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This work presents a nonequilibrium statistical-thermodynamic approach to the study of a Fröhlich-Bose-
Einstein condensation of magnons under radio-frequency radiation pumping. Fröhlich-Bose-Einstein conden-
sates display a complex behavior consisting in steady-state conditions to the emergence of a synergetic
dissipative structure resembling the Bose-Einstein condensation of systems in equilibrium. Then a kind of
“two-fluid model” arises: the “normal” nonequilibrium structure and the Fröhlich condensate, which is shown to
be an attractor to the system. In this study we analyze some aspects of the irreversible thermodynamics of this
dissipative complex system. We obtained the expression for the informational entropy of the two-fluid condensate
and introduced an order parameter to characterize the role of the Fröhlich interaction in ordering the system. The
analysis highlights the order increase due to the Fröhlich interaction. We also study the informational entropy
production of the system, considering its internal and external parts. Finally, the Glansdorff-Prigogine criteria
for evolution and (in)stability are verified.

DOI: 10.1103/PhysRevE.100.032126

I. INTRODUCTION

Several formulations of thermodynamics have been re-
cently proposed and used to deal with nonequilibrium open
quantum systems. Among these approaches are Markovian
dynamics with the Lindblad-Gorini-Kossakowski-Sudarshan
semigroup generator [1,2] or the quantum Fokker-Planck-
Kramers equation [3,4]. An alternative possible approach,
similar to other open quantum systems treatments [5,6], is to
follow the path of Gibbs and others to consider a formalism
of ensembles [nonequilibrium statistical ensemble formalism
(NESEF)] [7–13]. In this case, evolution equations of the
macroscopic state of the system are the quantum mechanical
equations of motion averaged over the nonequilibrium ensem-
ble, with the NESEF-kinetic theory providing a practical way
of calculation [14–17]. Informational thermodynamic aspects
of the system are then obtained in terms of the NESEF-
based nonequilibrium-statistical irreversible thermodynamics
[18,19] (also chap. 7 in Ref. [7]).

In this work we use the above formalism to describe the
irreversible thermodynamic of a system of spins in thin films
of yttrium-iron-garnets in the presence of a constant magnetic
field and being excited by a source of radio-frequency (rf)
radiation. This magnetic system, driven toward far-removed
equilibrium conditions, has been reported in detailed ex-
periments performed by Demokritov et al. [20,21] form-
ing a Bose-Einstein condensate (BEC) of magnons. These
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experimental results have evidenced an unexpected increase
of the magnons population in the lowest-energy state in
their energy dispersion relation. That is, instead of the en-
ergy pumped into the system being redistributed among the
magnons in such nonthermal conditions it is transferred to the
lowest-frequency mode (with a fraction being dissipated to the
surrounding media). Some theoretical studies along certain
approaches have been presented by several authors (see, for
example, Refs. [22–26]). We proceed here to describe the
thermodynamic aspects of the system within the framework
of a nonequilibrium ensemble formalism.

For that purpose, we consider a system of N-localized spins
in the presence of a constant magnetic field being pumped by
a rf source of radiation that drives them out of equilibrium.
The spin system is embedded in a thermal bath consisting
of the phonon system (the lattice vibrations) supposedly in
equilibrium with an external reservoir at temperature T0. The
quantum state of the system is characterized by the full
Hamiltonian of spins and lattice vibrations after going through
Holstein-Primakov and Bogoliubov transformations [27–29]
and NESEF.

The evolution of the nonequilibrium state of magnons
under rf-radiation excitation is summarized in Sec. II where
a two-fluid approximation is proposed and the nonequilib-
rium Fröhlich-Bose-Einstein condensate (NEFBEC) is ob-
tained (full description may be obtained in Refs. [25,26]).
In Sec. III we present an extended study of the nonequilib-
rium irreversible thermodynamics of the NEFBEC of such
“hot” magnons. We calculate the informational entropy of the
system and define an order parameter to analyze the role of
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Fröhlich contribution. Entropy production is then obtained
and finally two criteria for thermodynamic evolution and
stability are verified.

II. FRÖHLICH-BOSE-EINSTEIN CONDENSATION OF
HOT MAGNONS IN BRIEF

The system we are considering consists of a subsystem of
spins being pumped by a microwave source and interacting
nonlinearly with a thermal bath (black-body radiation and
crystalline lattice) that is in contact with a thermal reservoir in
equilibrium at temperature T0. This system is well described
by the Hamiltonian

Ĥ = ĤS + ĤZ + ĤSR + ĤR + ĤSL + ĤL, (1)

where ĤS accounts for the internal (exchange and magnetic
dipole) interactions between spins, and ĤZ is associated with
the effect of the constant magnetic field (Zeeman effect). ĤL

and ĤR are the Hamiltonian of the thermal bath (lattice and
radiation, respectively), ĤSL and ĤSR are their interaction
with the spin subsystem (ĤSR includes also the effect of the
source). By introducing the quasiparticles related to the spin,
lattice, and radiation variables (respectively the magnons,
phonons, and photons) and their creation and annihilation
operators (ĉ†

q, ĉq, b̂†
q, b̂q, d̂†

q , and d̂q), we may write the
Hamiltonian of Eq. (1) as

Ĥ = Ĥ0 + Ĥ ′ (2)

with

Ĥ0 = Ĥ (2)
S + ĤL + ĤR (3)

being the noninteracting term formed by the Hamiltonians of
free magnons, phonons, and photons (with energies h̄ωq, h̄�k,
and h̄ζp, respectively). The other term,

Ĥ ′ = ĤMM + ĤSL + ĤSR, (4)

includes the interactions between quasiparticles: ĤMM is the
magnon-magnon scattering term, ĤSL accounts for the rele-
vant magnon-phonon interaction, and ĤSR is the interaction
between magnons and photons (details in Appendix A).

