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Abstract: The aim of this study was to provide an experimental investigation on the novel method for
recycling chips of duplex stainless steel, with the addition of vanadium carbide, in order to produce
metal/carbide composites from a high-energy mechanical milling process. Powders of duplex stainless
steel with the addition of vanadium carbide were prepared by high-energy mechanical ball milling
utilizing a planetary ball mill. For this proposal, experiments following a full factorial design with two
replicates were planned, performed, and then analyzed. The four factors investigated in this study
were rotation speed, milling time, powder to ball weight ratio and carbide percentage. For each factor,
the experiments were conducted into two levels so that the internal behavior among them could be
statistically estimated: 250 to 350 rpm for rotation speed, 10 to 50 h for milling time, 10:1 to 22:1 for
powder to ball weight ratio, and 0 to 3% carbide percentage. In order to measure and characterize
particle size, we utilized the analysis of particle size and a scanning electron microscopy. The results
showed with the addition of carbide in the milling process cause an average of reduction in particle
size when compared with the material without carbide added. All the four factors investigated in this
study presented significant influence on the milling process of duplex stainless steel chips and the
reduction of particle size. The statistical analysis showed that the addition of carbide in the process is
the most influential factor, followed by the milling time, rotation speed and powder to ball weight
ratio. Significant interaction effects among these factors were also identified.

Keywords: duplex stainless steel; chip; high-energy milling; particle size; factorial design

1. Introduction

Duplex stainless steels (DSS) are two-phase austenite (γ-CFC) and ferrite alloys which are capable
of combining the good properties of ferrite and austenitic stainless steels [1–4]. Duplex stainless steels
are mainly used in the following industries: pulp and paper, disinfection of plants, gas flue cleaning,
heat exchangers, and the nuclear and chemical industries [5–7]. Currently, stainless steel production
is one of the most important and fastest growing metallurgical industries in the world. The world
production of stainless steel reached approximately 45.8 million tons in 2016, an increase from the
41.5 million tons produced in 2015 [8].

Due to the applicability of this material, its reuse is necessary, but its reuse through the casting
process is expensive, due to the subsequent thermomechanical processes carried out. The use of the
high energy milling process is an alternative for the reuse of this material. Reutilization of recycled
materials has as a main objective the reduction of environmental impact and rationalization of energy
chains [9]. Stainless steel components produced by powder metallurgy comprise an important and
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growing industry segment [10–13]. This process generates few residues, in addition to the possibility of
reusing the raw material in the process, engendering benefits for the environment [9]. Duplex stainless
steel obtained by powder metallurgy technology could be used in many industry segments due to
their mechanical properties and good corrosion resistance [14].

Studies have been carried out to produce composites of a sintered metal matrix with the addition
of ceramic particles, called oxides or carbides, such as vanadium carbide (VC), niobium carbide (NbC),
titanium carbide (TiC) and tungsten carbide (WC). These particles have attracted interest due to their
exceptional mechanical, physical and chemical properties, aiming to increase the high energy milling
efficiency and the mechanical strength of the material [15,16]. Vanadium carbide is an important
material for industrial applications due to excellent resistance to high temperatures, and its high
chemical and thermal stability, even at high temperature [17]. In some studies, it was verified that
the addition of carbide in the process of the high energy milling of chips from the machining process,
resulted in greater efficiency of the milling process, with a greater decrease in the size of the particles,
obtaining sizes of nanometric particles [18–20].

In the milling process, the particle size is an important factor in stainless steel processed by
powder metallurgy, which affects its compressibility, increasing the densification and properties of
sintered products. So, given these critical aspects for the final powder quality, experimental approaches
that allow a wide investigation of the milling process and stablish mathematical relationships among
its variables are important and necessary. In this context, the full factorial designs are experimental
planning considered in the literature as suitable methods for this aim [21]. By setting only two levels
for each control variable of the process, this approach is able to rank the more statistically significant
variables on the analyzed results, to estimate their main and interaction effects, and to represent
this process behavior by a mathematical model. Furthermore, the planned levels ensure balanced
combinations in relation to the experimental variations, making possible a good understanding about
the process behavior as from consistent information obtained with a minimum number of experiments.
However, even being able to analyze non-linear relationships for the process variables, the factorial
models are truncated in first order polynomials.

