UNIVERSIDADE ESTADUAL DE CAMPINAS SISTEMA DE BIBLIOTECAS DA UNICAMP REPOSITÓRIO DA PRODUÇÃO CIENTIFICA E INTELECTUAL DA UNICAMP

Versão do arquivo anexado / Version of attached file:

Versão do Editor / Published Version

Mais informações no site da editora / Further information on publisher's website: https://peerj.com/articles/7612/

DOI: 10.7717/peerj. 7612

Direitos autorais / Publisher's copyright statement:
©2019 by PeerJ. All rights reserved.

Notes on vocalizations of Brazilian amphibians IV: advertisement calls of 20 Atlantic Forest frog species

Lucas Rodriguez Forti ${ }^{1}$, Célio Fernando Baptista Haddad ${ }^{2}$, Felipe Leite ${ }^{3}$, Leandro de Oliveira Drummond ${ }^{4}$, Clodoaldo de Assis ${ }^{5}$, Lucas Batista Crivellari ${ }^{6}$, Caio Marinho Mello ${ }^{7}$, Paulo Christiano Anchietta Garcia ${ }^{8}$, Camila Zornosa-Torres ${ }^{9}$ and Luís Felipe Toledo ${ }^{9}$
${ }^{1}$ Instituto de Biologia, Universidade Federal da Bahia, Salvador, Bahia, Brazil
${ }^{2}$ Departamento de Zoologia and Centro de Aquicultura (CAUNESP), Universidade Estadual Paulista, Rio Claro, SP, Brazil
${ }^{3}$ Instituto de Ciências Biológicas e da Saúde, Universidade Federal de Viçosa, Florestal, MG, Brazil
${ }^{4}$ Centro de Biociências e Biotecnologia, Universidade Estadual Norte Fluminense, Campos dos Goytacazes, Rio de Janeiro, Brazil
${ }^{5}$ Programa de Pós-Graduação em Biologia Animal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
${ }_{7}^{6}$ Departamento de Zoologia, Universidade Federal do Paraná, Curitiba, Paraná, Brazil
${ }^{7}$ Programa de Pós-Graduação em Zoologia, Universidade Federal do Paraná, Curitiba, Paraná, Brazil
${ }^{8}$ Departamento de Zoologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
${ }^{9}$ Departamento de Biologia Animal, Universidade Estadual de Campinas, Campinas, SP, Brazil

Submitted 3 May 2019
Accepted 5 August 2019
Published 13 September 2019
Corresponding author
Lucas Rodriguez Forti,
lucas.forti@ufba.br
Academic editor José Maria Cardoso da Silva

Additional Information and Declarations can be found on page 31

DOI 10.7717/peerj. 7612
© Copyright
2019 Forti et al.
Distributed under
Creative Commons CC-BY 4.0

ABSTRACT

Bioacoustics is a powerful tool used for anuran species diagnoses, given that advertisement calls are signals related to specific recognition and mate attraction. Thus, call descriptions can support species taxonomy. In spite of that, call descriptions are lacking for many species, delaying advances in biodiversity research. Here, we describe the advertisement calls of 20 anuran species from the Brazilian Atlantic Forest. We accessed 50 digital recordings deposited in the Fonoteca Neotropical Jacques Vielliard. Acoustic analyses were carried out in the software Raven pro 1.5. We provide a general comparison of call structure among species inside taxonomic groups and genera. The vocalizations described here belong to poorly known species, which are representatives of six families: Brachycephalidae, Bufonidae, Ceratophryidae, Cycloramphidae, Hylidae, and Phyllomedusidae. Despite this, still there are 163 species of anurans from Atlantic Forest with calls not formally described. Our work represents an important step in providing data for a taxonomic perspective and improving the knowledge of the Atlantic Forest anuran diversity.

Subjects Biodiversity, Zoology
Keywords Bioacoustics, Animal behavior, Taxonomy, Atlantic forest, Amphibians, Anura, Conservation

INTRODUCTION

Global biodiversity undergo a substantial crisis caused by human activities leading to a current rate of species extinctions tens to hundreds of times higher than the average across the past 10 million years (Ceballos et al., 2015; Tollefson, 2019). The research effort of
several scientists all over the world have recognized several world hotspots, which are mainly based in endemism and loss of habitats (Myers et al., 2000). The Atlantic Forest is one of these biomes with special priority for conservation (Morellato \& Haddad, 2000; Myers et al., 2000; Ribeiro et al., 2011). This Neotropical forest has been historically affected by deforestation, climate change, introduction of invasive species, and pandemic diseases (Bellard et al., 2014; Dean, 1996; Joly, Metzger \& Tabarelli, 2014; Carvalho, Becker \& Toledo, 2017; Forti et al., 2017a). It is a consensus that the first step for preserving biodiversity in nature is the formal recognition of species (Thomson et al., 2018). Such knowledge is the basis for promoting accurate inventories, field guides, lists of threatened species, and proper conservation management actions (Dijkstra, 2016). Unfortunately, the extraordinary biodiversity of the Atlantic Forest is not totally known and, considering the accelerated pace of deforestation (Ribeiro et al., 2009), an increase in the efforts of taxonomists for describing new species or reliable boundaries among taxa already described is urgent. The remarkable Atlantic Forest biota is a result of a complex diversification process generated by a rugged terrain, great habitat heterogeneity, and an ever-changing environment in the past (Carnaval et al., 2009; Toledo \& Batista, 2012). This diversification process produced diverse levels of endemism (Toledo et al., 2014), which highlights even more the urgency for such taxonomical effort, since many species may be subjected to extinction before they are formally recognized.

Bioacoustics can be a powerful tool for solving taxonomic questions (Padial et al., 2010; Köhler et al., 2017). Many groups of animals produce sounds for attracting and selecting mates, so acoustic properties of such sexual signals are particularly rich and useful for species identification (Baker, 2001; Köhler et al., 2017). Although further evidence of its widespread use for taxonomy and as a phylogenetic signal is needed, we know, for instance, that in cases of syntopic species that use sounds to attract the reproductive partner, the recognition of boundaries among them is possible because vocalizations are frequently stereotyped (i.e., all individuals of a given species are able to emit similar vocalizations) and exposed to selective pressures, for example, to enhance mate recognition. Acoustic signals are essentially represented by three possible dimensions (a 3D gradient): power, time, and frequency (Snowdon, 2011). By applying a depth resolution (a detailed acoustic comparison), differences on these features usually permit a reliable distinction even between sister species. The vast majority of frog species are able to produce and hear sounds, which are their main way of communication (Duellman \& Trueb, 1994; Narins, Feng \& Fay, 2006; Wells, 2007). As territorial animals, male frogs vocalize from reproductive sites to advertise their reproductive status and space ownership (Wells \& Schwartz, 2007), while females, which are auditively tuned to the band frequency of their own species (Fuzessery \& Feng, 1982; Phelps, 2007), moves toward selected males. In such context, the advertisement call is an effective mechanism of prezygotic isolation (Blair, 1958; Schneider \& Sinsch, 2007). This intraspecific signal has many stereotyped properties and, for such reason, advertisement calls of frogs are constantly used as a source of taxonomic and phylogenetic information (Littlejohn, 2001; Ryan e Rand, 2001; Robillard, Höbel \& Gerhardt, 2006; Padial et al., 2010; Forti et al., 2017b).

An amplified knowledge of bioacoustics will improve the quality of long-term passive acoustic monitoring, which can be applied to understand spatial and temporal distribution of rare species in remote landscapes (Sugai et al., 2019). Once more species have calls formally described, knowledge gains new courses and novel approaches. The auditory detection, using automated recordings, supports both increase the knowledge of a poorly known species, as help us to monitor the impacts of human activities on biodiversity (Llusia et al., 2013; Schmeller et al., 2017). With the current fast advance of acoustic knowledge (Guerra et al., 2018), such techniques can also to be applied in favor of amphibian conservation.

Many scientists in the past made a substantial effort in recording Brazilian frogs, which allowed a considerable advance in the taxonomy of Neotropical anurans. We may cite as reference some remarkable works of Werner C.A. Bokermann and Adão J. Cardoso, which, summed, described the vocalizations of about 40 anuran species from the Atlantic Forest (Bokermann, 1964a, 1964b, 1966, 1967a, 1967b, 1967c, 1967d, 1972, 1973, 1974; Bokermann \& Sazima, 1973; Sazima \& Bokermann, 1978, 1982; Sazima \& Cardoso, 1978; Cardoso \& Haddad, 1984, 1990; Cardoso \& Vielliard, 1985; García-Lopez, Heyer \& Cardoso, 1996). Besides that, these two taxonomists recorded part of the acoustic material used in the present work, at a time when bioacoustics research required a great dedication, mainly by the transportation of heavy analog devices in the field. Our objective here was to improve the taxonomic and basic knowledge of Atlantic Forest anurans by describing, for the first time, vocalizations of 20 species of frogs. Besides, we are honoring W.C.A. Bokermann with the title of the manuscript, which symbolically represents the continuity of his three papers with similar titles (Bokermann, 1967a, 1967b, 1967c).

MATERIALS AND METHODS

We reviewed the literature, checking for species from the Atlantic Forest with calls already described, to produce a list of species with calls not formally described. After that, we obtained 50 audio files with advertisement calls of 20 species present in such list, by contacting researchers and surveying the files from the Fonoteca Neotropical Jacques Vielliard (FNJV, Unicamp, Campinas). These files came from different recordists, dates, localities, and equipments, which we specify in the Table 1. We identified species using specimens deposited in biological collections (Célio F.B. Haddad collection-CFBH, Museu de Zoologia João Moojen-MZUFV, Museu de História Natural Capão da Imbuia-MHNCI, Smithsonian Institution Washington-DC-US-Animalia, Museu de Zoologia da Universidade Estadual de Campinas "Adão José Cardoso"-ZUEC-AMP, Coleção de Anfíbios do Instituto Nacional da Mata Attântica-MBML-Anfibios, Coleção de Anfíbios do Centro de Coleçães Taxonômica da UFMG-UFMG-AMP, Coleção de Anfíbios do Museu de Ciências e Tecnologia da PUCRS-MCP), morphological evidence, and geographical distribution (see Table 1).

Before the acoustic analysis, we standardized all sound files to a pattern sample rate of 44.1 kHz and 16 bits of resolution saving the files in Audacity 2.1.1. For each species, we specified a band pass filter to decrease general background noise (Table 1). After the filtering process, calls were individually normalized (peak -0.8 dB) using Audacity 2.1.1 for

Species	Bandpass filter (Hz)	Males	Calls analyzed	Localities	Recorder	Microphone	Recordist	Date	FNJV numbers	Identification criterion	Threat status by MMA (Ministério do Meio Ambiente) (2014)	Endemic to Atlantic Forest
Cycloramphus izecksohni	No filter	1	21	Corupá-SC	Nagra E		Célio F.B. Haddad	12 November, 1998	34035	Distribution and specimens deposited (CFBH 9394, 9395, 37733778, 10991, 10992, 10996, 10997)	Least concern	Yes
Zachaenus parvulus	No filter	1	5	Rio de Janeiro-RJ	Uher 4000 Report IC		Werner C.A. Bokermann	7 August, 1965	31926	Distribution (type locality)	Least concern	Yes
Hylidae												
Boana guentheri	$\begin{aligned} & \text { Below } 600 \\ & \text { and above } \\ & 5,500 \end{aligned}$	1	3	Terra de Areia-RS	Nagra E	Sennheiser ME 66	Paulo Cristiano de Anchietta García	$\begin{gathered} \text { 23 February, } \\ 1999 \end{gathered}$	33063	Distribution and specimen deposited (ZUEC-AMP 11738)	Least concern	Yes
Boana leptolineata	No filter	4	169	São Francisco de PaulaRS and Lages-SC	Uher IC	M534	Adão José Cardoso	6 February, 1982, 11 February, 1982 and 15 October, 1995	$\begin{gathered} 30737-30739 \\ \text { and } 31594 \end{gathered}$	Distribution and specimen deposited (ZUEC-AMP 11252)	Least concern	Yes
Bokermannohyla gouveai	Above 5,000	1	31	ItamonteMG	Marantz PMD222	Sennheiser ME 66	Célio F.B. Haddad	4 January, 2006	36485	Distribution (type locality)	Data deficient	Yes
Ololygon flavoguttata	Below 1,400 and above 6,000	1	29	$\begin{aligned} & \text { Cataguases- } \\ & \text { MG } \end{aligned}$	Tascam DR-40	Sennheiser ME66	Clodoaldo Lopes de Assis	31 July, 2016	36486	Specimens deposited (MZUFV 16022, 16495-16498, 17207-17210)	Least concern	Yes
Ololygon tripui		2	??	Alto-CaparaóMG	Tascam DR-40	Built-in	Camila Zornosa Torres	27 July, 2016	$\begin{gathered} 32898 \text { and } \\ 32389 \end{gathered}$	$\begin{aligned} & \begin{array}{l} \text { Specimens } \\ \text { deposited } \end{array} \\ & \text { (ZUEC-AMP } \\ & 23398,23417, \\ & 24406,23658, \\ & 24176,23404, \\ & 24402,22928, \\ & 23400,23399, \\ & 22926,23357, \\ & 24407,24112, \\ & 23403,23418 \text {, } \end{aligned}$	Not Evaluated	Yes
Phyllomedusidae												
Phasmahyla cochranae	Below 675	2	35	São Jose do BarreiroSP and Jundiaí-SP	Uher 4000 Report IC and Uher Monitor	M538	Werner C.A. Bokermann and Célio F.B. Haddad	3 November, 1965 and 4 October, 1988	$\begin{gathered} 31990 \text { and } \\ 31152 \end{gathered}$	Distribution (type locality)	Least concern	Yes