The thermodynamic description of the system follows the
mechanical one. The thermodynamic state can be defined in
terms of the time-dependent thermodynamic variables, which
are average values of the so-called basic microdynamical
variables. We are then led to choose a basic set of variables
that should characterize the macroscopic state of the system
(the appropriate nonequilibrium thermodynamic state of the
system [18,19]).

For a general magnetic system one should include in the
description all experimental-related variables (e.g., magnetic
moment operator). In second quantization form this choice
would impose inclusion of populations of magnons, coherent
states, and Gorkov pairs. The kinetic equations of these ther-
modynamic variables form a system of nonlinear coupled in-
tegrodifferential equations which is discussed in Ref. [25] and
in a detailed form in Ref. [26]. As stated in these references,
for the specific spin systems considered here, it is enough to
follow the evolution of populations of magnons Nq(t ) and, to
complete the thermodynamic description of the entire system,
also include the energy evolution of the thermal bath EB(t )

(lattice and black-body radiation). Thus the set of relevant
thermodynamic variables is

{{Nq(t )}; EB}, (5)

average values of the so-called basic microdynamical vari-
ables

{{N̂q = ĉ†
qĉq}; ĤB}, (6)

with N̂q being the population operator of magnons in mode q
and ĤB = ĤL + ĤR is the Hamiltonian of the thermal bath
(phonons and photons).

These averages are weighted through a nonequilibrium
statistical operator R̂ε(t ),

Nq(t ) = Tr{N̂q R̂ε(t )} (7)

and

EB = Tr{ĤB R̂ε(t )}. (8)

We introduce a factorization between the thermal bath in
equilibrium and the magnetic subsystem

R̂ε(t ) = �̂B × �̂ε(t ), (9)

where

�̂B = 1

ZB
exp{−βB(ĤB)} (10)

is the canonical distribution function of the phonons and pho-
tons in stationary condition near equilibrium at temperature
TB = (kBβB)−1 (with ZB its partition function) and �̂ε(t ) the
nonequilibrium statistical operator of the magnon system.

The last term of Eq. (9) may be obtained solving a modified
Liouville-Dirac equation for �̂ε(t ),

∂

∂t
�̂ε(t ) + 1

ih̄
[�̂ε(t ), Ĥ ] = −ε{�̂ε(t ) − ˆ̄�(t, 0)}, (11)

where the right term (with ε → 0) introduces the “Bogoli-
ubov’s symmetry-breaking procedure” in time and ˆ̄�(t, 0) is
the auxiliary statistical operator. Equation (11) ensures on the
one hand that the nonequilibrium statistical operator �̂ε(t )
incorporates the dynamical evolution while, on the other hand,
includes irreversibility [7–10].

The auxiliary statistical operator ˆ̄�(t, 0) is written in terms
of the chosen microdynamical variables taken the form

ˆ̄�(t, 0) = 1

Z̄ (t )
exp

{
−

∑
q

[Fq(t ) N̂q]

}
, (12)

where Fq(t ) is the nonequilibrium thermodynamic variable
conjugated to the populations of magnons in the sense of the
Eqs. (14) below. The normalization of ˆ̄�(t, 0) introduces the
nonequilibrium partition function

Z̄ (t ) ≡ Tr

{
exp

{
−

∑
q

[Fq(t ) N̂q]

}}
. (13)

It is important to stress that since the intensive nonequilib-
rium thermodynamic variable Fq(t ) equivalently describes the
macro state of the system and that

−δ ln Z̄ (t )

δFq(t )
= Nq(t ) (14)
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may be considered nonequilibrium equations of state, there is
a close analogy with the intensive thermodynamic variables in
equilibrium. Moreover, for the equation of state it follows that

〈ĉ†
qĉq|t〉 = Nq(t ) = 1

eFq (t ) − 1
, (15)

or, alternatively,

Fq(t ) = ln

{
1 + 1

Nq(t )

}
= − ln

{ Nq(t )

Nq(t ) + 1

}
. (16)

We recall that the equations of evolution for the popula-
tions are the quantum mechanical equations of motion for the
dynamical quantities N̂q averaged over the nonequilibrium
ensemble. They are handled resorting to the NESEF-based
nonlinear quantum kinetic theory, with the calculations per-
formed in the approximation that incorporates only quadratic
terms in the interaction strength—with memory and vertex
renormalization neglected, that is, we keep what in kinetic the-
ory is called the irreducible part of the two-particle collisions.
In a compact form (details on Appendix B) we may write

d

dt
Nq(t ) = Sq(t ) + Rq(t ) + Lq(t ) + Fq(t ) + Mq(t ), (17)

where Sq is the source term that accounts for the pumping of
energy to the system, Rq(t ) is a nonlinear term of interaction
between the spin subsystem and the black-body radiation, and
Lq(t ) is the linear relaxation to the lattice with characteristic
time τq. The last two terms are nonlinear contributions: Fq(t ),
the so-called Fröhlich term, which is a nonlinear interaction
between magnons mediated by the lattice, and Mq(t ) accounts
for the magnon-magnon scattering interaction term. In a sim-
ilar form of Eq. (17) we have that

d

dt
EB(t ) = J (2)

TD (t ) −
∑

q

h̄ωq[Rq(t ) + Lq(t ) + Fq(t )], (18)

the first term,

J (2)
TD (t ) = −EB(t ) − E (0)

B

τTD
, (19)

is the contribution which accounts for the thermal diffusion
to the reservoir with a thermal diffusion time τTD and tends
to lead the thermal bath to equilibrium [characterized by the
equilibrium energy E (0)

B ]. The other contribution is related to
the energy received from the subsystem of magnons.