Shashanka & Chaira developed a duplex stainless steel in a Fritsch planetary mill with 40 hours
duration and a rotation speed of 300 rpm [22]. Rahmanifard et al. studied the effect between a powder
to ball weight ratio of (10:1 and 15:1) and a rotation speed between (300 and 420 rpm) during the ferrite
stainless steel milling [23]. The authors observed that crystallite sizes, and the ferritic stainless steel
powder particle sizes, reduced when rotation speed and powder to ball weight ratio were increased.
Pandey et al. prepared ferritic stainless steel with different powder to ball weight ratios (10:1, 15:1 and
20:1) and rotation speeds (250, 300 and 350 rpm) [24]. They reported that crystallite size and particle
sizes of ferritic stainless steels decreased as powder to ball weight ratio and rotation speed increased.

Thus, it is possible to verify the great importance of establishing parameters such as rotation
speed, milling time, powder to ball weight ratio and carbide percentage in the milling of stainless steel
duplex. Although not much literature is available on the effect of milling parameters, such as the effect
of ball-powder ratios and the effect of rotation speeds during synthesis of ferritic stainless steel by
planetary milling and stainless steel duplex [23]. In other papers, we verified the influence of time and
carbide addition to chip milling of an aluminum bronze alloy [21] and a stainless steel [4].

Based on these considerations, the aim of this research is to develop an experimental study on the
influence of high-energy milling parameters in duplex stainless steel chips processing, which represents
a sustainable alternative for the efficient reuse of these chips. For this, the presented statistical analysis
and modeling were performed as from a full factorial design, planned for four investigated factors.
The choice by the factorial planning while experimental strategy is justified by the reasons previously
mentioned [23,24]. The production of duplex stainless steel powders with the addition of carbides by
high-energy mechanical milling is a novel method for recycling chips.
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2. Materials and Methods

In this study, the UNS S31803 duplex stainless steel has the following chemical composition: 22.3%
Cr; 5.44% Ni; 2.44% Mo; 0.02% C, 0.160 N and Fe bal. The raw material for the research was obtained
by the machining step at low speed, and without the use of lubricants, to avoid contamination by
oil-soluble. Via the procedure described, we obtained the UNS S31803 stainless steel in the form of
scraps which were subsequently used in the milling process. The average proportion of the alloy chip
sizes was described using a stereoscope. At the starting point of the milling process, we used of duplex
stainless steel chips, UNS S31803, with and without VC present. The initial chip sizes were between 5
and 15 mm.

For the chip milling process, we used high-energy milling in a planetary ball mill (Yangzhou
Nuova Machinery Co., LTD, Yangzhou, China) with inert atmosphere of argon. Analysis of variance
(ANOVA) using the Minitab program (Minitab 15, Minitab, LLC Minitab® 15 Statistical Software, State
College, PA, USA) evaluated the factors significance and their interaction. Thus, according to the DOE
(Design of experiments) approach, where the number of experiments was determined by a 2n full
factorial design, there were varied “n = 4” parameters, which generated 16 experiments configured into
two levels. For a greater reliability of the results, two replicates were made, resulting in 32 experiments.

Through the use of an experimental design, we consistently determined the optimal condition for
“smallest particle size”. The milling parameters to be varied were: rotation speed, milling time, powder
to ball weight ratio and vanadium carbide percentage. Values were chosen based on the literature,
and mainly, by preliminary empirical tests performed in high-energy milling. These values levels
are in Table 1. As previously mentioned, the experimental combinations into two levels are inherent
characteristics for the factorial planning. If these levels are continuous variables, the internal behavior
among them can be estimated and analyzed in a satisfactory way, by means of a non-linear first order
polynomial and with a minimum number of experiments.

