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RESUMO 

 A esquizofrenia é uma doença mental multifatorial que afeta até 1% da 

população mundial. Os pacientes são afetados negativamente pela presença de 

vários sintomas e não se sabe de uma cura para esta desordem. Vias associadas ao 

metabolismo energético estão desreguladas, e a desregulação metabólica é também 

um efeito colateral dos antipsicóticos, o tratamento principal para manejar os sintomas 

da esquizofrenia. Em 2011, duas modificações pós-traducionais de proteínas, a 

succinilação e malonilação de lisina, foram descobertas e devem existir em todos os 

domínios de vida. Os precursores dessas modificações – succinil-CoA e malonil-CoA 

– são parte de processos metabólicos centrais e a prevalência de ambas na célula 

pode variar por estímulos associados com condições metabólicas como hipóxia, que 

pode ser um gatilho ambiental para o desenvolvimento da esquizofrenia. Neste 

trabalho, a proteômica quantitativa em larga escala baseada em espectrometria de 

massas foi usada para determinar quais diferenças existem sobre várias condições. 

Tecido cerebral post-mortem de pacientes com esquizofrenia foram analisados em 

termos de malonilação e succinilação e comparados a tecido cerebral de pessoas 

mentalmente sadias. Também, culturas de precursores de oligodendrócitos humanos 

(linhagem MO3.13), tratadas com MK-801 e/ou um de 3 antipsicóticos foram 

analisadas. As diferenças descobertas aqui têm a capacidade para melhorar a 

compreensão da etiologia, a patofisiologia, os sintomas e o tratamento da 

esquizofrenia. 

  



ABSTRACT 

 Schizophrenia is a multifactorial mental disorder that affects nearly 1% of 

the population worldwide. Patients are negatively affected in various ways; and there 

is no known cure for this disease. Pathways associated with energy metabolism are 

dysregulated, and metabolic disruption is also one of the side effects of antipsychotics, 

the principal way to manage the symptoms of schizophrenia. In 2011 two post-

translational protein modifications, the succinylation and malonylation of lysine 

residues, were discovered to be widely present in likely all domains of life and 

furthermore have been observed on many proteins associated with glycolysis and 

metabolism. The precursors to these modifications, understood to be succinyl-CoA and 

malonyl-CoA, are also both a part of central metabolic processes, and their prevalence 

as a modification in cells can vary with metabolism-associated stimuli, such as hypoxia, 

a potential environmental trigger for developing schizophrenia. In this work, shotgun 

mass spectrometry-based quantitative proteomics was used to determine what 

differences in succinyllysine and malonyllysine profiles exist under various conditions. 

Postmortem brain tissue of schizophrenia patients was compared with tissue from 

mentally sound controls. Additionally, human oligodendrocyte precursor cell cultures 

(MO3.13 lineage) were treated with MK-801 and/or 3 antipsychotics and analyzed. The 

differences uncovered herein can potentially provide insight into the etiology, 

pathophysiology, symptoms, and treatment of schizophrenia.  
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INTRODUCTION 

1.1 Schizophrenia 

 In the 21st century, many diseases and illnesses are now well-understood 

in terms of their causes and effects on a patient. A diabetic for example may have a 

dysfunction with insulin production and response; someone with anemia has a 

deficiency in iron intake or absorption; and a third patient with scarlet fever has an 

uncontrolled Streptococcus infection. With documented etiologies, disease prevention 

and treatment become simpler, safer, and more effective. However, in contrast, there 

are still some conditions that are much less understood. 

Originally classified as a purely mental disorder, schizophrenia is a complex 

and multifactorial illness that even involves physical, observable changes in brain 

function and morphology (Karlsgodt et al., 2010; McDonald et al., 2005). There is thusly 

a physical cause, or a malfunction so to speak, in a human organ that allows for or 

induces the manifestation of this illness. However, despite decades of research, the 

scientific community is still in the dark about most of the fine details regarding 

schizophrenia. Current treatments are limited to symptom management; they are not 

a cure, and concrete knowledge about preventing the condition is limited. 

Doctors diagnose the disorder based on the behaviors of a patient, not any 

physical or chemical changes in the body, and prescribe antipsychotics and/or 

psychosocial therapy to help them manage symptoms (Hasan et al., 2015). However, 

a clinical diagnosis such as this can easily be incorrect, mainly due to the complexity 

of – and overlap between – different mental disorders; constantly changing literature 

and misinformed doctors; and perhaps most importantly, the glaring lack of any 

definitive biological test with confirmed molecular biomarkers for this or many other 

mental disorders. Since a patient’s symptoms do not always have an obvious biological 

cause, this can cause problems in diagnosis, treatment, and research of the disease. 

In fact, one study suggested that what is currently diagnosed as schizophrenia could 

actually be an umbrella term for eight separate biological dysregulations (Arnedo et al., 

2014). 

Despite all efforts, understanding a brain disorder is no menial task. The 

brain is one of the most complex systems known to man, a mesh of billions of individual 

units interconnected by trillions of connections, all with the goal of observing, 
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understanding, and reacting to the constantly changing environment. In this 

precariously balanced system, even a small change in a single protein could have 

widespread and potentially detrimental effects on the entire organism. Although the 

biochemistry of the symptoms of schizophrenia is slowly becoming more understood 

and therefore more treatable, the complexity of the disease hides its deeper roots, 

leaving researchers with a sprawling array of hypotheses as to its cause (Boison et al., 

2012; Howes and Kapur, 2009; Hu et al., 2015; Owen et al., 2011; Selten et al., 2013; 

Timms et al., 2013; Watanabe et al., 2010). 

Facing this frustrating lack of knowledge, a meta-study determined that 

schizophrenia affects between 0.3-0.7% of the population worldwide (Saha et al., 

2005). Its onset is brought on by a culmination of biological and environmental factors 

(Tsuang et al., 2001), not all of which are known. These factors eventually lead to an 

individual experiencing an array of symptoms that negatively impact their ability to 

perceive and react to the world around them and this in turn causes deficits in social 

appropriateness and forms of hallucinations or psychosis (Andreasen, MD, PhD et al., 

1995), among other symptoms. Even though schizophrenia affects nearly 1% of the 

worldwide population, there is still no comprehensive understanding of how it develops. 

1.2 Causes of Schizophrenia 

Over the decades that the illness has been documented, past and recent 

studies have not provided a definitive etiology of the disease; the current line of 

treatment nearly exclusively involves suppressing symptoms and assisting the patient 

to manage them (Hasan et al., 2015). Regardless, many risk factors for the disease 

have been documented and are grouped into two main categories: genetic and 

environmental.  

Schizophrenia has a strong genetic influence, as proven by longitudinal 

studies in twins (Hilker et al., 2018). But this does not paint the whole picture, as many 

environmental factors can also change the risk factor for developing the disorder such 

as postnatal hypoxia, prenatal vitamin D deficiency, cannabis abuse as a teenager, a 

stressful childhood, certain viral infections, and diet (Davis et al., 2016). 

Trying to link together these seemingly unconnected factors has proven to 

be a difficult task, and no current model for schizophrenia fully explains the disease 

and its symptoms. The most common hypotheses for the cause of schizophrenia – 
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although not an exhaustive list – are the dopamine hypothesis (Howes and Kapur, 

2009), the glutamate hypothesis (Hu et al., 2015), myelination abnormalities (Mighdoll 

et al., 2015), and inhibitory neuron dysfunction with oxidative stress (Sullivan and 

O’Donnell, 2012). Many theories perform well when examining a specific part of the 

illness – for example treating schizophrenia using a medication that acts in line with 

the glutamate hypothesis relieves patients of the negative and cognitive symptoms; 

but does not remedy the positive symptoms (Tuominen et al., 2005).  

One hypothesis has been developed that tries to link together these various 

observed changes, risk factors, and symptoms in their entirety called the 

neurodevelopmental theory. This theory posits that a cluster of risk factors during 

neurodevelopment set the stage for someone to develop schizophrenia later in life 

(Murray and Lewis, 1987) and has been since revisited many times (Chua and Murray, 

1996, 1996; Fatemi and Folsom, 2009; Gupta and Kulhara, 2010; Owen et al., 2011). 

Regardless, this has not been entirely fleshed out and has its own unanswered 

questions, leaving a knowledge gap that not only makes preventing the disease more 

difficult, but also impedes a more effective treatment. 

1.3 Treating Schizophrenia 

As the etiology of schizophrenia is unknown, there is no developed cure. 

Instead, medications allow the patient to deal with their symptoms and lead a more 

fulfilling life. Treatment is primarily based on antipsychotics, which are not always 

effective in all patients (Lieberman et al., 2005). Antipsychotics fall into two overall 

categories: typical and atypical. Despite the beneficial reduction in positive symptoms, 

antipsychotic medication also has the potential to cause various debilitating side 

effects, especially with typical antipsychotics (Jones et al., 2006). The low efficacy and 

severe side effects lead to a high percentage of patients eventually abandoning 

treatment (Lieberman et al., 2005). 

Typical antipsychotics are antagonists of the dopamine D2 receptor (D2R), 

and were first used in the 1950s (Shen, 1999). In patients with schizophrenia, they are 

administered to reduce positive symptoms by blocking dopamine’s effects; however, 

not every patient will respond well to a particular antipsychotic, and less than half of 

patients are considered to be good responders to the first antipsychotic prescribed to 

them (Reynolds, 2012), requiring more time to find an optimal treatment, frustrating the 
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patient, and wasting resources. Complicating treatment further is the prevalence of 

tardive dyskinesia, a medication side effect that affects a patient’s motor movements 

(Correll and Schenk, 2008). 

Alternatives to typical antipsychotics have since been discovered, now 

called atypical antipsychotics. This class of medication binds to a different profile of 

receptors at different strengths, such as the serotonin 5-HT2A receptor (Guenette et al., 

2013); however how the differences in binding lead to different side effects and change 

therapeutic profiles is still undetermined (Sahlholm et al., 2014).  

While atypical antipsychotics present a slightly lower risk for tardive 

dyskinesia – 3.9% compared to 5.5% (Correll and Schenk, 2008) – there is the chance 

of developing a blood condition called agranulocytosis, among other side effects. 

However in a study in Iceland on 611 schizophrenia patients, they found that a 

comparable number of patients treated with typical antipsychotics developed the 

condition (Ingimarsson et al., 2016). Additionally, atypical antipsychotics can also 

induce an array of side effects that are jointly called metabolic syndrome, but the 

incidence rate can vary between medications (Association, 2004). The main 

documented symptoms of metabolic syndrome are insulin sensitivity and weight gain 

(Riordan et al., 2011). 

To better understand how to prevent and treat schizophrenia while 

minimizing the side effects of these treatments, various models have been developed 

and established, principally since the brain cannot be studied like saliva, blood, urine, 

or other less invasive samples. 

1.4 Models for Schizophrenia 

 Studying schizophrenia at the cellular and molecular level cannot be 

achieved by simply taking the affected tissue for study especially since the brain is 

such a sensitive and enclosed organ. One of the main repercussions of this is the 

required use of postmortem brain tissue collected from donors or the development of 

other models altogether. In regards to postmortem tissue, studies based in genomics, 

transcriptomics, and proteomics have all been fruitful; but there are inherent issues 

with postmortem brain tissue such as confounding factors, macromolecule 

degradation, and the inability to manipulate variables experimentally (Harrison, 2011). 
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 Nevertheless, when executed carefully and especially when integrated with 

other models, the results obtained from postmortem studies can – and have – provided 

important data in neuroscience, revealing proteins that are dysregulated and mitigated 

with antipsychotics (Chan et al., 2011), identifying targets for in vitro studies (Huang et 

al., 2008), and making progress towards biomolecular signatures of brain disorders 

(Martins-de-Souza et al., 2012). Due to the invariable nature of tissue, studies using 

tissue collected postmortem could be better suited to discovery-based projects for 

revealing potential targets for additional studies with controlled variables. 

 A more manipulatable model is cell culturing, a process that allows for the 

precise modification of specific variables and a comparison between conditions without 

nearly as many confounding factors. In schizophrenia, oligodendrocytes have been 

recurrently found to be associated with some of the dysregulations in and symptoms 

of schizophrenia (Hof et al., 2002; Martins-de-Souza, 2010; Takahashi et al., 2011; 

Tkachev et al., 2003; Uranova et al., 2004). This association is also in concordance 

with the myelin-associated protein dysfunction observed, and implicated, in 

schizophrenia (Karoutzou et al., 2008). Along these lines, oligodendrocytes hold 

promise to potentially uncover important information about the disease. 

 To develop oligodendrocytes in a laboratory setting, a human 

oligodendrocyte precursor cell line named MO3.13 has been shown to stay in an 

“arrested” immature development state (Buntinx et al., 2003). To simulate 

schizophrenia in these cells, they are treated with dizocilpine (hereupon referred to as 

MK-801), which has been established and used as a model via animal behavioral 

models. In rats, MK-801 induces negative symptoms (Rung et al., 2005), cognitive 

symptoms (Svoboda et al., 2015), brings about similar neurochemical changes to 

those that are seen in first-episode patients (Eyjolfsson et al., 2006), and potentially 

induce positive symptoms, although in a manner unlike what is seen in the PCP model 

(Rung et al., 2005; Seillier and Giuffrida, 2009). Translating this animal model to cells, 

a protocol was published that elaborates on the use of MK-801-treated cells as a model 

to study schizophrenia (Brandão-Teles et al., 2017). 

 Once a model has been established, it can be subjected to different 

conditions and studied using various tools such as genomics, transcriptomics, and 

proteomics. Due to the known existence of both genetic and environmental factors and 



18 

the dynamically responsive nature of the proteome, proteomics is an extremely useful 

tool to study illnesses such as schizophrenia. 

1.5 Mass Spectrometry and Proteomics 

 In any living cell, proteins are found in high quantities, making up about 20% 

of a cell’s total weight (Lodish et al., 2000). The proteins present and their levels of 

expression can provide a great deal of insight into a condition or disease since proteins 

are relatively quickly produced and degraded in response to internal and external 

stimuli. If these stimuli and responses can be manipulated, diseases can be better 

understood, treated, and even prevented. Studying which proteins are present – and 

to what degree – is the essence of proteomics, a term coined after genomics. 

 Originally, the methods to study protein expression involved stained 2-

dimensional SDS-PAGE (Klose, 1975; O’Farrell, 1975) and Western blotting (Towbin 

et al., 1979). The turn of the century brought about an era of high-throughput mass 

spectrometry (Washburn et al., 2001), shortly thereafter ushering in quantitative mass 

spectrometry (Ong and Mann, 2005). As a result of constant developments, one 

method called shotgun proteomics has evolved, whose branching subcategories are 

able to indiscriminately identify thousands and quantify hundreds of proteins in a single, 

micro-scale sample (Bourassa et al., 2015). To identify proteins in a sample for 

experimental use, a mass spectrometer collects vast amounts of ion data, which 

specialized software uses to identify what proteins were present in the original sample. 

1.6 Protein Identification 

 Different mass spectrometers work in different ways and have different 

strengths and weaknesses; but generally speaking, a sample is first prepared for 

analysis. In proteomics, this preparation consists of a reducing agent to break disulfide 

bridges in proteins and alkylation to cap off the cysteine residues. The resulting, less 

stable proteins are then digested with a protease to obtain smaller polypeptides which 

are more easily ionized during analysis (Resing and Ahn, 2005). 

  For more complex samples such as those used in shotgun proteomics, the 

samples are then fractionated to reduce complexity and increase the quantity and 

quality of the obtained data. This step is often done online with the mass spectrometer, 

which not only facilitates data collection, but automation reduces opportunities for 

experimental error. The peptides in the sample are then ionized by one of many 
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methods and is injected into a mass spectrometer. At this point especially, what 

happens next can vary greatly, depending on the configuration of the mass 

spectrometer. In the case of this study, the mass spectrometer used was a Waters 

Synapt G2-Si (see Figure 1). 

 

Figure 1 - Schematic of the Waters Synapt G2-Si (Waters, Co.) 

 In this study, peptides were ionized via nanoelectrospray injection in positive 

ion mode (nanoESI(+)) and passed through an ion guide, called a step wave, removing 

unionized particles. The resulting ion stream was passed through a quadrupole (Q), a 

collision chamber, and then a time of flight (TOF) analyzer. This setup is called a Q-

TOF mass spectrometer. The machine was run in DIA (data-independent acquisition) 

mode, which allows for a high level of identification and quantitation without individual 

pre-programming for each sample (Hu et al., 2016). 

  The overall method used here was HDMSE (high-definition MS/MS with 

alternating high- and low-energy collision), which first passes a group of peptide ions 

through the quadrupole and TOF analyzer (Bond et al., 2013) to record the mass of 

each peptide. An MS graph is created and once again, the stream of peptide ions is 

allowed to pass through the quadrupole; however, the peptides are fragmented via 

collision-induced dissociation (CID) in the collision chamber, which breaks apart the 

peptide ions by rapidly moving them ions through gas particles. The resulting peptide 



20 

fragments are analyzed by the TOF, obtaining an MS/MS spectrum. This alternation 

process is done rapidly and repeated until the entire sample has been run. 

 To assist in the resolution of the data, another molecular property was used: 

ion mobility separation (IMS) and related drift time. In this case, ions flowed against a 

chamber filled with helium and with an applied electric field, changing their eventual 

time of arrival at the analyzer in a constant manner based on their cross-sectional area, 

allowing for more precise ion separation and therefore identification (McLean et al., 

2005). 

 The MS and MS/MS spectra were then imported into a specialized computer 

program that deconvoluted the MS/MS data, associating precursor ions with their 

fragment ions based on their chromatographic retention time and peak shape. In doing 

so, the software is able to piece together the fragments to not only identify which amino 

acids are in the peptide, but also in what likely order. Those peptide sequences are 

then cross-checked with a database of known proteins and their peptide ionization data 

to identify which proteins were present in the original sample. This form of ion-to-

protein identification is a method called bottom-up proteomics. A scoring system is 

utilized by the software used to show how confident the identification is; and a false 

discovery rate (FDR) using a reversed dataset helps reduce the number of false 

positives. This system is the same way that peptides with post-translational 

modifications are identified. PTMs are not identified by adding the adduct mass to an 

identified peptide; rather the identification software treats it as a different and unique 

peptide. Therefore, the unmodified peptide does not need to be identified to register 

the modified version. 

 In addition to identification, if a sample is prepared and analyzed properly, 

software can be used to also quantify how much of the identified protein was present 

in the original sample, either relatively or absolutely. 

1.7 Protein Quantitation 

 Once a peptide is (or multiple are) identified, data can be further processed 

to estimate (with varying degrees of accuracy) the amount of a protein present in the 

original sample. This can be done by various methods requiring different levels of 

preparation and analysis; but the software used in this study uses the Top N method 
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to relatively quantify peptides in different conditions and subsequently compare their 

parent proteins (Silva et al., 2006). 

 First, the chromatograms are aligned between samples to facilitate and 

improve comparisons. Variations in sample contents, temperature, and column age 

can slightly skew the observed elution times (Wandy et al., 2015). Once spectra are 

aligned, the software can then associate a peptide’s identity with its LC elution profile. 

