
 

UNIVERSIDADE ESTADUAL DE CAMPINAS 

Faculdade de Engenharia Elétrica e de Computação 

 

 

 

 

JORGE BENAVIDES ASPIAZU 

 

 

 

MIDDLEWARE DESIGN FOR APPLICATION INTEGRATION IN IOT 

NETWORKS 

 

PROJETO DE MIDDLEWARE PARA INTEGRAÇÃO DE APLICAÇÕES EM 

REDES IOT 

 

 

 

 

 

 

 

CAMPINAS 

2020 



JORGE BENAVIDES ASPIAZU 

 

 

MIDDLEWARE DESIGN FOR APPLICATION INTEGRATION IN IOT 

NETWORKS 

PROJETO DE MIDDLEWARE ARA INTEGRAÇÃO DE APLICAÇÕES EM 

REDES IOT 

 

Dissertation presented to the School of 
Electrical and Computer Engineering of the 
University of Campinas in partial fulfillment of 
the requirements for the degree of Master in 
Electrical Engineering, in the area of 
Telecommunications and Telematics. 

Dissertação apresentada à Faculdade de 
Engenharia Elétrica e de Computação da 
Universidade Estadual de Campinas como 
parte dos requisitos exigidos para a obtenção 
do título de Mestre em Engenharia Elétrica, 
na área de Telecomunicações e Telemática. 

  

 

 

 

Supervisor/Orientador: DR. HUGO ENRIQUE HERNANDEZ FIGUEROA  

Este exemplar corresponde à versão final da 
dissertação defendida pelo aluno Jorge 
Benavides Aspiazu, orientada pelo(a) 
Prof(a). Dr(a). Hugo Enrique Hernandez 
Figueroa. 

 

CAMPINAS 

2020 

           
 



Ficha catalográfica
Universidade Estadual de Campinas

Biblioteca da Área de Engenharia e Arquitetura
Luciana Pietrosanto Milla - CRB 8/8129

    
  Benavides Aspiazu, Jorge, 1984-  
 B431m BenMiddleware design for application integration in IoT networks / Jorge

Benavides Aspiazu. – Campinas, SP : [s.n.], 2020.
 

   
  BenOrientador: Hugo Enrique Hernández-Figueroa.
  BenDissertação (mestrado) – Universidade Estadual de Campinas, Faculdade

de Engenharia Elétrica e de Computação.
 

    
  Ben1. Internet das coisas. 2. Sistemas embarcados. 3. Software. 4. Aplicação.

5. TCP/IP (Protocolo de rede de computador). I. Hernández-Figueroa, Hugo
Enrique, 1959-. II. Universidade Estadual de Campinas. Faculdade de
Engenharia Elétrica e de Computação. III. Título.

 

Informações para Biblioteca Digital

Título em outro idioma: Projeto de middleware para integração de aplicações em redes
IoT
Palavras-chave em inglês:
Internet of things
Embedded systems
Software
Application
TCP/IP (Computer network protocol)
Área de concentração: Telecomunicações e Telemática
Titulação: Mestre em Engenharia Elétrica
Banca examinadora:
Hugo Enrique Hernández-Figueroa [Orientador]
Luis Geraldo Meloni
Carlos Silva Cardenas
Data de defesa: 28-01-2020
Programa de Pós-Graduação: Engenharia Elétrica

Identificação e informações acadêmicas do(a) aluno(a)
- ORCID do autor: https://orcid.org/0000-0003-1630-3615
- Currículo Lattes do autor: https://wwws.cnpq.br/cvlattesweb/PKG_MENU.men  

Powered by TCPDF (www.tcpdf.org)



COMISSÃO JULGADORA – DISSERTAÇÃO DE MESTRADO 

 
 

Candidato(a): Jorge Benavides Aspiazu RA: 108812 

Data da defesa: 28 de janeiro de 2020 

Título da Tese: “Middleware Design for Application Integration in IoT Networks” 

 

Prof. Dr. Hugo Enrique Hernandez Figueroa (Presidente) 

Prof. Dr. Luis Geraldo Pedroso Meloni 

Prof. Dr. Carlos Bernardino Silva Cárdenas 

 

A Ata de Defesa, com as respectivas assinaturas dos membros da Comissão 

Julgadora, encontra-se no SIGA (Sistema de Fluxo de Dissertação/Tese) e na 

Secretaria de Pós-Graduação da Faculdade de Engenharia Elétrica e de 

Computação. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



ABSTRACT  

The internet of Things (IoT) is a field with increasing development due to its effect 

in all aspects of society. Within this context the amount of data and devices that 

are integrated into this new internet is exploding and will continue to do so in the 

foreseeable future. One of the main and prevalent challenges to the IoT is the 

ease of integration be-tween applications and the general infrastructure 

underneath; namely a simple way of allowing horizontal integration of devices and 

applications. The most important challenge to accomplish this is the fact that the 

models for sensors and actuators that face applications are heterogenous, which 

means that not all sensors provide data in the same for-mat and not all actuators 

are operated in the same way. From an application’s point of view this makes any 

kind of integration an important challenge. Another pain point for integration is the 

fact that communication protocols used by many devices are many times different, 

which means that any application hoping to integrate different type devices needs 

to make sure it can work with many protocols, which increases the complexity 

required. From these challenges the appearance of a middle component that 

facilitates the interaction of devices and applications is necessary. The work 

presented here pro-poses a solution to these integration problems by means of a 

middleware as an intermediate layer that bridges applications and devices in a 

transparent way, which in turn al-lows real-time data collection and historic data 

analysis. To achieve this, we propose the use of a virtual device model that 

presents a simpler version to the application, while ex-tending its capabilities, such 

as memory and processing power. Another effect of this virtual device model 

definition is that it creates a homogenous model that allows the search for devices 

within the middleware based on specific attributes; for example, it is possible to 

search for all temperature sensors, irrespective of any other characteristics. All 

these allow any application to integrate into any IoT network without prior 

knowledge of the specific devices that exist in it, which fosters greater integration. 

Key Words: Internet of Things. Embedded Systems. Software. Application. 

TCP/IP. 

 

 

 



RESUMO  

O Internet das Coisas (IoT) é um campo em franco desenvolvimento devido ao 

seu efeito em todos os aspectos da sociedade. Dentro deste contexto, a 

quantidade de dados e dispositivos que são integrados neste novo internet está 

explodindo e continuará desse jeito no futuro previsível. Um dos desafios 

principais para o IoT é uma integração fácil e simples entre aplicações e a 

infraestrutura geral: dispositivos, comunicações etc.; em outras palavras, um jeito 

simples de conseguir uma integração horizontal dos dispositivos e aplicações.  Um 

dos pontos mais importantes de resolver para conseguir essa integração 

horizontal é o fato que os modelos para os sensores e atuadores que interagem 

com as aplicações não são heterogêneos, isso quer dizer que não todos os dados 

que os sensores proveem existem no mesmo formato, e não todos os atuadores 

trabalham do mesmo jeito. Desde o ponto de vista da aplicação, esse tipo de 

integração é um desafio grande. Além disso, os protocolos de comunicação 

utilizados por muitos dispositivos são muitas vezes muito diferentes, o que 

significa que qualquer aplicação que tente integrar diferentes dispositivos, precisa 

segurar que pode trabalhar com múltiplos protocolos, o que aumenta a 

complexidade necessária. Devido a estes desafios, é necessário um componente 

intermediário que que ajude na interação dos dispositivos e aplicações.  

O trabalho apresentado propõe uma solução para estes problemas de integração 

por meio de um Middleware como uma camada intermediaria que faça uma 

conexão entre aplicações e dispositivos de um jeito transparente para as 

aplicações, que por sua vez permita coletar dados em tempo real, assim como 

permitir análise de dados históricos: “Big Data”. Para conseguir isso, propomos o 

uso de um modelo virtual de dispositivo que apresente uma versão mais simples 

para a aplicação, enquanto estende as suas capacidades, tal como a memória e 

o poder de processamento. Um outro efeito desta definição de modelo virtual de 

dispositivo é que cria um modelo homogêneo que permite uma pesquisa simples 

de dispositivos dentro do Middleware, baseado em atributos específicos; por 

exemplo, é possível procurar todos os sensores de temperatura, 

independentemente de outras características. Tudo isso permite a qualquer 

aplicação se integrar dentro de qualquer rede IoT sem ter um conhecimento 



anterior dos dispositivos específicos que existem nesta rede, o que ajuda a 

promover grandemente a integração. 

Palavras-chave: Internet das Coisas. Sistemas Embarcados. Software. Aplicação. 

TCP/IP. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

LIST OF FIGURES  

Figure 1.1– Different vertical markets where IoT is expected to deploy and its horizontal 

integration (Al-Fuqaha, Guizani, et al., 2015) ................................................................................ 17 

Figure 1.2 – Vertical and Horizontal approach for an IoT deployment. (Yokotani & Sasaki, 2016)

 ........................................................................................................................................................ 18 

Figure 1.3 – Projected market share of dominant IoT applications (Al-Fuqaha, Guizani, et al., 

2015). ............................................................................................................................................. 19 

Figure 1.4 – The different architecture models for the IoT (Al-Fuqaha, Khreishah, et al., 2015). . 19 

Figure 1.5 – Abstraction of IoT into different categories (Al-Fuqaha, Guizani, et al., 2015). ........ 20 

Figure 1.6 – Service structure with the most critical services at the bottom. ............................... 22 

Figure 1.7 – Standards for the IoT (Al-Fuqaha, Guizani, et al., 2015). ........................................... 23 

Figure 1.8 – Diagram of an IoT deployment with HTTP as the application protocol ..................... 23 

Figure 1.9 – An HTTP transaction going from device to user (application) (Yokotani & Sasaki, 

2016). ............................................................................................................................................. 24 

Figure 1.10 – Communication diagram of an HTTP communication between a client and server 

(Datta & Bonnet, 2016). ................................................................................................................. 25 

Figure 1.11 – Example of CoAP deployment (Al-Fuqaha, Guizani, et al., 2015). ........................... 26 

Figure 1.12 – CoAP message format (Luzuriaga, Perez, et al., 2015). ........................................... 26 

Figure 1.13 – MQTT architecture (Al-Fuqaha, Guizani, et al., 2015). ............................................ 27 

Figure 1.14 – MQTT communication model (Klauck & Kirsche, 2012). ......................................... 27 

Figure 1.15 – MQTT message format (Luzuriaga, Perez, et al., 2015). .......................................... 28 

Figure 1.16 – mDNS operation (Al-Fuqaha, Guizani, et al., 2015) ................................................. 29 

Figure 1.17 – Discovery of a print service by DNS-SD (Al-Fuqaha, Guizani, et al., 2015) .............. 29 

Figure 1.18 – How a horizontal approach for IoT would enable faster integration (Yokotani & 

Sasaki, 2016) ................................................................................................................................... 30 

Figure 2.1 – System configuration for an IoT application using MQTT (Yokotani & Sasaki, 2016) 33 

Figure 2.2  –  Proposed architecture for virtual IoT (Bondarevs et al., 2017). ............................... 36 

Figure 3.1 – Middleware functional diagram ................................................................................. 40 

Figure 3.2 – Connector component architecture. ......................................................................... 41 

Figure 3.3 – Resource tree data structure ..................................................................................... 43 

Figure 3.4 – Registration operation with the middleware. ............................................................ 44 

Figure 3.5 – Example of message encoded in JSON. ...................................................................... 44 

Figure 3.6 – Data encoding for searching devices. ........................................................................ 45 

Figure 4.1 – Layout of the design’s implementation. .................................................................... 47 

Figure 4.2 – Web application interface. ......................................................................................... 47 

Figure 4.3 – Message structure for the application. ...................................................................... 49 

Figure 4.4 – Actuator’s operating behavior ................................................................................... 50 

Figure 4.5 – Actuator registration structure .................................................................................. 51 

Figure 5.1 – HTTP POST request latency measured over local network. ....................................... 53 

Figure 5.2 – MQTT round trip latency measured over local network............................................ 53 

Figure 5.3 – POST Request latency over different networks. ........................................................ 55 

Figure 5.4 – MQTT Round Trip latency over different networks. .................................................. 55 

Figure 5.5– Jitter over MQTT. ........................................................................................................ 56 

Figure 5.6 – CDF of Jitter. ............................................................................................................... 57 

Figure 5.7 – Energy measurement circuit. ..................................................................................... 57 



Figure 5.8 – Results for sequential testing of OM2M. ................................................................... 61 

Figure 5.9 – Results for sequential testing of proposed platform. ................................................ 62 

 

  



LIST OF TABLES 

Table 5.1 – Latency comparison for both application protocols over a local ................................ 54 

Table 5.2 – Latency measurements of HTTP and MQTT over different networks. ....................... 55 

Table 5.3 – Open source current IoT Platforms ............................................................................. 59 

Table 5.4 – Results for sequential testing of OM2M. .................................................................... 61 

Table 5.5 – Results for sequential testing of proposed middleware. ............................................ 61 

Table 5.6 – Results for parallel testing (10 requests per second). ................................................. 62 