Table 1. Milling parameters and their levels

Factor Investigated Unit Notation
Levels

−1 +1

Rotation speed rpm Rs 250 350
Milling time h Mt 10 50

Powder to ball weight ratio - Pr 10:1 20:1
Carbide percentage % Cp 0 3,0

We used a particle size analyzer (brand: Malvern Master Sizer (Malvern Master Sizer: Microtrac
model S3500, Microtrac Global Location, Montgomeryville, PA, USA); model: 2000) to determine
the distribution of particle sizes. For morphology characterization, size identification, and particle
distribution, we used a scanning electron microscope (SEM), brand: Carl Zeiss and EVO (U.S. Carl
Zeiss Company (Carl Zeiss & EVO), New York, NY, USA), model: MA15, secondary electron mode.

3. Results and Discussion

Initial characterizations of duplex stainless steel chips UNS S31803 are illustrated in Figure 1. It is
possible to observe that machined stainless steel chips have an average size of 8 mm (Figure 1), and
regions of surface plastic deformation, caused by the machining tool, are observed.
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Figure 1. UNS S31803 stainless steel duplex scrap.

The effect of a factor is defined as the change in response produced by a change in the level of
the factor. This is frequently called a main effect as it refers to the primary factors of interest in the
experiment [23].

The mathematical model for factorial planning 24 is given by Equation (1), where R is the average
size of the particle and Rs, Mt, Pr, Cp mean rotation speed, milling time, powder to ball weight ratio
and carbide percentage, respectively. For the following mathematical model, all the coefficients were
estimated in its coded format, as from the experimental results and using the Ordinary Least Square
method (OLS), this latter present in the statistical software Minitab.

R = 248, 695− 58, 845 ·Rs− 69, 849 ·Mt− 45, 737 · Pr− 71, 461 ·Cp− 6014 ·Rs ·Mt
+19, 698 ·Rs · Pr + 4999 ·Rs ·Cp− 2068 ·Mt · Pr + 18, 595 ·Mt ·Cp− 4006 · Pr ·Cp
+8717 ·Rs ·Mt · Pr + 5730 ·Rs ·Mt ·Cp− 1271 ·Rs · Pr ·Cp + 4688 ·Mt · Pr ·Cp
−5577 ·Rs ·Mt · Pr ·Cp

(1)

In addition, the model presented an adjusted square correlation coefficient R2 (adj) of 93.27%,
fitting the statistical model quite well. Table 2 shows the average particle size values for each condition
stipulated in the experimental design for the variables rotation speed, milling time, powder to ball
weight ratio and carbide percentage.

Table 2. Average particle sizes of duplex stainless steel for the investigated milling parameters
(experimental matrix in coded variables).

Experiment
Rotation

Speed
Milling

Time
Powder to Ball
Weight Ratio

Carbide
Percentage Replicate 1 Replicate 2

(rpm) (h) - (%) (µm) (µm)

1 −1 −1 −1 −1 508.00 496.70
2 +1 −1 −1 −1 380.30 389.30
3 −1 +1 −1 −1 366.30 415.80
4 +1 +1 −1 −1 187.60 151.10
5 −1 −1 +1 −1 394.30 443.80
6 +1 −1 +1 −1 354.10 302.30
7 −1 +1 +1 −1 267.60 179.50
8 +1 +1 +1 −1 143.90 141.90
9 −1 −1 −1 +1 300.90 398.50

10 +1 −1 −1 +1 246.50 177.50
11 −1 +1 −1 +1 229.40 268.20
12 +1 +1 −1 +1 109.70 85.11
13 −1 −1 +1 +1 222.20 206.60
14 +1 −1 +1 +1 163.90 111.80
15 −1 +1 +1 +1 90.54 132.30
16 +1 +1 +1 +1 48.91 43.68
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Table 3 presents the analysis of variance for the full 24 factorial design with two replicates. The data
indicate that the main effects of rotation speed, milling time, powder to ball weight ratio and carbide
percentage are significant for the decrease of particle size. The interaction between rotation and ratio,
as well as the variables time and carbide, are significant, because the value of p-Value is lower than the
significance level adopted at 5% probability level (p < 0.05).