Our system has its thermodynamic evolution described by
the kinetic equations (17) and (18) and they must be solved.
Since we have affirmed that the thermal bath is in a stationary
state near the equilibrium condition defined by the external
reservoir we have that

d

dt
EB(t ) = 0, (20)

and the thermal diffusion effect is rapid enough to keep
this configuration. In this case EB(t ) � E (0)

B , TB � T0, and
βB � β0.

Considering again the evolution of the population of
magnons, we emphasize that Eq. (17) constitutes a nonlinear
system of coupled integrodifferential equations. Its resolution
in an approximate form called “two-fluid model” is discussed
on Refs. [25,26], where the mean populations N1(t ) and N2(t )

were defined respectively as representations of the popula-
tions of magnons around the minimum frequency and those
being fed by the external source,

N1,2(t ) =
∑

q∈R1,2
Nq(t )∑

q∈R1,2
1

=
∑

q∈R1,2
Nq(t )

n1,2
, (21)

where R1 and R2 are the correspondent regions in the recip-
rocal space. Their evolution equations were obtained from
Eq. (17),

f1
d

dt̄
N1(t̄ ) = −DN1

(
N1 − N (0)

1

) − f1
[
N1 − N (0)

1

]
(22a)

+ F {N1N2 + (ν̄ + 1)N2 − ν̄N1} (22b)

− M{N1(N1 + 1) + N2(N2 + 1)}

×
(
N1

N (0)
2

N (0)
1

− N2

)
, (22c)

and

f2
d

dt̄
N2(t̄ ) = I (1 + 2N2) (23a)

− DN2
(
N2 − N (0)

2

) − f2
[
N2 − N (0)

2

]
(23b)

− F {N1N2 + (ν̄ + 1)N2 − ν̄N1} (23c)

+ M{N1(N1 + 1) + N2(N2 + 1)}

×
(
N1

N (0)
2

N (0)
1

− N2

)
, (23d)

where t̄ is the scaled time t/τ , taking the relaxation time τq

as having a unique constant value (q independent), N (0)
1,2 are

the populations in equilibrium, and f1 and f2 are the fractions
of the Brillouin zone corresponding to the two regions in
the two-fluid model. Moreover, the coefficients M and F
are respectively the coupling strengths associated to magnon-
magnon interaction and to the Fröhlich contribution, while D
is associated to decay with emission of photons, and ν̄ is an
average phonon population. Finally, the parameter I is related
to the rf-radiation field rate transferred to the spin system,
whose absorption is reinforced by a positive feedback effect.
All these coefficients are dimensionless when multiplied by
the relaxation time τ .

In a similar fashion, in the two fluid model, the energy of
the thermal bath has an evolution given by

d

dt̄
EB(t ) = τJ (2)

TD (t )+nh̄ω1
{
DN1

(
N1−N (0)

1

)+ f1
[
N1−N (0)

1

]
− F {N1N2 + (ν̄ + 1)N2 − ν̄N1}

}
+ nh̄ω2

{
DN2

(
N2 − N (0)

2

) + f2
[
N2 − N (0)

2

]
+ F {N1N2 + (ν̄ + 1)N2 − ν̄N1}

}
, (24)

being h̄ω1 and h̄ω2 the energy of the magnons in the regions
R1 and R2, and n = ∑

q 1.
In Fig. 1 we show the evolution of the populations N1

and N2, starting from equilibrium, under the pumping source
action (we adopted τ = 1 μs to compare with experimental
data [20]), solving numerically Eqs. (22) and (23). As stated in

032126-3



FABIO STUCCHI VANNUCCHI AND ROBERTO LUZZI PHYSICAL REVIEW E 100, 032126 (2019)

0.0 0.5 1.0 1.5 2.0
103

104

105

106

μ

N1

N2

FIG. 1. Evolution of the magnon population. Circles represent
Demokritov’s et al. data for the low-energy magnon population
[20], with the pumping being switched off after 1 μs. Solid lines
show low- and high-energy magnon populations, obtained after
numerical integration of Eqs. (22) and (23) using the following
parameters: N (0)

1 = 3 × 103, N (0)
2 = 2 × 103, f1 = 3 × 10−6, f2 =

3 × 10−4, F = 2 × 10−6, M = 3 × 10−14, D = 4 × 10−11, and I =
8 × 10−4. After Ref. [25].

Refs. [25,26], besides the fine agreement with the experimen-
tal data, this result clearly shows the accumulation of magnons
on the minimum-frequency mode (N1).

In addition, the analysis of the steady state of the system,
i.e., the solutions of Eqs. (22) and (23) such that d

dt̄ N1(t̄ ) and
d
dt̄ N2(t̄ ) are null, evidence the role of the Fröhlich term to
the condensation of magnons. In Fig. 2 we show the values
of the steady-state populations N S

1 and N S
2 as a function

of the scaled rate of pumping I , and the existence of two
pumping scaled rate thresholds can be noticed. The first,
followed by a steep increase in the population of the lowest-
frequency modes, corresponds to the emergence of BEC,
while the second, for higher values of I , accounts for the
internal thermalization of the magnons which acquire a com-
mon quasitemperature, implying that the magnon-magnon
interaction overcomes the Fröhlich contribution and BEC is
impaired.