Species	Bandpass filter (Hz)	Males	Calls analyzed	Localities	Recorder	Microphone	Recordist	Date	FNJV numbers	Identification criterion	Threat status by $M M A$ (Ministério do Meio Ambiente) (2014)	Endemic to Atlantic Forest
Phasmahyla jandaia	Below 850	2	7	CongonhasMG and Santa BárbaraMG	Marantz PMD 660	Sennheiser me66	Felipe Leite	7 October, 2010 and 10 December, 2016	$\begin{aligned} & 36507 \text { and } \\ & 36509 \end{aligned}$		Least concern	No
Phrynomedusa appendiculata	Below 855	1	2	Santo André-SP	Uher 4000 Report IC		Werner C.A. Bokermann	24 March, 1963	31849	Distribution and specimens deposited (ZUEC-AMP 15936; USAnimalia 162176)	Data deficient	Yes
Phyllomedusa iheringii	Below 450	1	18	Bagé-RS	Uher 4000 IC	M538	Adão José Cardoso	19 December, 1982	31156	Specimens deposited (MCP-Anfibios 1781; ZUECAMP 6244, 5311; UFMGAMP 1630, 1631)	Least concern	No
Pithecopus rusticus	Below 1,000	3	20	Água DoceSC	Marantz PMD 661	Yoga Ht 81	Caio Marinho Mello e Lucas Batista Crivellari	$\begin{aligned} & 30 \text { November, } \\ & 2013 \end{aligned}$	37454-37456	Distribution (type locality) and specimens deposited (MHNCI 10421 MHNCI 10422)	Not Evaluated	Yes

avoiding biases related to the differences in intensity. We carried out acoustic analyses using the software Raven Pro 1.5 (Bioacoustics Research Program, 2011). For call selection, we used the waveform window. For spectral measurements, we adjusted a fast fourier transformation of 1,024 points, with a window of 50% overlap, temporal hope size of 256 samples, and grid spacing of 93.8 Hz . We used the note-centered approach (defining uninterrupted units of sound as notes and their entirety as a call) and the concepts of pulses, notes, and calls as defined by Köhler et al. (2017). Based in the terminology of Gerhardt \& Huber (2002) and Wells (2007), we measured the following acoustic properties:
(1) number of notes, (2) call/note duration, (3) number of pulses, (4) call rate,
(5) harmonic structure, (6) rise time to the maximum amplitude, (7) range frequency,
(8) minimum frequency, (9) maximum frequency, (10) fundamental frequency, and
(11) dominant frequency. For such measurements we used the following functions: Bandwidth 90% (Hz) (for the range frequency, a band of frequency that includes 90% of the energy of the sound), Frequency $5 \%(\mathrm{~Hz}$) (for the minimum frequency, ignoring 5% below the total energy in the selected call), Frequency 95% (Hz) (for the maximum frequency, ignoring 5\% above the total energy in the selected call), Peak Frequency (Hz) (for dominant frequency), Delta Time (s) (for call/note duration), and Max Amplitude (U) (for finding the time to the maximum amplitude visualizing the limits in the waveform), available in the choose measurements menu in Raven (see also Köhler et al., 2017). We made descriptive statistics (mean, standard deviation, and range) based in individual measurements (by call and/or notes). When we had more than one male for each species we present mean and standard deviation based in mean values by males.

RESULTS

A total of 13 Atlantic Forest frog families have species with unknown vocalizations (Fig. 1). Among these, we identified 163 species lacking vocalizations descriptions (nearly 26% of all 624 anuran species described up to April 2019 (L.F. Toledo, 2019, unpublished data); Table S1). Below we describe calls from 20 Atlantic Forest species of six different families.

BRACHYCEPHALIDAE

Ischnocnema concolor Targino, Costa, and Carvalho-e-Silva, 2009
The vocalization of I. concolor is composed by one non-pulsed harmonic note with $0.08 \pm$ 0.01 s (ranging from 0.04 to $0.12 \mathrm{~s}, n=63$, males $=7$) of duration. Sometimes, this note can be emitted as a series including two to four units with short regular intervals of 0.3 s . The call (note) occupy a strict mean range frequency of $103 \pm 15 \mathrm{~Hz}(n=63$, males $=7$), with a minimum frequency averaging $2,964 \pm 98 \mathrm{~Hz}$ (ranging from 2,799 to $3,187 \mathrm{~Hz}, n=63$, males $=7$) and maximum frequency of $3,064 \pm 94 \mathrm{~Hz}$ (ranging from 2,929 to $3,273 \mathrm{~Hz}, n=$ 63 , males $=7$). The dominant frequency average is $3,019 \pm 94 \mathrm{~Hz}$ (ranging from 2,842 to $3,230 \mathrm{~Hz}, n=63$, males $=7$) and is located in the fundamental frequency band (Fig. 2). The second harmonic is up to 6 kHz . The rise time to the maximum amplitude is $0.022 \pm$ 0.005 s (ranging from 0.013 to $0.038 \mathrm{~s}, n=63$, males $=7$). Notes were emitted with an average interval of $5.7 \pm 1.9 \mathrm{~s}$ (ranging from 0.24 to $18.4 \mathrm{~s}, n=56$, males $=7$). Males called with a rate of 9.9 ± 2.6 calls $/ \mathrm{min}$ (ranging from 6.7 to 14 calls $/ \mathrm{min}, n=7$, males $=7$).

Ischnocnema melanopygia Targino, Costa, and Carvalho-e-Silva, 2009
This species has vocalizations composed by one to five non-pulsed harmonic notes with $0.024 \pm 0.006 \mathrm{~s}$ (ranging from 0.01 to $0.04 \mathrm{~s}, n=47$, males $=9$) of duration. Notes occupied a large mean range frequency of $1,109 \pm 778 \mathrm{~Hz}(n=47$, males $=9)$, with a minimum frequency averaging $2,290 \pm 122 \mathrm{~Hz}$ (ranging from 2,067 to $2,541 \mathrm{~Hz}, n=47$, males = 9) and maximum frequency of $3,399 \pm 801 \mathrm{~Hz}$ (ranging from 2,326 to $5,211 \mathrm{~Hz}, n=47$, males $=9$). The dominant frequency, located in the fundamental frequency band (Fig. 3), averages 2,407 ± 137 Hz (ranging from 2,153 to $2,756 \mathrm{~Hz}, n=47$, males $=9$). The second and third harmonics varied between 4.8 and 5.4 kHz , and 7.2 and 8.0 kHz respectively. The rise time to the maximum amplitude is $0.004 \pm 0.001 \mathrm{~s}$ (ranging from 0.002 to $0.009 \mathrm{~s}, n=47$, males $=9$). Notes were emitted with an average interval of $3.81 \pm 2.38 \mathrm{~s}$ (ranging from 0.16 to $30.81 \mathrm{~s}, n=$ 43 , males $=9$). Males called with a rate of 14.3 ± 4 notes $/ \mathrm{min}$ (ranging from 7.5 to 20 notes $/ \min , n=9$, males $=9$).

BUFONIDAE

Dendrophryniscus berthalutzae (Bokermann, 1962)
The vocalization of D. berthalutzae is a sequence of six pulsed notes (Fig. 4), with duration of $0.43 \pm 0.069 \mathrm{~s}$ (ranging from 0.37 to $0.57 \mathrm{~s}, n=4$, males $=2$), and rise time to the maximum amplitude of $0.187 \pm 0.006 \mathrm{~s}$ (ranging from 0.08 to $0.29 \mathrm{~s}, n=4$, males $=2$). There is no harmonic structure and each note is composed by five to eight pulses with $0.029 \pm 0.009 \mathrm{~s}$ (ranging from 0.017 to $0.042 \mathrm{~s}, n=4$, males $=2$) of duration. The more intense note has a range frequency averaging $700 \pm 15 \mathrm{~Hz}$ (ranging from 646 to $745 \mathrm{~Hz}, n=$ 4 , males $=2$), with mean of minimum frequency of $2,907 \pm 0.04 \mathrm{~Hz}$ (ranging from 2,842 to $2,972 \mathrm{~Hz}, n=4$, males $=2$), and maximum frequency of $3,607 \pm 15 \mathrm{~Hz}$ (ranging from 3,575 to $3,618, n=4$, males $=2$). The dominant frequency of the more intense note is $3,391 \pm$ 15 Hz (ranging from 3,316 to $3,488 \mathrm{~Hz}, n=4$, males $=2$).

Melanophryniscus alipioi Langone, Segalla, Bornschein, and de Sá, 2008
This species has a vocalization composed of two segments consisting of series of notes with harmonics $(825 \pm 165, n=18$, males $=4)$. The first segment, which we determined as an introductory segment, has a note series composed by longer notes with larger silence intervals than the main segment (Fig. 5). Including both segments, the call duration is $17.7 \pm 3.9 \mathrm{~s}$ (ranging from 6.7 to $25.8 \mathrm{~s}, n=18$, males $=4$). Each isolated note from the introductory section has mean duration of $0.046 \pm 0.012 \mathrm{~s}$ (ranging from 0.025 to 0.060 s , $n=18$, males $=4$) and silence interval between notes of $0.172 \pm 0.036 \mathrm{~s}$ (ranging from 0.124 to $0.234, n=18$, males $=4$). Notes in the main segment have a mean duration of $0.007 \pm$ 0.001 s (ranging from 0.006 to $0.010 \mathrm{~s}, n=18$, males $=4$) and silence interval between notes of $0.009 \pm 0.001 \mathrm{~s}$ (ranging from 0.006 to $0.013 \mathrm{~s}, n=18$, males $=4$). Notes in the introductory segment show a mean range frequency of $352 \pm 127 \mathrm{~Hz}(n=18$, males $=4)$, with minimum frequency averaging $2,411 \pm 200 \mathrm{~Hz}$ (ranging from 2,196 to $2,799 \mathrm{~Hz}, n=18$, males $=4$), maximum frequency of $2,763 \pm 260 \mathrm{~Hz}$ (ranging from 2,433 to $3,058 \mathrm{~Hz}, n=18$, males $=4$), and dominant frequency of $2,664 \pm 248 \mathrm{~Hz}$ (ranging from 2,240 to $2,929 \mathrm{~Hz}$,

Figure 1 Number of species with described vocalizations from Brazilian Atlantic Forest anuran families.

Full-size DOI: 10.7717/peerj.7612/fig-1

Figure 2 Amplitude spectra, spectrogram, and waveform of the advertisement call of Ischnocnema concolor. (A) Amplitude spectra (taken near to the midst of the call), (B) spectrogram, and (C) waveform of the advertisement call of Ischnocnema concolor from Parque Nacional do Itatiaia, Itamonte, state of Minas Gerais, Southeastern Brazil. Spectrogram window with DFT of 4096, grid spacing of 10.8 Hz and overlap of 75%.

Full-size DOI: 10.7717/peerj.7612/fig-2

Figure 3 Amplitude spectra, spectrogram, and waveform of the advertisement call of Ischnocnema melanopygia. (A) Amplitude spectra (taken near to the midst of the call), (B) spectrogram, and (C) waveform of the advertisement call of Ischnocnema melanopygia from Parque Nacional do Itatiaia, Itamonte, state of Minas Gerais, Southeastern Brazil. Spectrogram window with DFT of 4096, grid spacing of 10.8 Hz and overlap of 75%.

Full-size DOI: 10.7717/peerj.7612/fig-3
$n=18$, males $=4$). The rise time to the maximum amplitude in the first segment is $0.0185 \pm$ 0.00811 s (ranging from 0.005 to $0.036 \mathrm{~s}, n=18$, males $=4$). Notes in the main segment have a mean range frequency of $561 \pm 262 \mathrm{~Hz}(n=18$, males $=4)$, with minimum frequency averaging $2,490 \pm 257 \mathrm{~Hz}$ (ranging from 2,182 to $2,842 \mathrm{~Hz}, n=18$, males = 4), maximum frequency of $3,051 \pm 321 \mathrm{~Hz}$ (ranging from 2,598 to $3,531 \mathrm{~Hz}, n=18$, males $=4$), and dominant frequency of $2,759 \pm 229 \mathrm{~Hz}$ (ranging from 2,440 to $2,972 \mathrm{~Hz}, n=18$, males $=4$). The rise time to the maximum amplitude in the second segment is $0.0026 \pm 0.0007 \mathrm{~s}$ (ranging from 0.001 to $0.004 \mathrm{~s}, n=18$, males $=4$). Both types of notes have harmonic structure with a fundamental frequency of the same value of dominant frequency.

Melanophryniscus moreirae (Miranda-Ribeiro, 1920)

We recognized two different sections of vocalizations of M. moreirae: a non-harmonic note series (non-pulsed notes repeated in regular interval), which is more commonly emitted and another part composed by an isolated and non-pulsed harmonic note (Fig. 6). It is possible that the note series is the advertisement call, while isolated harmonic notes are aggressive calls. The note series is a repetition of 70 ± 47 notes (ranging from six to 300 notes, $n=14$, males $=2$), which have $1.83 \pm 1.26 \mathrm{~s}$ (ranging from 0.21 to $6.08, n=14$, males $=2$) of duration. Each note of the note series call has $0.014 \pm 0.004 \mathrm{~s}$ (ranging from 0.010 to $0.022 \mathrm{~s}, n=10$, males $=2$) of duration, while the call composed by an isolated note averages $0.086 \pm 0.032 \mathrm{~s}$ (ranging from 0.038 to $0.140 \mathrm{~s}, n=16$, males $=2$) of

Figure 4 Amplitude spectra, spectrogram, and waveform of the advertisement call of Dendrophryniscus brevipollicatus. (A) Amplitude spectra (taken near to the midst of the call), (B) spectrogram, and (C) waveform of the advertisement call of Dendrophryniscus brevipollicatus from Treviso, state of Santa Catarina, Southern Brazil. Spectrogram window with DFT of 4096, grid spacing of 10.8 Hz and overlap of 75% Full-size DOI: 10.7717/peerj.7612/fig-4
duration. The more intense note in the note series call vary among the 3rd and 57th unit, with rise time to the maximum amplitude achieved in $0.62 \pm 0.70 \mathrm{~s}$ (ranging from 0.07 to $3.07 \mathrm{~s}, n=14$, males $=2$). Range frequency of the note series call is $252 \pm 9 \mathrm{~Hz}$ with minimum frequency averaging $1,733 \pm 15 \mathrm{~Hz}$ (ranging from 1,637 to $1,809 \mathrm{~Hz}, n=14$, males $=2$), maximum frequency of $1,985 \pm 6 \mathrm{~Hz}$ (ranging from 1,938 to $2,153 \mathrm{~Hz}, n=14$, males $=2$), and dominant frequency of $1,856 \pm 67 \mathrm{~Hz}$ (ranging from 1,766 to $1,938 \mathrm{~Hz}$, $n=14$, males $=2$). The aggressive call (isolated notes) show range frequency of $169 \pm 4 \mathrm{~Hz}$, with minimum frequency averaging $1,717 \pm 70 \mathrm{~Hz}$ (ranging from 1,594 to $1,809 \mathrm{~Hz}, n=16$, males $=2$), maximum frequency of $1,886 \pm 74 \mathrm{~Hz}$ (ranging from 1,680 to $2,196 \mathrm{~Hz}, n=16$, males $=2$), and dominant frequency ($=$ fundamental frequency) of $1,809 \pm 91 \mathrm{~Hz}$ (ranging from 1,637 to $1,895 \mathrm{~Hz}, n=16$, males $=2$). The second harmonic is about 3.5 kHz in the aggressive call. The rise time to the maximum amplitude of this aggressive note is $0.025 \pm$ 0.010 s (ranging from 0.012 to $0.049 \mathrm{~s}, n=16$, males $=2$).