Table 5.7 – Results for parallel testing (100 requests per second). ............................................... 63 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



LIST OF ABBREVIATIONS  

AAL  Ambient Assisted Living 

ABE  Attribute-Based Encryption 

AES  Advanced Encryption Standard 

AMQP  Advanced Message Queueing Protocol 

API  Application Programming Interface 

AWS  Amazon Web Services 

CA  Certificate Authority 

CDF  Cumulative Distribution Function 

CP-ABE  Ciphertext-Policy Attribute-Based Encryption 

CoAP  Constrained Application Protocol 

DNS  Domain Name Server 

ETSI  European Telecommunications Standards Institute 

HTTP  Hypertext Transfer Protocol 

IEEE  Institute of Electrical and Electronics Engineers 

IP  Internet Protocol 

IPv4  Internet Protocol Version 4 

IPv6  Internet Protocol Version 6 

IoT  Internet of Things 

JSON  JavaScript Object Notation 

KP-ABE  Key-Policy Attribute-Based Encryption 

LED  Light Emitting Diode 

LTE  Long-Term Evolution 

M2M  Machine to Machine 

mDNS  Multicast Domain Name Server 

MOM  Message Oriented Middleware 

MQTT  Message Queue Telemetry Transport 

NoSQL  Non-Structured Query Language 

PIR  Passive Infrared Sensor 



QoS  Quality of Service 

REST  Representational State Transfer 

SoC  System on Chip 

SSL  Secure Sockets Layer 

TCP  Transfer Control Protocol 

TCP/IP  Transfer Control Protocol/Internet Protocol 

TLS  Transport Layer Security 

UDP  User Datagram Protocol 

URI  Uniform Resource Identifier 

URL  Uniform Resource Locator 

VPS  Virtual Private Server 

XML  Extensible Markup Language 

  



 

CONTENTS 

 
 INTRODUCTION ...................................................................................................................... 14 

1.1 MOTIVATION .................................................................................................................... 15 

1.2 DEFINITION AND GROWTH EXPECTATIONS ......................................................................... 16 

1.3 ARCHITECTURE ..................................................................................................................... 17 

1.4 STANDARDS AND PROTOCOLS ............................................................................................. 22 

1.5 CURRENT CHALLENGES IN IOT DEPLOYMENT ...................................................................... 30 

 STATE OF THE ART ....................................................................................................................... 32 

 METHODOLOGY AND REQUIREMENTS FOR THE PROPOSED SOLUTION .......... 39 

3.1 MIDDLEWARE DESIGN .................................................................................................. 40 

 IMPLEMENTATION AND ANALYSIS ................................................................................... 46 

 RESULTS AND DISCUSSIONS ........................................................................................................ 52 

5.1 LATENCY AND JITTER TESTS ..................................................................................... 52 

5.2 COMPARISON TO OTHER IOT MIDDLEWARE ........................................................ 59 

 CONCLUSIONS ....................................................................................................................... 64 

 RECOMMENDATIONS AND FUTURE WORK ................................................................... 65 

 

 

 
 

 

 

 

 

 

 

 

 



14 
 

 

 INTRODUCTION 

 

The Internet of Things (IoT) is an increasingly developed field because of its direct impact to 

every aspect of society. Several critical aspects regarding how the IoT operates are being researched 

currently such as Machine to Machine (M2M) Communication, ap-plication deployment, data 

organization and many more(Evans, 2011)(Al-Fuqaha, Guizani, et al., 2015). 

It is often assumed that the IoT should work as the regular internet currently works, how-ever, 

due to details like low power, battery operated devices, many of which use different type of radio 

standards for communication such as WiFi, IEEE802.15.4, ZigBee, etc. a direct implementation for 

these is extremely difficult and complex. Also, most devices within a typical IoT application have 

different requirements; for instance, sensors usually only communicate to the cloud (sending data) 

and rarely do they require to receive data from the cloud, in that regard working differently as how 

clients within the regular internet operate(Al-Fuqaha, Guizani, et al., 2015). 

To complicate matters further due to differences in type of devices being connect-ed, how 

they operate, the type of data that they send or receive and the M2M communication scheme they 

use, it becomes virtually impossible in today’s landscape to deploy applications that target the same 

IoT networks and that are written by different people. 

One of the greatest drivers of our current form of internet is its ability to interconnect different 

applications through a common language. This is possible, because of a single topology: client-server, 

and that prior knowledge of outside systems (such as complementary services of third parties) only 

require reading the methods that are presented by such system. In turn, this allows complex systems 

to be built on top of others with each of them not being necessarily developed by the same entity(Al-

Fuqaha, Khreishah, et al., 2015). 

Because of these reasons, the IoT application landscape remains heavily fragmented, with 

different applications being unable to be reused and services being tied directly to a single application 

(Al-Fuqaha, Khreishah, et al., 2015)(Yokotani & Sasaki, 2016). Most applications tend to follow a 

vertical approach which makes it extremely difficult to integrate with others. 

To allow such interconnectivity to happen there should be a method that allows any IoT 

application to be able to communicate easily and reliably to any network and gather only the data it 

requires from two specific sources: the individual devices that generate such data in real time (if the 



15 
 

 

application requires or supports real time data generation) and from a central repository that contains 

data gathered through an undetermined period.  

This method must consider that a typical IoT deployment consists of devices that likely contain 

low memory capacity as well as low processing power, due to their low energy consumption 

requirements. This is considered in conjunction with the fact that the greatest benefit of using an IoT 

solution is the accumulation of data over time, which these devices probably are unable to do 

individually.  

Finally, since the data generated from any IoT application tends to be really diverse, be-cause 

of the different types of sensors that could be used and the data of interest that could be desired to 

be recorded, such method has to be able to handle that any third party application be flexible enough 

to use only the data of interest within a universe of different types of data gathered(Al-Fuqaha, 

Guizani, et al., 2015). 

The present work proposes a method that attempts to ease the application deployment in IoT 

networks through the use a simple data arrangement that allows the use of only the parameters 

relevant to the application.  

Furthermore, consideration will be taken regarding the different capabilities that IoT de-vices 

might have and how that plays into the needs of any application that can be deployed along the 

network. Those needs include the use of historic data as well as real time data. One final consideration 

will be the volume of information and interconnection of different networks within one application. 

1.1 MOTIVATION 

The current landscape of IoT solutions show a complete fragmentation, making any project 

deployment extremely difficult and costly. Even worse, reusing existing infrastructure, while only 

deploying new applications on devices and data already in place, currently requires heavy 

customization in the application’s software, and, most often than not, modifications on the devices to 

allow full integration with the application.  

Another important issue is the tools being used in current IoT applications are the same as the 

ones used in regular software application deployment. This poses a problem, in the sense that these 

tools were not designed for the heterogenous and resource-constrained environment of any IoT 

application. Adapting these tools to work on an IoT environment is a complex and difficult task, which 

decreases the incentives to adopt and implement IoT solutions. 



16 
 

 

From a personal point of view, my previous work, both in an academic as well as in an industry 

setting, have made me realize the difficulties in adopting IoT solutions with the existing tools and 

technologies. In order to advance and increase adoption of IoT solutions, and create a more 

interconnected world, a new set of tools are required. This work is an attempt at creating a new tool 

for this specific purpose. 

1.2 DEFINITION AND GROWTH EXPECTATIONS 

The Internet of Things is a concept in which everyday objects are given processing capabilities 

as well as connectivity so they can communicate with each other and the internet as a whole (Evans, 

2011). The idea is that data shared between these objects allows for an increased productivity in 

human activities and greater comfort for all society. 

One of the biggest drivers of research into the IoT is the fact that its growth is expected to 

continue in an exponential way, in 2010 the number of connected devices has surpassed the earth’s 

human population (Evans, 2011)(Al-Fuqaha, Guizani, et al., 2015). In 2020, it is expected that the 

number of IoT objects will reach 212 billion deployed globally (Al-Fuqaha, Guizani, et al., 2015). Five 

years after that it is expected that traffic from such devices will account up to 45% of the total internet 

traffic (Al-Fuqaha, Guizani, et al., 2015)(Taylor, 2013). 

On top of that it is estimated that IoT applications will affect several different markets as 

vertical applications; it is expected that these applications will interconnect with each other in the 

future, bringing even greater benefits to its deployment. This integration is also expected to be 

horizontal, meaning that computing services and third-party applications could be deployed through 

any segment, or all segments in an independent manner (Al-Fuqaha, Guizani, et al., 2015). Figure 1.1 

shows the different vertical markets and how a possible horizontal integration might be possible. 

 



17 
 

 

 

Figure 1.1– Different vertical markets where IoT is expected to deploy and its horizontal integration 
(Al-Fuqaha, Guizani, et al., 2015) 

 

1.3 ARCHITECTURE 

The current state of deployment uses a vertical integration, where all elements of the system 

are designed in a tightly integrated fashion, this helps create a really optimized system, with the 

application being tailored exactly to the requirements for that individual deployment. The problem 

with this approach is that the whole system must be developed individually one at a time, with little 

chance of third-party application or services being capable of integrating to it (Yokotani & Sasaki, 

2016).  

In contrast to this, a horizontal implementation, the middle layers of the system are common 

to any implementation and are treated as a shared resource. This allows for the applications that are 

written on top to be able to access any system implemented, specially the sensor data. This in turn 

allows for a much wider and easier third-party integration (Yokotani & Sasaki, 2016). Both approaches 

are shown in figure 1.2. 



18 
 

 

 

Figure 1.2 – Vertical and Horizontal approach for an IoT deployment. (Yokotani & Sasaki, 2016) 

Due to this potential interest in several markets and research of new technologies regarding 

the Internet of Things are being carried out by many individuals and organizations. On this regard 

healthcare applications related to IoT, including services in the same area are expected to create about 

$1.1-$2.5 trillion in growth annually by the global economy by 2025, with the whole economic impact 

caused by the IoT is estimated to be in range of $2.7 trillion to $6.2 trillion by the same year (Al-Fuqaha, 

Guizani, et al., 2015).  Figure 1.3 shows the market share of the of the projected dominant IoT 

applications by 2025. 

 



19 
 

 

 

Figure 1.3 – Projected market share of dominant IoT applications (Al-Fuqaha, Guizani, et al., 2015). 

Since any IoT deployment is a combination of different technologies and standards, a model 

or architecture must be considered for a successful implementation. Several models have been 

proposed to allow a better design of any IoT deployment, this considering the amounts of devices that 

could be connected to any one application; according to (Al-Fuqaha, Guizani, et al., 2015) several 

architecture models have been proposed. However, a five-layer model seems better suited for the 

needs of flexibility and abstraction the whole IoT stack requires. 

 

Figure 1.4 – The different architecture models for the IoT (Al-Fuqaha, Khreishah, et al., 2015). 

To understand the construction of this five-layer model, a description of each layer will be 

presented, with the intention of providing a better understanding of all the building blocks involved. 



20 
 

 

Also, this description will be provided as a starting point to understand what parts of the stack need to 

be addressed to accomplish the objectives of this work. 

The first layer within this architecture is the object layer, also called the perception layer, which 

represents the physical objects, typically sensors, that operate within the IoT (Al-Fuqaha, Guizani, et 

al., 2015). This layer includes the different sensors and actuators that constitute any IoT applications, 

with the consideration that such different devices will generate heterogenous data, one of the main 

strengths of the IoT, but also one of the main problems for general integration between applications. 

On top of this layer comes the object abstraction layer, which transfers data from the objects 

to the top layer, usually through secured channel. Next comes the services management layer, which 

is a middleware that pairs services with requesters based on addresses and names. This is the layer 

that allows application programmers to work with heterogenous objects without considering any 

specific hardware platform (Al-Fuqaha, Guizani, et al., 2015). 

Next comes the application layer which is the gateway of interaction between users and the 

services. The users in this case could be human beings as well as other machines that make use of 

these services. This layer is important because of its ability to provide any user with smart services at 

their request (Al-Fuqaha, Guizani, et al., 2015). Finally, the top layer of this architecture is the business 

layer, whose job is to manage the overall IoT system activities and services. This is done in a way that 

returns information in the best way possible, that is in the form of graphs, flowcharts, etc (Al-Fuqaha, 

Guizani, et al., 2015). The structure of this architecture is shown in figure 1.4. 

In addition to understanding the architecture of the IoT, one other important abstraction to 

be made is the separation of critical building blocks that are inevitably present in any deployment. 

Figure 1.5 shows these elements to create the IoT. As can be seen the abstraction at this level involves 

six different elements that allow for separate development and more importantly to match different 

technologies and different standards, depending on the use case. 

 

Figure 1.5 – Abstraction of IoT into different categories (Al-Fuqaha, Guizani, et al., 2015). 

In addition to the five-layer architecture model presented, another abstraction of the IoT 

solution can be synthesized in six elements that are universal to any IoT implementation, regard-less 



21 
 

 

of any architecture model being used as a template. This six-element synthesis should not be viewed 

as a replacement of the five-layer architecture model, but complementary to understand universal 

requirements that should be met, regardless of architecture, technology or implementation details. 