10
-5

10
-4

10
-3

10
-2

10
-1103

105

107

109

I

N S
1

N S
2

FIG. 2. Steady-state magnon populations as a function of the
pumping source intensity which are solutions for Eqs. (22) and (23)
using the same parameters as in Fig. 1. After Ref. [25].

III. INFORMATIONAL STATISTICAL
THERMODYNAMICS OF NEFBEC

We proceed to the description of the NESEF-based in-
formational irreversible thermodynamics (IST) [18,19] of the
NEFBEC of magnons [20,21] with the description given in
Refs. [25,26] and summarized in the previous section.

A. IST entropy and order parameter for magnons

Here we introduce the informational entropy in the frame-
work of IST,

S̄(t ) = −Tr{R̂ε(t )Pε(t ) ln R̂ε(t )}, (25)

where, we recall, R̂ε(t ) is the nonequilibrium statistical op-
erator of Eq. (9) and Pε(t ) is a time-dependent projection
operator (it is characterized by the nonequilibrium state of the
system at any time t) such that [7,30–32]

Pε(t ) ln �̂ε(t ) = ln ˆ̄�(t, 0) (26)

and

Pε(t ) ln �̂B = ln �̂B, (27)

where ˆ̄�(t, 0) and �̂B are those of Eqs. (12) and (10).
Hence we have that

S̄(t ) = − Tr{R̂ε(t ) ln{ ˆ̄�(t, 0) × �̂B}}
= φ(t ) + βBEB +

∑
q

Fq(t )Nq(t ), (28)

φ(t ) = ln ZB + ln Z̄ (t ), (29)

where ZB and Z̄ (t ) are the canonical and nonequilibrium
partition functions [see Eqs. (10) and (13)]. The last one
depends on time and must be explicitly written in terms of
the nonequilibrium thermodynamic variables. In a analogous
way to the equilibrium Bose statistics we obtain that

Z̄ (t ) = Tr exp

{
−

∑
q

Fq(t ) N̂q

}
=

∏
q

1

1 − e−Fq (t )
. (30)

Thus

ln Z̄ (t ) =
∑

q

ln
1

1 − e−Fq (t )
(31)

and using the relation between Fq(t ) and Nq(t ), Eq. (16), one
obtains the expression for the informational entropy,

S̄(t ) = ln ZB + βBEB

−
∑

q

Nq(t ) ln[Nq(t )]

−
∑

q

[Nq(t ) + 1] ln[Nq(t ) + 1], (32)

whereas ZB, βB, and EB are constants [see Eq. (20) and
subsequent discussion].

The informational entropy of the above-cited “two-fluid
model” is obtained partitioning the q sums of Eq. (32) in
the regions R1 and R2 of Eq. (21). Neglecting the constant
part related to the bath, the informational entropy may be
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0.0 0.5 1.0 1.5 2.0
1.0

1.1

1.2

1.3

1.4

1.5

1.6

t̄ = t
τ

S̄
0
,λ
(t

)/
S̄

eq

S̄F(t)

S̄eq

S̄0(t)

S̄eq

FIG. 3. Informational entropy as function of time associated with
magnon populations from Eqs. (22) and (23) displayed in Fig. 1.
Solid line represents the system with Fröhlich contribution, while the
dashed line refers to a system in which the Fröhlich contribution is
absent [F = 0 on Eqs. (22) and (23)]. Radiation pumping switched
off at t̄ = 1. We recall that the values of the different parameters are
indicated in the caption of Fig. 1.

written as

S̄(t ) = −n1{N1 ln (N1) − (N1 + 1) ln (N1 + 1)}
− n2{N2 ln (N2) − (N2 + 1) ln (N2 + 1)}, (33)

where we omitted time dependence on the right for practical
convenience.

It is possible to study the role of the Fröhlich contribution
using expression (33): Changing the value of F (the coupling
strength associated to Fröhlich contribution) in Eqs. (22),
(23), and (24), we may virtually compare the informa-
tional entropy in systems with different Fröhlich coupling
strengths.

The pumped system of magnons presented in Fig. 1—
where the magnon populations were numerically obtained
from Eqs. (22) and (23)—has the informational entropy, ob-
tained with the aid of Eq. (33), displayed as function of time
in Fig. 3. In this figure we also show the time evolution of the
informational entropy for the magnon populations obtained
from Eqs. (22) and (23) with F = 0, i.e., a pumped magnon
system with negligible Fröhlich contributions.

It can be noticed that the informational entropy values are
lower when Fröhlich contribution is present, as it should as
a result of having increasing ordering, that is, information
increase. The same behavior occurs in the case of the infor-
mational entropy of the steady states as function of the scaled
rate of pumping. The presence of the Fröhlich contribution
leads to a decrease of the informational entropy precisely in
the region of the condensate as shown in Fig. 4.

