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Properties of the ground state of an unpolarized ultracold Fermi gas along the BCS-BEC crossover are
investigated by the variational and diffusion Monte Carlo methods. We apply the Wigner-Bethe-Peierls boundary
condition in our calculations to avoid any bias from using an interatomic potential with finite effective range.
Properties for several values of the scattering length are studied in the range −8 � 1/akF � 4, including the
unitary limit. The contact parameters as a function of scattering length are obtained by fitting the pair distribution
functions for particles with different spins. The energies and contact parameters are in very good agreement with
experimental data reported in the literature.
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I. INTRODUCTION

Ultracold gases, because of their fantastic tunability, allow
one to go from the weak interaction regime to the strong
one. They are of interest by themselves and because it is
possible to use them to simulate condensed-matter systems
[1]. An important achievement in the research on ultra-
cold Fermi gases was the investigation of the crossover of
a Bose-Einstein condensate (BEC) to a Bardeen-Cooper-
Schrieffer (BCS) superfluid; for a review, see Ref. [2]. These
are dilute systems and their interaction potential ranges are
negligible compared to the mean distance between particles
and to the thermal de Broglie wavelength. Thus these systems
have predominantly two-body interactions that can be de-
scribed through collisions between the atoms. The dominant
effect in the collision dynamics is a single s-wave partial-
wave scattering. This is because relative momenta of particles
are small and, as is shown by the effective range theory,
collisions are completely determined by the s-wave scattering
for fermionic unpolarized systems in the ultracold regime. The
interactions at this low-energy limit can be described by a
single parameter, the scattering length. This situation allows
the replacement of the true interatomic potential by a simpler
one, as long as it is adjusted to reproduce a given value of the
scattering length.

Until recently, theoretical studies were performed with
pseudopotentials [3] for the contact interaction or finite-range
potentials extrapolated to zero range, to avoid dealing with an
ill-behaved wave function in this limit [3–9]. A series of calcu-
lations to perform the extrapolation to a zero-range limit is not
the only inconvenience of this approach. Uncertainties about
the influence of the true ground state of the chosen potential
are among the difficulties of this approach. In a previous work,
we showed that a contact or zero-range potential can be used
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in Monte Carlo calculations [10] to investigate the properties
of an unpolarized, ultracold Fermi gas in the unitary limit
where the scattering length a → ±∞.

In this paper, we use a zero-range potential to investigate
the equation of state of an ultracold Fermi gas in the BCS-
BEC crossover. We have also obtained the radial distribution
functions of unlike spins and the contact parameter per unit
volume for several values of the scattering length a in the
range −8 < 1/akF < 4, where kF is the Fermi wave vector.
The fitting of the radial distribution functions for different
values of akF provides the contact parameters.

II. METHODOLOGY

To treat the system of N unpolarized, ultracold Fermi
atoms, we consider a zero-range potential and apply the
Wigner-Bethe-Peierls boundary condition method [11], where
the boundary condition for the wave function at the center
of the well replaces the Schrödinger equation solution. The
boundary condition satisfied by particle pairs of the wave
function in the limit of very weak interactions is given by

ψ (ri j′ → 0) ∝ 1

ri j′
− 1

a
, (1)

when the ri j′ = |ri − r j′ | are smaller than a cutoff. We denote
up-spin (down-spin) particles with unprimed (primed) coordi-
nates. Other pairs are treated as satisfying the free Schrödinger
equation

− h̄2

2m

N∑
i

∇2
i ψ (R) = Eψ (R) (2)

where R ≡ {r1, r1′ , . . . , rN/2, rN ′/2}.
The Wigner-Bethe-Peierls boundary condition of Eq. (1)

has a universal form for short-range potentials. These po-
tentials are characterized by the property that beyond a cer-
tain radius of action (or range) r0 they can be neglected.
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Qualitatively, this condition is met at distances r � r0 if the
confinement kinetic energy inside a sphere of radius r is
much larger than the absolute value of the potential energy
outside it.