To understand this six-model distribution, a description of the respective elements will be 

done, these elements can be catalogued are: Identification, sensing, communication, computation, 

services and semantics (Al-Fuqaha, Guizani, et al., 2015). On the identification category, this is in 

relation to the methods that allow the matching of services to objects, addressing and identification 

fulfill two different but important roles, one allows identification within the realm of the application 

while the other helps differentiate objects within a communications network (Al-Fuqaha, Guizani, et 

al., 2015). 

One of the main drivers behind the IoT is the ability to gather data, the sensing elements in 

any deployment are responsible for gathering data as well as sending it to a data warehouse, database 

or cloud. This is closely related to the communication element, which corresponds to the 

interconnection of heterogenous elements together to deliver smart services (Al-Fuqaha, Guizani, et 

al., 2015). Different communication technologies are used in this stage, depending on the 

requirements, although most IoT nodes are expected to operate using low power. Typical technologies 

used for this purpose are WiFi, Bluetooth, IEEE 802.15.4, Z-Wave and LTE.  

Computation refers to any processing done on the IoT, this can be either the individual objects 

that require an element of processing to carry out the data gathering operations, or the cloud 

component which provide facilities for the objects to send their data as well as the processing of said 

data to recognize patterns and generate the services. Regarding these services, there are different 

categories, with each using information passed from the next, specifically we can fit any service within 

one of these four categories: identity-related, information aggregation, collaborative-aware and 

ubiquitous (Al-Fuqaha, Guizani, et al., 2015).  

The identity-related services can be considered the most basic and important ser-vice, since 

every other service are built on top of them, their job is to allow identification of individual objects and 

allow them to form part of the application. Information aggregation services work on top of identity-

related services, and their job is to collect and summarize raw sensor measurements that need to be 

processed and reported by the IoT application (Al-Fuqaha, Guizani, et al., 2015). Collaborative-

Awareness services use the information from the service below to make decisions and react according 

to the raw data available. Finally, ubiquitous services are responsible for providing any Collaborative-

Aware service at any time it is needed. As can be seen, the structure of these services work on top of 



22 
 

 

other services to provide a more modular approach, this in turn promotes easier integration, figure 

1.6, shows how this service structure works. 

 

Figure 1.6 – Service structure with the most critical services at the bottom. 

The last IoT element to regard is semantics, which consists of extracting knowledge smartly by 

different machines to provide the required services, in other words, raw data is converted into useful 

information (Al-Fuqaha, Guizani, et al., 2015)(Wagle, n.d.). There are several techniques that can 

accomplish semantic extraction, one way is using data formats that allow for easy data extraction, with 

XML and JSON as the two most important, both data representation for-mats possess a lightweight 

version, considered for resource-constrained environments. In the case of XML, it is called EXI and 

converts the XML structure into binary, to reduce bandwidth (Al-Fuqaha, Guizani, et al., 2015). In the 

case of JSON, a format is JSON-LD which is also extremely light-weight and beneficial for constrained 

devices (Datta & Bonnet, 2016). 

1.4 STANDARDS AND PROTOCOLS 

Since the IoT consists of several heterogenous devices with different requirements, especially 

regarding power consumption, different standards exist at different levels that allow integration of 

such heterogenous devices between each other and the ap-plications that run on top. Figure 1.7 shows 

a table of different standards and their use at different levels. It is important to note that all protocols 

must be bundled together to deliver an IoT application (Al-Fuqaha, Guizani, et al., 2015). 



23 
 

 

 

Figure 1.7 – Standards for the IoT (Al-Fuqaha, Guizani, et al., 2015). 

At the application level, there are several protocols that can be used, most of which were 

created for application rich devices, some of them have characteristics that make them suitable for 

typical IoT devices, which are resource constrained. At the application level the prominent protocol is 

the Hypertext Transfer Protocol (HTTP) which is widely used in conventional inter-net because of its 

client-server computing model, which allows for easy transactions between all the clients. Figure 1.8 

shows an arrangement of HTTP in an IoT solution, where several devices connect to the server and the 

user (application) also has a connection in the same way. 

 

Figure 1.8 – Diagram of an IoT deployment with HTTP as the application protocol 

For HTTP, any message being sent passes through a series transmission, figure 1.9 shows how 

an HTTP transaction works, with several requests and responses being sent through the channel. Due 

to HTTP working over TCP/IP, this sequence is necessary to make sure messages sent are being 

received correctly (Yokotani & Sasaki, 2016). 



24 
 

 

 

Figure 1.9 – An HTTP transaction going from device to user (application) (Yokotani & Sasaki, 2016). 

One of the main uses of HTTP is through Representation State Transfer (REST) Application 

Programming Interfaces (API), which allows interoperability of web services by using just four 

operations: GET, POST, PUT and DELETE. This simplifies the operations between applications and make 

sure integration between them is possible and al-most universal, this is how the conventional internet 

was able to grow and exist in its current form.  

HTTP has some disadvantages for IoT applications: firstly, because every HTTP transaction is 

symmetrical, it requires a request and response from the client and server respectively, which means 

that the connection has to be kept open, which in turn generates a greater power consumption. The 

second disadvantage is that identification on HTTP works by way of IP addresses or URL, which require 

a connection to the larger internet, which might not be possible for some applications, this limits the 

use cases for HTTP. Because of this, and as figure 1.9 shows, there is a serious overhead due to headers 

to make sure that the messages are being received (Yokotani & Sasaki, 2016). Because IoT devices 

usually operate on battery power, which in turn involve several constraints regarding its use, other 

type of protocols is necessary. Figure 1.10 shows a time diagram of how an HTTP connection operates 

in a possible IoT scenario. 



25 
 

 

 

Figure 1.10 – Communication diagram of an HTTP communication between a client and server (Datta 
& Bonnet, 2016). 

A suitable direct alternative for HTTP is Constrained Application Protocol (CoAP); CoAP defines 

a web transfer based on REST, which in a way allows for an easier integration of applications. Unlike 

HTTP, CoAP runs on UDP, this allows for faster wake-up and transmit cycles due to its connectionless 

datagrams, as well as smaller packets with less overhead (Thota & Kim, 2016); this allows for the device 

to remain in a sleep state and only transmit when needed without too much battery consumption. 

Another benefit of CoAP is that the identification used in CoAP are URI (Uniform Re-source 

Identifier), this allows a degree of independence in the message packets, since the destination node’s 

capabilities are partly understood by its URI details (Thota & Kim, 2016). This makes it possible that a 

battery powered sensor node may have one type of URI while a line powered flow-control actuator 

may have a different one. 

CoAP can handle the request/report model as well as a publish/subscribe model more 

commonly associated with other types of protocols such as MQTT and AMQP. Use of any of these 

models require an adaptation of the protocol since it runs on top of UDP which doesn’t allow for any 

acknowledgement of a correct message reception.  

CoAP is not as mature a protocol as MQTT for instance, this impacts on the number of 

implementations and library ports available for its use. The other issue is that CoAP works particularly 

well for M2M communications because of its UDP implementation, but integration between a user 

application (such as web app) and these devices might not be direct. Fortunately, because CoAP has 

been designed based on REST, a conversion between HTTP and CoAP is straightforward. Figure 1.11 

shows an example implementation of several IoT devices communicating through CoAP, and a REST-

CoAP proxy that bridges these devices to any external application. 



26 
 

 

 

Figure 1.11 – Example of CoAP deployment (Al-Fuqaha, Guizani, et al., 2015). 

A typical CoAP message can be between 10 to 20 bytes, with the packets having the form 

depicted in figure 1.12. The header takes four bytes indicating the version of CoAP, the type of 

transaction, the option count and the request method to be used (Al-Fuqaha, Khreishah, et al., 2015). 

 

Figure 1.12 – CoAP message format (Luzuriaga, Perez, et al., 2015). 

 

An alternative to CoAP is the Message Queue Telemetry Transport (MQTT) protocol, which 

was proposed by Andy Stanford-Clark of IBM in 1999 and was standardized in 2013 (Al-Fuqaha, 

Guizani, et al., 2015). MQTT is designed around a publisher/subscribe model, in which devices 

subscribe to “topics” that are relevant to their operation; whenever a device publishes a message 

under a topic, every single device subscribed to that topic will receive it. Figure 1.13 shows the 

architecture of an MQTT application. 



27 
 

 

 

Figure 1.13 – MQTT architecture (Al-Fuqaha, Guizani, et al., 2015). 

MQTT runs on top of TCP which is connection oriented and more reliable than UDP, because 

it has error detection mechanisms; MQTT has a small overhead because most of the “frame” data is 

sent upon connection, after that a connection is maintained and only the payload is sent any time a 

message needs to be published. The protocol has 3 components: publisher, subscriber and a broker; 

an interested device would register as a subscriber for specific topics to be informed by the broker 

when publishers publish topics of interest, when a message under a topic of interest is published, the 

broker distributes it among all the subscribers of that topic (Al-Fuqaha, Guizani, et al., 2015)(Yokotani 

& Sasaki, 2016)(Luzuriaga, Perez, et al., 2015)(Nicholas, n.d.)(Singh et al., 2015)(Luzuriaga, Cano, et al., 

2015). Security can be achieved by the broker by checking authorization of the publishers and 

subscribers connected (Al-Fuqaha, Guizani, et al., 2015)(Singh et al., 2015). Figure 1.14 show the 

dynamic of the communication in an MQTT application. 

 

 

Figure 1.14 – MQTT communication model (Klauck & Kirsche, 2012). 



28 
 

 

MQTT is a popular protocol being used in such diverse applications as healthcare, monitoring, 

energy metering and Facebook notifications (Al-Fuqaha, Khreishah, et al., 2015). The reason for such 

wide use in in small, cheap, low power and low memory devices that operate in vulnerable and low 

bandwidth networks is due to the message format which requires very little header data to route the 

messages to its destinations. Figure 1.15 shows the message format, as it can be seen the number of 

bytes required for control of the protocol is of 5 bytes maximum, with the first indicating the type of 

message, the Quality of Service (QoS), if the message is a duplicate and if it should be retained by the 

server; the remaining bytes indicate the length of the topic plus payload, with the payload and the 

message being of a variable size (Al-Fuqaha, Guizani, et al., 2015). 

 

Figure 1.15 – MQTT message format (Luzuriaga, Perez, et al., 2015). 

Regarding the QoS, MQTT establishes three levels of QoS for delivery assurance of publish 

messages, these levels can be identified in the QoS Level field (this in reference to figure 1.15). QoS 

Level 0, commonly known as “Send and forget”, has a single transmission of the message with no 

guarantee of its arrival. This level can be used for highly repetitive or non-mission critical messages. 

QoS Level 1 tries to guarantee a message is received at least once by the intended recipient, once a 

published message is received and understood by the recipient, it acknowledges the message with an 

acknowledgment message (PUBACK). Until this message is not received, the message is stored, the 

publisher stores the message and retransmits it periodically. Finally, QoS Level 2 attempts to guarantee 

the message is received and decoded by the intended recipient. This is the most secure and reliable 

level of QoS (Thota & Kim, 2016). 

Besides application protocols, another important element for any IoT deployment is the use of 

discovery protocols, to allow any application to discover resources and ser-vices in a self-configured, 

efficient and dynamic way (Al-Fuqaha, Guizani, et al., 2015). Once again protocols already in use in the 

conventional internet are of interest for the IoT, the two most important protocols at this level are 

multicast DNS (mDNS) and DNS Service Discovery (DNS-SD). 



29 
 

 

mDNS inquires names by sending an IP multicast message to all the nodes in the local domain; 

by this query, the client asks devices that have the given name to reply. When the target machine 

receives its name, it multicasts a response message which contains its IP address. All devices in the 

network that obtain the response message up-date their local cache using the given name and IP 

Address, figure 1.16 shows how mDNS operates. In the case of DNS-SD, clients discover a set of desired 

services using standard DNS messages. DNS-SD uses mDNS to send DNS packets to specific multicast 

addresses through UDP. Here there are two steps: finding host names, like a printer, and pairing IP 

addresses with their host names using mDNS. Figure 1.17 shows how the discovery works in DNS-SD. 

(Al-Fuqaha, Guizani, et al., 2015)(Klauck & Kirsche, 2012)(Jara et al., 2012). 

 

Figure 1.16 – mDNS operation (Al-Fuqaha, Guizani, et al., 2015) 

 

Figure 1.17 – Discovery of a print service by DNS-SD (Al-Fuqaha, Guizani, et al., 2015) 

 



30 
 

 

1.5 CURRENT CHALLENGES IN IOT DEPLOYMENT 

As has been previously discussed, one of the main drivers of IoT is that different objects can 

gain connectivity and processing capabilities; this creates huge opportunities, but also brings one 

challenge: the existence many heterogenous devices that will share disparate data formats with each 

other. On top of this, the devices that will directly interact in IoT networks can be of different types, 

(Al-Fuqaha, Guizani, et al., 2015) defines two types resource rich, which have hardware and software 

capable of supporting the TCP/IP protocol Suite, and resource-constrained which have smaller 

processing capabilities (such as microcontrollers), which are unable to support the whole TCP/IP suite.  