Melanophryniscus vilavelhensis Steinbach-Padilha, 2008
This species has the vocalization composed of two segments of non-harmonic note series (546 notes, $n=1$). Notes are not pulsed. As in M. alipioi, the first segment (determined as introductory segment) has a note series composed by longer notes with

Figure 5 Amplitude spectra, spectrogram, and waveform of the advertisement call of Melanophryniscus alipioi. (A) Amplitude spectra (taken near to the midst of the call), (B) spectrogram, and (C) waveform of the advertisement call of Melanophryniscus alipioi from Campina Grande do Sul, state of Paraná, Southern Brazil. Spectrogram window with DFT of 4096, grid spacing of 10.8 Hz and overlap of 75%.

Full-size DOI: 10.7717/peerj.7612/fig-5

Figure 6 Amplitude spectra, spectrogram, and waveform of the advertisement call of Melanophryniscus moreirae. (A) Amplitude spectra (taken near to the midst of the cal-complex call black line and simple call blue line), (B) spectrogram, and (C) waveform of the advertisement call of Melanophryniscus moreirae from Parque Nacional do Itatiaia, Itamonte, state of Minas Gerais, Southeastern Brazil. Spectrogram window with DFT of 4096 , grid spacing of 10.8 Hz and overlap of 75%.

Full-size DOI: 10.7717/peerj.7612/fig-6

Figure 7 Amplitude spectra, spectrogram, and waveform of the advertisement call of Melanophryniscus vilavelhensis. (A) Amplitude spectra (taken near to the midst of the call), (B) spectrogram, and (C) waveform of the advertisement call of Melanophryniscus vilavelhensis from Ponta Grossa, state of Paraná, Southern Brazil. Spectrogram window with DFT of 4096, grid spacing of 10.8 Hz and overlap of 75\%. Full-size DOI: 10.7717/peerj.7612/fig-7
larger silence intervals than the main segment (Fig. 7). Each isolated note from the introductory section has a mean duration of $0.07 \pm 0.008 \mathrm{~s}$ (ranging from 0.06 to 0.08 s , $n=8$) and silence interval between notes of $0.24 \pm 0.01 \mathrm{~s}$ (ranging from 0.23 to $0.26, n=7$). The rise time to the maximum amplitude in this section is 6.4 s . Notes in the main segment have a mean duration of $0.013 \pm 0.001 \mathrm{~s}$ (ranging from 0.02 to $0.03 \mathrm{~s}, n=8$) and silence interval between notes of $0.03 \pm 0.002 \mathrm{~s}$ (ranging from 0.02 to $0.03 \mathrm{~s}, n=7$). Notes in the introductory segment show a range frequency of 86.1 Hz , with minimum frequency averaging $3,182 \pm 36 \mathrm{~Hz}$ (ranging from 3,144 to $3,230 \mathrm{~Hz}, n=8$), maximum frequency of $3,268 \pm 36 \mathrm{~Hz}$ (ranging from 3,230 to $3,316 \mathrm{~Hz}, n=8$), and dominant frequency of $3,230 \pm 40 \mathrm{~Hz}$ (ranging from 3,187 to $3,273 \mathrm{~Hz}, n=8$). The first segment notes in the main segment have a range frequency of 188 Hz , with minimum frequency averaging $3,128 \pm 22$ Hz (ranging from 3,101 to $3,144 \mathrm{~Hz}, n=8$), maximum frequency of $3,316 \pm 0 \mathrm{~Hz}(n=8)$, and dominant frequency of $3,230 \pm 0 \mathrm{~Hz}(n=8)$. The rise time to the maximum amplitude in the main section is 10.6 s . Notes do not have harmonic structure and the rise time to the maximum amplitude considering segments combined is 17.5 s .

CERATOPHRYIDAE

Ceratophrys aurita (Raddi, 1823)
The vocalization of Ceratophrys aurita is a single note with a mean of 149 ± 19 fused pulses (ranging from 80 to $172, n=25$). Each call has an average of $0.87 \pm 0.09 \mathrm{~s}$ (ranging

Figure 8 Amplitude spectra, spectrogram, and waveform of the advertisement call of Ceratophrys aurita. (A) Amplitude spectra (taken near to the midst of the call), (B) spectrogram, and (C) waveform of the advertisement call of Ceratophrys aurita from Linhares, state of Espírito Santo, Southeastern Brazil. Spectrogram window with DFT of 4096, grid spacing of 10.8 Hz and overlap of 75%.

Full-size DOI: 10.7717/peerj.7612/fig-8
from 0.54 to $0.98 \mathrm{~s}, n=25$), repeated in an interval of $1.23 \pm 1.11 \mathrm{~s}$ (ranging from 0.11 to $4.95 \mathrm{~s}, n=25$), and call rate of $27 \mathrm{calls} / \mathrm{min}$. Notes have an unstable spectral modulation, with upward and downward pattern along the call (Fig. 8). Despite some weak sidebands being visible using lower contrasts in spectrogram window, the range frequency is not so large, occupying $479 \pm 129 \mathrm{~Hz}$, with minimum frequency averaging $1,044 \pm 107 \mathrm{~Hz}$ (ranging from 603 to $1,163 \mathrm{~Hz}, n=25$), maximum frequency of $1,523 \pm$ 46 Hz (ranging from 1,421 to $1,550 \mathrm{~Hz}, n=25$), and peak dominant frequency of $1,261 \pm$ 69 Hz (ranging from 1,163 to $1,421 \mathrm{~Hz}, n=25$). The rise time to the maximum amplitude is $0.39 \pm 0.18 \mathrm{~s}$ (ranging from 0.06 to $0.70 \mathrm{~s}, n=25$).

CYCLORAMPHIDAE

Cycloramphus granulosus Lutz, 1929
This species has a vocalization composed of a single pulsed and harmonic note. The note duration is $1.16 \pm 0.25 \mathrm{~s}$ (ranging from 0.97 to $1.44 \mathrm{~s}, n=3$), and the number of pulses varied among 25 and 33 pulses. The harmonic structure appears more clearly related to the more intense pulses (Fig. 9). This call has a large range frequency of $1,321 \pm 66 \mathrm{~Hz}$, which is particularly affected by the energy distribution between the first (fundamental) and second harmonics. Minimum frequency averaged $804 \pm 25 \mathrm{~Hz}$ (ranging from 775 to $818 \mathrm{~Hz}, n=$ 3), maximum frequency was $2,125 \pm 66 \mathrm{~Hz}$ (ranging from 2,067 to $2,196 \mathrm{~Hz}, n=3$), and

Figure 9 Amplitude spectra, spectrogram, and waveform of the advertisement call of Cycloramphus granulosus. (A) Amplitude spectra (taken near to the midst of the call), (B) spectrogram, and (C) waveform of the advertisement call of Cycloramphus granulosus from São José do Barreiro, state of São Paulo, Southeastern Brazil. Spectrogram window with DFT of 4096, grid spacing of 10.8 Hz and overlap of 75\%. Full-size DOI: 10.7717/peerj.7612/fig-9
dominant frequency ($=$ fundamental frequency) was $1,263 \pm 50 \mathrm{~Hz}$ (ranging from 1,206 to $1,292 \mathrm{~Hz}, n=3$). The second harmonic is about 2 kHz . The rise time to the maximum amplitude is $0.91 \pm 0.30 \mathrm{~s}$ (ranging from 0.70 to $1.25 \mathrm{~s}, n=3$).

Cycloramphus izecksohni Heyer, 1983
The recording of Cycloramphus izecksohni was obtained based in a male recorded inside a plastic bag. The vocalization is a single note with one to three pulses. Sometimes two notes are quickly repeated (interval of 0.1 s). The call duration is $0.28 \pm 0.05 \mathrm{~s}$ (ranging from 0.17 to $0.36 \mathrm{~s}, n=21$). The call rate was 20 calls $/ \mathrm{min}$, repeated with an interval of $2.25 \pm 1.01 \mathrm{~s}$ (ranging from 0.09 to $4.80 \mathrm{~s}, n=21$). A harmonic structure is present with a large spectral interval between the first and the second harmonics (Fig. 10). The dominant frequency is the first harmonic ($=$ fundamental frequency), which has a peak of $1,140 \pm 265 \mathrm{~Hz}$ (ranging from 861 to $1,594 \mathrm{~Hz}, n=21$). The range frequency may be excessively high considering the harmonic distribution, which includes $6,936 \pm 2,573 \mathrm{~Hz}$. Minimum frequency averages $681 \pm$ 216 Hz (ranging from 43 to $818 \mathrm{~Hz}, n=21$) and maximum frequency is $7,617 \pm 2,649 \mathrm{~Hz}$ (ranging from 2,153 to $10,422 \mathrm{~Hz}, n=21$). The second harmonic is up to eight kHz . The rise time to the maximum amplitude is $0.09 \pm 0.05 \mathrm{~s}$ (ranging from 0.03 to $0.21 \mathrm{~s}, n=21$).

Zachaenus parvulus (Girard, 1853)

Two to three notes compose the vocalization of Zachaenus parvulus (Fig. 11). These notes are similar, having 7 ± 4 pulses (ranging from three to $14, n=13$) with duration of

Figure 10 Amplitude spectra, spectrogram, and waveform of the advertisement call of Cycloramphus izecksohni. (A) Amplitude spectra (taken near to the midst of the call), (B) spectrogram, and (C) waveform of the advertisement call of Cycloramphus izecksohni from Corupá, state of Santa Catarina, Southern Brazil. Spectrogram window with DFT of 4096 , grid spacing of 10.8 Hz and overlap of 75%.

Full-size DOI: 10.7717/peerj.7612/fig-10
$0.03 \pm 0.01 \mathrm{~s}$ (ranging from 0.02 to $0.04 \mathrm{~s}, n=5$). The call duration is $0.19 \pm 0.04 \mathrm{~s}$ (ranging from 0.14 to $0.23 \mathrm{~s}, n=5$) and the more intense note is generally the second (80%).
The range frequency is $2,188 \pm 56 \mathrm{~Hz}$, with minimum frequency averaging $138 \pm 56 \mathrm{~Hz}$ (ranging from 86 to $215 \mathrm{~Hz}, n=5$), maximum frequency of $2,326 \pm 53 \mathrm{~Hz}$ (ranging from 2,240 to $2,369 \mathrm{~Hz}, n=5$), and dominant frequency of $1,525 \pm 163 \mathrm{~Hz}$ (ranging from 1,378 to $1,766 \mathrm{~Hz}, n=5$). The rise time to the maximum amplitude is $0.08 \pm 0.05 \mathrm{~s}$ (ranging from 0.0 to $0.11 \mathrm{~s}, n=5$).

HYLIDAE

Boana guentheri (Boulenger, 1886)
The vocalization of Boana guentheri is an upward single frequency modulated note (Fig. 12). The note has one to two pulses with duration of $0.17 \pm 0.02 \mathrm{~s}$ (ranging from 0.15 to $0.19 \mathrm{~s}, n=3$). The range frequency is $172 \pm 43 \mathrm{~Hz}$, with minimum frequency averaging $2,570 \pm 108 \mathrm{~Hz}$ (ranging from 2,455 to $2,670 \mathrm{~Hz}, n=3$), maximum frequency of $2,742 \pm 90 \mathrm{~Hz}$ (ranging from 2,670 to $2,842 \mathrm{~Hz}, n=3$), and dominant frequency of $2,699 \pm 90 \mathrm{~Hz}$ (ranging from 2,627 to $2,799 \mathrm{~Hz}, n=3$). The rise time to the maximum amplitude is $0.09 \pm 0.03 \mathrm{~s}$ (ranging from 0.07 to $0.12 \mathrm{~s}, n=3$).

Boana leptolineata (Braun \& Braun, 1977)
We identified two different notes in the vocalization of Boana leptolineata. Note " A " is a train of fused pulses (varying from two to 14), sounding as a trill, while the note " B " is a

Figure 11 Amplitude spectra, spectrogram, and waveform of the advertisement call of Zachaenus parvulus. (A) Amplitude spectra (taken near to the midst of the call), (B) spectrogram, and (C) waveform of the advertisement call of Zachaenus parvulus from Rio de Janeiro, state of Rio de Janeiro, Southeastern Brazil. Spectrogram window with DFT of 4096 , grid spacing of 10.8 Hz and overlap of 75%.