In TopN, a preset number of peptides – in this case 3 – is summed, where the area 

under their elution curves – or extracted ion chromatograms (XICs) – is compared with 

the value of another sample. 

This provides a comparative – however not absolute – quantitation of the 

original protein. While this method does not provide the highest accuracy or precision 

of all methods available, it allows for the quantitation of up to thousands of proteins in 

a single sample without any type of labeling or manual peptide selection and still 

provides high-quality data (Gerber et al., 2003; Higgs et al., 2005; Koulman et al., 2009; 

Wang et al., 2008). In addition to identifying and quantifying the proteins in a sample, 

post-translational modifications such as phosphorylation can also be added to search 

parameters to identify and quantify modified proteins in a sample. 

1.8 Post-Translational Modifications 

Cells use many mechanisms to regulate the production, activity, binding, 

and degradation of proteins. One such mechanism that is found ubiquitously in life is 

the post-translational modification of proteins. Amino acid residues can be modified 

with various types of molecules, including small organic molecules, polysaccharides, 

other proteins, and fatty acids, as well as other forms of modification like cysteine 

disulfide bridges. New discoveries are constantly being made about additional 

modifications, such as the widespread addition of the acyl groups succinate and 

malonate to lysine residues (Peng et al., 2011; Zhang et al., 2011) (see Figure 2). 

These two chemical groups are found naturally in cells in regards to 

metabolic processes (succinate in the TCA cycle and malonate in fatty acid synthesis) 

and their occurrence as a post-translational, protein modification has been observed 

in various prokaryotic and eukaryotic cells (Peng et al., 2011; Qian et al., 2016; Weinert 

et al., 2013; Zhang et al., 2017). 
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Figure 2-Addition of succinyl and malonyl groups. Adapted from (Xie et al., 2012) 

Sites of modification have been discovered to be highly prevalent on 

metabolic proteins and other mitochondrial proteins, although the effects of these 

modifications are still mainly unknown (Bowman et al., 2017; Chen et al., 2017, 2017; 

Hirschey and Zhao, 2015; Qian et al., 2016; Rardin et al., 2013). In line with this data, 

there is substantial proof that metabolic dysregulation and oxidative stress occur in 

schizophrenia (Amorim et al., 2017; Khaitovich et al., 2008; Leonard et al., 2012; 

Marcelis et al., 2004; Martins-de-Souza et al., 2010; Nascimento and Martins-de-

Souza, 2015). As such, there is great potential in researching a correlation between 

schizophrenia and these recently discovered post-translational modifications to 

perhaps uncover a new medicinal target or new research foci. 

1.9 Succinylation 

 Succinylation was first found to be a protein modification less than a decade 

ago, and was confirmed to be a widespread PTM after a study with E. coli, S. 

cerevisiae, HeLa, and mouse liver cells (Weinert et al., 2013; Zhang et al., 2011). Its 

mechanism of addition is thought to be similar to acetylation via a succinyl-CoA moiety 

being added to a lysine residue via an acyltransferase protein; however, the actual 

mechanism of addition is still unconfirmed (Alleyn et al., 2017). Nevertheless, 

succinylation mechanisms are expected to be conserved between eukaryotes and 

prokaryotes (Weinert et al., 2013; Xie et al., 2012). Sites are unlikely to be random or 

unregulated, as software has been developed that helps predict which lysine residues 

are sites of succinylation (Dehzangi et al., 2018; Ning et al., 2018). The removal of a 

succinyl group is known to performed primarily by a sirtuin protein SIRT5 (Rardin et 

al., 2013).  

Succinyl-CoA is an intermediate in the TCA cycle (see Figure 3), 

strengthening its link to metabolism and energy production. When investigating the 

sites of succinylation, one study found that a large number of histone proteins as well 
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as mitochondrial and metabolic proteins are modified with succinyl groups, discovering 

2,572 sites on 990 proteins (Weinert et al., 2013) (see Figure 4). In addition, the protein 

succinylation profile has been shown to be extremely sensitive to certain external 

metabolic changes, even after stimuli as short as 20 minutes (Chen et al., 2017). These 

associations have opened new doors to study diseases with dysregulated metabolic 

processes (Alleyn et al., 2017) like schizophrenia, as well as Alzheimer’s disease and 

aging, among others. 

 

Figure 3-Position of succinyl-CoA and Malonyl-CoA in metabolism. From (Newman et 

al., 2012) 
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Figure 4-Sites of succinylation on metabolic proteins (blue dots are shared sites with 

acetylation). From (Weinert et al., 2013) 

1.10 Malonylation 

 Similar to succinylation, malonylation is understood to be performed via a 

acyltransferase from malonyl-CoA, which was confirmed to be the PTM source after a 

knockout study of ACSF3 (Acyl-CoA Synthetase Family Member 3), an enzyme that 

converts malonate to malonyl-CoA (Bowman et al., 2017). Finer details about its 

mechanism of addition are not well understood; but, its removal is also thought to be 

regulated by the sirtuin SIRT5 (Nishida et al., 2015).  

Since malonyl-CoA is an intermediate in fatty acid synthesis (see Figure 3), 

it is thought to also have strong ties with metabolism and energy regulation, a fact that 

has been confirmed in both analytical and knockout studies (Bowman et al., 2017; 

Nishida et al., 2015). One study linked weight gain from antipsychotics with 

perturbations in this branch of the metabolism, and specifically mentioned malonyl-

CoA (Gonçalves et al., 2014). Like with succinylation, due to software being able to 
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predict sites of malonylation (Taherzadeh et al., 2018) this suggests a specificity and 

regulation for addition and removal. 

In this work, the comparative locations and prevalence of these two post-

translational modifications are studied in relation to schizophrenia using post-mortem 

brain tissue and MO3.13 human oligodendrocyte precursor cells treated with MK-801 

and/or haloperidol, chlorpromazine, and quetiapine. 
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OBJECTIVES 

1) What sites of protein malonylation and succinylation exist in cerebral tissue of 

patients with schizophrenia that do not exist in mentally sound controls and vice 

versa?  

 Additionally, are there any differences in the prevalence of these 

modifications? 

 

2) How does the schizophrenia-mimetic drug MK-801 affect the succinylation and 

malonylation profiles of oligodendrocyte precursor cells? 

 Do any disturbances align with symptoms or the development of 

schizophrenia? 

 

3) How do the antipsychotics haloperidol, chlorpromazine, and quetiapine affect 

the succinylation and malonylation profiles of oligodendrocyte precursor cells? 

 Do any disturbances align with the side effects of these drugs? 

 

4) Are any disturbances caused by MK-801 attenuated by the presence of 

antipsychotics? 

 What pathways are affected and is there any relation to its ability to treat 

certain symptoms of schizophrenia and not others? 
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JUSTIFICATION 

 First, discovering new sites of modification will help the currently growing 

databases for these modifications, providing valuable data about conditional 

modifications. Comparing profiles in postmortem tissue could reveal dysregulations in 

metabolic pathways that are not observable through genomics, transcriptomics, or 

unfocused quantitative proteomics. These pathways could become the focus for further 

studies of the development, progression, or treatment of the condition. 

 Second, understanding the profile changes induced by MK-801 and 

antipsychotics could provide insight into their mechanisms of action in relation to 

schizophrenia. Moreover, this could uncover new lines of research to develop new 

medications and reduce the detrimental and potentially dangerous side effects of 

current treatments. 

 Third, understanding which pathways, if any, that antipsychotics balance 

when cells are disturbed with MK-801 could provide valuable understanding about how 

these medications function, and direct new studies to determine how to manage the 

cognitive and other symptoms of schizophrenia that are left unchecked by 

antipsychotic-based treatment. 
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Abstract: 

Proteomics has become an attractive science in the post-genomics era, given its 

capacity to identify up to thousands of molecules in a single, complex sample and 

quantify them in an absolute and/or relative manner. The use of these techniques 

enables understanding of cellular and molecular mechanisms of diseases and other 

biological conditions, as well as identification and screening of protein biomarkers. 

Here we provide a straightforward, up-to-date compilation and comparison of the main 

quantitation techniques used in comparative proteomics such as in vitro and in vivo 

stable isotope labeling and label-free techniques. Additionally, this chapter includes 

common methods for data acquisition in proteomics and some appropriate methods 

for data processing. This compilation can serve as a reference for scientists who are 

new to, or already familiar with, quantitative proteomics. 

  



Chapter 1

A Guide to Mass Spectrometry-Based Quantitative
Proteomics

Bradley J. Smith, Daniel Martins-de-Souza, and Mariana Fioramonte

Abstract

Proteomics has become an attractive science in the postgenomic era, given its capacity to identify up to
thousands of molecules in a single, complex sample and quantify them in an absolute and/or relative
manner. The use of these techniques enables understanding of cellular and molecular mechanisms of
diseases and other biological conditions, as well as identification and screening of protein biomarkers.
Here we provide a straightforward, up-to-date compilation and comparison of the main quantitation
techniques used in comparative proteomics such as in vitro and in vivo stable isotope labeling and label-
free techniques. Additionally, this chapter includes commonmethods for data acquisition in proteomics and
some appropriate methods for data processing. This compilation can serve as a reference for scientists who
are new to, or already familiar with, quantitative proteomics.

Key words Quantitative proteomics, Label-free, Mass spectrometry, Stable isotope labeling

Abbreviations

AIF All-ion fragmentation
AQUA Absolute quantification
CAD Collision-activated dissociation
CE Collision energy
DDA Data-dependent acquisition
DIA Data-independent acquisition
dNSAF Distributed normalized spectral abundance factor
emPAI Exponentially modified protein abundance index
FT-ARM Fourier transform-all reaction monitoring
HDMSE High-definition MSE

iBAQ Intensity-based absolute quantification
ICPL Isotope-coded protein label
IMS Ion mobility separation
LRP Labeled reference peptide
MRM Multiple reaction monitoring
MSE DIA method from Waters Co.
MSX Multiplexed MS/MS
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mTRAQ Mass-differential tags for relative and absolute quantitation
NSAF Normalized spectral abundance factor
PSAQ Protein standard absolute quantification
pSILAC Pulsed stable isotope labeling of amino acids in cell culture
QconCAT Quantitative concatemers
QQQ Triple quadrupole
SID Standard isotope dilution
SILAM Stable isotope labeling of amino acids in mammals
SILIP Stable isotope labeling in planta
SIN Normalized spectral index
SPS-MS3 Synchronous precursor selection MS/MS/MS
TMT Tandem mass tags
UDMSE Ultra-definition MSE

XDIA Extended data-independent acquisition
XIC Extracted ion chromatogram

1 Introduction

Generally, in large-scale proteomics experiments, the identification
of proteins in a sample is just the first step. Protein quantitation is
an important, additional part of many protocols and mass spec-
trometry combined with liquid chromatography (LC-MS) has
found its way into becoming a crucial tool in both biological and
clinical research settings [1–3]. Protein levels are often compared
across different cell conditions, types, compartments or over time.
While several well-known techniques have excelled in the quantita-
tion of mixed protein samples as a whole for decades, measuring the
levels of individual proteins in a complex mixture has proven to be a
more difficult task.

A major challenge of quantitation is due to the varying rates of
peptide ionization in a mass spectrometer; the quantity of a mole-
cule in a sample is not universally related to the intensity of the ions
measured by the mass spectrometer. The efficiency of a peptide’s
ionization depends on many characteristics including but is not
limited to peptide size, basicity and hydrophobicity [4]. The com-
position of the solvent and other peptides present can additionally
confound results, to the point of having a varying ionization effi-
ciency of a single peptide over its elution peak [5]. This makes it
impossible to compare the abundance of two different peptides
based on their intensities alone in a mass spectrum.

Due to this challenge, many mass spectrometry (MS)-based
quantitation methods rely on relative quantitation, comparing the
intensities of individual peptides across different samples under the
same acquisition conditions. In recent decades, multiple methods
for the relative quantitation of proteins have been proposed and
brought into mainstream use, each with their own benefits and
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drawbacks. Current methods for protein quantitation fall under
two main categories: stable isotope labeling, which marks different
conditions with various “heavy” components, and label-free quan-
titation, which uses peptide or peptide fragment signals alone to
obtain quantitative data (Fig. 1).

2 Sample Preparation Methods

Stable isotope labeling employs markers containing non-radioactive
isotopes of common atoms in proteins such as 2H, 13C and
15N. These isotopes cause a mass shift for the peptide with no
significant changes in physicochemical properties. Additionally,
excluding deuterated isotopic labels, peptides will coelute in liquid

Fig. 1 Categorical representation of the individual methods for protein quantitation, separated into the three
main branches: stable isotope labeling, label-free and methods for data acquisition. Standard isotope labeling
is divided into in vitro MS-based and MS/MS-based, and in vivo. Abbreviations: ICAT isotope-coded affinity
tag, ICPL isotope-coded protein labeling, GIST global internal standard technology, iTRAQ isobaric tag for
relative and absolute quantitation, mTRAQ mass-differential tags for relative and absolute quantitation, TMT
tandem mass tags, SPS-MS3 synchronous precursor selection MS/MS/MS, SILAM stable isotope labeling of
amino acids in mammals, SILIP stable isotope labeling in planta, SILAC stable isotope labeling of amino acids
in cell culture, pSILAC pulsed SILAC, SRM selective reaction monitoring, MRM multiple reaction monitoring,
PRM parallel reaction monitoring, CE collision energy, LC-MSE liquid chromatography MSE, HDMSE high-
definition MSE, UDMSE ultra-definition MSE, AIF all-ion fragmentation, AQUA absolute quantification, QconCAT
quantitative concatemers, LRP labeled reference peptide, PSAQ protein standard absolute quantification
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chromatography (LC) separation [6, 7]. The peaks of the “heavy”
and “light” peptides can then be compared, providing relative
quantitative data. Adding a condition with a known protein quan-
tity can additionally provide absolute quantitative data. This can all
be performed both in vivo and in vitro.

The labeling itself can be achieved by various means, such as
using modified tags covalently bound to specific residues and/or
peptide termini. Stable isotope labeling (SIL) can be subdivided
into multiple groups depending on the type of tag used.

2.1 SIL Techniques

In Vitro

SIL in vitro has great flexibility, capable of accepting virtually any
sort of sample source and condition. Complexity of the experimen-
tal setup is not too high but specific, commercially obtained tags
must be used to mark the conditions before analysis, which can
increase costs. These tags, depending on their composition, are
either identified at the MS or the MS/MS level.

2.1.1 Quantitation at

the MS Level

The first methods developed for quantitation by SIL rely on data
obtained from the MS level of acquisition; and peptides are frag-
mented further only for identification purposes. Use of only MS
data for quantitation reduces the time required for data analysis [8].

2.1.2 ICAT Isotope-Coded Affinity Tag (ICAT) MS [9] was created in an
attempt to both mark peptides and purify them from a more
complex mixture. The label consists of: (a) a sulfhydryl-reactive
group that covalently binds to cysteinyl residues, (b) a cross-linker
with originally either hydrogen (the light chain) or deuterium (2H,
the heavy chain with þ8 to its mass), and (c) an affinity tag, such as
biotin, which allows for the enrichment of peptides with the tag and
assists in the detection of peptides with lower abundances. Hydro-
gen and deuterium were later replaced with 12C and 13C as a
recommended protocol modification from the same laboratory
upon discovering that deuterium causes small peak shifts in liquid
chromatography [7, 10].

The heavy and light tagged samples are then combined,
digested, and incubated with resin containing immobilized avidin
(or streptavidin), which binds to the biotin end of the tags and
greatly enriches the target peptides and reduces sample complexity.
Due to the cysteine selectivity of the tag and the fact that not every
peptide contains a cysteine residue, sample complexity is further
reduced. However, this is true to such an extent that data may be
lost. For example, in Escherichia coli, 14% of open reading frames
(ORFs) do not code for a single cysteine residue [11].

During analysis, MS/MS data is used for peptide sequence
identification, while the relevant LC-MS peak intensities are com-
pared (Fig. 2a) for relative (or absolute with a standard)
quantitation.
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Fig. 2 (A) Representation of quantitation at MS level as described for ICAT (isotope-coded affinity tag) and ICPL
(isotope-coded protein labeling) techniques. The relative quantitation is based on the difference of precursor
ion intensities. (B) Representation of quantitation at MS/MS level as described for iTRAQ (isobaric tag for
relative and absolute quantitation) and TMT (tandem mass tag). For these techniques, the MS spectrum
presents a single precursor for each peptide, and the quantitation is performed based on the difference of
intensity of reporter ions, represented in red, green and blue on the MS/MS spectrum. The gray fragments
represent the sequence identification ion fragments, which are common for all tagged peptides. (C) Schematic
representation of SRM (selective reaction monitoring) methodology. Q1 and Q3 represent quadrupoles and Q2
could represent either a quadrupole or any other kind of collision cell. In the scheme, the target peptide is
selected in Q1, fragmented in Q2 and a specific fragment is selected in Q3. The quantitation is then performed
using the ratio between the XICs (extracted ion chromatograms) of the different conditions



ICAT is best suited, only possible, when comparing two sample
conditions since there are only heavy and light tags and it works
well with relative quantitation. However, as referenced above, not
every protein target will pair well with this technique due to the
relative rarity of cysteines in protein ORFs. This means extra care
must be taken to not exclude potentially valuable proteins if
performing a global study, since a lack of protein identification
does not inherently mean a lack of its presence.

2.1.3 ICPL To combat the nearly tenfold reduction in protein coverage caused
by the cysteine-based selectivity in ICAT, Isotope-coded protein
labeling (ICPL) was developed [11]. While the less complex sam-
ples from ICAT do reduce spectrum convolution, this comes at a
potential price of reducing the quantity and certainty of data
obtained during protein identification. As protein identification is
rooted in unique peptide matching, the more unique peptides
present during acquisition the better. Moreover, the need to reduce
sample complexity is not as vital in recent times, due to the ever
increasing performance of mass spectrometers.

ICPL remedied the drastic reduction by instead labeling lysine
residues and N-termini of intact proteins with light or heavy tags.
This modification allows for identification and quantitation of a
larger number of proteins, as lysine residues in proteins are often
more abundant than cysteines [12], with the additional consider-
ation that most peptides cleaved by trypsin have one at their
N-terminus. As there is no biotin tag like in ICAT, depending on
sample complexity, it may be necessary to employ a fractionation
method. All currently available fractionation methods including gel
electrophoresis and LC are compatible with ICPL, and can be
performed either before or after digestion.

ICPL is, like ICAT, is a chemical labeling method and is feasible
in all types of cell lines and tissues. ICPL is capable of up to
4-sample multiplexing by using different combinations of 2H and
13C. An additional benefit of this technique lies in the use of intact
proteins to interact with the tags. This allows all proteins to be
labeled and combined before digestion, fractionation, and other
preparatory techniques, reducing the chance of error propagation.

One downside to this technique is that the covalent modifica-
tion of lysine destroys a tryptic site of digestion. As a result, trypsin
is only effective at cleaving at arginine residues, which requires the
inclusion of additional missed cleavage sites, increasing peptide
length and data processing time. Some ways to remedy this are to
use a different digestion enzyme that cleaves at other residues, or
combine trypsin with a second digestion enzyme.
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2.1.4 GIST Continuing to expand the methods for selectivity as MS power has
increased, a branch of tagging called Global Internal Standard
Technology (GIST) was classified and categorized [13]. The goal
was to create a general method that could label any and all peptides,
independent of their sequence or any posttranslational modifica-
tions. That goal has been attained in more than one way, each with
its benefits and drawbacks.