This decrease of informational entropy due to the Fröhlich
contribution may be understood as some kind of increase in
order and we introduce the order parameter to characterize
this point:


(F, I ) = S̄S
0 (I ) − S̄S

F (I )

S̄S
0 (I )

= 1 − S̄S
F (I )

S̄S
0 (I )

, (34)

10
-5

10
-4

10
-3

10
-2

10
-11.0

1.5

2.0

2.5

3.0

I

S̄
0
, F

(I
)/

S̄
eq

FIG. 4. Informational entropy of the steady states as function of
the scaled rate of pumping I for systems with (solid) and without
(dashed) Fröhlich contribution.

where S̄S
F (I ) and S̄S

0 (I ) are the steady-state informational
entropies with and without Fröhlich contribution, that is,

S̄S
F (I ) = f1

{(
N S

1 + 1
)

ln
(
N S

1 + 1
) − N S

1 ln
(
N S

1

)}
+ f2

{(
N S

2 + 1
)

ln
(
N S

2 + 1
) − N S

2 ln
(
N S

2

)}
(35)

and

S̄S
0 (I ) = f1

{(
N S,F=0

1 + 1
)

ln
(
N S,F=0

1 + 1
)

− N S,F=0
1 ln

(
N S,F=0

1

)}
+ f2

{(
N S,F=0

2 + 1
)

ln
(
N S,F=0

2 + 1
)

− N S,F=0
2 ln

(
N S,F=0

2

)}
, (36)

where the dependence of the steady-state populations on I
has not been explicitly indicated. Figure 5 presents the order
parameter as function of the scaled rate of pumping which
highlights this kind of complex order.

The role of the Fröhlich contribution may be evidenced
through the numerical analysis of the order parameter as
function of the Fröhlich contribution coupling strength when
the rate of pumping is fixed. In Fig. 6 we present the mean
steady-state populations N S

1,2 as function of F for fixed scaled
rate of pumping I = 8 × 10−4 and the corresponding informa-
tional entropy order parameter.

10
-5

10
-4

10
-3

10
-2

10
-10.0

0.1

0.2

0.3

0.4

0.5

I

Δ
(F

,I
)

FIG. 5. Order parameter of Eq. (34) as function of the scaled rate
of pumping I .
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Δ
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)

FIG. 6. (a) Steady-state magnon populations as function of F . (b) The related order parameter.

As can be seen in the Fig. 6(a), the magnon steady-state
populations N S

1,2 decrease as the nonlinear Fröhlich contribu-
tion coupling strength increases (notably the mean population
associated with high-frequency magnons N S

2 ). This complex
behavior of the steady-state populations may be understood
considering that (i) the Fröhlich contribution leads to the
formation of the condensate in which the magnons with lower
frequency are overpopulated at the expense of the higher in
frequency populations and (ii) since the substantial decrease
of N S

2 relative to N S
1 diminishes the absorbance of the ma-

terial [because of the positive feedback effect of the parallel
pumping, see Eq. (23a)] the net flux of absorbed energy is
lower than the case without Fröhlich interaction, justifying the
global fall of the mean population. The order parameter be-
havior, shown in Fig. 6(b), corroborates the idea that Fröhlich
contribution enhances the complex order mentioned before.

B. IST entropy production

We analyze the informational-entropy production and, us-
ing Eq. (28) [paying attention to the logarithm of the partition
functions in Eq. (29)], it can be shown that it is given by

σ̄ (t ) = d

dt
S̄(t ) = β0

dEB(t )

dt
+

∑
q

Fq(t )
dNq(t )

dt
. (37)

Taking into account Eqs. (17) and (18), it can be rewritten
in terms of two contributions,

σ̄ (t ) = σ̄i(t ) + σ̄e(t ), (38)

consisting of the so-called internal one, σ̄i(t ), which results
from internal interactions in the system, and the external one,
σ̄e(t ), related to the interactions with the surroundings, in
this case with the source and the thermal reservoir. These
informational-entropy production terms are sometimes also
called � and −�, respectively (cf. Ref. [4]) and, in our case,
are given by

σ̄i(t ) =
∑

q

{Fq(t ) [Rq(t ) + Lq(t ) + Fq(t ) + Mq(t )]

− β0 h̄ωq[Rq(t ) + Lq(t ) + Fq(t )]}, (39)

σ̄e(t ) =
∑

q

{
Fq(t )Sq(t ) + β0 J (2)

TD (t )
}
, (40)

or, using Eq. (20),

σ̄e(t ) =
∑

q

{Fq(t )Sq(t ) + β0 h̄ωq[Rq(t ) + Lq(t ) + Fq(t )]}.

(41)

One may calculate the informational-entropy production
on a two-fluid approach and complete expressions are given
on Appendix C. We show the informational-entropy produc-
tion of the system of magnons evolving in time (i.e., the
entropy production associated with the evolution described
in Fig. 1) in Fig. 7. We can observe that the total entropy
production may have positive and negative values, although
the internal entropy production is strictly non-negative—as it
should.

Another important result, shown in Fig. 8, is the
informational-entropy production for the steady states (see
Fig. 2).