Table 3. Analysis of variance for medium size (µm).

Source DF Adj SS Adj MS F p

Main Effects 4 497,285 124,321 104.65 0.000
2-Way Interactions 6 26,088 4348 3.66 0.018
3-Way Interactions 4 4237 1059 0.89 0.491
4-Way interactions 1 995 995 0.84 0.374

Residual error 16 19,008 1188 - -
Total 31 - - - -

S = 34.47, Rsq = 96.53, Rsq(adj) = 93.27.

The other second-order, third-order and fourth-order interactions are not significant, as they
present values above the significance level of (5%). In addition, the model guarantees a good correlation
(R2 = 96.53%), if by adjusting the statistical model (R2(adj) = 93.27%), these values represent the
percentage of data observed in the response that the mathematical model can explain.

Figure 2 shows the residual analysis for the particle size response, which is characterized as
an important procedure to ensure that the mathematical models developed consistently represent the
responses of interest. A normal probability graph is only a graph of the cumulative distribution of
residual on normal probability plot, which is the graph with the ordinates staggered so that cumulative
normal distribution is potted as a straight line [25]. In addition, the normal probability plots of the
residuals must be distributed normally and independent of each other. The points in the normal
probability plots of the residuals reveal a straight line confirming the reasonableness of the model.
Normality test plot and histogram indicated normal distribution of residuals. On the other hand, the
residual graphs standardized by intensity of the responses and by order of the experiments all indicate
a random dispersion of the residuals (as can be seen in Figure 2).
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Statistically significant effects can be observed with the help of the Pareto diagram (Figure 3).
The factors or interactions outside of the dotted line in 2.12 are significant in decreasing order: the
carbide percentage, milling time, rotation speed, powder to ball weight ratio, Mt and Cp interaction
and finally the interaction between Pr and Rs. The carbide percentage was more influential in the
milling process. This material in contact with the stainless steel chips at the time of milling aids the
milling process, increasing the efficiency of the process.
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Figure 4 shows the graph of the main effects of the investigated factors in relation to particle size.
In the graph of the main effects, it is inferred that a factor is directly related to the length and slope of
the line in the graph of Figure 4 [26]. The larger the slope, the higher the influence on the decrease of
the average particle size when changing from a low level to a high level. So, once these main effects are
derived from a statistical adjustment of 93.27%, with a p-value less than 5% of significance (which
represent a confidence level of 95%), these results are reliable for this milling process.
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The greatest influence on the reduction of particle size is the variation of the amount of vanadium
carbide added to the milling process, which presents a greater slope and length of the curve. That is,
when a minimum level change occurs (addition of 0% of carbide) to the maximum level (addition of
3% vanadium carbide), this change becomes more significant for particle size reduction, as explained
above. Other parameters are also influential: in descending order are milling time, rotation speed and
powder to ball weight ratio.
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The effects analyzed are negative, a reduction in particle size is observed when the factor goes
from the lowest level to a higher level. The percentage of carbide and milling time are the most
important parameters for decreasing particle size.

According to Suryanarayana the milling time is the most important parameter in the milling
process [27]. As a general rule, it may be appreciated that the times taken to achieve steady-state
conditions are short for high-energy mills and longer for low-energy mills. The increase of the milling
time is characterized by the increase of the plastic deformation, generated by the impacts of the milled
bodies, by which it leads to fracturing (due to the brittleness induced by the hulling) [4,20,27–32].

Rotation is an important parameter when it comes to milling efficiency (i.e., the frequency and
kinetic energy of shocks generated during milling) [27]. However, for low rotations the frequency and
kinetic energy of shocks generated during milling are not sufficient for a reduction of the particle size.