Three example methods for GIST protocols are (1) the acyla-
tion of all primary amines after protein digestion [14], (2) the
incorporation of isotopically labeled amino acids in vivo [15, 16],
and (3) selectively using H2

18O during proteolysis [17] or degly-
cosylation [18]. In all of the cited methods above, only two condi-
tions are used: labeled and unlabeled.

This disadvantage is further compounded by the potential for
unintended or incomplete labeling. For example in H2

18O incor-
poration methods, certain carboxyl groups can be unintentionally
replaced with 18O [13], and peptide sequence can vary the rate of
incorporation of labels [17]. One main benefit to GIST however, is
the ability to employ multiple labeling types to increase the quality
of data without having undesired interactions between labeling
techniques, as each of the aforementioned modifications affect
different (yet universally present) sites.

In general, GIST methods are a good choice for comparative
quantitation of protein expression between two samples, especially
in conditions where posttranslational modifications are present or
when studying proteins with few of the normal reactive sites like
lysine and cysteine, since the labels affect sites of cleavage instead of
side groups.

2.1.5 mTRAQ Originally a modification of isobaric Tag for Relative and Absolute
Quantitation (iTRAQ, see below) is mass-differential tags for rela-
tive and absolute quantitation (mTRAQ) (Applied Biosystems,
Inc., Foster City, CA, USA). This protocol differs from iTRAQ in
that it uses a nonisobaric tag, whose utility is maximized using
multiple reaction monitoring (MRM) to obtain a high number of
different transitions [19], which are the pairs of precursor and
product ions that are created during fragmentation. The protocol
can be modified to perform absolute quantitation.

In mTRAQ, a Global Internal Standard (GIS) can also be used.
This standard allows for direct comparison between samples in the
GIS, regardless of when and on what machine a sample is measured.
Another option is to use a Reference Internal Standard (RIS).
Using an RIS as the standard then allows for comparison of samples
with a Time 0 reference sample. Lastly, a single or small group of
peptides can be used as the internal standard. In doing so, a known
quantity of peptide is labeled and injected, which allows for the
absolute quantitation of a desired list of proteins.
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Some reasons why mTRAQwould be selected over iTRAQ are:
first, the accuracy of the quantitative data obtained is increased by
the use of a global comparative standard; and second, proteins of
interest can be better quantified and identified due to the
non-isobaric tags and MRM selection method. This means that
mTRAQ is able to compare samples across multiple runs since a
single, internal standard is used for all experiments [19].

This is in contrast with iTRAQ, where quantitative data is
compared to each run’s standard before it is able to be compared
with a different run. However, in a comprehensive study on global
proteomics and phosphoproteomics, although iTRAQ had less
accuracy in quantitation, it was found to be less variable than
mTRAQ, and also identified a distinctly larger number of proteins
and phosphopeptides [20]. mTRAQ is available only in triplex,
where one label is used for the internal standard and two are used
for experimental samples.

2.2 Isobaric Tagging

and Quantitation at

the MS/MS Level

All the methods described thus far are based on the mass shift of
precursor ions by adding tags to proteins/peptides and, as such,
quantitation is performed at the MS level. When this is done, a
labeled peptide becomes slightly heavier than its unlabeled coun-
terpart, making it possible to differentiate between them. However,
this can cause three main problems: (1) a labeled peptide may have
the same mass-to-charge ratio (m/z) as a different, unlabeled pep-
tide, causing peak overlap of unrelated peptides, complicating
quantitation, (2) signal dilution, as peptide MS signals are being
divided into two or more signals, and (3) the extra mass added onto
the peptide and potential changes in chemical properties modifies a
labeled peptide’s LC elution profile. The increased mass bound to
the peptide leads to a later elution time, not only separating LC
peaks, but also presenting different ionization conditions for a
peptide.

To remedy this, another way to tag the peptides is to use an
isobaric tag. Isobaric tags are labels that have the same intact mass
and confer the same chemical properties as tags from other condi-
tions during LC and MS analysis. However, during further ioniza-
tion of the peptide and tag, MS/MS spectra reveal two types of
product ions: (1) the peptide fragment ions, common for the
peptides from all the different conditions, which are used for pep-
tide identification; and (2) fragments called reporter ion peaks,
which will be specific for each sample condition. Relative quantita-
tion is then performed by comparing the intensity of reporter ions
(Fig. 2b).

The main advantage of isobaric tags is that peaks of precursor
and reporter ions of the same peptide found in different conditions
are not spread out. This is because precursor ions have the same
m/z, regardless of which tag is bound, eluting together during
LC. Also, this technique avoids overlap of the isotopic patterns of
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precursor ions, as is seen in the case of other SIL techniques,
providing cleaner MS m/z peaks.

Isobaric reagents are, in their most basic form, composed of
four parts. A protein-reactive terminal chemically binds to side
chains or N-termini. An isobaric group, different for each condi-
tion, allows MS/MS measurement of peaks, providing relative
quantities. A mass-normalizing group is included to ensure that
tags all have the same mass, elute at the same time, and can be
selected together in the mass spectrometer. Lastly, there is a cleav-
able linker region, which releases the isobaric group during
ionization.

During collision-induced dissociation (CID), when the linker
region is cleaved, an ion with a specific and known m/z is released.
As all peptide–tag pairs migrate together chromatographically, the
signals will coincide, increasing accuracy of the comparison. Also
increasing accuracy is the ability to selectively use only the MS/MS
spectra, allowing for the reduction of background noise due to
unlabeled peptides [21].

In addition to the standard, bottom-up approach for identifi-
cation, a top-down approach has also been proven to function with
these techniques, showing the liberation of ions over a wide
dynamic range [22].

2.2.1 iTRAQ One such isobaric tagging technique is iTRAQ [23]. iTRAQ is a
commercially available kit, available for multiplexing with 2, 3,
4, and 8 samples, all of which react with primary amine groups of
tryptically digested peptides.

This protocol is adaptable to different machine types and data
processing methods, and is additionally able to be modified for
absolute quantitation and comparisons between runs. Using one
reporter tag for a known quantity of protein, the remaining
reporter peaks can be compared to that signal, allowing for relative
comparison to that known quantity and gaining absolute data.

The main downside general to isobaric tag methods is the
requirement to purchase ready-made kits which can quickly
increase costs, depending on experiment size. Since this technique
labels peptides at amine groups, every peptide will have at least one
labeling site at its N-terminus, making it compatible with any
source of protein. iTRAQ has kits for multiplexing of 2, 3, 4, and
8 samples.

2.2.2 TMT Tandem Mass Tag (TMT) labeling is another isobaric method for
relative quantitation, similar in function to iTRAQ (binding to
primary amine groups) and is available in many different sets:
2-plex, 6-plex, 10-plex, and 11-plex, allowing for a higher number
of sample condition comparisons within the same run. Alterna-
tively, TMT is also available in 6-plex sets capable of reacting with
cysteine or carbonyl groups instead of primary amines.
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Comparing iTRAQ with TMT has not delivered any definitive
results on which gives higher-quality data and one study claims no
difference in performance between the two methods [24]. Addi-
tional contrasting studies have been published on a possible but not
certain reduction of quantitation accuracy when performing
higher-plexed experiments [25–28].

2.2.3 TMT Isobaric

Isotopologues

An additional set of labels for TMT have been developed that use
15N instead of 13C, causing a change in label mass on the order of
milliDaltons (mDa). This extremely small mass difference is able to
be detected by high-resolution mass spectrometers, allowing for
the addition of several more conditions in what are called TMT
isobaric isotopologues [29]. This new technology has allowed
TMT experiments to expand to the previously mentioned 10-plex
and 11-plex reagent sets (noting that the proof of concept cited
above used a maximum of 8-plex).

2.3 SIL Techniques

In Vivo

Instead of linking tags to proteins or peptides in solution, it is also
possible to label proteins in vivo, in what is referred to as metabolic
labeling. When performing in vivo SIL, isotopically labeled constit-
uent subunits of proteins are introduced to the growth environ-
ment. Since there are conversion pathways that can convert one
amino acid to another, the labeled amino acids are specially selected
to reduce the amount of unintended labeling. Further benefits and
downsides have been researched for specific methods.

When using SIL, nearly all proteins are then inherently labeled
with high incorporation, and the samples can be combined much
earlier in the protocol—before cell lysis, protein digestion and
fractionation, avoiding the possibility of error propagation.

2.3.1 SILAC In 1999, Oda et al. described a method for whole-cell stable
isotopic labeling [15], which utilized 15N-labeled ammonium per-
sulfate as the only source of nitrogen in a yeast culture, leading to
the labeling of every amino acid. A few years later, two laboratories
nearly simultaneously published an extension to that method by
using unlabeled and deuterated leucine, an essential amino acid
(D10-Leu) [30] (D3-Leu) [31]. Ong et al. built upon this method,
which they had named Stable Isotope Labeling of Amino Acids in
Cell Culture (SILAC). Since then, the use of leucine [31], lysine
[32] and methionine [33] has all been documented in SILAC
experiments.

Later, the use of 13C6-lysine and/or 13C6-arginine has been
suggested as practical options in SILAC [34] due to their relation-
ship with trypsin cleavage sites, ensuring any peptide generated will
be quantifiable except for final, C-terminal peptides [35]. Addition-
ally, 13C-labeled proteins have less of an effect on reverse-phase
chromatography elution times than deuterium labels [36].

12 Bradley J. Smith et al.



When using SILAC, high incorporation rates of the labeled
amino acids have been measured (more than 90% after 6–8 cell
passages [31]) and it allows for accurate quantitation of proteins,
even with small differences in expression. Three conditions have
been successfully combined in a single experiment, giving peak trios
for each peptide in MS, while still being able to identify sequences
using both the labeled and unlabeled peaks in MS/MS, which is
especially important if a protein is not found in the unlabeled
condition [34]. Upon completion, relative quantitation can calcu-
late the fold change of protein expression between the samples.

Despite SILAC’s high accuracy and usefulness in cell cultures, it
has several drawbacks, making its employment oftentimes prohibi-
tive. The drawbacks are led by the high cost of isotopically labeled
amino acids and associated buffers. Other, lesser complications
include the conversion of arginine to proline in some cell types
[34, 37–40] which has been solved with additional preparation
steps [41–43], otherwise providing unexpected increases in peaks
for peptides, and the fact that some cell types do not respond well to
changes in medium, or simply cannot be kept growing for the
required number of passages for sufficient incorporation.

2.3.2 pSILAC A direct derivation from the SILAC protocol called pulsed SILAC
(pSILAC) [44] globally labels proteins at a specific point in time, to
mark changes in protein expression due to a specific stimulus. This
technique was developed to fill in the knowledge gap of protein
translation rates, as previous expression quantitation techniques
could measure mRNA levels and protein turnover rates, but not
the rate of protein translation.

In pSILAC, an unlabeled cell line is split into two conditions,
each one with a different medium. The cells are left to grow for a
short period of time before they are lysed, and the extracts are then
combined for MS preparation and analysis [44]. This method
allows a researcher to compare levels of individual protein transla-
tion between two cellular conditions, collecting data for around
half of all proteins that have detectable mRNA levels (data in
relation to HeLa cells [44]). This technique has been found to be
extremely useful to determine the short-term effects of different
molecules on protein expression, such as the effects that micro-
RNAs have on cells [45].

The drawbacks of pSILAC are similar to those of SILAC,
although the restrictions due to cell passage number and the extent
of arginine to proline conversion are normally not an issue due to
the shorter experimental workflow.

2.3.3 Super-SILAC Another derivation of the SILAC protocol is called super-SILAC, a
method in which a group of labeled cell types is combined to form
an internal standard for analyses [46]. By doing so, a more robust
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standard is created, exhibiting data more analogous to full tissue,
allowing for much higher accuracy for quantitative comparisons
across samples, cell lines and experiments [47]. This standard is
then mixed with every condition and is termed a “spike-in
standard” [48].

This technique is a solution to a limiting factor of SILAC with
its inability to be used in more complex subjects, like humans.
Instead of working with heterogeneous, collected tissue, individual
human cell lines can be grown and labeled. In regular SILAC this is
not feasible due to variations in protein expression across cell types,
and there is the potential for significant errors between experi-
ments. But when using super-SILAC, one study showed that sev-
eral thousand proteins could be quantified with an error of only a
few percent [46].

In Super-SILAC, the costs of labeling are reduced, while
keeping the robustness and reproducibility of SILAC. Suggested
applications include biomarker research and quantitation, persona-
lized medicine and proteome studies. The main downside is the
long and potentially expensive preparatory process of selecting
(or purchasing) multiple cell lines to make the labeled spike-in
standard.

2.3.4 SILAM Despite super-SILAC’s solution to heterogeneous samples, the
SILAC family of protocols is still not compatible with more com-
plex, intact, living organisms. As such, a protocol named Stable
Isotope Labeling of Amino Acids in Mammals (SILAM) can be an
alternative to SILAC to be used in this type of biological system
[49]. In the original SILAM, an unlabeled or a 15N-enriched
spirulina diet was given to two groups of rats, effectively labeling
entire animals. When the diet was started immediately after wean-
ing, a 74–92% incorporation of the heavy nitrogen was observed,
depending on the protein turnover rate [50].

SILAM can be an invaluable tool for proteomic studies in living
organisms and has been successful in mice, rats and squirrels
[49, 51, 52], among others. It allows full proteome labeling of a
complex living organism without any observed detrimental effects
on growth or development after a single generation [49]. It also has
potential when studying organism-wide changes from environmen-
tal or pharmacological effects, as well as studying animal models of
diseases. SILAM can also be especially useful when comparing
different tissue types under the same conditions.

The most significant downside to this method of quantitation is
the high cost of the reagents. Preparing an entire food source for
mammals with 15N enrichment is expensive and requires special
care during the protocol, and much of the diet’s cost can be wasted
if the entire organism is not studied. As with any experiment,
multiple replicates are recommended in addition to any required
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controls, meaning food, care and sacrifice of several animals, further
increasing costs. Additionally, since the identification software has
to search for global variables of 14N or 15N [53], the data proces-
sing steps are more resource-intensive and time consuming.

In a similar fashion, plants have been shown to be compatible
with this type of in vivo labeling in a technique called Stable Isotope
Labeling In Planta (SILIP) [54]. A proof of concept study was
performed with tomato plants, showing 99% incorporation of the
nitrogen-based label.

2.4 LFQ In contrast with the methods above, label-free quantitation (LFQ),
as the name implies, requires no chemical tags or isotopic labels on
samples. This makes the following approaches attractive for many
experiments, as sample preparation can have a lower reagent cost
and fewer experimental steps, and is similar to global standards in
the sense that there is no limit to the number of different conditions
that can be compared.

At its core, LFQ is based on two different data-collection
approaches: (1) spectral counting or (2) ion abundance, the choice
of which is in part influenced by the type of data collection used.
These are data-dependent acquisition (DDA) or data-independent
acquisition (DIA), both of which are described further below.

2.4.1 AQUA In one LFQ technique, MRM (see below) can be combined with
the stable isotope dilution (SID) technique. A known quantity of a
purified, labeled peptide standard is used with the unlabeled sam-
ple, allowing for the absolute quantitation of a protein of interest in
a complex mixture in what is referred to as Absolute Quantification
(AQUA) [55]. Although different peptides can ionize and frag-
ment differently, using the same peptide as a label allows the user to
make a relative comparison with a known quantity.

AQUA is capable of measuring posttranslationally modified
proteins, such as by phosphorylation, along with proteins found
in full-lysate samples [56] and can be fully optimized in around a
week’s time [57]. This technique is highly compatible with clinical
tests for a specific protein and in biomarker research. However, is
not effective in global proteome studies, since the label only accu-
rately grants quantitation to a single peptide. One study found
AQUA to have a median coefficient of variation (CV) of about
10% [58]. However this can vary drastically based on the samples
and mass spectrometer used.

2.4.2 QconCAT Due to the high cost of labeled peptide standards used in AQUA, a
modified technique was designed to help reduce this expense. A
technique able to quantify up to 20–30 proteins with over 50 pep-
tides, QconCAT (for Quantitative concatemers) was developed
[59]. A long protein sequence that contains all of the desired
peptides can be expressed in Escherichia coli grown in stable
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isotope-labeled media, providing a single, tryptic protein for the
quantitation of a large set of proteins of interest [60]. Since the
labeled peptides are not designed, ordered, and created by a third
party, both time and money can be saved.

The QconCAT polypeptides are purified after expression, such
as via an included histadine tag in the sequence, and a known
amount of this protein can be spiked into a sample, allowing for
comparative quantitation to the known standard by extracted ion
chromatogram (XIC, see below) or MRM (see below), and thus
providing absolute quantitative data [61].

The result is a much cheaper protocol, allowing for the absolute
quantitation of a larger number of proteins in unlabeled samples. A
major drawback however is the protocol length as this requires
around 3–4 weeks with additional lead time to design and order
the QconCAT gene [60, 62].

2.4.3 LRP Due to the financial impact of commercially available AQUA
reagents or labeled media for QconCAT when studying multiple
proteins of interest, a single, labeled reference peptide (LRP) can be
used for higher accuracy of relative quantitation to help account for
variations between experiments [58]. While considerably cheaper
than SID (AQUA), LRP has a higher median CVat 20–30% due to
the variation of ionization, among other factors, but it still has
competitive values when compared to immunoblotting (CVs of
20–40%) [58].

LRP is best suited for experiments seeking large-scale quantita-
tive data by MS. Due to a relatively high variance, it is suggested
that LRP be used for initial studies, before being investigation by
other, more precise methods.

2.4.4 PSAQ Somewhat an extension to the idea behind AQUA, and in an
attempt to further increase accuracy, a method was developed that
uses an intact protein standard, called Protein Standard Absolute
Quantification (PSAQ) [63]. Since a fully intact, labeled protein is
used, the sample can be extensively fractionated before sample
preparation and quantitation, additionally providing a control
against sites or regions of incomplete digestion.

Owing to the fact that the whole protein is used, high accuracy
and precision can be obtained even in extremely diluted samples.
One study found a quantification accuracy of 77% and a precision of
<5% at concentrations as low as 1 ng/mL [64], and showing
comparable sensitivity to enzyme-linked immunosorbent assay
(ELISA) [65]. While not the best choice for large-scale operations,
this technique has great potential for high-accuracy quantitation of
small sets of low-abundance proteins, for example in biomarker and
clinical applications.
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2.4.5 Other Methods Additionally, without using any reference peptides or spike-ins, it is
possible to use various types of spectral data for quantitation as well.
This is done by directly using targeted, DDA, or DIA methods
(described below) and performing identification, quantitation and
normalization steps on that data with compatible software. Since
there is no known protein/peptide quantity added to the samples,
these methods are only capable of providing relative quantitation
data between samples.