Full-size DOI: $10.7717 /$ peerj.7612/fig-11
sequence of pulses (varying from four to 50) with discrete silence interval, sounding as many click-like units (Fig. 13). Both notes have harmonic structure. These notes are frequently combined in a sequence, composing complex calls. It is possible that these notes have different social functions. Note "A" duration is $0.06 \pm 0.02 \mathrm{~s}$ (ranging from 0.02 to $0.16 \mathrm{~s}, n=122$, males $=4$), with rise time to the maximum amplitude of $0.016 \pm 0.005 \mathrm{~s}$ (ranging from 0 to $0.10 \mathrm{~s}, n=122$, males $=4$). The range frequency is $499 \pm 98 \mathrm{~Hz}$, with minimum frequency averaging $4,005 \pm 352 \mathrm{~Hz}$ (ranging from 3,402 to $4,651 \mathrm{~Hz}$, $n=122$, males $=4$), maximum frequency of $4,504 \pm 394 \mathrm{~Hz}$ (ranging from 3,919 to 5,082 $\mathrm{Hz}, n=122$, males $=4$), and dominant frequency ($=$ fundamental frequency) of $4,244 \pm 368 \mathrm{~Hz}$ (ranging from 3,575 to $4,823 \mathrm{~Hz}, n=122$, males $=4$). Note " B " duration is $0.391 \pm 0.063 \mathrm{~s}$ (ranging from 0.19 to $0.64 \mathrm{~s}, n=47$, males $=4$), with rise time to the maximum amplitude of $0.250 \pm 0.062 \mathrm{~s}$ (ranging from 0.01 to $0.42 \mathrm{~s}, n=47$, males $=4$). The range frequency is $665 \pm 294 \mathrm{~Hz}$, with minimum frequency averaging $3,915 \pm 361 \mathrm{~Hz}$ (ranging from 2,972 to $4,436 \mathrm{~Hz}, n=47$, males $=4$), maximum frequency of $4,580 \pm 484$ Hz (ranging from 3,919 to $6,546 \mathrm{~Hz}, n=47$, males $=4$), and dominant frequency (= fundamental frequency) of $4,268 \pm 415 \mathrm{~Hz}$ (ranging from 3,790 to $4,867 \mathrm{~Hz}, n=47$, males $=4$). Second harmonic, for both notes, is up to $8,000 \mathrm{~Hz}$.

Figure 12 Amplitude spectra, spectrogram, and waveform of the advertisement call of Boana guentheri. (A) Amplitude spectra (taken near to the midst of the call), (B) spectrogram, and (C) waveform of the advertisement call of Boana guentheri from Terra de Areia, state of Rio Grande do Sul, Southern Brazil. Spectrogram window with DFT of 4096 , grid spacing of 10.8 Hz and overlap of 75%.

Bokermannohyla gouveai (Peixoto \& Cruz, 1992)
The vocalization of Bokermannohyla gouveai is a single harmonic note composed by five to 15 pulses (Fig. 14). Call duration is $0.42 \pm 0.12 \mathrm{~s}$ (ranging from 0.27 to $0.80 \mathrm{~s}, n=31$), with rise time to the maximum amplitude of $0.18 \pm 0.07 \mathrm{~s}$ (ranging from 0 to $0.34 \mathrm{~s}, n=31$). The recorded male emitted a sequence of calls at a rate of 24 calls $/ \mathrm{min}$. The range frequency is $860 \pm 119 \mathrm{~Hz}$, with minimum frequency averaging $596 \pm 140 \mathrm{~Hz}$ (ranging from 431 to $1,077 \mathrm{~Hz}, n=31$), maximum frequency of $1,456 \pm 75 \mathrm{~Hz}$ (ranging from 1,335 to $1,594 \mathrm{~Hz}, n=31$), and dominant frequency ($=$ fundamental frequency) of $1,127 \pm 201 \mathrm{~Hz}$ (ranging from 560 to $1,378 \mathrm{~Hz}, n=31$). The second harmonic is about $2,800 \mathrm{~Hz}$.

Ololygon flavoguttata (Lutz \& Lutz, 1939)
We found two different vocalizations: (1) a sequence of harmonic notes (click-like) with a discrete interval and (2) a non-harmonic note composed by fused pulses (Fig. 15). We suggest that the first vocalization is the advertisement call, while the note composed by fused pulses is aggressive. These vocalizations may be emitted isolated or in combination (mixed calls). When combined, the advertisement call always anticipates the aggressive call. In these occasions, the interval between call types is $0.77 \pm 0.34 \mathrm{~s}$ (ranging from 0.48 to $1.67 \mathrm{~s}, n=29$). The recorded male has a call rate of nine calls $/ \mathrm{min}$. The advertisement call

Figure 13 Amplitude spectra, spectrogram, and waveform of the advertisement call of Boana leptolineata. (A) Amplitude spectra (taken near to the midst of the call), (B) spectrogram, and (C) waveform of the advertisement call of Boana leptolineata from Lages, state of Santa Catarina, Southern Brazil. Spectrogram window with DFT of 4096 , grid spacing of 10.8 Hz and overlap of 75%.

Full-size DOI: 10.7717/peerj.7612/fig-13
has a variation of one to 25 pulses and duration of $1.70 \pm 1.07 \mathrm{~s}$ (ranging from 0.03 to $3.66 \mathrm{~s}, n=19$), with rise time to the maximum amplitude of $1.42 \pm 0.99 \mathrm{~s}$ (ranging from 0.01 to $3.13 \mathrm{~s}, n=19$). The range frequency in advertisement calls is $1,763 \pm 719 \mathrm{~Hz}$, with minimum frequency averaging $2,149 \pm 222 \mathrm{~Hz}$ (ranging from 1,766 to $2,541 \mathrm{~Hz}, n=19$), maximum frequency of $3,912 \pm 523 \mathrm{~Hz}$ (ranging from 3,273 to $5,039 \mathrm{~Hz}, n=19$), and peak dominant frequency ($=$ fundamental frequency) of $2,643 \pm 146 \mathrm{~Hz}$ (ranging from 2,283 to $2,972 \mathrm{~Hz}, n=19$). The second harmonic is up to four kHz . The aggressive call has a variation of one to seven pulses and duration of $0.19 \pm 0.07 \mathrm{~s}$ (ranging from 0.08 to 0.41 s , $n=22$), with rise time to the maximum amplitude of $0.14 \pm 0.08 \mathrm{~s}$ (ranging from 0.05 to $0.38 \mathrm{~s}, n=22$). The range frequency of aggressive calls is $1,159 \pm 250 \mathrm{~Hz}$, with minimum frequency averaging $2,300 \pm 144 \mathrm{~Hz}$ (ranging from 2,110 to $2,584 \mathrm{~Hz}, n=22$), maximum frequency of $3,459 \pm 128 \mathrm{~Hz}$ (ranging from 3,230 to $3,704 \mathrm{~Hz}, n=22$), and peak dominant frequency of $2,786 \pm 192 \mathrm{~Hz}$ (ranging from 2,498 to $3,230 \mathrm{~Hz}, n=22$).

Ololygon tripui (Lourenço, Nascimento \& Pires, 2010)
Similar to what we found for O. flavoguttata, this species has two different vocalizations: (1) a sequence of non-pulsed short notes (eight to 12 notes, $n=17$, males $=2$) and (2) a long non-harmonic note with fused pulses ($30-44$ pulses, $n=2$, males $=2$) (Fig. 16). We suggest that the first vocalization is the advertisement call, while the note composed by fused pulses is an aggressive call. These vocalizations may be emitted isolated or in combination (mixed calls). When combined, the advertisement call always precedes the

Figure 14 Amplitude spectra, spectrogram, and waveform of the advertisement call of Bokermannohyla gouveai. (A) Amplitude spectra (taken near to the midst of the call), (B) spectrogram, and (C) waveform of the advertisement call of Bokermannohyla gouveai from Parque Nacional do Itatiaia, Itamonte, state of Minas Gerais, Southeastern Brazil. Spectrogram window with DFT of 4096, grid spacing of 10.8 Hz and overlap of 75% Full-size DOI: 10.7717/peerj.7612/fig-14
aggressive call. The advertisement call has duration of $3.22 \pm 0.15 \mathrm{~s}$ (ranging from 2.2 to $4.1 \mathrm{~s}, n=5$, males $=2$). Each note in the advertisement call has duration of $0.021 \pm 0.001 \mathrm{~s}$ (ranging from 0.017 to $0.029 \mathrm{~s}, n=17$, males $=2$), with rise time to the maximum amplitude of $0.0025 \pm 0.0022 \mathrm{~s}$ (ranging from 0.000 to $0.006 \mathrm{~s}, n=17$, males $=2$). The range frequency in advertisement calls is $1,588 \pm 78 \mathrm{~Hz}$, with minimum frequency averaging $2,360 \pm 89 \mathrm{~Hz}$ (ranging from 2,282 to $2,540 \mathrm{~Hz}, n=17$, males = 2), maximum frequency of $3,948 \pm 11 \mathrm{~Hz}$ (ranging from 3,703 to $4,220 \mathrm{~Hz}, n=17$, males = 2), and peak dominant frequency of $3,035 \pm 12 \mathrm{~Hz}$ (ranging from 2,813 to $3,273 \mathrm{~Hz}, n=17$, males $=2$). The aggressive call has duration of $0.502 \pm 0.531 \mathrm{~s}$ (ranging from 0.126 to $0.877 \mathrm{~s}, n=2$, males $=2$), with rise time to the maximum amplitude of $0.413 \pm 0.509 \mathrm{~s}$ (ranging from 0.053 to $0.773 \mathrm{~s}, n=2$, males $=2$). The range frequency of aggressive calls is $5,958 \pm 752 \mathrm{~Hz}$, with minimum frequency averaging $2,002 \pm 274 \mathrm{~Hz}$ (ranging from 1,809 to $2,196 \mathrm{~Hz}, n=2$, males $=2$), maximum frequency of $7,961 \pm 478 \mathrm{~Hz}$ (ranging from 7,623 to $8,300 \mathrm{~Hz}, n=2$, males $=2$), and peak dominant frequency of $3,100 \pm 121 \mathrm{~Hz}$ (ranging from 3,014 to $3,186 \mathrm{~Hz}, n=2$, males $=2$).

PHYLLOMEDUSIDAE

Phasmahyla cochranae (Bokermann, 1966)

The vocalization of Phasmahyla cochranae is a single harmonic note composed by three to four non-fused pulses (Fig. 17). Sometimes this note can be repeated as a series of four to

Figure 15 Amplitude spectra, spectrogram, and waveform of the advertisement call of Ololygon flavoguttatus. (A) Amplitude spectra (taken near to the midst of the call-note A is the blue line and note B is the black line), (B) spectrogram, and (C) waveform of the advertisement call of Ololygon flavoguttatus from Cataguases, state of Minas Gerais, Southeastern Brazil. Spectrogram window with DFT of 4096, grid spacing of 10.8 Hz and overlap of 75%. Full-size DOI: 10.7717/peerj.7612/fig-15

Figure 16 Amplitude spectra, spectrogram, and waveform of the advertisement call of Ololygon tripui. (A) Amplitude spectra (taken near to the midst of the first call), (B) spectrogram, and (C) waveform of the advertisement call of Ololygon tripui from Alto-Caparaó, state of Minas Gerais, Southeastern Brazil. Spectrogram window with DFT of 4096, grid spacing of 10.8 Hz and overlap of 75%.

Full-size DOI: 10.7717/peerj.7612/fig-16

Figure 17 Amplitude spectra, spectrogram, and waveform of the advertisement call of Phasmahyla cochranae. (A) Amplitude spectra (taken near to the midst of the call), (B) spectrogram, and (C) waveform of the advertisement call of Phasmahyla cochranae from Jundiaí, state of São Paulo, Southeastern Brazil. Spectrogram window with DFT of 4096 , grid spacing of 10.8 Hz and overlap of 75%.

Full-size DOI: 10.7717/peerj.7612/fig-17
eight units with regular intervals of 0.5 s . Call (note) duration is $0.056 \pm 0.013 \mathrm{~s}$ (ranging from 0.040 to $0.079 \mathrm{~s}, n=35$, males $=2$), with rise time to the maximum amplitude of $0.016 \pm 0.014 \mathrm{~s}$ (ranging from 0.002 to $0.031 \mathrm{~s}, n=35$, males $=2$). Males have a call rate varying between nine and 15 calls $/ \mathrm{min}(n=2)$. The range frequency is $614 \pm 210 \mathrm{~Hz}$, with minimum frequency averaging $1,621 \pm 518 \mathrm{~Hz}$ (ranging from 1,206 to $2,024 \mathrm{~Hz}, n=35$, males $=2$), maximum frequency of $2,236 \pm 308 \mathrm{~Hz}$ (ranging from 1,895 to $2,498 \mathrm{~Hz}$, $n=35$, males $=2$), and dominant frequency ($=$ fundamental frequency) of $1,854 \pm 569 \mathrm{~Hz}$ (ranging from 1,378 to $2,369 \mathrm{~Hz}, n=35$, males $=2$). The second harmonic is about $4,700 \mathrm{~Hz}$.

Phasmahyla jandaia (Bokermann \& Sazima, 1978)
The vocalization of Phasmahyla jandaia is a single note composed by three to five non-fused pulses (Fig. 18). Call duration is $0.06 \pm 0.02 \mathrm{~s}$ (ranging from 0.04 to $0.09 \mathrm{~s}, n=7$, males $=2$), with rise time to the maximum amplitude of $0.021 \pm 0.018 \mathrm{~s}$ (ranging from 0.002 to $0.040 \mathrm{~s}, n=7$, males $=2$). Males have a call rate of three call $/ \mathrm{min}(n=2$, males $=2$). The range frequency is $456 \pm 5 \mathrm{~Hz}$, with minimum frequency averaging $1,753 \pm$ 3 Hz (ranging from 1,680 to $1,809 \mathrm{~Hz}, n=7$, males $=2$), maximum frequency of $2,209 \pm 3 \mathrm{~Hz}$ (ranging from 2,110 to $2,283 \mathrm{~Hz}, n=7$, males $=2$), and dominant frequency of $2,019 \pm 53 \mathrm{~Hz}$ (ranging from 1,895 to $2,110 \mathrm{~Hz}, n=7$, males $=2$).