C. The evolution criterion

The change in time of IST-entropy production can be
separated into two parts, namely

d

dt
σ̄ (t ) = dQ

dt
σ̄ (t ) + dF

dt
σ̄ (t ), (42)

where

dQ

dt
σ̄ (t ) =

∑
q

Fq(t )
d2Nq(t )

dt2
, (43)

that is, the part that accounts for the change in time of Nq(t ),
and

dF

dt
σ̄ (t ) =

∑
q

dFq(t )

dt

dNq(t )

dt
, (44)

accounting for the part of change in time of the nonequi-
librium thermodynamics variables Fq(t ). Recalling that Fq(t )
may be expressed in terms of the populations [cf. Eq. (16)],
we have that

dFq(t )

dt
= d

dt
ln

{Nq(t ) + 1

Nq(t )

}
=

[
1

Nq(t )+1
− 1

Nq(t )

]
dNq(t )

dt

= − 1

(Nq + 1)Nq

dNq(t )

dt
, (45)
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FIG. 7. Informational-entropy production of the system of magnons as function of time (associated with Figs. 1 and 3). On the left the
internal, external and total entropy production (and we call attention to the expected non-negative values of the internal entropy production)
can be observed; on the right only the total entropy production is shown. We recall that the pumping source is switched off at t̄ = 1.

and therefore

dF

dt
σ̄ (t ) = −

∑
q

1

(Nq + 1)Nq

(
dNq

dt

)2

� 0. (46)

This inequality verifies for this system the generalization of
Glansdorff-Prigogine’s thermodynamic criterion of evolution
[18,19,33]. That is, along the trajectory of the macrostate of
the system in the thermodynamic (or Gibbs) space of states,
the quantity of Eq. (44) is always nonpositive, a quantity
which in classical Onsagerian thermodynamics is the product
of the change in time of the thermodynamic forces times the
fluxes of matter and energy.

D. The (in)stability criterion

Within the above discussed framework of a nonequilibrium
thermodynamics of the Fröhlich-Bose-Einstein condensation
of magnons, we may analyze the stability of the steady-state
populations N S

q . Considering arbitrary small deviations, say,
ε ηq(t ), from the steady state, we may expand the informa-
tional entropy in the form

S̄
({
Nq(t )

}) = S̄
({
N S

q + εηq(t )
})

= S̄
({
N S

q

}) + δS̄ + δ2S̄ + . . . , (47)
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FIG. 8. Internal and external informational-entropy production
absolute values of the system in steady state as function of the scaled
rate of pumping I (related to Fig. 2); σi = −σe.

with

δnS̄ = ∂nS̄

∂εn

∣∣∣∣
ε=0

εn

n!
. (48)

Since

∂2S̄

∂ε2
= −

∑
q

η2
q(t )[

N S
q + εηq(t ) + 1

][
N S

q + εηq(t )
] , (49)

we have that the second variation of the entropy is

δ2S̄ = −
∑

q

ε2η2
q(t )(

N S
q + 1

)
N S

q

= −
∑

q

[
Nq(t )]2(
N S

q + 1
)
N S

q

� 0, (50)

where 
Nq(t ) represents the value of the imposed arbitrary
deviation from the steady state and the nonpositiveness of
Eq. (50) is a manifestation of the convexity of the maximized
informational entropy. Differentiation in time of Eq. (50)
introduces the quantity called excess of entropy production
function, namely

δ2σ̄ (t ) = 1

2

d

dt
δ2S̄(t ) = −

∑
q


Nq(t )(
N S

q + 1
)
N S

q

d

dt

Nq(t ),

(51)

which, in the two-fluid model has the following form:

δ2σ̄ (I, t ) = − n1 
N1(I, t )[
N S

1 (I ) + 1
]
N S

1 (I )

d

dt

N1(I, t )

− n2 
N2(I, t )[
N S

2 (I ) + 1
]
N S

2 (I )

d

dt

N2(I, t ). (52)

According to Glansdorff-Prigogine (in)stability criterion
[18,19,33], if

1
2 δ2S̄(t ) δ2σ̄ (t ) � 0, (53)

then the steady state is stable.
We have already proved above [cf. Eq. (50)] that δ2S̄ � 0 in

the studied case. δ2σ̄ � 0 and this is so once 
N1,2
dN1,2

dt � 0,
as it follows from solving the evolution equations Eqs. (22)
and (23). Therefore Eq. (53) is verified and hence, for the
given constraints, the reference steady state is stable for all
fluctuations compatible with the equations of evolution.
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IV. CONCLUSION

We have considered the nonequilibrium statistical ther-
modynamics of the Fröhlich-Bose-Einstein condensation
of magnons excited under the action of radio-frequency-
radiation pumping. It constitutes an example of complexity in
which, after a certain threshold has been attained in the value
of the pumping source intensity, the energy pumped onto the
system is transferred from higher- to lower-frequency modes
in a cascading process.

Several important characteristics have been analyzed. First,
we derived the so-called informational entropy for the sys-
tem of magnons (Sec. III A) and then we have specified
the magnon informational entropy for the “two-fluid model.”
Later, we introduced an order parameter in terms of infor-
mational entropy. This order parameter shows that the infor-
mational entropy is smaller when the nonlinear interaction
responsible for the onset of the NEFBEC predominates, thus
evidencing the order increase due to the Fröhlich interaction.

In Sec. III B we calculated the informational-entropy pro-
duction function to characterize the contributions of the inter-
nal and external informational entropy production. The former
has, as expected, non-negative values that characterizes dissi-
pation, while the latter is negative as a result of the pumping
on the system.