3 Methods of Data Acquisition

Once samples are prepared, they must be injected into a mass
spectrometer for analysis. There are several methods for data acqui-
sition, some of which are hardware-based and some which are
actually methods selected for a specific function of a spectrometer.
Furthermore, some methods of data acquisition and analysis allow
for relative quantitation without the need for any labels, standards,
or spike-ins (as mentioned earlier).

3.1 Targeted

Quantitation

When collecting data, a mass spectrometer first selects for a precur-
sor ion of interest before it is fragmented and those fragment ions
are used to determine the sequence of the precursor. It is possible to
quantify a protein by measuring the number of fragment ions that
reach the final detector, which suggests the amount of the peptides
and thus proteins in the original sample.

3.1.1 SRM and MRM Selective Reaction Monitoring (SRM) is an MS technique that uses
a triple quadrupole (QQQ) mass spectrometer to accurately quan-
tify a single protein of interest at a given time [66]. SRM is based on
the detection of one or more precursor-fragment ion pairs
(or “transitions”). A single precursor ion for a unique peptide of
interest is selected by its m/z (and LC elution time) in the first
quadrupole (Q1). The ion is then fragmented in the second quad-
rupole (Q2) or collision cell by CID, and a single, specific fragment
is then selected in the third quadrupole (Q3), reaching the detector
and generating a signal (Fig. 3b).

The total area under the XIC (also written EIC, a graph that
shows peak intensity as a function of time) can be used to estimate
the quantity of the peptide precursor ion and therefore the protein.
This technique has proven itself capable of quantitation down to
femtomole per milligram levels and spanning four orders of magni-
tude [66]. On average, up to 2000 transitions can be monitored in
a single experiment, translating to up to 1000 proteins, although
this number can be smaller to read more than one peptide per
protein or more than two transitions per peptide [67].

During the acquisition time, the quadrupoles are not scanning
other, “unimportant” m/z values, resulting in a 100% duty cycle
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for a transition of interest, thereby making SRM a sensitive tech-
nique. In practice though, normally one or two additional
precursor-fragment ion pairs are also monitored to increase speci-
ficity and reproducibility. This practice slightly decreases sensitivity,
but increases the reliability of the data [67].

MRM is the use of SRM to simultaneously detect more than
one precursor/fragment pair. MRM has achieved subnanogram/
milliliter quantitation by SID [68, 69] under some conditions.
However, it can lose sensitivity in more complex mixtures, making
global analyses less feasible at these levels of accuracy
[70]. Although specialized software is required for this assay in
both experimental preparation and data analysis, there are multiple
tools available to perform these experiments, including open-
source software like Skyline, created and maintained by the scien-
tific community [71].

Both SRM and MRM techniques are best suited for label-free
relative quantitation and standard-assisted absolute quantitation of
many, preselected proteins in a simple to relatively complex solution
at good to excellent levels of accuracy.

To perform SRM/MRM experiments, a user must complete
multiple data preparation and processing steps. These include the

Fig. 3 (Top) Experimental flowchart for various methods, detailing the point of convergence of samples. In
spiked protocols, the label is added at one of various points in the experiment. In chemical modification,
samples are labeled and combined at different points. In metabolic labeling, samples are combined immedi-
ately after collection. In label-free analysis, samples are run separately and data analysis is used to compare
protein levels. (Bottom) Chart approximating the cost, preparation time, analysis time, and compatible sample
types (adapted from a figure by S.-E. Ong and M. Mann [153]). Abbreviations: PSAQ protein standard absolute
quantification, QconCAT quantitative concatemers, AQUA absolute quantification, LRP labeled reference
peptide, GIST global internal standard technology, ICPL isotope-coded protein labeling, ICAT isotope-coded
affinity tag, TMT tandem mass tags, iTRAQ isobaric tag for relative and absolute quantitation, mTRAQ mass-
differential tags for relative and absolute quantitation, SILAC stable isotope labeling of amino acids in cell
culture, SILAM stable isotope labeling of amino acids in mammals, SILIP stable isotope labeling in planta
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selection of a peptide/ion database, software for peptide and tran-
sition selection, software to execute selected methods, and pro-
grams to detect peaks, perform quality assessment and statistical
analyses. Rather than list each package here, we defer to Colangelo
et al., who have already written an extensive review [72] on the
software tools for the design, data collection, and analysis steps of
MRM proteomics.

3.1.2 PRM Building upon SRM/MRM technology, to enable high-
throughput analyses of multiple product ions at the same time,
Parallel Reaction Monitoring (PRM) was developed [73]. Due to
the amount of data collected, a high-resolution mass spectrometer
is required for this technique. Using PRM, it is possible to both
identify and quantify hundreds of proteins in a single sample, in
contrast with SRM, where proteins must be preselected and are not
identified with the mass spectrometer [74].

Instead of monitoring a single fragment or group of fragments
from one precursor, PRM uses a high-resolution mass analyzer to
register all generated fragments from the target precursor. This
highly robust method of analysis increases the dynamic range
while keeping the achievable linearity over that range [73]. For
example, one group found it was possible to detect levels of ubi-
quitin chains at subfemtomole quantities [75].

PRM has a wider dynamic range, although there are still more
precise measurements obtained with SRM likely due to the higher
sampling rate and SRM was in some cases still able to function at
lower limits of quantitation when background interference was not
present [70]. The main advantage of PRM over SRM and MRM is
that a preselected list of peptide transitions to be monitored is not
required and, in complex samples, the identification step is able to
remove some background noise of coselected peptides [74]. PRM
data collection is compatible with both absolute (e.g., SID or LRP)
and relative (using no labeled reference) quantitation.

Proprietary software for mass spectrometers can be used to
process PRM data as well as multifunctional packages like Skyline
[71] and SpectroDive (Biognosys AG).

3.2 DDA When collecting data from complex samples, such as in shotgun
proteomics, a mass spectrometer is not able to select all of the
eluting precursor ions. The machine must then make many rapid
choices as it must be determined which of the MS1 peaks should be
fragmented for identification and quantitation, and which must be
ignored.

One way to select peaks is through DDA, in which the mass
spectrometer sequentially selects the most intense peaks recorded
on MS1 spectrum. Those peaks are then selected for subsequent,
individual fragmentation. After a cycle of MS and several MS/MS
spectrum acquisitions, the mass spectrometer performs another MS
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reading and the cycle restarts. To collect data from peptides with
lower intensities, a process called dynamic exclusion time is usually
employed, omitting peptides that have already been read from
future selections. Using this concept, several methods have been
developed to perform LFQ.

3.2.1 Spectral Counting One such method is called spectral counting [76], which is a
two-step procedure for calculating relative protein abundance. In
the first step, the MS/MS stage identifies a peptide through its
fragments, repeating this step for every precursor ion. A complete
list of all peptides is then compiled and proteins are identified using
these peptides.

For a given protein to be quantified, its constituent peptides
that were identified must be summed, using the number of times
each peptide’s MS/MS spectra were registered. This score can then
be used to estimate the total amount of that protein in the sample
due to its near linear relationship over two orders of magnitude
[76]. This method is somewhat controversial since ionization effi-
ciency of different peptides varies with physical properties and
chromatographic behavior [77] and, as such, this method requires
the acquisition of a large number of spectra for high quality data
[78] and is considered to only provide a relative abundance for
proteins without the use of SID or LRP.

3.2.2 Spectral Counting

Normalization

In attempt to increase accuracy of the data obtained, several free
and commercial methods and software applications for standardiza-
tion have been published. These include APEX [79], Crux [80],
emPAI calc [81], PepC [82], QSpec [83], QProt [84], and Spectral
Index [85]. These methods perform calculations often based on a
database of peptide ionization information to increase accuracy of
the conversion between the spectral counts and the protein quan-
tity present in the sample such as by taking the expected number of
peptides and peptide length into consideration. ProteoIQ (PRE-
MIER Biosoft, Inc.) and Scaffold (Proteome Software, Inc.) are
commercial examples of software that utilize the aforementioned
methods, with the incorporation of user interfaces and additional
tools.

Each option offers slightly different features, user interfaces,
and metrics. Such metrics for standardization include Normalized
Spectral Index (SIN) [86], Exponentially Modified Protein Abun-
dance Index (emPAI) [87], Normalized Spectral Abundance Factor
(NSAF) [88], and distributed Normalized Spectral Abundance
Factor (dNSAF) [89]. These and other metrics basics are explained
below.
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3.2.3 Ion Abundance/Ion

Counting

Differing from spectral counting, Ion Abundance (also known as
Ion Counting) [90] measures the intensities of MS peaks in tandem
with LC elution profiles in what are called XIC integrated areas, and
which only uses MS/MS data for peptide identification. There are
several studies that differ in opinion regarding the accuracy and
precision of ion abundance compared to spectral counting [78, 91,
92]. This discrepancy is possibly due to the various operations
possible (such as comparing one protein across runs or comparing
two proteins to each other within the same run) and due to the
availability of multiple formulas for calculations [91].

3.2.4 Ion Abundance

Normalization

To obtain the most precise results possible, extensive data proces-
sing is required, as LC graphs must be aligned between runs by
reference peaks found across samples, and must also be normalized
with data from housekeeping genes to allow accurate comparisons
between different runs. Several software options are available for
peak picking and XIC alignment such as MapQuant [93], Max-
Quant [94], OpenMS [95], Peaks Studio [96], Progenesis QI
(Nonlinear Dynamics), ProSE (Proteios Software Environment)
[97], Serac [78], SpecArray [98], and SuperHirn [99]. For addi-
tional information, V€alikangas et al. compared performance para-
meters of five of the most commonly used software suites
(MaxQuant, OpenMS, Peaks, Progenesis, and Proteios) [100].

3.2.5 Additional

Resources

Once data are collected, there are several ways to quantify the
proteins present in the original sample. Using peak intensity data,
one such way is Hi-N (or topN) [101], based on the discovery that
the three tryptic peptides with the highest intensities can be used
with high accuracy to quantify their parent protein. Another
method is to sum all of the peptide intensities and divide that by
the total number of observable peptides of that protein in intensity-
Based Absolute Quantification (iBAQ) [102]. In a paper by Krey
et al., Hi-N and iBAQwere found to be equal in data quality [103].

Using spectral counting data, NSAF [88] is a method that takes
protein length into consideration, since a longer protein will inher-
ently have more observable peptides than a smaller one. Building
on NSAF is dNSAF [89], which additionally takes shared peptides
into consideration when quantifying the parent proteins. Yet
another method is Statistical Model for Protein Quantification
(SCAMPI) [104] which not only takes shared peptides into con-
sideration; but it explicitly incorporates them into data processing.
SIN [86] is a method that combines three features of abundance
data: peptide count, spectral count, and MS/MS intensity. The
result is a significant and reproducible data set, and allows the
quantitation of thousands of proteins in a complex sample. Finally,
although not an exhaustive list, emPAI [87] is a method that
attempts to standardize data using a number of observable peptides
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per protein metric, and is modified to an exponential scale for
absolute quantitation.

McIlwain et al. have suggested that, between SIN, emPAI,
NSAF, and dNSAF, it is the NSAF method which has the highest
reproducibility in their review using Crux software for spectral
counting [105].

3.3 DIA In DDA, there can be issues with reproducibility, low-abundance
peptides, and undersampling [106, 107]. An alternative is DIA
[108]. In this methodology, the mass spectrometer does not spe-
cifically select precursor ions from MS peaks to fragment, like in
DDA mode. Instead, all precursor ions in a specific m/z window
are allowed to be fragmented simultaneously, allowing many more
peptides to be fragmented, scanned, and identified.

This allows for identification and quantitation of multiple frag-
ments at the same time. Doing so does not affect the method of
quantitation (using XIC data). Instead it only modifies the method
for which peptides are selected for further fragmentation. This
increase in data comes at the price of a more convoluted MS/MS
spectrum, thus requiring more data analysis time.

Some sources refer to this method as relatively new. However, it
should be noted that publications have referred to this type of
protocol since 2003 in a proof of principle [109] and was success-
fully used in proteomics in 2004 [108]. DIA quantitation
approaches fall into two main categories: high/low collision energy
alternation and stepwise or randomized windows.

3.3.1 CE Alternation In methods such as MSE [110] (in qTOF spectrometers) and All
Ion Fragmentation (AIF) [111] (in Orbitrap spectrometers), the
collision energy of the full m/z window is alternated, leading to
high- and low-energy fragmentation data. This provides complete
MS and MS/MS data but generates a more complex and convo-
luted spectrum. The increase in data processing requirements
comes at the benefit of reducing the chance of missing any quickly
eluting proteins. The MS/MS data is then deconvoluted and
assigned to precursor ions, helped by the fact that precursor and
fragment ions must have the same chromatographic elution profile
[112]. The deconvoluted MS/MS spectra are searched against a
protein databank for identification. The precursor XICs are then
used for relative [113] or absolute quantitation [101].

Other workflows have built upon MSE to increase data quality,
such as high- and ultra-definition MSE, HDMSE (Waters Corp.)
and UDMSE (Waters Corp.) [114], respectively but the principle of
quantitation remains the same [115]. In HDMSE and UDMSE,
more proteins can be identified and with higher confidence when
compared to standard MSE [116]. This is due to the integration of
ionmobility separation (IMS), in which ions separate based on their
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gas phase mobility in an electric field, increasing peak capacity
through the addition of this extra dimension of resolution [115].

Collision energy (CE) levels are what distinguish HDMSE and
UDMSE. In HDMSE, the CE increases stepwise during the high-
energy scan, as the IMS cycles are run. In UDMSE, the IMS cycles
are instead individually run with their own small CE ramp, which
repeats in each cycle. This inclusion of IMS greatly increases the
number of proteins identified in complex samples. However quan-
titation in high-abundance samples can sometimes be reduced due
to oversaturation of the detector [117].

3.3.2 Fragmentation

Windows

Instead of fragmenting the entire, available set of precursor ions,
small windows can be selected of fixed or variable widths. In doing
so, spectral data is less complex. However some eluates may be lost
during the long cycle times. Several methods exist to select the
window sizes and cycle times, such as extended data-independent
acquisition (XDIA) [118], PaCIFIC [119], FT-ARM [120], and
SWATH [121]. For more information on DIA quantitation meth-
ods, an article by Bilbao et al. elaborates on the differences and
similarities of each [110].

Generally speaking, a small window of MS ions is allowed to be
fragmented at any given time, increasing stepwise before returning
and repeating. This provides MS/MS data for many proteins in an
elution profile as no individual peak is selected for fragmentation.
The MS and stepwise MS/MS spectra can then be compared
against a peptide spectral library to identify the proteins present in
the sample; and the areas of the XIC peaks are used to calculate
protein abundance [122, 123].

Similar to stepwise windows, Multiplexed MS/MS (MSX)
[124] chooses small windows for higher-energy fragmentation
steps. However it is done at random, instead of in a stepwise
manner. When performing experiments with SWATH, the use of
variable fragmentation windows [125] to reduce cross fragment ion
interference has been proven to aid in the identification of more
proteins.

3.3.3 DIA Software Multiple software packages exist to use complex DIA data, using
different methods to obtain quantitative data. Bilbao et al. [110]
classified software into three groups: XIC construction from spec-
tral libraries, demultiplexing into pseudo-DDA spectra, and theo-
retical spectrum comparing.

In XIC construction, a data library is required to assist in the
identification of spectra and if data is not present for a peptide, it
cannot be identified. Since then, several attempts have been made
to solve this shortcoming of DIA by extracting pseudo-DDA spec-
tra. Demultiplexing software individually subtracts MS/MS spectra
fromMS precursor data, loosely based on research by Purvine et al.
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[109]. However, at that time, this process was done by hand and no
software was proposed in the original study.

Some software tools capable of pseudo-DDA spectral extrac-
tion are DIA-Umpire [126], PeakView (AB Sciex), Skyline [71],
Group-DIA [127], MSPLIT-DIA [128] and PECAN [129]. At the
time of writing this chapter, no systematic comparison and review
of these different methods was available. Other, more specific soft-
ware packages have become available, for exampleMaxQuant [111]
for AIF, XDIA Processor [118] for XDIA, and Complementary
Finder [130] for collision-activated dissociation (CAD).

4 Additional Tools

Beyond the methods and tools for data acquisition and analysis, the
following protocols have been considered to be potentially useful
for the creation of certain project workflows. These tools are
SPS-MS3 for increased sensitivity in multiplexing, the proteomic
ruler protocol for cell number normalization, and AP-MS for sam-
ple enrichment and depletion.

4.1 SPS-MS3 In high-number multiplexing experiments like iTRAQ and TMT,
the sheer number of ions present can cause significant levels of
interference during quantitation steps due to unintentionally cose-
lected species during fragmentation [131]. To remedy this, MS3
scans have been used to remove the distortion of the ratio signals
[132]. Unfortunately, this increase in data quality originally came at
the price of a significantly reduced sensitivity [131].

To regain the lost sensitivity, a method called Synchronous
Precursor Selection MS/MS/MS (SPS-MS3) fragments multiple
MS/MS peaks at the same time, increasing the number of reporter
ion signals and ultimately increases the quality of data obtained
[131]. The main drawback to this method is the requirement for
a compatible mass spectrometer, capable of performing this type of
simultaneous MS3 scanning.

4.2 Proteomic Ruler In some experiments, it may be desirable to calculate the number of
protein copies per cell, achieved through cell counting and absolute
quantitation steps. While this technique is good in theory, there are
multiple steps in which user errors can drastically affect such a
sensitive measurement, such as cell counting steps, varying cell
size, protein concentration measurements, and protein reactivity
to quantitative assays [133].

A fast, simple way to reduce these sources of error is to sample
the MS signals from histone proteins. This can be done because the
original number of cells is directly proportional to the quantity of
DNA present in a full lysate, and this, in turn, is associated with a
direct relation to histone presence at a nearly 1:1 ratio
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[134].Wiśniewski et al. have described a protocol named Proteomic
Ruler [133] to use this relation to provide copy numbers per cell and
protein concentrations with no additional experimental steps, and
with comparable precision compared to standard methods.

4.3 AP-MS In many experiments, the data from the entire proteome may not
be required but rather a small subset of proteins is desired. To
enrich the sample and obtain a simpler sample, tandem affinity
purification (TAP) was often performed [135, 136]. TAP is a
process for enriching a sample for targets of interest, discarding
nonspecific molecules.

This enrichment can occur by: immobilizing antibodies
[136–138] against a protein, epitope, or posttranslational modifica-
tion; or immobilizing other ligands like chemicals [139–142], lipids,
proteins [143–146], peptides [147], DNA [148], RNA [149], or
ions (e.g., anions for histidine tags or cations for phosphorylation)
[150], and then eluting the selectively bound protein targets. Other
methods ranging from reversible immobilization of phosphopep-
tides to amine-containing resins [151] have been published.

As the modifications of a protein are sometimes just as impor-
tant as its quantitation, enrichment by affinity pulldown, ion
exchange and reversible immobilization can provide crucial data
to an experiment. In combination with shotgun proteomics, indi-
vidual sites of protein modifications and their stoichiometry can be
determined. In addition to the above methods, a different type of
affinity pulldown uses pan-antibodies, a type of antibody that
recognizes a variety of targets such as post-translational modifica-
tions, regardless of the flanking sequences [152, 153].