Figure 18 Amplitude spectra, spectrogram, and waveform of the advertisement call of Phasmahyla jandaia. (A) Amplitude spectra (taken near to the midst of the call), (B) spectrogram, and (C) waveform of the advertisement call of Phasmahyla jandaia from Congonhas, state of Minas Gerais, Southeastern Brazil. Spectrogram window with DFT of 4096, grid spacing of 10.8 Hz and overlap of 75%.

Full-size DOI: 10.7717/peerj.7612/fig-18
Phrynomedusa appendiculata (Lutz, 1925)
The vocalization of Phrynomedusa appendiculata is a single note composed by fused pulses (Fig. 19). Call duration is $0.03 \pm 0.00 \mathrm{~s}(n=2)$, with rise time to the maximum amplitude of $0.01 \pm 0.01 \mathrm{~s}$ (ranging from 0.01 to $0.02 \mathrm{~s}, n=2$). The recorded male has a call rate of nine calls $/ \mathrm{min}(n=1)$. The range frequency is $991 \pm 61 \mathrm{~Hz}$, with minimum frequency ranging from 1,594 to $1,680 \mathrm{~Hz}(n=2)$, maximum frequency of $2,627 \mathrm{~Hz}$ ($n=2$), and peak dominant frequency ranging from 1,766 to $2,196 \mathrm{~Hz}(n=2)$.

Phyllomedusa iheringii Boulenger, 1885
The vocalization of Phyllomedusa iheringii is a single note composed of seven to 36 non-fused pulses (Fig. 20). Call duration is $0.80 \pm 0.59 \mathrm{~s}$ (ranging from 0.27 to 1.87 s , $n=18$), with rise time to the maximum amplitude of $0.27 \pm 0.26 \mathrm{~s}$ (ranging from 0.08 to $1.06 \mathrm{~s}, n=18)$. The recorded male has a call rate of six calls $/ \mathrm{min}(n=1)$. The range frequency is $1,074 \pm 219 \mathrm{~Hz}$, with minimum frequency averaging $975 \pm 41 \mathrm{~Hz}$ (ranging from 818 to $991 \mathrm{~Hz}, n=18$), maximum frequency of $2,031 \pm 196 \mathrm{~Hz}$ (ranging from 1,766

Figure 19 Amplitude spectra, spectrogram, and waveform of the advertisement call of Phrynomedusa appendiculata. (A) Amplitude spectra (taken near to the midst of the call), (B) spectrogram, and (C) waveform of the advertisement call of Phrynomedusa appendiculata from Paranapiacaba, Santo André, state of São Paulo, Southeastern Brazil. Spectrogram window with DFT of 4096, grid spacing of 10.8 Hz and overlap of 75%.

Full-size DOI: 10.7717/peerj.7612/fig-19
to $2,670 \mathrm{~Hz}, n=18$), and dominant frequency of $1,290 \pm 202 \mathrm{~Hz}$ (ranging from 1,034 to $1,938 \mathrm{~Hz}, n=18)$.

Pithecopus rusticus (Bruschi et al., 2015)
The vocalization of Pithecopus rusticus has two acoustic units: (1) a short pulsed note with duration of $0.045 \pm 0.002 \mathrm{~s}$ and (2) a long pulsed note with duration of $1.196 \pm 0.308 \mathrm{~s}$ (Fig. 21). These notes may be combined or emitted in an isolated way. When combined the interval between notes is $4 \pm 0.87 \mathrm{~s}(n=17$, males $=3)$. The mean call rate was 14 ± 2 calls $/ \mathrm{min}$ (males = 3). The short note has two to three pulses with rise time to the maximum amplitude of $0.011 \pm 0.008 \mathrm{~s}$ (ranging from 0.003 to $0.036 \mathrm{~s}, n=17$, males $=3$) and range frequency of 900 Hz , with minimum frequency of $1,112 \pm 81 \mathrm{~Hz}$ (ranging from 302 to $1,249 \mathrm{~Hz}, n=17$, males $=3$), mean maximum frequency of $2,012 \pm 8 \mathrm{~Hz}$ (ranging from 1,981 to $2,110 \mathrm{~Hz}, n=17$, males = 3), and a peak dominant frequency of $1,623 \pm 64 \mathrm{~Hz}$ (ranging from 1,249 to $1,852 \mathrm{~Hz}, n=17$, males $=3$). The long note has $50-80$ pulses with rise time to the maximum amplitude of $1.126 \pm 0.300 \mathrm{~s}$ (ranging from

Figure 20 Amplitude spectra, spectrogram, and waveform of the advertisement call of Phyllomedusa iheringii. (A) Amplitude spectra (taken near to the midst of the call), (B) spectrogram, and (C) waveform of the advertisement call of Phyllomedusa iheringii from Bagé, state of Rio Grande do Sul, Southern Brazil. Spectrogram window with DFT of 4096, grid spacing of 10.8 Hz and overlap of 75%.

Figure 21 Amplitude spectra, spectrogram, and waveform of the advertisement call of Pithecopus rusticus. (A) Amplitude spectra (taken near to the midst of the call-short call is the blue line and long call is the black line), (B) spectrogram, and (C) waveform of the advertisement call of Pithecopus rusticus from Água Doce, state of Santa Catarina, Southern Brazil. Spectrogram window with DFT of 4096 , grid spacing of 10.8 Hz and overlap of 75%. Full-size DOI: 10.7717/peerj.7612/fig-21
0.784 to $1.345 \mathrm{~s}, n=3$) and range frequency of 631 Hz , with minimum frequency of $1,363 \pm$ 108 Hz (ranging from 1,249 to $1,464 \mathrm{~Hz}, n=3$), mean maximum frequency of $1,995 \pm 138$ Hz (ranging from 1,895 to $2,153 \mathrm{~Hz}, n=3$), and peak of dominant frequency of $1,751 \pm 49$ Hz (ranging from 1,723 to $1,809 \mathrm{~Hz}, n=3$).

DISCUSSION

About half of the Brazilian amphibians occur in the Atlantic Forest (Toledo \& Batista, 2012; Haddad et al., 2013; Segalla et al., 2014). Even though the rate of call descriptions has increased exponentially in the last years, a recent review (Guerra et al., 2018) showed that most Brazilian species with undescribed advertisement calls are concentrated in the Amazon Basin and mainly in the Atlantic Forest. Many species have restricted distribution or are rare (Toledo et al., 2014) and these factors together potentially affect the high number of species that remain with calls to be described.

Below we present a general view about the acoustics knowledge inside each genus or species group with call described in this paper:

Ischnocnema lactea species group

Ischnocnema concolor and I. melanopygia are members of the I. lactea species series (Padial, Grant \& Frost, 2014; Taucce et al., 2018), and both species have calls with harmonic notes, differing strictly in note duration and spectral band. While some species as I. concolor and I. vizitoi have calls composed only by one non-pulsed harmonic note, I. melanopygia may have calls formed by a sequence of three to five of these notes (Martins \& Haddad, 2010). Calls of I. lactea are composed by one multipulsed note (Silva-Soares et al., 2018) and other species of the species series, as I. nigriventris and I. randorum have calls composed by more than one note with no apparent harmonics (Berneck, Targino ed Garcia, 2013; Heyer et al., 1990). Rocha et al. (2017) and Silva-Soares et al. (2018) provided a detailed comparison of acoustic properties among species.

Genus Dendrophryniscus

The genus Dendrophryniscus is composed of 16 species, occurring in the Atlantic Forest (Frost, 2019). All of them with undescribed calls. Like other congeneric species, D. berthalutzae is a bromeliad phytotelmata specialist (Malagoli et al., 2017). Further effort should be employed to obtain recordings of different species trying to improve the taxonomic resolution for this genus. As it is difficult to record this species, maybe the use of autonomous recorders can contribute for obtaining such data. The sequence of pulsed notes that compose the vocalization in D. berthalutzae can be a conserved feature of the Bufonidae family (Alonso \& Rodríguez, 2003; Martin, 1972).

Genus Melanophryniscus

The vocalizations of M. alipioi, M. moreirae, and M. vilavelhensis are equally complex, with two different types of notes. As observed for M. moreirae, many species of the genus combine isolate notes with a sequence of notes (Duré, Schaefer \& Kehr, 2015). The social function of these call sections is unknown, but it is possible that they are advertisement and aggressive signals. Playback experiments should be performed to elucidate such functions.

However, M. alipioi and M. vilavelhensis have two different note sequences (segments) mainly determined by variations in silence interval, being that the introductory segment has notes with longer duration and a larger interval among them than the notes in the main segment. This configuration is similar to M. atroluteus, M. pachyrhynus,
M. krauczuki, M. montevidensis, and M. dorsalis (Caldart, dos Santos e Maneyro, 2013).

Genus Ceratophrys

Among the Neotropical horned frogs, Ceratophrys is the most diverse genus of the family Ceratophryidae (Frost, 2019); however, they are the less known regarding acoustic descriptions (Lescano, 2011; Zaidan \& Leite, 2012). Vocalizations composed by a single note with multiple pulses seem to be a common feature for the Ceratophryidae family (Lescano, 2011; Zaidan \& Leite, 2012). The vocalization of Ceratophrys aurita has the lowest frequency among the species of the genus with calls already described (see a complete comparison of acoustic traits in Zaidan \& Leite (2012)).

Genus Cycloramphus

Vocalizations in the genus Cycloramphus may be emitted in three configurations regarding notes and pulses organization: (1) one non-pulsed note, (2) one pulsed note, and (3) a sequence of unpulsed or pulsed notes (Lingnau et al., 2008; Lima et al., 2010).
Cycloramphus granulosus and Cycloramphus izecksohni emits a type (2) call, however, the second species can combine two pulsed notes as a call unit. Many species of this genus reproduce in small waterfalls in the Atlantic Forest (Heyer, 1983) and have to deal with an intense low frequency background noise. It is possible that spectral call traits have been modulated by such environmental condition and this should be a subject of interest in future research involving this taxonomic group. Lima et al. (2010) presented a detailed comparison of calls traits among different species.

Genus Zachaenus

Zachaenus is a genus of frogs endemic to the Atlantic Forest, composed by only two species: Z. carvalhoi Izecksohn and Z. parvulus (Frost, 2019). Both species emit vocalizations composed by one or more multipulsed notes (one to six in Z. carvalhoi) and a call duration of 0.12 to 0.40 s (Guimarães, Lacerda \& Feio, 2013; Mollo-Neto et al., 2016; Guedes et al., 2019). However, the vocalization of Z. carvalhoi shows higher dominant frequency (above $2,000 \mathrm{~Hz}$) (Guimarães, Lacerda \& Feio, 2013; Mollo-Neto et al., 2016). Pulses per note vary between two and 12 in Z. carvalhoi (Guimarães, Lacerda \& Feio, 2013; Mollo-Neto et al., 2016).

Boana pulchella species group

Vocalizations of species from Boana pulchella group are very diverse, varying from simple calls with isolated notes, to calls composed of several identical notes, and complex calls (mixing different notes) (Heyer et al., 1990; Köhler et al., 2010; Guerra, Lingnau \& Bastos, 2017). Simple calls with isolated notes, as in Boana guentheri, are found in Boana balzani, Boana botumirim, Boana curupi, Boana ericae, Boana callipleura, and Boana polytaenia (Garcia, Faivovich \& Haddad, 2007; Garcia \& Haddad, 2008; Caramaschi, Cruz \& Nascimento, 2009; Köhler et al., 2010; Pinheiro, Pezzuti \& Garcia, 2012). Boana marianitae
has calls composed by a sequence of repeated similar notes (Köhler et al., 2010), while other species as Boana bandeirantes, Boana caingua, Boana jaguariaivensis, Boana leptolineata, Boana latistriata, and Boana riojana have complex calls (Heyer et al., 1990; Köhler et al., 2010; Guerra, Lingnau \& Bastos, 2017; De Luna-Dias \& De Carvalho-e-Silva, 2019). The vocalization of Boana leptolineata is structurally very similar to Boana bandeirantes and Boana jaguariaivensis considering the divergence of notes, however, notes "A" in Boana leptolineata and Boana bandeirantes have more fused pulses than the note "A" in Boana jaguariaivensis (Guerra, Lingnau \& Bastos, 2017). Batista et al. (2015) presents a table comparing acoustic traits among several species of Boana pulchella group.

Genus Bokermannohyla

The genus Bokermannohyla has 32 species, 19 of them belonging to the Bokermannohyla circumdata species group (Frost, 2019). Despite recent effort describing several new species in the last 10 years, this group needs more attention to improve its taxonomic resolution by an integrative view (Faivovich et al., 2005). Among the Atlantic Forest species of the Bokermannohyla circumdata species group, only Bokermannohyla caramaschii remains with undescribed calls, since Bokermannohyla izecksohni is considered voiceless (Toledo et al., 2014). Vocalizations in this group of species may vary between isolated pulsed notes to complex calls with different notes (Gaiga et al., 2013). Similar to the vocalization of Bokermannohyla gouveai are the calls of Bokermannohyla circumdata, which emit a single and harmonic note (De Carvalho, Giaretta \& Magrini, 2012). Many other species of the group, as Bokermannohyla astartea, Bokermannohyla luctuosa, and Bokermannohyla nanuzae have two types of notes in their calls (Heyer et al., 1990; Napoli \& Caramaschi, 2004; De Carvalho, Giaretta \& Magrini, 2012), possibly with different social functions. Gaiga et al. (2013) provide a thorough comparison of acoustic traits among species.

Ololygon catharinae species group

Many species of the O. catharinae group may show mixed calls (possible advertisement + aggressive calls) (Hepp, Lourenço \& Pombal, 2017), as we describe for O. flavoguttata and O. tripui. Species may have calls composed by click-like, long and short squawk-like notes as classified by Hepp, Lourenço \& Pombal (2017). Squawk-like notes, supposedly phylogenetically conserved among Ololygon species (Bang \& Giaretta, 2017), were not identified in the vocalization of O. flavoguttata and O. tripui. Considering the O. catharinae species group restricted to the Atlantic Forest, now the calls of 21 species are formally described (Hepp, Lourenço \& Pombal, 2017; present study), with the vocalizations of the following species remaining to be described: O. ariadne, O. brieni, O. carnevallii, O. jureia, O. kautskyi, O. melanodactyla, O. muriciensis, O. obtriangulata, and O. skuki. Hepp, Lourenço \& Pombal (2017) presented a detailed comparison of acoustic traits among species of the O. catharinae group.