An interaction (Figure 5) is effective when the change in response from the lowest to the highest
level of a factor is dependent on the level of a second factor, (i.e. when the lines are not parallel) [29].
Thus, the combination of the parameters or the interaction between the time variable and the carbide
percentage is also significant, as well as the interaction between the rotation and the ratio variables,
since the lines of the interaction graph are not parallel to each other. The higher the rate of rotation and
the mass/sphere ratio, the lower the particle size value obtained, due to the higher energy involved in
the process, which causes a greater particle breakage and a subsequent decrease in particle size.

Metals 2018, 8, x FOR PEER REVIEW  7 of 12 

 

According to Suryanarayana the milling time is the most important parameter in the milling 
process [27]. As a general rule, it may be appreciated that the times taken to achieve steady-state 
conditions are short for high-energy mills and longer for low-energy mills. The increase of the milling 
time is characterized by the increase of the plastic deformation, generated by the impacts of the milled 
bodies, by which it leads to fracturing (due to the brittleness induced by the hulling) [4,20,27–32]. 

Rotation is an important parameter when it comes to milling efficiency (i.e., the frequency and 
kinetic energy of shocks generated during milling) [27]. However, for low rotations the frequency 
and kinetic energy of shocks generated during milling are not sufficient for a reduction of the particle 
size. 

An interaction (Figure 5) is effective when the change in response from the lowest to the highest 
level of a factor is dependent on the level of a second factor, (i.e. when the lines are not parallel) [29]. 
Thus, the combination of the parameters or the interaction between the time variable and the carbide 
percentage is also significant, as well as the interaction between the rotation and the ratio variables, 
since the lines of the interaction graph are not parallel to each other. The higher the rate of rotation 
and the mass/sphere ratio, the lower the particle size value obtained, due to the higher energy 
involved in the process, which causes a greater particle breakage and a subsequent decrease in 
particle size. 

 
Figure 5. Interactions effects analysis among milling parameters: Rs, Mt, Pr, and Cp. 

With the increase in rotation and the mass/sphere ratio, the higher the energy applied to the 
grinding of the powder, which favors milling and particle size reduction. The higher mill speed 
increases the impact energy of balls and thus increases the rate of collision between ball-powder-jar. 
Shashanka and Chiara, when milling and producing the duplex stainless steel, verified that mean 
particle size decreased from 77 to 15 μm during a milling from 0 to 40 h [25]. Dias, et al., with 
increased chip milling time of an aluminum bronze alloy, found that carbide addition and milling 
time are the parameters that most influence the decrease in particle size [25]. 

The cube plot (Figure 6) shows the interactions between the factors and the responses obtained 
for the particle size for each experiment performed. It can be observed that for all the analyzed 
parameters the average particle size decreases with the addition of vanadium carbide. For the 
purpose of comparison, it can be seen that for the process with the addition of 3% of vanadium 
carbide, a mass/ball ratio of 1/20, and a rotation of 350 rpm, the obtained particle size was smaller 
than the grinding performed for 50 h, with the same conditions of the previous milling, but without 
the addition of carbide. In that case, the value decreased from 142.9 μm to 43 μm. The efficiency of 
the milling process increased significantly with the addition of vanadium carbide in the process. 

450

300

150

450

300

150

350250

450

300

150

5010 0,20,1

Rs * Mt

Rs * Pr Mt * Pr

Rs * Cp

Rs

Mt * Cp

Mt

Pr * Cp

Pr

10,0
50,0

Mt

0,10
0,20

Pr

0,0
3,0

Cp

M
ea

n o
f R

Fitted means

Figure 5. Interactions effects analysis among milling parameters: Rs, Mt, Pr, and Cp.

With the increase in rotation and the mass/sphere ratio, the higher the energy applied to the
grinding of the powder, which favors milling and particle size reduction. The higher mill speed
increases the impact energy of balls and thus increases the rate of collision between ball-powder-jar.
Shashanka and Chiara, when milling and producing the duplex stainless steel, verified that mean
particle size decreased from 77 to 15 µm during a milling from 0 to 40 h [25]. Dias, et al., with increased
chip milling time of an aluminum bronze alloy, found that carbide addition and milling time are the
parameters that most influence the decrease in particle size [25].