The advantages of TCP is that many known application protocols run on top of it, making sure 

that application is infrastructure independent (the underlying devices could be communicating via 

WiFi, IEEE 802.15.4, or any other protocol that supports TCP); the expectation is that this would allow 

horizontal applications, which in turn would allow IoT applications to work side by side with 

conventional internet application and legacy applications that are already running in this conventional 

internet (Yokotani & Sasaki, 2016). Figure 1.18 shows how this approach would work. 

 

Figure 1.18 – How a horizontal approach for IoT would enable faster integration (Yokotani & Sasaki, 
2016) 

It is evident that the landscape for IoT applications is deeply fragmented between proto-cols 

used for communication within, and across, resource-constrained and resource-rich devices, this 

fragmentation is not expected to change soon (Al-Fuqaha, Guizani, et al., 2015). This inability to create 

a real interoperation between IoT devices and their applications is what keeps the whole structure 

from becoming a horizontal one and hinders wider adoption.  



31 
 

 

 For a real and easy integration between applications to happen some element must exist that 

exposes all services and devices to the application in a transparent manner. This would allow that the 

application be written with existing and familiar tools to the programmer, and with all the flexibility of 

using the application protocols that are best suited for the job. Moreover, third parties could build 

application for existing IoT devices without the need for them to be deployed by that same party. This 

last part is important since right now little to no integration can be done by third parties, and any 

application must be designed explicitly for the system being deployed. 

The current work proposes a middleware component for IoT that allows several types of IoT 

devices to connect to an application and to other devices. The middleware being proposed will allow 

connection between different IoT devices, applications and al-low it to be protocol independent at the 

application level. 

 

  



32 
 

 

 STATE OF THE ART  

 

Given how the IoT is one of the topics of most interest these days, it is natural that a lot of 

research is going into it lately. Also, as was discussed in the previous chapter there are many aspects 

crucial to the IoT, with protocols, interoperability, applications and security being the top of them. This 

chapter will focus on showing the most recent research done in these areas. 

Regarding application protocols, the analysis and research topics are diverse. On (Luzuriaga, 

Perez, et al., 2015) MQTT and AMQP are evaluated for use over unstable and mobile networks, as 

mobile networks (such as GSM, 3G and LTE) are common infrastructure protocols for IoT devices (Al-

Fuqaha, Guizani, et al., 2015). The choice of AMQP and MQTT is due to the fact that they are the most 

suitable for implementing Message Oriented Middleware (MOM); MOMs are beneficial because they 

provide abstraction of the different participating entities (i.e. devices, applications, etc.), easing the 

programmers job of communicating these different components. 

The basic concept of MOMs is that messages are added to a queue so that they are delivered 

to the interested components of the system, the advantages of this type of arrangement is that the 

identity of the elements can be defined in an abstract way and not needing to know the physical details 

of it. The protocols used (AMQP and MQTT) are the most relevant for use in MOMs and have similar 

approaches with some key differences. AMQP has a producer/consumer model that is like MQTT but 

that allows messages of any size and have a fixed header (unlike MQTT with the minimum header 

being 2 bytes but capable of having 5 bytes in total). 

The tests conducted in (Luzuriaga, Perez, et al., 2015) measured jitter in the messages sent by 

producer/publisher and received by the consumer/subscriber on two different devices simulating 

unstable or mobile networks. From the tests MOMs not only allow for a layer of abstraction that helps 

integration of different IoT elements easier, but that they are a reliable form of communicating 

information even in unreliable networks, such as mobile ones. An interesting conclusion is that while 

both protocols have a similar robustness to operate under these networks AMQP offers more aspects 

related to security, in other words, assuring the correct reception of messages, while MQTT is more 

energy efficient, and most likely could have a better throughput. 

Even though AMQP and MQTT are very similar in many respects, MQTT has the advantage of 

being a more mature protocol with implementations in many languages and more research being done 

on it. The works presented in (Yokotani & Sasaki, 2016), (Chen & Lin, 2014), (Asghar & 

Mohammadzadeh, 2016), (Luzuriaga, Cano, et al., 2015), (Thota & Kim, 2016), (Nicholas, n.d.), and 



33 
 

 

(Doukas et al., 2015) study how MQTT compares to different protocols, how it operates in different 

types of networks and some elements like power requirements that are critical to the operation of the 

IoT. 

In (Yokotani & Sasaki, 2016) MQTT is compared against HTTP, the most widely used protocol 

in the conventional internet. HTTP has a symmetrical nature that works well in standard web 

applications, a client requests data, the server returns the request a moment later, this operation is 

not suitable to the IoT due to some of the end nodes (the devices) just sending data, like sensors. 

Because MQTT has an asymmetrical architecture, if a device needs to send a message it only requires 

sending it and doesn’t have to wait for a reply from the other device. The configuration (Yokotani & 

Sasaki, 2016) proposes for illustrates exactly how MQTT works and how it could be deployed for a 

given IoT application, figure 2.1 shows this. 

 

Figure 2.1 – System configuration for an IoT application using MQTT (Yokotani & Sasaki, 2016) 

It can also be seen in (Yokotani & Sasaki, 2016) that MQTT requires less bandwidth to send a 

message, this is because of the overhead HTTP has due to headers, even when payload is incorporated 

into the messages, the difference of bytes required between MQTT and HTTP is big. It is important to 

note that for both protocols the number of devices operating affect the number of bytes being used, 

which is an intuitive effect. 

Other advantage observed in MQTT is the fact the server resource usage for MQTT tends to be 

lighter than HTTP which means that for a system configuration MQTT would be able to support more 

devices connected to the broker. An interesting phenome-non can be seen when the size of the topic 

increases, there’s a point when there is a sufficiently large topic, in the case of (Yokotani & Sasaki, 

2016)is shown to be 680 bytes for 10 devices connected and a payload size of 0, the overhead of HTTP 

is smaller than that of MQTT. 

Another important advantage of MQTT is the fact that since it operates over TCP, it can be 

integrated on standards that naturally work with HTTP. On (Chen & Lin, 2014) an MQTT broker is added 



34 
 

 

to a OneM2M server to act as a gateway between devices that work with MQTT and those that work 

with the standard. OneM2M is a standard supported mainly by ETSI (oneM2M, 2019), which aims to 

be network independent and able to interconnect different devices and enable communication 

between them, the most popular implementations of OneM2M are openMTC (OpenMTC, 2016) and 

OM2M (OpenM2M, 2015). 

Even though OneM2M does support operations with MQTT, the frameworks described before 

don’t have an implementation of the MQTT binding described in the standard. Once again it can be 

seen that from an end device standpoint, the use of an asymmetrical protocol like MQTT allows for a 

more seamless integration, since a lot of IoT devices are usually delivering data (in the form of sensor 

data). The bridge proposed by (Chen & Lin, 2014) maintains a lot of the important characteristics of 

OneM2M, like the data containers and a resource tree that can be translated from the standard to all 

the devices communicating via MQTT. 

Once again comparing the performance of MQTT with HTTP (both being used within the 

confines of the OneM2M standard), the latency generated from MQTT is much lower than the one for 

HTTP with two different parameters: first with a lot of threads that emulate different devices, and later 

with an increased payload size (fixing the number of threads). In both tests the results are consistent, 

MQTT experiences less latency. 

Continuing with the study of MQTT, (Luzuriaga, Cano, et al., 2015) proposes a decoupling 

mechanism of an inter-mediate buffer to the conventional implementation of MQTT. The choice of 

MQTT is supported by the work done in (Collina et al., 2014) which suggests the use of this protocol in 

the presence of high delays, and the use of CoAP when the data traffic increases significantly. The 

modification proposed uses an intermediate buffer to store the messages that the broker will need to 

send, if a connection is broken the messages aren’t lost because they are stored in the buffer. This 

arrangement benefits greatly MQTT messages that are being sent with a QoS level of 0, since this 

creates a new level of security for the message delivery. 

As can be seen from the results in this work (Luzuriaga, Cano, et al., 2015), the messages are 

delivered without loss, and most importantly with a network that might not be completely stable. 

Furthermore, the Jitter generated from such a network falls within acceptable values. 

One last work comparing MQTT is presented in (Thota & Kim, 2016) in which it is compared 

with CoAP, another lightweight protocol commonly used in resource-constrained devices, that runs 

over UDP instead of TCP. The authors in this work used a resource-constrained device, the ESP8266 

which has a 32-bit processor as well as a WiFi radio, which makes it an ideal platform for an IoT end 

device.  



35 
 

 

The tests show that both protocols work with 100% reliability, even when packet loss is 

induced, which shows the capabilities of both for retransmission. One caveat with the retransmission 

capabilities of MQTT is that by increasing the QoS level, the application performance suffers for an 

overhead increment (Luzuriaga, Cano, et al., 2015). 

Other crucial point of research within the IoT is the application side, a lot of work has been put 

into deploying diverse types of applications. This research is important since it highlights the needs in 

terms of how different computing platforms are used in these applications, as well as the data 

structures and reliability needs. 

As was discussed earlier the IoT is expected to affect every aspect of society, so different 

markets and segments have diverse needs; the work presented in (Koch & Ph, 2017) shows how the 

IoT could be beneficial for the electrical grid, the so-called smart grid. A Raspberry Pi (Raspberry Pi - 

Teach, Learn, and Make with Raspberry Pi, n.d.) is used as the end device to monitor the status of a 

specific part of the grid, and report it to a server, the cellular connection also allows for the device to 

receive up-dates if there are any. The advantage of using a Raspberry Pi is that it is a resource-rich 

device which means that it is compatible with the whole TCP/IP suite, so for this scenario the use of 

HTTP is possible. 

It can be seen that several segments are still in a more immature stage of development, one 

example of this is agriculture which is explored and developed in (Kamilaris et al., 2016) by proposing 

a IoT framework. This framework attempts to model real sensors in the middleware through semantic 

extraction of the values, to allow for an easy integration at the application level. Since there are no 

middleware deployments targeting the specific agriculture segment, it is a novel an interesting 

approach, even though it reveals a more generalized problem, of application protocol independent 

solutions. 

In the work presented in (Campo et al., 2016) a solution is proposed in the healthcare segment, 

once again the use of middleware is presented as the best solution of integrating all the devices 

working in Ambient Assisted Living (AAL) for elderly people with some sort of mental disorder (in this 

particular case dementia). The authors analyze different frame-works used for the healthcare segment, 

finally concluding that all application cases require active user input (e.g. performing a blood pressure 

movement), also as in the case of (Kamilaris et al., 2016) no middleware implementation presents a 

truly universal integration, which contributes to fragmentation in the IoT. 

The authors of (Campo et al., 2016) propose a middleware using MQTT, once again because its 

asymmetric architecture allows for an easy transmission of messages. Also, because the destination is 

a topic and not a physical address, MQTT allows the decoupling of the network protocol from the 



36 
 

 

application, which helps the programmer focus more on application logic. Of note is that the authors 

show two different type of applications for IoT: applications for ambient data collection and analytics, 

and real time reactive applications. The former collects data for later analysis, with emphasis on 

statistics and trends, while the latter deals with real time decision making based on the most recent 

data. Even though this classification exists, both categories are not exclusive amongst themselves, 

which allows for an application to require both types of operation. 

Also, on the topic of applications the authors of (Bondarevs et al., 2017) propose the concept 

of virtual things, which are a virtual model of a real IoT device. The main advantages of this approach 

are the extended capabilities the virtual object has (e.g. larger memory), because the hardware 

limitations that the real object has are eliminated within the virtual environment. The second 

advantage to this is that any application will interact with the virtual object and not the real one, once 

again decoupling the underlying hardware components from the application, allowing for an easy 

integration. 

In this work, this characteristic is more prominent because the architecture is laid out in a way 

that makes any interface with the IoT devices irrelevant to the application and allowing a faster and 

seamless integration. The approach proposed in (Bondarevs et al., 2017) is shown in figure 2.2, where 

separation of the applications and devices is done at the middleware level, thus allowing direct 

integration. The downside of their approach is that IP addresses (both IPv4 and IPv6) are re-quired to 

identify each virtual object, which means that some type of discovery protocol is need-ed to work 

alongside the middleware, adding to its complexity. 

 

Figure 2.2  –  Proposed architecture for virtual IoT (Bondarevs et al., 2017). 



37 
 

 

In (Kamilaris et al., 2016), (Campo et al., 2016), (Bondarevs et al., 2017) the concept of semantic 

extraction is mentioned and as it has been dis-cussed, semantic extraction is a crucial topic to convert 

the raw data from the end devices into information that can be used in services. Another approach for 

semantic extraction is developed in (Wagle, n.d.) in which a classification-like algorithm is used to 

extract relevant information for a weather application. The algorithm has a lot of similarities with a 

machine learning project in that there’s a training set that allows the algorithm improves its 

performance over time. The semantic extraction was made easier by the usage of MQTT, in which the 

topics that come with every message can be also parsed to determine the type of data being received. 