Genus Phasmahyla

Before our work, vocalizations of species in the genus Phasmahyla was only known for three species (out of eight): Phasmahyla spectabilis (Dias et al., 2011), Phasmahyla timbo
(Cruz, Napoli \& Fonseca, 2008), and Phasmahyla lisbella (Pereira et al., 2018). Calls of these three species are very similar to those of Phasmahyla cochranae and Phasmahyla jandaia. All five species have calls composed by a single note with non-fused pulses (Cruz, Napoli \& Fonseca, 2008; Dias et al., 2011; Pereira et al., 2018). Phasmahyla jandaia has the longest notes (achieving 0.09 s), while Phasmahyla spectabilis and Phasmahyla timbo have notes around 0.03 s (Cruz, Napoli \& Fonseca, 2008; Dias et al., 2011). Phasmahyla lisbella shows high variation in note duration, from 0.007 to 0.087 s (Pereira et al., 2018). Probably this difference is due to the larger number of pulses in Phasmahyla jandaia than in other species. Harmonic structure is only visible in Phasmahyla cochranae. Dominant frequency in all species ranges between 1,700 and $2,200 \mathrm{~Hz}$. Phasmahyla timbo has a call with lower frequencies compared to the other species. New recording efforts should be made to obtain recordings of the other species without calls described, as Phasmahyla exilis and Phasmahyla guttata.

Genus Phrynomedusa

The current knowledge of acoustics in this genus, before our work, was limited to two species (out of six): Phrynomedusa marginata (Weygoldt, 1991) and Phrynomedusa dryade (Baêta et al., 2016). The last species was recently described by Baêta et al. (2016), but Weygoldt (1991) presented only superficial acoustic data for a male Phrynomedusa marginata recorded from a terrarium. Summed with Phrynomedusa appendiculata both species have calls composed by a single note with short duration (Weygoldt, 1991), while Phrynomedusa dryade has longer calls composed by a series of pulsed notes (Baêta et al., 2016). Call descriptions still remain to be known for Phrynomedusa bokermanni, Phrynomedusa fimbriata, and Phrynomedusa vanzolini, although, Phrynomedusa fimbriata is considered as an extinct taxon (IUCN, 2017).

Phyllomedusa burmeisteri species group

The Phyllomedusa burmeisteri group is represented by five species (Faivovich et al., 2010) and the vocalizations, now (including Phyllomedusa iheringii), are totally described. Calls composed by a single note with non-fused pulses are common to all species (Haddad, Pombal \& Batistic, 1994; Abrunhosa \& Wogel, 2004; Silva-Filho \& Juncá, 2006).
Phyllomedusa iheringii has longer calls (0.80 s) than other species, which vary among 0.20 and 0.40 s (Haddad, Pombal \& Batistic, 1994; Abrunhosa \& Wogel, 2004; Silva-Filho \& Juncá, 2006). According to Haddad, Pombal \& Batistic (1994), advertisement calls of Phyllomedusa distincta and Phyllomedusa tetraploidea are spectrally indistinguishable, they occupy a range frequency of $700-2,500 \mathrm{~Hz}$, making the bioacoustics an apparently weak feature for species recognition (Köhler et al., 2017). Possibly, this high similarity in sexual signals among different species promote extensive cases of hybridization between these sympatric species (Haddad, Pombal \& Batistic, 1994). De Andrade et al. (2018) compared calls of Phyllomedusa burmeisteri and Phyllomedusa bahiana and also defined that calls of these species cannot be distinguished by qualitative or quantitative acoustic properties. However, a focused and standardized study based in a robust data set for
comparing the vocalizations among species of the Phyllomedusa burmeisteri group is still necessary for a more reliable understanding.

Genus Pithecopus

The genus Pithecopus comprises 11 species, with only three occurring in the Atlantic forest: Pithecopus nordestinus, Pithecopus rohdei, and Pithecopus rusticus (Frost, 2019). All species belong to the Pithecopus hypochondrialis group (Faivovich et al., 2005). Males of many species in this taxonomic group have calls composed by two different notes as described in Pithecopus rusticus, then an acoustic repertoire with short and long pulsed notes are exhibited by Pithecopus ayeaye, Pithecopus azureus, Pithecopus centralis, Pithecopus hypochondrialis, Pithecopus nordestinus, and Pithecopus rohdei (Guimarães et al., 2001; Wogel, Abrunhosa \& Pombal, 2004; Brandão et al., 2009; Vilaça, Silva \& Solé, 2011; Nali, Borges e Prado, 2015; Haga et al., 2017b). It is possible that these notes have different social function, with the short note being an advertisement signal and long notes emitted in an aggressive context. However, we suppose that such assumptions still should be tested using playback experiments. Advertisement calls of Pithecopus araguaius have only one acoustic unit as an isolated pulsed note, similar to the longer note by Pithecopus rusticus, but with less pulses (five to eight pulses) (Haga et al., 2017a). In Pithecopus palliatus the advertisement call is one or two notes with indistinct pulses (Köhler \& Lötters, 1999). Calls of Pithecopus megacephalus and Pithecopus oreades remain undescribed.

CONCLUSION

Our work extends the acoustic knowledge for anuran species from the Atlantic Forest, describing the vocalization of 20 species. Despite such progress, a further effort increasing the sample of recorded males for species represented by only one male in our analysis should improve the perception of call variation in these species.

Descriptions of hylid calls have been the focus of many recent papers, probably because it is the most diverse family of frogs in the Atlantic Forest. However, the families Phyllomedusidae and Cycloramphidae were well represented in our results despite the fact that these families are not as diverse as Hylidae. Despite there being 163 species of Atlantic anurans with calls not described yet, our work represents an important step in providing data for an integrative taxonomy and the best knowledge of such rich biodiversity. A future geographical analysis linking the distributions of these species should be helpful, which may point us in new directions to reduce this gap. Finally, we argue that sound files should always be deposited in sound archives, in order to promote the rapid access to such biodiversity component, neglected even by nowadays taxonomists (Toledo, Tipp d Márquez, 2015).

ACKNOWLEDGEMENTS

Simone Dena made possible our access to audio recordings in the FNJV collection. Kayla Wirthwein provided the English review.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding

The São Paulo Research Foundation (FAPESP) provided financial support to Lucas Rodriguez Forti (\#2013/21519-4), Luís Felipe Toledo (\#2016/25358-3), and Célio Fernando Baptista Haddad (\#2013/50741-7 and \#2014/50342-8). The National Council for Scientific and Technological Development (CNPq) provided a fellowship to Luís Felipe Toledo (300896/2016-6), Lucas Rodriguez Forti (438675/2016-9), Paulo Christiano Anchietta Garcia (307091/2015-5), and Célio Fernando Baptista Haddad (302518/2013-4). The Minas Gerais Research Foundation (FAPEMIG-APQ-01796-15) and FAPEMIG/ VALE (RDP-00004-17) provided financial support to Felipe Leite. Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) provided PNPD financial support to Lucas Rodriguez Forti. Célio Fernando Baptista Haddad received financial support and fellowships from the Grupo O Boticário de Proteção à Natureza (Proc. \#085420101/ A0001_2012), Instituto Mater Natura de Estudos Ambientais and Instituto Neotropical de Pesquisa e Conservação. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Grant Disclosures

The following grant information was disclosed by the authors:
São Paulo Research Foundation (FAPESP): \#2013/21519-4, \#2016/25358-3, \#2013/ 50741-7 and \#2014/50342-8.
National Council for Scientific and Technological Development (CNPq): 300896/2016-6, 438675/2016-9, 307091/2015-5, 302518/2013-4.
Minas Gerais Research Foundation: FAPEMIG-APQ-01796-15.
FAPEMIG/VALE: RDP-00004-17.
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES).
Grupo O Boticário de Proteção à Natureza: Proc. \#085420101/A0001_2012. Instituto Mater Natura de Estudos Ambientais and Instituto Neotropical de Pesquisa e Conservação.

Competing Interests

The authors declare that they have no competing interests.

Author Contributions

- Lucas Rodriguez Forti conceived and designed the experiments, performed the experiments, analyzed the data, prepared figures and/or tables, authored or reviewed drafts of the paper, approved the final draft.
- Célio Fernando Baptista Haddad contributed reagents/materials/analysis tools, authored or reviewed drafts of the paper, approved the final draft.
- Felipe Leite contributed reagents/materials/analysis tools, authored or reviewed drafts of the paper, approved the final draft.
- Leandro de Oliveira Drummond contributed reagents/materials/analysis tools, authored or reviewed drafts of the paper, approved the final draft.
- Clodoaldo de Assis contributed reagents/materials/analysis tools, authored or reviewed drafts of the paper, approved the final draft.
- Lucas Batista Crivellari contributed reagents/materials/analysis tools, authored or reviewed drafts of the paper, approved the final draft.
- Caio Marinho Mello contributed reagents/materials/analysis tools, authored or reviewed drafts of the paper, approved the final draft.
- Paulo Christiano Anchietta Garcia contributed reagents/materials/analysis tools, authored or reviewed drafts of the paper, approved the final draft.
- Camila Zornosa-Torres contributed reagents/materials/analysis tools, authored or reviewed drafts of the paper, approved the final draft.
- Luís Felipe Toledo conceived and designed the experiments, performed the experiments, authored or reviewed drafts of the paper.

Animal Ethics

The following information was supplied relating to ethical approvals (i.e., approving body and any reference numbers):

Obtaining ethical approval is not applicable, because we only analyzed audio files.

Data Availability

The following information was supplied regarding data availability:
Raw data is available at Lucas Rodriguez Forti. (2019). Notes on vocalizations of Brazilian amphibians iv (Data set). Zenodo. http://doi.org/10.5281/zenodo.3265941.

All our audio files are available in the Fonoteca Neotropical Jacques Vielliard (FNJV, Unicamp, Campinas, https://www2.ib.unicamp.br/fnjv/): 36487-36496, 36497-36506, 36508, 12902, 12903, 37450-37453, 31783, 31785 and 32008, 33559, 31911, 31950, 34035, 31926, 33063, 30737-30739 and 31594, 36485, 36486, 32898 and 32389, 31990 and 31152, 36507 and 36509, 31849, 31156, 37454-37456.

Specimens were not collected to this work.

Supplemental Information

Supplemental information for this article can be found online at http://dx.doi.org/10.7717/ peerj.7612\#supplemental-information.

REFERENCES

Abrunhosa P, Wogel H. 2004. Breeding behavior of the leaf-frog Phyllomedusa burmeisteri (Anura: Hylidae). Amphibia-Reptilia 25(2):125-135 DOI 10.1163/1568538041231157.
Alonso R, Rodríguez A. 2003. Advertisement calls of Cuban toads of the genus Bufo (Anura: Bufonidae). Phyllomedusa: Journal of Herpetology 2(2):75-82 DOI 10.11606/issn.2316-9079.v2i2p75-82.
Baêta D, Giasson LOM, Pombal JP Jr, Haddad CFB. 2016. Review of the rare genus Phrynomedusa Miranda-Ribeiro, 1923 (Anura: Phyllomedusidae) with description of a new species.
Herpetological Monographs 30(1):49-78 DOI 10.1655/HERPMONOGRAPHS-D-15-00009.1.
Baker MC. 2001. Bird song research: the past 100 years. Bird Behavior 14:3-50.

Bang DL, Giaretta AA. 2017. A reassessment of the vocalizations of three species of Ololygon (Anura: Hylidae) from southeastern Brazil. Phyllomedusa: Journal of Herpetology 16(1):23-45 DOI 10.11606/issn.2316-9079.v16ilp23-45.
Batista VG, Gambale PG, Lourenço-De-Moraes R, Campos RM, Bastos RP. 2015. Vocalizations of two species of the Hypsiboas pulchellus group (Anura: Hylidae) with comments on this species group. North-Western Journal of Zoology 11:253-261.
Bellard C, Leclerc C, Leroy B, Bakkens M, Veloz S, Thuiller W, Courchamp F. 2014. Vulnerability of biodiversity hotspots to global change. Global Ecology and Biogeography 23(12):1376-1386 DOI 10.1111/geb. 12228.
Berneck BVM, Targino M, Garcia PCA. 2013. Rediscovery and re-description of Ischnocnema nigriventris (Lutz, 1925) (Anura: Terrarana: Brachycephalidae). Zootaxa 3694(2):131-142 DOI 10.11646/zootaxa.3694.2.2.
Bioacoustics Research Program. 2011. Raven pro: interactive sound analysis software. Available at http://www.birds.cornell.edu/brp/.
Blair FW. 1958. Mating call in the speciation of anuran amphibians. American Naturalist 92(862):27-51 DOI 10.1086/282007.
Bokermann WCA. 1964a. Uma nova espécie de Hyla da Serra do Mar em São Paulo (Amphibia, Salientia). Revista Brasileira de Biologia 24:429-434.
Bokermann WCA. 1964b. Una nueva especie de Elosia de la Serra da Mantiqueira, Brasil (Amphibia, Leptodactylidae). Neotropica 10:102-107.
Bokermann WCA. 1966. Notas sobre Hylidae do Espirito Santo (Amphibia, Salientia). Revista Brasileira de Biologia 26:29-37.
Bokermann WCA. 1967a. Notas sobre cantos nupciais de anfíbios brasileiros. (Anura) III. Ibidem 39:489-493.
Bokermann WCA. 1967b. Notas sobre cantos nupciais de anfíbios brasileiros I. (Anura). Anais da Academia Brasileira de Ciências 39:441-443.
Bokermann WCA. 1967c. Notas sobre cantos nupciais de anfíbios brasileiros. II: o canto de Elosia lateristrigata e Elosia glabra (Anura). Revista Brasileira de Biologia 23:229-231.
Bokermann WCA. 1967d. Três novas espécies de Physalaemus do Sudeste brasileiro (Amphibia, Leptodactylidae). Revista Brasileira de Biologia 27:135-143.
Bokermann WCA. 1972. Notas sobre Hyla clepsydra A. Lutz (Anura, Hylidae). Revista Brasileira de Biologia 32:291-295.
Bokermann WCA. 1973. Duas novas espécies de Sphaenorhynchus da Bahia (Anura, Hylidae). Revista Brasileira de Biologia 33:589-594.
Bokermann WCA. 1974. Três espécies novas de Eleutherodactylus do sudeste da Bahia, Brasil (Anura, Leptodactylidae). Revista Brasileira de Biologia 34:11-18.
Bokermann WCA, Sazima I. 1973. Anfíbios da Serra do Cipó, Minas Gerais, Brasil. 1 - Espécies novas de Hyla(Anura, Hylidae). Revista Brasileira de Biologia 33:329-336.
Brandão RA, Álvares GFR, Crema A, Zerbini GJ. 2009. Natural history of Phyllomedusa centralis Bokermann, 1965 (Anura: Hylidae: Phyllomedusinae): tadpole and calls. South American Journal of Herpetology 4(1):61-68 DOI 10.2994/057.004.0108.
Caldart VM, dos Santos TG, Maneyro R. 2013. The advertisement and release calls of Melanophryniscus pachyrhynus (Miranda-Ribeiro, 1920) from the central region of Rio Grande do Sul, southern Brazil. Acta Herpetologica 8:115-122.
Caramaschi U, Cruz CAG, Nascimento LB. 2009. A new species of Hypsiboas of the H. polytaenius clade from southeastern Brazil (Anura: Hylidae). South American Journal of Herpetology 4(3):210-216 DOI 10.2994/057.004.0302.