Once proteins are enriched, they can either be quantified by
label-free methods or labeled and quantified by Affinity Purification
Mass Spectrometry (AP-MS). Due to the nature of this type of
purification and enrichment technique, extra care should be taken
when comparing quantitative data from different experiments. For
example, antibodies can vary between batches and the presence of
other proteins in a lysate can affect which and how much of a
protein subset is eluted.

5 Method Comparisons

With the sheer quantity of methods available for use, selecting a
single one can be a daunting task. Since many methods have specific
benefits and drawbacks for certain applications, this comparative
chapter and accompanying chart (Fig. 4) can be used to help select
a protocol for a given experiment.

To determine the method that best suits an experiment at hand,
one must first look at the type of quantitation desired, such as the
precise measurement of a single protein or the global quantitation
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of all proteins in a sample, for example. Then, the analysis equip-
ment available (mass spectrometer setup and analysis systems) must
be taken into account to filter for feasible methods. Taking these
steps into account will narrow down the available options. The level
of data precision desired and the amount of time and money that
can be dedicated to the project will then help determine which
choice would best fit an experiment. New and improved software
is continually being released for various methods, some open-
source and some paid, which should also be taken into consider-
ation in addition to any reagents when determining the budget.

Lastly, as a general rule, when selecting a technique, when
samples are combined farther up the workflow, the chance of
having propagating experimental errors is reduced. Steps for pre-
fractionation, digestion, and analysis can all add confounding and
perpetuating variables, affecting results. In some LFQ software,
XIC alignment via peak picking helps retroactively correct for
some of these variables. Workflows and sample combination times
are elaborated upon in Fig. 3, inspired by and expanding upon a
design originally published by Shao-En Ong and Matthias
Mann [154].

Fig. 4 A concise chart comparing various quantitation methods, detailing the following points: compatible with
relative and absolute quantitation [the methods with (X) can be modified to work with absolute quantitation,
but one multiplexing condition is lost and a known quantity of protein must be used and labeled]; compatible
with the method; how many multiplexing conditions are possible; if the proteins/peptides must be preselected
(targeted) or not (shotgun); and the strong/weak points of each method. Abbreviations: ICAT isotope-coded
affinity tag, ICPL isotope-coded protein labeling, GIST global internal standard technology, iTRAQ isobaric tag
for relative and absolute quantitation, mTRAQ mass-differential tags for relative and absolute quantitation,
TMT tandem mass tags, SILAC stable isotope labeling of amino acids in cell culture, SILAM stable isotope
labeling of amino acids in mammals, SILIP stable isotope labeling in planta, AQUA absolute quantification,
QconCAT quantitative concatemers, LRP labeled reference peptide, PSAQ protein standard absolute quantifi-
cation, PTM posttranslational modification
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5.1 Absolute or

Relative Quantitation

When choosing between absolute and relative quantitation, the
ultimate goal of the experiment is the leading influential factor.
While absolute quantitation can be key in biomarker studies, clini-
cal applications and copy number calculations, not every experi-
ment needs such a high level of accuracy. Since absolute
quantitation uses labels or standards, this increases the cost of the
experiment. Therefore, in cases where it is not necessary, and
determination of fold-changes between samples is sufficient, rela-
tive quantitation is recommended.

5.1.1 Absolute

Quantitation

Generally speaking, absolute quantitation can be performed using
either protein/peptide tags or labeling (ICAT, ICPL, GIST,
SILAC, etc.), or reporter ions (iTRAQ, TMT, etc.), or with
spike-ins (AQUA, QconCAT, PSAQ, etc.).

When using tags, proteins or peptides are globally labeled,
allowing for the identification of peptides belonging to different
conditions. If one of those conditions is a known amount of a
protein standard, then the intensity of the sample condition could
be compared to that standard. However, due to varying rates of
ionization of peptides and other confounding factors, this compar-
ison can only be made for the standard proteins’ pairs in the sample
using this method. As such, these methods are normally not recom-
mended here for absolute quantitation. In a method termed Abso-
lute SILAC [155], protein standards have been used in this way
with cell cultures to determine copy numbers.

When using reporter ions, multiplexing capability combined
with the consistency of reporter ionization offers better compati-
bility with absolute quantitation of samples. In general, isobaric
tags (quantitation by MS/MS data; e.g., iTRAQ, TMT) provide
better data than standard tags (ICAT, ICPL, GIST) because there
are no undesired peak overlaps from different tags, the LC elution
profile of peptides remains the same, and reporter tags ionize with
similar efficiency between peptides. Between iTRAQ and TMT,
there is no clear advantage of using either one over the other [24]
and in principle they are nearly identical. However, using higher
multiplexing, the potential to reduce accuracy is possible
[25–28]. mTRAQ has a clear advantage when collecting data over
long periods of time, on different machines, or under different
conditions but one study found that it may come at the cost of a
reduction in identification of proteins with posttranslational mod-
ifications and an increase in data variability [20].

Lastly, absolute quantitation is possible with the use of a labeled
standard. In QconCAT, AQUA, and PSAQ, a reference protein or
peptide is used as a comparison for signal intensity. These can
quantify a limited number of peptides/proteins with high accuracy,
with some publications claiming that LFQ outperforms iTRAQ
and equivalents in identification and coverage [156–158] with a
slight decrease in accuracy [159]. One of the most significant
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downsides to using label-free based methods is the resource
requirement for high-resolution mass spectrometers and large-
scale data processing.

Al Feteisi et al. [160] detail the cost–benefit relations between a
few different absolute quantitation methods, AQUA, QconCAT,
and PSAQ, comparing each method’s cost with its sensitivity,
reproducibility, and time. They also concluded that LFQ is the
most cost-effective method, although depending on the experi-
mental design and data accuracy required, other methods may of
course be better suited for a specific protocol.

5.1.2 Relative

Quantitation

Within the realm of relative quantitation, a few more possibilities
are available to users. Along with the methods listed above, many of
them being compatible with both relative and absolute quantita-
tion, some additional LFQ methods are also compatible. As previ-
ously mentioned, unless an experiment explicitly requires absolute
quantitation, many times the cost of performing such an experi-
ment does not recompense the data obtained. If one sample source
with two or more conditions is being compared, fold-change can be
more than enough data and all samples can be compared to a
control base value.

5.2 SIL or LFQ Quantitation can be performed by either spectral counting-based
methods or by means of XIC data. Using either method, relative
quantitation can be SIL and LFQ.

When comparing a label-based and label-free method (iTRAQ
and CE alteration for DIA), Patel et al. [161] found that the
number of protein identifications is similar and there is high agree-
ment between the two methods; however, when identifications by a
single peptide were removed, LFQ performed better. In another
study by Li et al. [24], LFQ was found to have a wider dynamic
range than TMT, iTRAQ, and metabolic labeling but variation
between replicates was higher, meaning that the quantitative data
was less precise.

The reduction in experimental complexity and lower cost due
to a lack of labels or labeling steps increases the attractiveness of
LFQmethods, while higher reproducibility and data accuracy espe-
cially with low-abundance targets can be obtained with the use of
label-based methods.

5.2.1 SIL Between SIL methods, many protocols, along with their benefits
and drawbacks, are similar; but some advantages have been
recorded of one method over others. For example, iTRAQ and
TMT show higher precision than metabolic labeling in relative
quantitation [24]. However, in experiments that require extensive
preparatory steps before MS analysis such as fractionation, abun-
dant protein depletion, co-immunoprecipitation, other enrich-
ments and metabolic labeling still remains a strong candidate as it
removes several stages at which user-based errors could occur.
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5.2.2 LFQ When comparing label-free spectral counting and XIC methods,
conflicting evidence on superiority has been documented [78, 91,
92]. However, this is thought to be due to differences in protocol
and the mass spectrometers in use when these comparisons were
made. When these variables were removed, neither spectral count-
ing nor XIC methods inherently carried a specific advantage over
the other [162]. However, processing methods of the obtained
data can still have a significant effect on inter-replicate reproduc-
ibility and accuracy.

It is this difference which carries the most weight for the
selection of a label-free method. In a study comparing five different
analysis formulas, MaxLFQ and NSAF provided better results and
replicability, while SIN gave the lowest standard quantification error
values, and NSAF best identified background proteins from protein
targets [162].

5.3 Targeted, DDA

or DIA

When collecting both labeled and label-free data, three main meth-
ods of mass spectrometer settings can be used: targeted
(MRM/PRM), DDA, or DIA. Targeted acquisition is reserved
exclusively for small-scale experiments, since whole-proteome
“shotgun” analyses are not possible as all peptides to be quantified
must be selected before injecting the sample. However, this prese-
lection process increases signal-to-noise ratios and greatly increases
quantitation accuracy [66]. Targeted acquisition is also most com-
patible with older, lower-resolution mass spectrometers.

DDA in comparison is able to identify and quantify proteins
due to a peptide selection process during data acquisition. This
acquisition method is most often used when performing SIL quan-
titation. Due to the protocol having existed for more than two
decades, there is extensive software available for data processing,
and is the default mode on most commercially available mass
spectrometers [163].

Lastly, made available due to advances in computational tech-
nology, DIA improves upon DDA in some ways, while getting
closer to the data quality found in targeted methods. This is the
method of choice for LFQ in conjunction with special ion abun-
dance methods. There is a relatively high accuracy in quantitation,
with high peptide identification and reproducibility; but this comes
at the price of significantly more complex data processing steps,
which are still being perfected due to the recent development of
this method. Hu et al. have published a much more in-depth
comparison between these three methods [163].

5.3.1 Targeted Between SRM, MRM, and PRM, the latter has the capability to
provide quantitative data over a wider dynamic range and confers
higher specificity, while having the potential for a simpler assay
development stage than SRM [73]. This can be contrasted with a
potential decrease in precision of PRM [73]. However, further
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studies have suggested that for some applications, PRM can show
comparable data quality in linearity and dynamic range, as well as
precision [164].

Targeted data acquisition can be extremely useful in specific
cases that require high precision and accuracy on a small subset of
proteins, such as when quantifying sites of posttranslational mod-
ifications [165], measuring enzyme activity by quantification of the
protein substrates [166], or when comparing various posttransla-
tional modification sites on a single protein and their stoichiometry
[167, 168]. For a more global measurement of this type of analysis,
AP-MS can be combined with DDA/DIA methods. However due
to inherent variations with antibody-associated analyses, targeted
acquisition still confers higher quantitative accuracy.

5.3.2 DDA DDA takes in a wider scope of data compared with targeted acqui-
sition and is useful for shotgun proteomics, allowing a large num-
ber of proteins to be identified and quantified in a single experiment
without the need to select peptides before the experiment. When
performing large-scale experiments, targeted acquisition methods
are not feasible, especially with respect to time required to prepare
the experiments and the amount of sample that would be required.
As such, DDA has become a standard for whole-proteome quanti-
tation. On the negative side, this large increase in identification and
quantitation led to significant drops in reproducibility, in some
cases having only around 60% overlap when comparing multiple
replicates [169].

One major supporting factor for DDA is its ease of use and
broad availability of software for data processing as well as its
compatibility with both label-free and stable isotope-based, relative
quantitation. However, since peptides are not repeatedly sampled
in attempts to obtain the largest amount of identification data
possible (and in some cases dynamically excluded to increase cover-
age of proteins with lower abundance), absolute quantitation is
difficult at best.

5.3.3 DIA One additional step of complexity beyond DDA is DIA, which
slightly reduces the number of identifications and number of quan-
tified proteins in exchange for higher reproducibility. This also
comes at the cost of more resource-intensive data processing
steps, since the spectra obtained are much more convoluted.
There is also a vulnerability to data variation due to the presence
of other peptides in a sample, since multiple peptides are sent for
fragmentation at the same time.

If the resources are available for DIA acquisition and proces-
sing, it is the best fit for quantitative shotgun proteomics due to the
large amount of data (and higher accuracy) possible with such a
small amount of machine and sample preparation.
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6 Concluding Remarks

Quantitative proteomics is a continually evolving field that has
existed for nearly 20 years. Over time, improvements to mass
spectrometers, experimental techniques and computational ability
have led to a sprawling array of available methods. These methods
allow scientists to identify and quantify a single to a few thousand
proteins and, in certain cases, with subfemtomole accuracy. With
the increasing importance of proteomics and related fields in both
biological and clinical research, mass spectrometry is also growing
increasingly more valuable. With its broad applicability, innumera-
ble protocols have been perfected for specific uses in MS-based
protein quantitation. Most simply divided, quantitation of proteins
can be classified as labeled or label-free quantitation.

In labeled quantitation (stable-isotope and metabolic labeling),
multiple samples can be run through the mass spectrometer at once
(multiplexing), providing extremely high accuracy for relative
(or absolute) abundance measurements. This high accuracy can
be vital in clinical applications, where only a small sample is available
or when dealing with proteins with extremely low abundance, as is
often the case with disease and medication efficacy biomarkers.
Several techniques have also been published using labeled standards
to produce absolute values for protein quantitation, which provides
better reproducibility and accuracy, since data is not relative to
other samples and less prone to user error. Labeling proteins has
been proven to function with samples consisting of peptides, pro-
teins, cell cultures, and even living mammals and plants. Data
processing is relatively light, balancing out the often longer and
more costly protocols, due to the requirement for pure, isotopically
labeled tags or media.

Comparatively, label-free quantitation uses no chemical tags,
reducing the cost and preparation time for individual experiments,
and allows large-scale analyses to be performed quickly and
robustly, and thousands of proteins in a single, complex sample
can be identified and relatively quantified. Due to the lack of tags,
multiplexing is not possible and different machine and environ-
mental conditions can change results, although steps are usually
taken to correct such issues. Data analysis is relatively lengthier due
to additional processing such as an alignment step and signal
deconvolution. With the addition of a single labeled reference
protein or protein spike from another organism, absolute quantita-
tion is also possible.

There is rarely a single correct answer when designing any
experiment, and methods are constantly being developed and
improved upon. Each technique has its own niche and strong
points, along with its restrictions and drawbacks. We believe that
this guide provides a summary of each method with its strong and
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weak points and would help the user to determine which method
(or methods) would be best for a quantitative proteomic experi-
ment at hand.
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Hussong R, Lange E et al (2008) OpenMS -
an open-source software framework for mass

spectrometry. BMC Bioinformatics 9:163.
https://doi.org/10.1186/1471-2105-9-
163

96. Zhang J, Xin L, Shan B, ChenW, Xie M, Yuen
D et al (2012) PEAKS DB: de novo sequenc-
ing assisted database search for sensitive and
accurate peptide identification. Mol Cell Pro-
teomics 11. https://doi.org/10.1074/mcp.
M111.010587

97. H€akkinen J, Vincic G, Månsson O, Wårell K,
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Abstract: 

 Schizophrenia (SCZ) is a multifactorial mental disorder that affects nearly 

1% of the population worldwide. Patients are affected in various ways; and there is no 

known cure for this disease. Cellular pathways associated with energy metabolism are 

dysregulated, and metabolic disruption is also one of the side effects of antipsychotics, 

the principal way to manage the symptoms of SCZ. In 2011, two post-translational 

protein modifications (PTMs), the succinylation and malonylation of lysine residues, 

were discovered to be widely present in many domains of life, and furthermore have 

been observed on many proteins associated with glycolysis and metabolism. The 

precursors to these PTMs, understood to be succinyl-CoA and malonyl-CoA, are also 

both a part of central metabolic processes, and their prevalence as a PTM in cells can 

vary with metabolism-related stimuli, such as hypoxia, also a potential environmental 

trigger for developing SCZ. In this work, shotgun mass spectrometry-based 

quantitative proteomics was used to determine what differences in succinyllysine and 

malonyllysine profiles exist under various conditions. Postmortem brain tissue of SCZ 

patients was compared with mentally sound controls. Additionally, human 

oligodendrocyte precursor cell cultures (MO3.13 lineage) were treated with MK-801, a 

SCZ-mimetic compound and/or 3 antipsychotics before being analyzed. Multiple 

differences in the acylation profiles were found when comparing these conditions and 

their associated controls. 
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Introduction: 

 Schizophrenia (SCZ) is a complex and multifactorial illness that is estimated 

to affect between 0.3-0.7% of the population worldwide 1. It is characterized by 

changes in an individual’s ability to perceive and react to the world around them; and 

physical, observable changes in brain function and morphology are also visible 2,3. Its 

onset is brought on by a culmination of biological and environmental factors 4, not all 

of which are known. These factors, in combination, lead to an individual experiencing 

an array of symptoms that cause deficits in social appropriateness and forms of 

hallucinations or psychosis 5, among other symptoms. 

SCZ is known to have a strong genetic influence, as proven by longitudinal 

studies in twins 6; but this does not paint the whole picture, as many environmental 

factors can affect the chances to develop the disorder such as postnatal hypoxia, 

prenatal vitamin D deficiency, cannabis abuse as a teenager, a stressful childhood, 

certain viral infections, and diet 7. However, the etiology of SCZ is unknown and there 

is currently no cure. Instead, medication allows a patient to manage their symptoms 

and lead a more fulfilling life. 

In general, treatment is based on symptom management with antipsychotics, 

which are not always effective in all patients 8. Antipsychotics fall into two overall 

categories: typical and atypical. Despite the beneficial reduction of positive symptoms, 

antipsychotic medication also may cause various debilitating side effects, especially 

typical antipsychotics9. The low efficacy of first prescription choices and severe side 

effects lead to a high percentage of patients eventually abandoning treatment 8. 

Typical antipsychotics (TAPs) are antagonists of the dopamine D2 receptor 

(D2R), and were first used in the 1950s 10. In patients with SCZ, they are administered 

to reduce positive symptoms by blocking dopamine’s effects; however, not every 
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patient will respond to a particular antipsychotic, and less than half of patients are 

considered to be good responders to the first antipsychotic prescribed to them 11, 

requiring more time to find an optimal treatment, frustrating the patient, and wasting 

resources. Complicating treatment further is the prevalence of tardive dyskinesia, a 

side effect of TAPs that affects a patient’s motor abilities 12. 

Alternatives to TAPs have since been discovered, now called atypical 

antipsychotics (AAPs). This class of medication binds to an array of receptors at 

different strengths, including the serotonin 5-HT2A receptor 13; though, how different 

binding profiles lead to changes in side effects and therapeutic profiles is still 

undetermined 14. 

While AAPs present a slightly lower risk for tardive dyskinesia – 3.9% 

compared to 5.5% 12 – there is the added chance of developing a blood condition called 

agranulocytosis, among other side effects. In a study in Iceland on 611 patients with 

SCZ, they found that a comparable number of patients treated with TAPs developed 

the condition 15. Additionally, AAPs can also induce an array of side effects that are 

jointly called metabolic syndrome, but the incidence rate can vary between AAPs 16. 

The main documented symptoms of metabolic syndrome are insulin sensitivity and 

weight gain 17. 

Although overall changes due to SCZ can be seen in samples such as 

postmortem brain tissue, other models must be used to allow the fine tuning of specific 

variables and remove confounding factors. One model is cultured oligodendrocytes 

(OLDs), cells that provide neurons with structure, nutrients, and protection through 

myelination. OLDs have been recurrently found to be associated with some of the 
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dysregulations in and symptoms of SCZ 18–22. This association is also in agreement 

with the dysfunction of myelin-associated proteins, observed and implicated in SCZ 23. 