In informational nonequilibrium statistical thermodynam-
ics, this is related with the generalized H theorem in the
sense of Jancel [34], which we have called weak principle of
informational entropy increasing. Namely, given the informa-
tional statistical entropy S̄(t ) of Eq. (28) and the informational
entropy production σ (t ) of Eq. (37), the principle tells us that


S̄(t ) = S̄(t ) − S̄(t0)

=
∫ t

−∞
dt ′ σ (t ′) � 0. (54)

The informational entropy with the evolution property of
Eq. (54) is the coarse-grained entropy of Eq. (25), with the
coarse-graining being performed by the action of the pro-
jection operator Pε(t ) of Eqs. (26) and (27). This operator
projects at any time the logarithm of the NSD over the loga-
rithm of the auxiliary (coarse-grained) distribution embedded
in the subspace spanned by the basic dynamic quantities (cf.
set (5), see also Ref. [32]). The consequence of this projection
is the information loss that is reflected in the increase of

informational entropy expressed in Eq. (54). This result is a
consequence of the presence of the irreversible part of �̂ε(t )
not contained in ˆ̄�(t ), which is the part that accounts for the
processes which generate dissipation in the description of the
macroscopic state of the system.

We restate that the information lost in each particular
problem as a result of truncating the set of basic variables must
be carefully evaluated [35,36].

Finally, it has been verified that the Glansdorff-Prigogine
evolution criterion is satisfied (Sec. III C), and from the gen-
eralization of the Glansdorff-Prigogine (in)stability principle
we have shown that the nonequilibrium thermodynamic state
of the system is stable under any condition (Sec. III D). We
stress that such instability has been derived in relation to other
possible homogeneous states, but instability against the onset
of a spatially ordered state cannot be ruled out and is still
under consideration.
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APPENDIX A: HAMILTONIAN OF THE SYSTEM

The Hamiltonian of the spin system in quasiparticle for-
malism may be written as

Ĥ = Ĥ0 + Ĥ ′, (A1)

with

Ĥ0 = Ĥ (2)
S + ĤL + ĤR

=
∑

q

h̄ωqĉ†
qĉq +

∑
k

h̄�kb̂†
kb̂k +

∑
p

h̄ζpd̂†
q d̂q (A2)

being the noninteracting term formed by the Hamiltonians of
free magnons, phonons, and photons and h̄ωq, h̄�k, and h̄ζp
their energies. The other term,

Ĥ ′ = ĤMM + ĤSL + ĤSR, (A3)

includes the interactions between quasiparticles:

ĤMM =
∑

q,q1,q2

Vq,q1,q2 ĉ†
qĉ†

q1
ĉq2 ĉq+q1−q2 (A4)

is the magnon-magnon scattering term,

ĤSL =
∑

q,k 
=0

(b̂k + b̂†
−k ){Fq,kĉ†

qĉq−k + Lq,kĉ†
qĉ†

k−q + L∗
q,−kĉqĉ−k−q}

+
∑

q,k 
=0

{Rq,kb̂†
kb̂k−q + R+

q,kb̂†
kb̂†

q−k + R+∗
−q,−kb̂−kb̂k−q}(ĉq + ĉ†

−q) (A5)

accounts for the relevant magnon-phonon interaction, and

ĤSR =
∑

p

(d̂p + d̂†
−p)(S⊥∗

p ĉ†
p + S⊥

−pĉ−p)

+
∑
p,q

(d̂p + d̂†
−p)

{
S‖a

q,pĉ†
qĉq−p + S‖b

q,pĉ†
qĉ†

p−q + S‖b∗
q,−pĉ−qĉq−p

}
(A6)

is the interaction between magnons and photons (source and black-body radiation).
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APPENDIX B: KINETIC EQUATIONS

d

dt
Nq(t ) = 1

ih̄
Tr{[N̂q, Ĥ ] �̂ε(t ) × �̂B} = J (0)

Nq
(t ) + J (1)

Nq
(t ) + J (2)

Nq
(t ), (B1)

J (0)
Nq

(t ) = 1

ih̄
Tr{[N̂q, Ĥ0] ˆ̄�(t, 0) × �̂B} = 0, (B2)

J (1)
Nq

(t ) = 1

ih̄
Tr{[N̂q, Ĥ

′] ˆ̄�(t, 0) × �̂B} = 0, (B3)

J (2)
Nq

(t ) � J (2)
Nq

(t ) = 1

(ih̄)2

∫ t

−∞
dt ′ eε(t ′−t ) Tr{[Ĥ ′(t ′ − t )0, [Ĥ ′, N̂q]] ˆ̄�(t, 0) × �̂B}

+ 1

ih̄

∑
�

∫ t

−∞
dt ′ eε(t ′−t )Tr{[Ĥ ′(t ′ − t )0, P̂�] ˆ̄�(t, 0) × �̂B}

δJ (1)
Nq

(t )

δQ�(t )
, (B4)

with P̂� and Q̂� being the variables of sets (6) and (5), respectively, and

Ô(t )0 = e− t
ih̄ Ĥ0 Ôe

t
ih̄ Ĥ0 , (B5)

δ stands for functional differentiation.
In a compact form we may write

d

dt
Nq(t ) = Sq(t ) + Rq(t ) + Lq(t ) + Fq(t ) + Mq(t ), (B6)

where

Sq(t ) = 8π

h̄2

∑
q′ 
=−q

∣∣S‖b
q,q+q′

∣∣2{
(1 + Nq + Nq′ ) f S

q′+q

}
δ(ωq + ωq′ − ζq+q′ ) (B7)

is the source term that accounts for the pumping of energy to the system, f S
q′+q stands for the population of photons of the source;

Rq(t ) = 8π

h̄2

∑
q′ 
=−q

∣∣S‖b
q,q+q′

∣∣2{
(Nq′ + 1)(Nq + 1) f T

q′+q − Nq′Nq
(

f T
q′+q + 1

)}
δ(ωq + ωq′ − ζq+q′ ) (B8)

is a nonlinear term of interaction between the spin subsystem and the black-body radiation ( f T
q′+q being its photon’s population);