The wave-function model used to describe the system must
be antisymmetric and it is given by

�T (R) =
∏
i j′

f (ri j′ )�BCS, (3)

�BCS = A[φ(r11′ )φ(r22′ ) · · · φ(rN/2 N ′/2)] (4)

where f (r) is a factor of the Jastrow form that correlates only
up-down spin pairs. The BCS function �BCS takes into ac-
count the antisymmetrical character of the system’s fermionic
wave function. The operator A antisymmetrizes particles with
the same spin and φ(r) describes the Cooper-pair orbital the
general form of which is

φ(r) =
Ns∑
j

α j exp(ik j · r), (5)

where {α j} are variational parameters associated with the dif-
ferent Ns shells with momenta k j = 2π

L (nx, ny, nz ). The BCS
part of the wave function in Eq. (3) reduces to a product of
two Slater determinants if the number of shells is such that the
maximum value of the vector wavelength is kmax = kF [8,12–
14]. The number of shells is increased until variational energy
has converged. Most of the calculations for the scattering
length values considered in this paper used Ns = 20, the same
number of shells used in the unitary regime of our previous
work [10]. However, we used Ns = 10 for −1.0 < akF < 0
and 0 < akF � 0.75 corresponding to the BCS and the BEC
regions, respectively.

The computational simulation starts with the variational
minimization of the expectation value of the Hamiltonian:

EVMC = 〈�T |H |�T 〉
〈�T |�T 〉 . (6)

The variational principle ensures that this energy is an upper
bound of the exact ground-state energy. The set of parameters
to be optimized consists of those in the Jastrow term and the
coefficients of the shells {α}. The stochastic reconfiguration
method [15] is employed to optimize the set of shell param-
eters for each value of the scattering length. By sampling
a set of configurations distributed in accordance with the
probability density obtained from |�T |2, the energy of Eq. (6)
is estimated through the average of the local energy:

EL =
〈

H�T

�T

〉
. (7)

The Metropolis algorithm [16] is used in the sampling pro-
cess. However, because of the Wigner-Bethe-Peierls boundary
condition, and the form of the trial wave function, the local
energy of the system diverges when the distance between two
particles with different spins goes to zero. Those divergences
are integrable and handled numerically by inserting one more
move in the standard Monte Carlo sweep [10,14]. After an
attempt to move the N particles, the particle positions of the
closest unlike spin pair are exchanged. The new configuration
is then used in the energy calculation with the heat-bath accep-

tance probability. This procedure eliminates the divergences
in the local energy for the scattering length range studied in
this paper.

The Jastrow term in Eq. (3) is given by

f (r) =
{

A
[
exp

(− r
a

) + cosh(λr) − r
a

]
1
r , 0 < akF < ∞,

B
[
cosh(λr) − r

a

]
1
r , −∞ < akF < 0.

(8)

The constants A and B are chosen such that f (r = D) =
1, where D is the range of the Jastrow term, D � L

2 . It is
optimized to give the lowest variational energy in Eq. (6).
The parameter λ is set in a way to guarantee the continuity
of the wave function by making df

dr = 0 at r = D. For positive
values of scattering length, an exponential term takes into
account the bound state of the Fermi gas. Pairs typically
dominate the behavior of the system when their sizes are
smaller than the average distance between the particles of the
gas, in other words, when akF < 3.0 [5,13]. For the range
of negative scattering length, in Eq. (8), there is no bound
state and the Jastrow term keeps the condition f (r) ∝ ( 1

r − 1
a )

when r → 0. In the unitary regime the Jastrow term is the
same used when a → ±∞ [10].

To go beyond the variational calculations we apply the
diffusion Monte Carlo (DMC) method. In this method the
Schrödinger equation is written as a diffusion equation:

−∂ψ (R; τ )

∂τ
= (H − E0)ψ (R; τ ), (9)

where τ = it/h̄ is an imaginary time and E0 is an estimation
of the system ground-state energy, which is inserted in the
equation to stabilize the norm of the eigenstate ψ . A typical
way [17,18] of solving Eq. (9) involves writing a propagation
equation:

�T (R)ψ (R; τ + �τ )

=
∫

d3R′ �T (R)

�T (R′)
G(R, R′; �τ )�T (R′)ψ (R′, τ ), (10)

where G(R, R′; �τ ) is a Green’s function defined in a small
time �τ and �T is used as a guide function. The propagator
in Eq. (10) can be rewritten in terms of the free-particle
propagator [13,18]:

�T (R)

�T (R′)
G(R, R′; �τ )

= G0(R, R′)
�T (R)G(R, R′; �τ )

�T (R′)G0(R, R′)
(11)