On the same subject of semantics (Mohalik et al., 2016) addresses the critical fact of 

interoperability, referring to the interoperability in data and not in protocols as their work assume that 

part has been achieved. The concept of interoperability as defined by them is “the ability to exchange 

usable data between two systems and to invoke their services using the appropriate parameters”, this 

means that all devices within the IoT, including the applications, have a common understanding of data 

flowing throughout every element in the network. (Mohalik et al., 2016) also proposes a system that 

is dynamic since not only interoperability is important but also the ability to adapt to constant changes 

in the application requirements that need to be reflected in the middleware. 

One other important topic to consider in IoT and that recently has been getting a lot of 

attention is security. Although security is a problem that have different angles of solutions, there are 

several works trying to solve the various parts of the security issues that are prevalent in IoT. For 

instance, one of the significant issues is firmware update of the devices; this is critical since software 

will inevitably present bugs that could be used as exploits to access the system in an unauthorized way, 

or even worse, use of these devices as part of a botnet to cause damages to other system; this actually 

has happened and had serious consequences on several aspects of modern life (Brian Krebs, 2016). 

One of the works that addresses this particular issue is (Koch & Ph, 2017), where the case for software 

updates on the end devices is considered on its design, this intrinsically secures the system in terms of 

correcting bugs in any deployed device as soon as they’re found. 

Other approaches to security are done at the protocol level. From previous works it has been 

shown that MQTT is one of the most viable application protocols for the IoT, due to its simplicity in 

generating a network, and the asymmetrical architecture allows for almost in real time data for devices 

that are connected and assurance that messages will get to the devices that are unavailable at the time 

but will connect later. 

In that regard, (Singh et al., 2015) proposes a modification to the MQTT and MQTT-SN (a 

version of MQTT for sensor networks) that aims to lower the processing overhead required by some 



38 
 

 

other proposals by using encryption based on attributes, this allows that only de-vices that satisfy 

those attributes get the messages they are subscribe to. This is possible because in ABE (Attribute 

Based Encryption), the key is generated with those attributes as inputs, the other aspect of this 

approach is that encryption uses 128-bit AES. The results on this work shows that depending on the 

type of encryption (use KP-ABE vs. CP-ABE), the key size and the number of attributes used at the time 

of the encryption can increase considerably. Even though this approach is an interesting one, it might 

not work very well on resource-constrained devices, where memory and processing resources are 

extremely limited. 

Another approach is proposed in (Mektoubi et al., 2016) in which MQTT is coupled with RSA 

type encryption which allows for a more secure communication. The reasoning behind the approach 

is that SSL and TLS (which MQTT supports due to being run on top of TCP), are insufficient to support 

a truly secure communication. In order to address these issues, the authors propose the use of a 

Certificate Authority (CA) as means of authentication and the elliptic curve algorithm for encryption to 

ensure that all communications remain safe. 

  



39 
 

 

 METHODOLOGY AND REQUIREMENTS FOR THE PROPOSED SOLUTION 

 

As it has been previously discussed, one of the main factors for greater adoption of the IoT is 

its ability to create horizontal integration which allows for applications being developed by third 

parties, with no required knowledge of the underlying components. This approach is what allowed the 

traditional internet to grow to the point to where it is right now. 

This integration also needs to work with different types of end devices, both resource-rich and 

resource-constrained, with the consideration that in the case of resource-constrained devices it might 

not be possible to use the same type protocols to communicate between them. Regardless of that our 

solution should be capable of guaranteeing interoperability between de-vices and allowing the 

applications to interact with them regardless of the underlying networks. 

One other important requirement for this solution to work correctly is that it should sup-port 

both categories of applications: data collection and analytics, and real time, if the applications require 

or support it.  

With all these considerations, the proposal we present is a middleware component that allows 

several types of IoT devices to connect to applications and to other end devices, with the capabilities 

of extending the end devices in terms of memory mainly, especially when hardware doesn’t allow for 

the storage of large amounts of data. Also, the middleware being proposed will allow connection 

between different IoT devices, applications and allow it to be protocol independent at the application 

level. 

The best approach as can be seen from previous works is to use a middleware as a bridge 

between end devices and applications. Specifically, the middleware needs to fulfill the following 

requirements: 

• Ease of integration for both applications and end devices. This requires that programmers 

on both ends of the solution don’t need to consider any other element with-in the system. 

• Decoupling of application logic with the underlying workings of the system. Since the goal 

of the system is allow for an effortless application integration, this element is of 

importance. 

• Consideration of heterogenous devices participating within the system. Considering how 

many diverse types of devices can operate in the IoT, and that each device might be 

sending different types of data and more importantly, different types of data for-mats, the 

middleware should have a way to model this behavior while allowing devices and 

applications reading this data structures to extract only the relevant parts for them. 



40 
 

 

• Capacity of every element in the system to allow real time applications as well as big data 

applications. This can help reuse data from sensors into different types of applications 

which might have different requirements; furthermore, this keeps the system as flexible 

as possible, which in turn fosters integration. 

All these requirements will be considered as the proposed solution. The design of such solution 

is presented in the next section. 

 

3.1 MIDDLEWARE DESIGN 

The middleware proposed in this work contains two main parts: a data warehouse, or 

repository, that contains a data structure that models the devices and extends the memory on them 

to allow historic sensor data stored in the middleware for any application or device needing it to 

retrieve it. The other component is a protocol connector to allow different types of application 

protocols to operate with the middleware directly. Figure 3.1 shows a diagram of the proposed 

middleware. 

 

 

 

Figure 3.1 – Middleware functional diagram 

The connector operates at the application protocol level since it is assumed that any end device 

running on the network will operate over TCP/IP as most devices, either resource-rich or resource-



41 
 

 

constrained, support any of the application protocols that run on top of TCP. Because of this connecting 

between devices is straightforward since all the different types of application ports talk to a central 

component that converts the specificities of the protocol to generate a common device and data 

model. Figure 3.2 shows how this connector operates. 

 

Figure 3.2 – Connector component architecture. 

Although the middleware supports different types of protocols, special emphasis is made on 

MQTT as the main protocol for the end devices, and real time operation of the applications. The 

selection of MQTT over any other application protocol comes from the fact that it is currently widely 

used in the literature and accomplishes the following goals: 

• Minimum number of components to start a network of IoT devices. 

• Small code footprint and complexity to accommodate devices of any size in terms of 

memory and processing power. 

• Ease of reach in regards of deployment over different locations. 

• Because the addressing is done in regards of topics and not IP addresses, identification of 

individual devices can have a simpler structure and allows for a better organization of 

devices individually and in groups. 

• Easy application deployment over different networks and different groups of devices, the 

data structure should be enough to know device capabilities. 

• Storage capabilities of gathered data for any application that requires it. With different 

QoS it is possible to maintain the messages in the broker until all recipients get them. 

 

Because of all of this it is assumed that most end devices will communicate over MQTT since 

the requirements for their operation are minimal. A quick survey of available libraries in different 

architectures reveal implementations for the most common one, of interest is the one for Arduino 



42 
 

 

based on the AVR architecture. The PubSubClient library is particularly popular and well suited for IoT 

operation (Arduino MQTT Client, n.d.).  

For deployments where all end devices are communicating via MQTT, any other proto-col 

connectors can act as bridges between the protocol in question and MQTT. Due to the low bandwidth 

operation of MQTT this doesn’t impact negatively on the operation of the whole network and simplifies 

the structure of the central component as this would merge the MQTT port as well as the component 

that passes on the received data to the repository for storage or registration.  

Independently of the protocol used the message’s payload will be encoded in the JavaScript 

Object Notation (JSON). JSON is a format for storing and exchanging data with a human readable 

format, with the data organized as a key/value pair and an ordered list values (JSON, n.d.); JSON is a 

data format that is easy for devices to parse, and easy to programmatically assemble and send. The 

criteria used for selection of this data format is that is supported in most languages and in most 

architectures; it is also less verbose than XML, which means that it uses less memory, a condition 

critical for operation in resource-constrained devices. Finally, most JSON parsers tend to be faster and 

with a clearer syntax for a JSON structure than XML which alleviates the programmer’s job.  

The use of JSON allows the modeling of the end devices and applications with a com-mon 

language, while allowing for flexibility to accommodate heterogenous devices, which are common in 

IoT environments. To be able to model the devices and the data associated with them, the repository 

handles a resource tree structure, where every de-vice or application has a base element associated 

to it that contains all the information regarding that element. Figure 3.3 shows this data structure. 

 



43 
 

 

 

Figure 3.3 – Resource tree data structure 

Each element within the resource tree contains two categories: an element descriptor which 

models within the middleware a real object or application, and a data container that has each data 

entry that the device or application wishes to write to the repository. The descriptor only has a few 

fixed elements, that indicate the id of the device, type of device and the actions that the device can 

receive (this would correspond to the commands); besides these fields, any device can add additional 

fields that increase the description of the device. Any end device or application that requests 

information on devices matching the criteria, would simply need to parse the fields of interest to know 

about that device.  

The data container groups all individual data entries that any element (end device or ap-

plication) sends to the middleware, the idea is that the element model extends the memory capacity 

of the real element through the data container, which allows for applications that require data 

aggregation and analysis through access to a single data repository. This will accomplish two things: all 

applications can access one point of entry without having to identify the individual containers of data, 

the second part is that through the use of the container the methods for accessing the data are 

uniformed which once again makes application integration easier.  

Regarding the communication of end devices and applications to the middleware, a simple 

method for communicating with the middleware is employed that is reminiscent to the RESTful 

approach of HTTP; in it there are a limited number of simple operations that allow to read and write 



44 
 

 

to the software (usually a server). The middleware uses two types of operations: set and get; with set 

being used to write data to the middleware and get being used to reading data from the middleware.  

The process for every element within the network to operate follows this procedure: each 

element upon initiating is required to register with the middleware by sending a message encoded in 

JSON that has information of the element. Upon reception, the middleware sends an 

Acknowledgement indicating that the registration has been confirmed and that the element’s 

information is stored for any other element or application to request it in the future. Figures 3.4 and 

3.5 show the registration process and the contents of the JSON. 

 

Figure 3.4 – Registration operation with the middleware. 

 

Figure 3.5 – Example of message encoded in JSON. 

From figure 3.5, a registration is marked by the ‘type’ field of the data the encoding has, which 

shows that the element is trying to write a descriptor to the middleware which would signify a 

registration. The reply from the middleware would be an acknowledgement of the registration or a 

message indicating that the device has already been registered within the middleware. After the 

registration is done, the device can proceed to read and write data from the repository. The ‘value’ 



45 
 

 

field in the message contains the actual descriptor that will be stored, in other cases this field will 

contain other types of objects that can be written in the middleware.  

With the case of reading data from the middleware there are two different scenarios that must 

be considered: real time data sent directly by end devices, and historic data that is contained within 

the middleware.  

The first step to do any type of operation with the devices and data in the network is to set up 

a registration or to send a get operation to the middleware. For example, to get real-time data from 

any device it is necessary to send a get message to the middle-ware with the ‘type’ field having the 

value “descriptor” in it, this instructs the middleware to return all devices that match the criteria 

located under the ‘value’ field. Once the application gets the information of all devices meeting the 

criteria it can then subscribe to their ids as topics on MQTT and receive the data readings directly. 

Figure 3.6 shows the message encoding for this type of search. It is important to note that MQTT is the 

protocol of choice for real time data operation due to the low overhead and asynchronous nature of 

the protocol, which makes any message sent from a device to be instantly available to any subscribers. 

 

 

Figure 3.6 – Data encoding for searching devices. 

The second type of get operation gathers information from the middleware directly from 

historical data that end devices might have sent. In this scenario, a get message is sent to the 

middleware with the parameters of the search as the ‘value’ field. The middleware will respond with 

the data in the ‘value’ field encoded in JSON inside of that field, after this point the application can 

extract the data for its own use.  

Regarding the IDs of every element of the network, a three-field ID is used in the form of 

domain/group/device. This arrangement allows messages to be broadcasted to the whole domain of 

element (when using MQTT) or group or direct communication with the device. 



46 
 

 

 IMPLEMENTATION AND ANALYSIS  

 

To ensure that the proposals made in the previous chapter are valid, it is necessary to 

implement them and test the functionality of the proposed components, as well as its performance 

relative to other platforms with similar objectives. 

This chapter presents such implementation and analysis of the workings of the proposal in the 

following manner: first the implementation of the proposed solution of the previous chapter is shown, 

this implementation considers a real world scenario that uses a combination of resource-rich and 

resource-constrained devices to understand the impact of the solution on a variety of conditions. 

The second part includes an analysis of the results on this implementation to understand the 

impact the implementation decisions play in subjective analysis only. This implementation will be 

carried on to the next chapter as well, where more objective tests will be performed to fully asses the 

implications of the proposal. 

In order to evaluate the middleware design, an IoT system will be implemented with several 

components that could be considered typical within any IoT application. To this end the middleware 

will connect to two different sensors: one temperature sensor that will report to an application, and a 

PIR to report to an actuator, to simulate a motion sensor and a lighting controller. Finally, a web 

application will serve as a Human Machine Interface (HMI) to the entire system. 