 A human OLD precursor cell line MO3.13 has been shown to stay in an 

“arrested” immature development state 24. To simulate SCZ in these cells, they are 

treated with dizocilpine (MK-801), which has been established as a model via animal 

behavioral studies. In rats, MK-801 induces negative symptoms 25, cognitive symptoms 

26, brings about similar neurochemical changes to those that are seen in first-episode 

patients 27, and potentially induces positive symptoms, although in a manner unlike 

what is seen in the PCP model 25,28. A protocol has been published that elaborates on 

the use of MK-801-treated cells as a model to study schizophrenia 29. 

 One form of studying cells under conditions such as these is through 

proteomics. Due to the known existence of both genetic and environmental factors and 

the dynamically responsive nature of the proteome, proteomics is an extremely useful 

tool to study illnesses such as schizophrenia. Beyond the presence and quantity of 

proteins, mass spectrometry and proteomics can reveal information about post-

translational modifications (PTMs) on proteins. PTMs include small organic molecules, 

polysaccharides, other proteins, and fatty acids, as well as structural changes like 

cysteine disulfide bridges. New discoveries are constantly being made about additional 

modifications, such as the 2011 discovery of the widespread addition of the acyl groups 

succinate and malonate to lysine residues 30,31.  

Protein succinylation was discovered less than a decade ago, and confirmed to 

be a widespread PTM after a study with E. coli, S. cerevisiae, HeLa, and mouse liver 

cells 31,32. Succinyl-CoA itself is a key intermediate in the TCA cycle, strengthening its 

link to metabolism and energy production and a large number of histone proteins as 
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well as mitochondrial and metabolic proteins are modified with succinyl groups (2,572 

sites on 990 proteins) 32. In addition, the protein succinylation profile has been found 

to be extremely sensitive to certain external metabolic changes, even after stimuli as 

short as 20 minutes 33. 

Malonyl-CoA was confirmed to be a PTM source after a knockout study of the 

enzyme that converts malonate to malonyl-CoA 34. Since malonyl-CoA is an 

intermediate in fatty acid synthesis, it was also hypothesized to have strong ties with 

metabolism and energy regulation, a fact that has been confirmed in both analytical 

and knockout studies 34,35. One study has linked weight gain from antipsychotics with 

perturbations in this branch of metabolism, and malonyl-CoA was specifically 

mentioned 36. 

Both modifications are now considered important PTMs and have been 

observed in various prokaryotic and eukaryotic cells 30,32,37,38. Sites of modification 

have been discovered to be highly prevalent on metabolic proteins and other 

mitochondrial proteins, although the effects of these modifications are still mainly 

unknown 33,33,34,37,39,40. Lastly, sites are unlikely to be random or otherwise unregulated, 

as software has been developed that helps predict which lysine residues are sites of 

succinylation 41,42 and malonylation 43, hinting at a type of site specificity and stringent 

regulation for addition and removal such as the theory that SIRT5 is the enzyme 

responsible for desuccinylation 40 and demalonylation 35. Tying this in to SCZ, there is 

substantial proof that metabolic dysregulation and oxidative stress occur in SCZ 44–49. 

As such, there is great potential in researching a correlation between SCZ and these 

recently discovered PTMs to perhaps uncover new medicinal targets or research foci. 
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In this work, the locations and prevalence of these two PTMS were compared 

under conditions in relation to SCZ using post-mortem brain tissue and MO3.13 human 

OLD precursor cells treated with MK-801 and/or haloperidol, chlorpromazine, and 

quetiapine. Discovering new sites of modification, especially ones present under only 

certain conditions, will help the currently growing databases for these PTMs. 

Comparing PTM profiles can reveal dysregulations in pathways that are not otherwise 

visible through genomics, transcriptomics, or otherwise unfocused proteomics. These 

pathways could become the focus for further studies of the development, progression, 

or treatment of SCZ. 

Additionally, understanding how these acylation profiles change in response to 

MK-801 and antipsychotics can provide insight into their mechanisms of action and 

side effects, potentially assisting in the development of new medications and the 

reduction of the detrimental side effects of current treatments. Lastly, understanding 

which pathways, if any, that antipsychotics balance when cells are disturbed with MK-

801 could provide valuable understanding about how these medications function, and 

direct new studies to determine how to manage the cognitive and other symptoms of 

SCZ that are left unchecked by antipsychotic-based treatment. 

  



72 

Methods: 

4.1 Meta-analysis Sample Sources 

 The meta-analysis was performed using the RAW files from two other 

members of the laboratory (see Acknowledgements). The data were collected using a 

method well suited the researcher’s experiment at hand and is described in detail 

below; but conditions stayed constant within an individual experiment. Data used were 

either from postmortem corpus callosum brain tissue (from schizophrenia patients and 

controls, collected at and donated from the Institute of Neuropathology, Heidelberg 

University, Heidelberg, Germany) (see Appendix 1) or the MO3.13 human OLD 

precursor cell line. 

4.1.1 Postmortem Corpus Callosum Tissue 

 Postmortem brain tissue from the corpus callosum was lysed and cytosolic 

proteins were extracted according to the protocol as published 50 and is reiterated 

below. 20mg of tissue was homogenized in 250µL lysis buffer (7M urea, 2M thiourea, 

4% CHAPS, 70mM DTT, 2% Halt™ Phosphatase Inhibitor Cocktail, and 2% Halt™ 

Protease Inhibitor Cocktail EDTA-Free (Thermo Fisher Scientific)) with a manual 

grinding kit (GE Healthcare Life Sciences). The lysate was centrifuged at 14,000 rpm 

for 10 minutes at 4°C to pellet membranes, the supernatant was collected, and the 

protein level was quantified with a Qubit® 3.0 Fluorometer (Thermo Fisher Scientific). 

 50µg of lysate was prepared by adding 0.2% Rapigest to the samples for 

15 minutes of incubation at 80°C. Proteins were reduced by incubating with 100 mM 

DTT at 60°C for 30 minutes and then alkylated with 200mM IAA for 30 minutes at room 

temperature in the dark. Cells were digested with 1:50 trypsin:protein (by mass) at 

37°C overnight. Trypsin activity was halted with the addition of TFA to 5% for 90 

minutes at 37°C. The sample was then centrifuged at 14,000 rpm for 30 minutes at 
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4°C and the supernatant was collected. The pH was adjusted with 1M NH4OH and 

frozen until MS analysis. 

1 µg of peptides were injected into a 2D-RP/RP Acquity UPLC M-Class 

System (Waters Corporation) coupled to a Synapt G2-Si mass spectrometer (Waters 

Corporation). Samples were fractionated in first dimension chromatography with an 

XBridge Peptide BEH C18 NanoEase Column (130Å, 3.5 µm, 300 µm X 50 mm, 

Waters Corporation). Peptide elutions were performed by using discontinuous steps of 

acetonitrile (11%, 14%, 17%, 20%, and 50% ACN) for 10 minutes at a flow rate of 

2,000nL/min. After each step, peptide loads were carried to a second-dimension 

separation in an ACQUITY UPLC HSS T3 nanoACQUITY Column (100Å, 1.8 µm, 75 

µm X 150mm, Waters Corporation). Peptide elutions were achieved using an ACN 

gradient from 7% to 40% (v/v) for 54 min at a flow rate of 500nL/min directly into a 

Synapt G2-Si. 

For every measurement, the mass spectrometer was operated in resolution 

mode with an m/z resolving power of about 35,000 FWHM, using ion mobility with a 

cross-section resolving power of at least 40Ω/ΔΩ. The effective resolution obtained 

with the conjoined ion mobility was 1,800,000 FWHM. MS/MS analyses were 

performed by nano-electrospray ionization in positive ion mode with a NanoLock Spray 

(Waters Corporation) ionization source. The lock mass channel was sampled every 30 

seconds. The spectrometer was calibrated with an MS/MS spectrum of [Glu1]-

Fibrinopeptide B human (Glu-Fib) solution delivered through the reference sprayer of 

the NanoLock Spray source. 

 

 



74 

4.1.2 Oligodendrocyte Precursor Cells 

 MO3.13 cells were grown in Dulbecco’s Modified Eagle Medium (DMEM): 

4.5 g/L D-glucose, L-glutamine (+), sodium pyruvate (-), supplemented with BSA. 

Plates were kept at 37°C at 5% CO2 until nearly confluent. Cells were treated with 

either vehicle (HCl or DMSO), MK-801 (50 µM), an antipsychotic (haloperidol, 50µM; 

chlorpromazine, 10µM; or quetiapine, 50µM), or the antipsychotic plus MK-801. 

Treatments and MK-801 were combined with cells for 8 hours, with MK-801 being 

added after 4 hours in joint conditions.  

Cells were collected in PBS 1x by manual scraping, centrifuged at 1,200rpm 

for 5 minutes, and frozen until lysis. Cell lysis was done in 6M urea, 2M thiourea, 10 

mM DTT, phosphatase and protease inhibitors (Roche Diagnostics, Indianapolis, IN, 

USA), and 0.1mM sodium pervanadate. The solution was heated for 2 hours at 37°C 

before dilution in 9 volumes of 20mM TEAB, pH 7.5 and subsequent sonication on ice. 

200mM iodoacetamide (IAA) in triethylammonium bicarbonate (20mM) was added to 

a final concentration of 20mM IAA and incubated at RT for 20 minutes. 1:50 

(trypsin:protein) was added for overnight (12-16 hours) digestion at 37°C. Formic acid 

was added to a final concentration of 5% to stop digestion. After 5 minutes at RT, the 

samples were centrifuged at 14,000xg for 45 minutes at 4°C to remove lipids and other 

debris. 

The peptide-containing supernatant was collected and 0.1% TFA was 

added to dilute the sample to 1mL and the solution was desalted using Oasis HSB 

cartridges (Waters, Co). The resulting peptides were concentrated via SpeedVac 

(Thermo Fisher Scientific) and reconstituted in 20mM ammonium formate, pH 10. 
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4.2 Mass Spectrometry 

 For postmortem brain tissue, samples were run as published 51 and a copy 

of this protocol can be found in Appendix 2. For MO3.13 cells, 500ng of peptides were 

injected into an Acquity UPLC, M-Class (Waters, Co) coupled online to a Synapt G2-

Si Mass Spectrometer (Waters, Co). Samples were run through a reverse 

phase/reverse phase column (7-40% ACN over 90 minutes) and MS/MS spectra were 

collected in DIA mode. The lock mass compound was [Glu1]-fibrinopeptide B at 

100fmol/µL, sampled every 30 seconds. 

4.3 Protein Identification 

 MS and MS/MS data were collected and analyzed by Progenesis QI for 

Proteomics (version 3.0.6039). Within each experiment, individual samples were 

automatically aligned by the software to improve comparative quantitation. Protein 

identification was performed using the following parameters: maximum ion charge of 

+8, trypsin cleaving sites (up to one missed cleavage), maximum protein mass of 

600kDa, fixed carbamidomethyl C, variable oxidation M, variable acylation 

(succinylation or malonylation) K, minimum of 2 fragments per peptide, 5 fragments 

per protein, and 1 peptide per protein, and using the Uniprot revised Homo sapiens 

database (February, 2018 for post-mortem studies and October, 2018 for MO3.13 

studies). An FDR of 4% was selected using the on-the-fly-reversed list automatically 

created by Progenesis. 
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4.4 Data Filtering and Collection 

 CSV tables from Progenesis were exported containing protein/peptide/ion 

identifications with a mass error of less than 20 ppm. Peptides containing the 

modification of interest were selected for, and quantitative differences (between SCZ 

and control samples) with an ANOVA value below 10% were selected for postmortem 

studies and 5% for MO3.13 studies. The resulting list of peptides was converted into a 

list of its parent proteins’ Uniprot accession numbers and in turn this was input into 

Reactome.org 52. With Reactome.org, top pathways were selected based on Entities 

pValue, using the percentage of identified entities of a specific pathway. 

 To determine attenuation, first, modifications with average quantitation 

scores within 10% between DMSO and HCL conditions were selected for to ensure 

that differences were not due to the vehicles and a change by MK-801 of at least the 

attenuation value compared to its vehicle, DMSO. Next, an average of the two controls 

was used as a baseline for ±10, 25, and 50% (indicating high, partial, and low 

attenuation). A gene was marked with an asterisk (*) if the change by MK-801 was 

higher than one category away from the return category (and ** for two). Lastly, the 

MK-801- and antipsychotic-treated scores were tested to determine if treatment 

attenuated the prevalence of a modification to the degree of any of the three 

categories. 
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Results and Discussion: 

5.1 Comparison of Brain Tissue Samples 

 Under less stringent parameters than with cellular experiments (ANOVA ≤ 

0.10), in all the brain tissue samples, 105 succinylated proteins and 170 malonylated 

proteins were found to be differentially expressed. Little overlap was present between 

patients: only 8 succinylated and 15 malonylated proteins were found differentially 

expressed in more than one sample (see Appendix 3). These repeated proteins and 

brief summaries of their functions (Figures 1 & 2) are strongly associated with the 

cytoskeleton (yellow) and energy metabolism (green). 

 

Figure 5-Dysregulated succinylated proteins in SCZ postmortem corpus callosum. 

 

Metabolic proteins are already documented to be associated with these 

modifications 39, which makes sense due to their inherent relationship with the 

metabolism. Additionally, previous studies have found that energy, metabolism, and 

mitochondrial function are dysregulated in schizophrenia 48,53. Furthermore, 

demyelination, a process known to be reduced in schizophrenia and suggested to be 
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a cause of some symptoms of the disorder 20,54, is heavily associated with the 

cytoskeleton and its modulation. Additionally, Spectrin degradation products have 

been found in higher levels in the serum of patients with schizophrenia 55. 

 

Figure 6-Dysregulated malonylated proteins in SCZ postmortem corpus callosum. 

 

Interestingly, these proteins did not always have a global trend, confirming 

that there is some level of intentional regulation of these modifications on specific 

proteins. For example, SPTBN1 had 4 sites (2 succinylated and 2 malonylated) with a 

lower modification prevalence and 1 site of increased malonylation. In contrast, NEFH 

was only found to have an increased quantity of malonylated peptides. Overall values 

of differences follow in Table 1 below, considered unique by Uniprot accession number. 

Table 1-Quantity of Differentially Modified Proteins 

 Malonylation 

Upregulated 

Malonylation 

Downregulated 

Succinylation 

Upregulated 

Succinylation 

Downregulated 

Unique 

Proteins 

68 112 30 79 
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 Investigating the individual proteins in the list, some others have potentially 

interesting correlations with schizophrenia. For example, STXBP1 has been 

hypothesized to be involved with schizophrenia via the known dysfunction in the 

SNARE complex activity and NMDA reuptake 56. UBE2N has been previously found to 

be differentially expressed in postmortem brain tissue from patients with SCZ 57,58. 

 The mere existence of a difference in expression of this modification hints 

at a previously unnoticed means of protein regulation that may be directly involved with 

the morphological and metabolic changes seen in schizophrenia. Further studies could 

be performed with more samples and brain regions to get a better picture of the 

changes in individual brain regions as well as the overall profile. Using less invasive 

sources from living patients also has great potential to reveal differential expression 

profiles. 

It is important to point out that Progenesis quantifies the presence of peptides – 

or modified peptides – individually between samples, and does not calculate the 

prevalence to the quantity of the whole protein. Due to this type of processing, it is not 

possible – without the use of specialized software or extensive manual analysis – to 

determine if the PTM in question is dysregulated, or if it is the protein itself. Additionally, 

one study found that conditions such as hypoxia can affect the modification profile in 

as little as 20 minutes 33, suggesting that tissue may change its expression profile after 

the patient is deceased. These points should be investigated in future studies. 

5.2 Expression Profiles in MO3.13 – MK-801 

 When analyzing cells treated with MK-801, there were significant (ANOVA 

≤ 0.05) changes in their acylation profiles. Many proteins had multiple sites of 

modification, some of which did not present the same direction of change (see Table 
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2). When looking solely at proteins with an upregulated or downregulated acylation 

profile, some trends were observed using Reactome.org.  

Table 2-Sites of protein acylation in MK-801-treated cells. Classified by Uniprot 

Accession Number (AN). 

 Malonylation Succinylation 

Total Sites 349 502 

Unique ANs 247 322 

ANs Upregulated 150 196 

ANs Downregulated 140 190 

Both Up- and Down-regulated 43 64 

 

One study found that succinate thiokinase (STH) levels in SCZ were reduced59, 

an enzyme that converts succinyl-CoA into succinate. Although this would suggest an 

overall decrease in succinylation, various increases were seen, reinforcing the theory 

of a regulated and responsive PTM system. Alternatively, this could suggest that MK-

801 does not provide a completely accurate representation of SCZ. 
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Figure 7-Succinylation dysregulation in 
MO3.13 by MK-801. ANOVA ≤ 0.05, top 
10 pathways selected for each by 
pValue in Reactome.org.  

 

 

 

 

 

 

 

 

 

Figure 8-Malonylation dysregulation in 
MO3.13 by MK-801. ANOVA ≤ 0.05, top 
10 pathways selected for each by 
pValue in Reactome.org. 
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5.2.1 MK-801 Succinylation 

The top 10 pathways by pValue for up- and down-regulated succinylation are 

summarized in Figure 4 above. In both up- and down-regulated succinylation, 

pathways involved with RNA processing, splicing, metabolism, and translation were 

seen to be perturbed. Introns and miRNA specifically have been only rarely suggested 

to be related to schizophrenia 60, general dysfunctions in mRNA, its processing, 

spliceosomes, and hnRNPs (heterogeneous ribonucleoproteins) have repeatedly 

appeared in literature 61–64. One highlighted subcategory of this is NMD (nonsense-

mediated decay), a cellular stress-induced mRNA degradation pathway associated 

with UPF3B and found to be mutated and/or deregulated in schizophrenia 65,66. 

 Selecting only the upregulated succinylated proteins, some new pathways 

were highlighted. Axonal guidance and ceruloplasmin pathways were seen, as in 

malonylation, along with the added factor of elongation factors, RNA stability, and 

ribosomal function. AUF1 is implicated in ageing, telomerase activity, and inflammation 

67; though no direct link has been made directly with schizophrenia. Nonetheless, a 

part of the AUF1 pathways is the YWHAZ protein, which has been associated with 

schizophrenia in a few studies 68–70. 

5.2.2 MK-801 Malonylation 

The top 10 pathways by pValue for up- and down-regulated malonylation are 

listed in Appendix 4 and are summarized in Figure 3 above. In both directions, the 

CCT/TriC pathway was highlighted, a category of chaperonins that is heavily involved 

with the cytoskeleton 71. The neuronal cytoskeleton has many links with schizophrenia, 

not only due to the known demyelination that occurs, but it also has been mentioned 

as a potential therapeutic target 72. One study found that despite the normal expression 
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of actin, levels of polymerization were decreased 73, something that could be potentially 

explained by PTMs; and another study suggested that actin dysregulation could be 

linked to various mental disorders, including schizophrenia 74. The function of 

malonylation in these proteins, however, is unknown and more studies would need to 

be performed to elucidate the effect of this downregulation. 