The cube plot (Figure 6) shows the interactions between the factors and the responses obtained
for the particle size for each experiment performed. It can be observed that for all the analyzed
parameters the average particle size decreases with the addition of vanadium carbide. For the purpose
of comparison, it can be seen that for the process with the addition of 3% of vanadium carbide,
a mass/ball ratio of 1/20, and a rotation of 350 rpm, the obtained particle size was smaller than the
grinding performed for 50 h, with the same conditions of the previous milling, but without the addition
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of carbide. In that case, the value decreased from 142.9 µm to 43 µm. The efficiency of the milling
process increased significantly with the addition of vanadium carbide in the process.Metals 2018, 8, x FOR PEER REVIEW  8 of 12 
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Figure 6. Cube plot for the average particle size in the full factorial design.

The mass ratio of the material to the ball’s mass is an important parameter for achieving the
desired structure or grain size for the ground material. Thus, if this ratio is higher, the shorter the
time required for milling, as the number of collisions increases at each instant and, consequently,
increases the internal energy of the milling system [29–33]. In Figure 6 it is observed that the particle
size decreases with increasing milling time and with the ball mass ratio for grinding without addition
of carbide. However, these parameters become less important with the presence of the carbide in the
milling, as it is possible to check in the figure.

As previously described, a correlation was found between the mass/ball ratio and rotation variables
and also a relationship between carbide percentage and milling time. Thus, for a better analysis of
the results, the response surface analysis were performed. Two surface plots of the regression model
are shown in Figure 7, in which two parameters were kept constant at their upper level and the other
two vary within the experimental intervals. The surface plots of the response functions are useful in
understanding both the main and interaction effects of the factors [32,33].
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(b) rotation speed versus powder to ball weight ratio.
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The particle size variation can be analyzed by the plots of surface response (Figure 7a) in which
two variables are kept constant (rotation and relation) while the amount of carbide (0 to 3 wt.%)
and time (10 h and 50 h) are variables. With an increase in milling time, the particle size decreases.
This behavior is observed for both grinding with and without carbide addition. The work hardening
causes powders to become brittle, and the fracturing process becomes significant for longer milling
times [30].

With the increase of carbide in the grinding process the particle size also decreases, being that for
milling with the addition of 3% VC, the particle size obtained presents the same order of magnitude
for milling for 50 h, without the addition of carbides. Canackçi & Varol, found a decrease in particle
size for the chip milling of an aluminum alloy [32]. What’s more, Dias et al., obtained the smallest
particle sizes for high milling times [29]. These authors verified that the time of milling and addition of
carbides are the most influential parameters in the milling process.

Figure 7b depicts the analysis of particle size behavior for the variation of the ratio (1/10–1/20) and
rotation (250–350 rpm) parameters, of which the values are 3% carbide percentage and 50 h milling
time. The effects analyzed are negative, because with the increase of the parameters of rotation and
mass/ball ratio the particle size decreases. For rotations near 250 rpm and mass/ball ratio around 1/10,
the particle size obtained is larger than 200 µm. The higher mill speed and mass/ball ratio, the higher
the energy of balls, thus increases the rate of collision between ball-powder-jar. Consequently, with the
increase of the impacts, there is a greater reduction of the particles. The greater the speed, the balls can
fall down from the maximum height to produce the utmost collision energy [28,33].

Figure 8a,b depict the SEM micrographs of 50 h milled duplex stainless steel powders with and
without vanadium carbide. It can be seen in Figure 8a that, the UNS S31803 stainless steel in the form
of chips was transformed into particles with irregular morphology and sizes ranging from 85 to 250 µm
with an average particle size of 151.8 µm after milling at 350 rpm, 50 h milling, and a mass/ball ration
of 1/10, without the addition of vanadium carbide. For a milling of the material with carbide, it was
found that the material acquired an irregular morphology with an average size of 45 to 140 µm and
an average particle size of 77.9 µm, as can be seen in Figure 8b.
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3% of vanadium carbide.