Cardoso AJ, Haddad CFB. 1984. Variabilidade acústica em diferentes populações e interações agressivas de Hyla minuta (Amphibia, Anura). Ciência e Cultura 36:1393-1399.
Cardoso AJ, Haddad CFB. 1990. Redescrição e biologia de Paratelmatobius gaigeae (Anura, Leptodactylidae). Papéis Avulsos de Zoologia 37:125-132.
Cardoso AJ, Vielliard JME. 1985. Caracterização bio-acústica da população topotípica de Hyla rubicundula (Amphibia, Anura). Revista Brasileira de Biologia 2(7):423-426 DOI 10.1590/S0101-81751984000300002.
Carnaval AC, Hickerson MJ, Haddad CFB, Rodrigues MT, Moritz C. 2009. Stability predicts genetic diversity in the Brazilian Atlantic Forest hotspot. Science 323(5915):785-789 DOI 10.1126/science. 1166955.
Carvalho T, Becker CG, Toledo LF. 2017. Historical amphibian declines and extinctions in Brazil linked to chytridiomycosis. Proceedings of the Royal Society B: Biological Sciences 284(1848):20162254 DOI 10.1098/rspb.2016.2254.
Ceballos G, Ehrlich PR, Barnosky AD, García A, Pringle RM, Palmer TM. 2015. Accelerated modern human-induced species losses: entering the sixth mass extinction. Science Advances 1(5):e1400253 DOI 10.1126/sciadv. 1400253.
Cruz CAG, Napoli MF, Fonseca PM. 2008. A new species of Phasmahyla Cruz, 1990 (Anura: Hylidae) from the state of Bahia. Brazil South American Journal of Herpetology 3(3):187-195 DOI 10.2994/1808-9798-3.3.187.
De Andrade FS, Haga IA, De Carvalho TR, Martins LB, Giaretta AA. 2018. An acoustic and morphometric evaluation of the geographic distribution of Phyllomedusa burmeisteri (Anura: Phyllomedusidae), with comments on P. bahiana. Phyllomedusa: Journal of Herpetology 17(1):39-59 DOI 10.11606/issn.2316-9079.v17i1p39-59.
De Carvalho TR, Giaretta AA, Magrini L. 2012. A new species of the Bokermannohyla circumdata group (Anura: Hylidae) from southeastern Brazil, with bioacoustic data on seven species of the genus. Zootaxa 3321(1):37-55 DOI 10.11646/zootaxa.3321.1.3.
De Luna-Dias C, De Carvalho-e-Silva SP. 2019. Calls of Boana latistriata (Caramaschi \& Cruz, 2004) (Amphibia, Anura, Hylidae), an endemic tree frog from the State of Minas Gerais, Brazil. ZooKeys 820:83-94 DOI 10.3897/zookeys.820.30711.
Dean WJ. 1996. A ferro e fogo: a história e a devastação da Mata Atlântica brasileira. Rio de Janeiro: Companhia das Letras.
Dias IR, Rödder D, Weinsheimer F, Kwet A, Solé M. 2011. Description of the advertisement call of Phasmahyla spectabilis Cruz, Feio \& Nascimento, 2008 (Anura: Phyllomedusinae) with comments on its distribution and reproduction. Zootaxa 2767:59-64.
Dijkstra KDB. 2016. Natural history: restore our sense of species. Nature 533(7602):172-174 DOI 10.1038/533172a.
Duellman WE, Trueb L. 1994. Biology of Amphibians. Baltimore and London: The Johns Hopkins University Press.
Duré MI, Schaefer EF, Kehr AI. 2015. Acoustic repertoire of Melanophryniscus cupreuscapularis (Céspedez and Álvarez 2000) (Anura: Bufonidae): advertisement, encounter, and release calls. Journal of Herpetology 49(1):53-59 DOI 10.1670/13-115.
Faivovich J, Haddad CFB, Baêta D, Jungfer KH, Álvares GFR, Brandão RA, Sheil CA, Barrientos LS, Barrio-Amorós CL, Cruz CAG, Wheeler WC. 2010. The phylogenetic relationships of the charismatic poster frogs, Phyllomedusinae (Anura, Hylidae). Cladistics 26(3):227-261 DOI 10.1111/j.1096-0031.2009.00287.x.

Faivovich J, Haddad CFB, Garcia PCA, Frost DR, Campbell JA, Wheeler WC. 2005. Systematic review of the frog family Hylidae, with special reference to Hylinae: phylogenetic analysis and taxonomic revision. Bulletin of the American Museum of Natural History 294(1):240.
Forti LR, Becker CG, Tacioli L, Pereira VR, Santos ACFA, Oliveira I, Haddad CFB, Toledo LF. 2017a. Perspectives on invasive amphibians in Brazil. PLOS ONE 12(9):e0184703 DOI 10.1371/journal.pone.0184703.
Forti LR, Lingnau R, Encarnação LC, Bertoluci J, Toledo LF. 2017b. Can treefrog phylogeographical clades and species' phylogenetic topologies be recovered by bioacoustical analyses? PLOS ONE 12(2):e0169911 DOI 10.1371/journal.pone.0169911.
Frost DR. 2019. Amphibian species of the world: an online reference. Version 6.0. Available at http://research.amnh.org/herpetology/amphibia/index.html (accessed 29 August 2019).
Fuzessery ZM, Feng AS. 1982. Frequency selectivity in the anuran auditory midbrain: single unit responses to single and multiple tone stimulation. Journal of Comparative Physiology 146(4):471-484 DOI 10.1007/BF00609443.
Gaiga R, Loiola C, Mângia S, Pirani RM. 2013. Advertisement call and tadpoles of Bokermannohyla vulcaniae (Vasconcelos and Giaretta, 2003) (Amphibia: Anura: Hylidae). South American Journal of Herpetology 8(2):127-131 DOI 10.2994/SAJH-D-12-00023.1.
Garcia PCA, Faivovich J, Haddad CFB. 2007. Redescription of Hypsiboas semiguttatus, with the description of a new species of the Hypsiboas pulchellus group. Copeia 4(4):933-951.
Garcia PCA, Haddad CFB. 2008. Vocalizations and comments on the relationships of Hypsiboas ericae (Amphibia, Hylidae). Iheringia. Série Zoologia 98(1):161-166 DOI 10.1590/S0073-47212008000100021.
García-Lopez JM, Heyer WR, Cardoso AJ. 1996. Advertisement call variation in the Leptodactylus mystaceus species complex (Amphibia: Leptodactylidae) with a description of a new sibling species. Amphibia-Reptilia 17(1):7-31 DOI 10.1163/156853896X00252.
Gerhardt HC, Huber F. 2002. Acoustic communication in insects and anurans: common problems and diverse solutions. Chicago and London: The University of Chicago Press.
Guedes JJM, Assis CL, Novaes CM, Dergan JA, Feio RN. 2019. Filling knowledge gaps about the 'data deficient' species Zachaenus carvalhoi Izecksohn, 1983 (Anura, Cycloramphidae): an endemic frog from the Atlantic Forest of southeastern Brazil. Herpetology Notes 12:113-204.
Guerra V, Lingnau R, Bastos RP. 2017. Vocalizations and bioacoustic analysis of Boana jaguariaivensis (Caramaschi, Cruz, and Segalla, 2010) (Anura: Hylidae). South American Journal of Herpetology 12(1):34-41 DOI 10.2994/SAJH-D-16-00018.1.
Guerra V, Llusia D, Gambale PG, Morais ARD, Márquez R, Bastos RP. 2018. The advertisement calls of Brazilian anurans: historical review, current knowledge and future directions. PLOS ONE 13(1):e0191691 DOI 10.1371/journal.pone.0191691.
Guimarães CS, Lacerda JVA, Feio RN. 2013. Advertisement call of Zachaenus carvalhoi Izecksohn,1982 (Anura: Cycloramphidae) from southeastern Brazil. Zootaxa 3718(4):398-400 DOI 10.11646/zootaxa.3718.4.9.
Guimarães LD, Lima LP, Juliano RF, Bastos RP. 2001. Vocalizações de espécies de anuros (Amphibia) no Brasil Central. Boletim do Museu Nacional, Nova Série, Zoologia 474:1-14.
Haddad CFB, Pombal JP Jr, Batistic RF. 1994. Natural hybridization between diploid and tetraploid species of leaf-frogs, genus Phyllomedusa (Amphibia). Journal of Herpetology 28(4):425-430 DOI 10.2307/1564953.
Haddad CFB, Toledo LF, Loebmann CPA, Gasparini JL, Sazima I. 2013. Guia dos anfíbios da Mata Atlântica-diversidade e biologia. São Paulo: Anolis Books.

Haga IA, Andrade FS, Bruschi DP, Recco-Pimentel SM, Giaretta AA. 2017a. Unrevealing the leaf frogs Cerrado diversity: a new species of Pithecopus (Anura, Arboranae, Phyllomedusidae) from the Mato Grosso state, Brazil. PLOS ONE 12(9):e0184631
DOI 10.1371/journal.pone.0184631.
Haga IA, Carvalho TR, Andrade FS, Giaretta AA. 2017b. Advertisement and aggressive calls of Pithecopus azureus (Anura: Phyllomedusidae) from the border of Brazil and Paraguay. Phyllomedusa 16(1):47-56 DOI 10.11606/issn.2316-9079.v16i1p47-56.
Hepp F, Lourenço ACC, Pombal JP Jr. 2017. Bioacoustics of four Scinax species and a review of acoustic traits in the Scinax catharinae species group (Amphibia: Anura: Hylidae). Salamandra 53:212-230.
Heyer WR. 1983. Notes on the genus Cycloramphus (Amphibia: Leptodactylidae), with description of two species. Proceedings of the Biological Society of Washington 96:548-559.
Heyer WR, Rand AS, Cruz CAG, Peixoto OL, Nelson CE. 1990. Frogs of Boracéia. Arquivos de Zoologia 31:237-410.
IUCN. 2017. The IUCN red list of threatened species. Available at http://www.iucnredlist.org (accessed 4 April 2018).
Joly CA, Metzger JP, Tabarelli M. 2014. Experiences from the Brazilian Atlantic Forest: ecological findings and conservation initiatives. New Phytologist 204(3):459-473 DOI 10.1111/nph.12989.
Köhler J, Jansen M, Rodríguez A, Kok PJR, Toledo LF, Emmrich M, Glaw F, Haddad CFB, Rödel M-O, Vences M. 2017. The use of bioacoustics in anuran taxonomy: theory, terminology, methods and recommendations for best practice. Zootaxa 4251(1):1-124 DOI 10.11646/zootaxa.4251.1.1.
Köhler J, Koscinski D, Padial JM, Chaparro JC, Handford P, Lougheed SC, De La Riva I. 2010. Systematics of Andean gladiator frogs of the Hypsiboas pulchellus species group (Anura, Hylidae). Zoologica Scripta 39(6):572-590 DOI 10.1111/j.1463-6409.2010.00448.x.
Köhler J, Lötters S. 1999. Annotated list of amphibian records from the Departamento Pando, Bolivia, with description of some advertisement calls. Bonner Zoologische Beiträge 48:259-273.
Lescano JN. 2011. Description of the advertisement and distress call of Chacophrys pierottii and comments on the advertisement call of Lepidobatrachus llanensis (Anura: Ceratophryidae). Journal of Natural History 45(47-48):2929-2938 DOI 10.1080/00222933.2011.622056.
Lima AMX, Garey MV, Noleto RB, Verdade VK. 2010. Natural history of the Lutz's frog Cycloramphus lutzorum Heyer, 1983 (Anura: Cycloramphidae) in the Brazilian Atlantic Forest: description of the advertisement call, tadpole, and karyotype. Journal of Herpetology 44(3):360-371 DOI 10.1670/08-185.1.
Lingnau R, Solé M, Dallacorte F, Kwet A. 2008. Description of the advertisement call of Cycloramphus bolitoglossus (Werner 1897), with comments on other species in the genus from Santa Catarina, south Brazil (Amphibia, Cycloramphidae). North-Western Journal of Zoology 4:224-235.
Littlejohn MJ. 2001. Patterns of differentiation in temporal properties of acoustic signals of anurans. In: Ryan MJ, ed. Anuran Communication. New York: Oxford University Press, 102-120.
Llusia D, Márquez R, Beltrán JF, Benítez M, do Amaral JP. 2013. Calling behaviour under climate change: geographical and seasonal variation of calling temperatures in ectotherms. Global Change Biology 19(9):2655-2674 DOI 10.1111/gcb. 12267.
Malagoli LR, Trevine V, Condez TH, Centeno FC, Berneck BM, Haddad CFB. 2017. Notes on the breeding behaviour of the Neotropical toadlet Dendrophryniscus brevipollicatus (Anura: Bufonidae), a bromeliad phytotelmata specialist. Herpetology Notes 10:31-39.