Upregulated-only pathways include ER-targeting for proteins, ROBO-mediated 

axon guidance, ceruloplasmin expression, and translation. The pathways involved with 

chaperonins and heat shock proteins are potentially related to the SRP membrane-

targeting pathways, since the endoplasmic reticulum is a prime location for protein 

folding, and stress of this compartment has been implicated in schizophrenia 75. The 

Roundabout (ROBO) pathway is considered to be essential for proper 

neurodevelopment and correct axonal growth 76. Variations in this gene have been 

associated with schizophrenia 77 and was found to be a DISC1 interactor 78, but no 

follow-up studies have been performed to date. Ceruloplasmin expression has been 

found to be dysregulated in schizophrenia as well 79. Although, variances in copper 

levels in patients with schizophrenia, once a considered theory for the cause of 

schizophrenia 80, have not been studied with much scrutiny since then. 

Two downregulated-only pathways that were highlighted are also associated 

with heat shock and chaperonins, and HSP90 has already been passively referenced 

in relation to schizophrenia 81,82 and more directly in association with neurite outgrowth 

83. 
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5.2.3 Overall Pathway Changes by MK-801 

 To see a more overall picture and potentially highlight different affected 

pathways, both up- and down-regulated proteins for succinylation and malonylation 

were combined and entered into Reactome.org. An overall summary of the changes 

follows in Figure 5. 

 

Figure 9-Overall dysregulations in MO3.13 by MK-801. 

 In summary, various changes were observed in succinylation and 

malonylation caused by blocking the NMDA receptor in MO3.13 human 

oligodendrocyte precursor cells. These changes had significant overlap with several 

processes implicated in SCZ, which reinforces the likelihood that MK-801 is a sufficient 

schizophrenia-mimetic model. In addition, specifically mentioning the CCT/TriC 

pathway, it is possible that some of the dysregulations in brain morphology are due to 

an improperly functioning acylation (and/or deacylation) mechanism. 

 Comparing these results with the changes seen in the postmortem tissue, 

there was little overlap with this data and the few proteins found in multiple postmortem 
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samples. Only 2 of the 8 differentially succinylated proteins (SPTBN1 and HSPA5) and 

2 of the 15 malonylated proteins (DYNC1H1 and NEFM) found in the corpus callosum 

were found in MK-801-perturbed samples. These are 3 cytoskeleton proteins and 1 

chaperonin. 

5.3 Expression Profiles in MO3.13 – Succinylation 

 In the MO3.13 cells treated with various antipsychotics, several pathways 

were affected by changes in succinylation with significance (ANOVA ≤ 0.05) and 

identified with Reactome.org. The full list of these pathways can be found in the 

appendices. Overall, there were many similar pathways that were affected by the three 

antipsychotics; however, some differences were seen. 

 The first difference observed was the overall number of sites that were 

changed significantly from the addition of one of the antipsychotics. From haloperidol, 

230 sites were upregulated and 169 sites were downregulated, whereas 

chlorpromazine had 95 upregulated and 70 downregulated sites and quetiapine had 

57 upregulated and 4 downregulated sites. This is despite a significant difference in 

the overall number of identified peptides in the samples. This data is summarized in 

Table 3 below. 

Table 3-Numbers of statistically perturbed succinylation sites in MO3.13 cells due to 

antipsychotic treatments. 

Antipsychotic Haloperidol Chlorpromazine Quetiapine 

Overall Number of Sites 538 189 61 

Percentage of Modified Peptides 35.8% 20.6% 3.51% 

Percentage of Total Peptides 3.16% 1.15% 0.21% 

 

 These differences could be due to many factors; however, the main 

difference between these three compounds is that quetiapine is the only atypical 
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antipsychotic and has much fewer modified sites. It’s possible this is related to the 

receptors to which the various compounds bind, or could also have some relation to 

the different side effects found in the two antipsychotic classes like extrapyramidal 

effects and metabolic syndrome. Which pathways the modified proteins belong to were 

studied using the Reactome database and analysis tool, and the overall pathways (see 

Appendices 5-7) were summarized into a few overarching functions based on what 

components were highlighted in each pathway (see Figure 6). Quetiapine reduced the 

expression of only 4 modification sites on as many proteins and no pathway with an 

FDR below 4% was identified. 

 

Figure 10-Pathways affected by succinylation dysregulation induced by haloperidol, 

chlorpromazine, and quetiapine in MO3.13 cells, using Reactome.org database. 

 To begin, the typical antipsychotic haloperidol induced changes in protein 

succinylation on proteins associated principally with RNA metabolism and regulation, 
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nonsense-mediated decay, stress response, and vesicle formation. Some overlap was 

seen between different pathways such as nonsense-mediated decay (NMD) and RNA 

metabolism. Several pathways were seen with both increases and decreases of 

succinylation on its protein members. 

Of the proteins differentially succinylated by chlorpromazine, many were 

involved in pathways associated with stress, metabolism, translation, and vesicles. 

One study found that chlorpromazine decreased vacuolation and vesicle uptake in 

gastric epithelial cells 84, a cell type which also contains the 5-HT receptor and is 

responsive to serotonin 85. Another study found that vesiculation of red blood cells 

induced by ATP depletion was inhibited through chlorpromazine, also affecting the 

phosphorylation levels of a signaling protein PIP2 86. 

Succinylation changes by quetiapine included lamin dimers and the 

depolarization of the nuclear lamina, listed as the most dysregulated pathway. Lamin 

B2 has been found to be dysregulated in SCZ in one shotgun proteomics study 87 and 

one PTM (phosphorylation) is already known to have an effect on the polymerization 

readiness of this molecular matrix 88. 

All but vesicle transport and lamin dimers could be associated with a 

metabolic stress-induced response, due to succinylation’s known role in the regulation 

of metabolic enzymes 39 as well as the known effects on metabolism by both typical 

and atypical antipsychotics 89. Vesicle transport could be indirectly related to metabolic 

stress, since vesicles are used for protein transport to the endoplasmic reticulum (ER) 

and outside the cell. Strong links between ER stress and metabolism/metabolic stress 

have been observed 90,91. 
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5.4 Expression Profiles in MO3.13 – Malonylation 

 The MO3.13 cells treated with various antipsychotics also exhibited several 

changes in malonylation with significance (ANOVA ≤ 0.05) and the pathways 

associated to these changes were identified with Reactome.org. The full list of these 

pathways can be found in the appendices. Again, many pathways appeared in multiple 

or all three antipsychotics; but some were uniquely present in one. 

 As in succinylation, the number of significantly changed modification sites 

varied between antipsychotics. From haloperidol, 280 sites were upregulated and 156 

sites were downregulated, chlorpromazine had 114 upregulated and 72 downregulated 

sites, and quetiapine had 50 upregulated and 5 downregulated sites. This data is 

summarized in Table 4 below. 

Table 4-Numbers of statistically perturbed malonylation sites in MO3.13 cells due to 

antipsychotic treatments. 

Antipsychotic Haloperidol Chlorpromazine Quetiapine 

Overall Number of Sites 434 186 55 

Percentage of Modified Peptides 34.1% 20.2% 3.51% 

Percentage of Total Peptides 2.31% 1.41% 0.21% 

 

 Again, the atypical antipsychotic presented a very different profile compared 

to the typical antipsychotics. The pathways these modified proteins belong to were 

investigated with the Reactome database and analysis tool, and the overall pathways 

(see Appendices 5-7) were summarized into a few overarching functions based on 

what components were highlighted in each pathway (see Figure 7). Quetiapine 

reduced the expression of only 5 modification sites on as many proteins, though some 

pathways were still identified with an FDR below 4%. 
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Figure 11-Pathways affected by malonylation dysregulation induced by haloperidol, 

chlorpromazine, and quetiapine in MO3.13 cells, using Reactome.org database. 

 Like succinylation, malonylation is also a key player in metabolism 92, and 

as several metabolic disturbances can result from antipsychotic use 93, it is possible 

that this PTM is also a form of RNA and translational control or is responding to 

metabolic stress. In SCZ, one major dysregulation is levels of neurotransmitters 94 and 

is one hypothesis for certain symptoms 95. A change in proteins vesicle proteins could 

be related to a malfunction in the regulation or activity of neurotransmitters or their 

release. 
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5.5 Attenuation of MK-801-Induced Changes in MO3.13 by Antipsychotics 

 Some succinylation sites disturbed by MK-801 were returned to control or 

near-control levels upon the addition of an antipsychotic and were classified into three 

groups (see Figure 8). When a site was returned to ±10% of its control value, this was 

considered high attenuation; ±25%, partial; and ±50%, low. Proteins received an 

asterisk when they were disturbed to greater levels and attenuated. 

 

Figure 12-List of proteins with attenuated succinylation disturbances from MK-801 by 

haloperidol, chlorpromazine, and quetiapine. High ±10%; Partial ±25%; Low ±50%. 
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 The succinylation sites that haloperidol returned closest to their original 

presence were found on a DNA/RNA helicase (DHX9), a DNA topoisomerase 

(TOP2A), a snRNP (SNRNP70), and a putative, tight junction-associated protein 

(FRMPD2). The partially and poorly attenuated sites of modification were found on 

proteins associated with heat shock, ribosomes, and the cytoskeleton. Chlorpromazine 

best attenuated a multifunctional nuclear matrix protein (MATR3), a lipid synthesis 

pathway protein (ACLY), and a microtubule regulating protein (MAPRE1). Quetiapine 

most closely returned to control levels sites on on ILF3 and PTBP3 (RNA binding 

proteins), RPS15 (a ribosomal protein), and CNP (a myelin-associated 

phosphodiesterase). 

Many of these proteins could have to do with the symptoms or 

pathophysiology of SCZ. The sites returned to near-control levels were strongly 

associated with RNA and translational control, the cytoskeleton, and metabolism, and 

other partial and low attenuation proteins also often fell into these categories. Looking 

at the overall attenuation profile, it seems that these modifications are potentially a 

cellular response to oxidative stress or another similar stimulus. Whether the pathways 

involved here are due to a direct action on these proteins’ function or if they are merely 

a downstream return to normal activity by the reduction of upstream aggravating stimuli 

is unknown. 

When investigating the levels of malonylation sites that were attenuated with 

an antipsychotic after perturbations with MK-801, multiple sites were also found and 

compiled into Figure 10 below. 
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Figure 13-List of proteins with attenuated malonylation disturbances from MK-801 by 

haloperidol, chlorpromazine, and quetiapine. High ±10%; Partial ±25%; Low ±50%. 

 The sites of malonylation that haloperidol most closely returned to their 

original levels were on a chaperonin (CCT2), a ribosomal protein (RPLP0), a chromatin 

remodeling protein (BANF1), a microtubule-remodeling protein (KATNAL2), an ER 

protein trafficking protein (SEC61A1), and a RAB-activator/glucose uptake-inducer 

(TBC1D4). Chlorpromazine closely returned sites on a heat shock protein associated 

with secretory pathways (HSP90B1), an RNA-binding protein (DDX21), a lipid 

synthesis pathway protein (ACLY), a histone protein (HIST1H1E), and a protein 
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involved in carbon metabolism and formaldehyde detoxification (ESD) to their normal 

malonylation levels. Quetiapine returned malonylation sites on CLTCL1 (a clathrin 

heavy chain protein) and GNL3 (an MDM2 stabilizer in tumors and stem cells) to more 

control-like levels.  

Multiple proteins seem to be involved with metabolism, protein folding, 

secretory pathways, and the cytoskeleton. A stem cell proliferation protein was 

interesting to find as affected, considering the tests were performed on a cell culture; 

although the purpose of this modification and why it is affected by MK-801 and 

antipsychotics is not immediately obvious. 
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Conclusions: 

 The post-translational modifications succinylation and malonylation seem to 

be profiles that both respond to various types of environmental stimuli, surpassing the 

hypoxia response of succinylation previously discovered 33. The known metabolic 

disturbances in schizophrenia and from the use of antipsychotics seem to lead to 

changes in the succinylation and malonylation profiles of postmortem brain tissue and 

MO3.13 human oligodendrocyte precursor cells, principally in pathways associated 

with metabolism, the cytoskeleton, RNA processing, and protein translation and 

folding. 

 Antipsychotics themselves exhibited an interesting profile difference, with a 

large difference between the profiles of the two typical and the atypical antipsychotic. 

However, with only three antipsychotics used, and the fact that atypical antipsychotics 

bind to a wide array of receptors, more studies with a larger number of compounds 

would need to be performed to determine if this is what causes the changes, or if there 

is some other factor involved in these differences. 

 The schizophrenia-mimetic drug MK-801 also induced many changes in 

RNA processing, translation, and the cytoskeleton. Despite the general overlap in 

pathways, very few proteins that were found to be differentially modified in multiple 

postmortem tissue samples were also found in the MK-801-treated cells, although this 

could be due to multiple factors, including the differences in cell type and variety, 

patient-related variables, and state of the tissue before collection. 

 When the cells were first incubated with MK-801 and subsequently treated 

with one of three antipsychotics, several but not all pathways were seen to improve 

and return to their more control-like states. These proteins were highly associated with 

RNA- and DNA-binding proteins, transcription and translation regulation, the 
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cytoskeleton, metabolism, and protein transport. Without knowing the effect of these 

modifications on proteins, it’s only possible to speculate on the purpose of the observed 

changes; however, these results suggest an important mechanism to respond to 

metabolic (or other) stimuli that goes beyond modifying only metabolism-related 

proteins and histones. 

 Future studies can potentially elucidate the purpose of these modifications 

on the differentially modified proteins and determine if the changes seen here are a 

result of a direct form of stimulus response to the schizophrenia/MK-801 and the 

cellular effects they bring on that causes any symptoms of schizophrenia, or if this is a 

more downstream effect of a larger dysregulation. Additional research can also 

determine if the metabolic changes and differences between antipsychotics are related 

to any of the side effects that result from their use and if these changes can be targeted 

to develop better medication or improve current options.  
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Appendix 2: Postmortem Tissue Protein Tables 

Table 5-Differentially regulated, succinylated proteins in multiple tissue samples 

Gene 

Name 

Protein Name Brief Functional Summary 

AARS Alanyl-tRNA Synthetase tRNA synthesis 

ATP5B ATP synthase, H+ transporting, 

mitochondrial F1 complex, beta 

polypeptide 

Energy metabolism in mitochondria 

ENO1 Enolase 1 Enzyme in glycolysis 

HSPA5 Heat shock protein family A 

(Hsp70) member 5 

Protein folding and assembly 

HSPA9 Heat shock protein family A 

(Hsp70) member 9 

Cell proliferation; stress response; 

mitochondrial maintenance 

PLEC Plectin Cytoskeleton crosslinkers 

SPTBN1 Spectrin beta, non-erythrocytic 1 Actin-plasma membrane linker 

TF (sero)Transferrin Iron homeostasis; high presence in 

areas of active cell division 
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Table 6-Differentially regulated, malonylated proteins in multiple tissue samples 

Gene 

Name 

Protein Name Brief Functional Summary 

ACO2 Aconitase 2 Metabolism (glycolysis) 

DYNC1H1 Dynein cytoplasmic 1 heavy 

chain 1 

Molecular motor; microtubule-

activated 

ENO2 Enolase 2 Metabolism (glycolysis) 

GRHPR Glyoxylate and hydroxypyruvate 

reductase 

Metabolism 

GSN Gelsolin Actin plus-end capping 

MYH10 Myosin heavy chain 10 Molecular motor; actin-dependent 

NEFH Neurofilament heavy Brain cytoskeleton 

NEFM Neurofilament medium Brain cytoskeleton 

PLEC Plectin Cytoskeleton crosslinkers 

PPIB Peptidylprolyl isomerase B Protein folding/maturation; role in 

mitoch. metabolism, apoptosis, 

redox, inflammation 

RAB5A Member RAS oncogene family 

5A 

Endosome maturation 

SPTAN1 Spectrin alpha, non-erythrocytic 

1 

Cytoskeleton; plasma membrane 

stability; DNA repair; cell cycle 

regulation 

SRSF1 Serine and arginine rich splicing 

factor 1 

Splicing regulation (interactors and 

PTMs can cause activation or 

repression) 

STXBP1 Syntaxin binding protein 1 Regulates syntaxin; causes 

release of neurotransmitters 

UBE2N Ubiquitin conjugating enzyme E2 

N 

Ubiquitination mechanism; DNA 

post-replication repair 

 

 

  



109 

Appendix 3: MK-801 Pathway Tables 

Table 7-Top 10 upregulated succinylation pathways in MK-801-treated cells from 

Reactome.org. 

Category Pathway Name 

Various Metabolism of RNA 

Various Translation 

Semaphorin / ROBO Axon guidance 

Ceruloplasmin L13a-mediated translational silencing of 

Ceruloplasmin expression 

Elongation Factors GTP hydrolysis and joining of the 60S ribosomal 

subunit 

Ceruloplasmin / Elongation 

Factors 

Cap-dependent Translation Initiation 

Eukaryotic Translation Initiation 

AUF1 & HuR (ELAVL1 / 

YWHAZ) 

Regulation of mRNA stability by proteins that bind 

AU-rich elements 

AUF1 AUF1 (hnRNP D0) binds and destabilizes mRNA 

ROBO Signaling by ROBO receptors 

37 of 196 accession numbers were not found in the Reactome database. 
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Table 8-Top 10 downregulated succinylation pathways in MK-801-treated cells from 

Reactome.org. 

Category Pathway Name 

Intron Processing / 

NMD 

Metabolism of RNA 

Elongation Factors Eukaryotic Translation Elongation 

Spliceosomes / 

hnRNPs 

mRNA Splicing - Major Pathway 

mRNA Splicing 

ROBO Signaling by ROBO receptors 

Regulation of expression of SLITs and ROBOs 

Various Translation 

NMD / Stress 

Response 

Nonsense-Mediated Decay (NMD) 

Nonsense Mediated Decay (NMD) enhanced by the Exon 

Junction Complex (EJC) 

hnRNPs Processing of Capped Intron-Containing Pre-mRNA 

37 of 190 accession numbers were not found in the Reactome database. 

Table 9-Top 10 upregulated malonylation pathways in MK-801-treated cells from 

Reactome.org. 

Category Pathway Name 

CCT/TriC 

Prefoldin mediated transfer of substrate to CCT/TriC 

Folding of actin by CCT/TriC 

Cooperation of Prefoldin and TriC/CCT in actin and tubulin folding 

SRP SRP-dependent cotranslational protein targeting to membrane 

Various Metabolism of RNA 

ROBO Axon guidance 

ROBO Regulation of expression of SLITs and ROBOs 

CCT/TriC Formation of tubulin folding intermediates by CCT/TriC 

Ceruloplasmin L13a-mediated translational silencing of Ceruloplasmin expression 

Various Translation 

32 of 150 accession numbers were not found in the Reactome database. 
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Table 10-Top 10 downregulated malonylation pathways in MK-801-treated cells from 

Reactome.org. 

Category Pathway Name 

CCT/TriC 

Folding of actin by CCT/TriC 

Prefoldin mediated transfer of substrate to CCT/TriC 

Cooperation of Prefoldin and TriC/CCT in actin and tubulin folding 

Formation of tubulin folding intermediates by CCT/TriC 

Association of TriC/CCT with target proteins during biosynthesis 

HSF1 Cellular response to heat stress 

CCT/TriC Chaperonin-mediated protein folding 

Protein folding 

Various Metabolism of RNA 

HSP90 HSP90 chaperone cycle for steroid hormone receptors (SHR) 

31 of 140 accession numbers were not found in the Reactome database. 