Addition of carbide in the milling process increased the efficiency of the milling process,
with a decrease of 48.7% of the particle size. The SEM analysis indicates the same behavior observed
in the analysis of the pareto graphs and interactions. Reduction mechanism may be due to the
incorporated carbides, which act as concentration agents of internal stresses, which are produced by
the collisions in the milling process. Dias, et al., 2018, found that when milling with vanadium carbide
for 50 h the particle sizes obtained were in the order of 50 µm. Mendonça, et al. found that the addition
of carbide in the milling of chips of the same stainless steel results in a reduction in particle size of the
order of 20% when compared without carbide [28].
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The reduction mechanism was due to the incorporated carbides, which act as concentration
agents of internal stresses, which are produced by the collisions in the milling process. As the process
of collisions is continuous, the particles of the material are increasingly hardened and the level of
tension rises to the point that, where the carbides are located nucleation of cracks occurs, fracturing the
material, thus reducing the particle size, as shown in Figure 9.

Metals 2018, 8, x FOR PEER REVIEW  10 of 12 

 

tension rises to the point that, where the carbides are located nucleation of cracks occurs, fracturing 
the material, thus reducing the particle size, as shown in Figure 9. 

 
Figure 9. Mechanism of milling with addition carbide of the stainless steel duplex chips. 

A smaller particle size was obtained for a more aggressive milling condition, which was 350 
rpm, with a mass/ball ratio of 1/20, for 50 h, with addition of 3% VC (Figure 10). It is observed that 
the material acquired an acicular morphology with an average size of 25 to 135 μm. In this process, a 
greater amount of energy is involved then when allied with the carbide addition, which favors the 
reduction mechanism of the particle size. The smallest particle size obtained after 50 h of milling with 
3% VC is 174 times smaller than the chip. 

 
Figure 10. Photomicrography of stainless steel powder of milling parameters of 350 rpm, mass/ball 
ratio of 1/20, milling time of 50 h. 

4. Conclusions 

The high-energy milling process is an alternative route to the reuse of stainless steel chips with 
and without addition of VC. 

The results showed with the addition of carbide in the milling process cause an average of 
reduction in particle size when compared with the material without carbide added. Through the 
analysis performed in this study, it was possible to verify that with the addition of carbides in the 
milling process, there was an average reduction in particle size when compared to the material 
without carbide added; the difference was around 66%. 

Figure 9. Mechanism of milling with addition carbide of the stainless steel duplex chips.

A smaller particle size was obtained for a more aggressive milling condition, which was 350 rpm,
with a mass/ball ratio of 1/20, for 50 h, with addition of 3% VC (Figure 10). It is observed that the
material acquired an acicular morphology with an average size of 25 to 135 µm. In this process,
a greater amount of energy is involved then when allied with the carbide addition, which favors the
reduction mechanism of the particle size. The smallest particle size obtained after 50 h of milling with
3% VC is 174 times smaller than the chip.
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4. Conclusions

The high-energy milling process is an alternative route to the reuse of stainless steel chips with
and without addition of VC.
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The results showed with the addition of carbide in the milling process cause an average of
reduction in particle size when compared with the material without carbide added. Through the
analysis performed in this study, it was possible to verify that with the addition of carbides in the
milling process, there was an average reduction in particle size when compared to the material without
carbide added; the difference was around 66%.

Also, all the four parameters applied in this study influenced the process of milling of duplex
stainless steel chips and the reduction of particle size. However, the statistical analysis showed that the
addition of carbide in the process is the most influential factor, followed by the milling time, rotation
speed, and powder to ball weight ratio. The production of duplex stainless steel powders with the
addition of carbides by high-energy mechanical milling is a novel method for recycling chips.
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