MW 0.6165 NS

MC MW 0.9698 NS

X-axis distal 
distance

3rd x 5th instar 
nymphs x adults

SC KS 0.0000 SS

3rd x 5th instar 
nymphs

SC MW 0.0000 SS

3rd instar nymphs 
x adults

SC MW 0.0000 SS

5th instar nymphs 
x adults

SC MW 0.4867 NS

MC MW 0.1904 NS

Y-axis 
proximal 
distance

3rd x 5th instar 
nymphs x adults

SC KW 0.0000 SS

3rd  x 5th instar 
nymphs

SC MW 0.0000 SS

3rd instar nymphs 
x adults

SC MW 0.0000 SS

5th instar nymphs 
x adults

SC MW 0.4911 NS

MC MW 0.9368 NS
Y-axis distal 
distance

3rd x 5th instar 
nymphs x adults

SC KW 0.0000 SS

3rd x 5th instar 
nymphs

SC MW 0.0000 SS

3rd instar nymphs 
x adults

SC MW 0.0000 SS

5th instar nymphs 
x adults

SC MW 0.9169 NS

MC MW 0.0155 S

Z-axis 
proximal 
distance

3rd x 5th instar 
nymphs x adults

SC KW 0.0000 SS
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3rd x 5th instar 
nymphs

SC MW 0.5572 NS

3rd instar nymphs 
x adults

SC MW 0.0000 SS

5th instar nymphs 
x adults

SC MW 0.0002 SS

MC MW 0.0131 S
Z-axis distal 
distance

3rd x 5th instar 
nymphs x adults

SC KW 0.0000 SS

3rd x 5th instar 
nymphs

SC MW 0.4395 NS

3rd instar nymphs 
x adults

SC MW 0.0000 SS

5th instar nymphs 
x adults

SC MW 0.0001 SS

MC MW 0.1532 SS

Nucleus X-
axis

3rd x 5th instar 
nymphs X adults

SC KW 0.0000 SS

3rd x 5th instar 
nymphs

SC MW 0.0000 SS

3rd instar nymphs 
x adults

SC MW 0.0000 SS

5th instar nymphs 
x adults

SC MW 0.0001 SS

MC MW 0.1218 NS
Nucleus Y-
axis

3rd x 5th instar 
nymphs x adults

SC KW 0.0000 SS

3rd x 5th instar 
nymphs

SC MW 0.0000 SS

3rd instar nymphs 
x adults

SC MW 0.0000 SS

5th instar nymphs 
x adults

SC MW 0.0063 SS

MC MW 0.0391 S
Nucleus Z-
axis

3rd x 5th instar 
nymphs x adults

SC KW 0.0000 SS

3rd x 5th instar 
nymphs

SC MW 0.0000 SS

3rd instar nymphs 
x adults

SC MW 0.0000 SS

5th instar nymphs 
x adults

SC MW 0.3622 NS

MC MW 0.9368 NS

KS, Kruskal-Wallis; MC, multi-chromocentered nuclei; MW, Mann-Whitney; NS, non- 
significant; SC, single-chromocentered nuclei; S, significant; SS, highly significant.
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Fig. S1. Example of a gallery composed of confocal microscopy optical sections of a 

Feulgen-stained Malpighian tubule cell nucleus from a single-chromocentered 3rd instar 

nymph of T. infestans.
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Fig. S2. Example of a gallery composed of confocal microscopy optical sections of a 

Feulgen-stained Malpighian tubule single-chromocentered cell nucleus from a 5th instar 

nymph of T. infestans.
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Fig. S3. Example of a gallery composed of confocal microscopy optical sections of a 

Feulgen-stained Malpighian tubule multi-chromocentered cell nucleus from a 5th instar 

nymph of T. infestans.
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Fig. S4. Proximity of the chromocenter to the nuclear periphery in cells of T. infestans. 

a. A Feulgen-stained nucleus. b. Ultrastructural image of Malpighian tubule cells fixed 

in phosphate buffered 3% glutaraldehyde at pH 7.2 for 3 h, postfixed in phosphate 

buffered 1% osmium tetroxide for one hour, embedded in Epon 812, and stained with 

uranyl acetate and lead citrate. Observation made with a Zeiss EM 9 electron 

microscope. (Mello MLS, Dolder H). ch, chromocenter; n, nucleus; v, cytoplasmic 

vesicle. Bars equal to 20 µm (a) and 1 µm (b).
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