 

Table 11-Top 10 affected overall succinylation pathways in MK-801-treated cells from 

Reactome.org. 

Category Pathway Name 

Various Metabolism of RNA 

Various Translation 

mRNA 

Processing 

mRNA Splicing - Major Pathway 

mRNA 

Processing 

mRNA Splicing 

Translation GTP hydrolysis and joining of the 60S ribosomal subunit 

ROBO Regulation of expression of SLITs and ROBOs 

Translation Eukaryotic Translation Elongation 

Translation Cap-dependent Translation Initiation 

Translation Eukaryotic Translation Initiation 

Ceruloplasmin L13a-mediated translational silencing of Ceruloplasmin 

expression 

65 of 322 accession numbers were not found in the Reactome database. 
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Table 12-Top 10 affected overall malonylation pathways in MK-801-treated cells from 

Reactome.org. 

Category Pathway Name 

CCT/TriC Folding of actin by CCT/TriC 

Various Metabolism of RNA 

CCT/TriC Prefoldin mediated transfer of substrate to CCT/TriC 

CCT/TriC Cooperation of Prefoldin and TriC/CCT in actin and tubulin 

folding 

CCT/TriC Formation of tubulin folding intermediates by CCT/TriC 

Translation Eukaryotic Translation Elongation 

Translation Peptide chain elongation 

Ceruloplasmin L13a-mediated translational silencing of Ceruloplasmin 

expression 

Protein 

Trafficking 

SRP-dependent cotranslational protein targeting to membrane 

Translation GTP hydrolysis and joining of the 60S ribosomal subunit 

52 of 247 accession numbers were not found in the Reactome database. 
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Appendix 4: Haloperidol Pathway Tables 

Table 13-Upregulated succinylated pathways by haloperidol in MO3.13 cells from 

Reactome.org. 

Category Pathway Name 

rRNA/mRNA Processing 

and NMD 

Metabolism of RNA 

Ceruloplasmin L13a-mediated translational silencing of Ceruloplasmin 

expression 

ROBO Regulation of expression of SLITs and ROBOs 

NMD Nonsense-Mediated Decay (NMD) 

NMD Nonsense Mediated Decay (NMD) enhanced by the Exon 

Junction Complex (EJC) 

Translation Cap-dependent Translation Initiation 

Translation Eukaryotic Translation Initiation 

ROBO Signaling by ROBO receptors 

Translation GTP hydrolysis and joining of the 60S ribosomal subunit 

Translation Formation of a pool of free 40S subunits 

46 of 230 accession numbers were not found in the Reactome database. 
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Table 14-Downregulated succinylated pathways by haloperidol in MO3.13 cells from 

Reactome.org. 

Category Pathway Name 

Various Translation 

Various RNA Metabolism 

ROBO Axon guidance 

Translation Eukaryotic Translation Elongation 

Stress Response Cellular responses to stress 

Translation Cytosolic tRNA aminoacylation 

Translation rRNA processing 

Translation Major pathway of rRNA processing in the nucleolus and cytosol 

Vesicles Influenza Life Cycle 

ROBO Signaling by ROBO receptors 

35 of 169 accession numbers were not found in the Reactome database. 

 

Table 15-Upregulated malonylated pathways by haloperidol in MO3.13 cells from 

Reactome.org. 

Category Pathway Name 

Translation Peptide chain elongation 

Translation Translation 

Translation Eukaryotic Translation Elongation 

Ceruloplasmin L13a-mediated translational silencing of Ceruloplasmin expression 

Ribosomal 

Function 

GTP hydrolysis and joining of the 60S ribosomal subunit 

Ribosomal 

Function 

Formation of a pool of free 40S subunits 

Translation Cap-dependent Translation Initiation 

Translation Eukaryotic Translation Initiation 

NMD Nonsense Mediated Decay (NMD) independent of the Exon 

Junction Complex (EJC) 

Protein Trafficking SRP-dependent cotranslational protein targeting to membrane 

42 of 210 accession numbers were not found in the Reactome database. 
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Table 16-Downregulated malonylated pathways by haloperidol in MO3.13 cells from 

Reactome.org. 

Category Pathway Name 

Translation Eukaryotic Translation Elongation 

Translation Peptide chain elongation 

RNA Metabolism Metabolism of RNA 

Infection Influenza Life Cycle 

Infection Influenza Infection 

Translation Translation 

Translation Formation of a pool of free 40S subunits 

Vesicles Infectious disease 

RNA Metabolism rRNA processing 

Ceruloplasmin L13a-mediated translational silencing of Ceruloplasmin expression 

23 of 126 accession numbers were not found in the Reactome database. 
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Appendix 5: Chlorpromazine Pathway Tables 

Table 17-Upregulated succinylated pathways by chlorpromazine in MO3.13 cells 

from Reactome.org. 

Category Pathway Name 

Stress Response Cellular responses to stress 

Stress Response Cellular response to heat stress 

Stress Response Cellular responses to external stimuli 

Stress Response Regulation of HSF1-mediated heat shock response 

RNA Metabolism Metabolism of RNA 

Ceruloplasmin L13a-mediated translational silencing of Ceruloplasmin expression 

Translation GTP hydrolysis and joining of the 60S ribosomal subunit 

Translation Translation 

Translation Cap-dependent Translation Initiation 

Translation Eukaryotic Translation Initiation 

15 of 95 accession numbers were not found in the Reactome database. 

 

 

Table 18-Downregulated succinylated pathways by chlorpromazine in MO3.13 cells 

from Reactome.org. 

Category Pathway Name 

Ceruloplasmin L13a-mediated translational silencing of Ceruloplasmin expression 

Translation Cap-dependent Translation Initiation 

Translation Eukaryotic Translation Initiation 

Translation Translation 

Translation GTP hydrolysis and joining of the 60S ribosomal subunit 

NMD Nonsense Mediated Decay (NMD) independent of the Exon 

Junction Complex (EJC) 

Translation Formation of a pool of free 40S subunits 

Vesicles Influenza Infection 

Protein Trafficking SRP-dependent cotranslational protein targeting to membrane 

ROBO Regulation of expression of SLITs and ROBOs 

11 of 70 accession numbers were not found in the Reactome database. 
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Table 19-Overall dysregulated succinylated pathways by chlorpromazine in MO3.13 

cells from Reactome.org. 

Category Pathway Name 

Ceruloplasmin L13a-mediated translational silencing of Ceruloplasmin expression 

Translation Cap-dependent Translation Initiation 

Translation Eukaryotic Translation Initiation 

Translation Translation 

Translation GTP hydrolysis and joining of the 60S ribosomal subunit 

ROBO Regulation of expression of SLITs and ROBOs 

RNA Metabolism Metabolism of RNA 

Translation Peptide chain elongation 

Translation Eukaryotic Translation Elongation 

Translation Formation of a pool of free 40S subunits 

25 of 151 accession numbers were not found in the Reactome database. 

 

 

Table 20-Upregulated malonylated pathways by chlorpromazine in MO3.13 cells from 

Reactome.org. 

Category Pathway Name 

Stress Response HSP90 chaperone cycle for steroid hormone receptors (SHR) 

Translation L13a-mediated translational silencing of Ceruloplasmin expression 

Translation GTP hydrolysis and joining of the 60S ribosomal subunit 

Translation Cap-dependent Translation Initiation 

Translation Eukaryotic Translation Initiation 

Cytoskeleton Axon guidance 

Translation Translation initiation complex formation 

Translation Ribosomal scanning and start codon recognition 

Translation Activation of the mRNA upon binding of the cap-binding complex 

and eIFs, and subsequent binding to 43S 

Cytoskeleton Formation of tubulin folding intermediates by CCT/TriC 

18 of 98 accession numbers were not found in the Reactome database. 
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Table 21-Downregulated malonylated pathways by chlorpromazine in MO3.13 cells 

from Reactome.org. 

Category Pathway Name 

RNA Metabolism Metabolism of RNA 

Protein Trafficking SRP-dependent cotranslational protein targeting to membrane 

NMD Nonsense-Mediated Decay (NMD) 

NMD Nonsense Mediated Decay (NMD) enhanced by the Exon Junction 

Complex (EJC) 

RNA Metabolism Selenoamino acid metabolism 

Translation Peptide chain elongation 

Vesicles Influenza Infection 

Translation Eukaryotic Translation Termination 

RNA Metabolism Selenocysteine synthesis 

Translation Eukaryotic Translation Elongation 

9 of 65 accession numbers were not found in the Reactome database. 

 

Table 22-Overall dysregulated malonylated pathways by chlorpromazine in MO3.13 

cells from Reactome.org. 

Category Pathway Name 

Translation L13a-mediated translational silencing of Ceruloplasmin expression 

Translation GTP hydrolysis and joining of the 60S ribosomal subunit 

RNA Metabolism Metabolism of RNA 

Translation Cap-dependent Translation Initiation 

Translation Eukaryotic Translation Initiation 

NMD Nonsense-Mediated Decay (NMD) 

NMD Nonsense Mediated Decay (NMD) enhanced by the Exon Junction 

Complex (EJC) 

Translation Translation initiation complex formation 

Translation Ribosomal scanning and start codon recognition 

Translation Activation of the mRNA upon binding of the cap-binding complex 

and eIFs, and subsequent binding to 43S 

26 of 154 accession numbers were not found in the Reactome database.  
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Appendix 6: Quetiapine Pathway Tables 

Table 23-Upregulated succinylated pathways by quetiapine in MO3.13 cells from 

Reactome.org. 

Category Pathway Name 

Lamin Dimers Depolymerisation of the Nuclear Lamina 

Stress Response Unfolded Protein Response (UPR) 

RNA Metabolism Metabolism of RNA 

Cell Cycle Nuclear Envelope Breakdown 

RNA Metabolism Processing of Capped Intron-Containing Pre-mRNA 

RNA Metabolism mRNA Splicing - Major Pathway 

RNA Metabolism Major pathway of rRNA processing in the nucleolus and cytosol 

RNA Metabolism mRNA Splicing 

RNA Metabolism rRNA processing in the nucleus and cytosol 

RNA Metabolism rRNA processing 

12 of 54 accession numbers were not found in the Reactome database. 

 

Downregulated succinylated pathways by quetiapine in MO3.13 cells did not exhibit an 

FDR below 4% and were not included in this analysis. 
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Table 24-Overall dysregulated succinylated pathways by quetiapine in MO3.13 cells 

from Reactome.org. 

Category Pathway Name 

RNA Metabolism Metabolism of RNA 

RNA Metabolism Major pathway of rRNA processing in the nucleolus and cytosol 

Lamin Dimers Depolymerisation of the Nuclear Lamina 

RNA Metabolism rRNA processing 

Stress Response Unfolded Protein Response (UPR) 

Cell Cycle Nuclear Envelope Breakdown 

RNA Metabolism Processing of Capped Intron-Containing Pre-mRNA 

RNA Splicing mRNA Splicing - Major Pathway 

Protein Metabolism Metabolism of proteins 

RNA Metabolism mRNA Splicing 

12 of 57 accession numbers were not found in the Reactome database. 

 

Table 25-Upregulated malonylated pathways by quetiapine in MO3.13 cells from 

Reactome.org. 

Category Pathway Name 

RNA Metabolism Metabolism of RNA 

Translation GTP hydrolysis and joining of the 60S ribosomal subunit 

Translation Eukaryotic Translation Initiation 

Translation Cap-dependent Translation Initiation 

Ceruloplasmin L13a-mediated translational silencing of Ceruloplasmin expression 

RNA Metabolism rRNA processing 

NMD Nonsense Mediated Decay (NMD) independent of the Exon 

Junction Complex (EJC) 

ROBO Regulation of expression of SLITs and ROBOs 

RNA Metabolism Major pathway of rRNA processing in the nucleolus and cytosol 

RNA Metabolism rRNA processing in the nucleus and cytosol 

9 of 47 accession numbers were not found in the Reactome database. 
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Table 26-Downregulated malonylated pathways by quetiapine in MO3.13 cells from 

Reactome.org. 

Category Pathway Name 

Vesicles Lysosome Vesicle Biogenesis 

Cell Receptors HSP90 chaperone cycle for steroid hormone receptors (SHR) 

Vesicles Clathrin derived vesicle budding 

Vesicles trans-Golgi Network Vesicle Budding 

Clathrin (Vesicles) MHC class II antigen presentation 

Heat Shock HSP90 Aryl hydrocarbon receptor signalling 

Heat Shock HSP90 Uptake and function of diphtheria toxin 

Gap Junctions Formation of annular gap junctions 

Clathrin (Vesicles) Entry of Influenza Virion into Host Cell via Endocytosis 

Gap Junctions Gap junction degradation 

1 of 5 accession numbers were not found in the Reactome database. 

 

Table 27-Overall dysregulated malonylated pathways by quetiapine in MO3.13 cells 

from Reactome.org. 

Category Pathway Name 

RNA Metabolism Metabolism of RNA 

Translation GTP hydrolysis and joining of the 60S ribosomal subunit 

Translation Eukaryotic Translation Initiation 

Translation Cap-dependent Translation Initiation 

Ceruloplasmin L13a-mediated translational silencing of Ceruloplasmin 

expression 

ROBO Axon guidance 

RNA Metabolism rRNA processing 

Vesicles Lysosome Vesicle Biogenesis 

Macromolecule 

Export/Clathrin 

Influenza Life Cycle 

NMD Nonsense Mediated Decay (NMD) independent of the Exon 

Junction Complex (EJC) 

10 of 52 accession numbers were not found in the Reactome database.  
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OVERALL RESULTS 

 Schizophrenia is still a complex illness with no cure; but every day, research 

brings the scientific community just a little bit closer to understanding and eventually 

curing this devastating condition, even if by just an inch. The research contained in this 

dissertation has brought various metabolic disturbances in schizophrenia and 

antipsychotics together with a pair of poorly understood post-translational 

modifications. 

 Various proteins and pathways are now seen to be affected by 

schizophrenia, a mimetic drug MK-801, and antipsychotics. Furthermore, 

antipsychotics seem to revert some changes induced by MK-801, additionally showing 

differences among different antipsychotic compounds. The new sites of succinylation 

and malonylation that were revealed will unlock new doors to research the causes and 

effects of these modifications, not only in relation to schizophrenia, but also to various 

other metabolic disorders. 

 Little overlap was seen between MK-801-treated oligodendrocytes and 

postmortem brain tissue from patients with schizophrenia; however, this could be due 

to a number of factors and can be further investigated to determine the similarities and 

differences between these two conditions, thought to be similar. 

 The large number of acylation changes induced by antipsychotics has 

created more questions than it has answered, not only due to the translation, RNA 

metabolism, and vesicle transport pathways that they affect, but also due to the blunt 

differences between different antipsychotics. Whether this has to do with the 

therapeutic potential of the drugs, a result of their function, or their undesired side 

effects is entirely unknown.  

 Lastly, the number of proteins that were found to be dysregulated by MK-

801 and at least mildly attenuated by an antipsychotic urges further study and 

investigation to determine what roles succinylation and malonylation may play in 

schizophrenia’s development, symptoms, progression, and treatment. 
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CONCLUDING REMARKS 

 The changes in lysine succinylation and malonylation that were seen in this 

work suggest an important and seriously under-researched form of post-translational 

protein modification. The roles of the modification precursors in carbon metabolism 

and fatty acid synthesis, their high prevalence on metabolism-associated proteins, and 

the already known response of one to metabolic stress factors suggest some kind of 

yet-undiscovered mechanism to respond to external stimuli. 

 A large number of post-translational protein modifications have been 

already discovered, and studies have been slow to comprehend the role of each in 

cells. Some modifications are performed for signaling, others for stability, others for 

activity; these modifications seem to be associated with enzyme activity, which could 

strongly influence related protein pathways. 

 As schizophrenia, and many other diseases, have a known dysregulation in 

energy metabolism, learning how this pathway responds to – and affects – its 

interactors could provide a great deal of insight into how certain proteins and protein 

pathways become dysregulated, leading to disease. Post-translational modifications 

like acetylation and phosphorylation are already well known and studied; and their 

effects on proteins can lead to various negative side effects in diseases, including a 

suggested role of phosphorylation in the neurodegenerative condition, Alzheimer’s 

disease.  

 In addition to disease response, it appears that different antipsychotic 

classes can also exhibit different modification profiles, suggesting either a visible 

response to the differing side effects, or even potentially a cause for those same 

differences. Antipsychotics do possess different side effect profiles, including 

metabolism-related effects. Learning how to control and suppress these changes may 

help to create new, more effective medications and reduce the detrimental side effects 

of current treatment options. 

 This work serves as a stepping stone and a type of proof of concept, since 

at this time, no article has yet been published studying changes in the “succinylome” 

in a mental disease. One study found succinylation changes induced by carbon source 

(Kosono et al., 2015), another has found succinylation differences in cancer (Song et 
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al., 2017), and yet another has found a potential change in hypoxia-affected heart 

tissue (Boylston et al., 2015). 

 Malonylation has garnered less fame since its discovery; however, its 

supposed regulatory enzyme (SIRT5) has been implicated in various diseases. 

Although it is important to mention that SIRT5 is also assumed to be the main 

regulating enzyme for succinylation. That also makes this work the first to suggest 

important, regulatory changes in the “malonylome” in disease. 

 Adding to the metabolic regulation aforementioned, succinylation and 

malonylation seemed to affect the cytoskeleton, protein translation, and vesicle 

transport, which strengthens the probability of a form of cellular regulation in response 

to metabolic stimuli. As an additional point, if this modification is found to be as highly 

regulated as what this study suggests possible, succinylation and malonylation profiles 

may even be possible to use as biomarker candidates to differentiate between different 

diseases. 

In summary, investigating further these two poorly understood protein 

modifications in relation to disease, specifically schizophrenia, may reveal previously 

unthought of methods to identify or treat them. Learning how to manipulate these two 

modifications can also help to reduce the side effects of certain medications like 

antipsychotics and help develop new ones. 
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Abstract: 

A single protein is often capable of binding with many partners, enabling potential 

effects on either protein, such as modifying its expression or activity. However, due 

to the complex nature of in vivo systems, it is often difficult to perform nontargeted 

assays with a protein of interest. Methods in discovery proteomics must be used to 

find potential interactors to pave the way for additional, more focused studies. This 

protocol describes the biological steps needed to create an interactome focused on 

a single protein target through co-immunoprecipitation. 
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Abstract: 

Protein complexes are responsible for major biological processes in cells. Identifying 

a protein’s interaction partners reveals many different aspects related to the target such 

as its function, regulation, and mechanisms of action. Co-immunoprecipitation (co-IP) 

followed by shotgun mass spectrometry (MS) is a powerful technique for capturing and 

identifying endogenous protein complexes. Although it is a simple concept, performing 

the experiment can be challenging due to the number of steps and the diversity of 

available protocols. Here we present a certified and detailed protocol to perform co-IP 

experiments in cultured human oligodendrocytes. 
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