To test the design in a more real environment the middleware will be hosted in a server 

operating in a different network, specifically in an Amazon Web Services (AWS) Virtual Private Server 

(VPS), which would allow IoT end devices from different locations to connect an interact on the same 

IoT application. 

On the part of the end devices the implementation will consider two different sensors and one 

actuator. The idea is to provide different type of devices that would normally appear on regular IoT 

applications; towards this end, the two sensors will be resource-constrained devices and the actuator 

will consist of a resource-rich device. For the re-source-constrained devices two ESP8266 modules will 

be used because of the current popularity of such SoCs which makes them a great example of how a 

resource-constrained device operates within any IoT application. 

For the actuator, a Raspberry Pi is selected; this sort of device can be considered re-source-

rich because the processing and memory capabilities of the device allow it to run an operating system. 

A diagram showing a layout of the entire system being implemented in figure 4.1. 



47 
 

 

 

Figure 4.1 – Layout of the design’s implementation. 

As can be seen in figure 4.1 a web application will be used as the user interface for the system, 

with the ability to operate the actuator directly, as well as receiving temperature information in real 

time and getting historic data, in this case in graph form, any other input required could be easily 

programed into the web application directly. The web application interface is shown in figure 4.2. 

 

Figure 4.2 – Web application interface. 

The web application was written in JavaScript, which is the only language that natively supports 

front end web application development. The web application uses both HTTP and MQTT to interact 

with the middleware, leveraging both protocols strengths to different use cases, in the case of historic 

data which most likely will have a large payload, something for which HTTP was designed for. For the 



48 
 

 

MQTT components, a broker must be used along with the MQTT connector. For the broker the 

Mosquitto broker was selected (A Light, 2017) due to it being open source, greatly documented and 

having ease of integration with different types of programming languages. 

In the case of MQTT special consideration must be taken due to JavaScript not working on 

regular sockets and requiring web sockets to be implemented. This poses a problem to the middleware 

design as elaborated in chapter 3, since most traffic will come from port 1883 as a regular TCP socket. 

In order to overcome this, the MQTT broker that is implemented can listen to regular TCP sockets as 

well as web sockets, when a MQTT message is published via the TCP socket, it is also retransmitted to 

the web sockets. One issue with this approach is that the MQTT broker is unable to retransmit MQTT 

web socket messages to the regular TCP socket subscribers, one solution could be an external MQTT 

bridge to connect both types of messages, for the purposes of this solution such arrangement is 

unnecessary because the web application will send messages through HTTP and only listen to real time 

data over MQTT. 

On the side of the middleware, this is implemented on an AWS VPS running Ubuntu, with two 

different connectors implemented: one for HTTP and one for MQTT. The HTTP connector was 

developed using the Flask framework for Python, because of Python’s versatility and its ease of 

integration with the repository core, with an Apache server integration so it can handle traffic without 

issues. 

The MQTT connector was implemented using the Paho MQTT module for Python (Python, 

n.d.). Once again, a Python implementation was chosen for ease of integration with the repository 

core. The MQTT connector works a subscriber to the whole MQTT application network using a topic in 

the form “network/#” where the # symbol implies that the sub-scriber will get any messages that start 

with the topic “network/”. To determine whether the message was intended for the middleware, the 

full topic will be analyzed within the connector logic and compared to complete identifier for the 

middleware. 

Since MQTT is not a protocol that directly supports a request/reply for a one on one 

communication, it must be adapted to allow steps like registration, that uses a request from an end 

device or application to the middleware and expect a reply from the middleware, to be per-formed 

along the normal operation of MQTT. The proposed modification uses the topic as the destination 

indicator, this would work as the equivalent of the address in similar protocols, which allows the 

subscribers to instantly know when a message is intended for them; while the sender identification is 

embedded within the payload as part of the message, this way if a reply is necessary, the client only 

needs to check the message to verify to whom the message must be sent to, this last part can be seen 

in figure 4.3 where part of the message indicates an owner field. 



49 
 

 

 

Figure 4.3 – Message structure for the application. 

The repository core is the final part implemented in the middleware, this component is 

responsible for accessing the stored data on the middleware as well as registering new devices and 

fulfilling requests being forwarded by the different connectors. The core was written in Python which 

allows direct integration between the connectors and the core. 

One of the main elements of the repository core is the database that contains all end de-vices 

and applications registered, as well as all the data sent by all the end devices. To accommodate the 

flexible and variable data that has to be stored, a NoSQL data-base is selected since it is better at 

handling unstructured and unpredictable data, even though it is expected that all the data will follow 

some sort of format, as explained before, because there are different types of end devices that 

generate data in different ways many more fields could appear for any one data entry, therefore it can 

be said that the data won’t follow an extremely specific format. 

To implement the database MongoDB was selected (MongoDB, 2018). MongoDB treats data 

entries as documents, with a group of documents being called a collection. The main advantage of this 

specific database for the implementation is that documents are stored in a dictionary or JSON format, 

which is a native type of data for Python; this makes integration of the database straight-forward while 

allowing the flexibility that the solution requires.  

Communication between components of the implementation will proceed as follows: the 

temperature sensor will send its measured data to the middleware for storage, the movement sensor 

will send data whenever movement is detected, this will not be stored in the middleware; to signal this 

behavior a field within the payload of the message will indicate this. This difference in behavior shows 

that different applications require different ways of handling data, should every instance of presence 



50 
 

 

needs to be stored in the middleware for analysis purposes, a change in the payload field is the only 

change needed for the payload to modify how this sensor data is handled. 

The Raspberry Pi working as an actuator will, immediately after registering in the system, 

request all the registered sensors, matching the type of sensor and group that the actuator requires. 

In this case, there is only one movement sensor so the only criteria that will be searched is the type of 

sensor, which is expected to return just one element; however, it might be necessary to narrow the 

search criteria by location or other property defined in the descriptor, which would allow the actuator 

to react only to certain presence sensors that are near it. Once these initial steps are complete, the 

actuator operates under two different scenarios: the first is to modify the status of the LED depending 

on the values of the movement sensor, this allows for an “automatic” operation of the actuator. The 

other scenario is by commands sent from the web application; in this case the communication is sent 

directly from the application to the actuator via the HTTP connector which translates it to MQTT for 

transparent operation. Figure 4.4 shows a diagram illustrating the actuator’s behavior. 

 

Figure 4.4 – Actuator’s operating behavior 



51 
 

 

The last component is the web application, which is the interface with the users. The web 

application requests data on all temperature sensors available to the middleware, in this case the 

query would return only one element, as well as all actuators. In the case of the actuator, its 

registration exposes all the commands that the actuator can receive, figure 4.5 shows how this 

information is received by the web application. 

 

 

Figure 4.5 – Actuator registration structure 

As can be seen from this, the actuator has an actions field in its descriptor object that in-forms 

of the possible actions that can be performed on it. This allows any application requiring using a specific 

type of device to search for devices that not only match the type and subtype criteria, but that also 

have the actions desired for said application. 

Regarding the temperature information, the web application parses each message received to 

determine whether the data is coming from the temperature sensor (since the sensor itself has the 

middleware id as its topic) and if it’s a message from the sensor uses it to display the current 

temperature. The web application also can get historical temperature data, this is done via the HTTP 

connector in the middleware, using a range of timestamps as the search criteria inside the repository. 

  



52 
 

 

 RESULTS AND DISCUSSIONS  

5.1  LATENCY AND JITTER TESTS 

To ensure the implementation and design support the hypothesis presented, some tests have 

been conducted on the implemented system from the previous chapter, these tests focus mainly on 

the performance of the components. In this section latency and jitter, as well as power consumption 

tests, will be conducted to determine how the components perform within the IoT application. 

One of the requirements for this IoT application is the ability to gather information in re-al 

time, this is particularly critical to actuators that act depending on conditions reported by other 

sensors. Real time requires that information from sensors arrive at the actuators almost instantly; 

because of this, any protocol to be used must ensure a very small time to arrival.  

In order to verify that the protocols proposed in the implementation satisfy this re-al-time 

requirement a series of latency tests are conducted. The protocols to be analyzed are HTTP and MQTT, 

for both a python script runs several messages with the data structure showed in the previous section 

and measures the time the message arrives.  

To ensure that latency is measured correctly and that the result can be comparable be-tween 

both protocols the MQTT implementation will consider a round trip for the message, that is, the 

publisher will be subscribed to the same topic it will be publishing to; this is required since every HTTP 

transaction has a request with a reply, something that MQTT was not de-signed to do. 

Two different tests have been performed on both protocols: the first test will be done in a local 

area network, the objective in this case is to account for any effects elements outside the network 

could contribute to further latency. Figures 5.1 and 5.2 show the effects of the Latency in the local 

network settings.  

In the case of the local area network test, the results will show a better performance with the 

HTTP protocol as opposed to MQTT. This is result is counterintuitive, since MQTT is expected to have 

better performance, however the explanation and results on the external networks will reinforce the 

preconception that MQTT performance is better, which will show that the asymmetrical nature of 

HTTP can improve its performance in local networks. 



53 
 

 

 

Figure 5.1 – HTTP POST request latency measured over local network. 

 

Figure 5.2 – MQTT round trip latency measured over local network 

Over the local network the testing shows HTTP with a lower average value of 19.2 ms, 

compared to the MQTT roundtrip average value of 49.72 ms. As expressed before, this result seems to 

contradict what other works have already discover, such as (Yokotani & Sasaki, 2016). The reason for 

these results comes from the following fact: the payload in the MQTT operation is symmetrical, 

meaning that the amount of data in the response’s body is the same as in the request’s body. This 

doesn’t happen in the HTTP request, since HTTP already considers two messages in every transmission: 

one for the client and one for the server, making the operation asymmetrical. In the case of MQTT we 

need to create this functionality.  

0

10

20

30

40

50

60

70

80

1 5 9

1
3

1
7

2
1

2
5

2
9

3
3

3
7

4
1

4
5

4
9

5
3

5
7

6
1

6
5

6
9

7
3

7
7

8
1

8
5

8
9

9
3

9
7

La
te

n
cy

 (
m

s)

Message

Local POST Request Latency

0

10

20

30

40

50

60

70

80

90

100

1 5 9

1
3

1
7

2
1

2
5

2
9

3
3

3
7

4
1

4
5

4
9

5
3

5
7

6
1

6
5

6
9

7
3

7
7

8
1

8
5

8
9

9
3

9
7

La
te

n
cy

 (
m

s)

Message

Local MQTT Round Trip Latency



54 
 

 

An interesting metric that is also observed is that the minimum value for both protocols is 10 

ms, which would suggest that even with more payload bytes on the round trip, the small overhead of 

MQTT messages is ideally suited for sensor applications and real-time information. These results 

complement the findings of (Yokotani & Sasaki, 2016) in which the overhead of HTTP is always greater 

than that of MQTT, with a comparative number of devices. The maximum values for both protocols 

show once again that since the HTTP operation is asymmetrical it will show a lower maximum value. 

Table 5.1 shows the results of latency over local network for both application protocols. 

 

 

Table 5.1 – Latency comparison for both application protocols over a local 

 HTTP MQTT 

Average Value (ms) 19.2 49.72 

Minimum Value (ms) 10 10 

Maximum Value (ms) 67 86 

 

The second round of tests operate with a server/broker on a different network. Once again in 

the case of MQTT the tests will measure latency of a round trip, with the amount of payload bytes 

being sent the same as those being received. As in the case of the local network the software being 

run on both client/server publisher/broker/subscriber is the same so a comparison can be made. 

In this second test, the layout of the experiment was done as follows: the 

client/publisher/subscriber devices were on the same network, while the server/broker was hosted on 

an Amazon Web Services Server, located in a different location. This layout was done to simulate what 

a more likely IoT application would encounter, since objects could be dispersed on different locations 

and the application would need to gather data from them remotely. One of the main objectives for 

this test is to check the reliability of MQTT for real-time operations; since it must be considered that 

because of its inherent characteristics, MQTT serves better for small low-bandwidth transmissions. 

Figures 5.3 and 5.4 show the results for latency over different networks, once again for both 

protocols. On these tests, it can be shown that MQTT shows lower latency than HTTP, with values as 

low as 23 ms. The average latency value for MQTT is of 287.41 ms which is consider-ably lower than 

the 443.46 ms average value for HTTP; once again the reply bytes are lower than the transmission 

bytes for HTTP and both tests for the protocols are using the same payload when transmitting data. 



55 
 

 

 

Figure 5.3 – POST Request latency over different networks. 

 

Figure 5.4 – MQTT Round Trip latency over different networks. 

As can be seen from both figures the latency remains at a relative constant value for both 

protocols, with MQTT showing an overall smaller value, something desirable for real-time data 

delivery. Table 5.2 shows also the relevant information of these tests.  

Table 5.2 – Latency measurements of HTTP and MQTT over different networks. 