≈ G0(R, R′) exp

{
−�τ

2
[EL(R) + EL(R′)] − E0�τ

}
, (12)

where G0 is a propagator of free particles with a drifted term
like

G0(R, R′) =
[

m

2π h̄2�τ

] 3N
2

exp

[
− m

2h̄2�τ

(
R − R′

− h̄2

2m
�τ∇ ln[�(R)]

)2
]

(13)
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FIG. 1. Energy per particle as a function of 1/akF . The inset
shows the results around the unitary limit (akF → ∞) and the line
is the fit of the equation of state in Eq. (15).

used to move the particles in the system. The short time �τ

is small enough to avoid divergences during the simulation,
since the logarithmic term prevents an overlap in the posi-
tions of two particles with different spins. After propagating
the particles through Eq. (13), the branching process of the
walkers is considered with the weight given by the exponential
term in Eq. (12). The fixed-node approximation is considered
in this paper, that is, we assign zero weight to any walker
trying to cross the nodal surface of the guiding function during
the drift process. This approach avoids the typical signal
problem of systems formed by fermions and provides an upper
bound for the ground-state energy.

After sampling the particle positions with the propagator
of Eq. (12), the DMC energy is calculated through the mixed
estimator

EDMC = 〈�T |H |ψ〉
〈�T |ψ〉 . (14)

Since the nodes of the wave function are fixed, Eq. (14)
provides an upper bound for the eigenenergy of the system
[17]. On the other hand, EDMC goes to the exact value of the
energy as τ → ∞ within a given nodal surface.

III. RESULTS AND DISCUSSION

Energies per atom as a function of 1/akF are presented
in Fig. 1. The red squares represent the variational energies
and the solid black circles are the DMC energies. The results
are obtained from computational simulations with N = 66
particles inside a box with periodic boundary conditions,
such that we have ensured the thermodynamic limit [19].
While both energies are very close, for 1/akF � −1.0, the
difference increases significantly as the system approaches
the deep BEC region (1/akF � 1.0). This is an indication that
the variational model gives a good description of the Fermi
gas in the BCS region. The inset of Fig. 1 shows the DMC
energies for the range −1.0 < 1/akF < 1.0. The equation of

FIG. 2. Energy per particle as a function of 1/akF (see text). The
green solid line is the difference of the energies obtained through the
equation of state of the gas formed by pairs of unlike spin particles
in the BEC limit in Eq. (16). The solid black line is the result of
the BCS limit [27,28]. The inset shows energies for different values
of �τ .

state near the unitary regime was fitted to the expression

E

NEFG
= ξ − ζ

akF
− 5ν

3(akF )2
+ · · · (15)

where EFG is the free Fermi gas energy, ξ is the Bertsch pa-
rameter, ζ is related to the contact parameter, and ν a constant.
Our fit gives ξ = 0.394(1), ζ = 0.867(5), and ν = 0.478(2).
The contact parameter can be obtained [5,20–22] through the

derivative of the energy d (nE/N )
da−1 = − h̄2C

4πm , where n = k3
F

3π2 is the
system density. Performing the derivative of Eq. (15), the con-
tact parameter in the unitary limit C/k4

F = 2ζ/5π is estimated
as C/k4

F = 0.1104(6). The related quantity, the contact pa-
rameter per unit of volume, is given as C/NkF = 3π2C/k4

F =
3.27(2). This value is bigger than our previous result obtained
by fitting the unlike spin pair distribution function, 2.848(1)
[10]. Nevertheless, both values are in reasonable agreement
with experimental values obtained with different techniques.
Hoinka et al. [23] used Bragg spectroscopy to obtain 3.06(8),
and Sagi et al. [24] reported 2.9(3) by using radio-frequency
spectroscopy close to the unitary regime of the gas.

The formation of bound pairs of particles with different
spins can be more clearly seen if half of the pair binding
energy εb

2 = − h̄2

2ma2 is subtracted from the energy per particle
displayed in Fig. 1. This was done for all positive values
of the scattering length. We show these results for a DMC
calculation in Fig. 2. The energy difference tends to zero
when the positive scattering length decreases, indicating the
formation of bound pairs of particles with different spins.
This happens when the gas goes into the deep BEC regime.
This shows that the formation of Fermion pairs is a dominant
process when the scattering length is small enough. The pair
behavior begins to manifest for akF < 3.0 when the energy
per particle becomes negative. The solid green line is the