Lq(t ) = − 1

τq

[
Nq − N (0)

q

]
(B9)

is the linear relaxation to the lattice with characteristic time τq. The last two terms are nonlinear contributions;

Fq(t ) = 2π

h̄2

∑
q′ 
=q

|Fq,q−q′ |2{Nq′ (Nq + 1)(νq′−q + 1) − (Nq′ + 1)Nqνq′−q}δ(ωq′ − ωq − �q′−q)

+ 2π

h̄2

∑
q′ 
=q

|Fq,q−q′ |2{(Nq + 1)Nq′νq−q′ − Nq(Nq′ + 1)(νq−q′ + 1)}δ(ωq′ − ωq + �q−q′ ), (B10)

the so-called Fröhlich term, a nonlinear interaction between magnons mediated by the lattice, and

Mq(t ) = 16π

h̄2

∑
q1,q2,q3

|Vq,q1,q2 |2{(Nq + 1)(Nq1 + 1)Nq2Nq3 − NqNq1 (Nq2 + 1)(Nq3 + 1)}

× δ(ωq + ωq1 − ωq2 − ωq3 )δq3,q+q1−q2 (B11)

accounts for the magnon-magnon scattering interaction term.
In a similar form of Eq. (B1) we have that

d

dt
EB(t ) = 1

ih̄
Tr{[ĤB, Ĥ ] �̂ε(t ) × �̂B} � J (0)

EB
(t ) + J (1)

EB
(t ) + J (2)

EB
(t ). (B12)

It is simple to show that J (0)
EB

(t ) and J (1)
EB

(t ) are null. The last term is composed of two contributions:

J (2)
EB

(t ) = J (2)
TD (t ) −

∑
q

h̄ωq[Rq(t ) + Lq(t ) + Fq(t )], (B13)
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the first,

J (2)
TD (t ) = −EB(t ) − E (0)

B

τTD
, (B14)

is the contribution which accounts for the thermal diffusion to the reservoir with a thermal diffusion time τTD and tends to lead
the thermal bath to equilibrium (characterized by the equilibrium energy E (0)

B ). The other contribution is related to the energy
received from the subsystem of magnons.

APPENDIX C: TWO-FLUID INFORMATIONAL-ENTROPY PRODUCTION

In the two-fluid model the informational-entropy production is thus given by

σ̄i(t ) =
∑

q

{[Fq(t ) − β0h̄ωq] [Rq(t ) + Lq(t ) + Fq(t )] + Fq(t )Mq(t )} (C1)

≈
{

ln

(N1 + 1

N1

)
− β0 h̄ω1

} ∑
q∈R1

[Rq(t ) + Lq(t ) + Fq(t )] +
{

ln

(N2 + 1

N2

)
− β0 h̄ω2

} ∑
q∈R2

[Rq(t ) + Lq(t ) + Fq(t )]

+ ln

(N1 + 1

N1

) ∑
q∈R1

Mq(t ) + ln

(N2 + 1

N2

) ∑
q∈R2

Mq(t )

= −n

τ

{
ln

(N1 + 1

N1

)
− β0 h̄ω1

}{
DN1

(
N1 − N (0)

1

) + f1
[
N1 − N (0)

1

]}

+ n

τ

{
ln

(N1 + 1

N1

)
− β0 h̄ω1

}
F {N1N2 + (ν̄ + 1)N2 − ν̄N1}

− n

τ

{
ln

(N2 + 1

N2

)
− β0 h̄ω2

}{
DN2

(
N2 − N (0)

2

) + f2
[
N2 − N (0)

2

]}

− n

τ

{
ln

(N2 + 1

N2

)
− β0 h̄ω2

}
F {N1N2 + (ν̄ + 1)N2 − ν̄N1}

+ n

τ

{
ln

(N2 + 1

N2

)
− ln

(N1 + 1

N1

)}
M{N1(N1 + 1) + N2(N2 + 1)}

(
N1

N (0)
2

N (0)
1

− N2

)
, (C2)

and

σ̄e(t ) =
∑

q

{Fq(t )Sq(t ) + β0 h̄ωq[Rq(t ) + Lq(t ) + Fq(t )]}

≈ ln

(N1 + 1

N1

) ∑
q∈R1

Sq(t ) + ln

(N2 + 1

N2

) ∑
q∈R2

Sq(t )

+ β0h̄ω1

∑
q∈R1

[Rq(t ) + Lq(t ) + Fq(t )] + β0 h̄ω2

∑
q∈R2

[Rq(t ) + Lq(t ) + Fq(t )]

= n

τ
ln

(N2 + 1

N2

)
I (1 + 2N2)

+ n

τ
β0 h̄ω1

{ − DN1
(
N1 − N (0)

1

) − f1
[
N1 − N (0)

1

] + F [N1N2 + (ν̄ + 1)N2 − ν̄N1]
}

+ n

τ
β0 h̄ω2

{ − DN2
(
N2 − N (0)

2

) − f2
[
N2 − N (0)

2

] − F [N1N2 + (ν̄ + 1)N2 − ν̄N1]
}
, (C3)

where we used that

ln

(
N (0)

1,2 + 1

N (0)
1,2

)
= β0 h̄ω1,2, (C4)

with N (0)
1,2 being the distribution in equilibrium.
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