 HTTP MQTT 

Averge Value (ms) 443.46 287.41 

Minimum Value (ms) 352 23 

Maximum Value (ms) 1433 1076 

0

200

400

600

800

1000

1200

1400

1600

1 5 9

1
3

1
7

2
1

2
5

2
9

3
3

3
7

4
1

4
5

4
9

5
3

5
7

6
1

6
5

6
9

7
3

7
7

8
1

8
5

8
9

9
3

9
7

La
te

n
cy

 (
m

s)

Message

POST Request Latency

0

200

400

600

800

1000

1200

1 5 9

1
3

1
7

2
1

2
5

2
9

3
3

3
7

4
1

4
5

4
9

5
3

5
7

6
1

6
5

6
9

7
3

7
7

8
1

8
5

8
9

9
3

9
7

La
te

n
cy

 (
m

s)

Messages

MQTT Round Trip Latency



56 
 

 

 

As can be seen from comparing the values of table 5.1 with table 5.2, when used over different 

networks, MQTT has lower latency values; this most likely is due to the fact that the connection of 

MQTT is established once and any messages sent after are over an open connection, this reduces 

overhead which has a direct impact on latency. HTTP, on the other hand, has more overhead since for 

every message sent a connection must be established, over different networks this can increase 

latency. 

Another parameter of interest is Jitter, which is the deviation from periodicity for every 

message sent, this is important for real-time applications because data is expected to be received at 

regular intervals. These tests were only conducted over MQTT to further analyze the capabilities of the 

protocol for resource-constrained end devices. A set of 100 messages were sent with-out delay 

between them and calculate the time passed between each message received, figure 5.5 shows each 

message and the time difference between them. As can be seen the jitter remains relatively constant 

with about 100 ms variation. 

 

 

Figure 5.5– Jitter over MQTT. 

With those same results, we use the Cumulative Distribution Function (CDF) to analyze the 

behavior of the jitter. The result of applying CDF to the data shows the percentage of messages that 

fall within a time difference. As can be seen, most messages have the same periodicity, something 

desirable for real-time operation, since the time of arrival for any message is relatively predictable. 

The CDF has been calculated for each message and plotted in figure 5.6. 

0

200

400

600

800

0 3 6 9 1215182124273033363942454851545760636669727578818487909396

Ji
tt

er

Messages

Jitter on MQTT



57 
 

 

 

Figure 5.6 – CDF of Jitter. 

Finally, energy consumption tests are performed on both application protocols to demonstrate 

their reliability for low-power applications. To conduct these tests, the Sparkfun ESP8266 Thing Dev 

board will be used; the choice for this board lies on the fact that currently the ESP8266 is one of the 

most popular System on Chip (SoC) being used in IoT applications, it has a microcontroller and a WiFi 

radio, it has low power modes and falls within the resource-constrained device category. Since the 

device can’t run an operating system, power consumption can be attributed only to the software 

programed expressly for the tests, which allows for a clearer power consumption analysis.  

 

For the test, a readout of the power line going to the device is made, using a shunt resistor to 

get the current flowing to it. Since the voltage values relative to current on the device are low (on the 

order of mV) the AD620 instrumentation amplifier will be used (Analog Devices, n.d.), with the circuit 

being shown in figure 5.7. 

 

Figure 5.7 – Energy measurement circuit. 

0

0.2

0.4

0.6

0.8

1

1.2

0 100 200 300 400 500 600 700 800

F(
x)

x

CDF of Jitter



58 
 

 

Since the element transmitting the data is the same for both application protocols, readings 

on electrical current while transmitting will be the same, which was measured to be of 16.21 mA. With 

the input voltage of 5 V, the power for the device when transmitting would be calculated by equation 

5.1. 

𝑃 = 𝑉 ∗ 𝐼 ……𝑒𝑞. 5.1 

Where V is the input voltage and the I is the electrical current flowing through the circuit, from 

the values measured it can be calculated that the power consumption when in operation to be of 81.05 

mW, this will be independent of the protocol used, since this is the power consumed by the SoC itself 

when transmitting or receiving.  

Since the interest lies in power consumed over time, because this metric can be used to 

calculate autonomy of the device on battery power, it is one of the more telling aspects for the choice 

of application protocol. In this case the time measured for the HTTP request was of 452 ms and the 

time for a round trip MQTT message was measured to be 151 ms, both values are consistent with the 

latency tests performed earlier.  

With those values, the total power consumed during an HTTP request is equivalent to 36.6346 

mW, in contrast an MQTT round trip only consumes 12.23855 mW of power, which is roughly a third 

of the value for HTTP. It is important to consider that the messages used for these tests are the same 

that were used for the latency tests, meaning that in the case of MQTT the message received was of 

the same size of the message being sent, a situation that wouldn’t happen on the middleware 

implementation due to the reply message coming from the middleware being of a smaller size than 

the message being sent by the device. 

A couple of observations that are important at this point: first is that the electrical current 

values obtain from the experiments differ from what can be found in the literature ((User), 2015). The 

explanation for this can be related to the design of the board used for the experiments, since capacitors 

placed on the board charge at the startup, they are probably creating a “cushion” for the current peaks 

on packet operations. Despite this “issue” with the test hardware, the results still maintain the trend 

observed in other works, in which the power requirements of MQTT are lower than HTTP, which 

supports the validity of the tests.  

The second observation is that since MQTT maintains an active connection via a keepalive 

packet, it is completely feasible to use sleep functions in devices for a period smaller than the keepalive 

(which usually is around 5 minutes) and just wakeup to send the data. For specific values, the ESP8266 

SoC has a deep sleep mode which has a current drain of about 10 uA, which is an extremely low drain, 

allowing battery applications to operate even with WiFi (which is usually considered a power intensive 

communications standard). 

 



59 
 

 

5.2   COMPARISON TO OTHER IOT MIDDLEWARE 

 

In the current landscape there are many IoT platforms that promise some level of integration 

with different sensor types. Most major cloud vendors currently offer some IoT platform alternative, 

such examples are AWS IoT Core (Amazon, 2018) and Azure IoT Hub (Microsoft, 2016); while these 

commercial solutions exist, they present a challenge for comparison testing with our proposed 

middleware since they are closed sourced and operate on remote hardware that is unavailable for this 

work, this presents a challenge for testing since the ideal scenario for a comparison in the software 

implementation lies in using equivalent hardware. 

Fortunately, there are open source implementations of IoT platforms that can be installed in 

any hardware of choice that can accomplish the same basic functionality as the commercial solutions. 

Table 5.3 shows the most popular IoT platforms to date. 

 

Table 5.3 – Open source current IoT Platforms 

Platform Device Management Protocols for Data 
Collection 

Installation of 
Additional Protocols 

Thingspeak No HTTP No 

DeviceHive No REST API, Websockets 
or MQTT 

No 

Thingsboard.io Yes MQTT, CoAP, and 
HTTP 

No 

OM2M Yes CoAP and HTTP  Yes 

 

From all the platforms shown, of interest is the OM2M platform due to two rea-sons: first, it 

is a standard which is desirable in the sense that there’s a better chance of adoption and can have a 

larger user base. Second, the modular nature of OM2M allow for the inclusion of more protocols as 

plugins for the middleware, this in turn is comparable to what the proposed middleware allows.  

Because of these reasons the platform of choice to make the comparison tests will be OneM2M 

[20], which currently is one of the most popular standards in use. Since OneM2M is a standard, an 

implementation of said standard is necessary for the tests, in this case the OM2M implementation will 

be used since it’s open source and has support from the Eclipse foundation.  

In order to compare both middleware, qualitative and quantitative analyses will be performed 

like the ones presented in (Pereira et al., 2017). On the qualitative level, we can show that like 

OneM2M the middleware implemented in this work there is a communication model implemented 



60 
 

 

that integrates different protocols with a single method of passing information, likewise the viability 

of the system is considerable as was demonstrated by the tests. Unfortunately, the middleware does 

not comply with the IoT-A requirements which OneM2M does. 

However, for a more detailed approach some quantitative tests will be performed on both 

OM2M and the middleware described here and see how they compare. The information provided in 

(Pereira et al., 2017) details some tests that are performed, here some of those tests will be run that 

can provide information on the performance of the proposed solution in contrast to OM2M. 

Two types of tests will be performed: the first will test the response time of the middleware 

with sequential requests, meaning that at any given point there will only be one request sent at the 

middleware. The round time for each request will be measured to understand how the middleware 

handles this. It is important to note that each request will simulate a sensor sending a data point, this 

is the most common case so it will illustrate better the performance of both middlewares.  

The second test will evaluate how both platforms handle multiple requests simultaneously. In 

this test, response time will be measured again as well as successful requests and failed requests and 

response per second (RPS) to understand how much load both platforms can handle. It is important to 

note, although OneM2M supports the MQTT protocol, OM2M (which says it also supports it) has no 

simple way to implement it, and the documentation is not clear in this regard. Because of this all the 

tests will be done via HTTP requests, which shows similarities with the tests done in (Pereira et al., 

2017).  

The hardware used for both tests is a t2.micro server from Amazon Web Services (AWS), 

located in Oregon, United States. As per AWS specifications a t2.micro Virtual Private Server (VPS) has 

the following: 1 GiB of RAM Memory, 8GiB of storage and 1 Xeon E5-2670 v2 (Ivy Bridge). For 

comparison purposes both platforms will be running on the same VPS, to account for latency (distance 

from the server), and hardware capabilities. 

For the first test 100 requests are sent sequentially to both platforms and the response time 

was measured, the results are shown in tables 5.4 and 5.5 and figures 5.8 and 5.9 for OM2M and the 

middleware respectively. As can be seen results for both platforms are close, with the response time 

for the proposed platform being slightly lower than the one for OM2M. Both requests use JSON as the 

payload’s format. The difference in times responds to a lower number of headers being used in the 

proposed middleware as well as the number of bytes used in the response in OM2M, which is larger. 

It is worth mentioning that according to the tests conducted previously, it is more suitable to use MQTT 

for sensor data due to its lower response times. 



61 
 

 

 

 

Table 5.4 – Results for sequential testing of OM2M. 

 Response Time (ms) 

Averge Value 484.82 

Minimum Value 460 

Maximum Value 720 

 

Table 5.5 – Results for sequential testing of proposed middleware. 

 Response Time (ms) 

Average Value 470.61 

Minimum Value 451 

Maximum Value 675 

 

 

Figure 5.8 – Results for sequential testing of OM2M. 

0

100

200

300

400

500

600

700

800

1 4 7

1
0

1
3

1
6

1
9

2
2

2
5

2
8

3
1

3
4

3
7

4
0

4
3

4
6

4
9

5
2

5
5

5
8

6
1

6
4

6
7

7
0

7
3

7
6

7
9

8
2

8
5

8
8

9
1

9
4

9
7

1
0

0

R
es

p
o

n
se

 t
im

e 
(m

s)

Number of request

Operation time for a single request



62 
 

 

 

Figure 5.9 – Results for sequential testing of proposed platform. 

For the parallel tests, multiple requests are sent in a predefined number of re-quests per 

second until the number of total requests sent is 1000 in all scenarios. The first scenario will send 

batches of 10 simultaneous requests for every second until 1000 requests have been sent, while the 

second scenario will consider 100 simultaneous requests per second. Tables 5.6 and 5.7 show the 

results for both scenarios on both platforms. 

 

Table 5.6 – Results for parallel testing (10 requests per second). 

Parameter OM2M Proposed  
Successful Requests 746 1290 

Failed Requests 1295 1234 
Median Response Time 310 470 
Average Response Time 1166 732 

Min. Response Time 254 229 
Max. Response Time 12980 9536 
Average Content Size 571 64 

Requests Per Second (RPS) 8.07 13.97 

 

 

 

 

0

100

200

300

400

500

600

700

800

1 4 7

1
0

1
3

1
6

1
9

2
2

2
5

2
8

3
1

3
4

3
7

4
0

4
3

4
6

4
9

5
2

5
5

5
8

6
1

6
4

6
7

7
0

7
3

7
6

7
9

8
2

8
5

8
8

9
1

9
4

9
7

1
0

0

R
es

p
o

n
se

 T
im

e 
(m

s)

Number of Requests

Operation time for a single request



63 
 

 

Table 5.7 – Results for parallel testing (100 requests per second). 

Parameter OM2M Proposed  
Successful Requests 86 1314 

Failed Requests 998 22 
Median Response Time 410 470 
Average Response Time 864 479 

Min. Response Time 269 229 
Max. Response Time 3973 1518 
Average Content Size 571 64 

Requests Per Second (RPS) 2.89 156.86 
 

For these tests, the locust.io (Heyman et al., n.d.) tool was employed. This is a Python based 

tool that allow multiple clients to be simulated over a period with as many simultaneous clients as 

needed, and all the behavior is developed via a Python script. The results shown con-sider not only 

response time, but also successful and failed requests, this part is important since response time would 

be measured only on successful requests, which could lead to incomplete results. From the tables it 

can be seen that the proposed middleware gets a better performance than OM2M, especially in terms 

of successful vs failed requests, one of the main reasons for this difference could lie in the way both 

platforms are implemented: while OM2M has a complete Java implementation, that also considers the 

web server and database internally as Java code, the proposed middleware uses off the shelf software 

such as the Apache software for the web server and MongoDB as the database. While the middleware 

core is designed in a modular way, which allow different elements to be swapped and could play into 

creating further delays (this explains in part why the median values for OM2M seem to be better), it 

also makes it better suited for handling higher traffic.  