Martin WF. 1972. Evolution of vocalizations in the genus Bufo. In: Blair WF, ed. Evolution in the Genus Bufo. Austin: University of Texas Press, 279-309.
Martins IA, Haddad CFB. 2010. A new species of Ischnocnema from highlands of the Atlantic forest, southeasteastern Brazil (Terrarana, Brachycephalidae). Zootaxa 2617(1):55-65 DOI 10.11646/zootaxa.2617.1.2.
MMA (Ministério do Meio Ambiente). 2014. Lista Nacional Oficial de Espécies da Fauna Ameaçadas de Extinção. Portaria n ${ }^{\circ} 444$ de 17 de dezembro de 2014.
Mollo-Neto A, Verdade VK, Santana DJ, Varela-Rios CH, De Carvalho RMH, Rodrigues MTU. 2016. Reproductive biology and geographic variation of Zachaenus carvalhoi (Anura: Cycloramphidae), a Brazilian Atlantic Forest frog. Phyllomedusa: Journal of Herpetology 15(2):127-135 DOI 10.11606/issn.2316-9079.v15i2p127-135.
Morellato LPC, Haddad CFB. 2000. Introduction: The Brazilian Atlantic Forest. Biotropica 32(4b):786-792 DOI 10.1111/j.1744-7429.2000.tb00618.x.
Myers N, Mittermeier RA, Mittermeier CG, da Fonseca GAB, Kent J. 2000. Biodiversity hotspots for conservation priorities. Nature 403(6772):853-858 DOI 10.1038/35002501.
Nali RC, Borges MM, Prado CPA. 2015. Advertisement and release calls of Phyllomedusa ayeaye (Anura: Hylidae) with comments on the social context of emission. Zoologia (Curitiba) 32(4):263-269 DOI 10.1590/S1984-46702015000400001.
Napoli MF, Caramaschi U. 2004. Two new species of the Hyla circumdata group from Serra do Mar and Serra da Mantiqueira, Soueastern Brazil, with description of the advertisement call of Hyla ibitipoca (Anura, Hylidae). Copeia 2004(3):534-545 DOI 10.1643/CH-02-079R1.
Narins PM, Feng AS, Fay RR. 2006. Hearing and sound communication in amphibians. New York: Springer.
Padial JM, Grant T, Frost DR. 2014. Molecular systematics of terraranas (Anura: Brachycephaloidea) with an assessment of the effects of alignment and optimality criteria. Zootaxa 3825(1):1-132 DOI 10.11646/zootaxa.3825.1.1.
Padial JM, Miralles A, De La Riva I, Vences M. 2010. The integrative future of taxonomy. Frontiers in Zoology 7(1):16 DOI 10.1186/1742-9994-7-16.
Pereira EA, Rocha LCL, Folly H, da Silva HR, Santana DJ. 2018. A new species of spotted leaf frog, genus Phasmahyla (Amphibia, Phyllomedusidae) from Southeast Brazil. PeerJ 6(5857): 44900 DOI 10.7717/peerj. 4900.
Phelps SM. 2007. Sensory ecology and perceptual allocation: new prospects for neural networks. Philosophical Transactions of the Royal Society B: Biological Sciences 362(1479):355-367 DOI 10.1098/rstb.2006.1963.
Pinheiro PDP, Pezzuti TL, Garcia PCA. 2012. Tadpole and vocalizations of Hypsiboas polytaenius (Cope, 1870) (Anura, Hylidae, Hylinae). South American Journal of Herpetology 7(2):123-133 DOI 10.2994/057.007.0202.
Ribeiro MC, Martensen AC, Metzger JP, Tabarelli M, Scarano F, Fortin MJ. 2011. The Brazilian Atlantic Forest: a shrinking biodiversity hotspot. In: Zachos FE, Habel JC, eds. Biodiversity Hotspots: Distribution and Protection of Consevation Priority Areas. Berlin: Springer, 546.
Ribeiro MC, Metzger JP, Martensen AC, Ponzoni FJ, Hirota MM. 2009. The Brazilian Atlantic Forest: how much is left, and how is the remaining forest distributed? Implications for conservation. Biological Conservation 142(6):1141-1153 DOI 10.1016/j.biocon.2009.02.021.
Robillard T, Höbel G, Gerhardt HC. 2006. Evolution of advertisement signals in North American hylid frogs: vocalizations as end-products of calling behavior. Cladistics 22(6):533-545 DOI 10.1111/j.1096-0031.2006.00118.x.

Rocha PC, Lacerda JV, Magalhães RF, Canedo C, Pimenta BVS, Heitor RC, Garcia PCA. 2017. Call variation and vocalizations of the stealthy litter frog Ischnocnema abdita (Anura: Brachycephalidae). Acta Herpetologica 12:37-48.
Ryan MJ, Rand AS. 2001. Feature weighting in signal recognition and discrimination by túngara frogs. In: Ryan MJ, ed. Anuran Communication. Washington D.C.: Smithsonian Institution, 86-101.
Sazima I, Bokermann WCA. 1978. Cinco novas espécies de Leptodactylus do centro e sudeste brasileiro (Amphibia, Anura, Leptodactylidae). Revista Brasileira de Biologia 38:899-912.
Sazima I, Bokermann WCA. 1982. Anfíbios da Serra do Cipó, Minas Gerais, Brasil. 5: Hylodes otavioi sp. n. (Anura, Leptodactylidae). Revista Brasileira de Biologia 42:767-771.
Sazima I, Cardoso AJ. 1978. Uma espécie nova de Eleutherodactylus do Sudeste brasileiro (Amphibia, Anura, Leptodactylidae). Revista Brasileira de Biologia 38:921-925.
Schmeller DS, Böhm M, Arvanitidis C, Barber-Meyer S, Brummitt N, Chandler M, Chatzinikolaou E, Costello MJ, Ding H, García-Moreno J, Gill M, Haase P, Jones M, Juillard R, Magnusson WE, Martin CS, McGeoch M, Mihoub JP, Pettorelli N, Proença V, Peng C, Regan E, Schmiedel U, Simaika JP, Weatherdon L, Waterman C, Xu H, Belnap J. 2017. Building capacity in biodiversity monitoring at the global scale. Biodiversity and Conservation 26(12):2765-2790 DOI 10.1007/s10531-017-1388-7.
Schneider H, Sinsch U. 2007. Contributions of bioacoustics to the taxonomy of the Anura. In: Heatwole H, Tyler MJ, eds. Amphibian Biology. Chipping Norton: Surrey Beatty \& Sons, 2893-2934.
Segalla MV, Caramaschi U, Cruz CAG, Grant T, Haddad CFB, Langone JA, Garcia PCA. 2014. Brazilian amphibians: list of species. Herpetologia Brasileira 3:37-48.
Silva-Filho ISN, Juncá FA. 2006. Evidence of full species status of the neotropical leaf-frog Phyllomedusa burmeisteri bahiana (A. Lutz, 1925) (Amphibia, Anura, Hylidae). Zootaxa 1113(1):51-64 DOI 10.11646/zootaxa.1113.1.5.
Silva-Soares T, Malagoli LM, Cruz CAG, Caramaschi U. 2018. On the taxonomy and natural history of the secretive Ischnocnema lactea (Miranda-Ribeiro, 1923) (Anura: Brachycephaloidea: Brachycephalidae). Zootaxa 4444(2):137-153 DOI 10.11646/zootaxa.4444.2.3.
Snowdon CT. 2011. Comunicação. In: Yamamoto ME, Volpato GL, eds. Comportamento Animal. Natal: EDUFRN, 131-157.
Sugai LSM, Silva TSF, Ribeiro JW Jr, Llusia D. 2019. Terrestrial passive acoustic monitoring: review and perspectives. BioScience 69(1):15-25 DOI 10.1093/biosci/biy147.
Taucce PPG, Canedo C, Parreiras JS, Drummond LO, Nogueira-Costa P, Haddad CFB. 2018. Molecular phylogeny of Ischnocnema (Anura: Brachycephalidae) with the redefinition of its series and the description of two new species. Molecular Phylogenetics and Evolution 128:123-146 DOI 10.1016/j.ympev.2018.06.042.
Thomson SA, Pyle RL, Ahyong ST, Alonso-Zarazaga M, Ammirati J, Araya JF, Ascher JS, Audisio TL, Azevedo-Santos VM, Bailly N, Baker WJ, Balke M, Barclay MVL, Barrett RL, Benine RC, Bickerstaff JRM, Bouchard P, Bour R, Bourgoin T, Boyko CB, Breure ASH, Brothers DJ, Byng JW, Campbell D, Ceríaco LMP, Cernák I, Cerretti P, Chang CH, Cho S, Copus JM, Costello MJ, Cseh A, Csuzdi C, Culham A, D'Elía G, d'Acoz CU, Daneliya ME, Dekker R, Dickinson EC, Dickinson TA, Van Dijk PP, Dijkstra KDB, Dima B, Dmitriev DA, Duistermaat L, Dumbacher JP, Eiserhardt WL, Ekrem T, Evenhuis NL, Faille A, Fernández-Triana JL, Fiesler E, Fishbein M, Fordham BG, Freitas AVL, Friol NR, Fritz U, Frøslev T, Funk VA, Gaimari SD, Garbino GST, Garraffoni ARS, Geml J, Gill AC, Gray A, Grazziotin FG, Greenslade P, Gutiérrez EE, Harvey MS, Hazevoet CJ, He K, He X, Helfer S, Helgen KM, Van Heteren AH, Garcia FH, Holstein N, Horváth MK, Hovenkamp PH,

Hwang WS, Hyvönen J, Islam MB, Iverson JB, Ivie MA, Jaafar Z, Jackson MD, Jayat JP, Johnson NF, Kaiser H, Klitgård BB, Knapp DG, Kojima J, Kõljalg U, Kontschán J, Krell FT, Krisai-Greilhuber I, Kullander S, Latella L, Lattke JE, Lencioni V, Lewis GP, Lhano MG, Lujan NK, Luksenburg JA, Mariaux J, Marinho-Filho J, Marshall CJ, Mate JF, McDonough MM, Michel E, Miranda VFO, Mitroiu MD, Molinari J, Monks S, Moore AJ, Moratelli R, Murányi D, Nakano T, Nikolaeva S, Noyes J, Ohl M, Oleas NH, Orrell T, Páll-Gergely B, Pape T, Papp V, Parenti LR, Patterson D, Pavlinov IY, Pine RH, Poczai P, Prado J, Prathapan D, Rabeler RK, Randall JE, Rheindt FE, Rhodin AGJ, Rodríguez SM, Rogers DC, Roque FO, Rowe KC, Ruedas LA, Salazar-Bravo J, Salvador RB, Sangster G, Sarmiento CE, Schigel DS, Schmidt S, Schueler FW, Segers H, Snow N, Souza-Dias PGB, Stals R, Stenroos S, Stone RD, Sturm CF, Štys P, Teta P, Thomas DC, Timm RM, Tindall BJ, Todd JA, Triebel D, Valdecasas AG, Vizzini A, Vorontsova MS, De Vos JM, Wagner P, Watling L, Weakley A, Welter-Schultes F, Whitmore D, Wilding N, Will K, Williams J, Wilson K, Winston JE, Wüster W, Yanega D, Yeates DK, Zaher H, Zhang G, Zhang ZQ, Zhou HZ. 2018. Taxonomy based on science is necessary for global conservation. PLOS Biology 13:e2005075.
Toledo LF, Batista RF. 2012. Integrative study of Brazilian anurans: relationship between geographic distribution and size, environment, taxonomy, and conservation. Biotropica 44(6):785-792 DOI 10.1111/j.1744-7429.2012.00866.x.
Toledo LF, Becker CG, Haddad CFB, Zamudio KR. 2014. Rarity as an indicator of endangerment in neotropical frogs. Biological Conservation 179:54-62 DOI 10.1016/j.biocon.2014.08.012.
Toledo LF, Tipp C, Márquez R. 2015. The value of audiovisual archives. Science 347(6221):484 DOI 10.1126/science.347.6221.484-b.
Tollefson J. 2019. One million species face extinction: landmark United Nations report finds that human activities threaten ecosystems around the world. Nature 569:171.
Vilaça TRA, Silva JRS, Solé M. 2011. Vocalization and territorial behaviour of Phyllomedusa nordestina Caramaschi, 2006 (Anura: Hylidae) from southern Bahia, Brazil. Journal of Natural History 45(29-30):1823-1834 DOI 10.1080/00222933.2011.561018.
Wells KD. 2007. The ecology and behavior of amphibians. London: The University of Chicago Press.
Wells KD, Schwartz JJ. 2007. The behavioral ecology of anuran communication. In: Narins PM, Feng AS, Fay RR, Popper AN, eds. Hearing and Sound Communication in Amphibians. New York: Springer, 47-88.
Weygoldt P. 1991. Zur Biologie und zum Verhalten von Phyllomedusa marginata Izecksohn and Da Cruz, 1976 im Terrarium. Salamandra 27:83-96.
Wogel H, Abrunhosa P, Pombal JP Jr. 2004. Vocalizations and aggressive behavior of Phyllomedusa rohdei (Anura, Hylidae). Herpetological Review 35:239-243.
Zaidan BF, Leite FSF. 2012. Advertisement call of the rare, explosive breeding Caatinga horned frog Ceratophrys joazeirensis Mercadal de Barrio, 1986 (Anura, Ceratophryidae). Zootaxa 3540(1):65-66 DOI 10.11646/zootaxa.3540.1.5.