053601-3
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FIG. 3. The unlike spin pairs distribution function as a function
of the distance. The lines are the best fits to the function g(kF r) =
b0 + b

kF r ( 1
kF r − 2

akF
). In the inset we show g(kF r)/( 1

kF r − 1
kF a )2.

difference of energies calculated with the analytical equation
of state of the gas formed by pairs of unlike spin particles in
the BEC limit [9,12,25]:

E

N
− εb

2
= 5

18π
kF add

[
1 + 128

15
√

6π3
(kF add )3/2

]
EFG, (16)

where add = 0.6a [26] is the dimer-dimer scattering length.
The εb energy is equal to zero for negative scattering lengths
and at the unitary limit because there is no molecule formation
in these cases. Therefore, the values shown on the left side
of Fig. 2 coincide with the energy per particle of the system.
Note that the results tend to BCS perturbation expansion
of a weakly attractive Fermi gas [27,28] for 1/akF � −1;
this is the region where the variational model gives a good
description for the system and the variational energy is very
close to the one calculated with DMC, Fig. 1. In this regime,
the system promotes the formation of Cooper pairs. The inset
shows for different values of τ that our results are consistent
with the extrapolation �τ → 0.

The unlike spin pair distribution function at short limit
distances is given by g(r) = A( 1

r2 − 2
ar + · · · ) [5,21,29,30],

where A is proportional to the contact parameter. The contact
parameter C is associated with the two-particle short distance
behavior [21,31,32] and can be expressed [5] as C = 8π2n2A.
Therefore, the pair function distribution is related to the
contact parameter through

g(kF r) = 9π2

8

C

k4
F

[
1

(kF r)2 − 2

(akF )(kF r)

]
+ const. (17)

In Fig. 3, we present extrapolated results, g(kF r) =
2gDMC(kF r) − gVMC(kF r), for the unlike spin pair distribution
functions for different values of the scattering length, where
gDMC and gVMC are the results obtained in DMC and VMC
calculations, respectively. The lines are fitted curves to the

FIG. 4. Contact parameter per unit of volume as a function of
1/akF represented by green dots. The black dot is its value at the
unitary limit. Empty squares are the experimental results obtained
using Bragg spectroscopy [33]. The solid black line is the derivative
of Eq. (15). The blue and red lines are results of BCS perturbation
expansion [27,28,35] and for the BEC limit [9,12,25], respectively.
The inset shows the contact parameter minus the contribution of the
bound pair C0.

function g(kF r) � b0 + b
kF r ( 1

kF r − 2
akF

), where b0 and b are
parameters.

The contact parameter per unit of volume C/NkF = 8b/3 is
obtained by considering the parameter b of the fitted curves to
g(kF r) for each value of the scattering length in this paper.
The contact parameter per unit of volume as a function of
1/akF is represented by green dots in Fig. 4. At the unitary
limit, its value is depicted by a black dot. The black line is the
derivative of Eq. (15) as a function of −1/a The blue and red
lines are the derivatives of fitted curves shown in Fig. 2 for
BCS and BEC limits, respectively. Our quantum Monte Carlo
results are in very good agreement with the experimental
values obtained using Bragg spectroscopy [33]. The inset of
Fig. 4 shows the results for the contact parameters per unit of
volume minus the contribution of the bound pair C0/(NkF ) =
3π2C0/k4

F , where d (nεb/2)
da−1 = − h̄2C0

4πm , a contribution which is
zero for negative scattering lengths [22,34]. Our variational
results (not shown in the figure) are very close to those of the
extrapolated calculations for negative scattering lengths. This
is the same behavior observed for the results of the energy. It
is a further indication that our variational model gives a better
Fermi gas description near the BCS regime than in the BEC
regime, where pairs are formed by unlike spin particles.

IV. SUMMARY

We performed Monte Carlo simulations of an ultracold
Fermi gas with a contact interaction and finite scattering
lengths. The Wigner-Bethe-Peierls boundary condition is con-
sidered in the calculations. Our variational wave function

053601-4
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gives a good description of the system in the BCS region
for 1/akF � −1. Over the whole BCS-BEC crossover, our
results for the radial distribution of pairs g(kF r) and the
contact parameters, as a function of the scattering length,
are in very good agreement with experimental results ob-
tained via Bragg spectroscopy. Moreover, since we use a
zero-range potential as more than just a proof of principle,
our calculations produce results free from any bias arising
from extrapolations of a given potential to the zero-range
limit.
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