It is worth mentioning that hardware limitations also play an important role in the in the 

numbers presented in the results, since a bigger amount of memory and a higher number of processors 

could handle a higher traffic. However, from these results and the difference trend that both 

middleware handle traffic at different situations with the same hardware, it can be concluded that the 

proposed middleware handles client data with the same, or even greater, level of performance than a 

standard implementation such as OM2M for the OneM2M standard. 

  



64 
 

 

 CONCLUSIONS  

 

As it is presented in this work, the Internet of Things is poised to become one of the most 

important drivers in just about every human activity by interconnecting objects and providing more 

data and information about ourselves and our environment. Unfortunately, the current state of affairs 

make horizontal integration of applications extremely difficult, because of the different types of 

protocols and data formats that exist. 

In this work, a framework for horizontal integration is proposed, with a middleware acting as 

the core component for such an integration, with the capacity to allow different data structures to be 

used thanks a to a simple but flexible format. As is seen from the design, the middleware can support 

multiple protocols thanks to its modular design which allows to adapt different types of protocol 

connectors to the middleware core. This is one of the first elements necessary for horizontal 

integration. 

From the tests and implementation, it can be concluded that this framework also allows 

different types of devices to operate within the same system, another requirement for horizontal 

integration, since applications running on different types of platforms (web applications, mobile phone 

applications, etc.) need to coexist with the different types of sensors, which can be running on 

resource-rich or resource-constrained devices. 

It is concluded as well that the framework works extremely well for resource-constrained 

devices due to the use and integration of different application protocols, which allows to select the 

most appropriate protocol for each type of device, depending on its function and resources available. 

Also, it is concluded as well that the support for different types of applications, namely real-time and 

ambient collection and analytics type of applications can be achieved again due to selection of 

appropriate protocols and the flexibility of the middleware core to store different types of data formats 

within a simple structure. 

When compared to another mainstream platform, such as OneM2M, the framework, and the 

middleware that operates as the core component, is a suitable alternative for IoT deployment. It is of 

interest since compared to OneM2M, the code footprint for end devices, which are commonly 

resource-constrained sensors, is smaller and the need for middle elements such as gateways becomes 

less critical or necessary.   

Finally, it is concluded that the framework, thanks to the use of a middleware as a central 

component, allow horizontal integration of applications to IoT systems without the need of 



65 
 

 

deployment of all the layers of the application, something currently available in the traditional 

internet, which will allow even better and more widely use IoT applications. 

 

 RECOMMENDATIONS AND FUTURE WORK 

 

Even though it has been shown that the middleware works as expected and pro-vides an 

effective way of integrating application into existing IoT infrastructure, improvements on the 

middleware and the framework can be made.  

One such improvement should be the use of an element to assign an ID to every element that 

registers in an automatic way, this could work similarly as how DHCP operates in an Ethernet or WiFi 

network. Since there is a registration phase within the framework, it is entirely possible to add an auto-

assign element that could give IDs to every element that requests such functionality. 

Another future work to be consider is the addition of more application protocols and the 

corresponding analysis of how additional protocols impact performance on the middleware. Finally, 

the use of other standards such as IEEE 802.15.4 to analyze ease of integration to IoT applications using 

more widely used standards such as IEEE 802.3 and IEEE 802.11. 

 

 

 

 

  



66 
 

 

BIBLIOGRAPHY  

 

(User), E. (2015). ESP8266 Power Consumption - ESP8266 Developer Zone. Http://Bbs.Espressif.Com 
Forum. http://bbs.espressif.com/viewtopic.php?t=133 

A Light, R. (2017). Mosquitto: server and client implementation of the MQTT protocol. The Journal of 
Open Source Software, 2(13). https://doi.org/10.21105/joss.00265 

Al-Fuqaha, A., Guizani, M., Mohammadi, M., Aledhari, M., & Ayyash, M. (2015). Internet of Things: A 
Survey on Enabling Technologies, Protocols, and Applications. IEEE Communications Surveys 
and Tutorials, 17(4), 2347–2376. https://doi.org/10.1109/COMST.2015.2444095 

Al-Fuqaha, A., Khreishah, A., Guizani, M., Rayes, A., & Mohammadi, M. (2015). Toward better 
horizontal integration among IoT services. IEEE Communications Magazine, 53(9), 72–79. 
https://doi.org/10.1109/MCOM.2015.7263375 

Amazon. (2018). AWS IoT Core Overview - Amazon Web Services. Aws. https://aws.amazon.com/iot-
core/ 

Analog Devices. (n.d.). AD620 Datasheet. Retrieved June 1, 2017, from 
http://users.ece.utexas.edu/~valvano/Datasheets/AD620.pdf 

Arduino MQTT Client. (n.d.). Retrieved May 18, 2017, from http://www.hivemq.com/blog/mqtt-
client-library-encyclopedia-arduino-pubsubclient/ 

Asghar, M. H., & Mohammadzadeh, N. (2016). Design and simulation of energy efficiency in node 
based on MQTT protocol in Internet of Things. Proceedings of the 2015 International 
Conference on Green Computing and Internet of Things, ICGCIoT 2015. 
https://doi.org/10.1109/ICGCIoT.2015.7380689 

Bondarevs, A., Huss, P., Ye, Q., & Gong, S. (2017). Universal Internet of Things Solution : Protocol 
Independent. Industrial Technology (ICIT), 2017 IEEE International Conference On, 1313–1318. 

Brian Krebs. (2016). Hacked Cameras, DVRs Powered Today’s Massive Internet Outage — Krebs on 
Security. Krebs on Security. https://krebsonsecurity.com/2016/10/hacked-cameras-dvrs-
powered-todays-massive-internet-outage/ 

Campo, A. Del, Gambi, E., Montanini, L., Perla, D., Raffaeli, L., & Spinsante, S. (2016). MQTT in AAL 
Systems for Home Monitoring of People With Dementia. 86–91. 
https://doi.org/10.1109/PIMRC.2016.7794566 

Chen, H. W., & Lin, F. J. (2014). Converging MQTT resources in ETSI standards based M2M platform. 
Proceedings - 2014 IEEE International Conference on Internet of Things, IThings 2014, 2014 IEEE 
International Conference on Green Computing and Communications, GreenCom 2014 and 2014 
IEEE International Conference on Cyber-Physical-Social Computing, CPS 20, 292–295. 
https://doi.org/10.1109/iThings.2014.52 

Collina, M., Bartolucci, M., Vanelli-Coralli, A., & Corazza, G. E. (2014). Internet of Things application 
layer protocol analysis over error and delay prone links. 2014 7th Advanced Satellite Multimedia 
Systems Conference and the 13th Signal Processing for Space Communications Workshop, 
ASMS/SPSC 2014, 2014-Janua, 398–404. https://doi.org/10.1109/ASMS-SPSC.2014.6934573 

Datta, S. K., & Bonnet, C. (2016). Describing things in the Internet of Things: From CoRE link format to 
semantic based descriptions. 2016 IEEE International Conference on Consumer Electronics-
Taiwan, ICCE-TW 2016, i, 0–1. https://doi.org/10.1109/ICCE-TW.2016.7520965 



67 
 

 

Doukas, C., Capra, L., Antonelli, F., Jaupaj, E., Tamilin, A., & Carreras, I. (2015). Providing generic 
support for IoT and M2M for mobile devices. Proceedings - 2015 IEEE RIVF International 
Conference on Computing and Communication Technologies: Research, Innovation, and Vision 
for Future, IEEE RIVF 2015. https://doi.org/10.1109/RIVF.2015.7049898 

Evans, D. (2011). The Internet of Things - How the Next Evolution of the Internet is Changing 
Everything. CISCO White Paper, April, 1–11. https://doi.org/10.1109/IEEESTD.2007.373646 

Heyman, J., Hamrén, J., Heyman, H., & Byström, C. (n.d.). Locust - A modern load testing framework. 
Retrieved September 3, 2017, from http://locust.io/ 

Jara, A. J., Martinez-Julia, P., & Skarmeta, A. (2012). Light-weight multicast DNS and DNS-SD (lmDNS-
SD): IPv6-based resource and service discovery for the web of things. Proceedings - 6th 
International Conference on Innovative Mobile and Internet Services in Ubiquitous Computing, 
IMIS 2012, 731–738. https://doi.org/10.1109/IMIS.2012.200 

JSON. (n.d.). Retrieved May 18, 2017, from http://www.json.org/ 

Kamilaris, A., Gao, F., Prenafeta-Boldu, F. X., & Ali, M. I. (2016). Agri-IoT: A semantic framework for 
Internet of Things-enabled smart farming applications. 2016 IEEE 3rd World Forum on Internet 
of Things (WF-IoT), 442–447. https://doi.org/10.1109/WF-IoT.2016.7845467 

Klauck, R., & Kirsche, M. (2012). Chatty Things - Making the Internet of Things Readily Usable for the 
Masses with XMPP. Proceedings of the 8th IEEE International Conference on Collaborative 
Computing: Networking, Applications and Worksharing, 60–69. 
https://doi.org/10.4108/icst.collaboratecom.2012.250464 

Koch, D. B., & Ph, D. (2017). An Internet of Things Approach to Electrical Power Monitoring and 
Outage Reporting. 5–7. 

Luzuriaga, J. E., Cano, J. C., Calafate, C., Manzoni, P., Perez, M., & Boronat, P. (2015). Handling 
mobility in IoT applications using the MQTT protocol. 2015 Internet Technologies and 
Applications, ITA 2015 - Proceedings of the 6th International Conference. 
https://doi.org/10.1109/ITechA.2015.7317403 

Luzuriaga, J. E., Perez, M., Boronat, P., Cano, J. C., Calafate, C., & Manzoni, P. (2015). A comparative 
evaluation of AMQP and MQTT protocols over unstable and mobile networks. 2015 12th Annual 
IEEE Consumer Communications and Networking Conference, CCNC 2015, 931–936. 
https://doi.org/10.1109/CCNC.2015.7158101 

Mektoubi, A., Hassani, H. L., Belhadaoui, H., Rifi, M., & Zakari, A. (2016). New approach for securing 
communication over MQTT protocol A comparaison between RSA and Elliptic Curve. 2016 Third 
International Conference on Systems of Collaboration (SysCo), 0, 1–6. 
https://doi.org/10.1109/SYSCO.2016.7831326 

Microsoft. (2016). Azure IoT Hub | Microsoft Azure. https://doi.org/10.1038/sj.bjp.0703864 

Mohalik, S. K., Narendra, N. C., Badrinath, R., Jayaraman, M. B., & Padala, C. (2016). Dynamic 
Semantic Interoperability of Control in IoT-based Systems : Need for Adaptive Middleware. 199–
203. 

MongoDB. (2018). MongoDB for GIANT Ideas | MongoDB. MongoDB. https://www.mongodb.com/ 

Nicholas, S. (n.d.). Power Profiling: HTTPS Long Polling vs. MQTT with SSL, on Android. Retrieved May 
14, 2017, from http://stephendnicholas.com/posts/power-profiling-mqtt-vs-https 

oneM2M. (2019). oneM2M - Home. http://www.onem2m.org/ 



68 
 

 

OpenM2M. (2015). Eclipse OM2M - Open Source platform for M2M communication. Eclipse.Org. 
http://www.eclipse.org/om2m/ 

OpenMTC. (2016). Boosting the development of innovative M2M and IoT applications. 
http://www.openmtc.org/ 

Pereira, C., Aguiar, A., & Morla, R. (2017). Benchmarking IoT Middleware Platforms. 2017 IEEE 18th 
International Symposium on World of Wireless, Mobile and Multimedia Networks (WoWMoM). 

Python. (n.d.). paho-mqtt 1.1 : Python Package Index. Retrieved June 17, 2017, from 
https://pypi.python.org/pypi/paho-mqtt/1.1 

Raspberry Pi - Teach, Learn, and Make with Raspberry Pi. (n.d.). Retrieved May 16, 2017, from 
https://www.raspberrypi.org/ 

Singh, M., Rajan, M. A., Shivraj, V. L., & Balamuralidhar, P. (2015). Secure MQTT for Internet of Things 
(IoT). Proceedings - 2015 5th International Conference on Communication Systems and Network 
Technologies, CSNT 2015. https://doi.org/10.1109/CSNT.2015.16 

Taylor, S. (2013). The next generation of the internet: Revolutionizing the Way We Work, Live, Play, 
and Learn. CISCO White Paper, April, 1–17. 

Thota, P., & Kim, Y. (2016). Implementation and Comparison of M2M Protocols for Internet of Things. 
https://doi.org/10.1109/ACIT-CSII-BCD.2016.20 

Wagle, S. (n.d.). Semantic Data Extraction over MQTT for IoTcentric Wireless Sensor Networks. 

Yokotani, T., & Sasaki, Y. (2016). Comparison with HTTP and MQTT on Required Network Resources 
for IoT. The 2016 International Conference on Control, Electronics, Renewable Energy and 
Communications (ICCEREC) In. 

 
 

 

 

 

 

 

 


