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Abstract. With the purpose of characterizing the Earth subsurface, one of the objectives of the inver-
sion of prestack seismic data is to determine contrasts between rock properties from the information
contained in the variation of the amplitudes of the reflected compressional waves with the angle of inci-
dence. This amplitude-versus-angle (AVA) variation can be described by various approximations to the
so-called Zoeppritz equations, a set of non-linear equations that depend on the physical characteristics of
the medium at each side of the interface where the compressional wave strikes. The coefficients of such
approximations constitute AVA attributes that may provide important information about fluid content, a
key issue for the characterization of hydrocarbon reservoirs. In this work we present a new inversion
strategy to estimate efficiently and accurately high-resolution AVA attributes from prestack data. The
proposed technique promotes sparse-spike reflectivities that, when convolved with the source wavelet,
fit the observed data. Sparse solutions are desirable because they can be used to characterize significant
and close reflectors more accurately than using conventional solutions. The inversion is carried out using
a hybrid two-step strategy than combines Fast Iterative Shrinkage-Thresholding Algorithm (FISTA) and
Very Fast Simulated Annealing (VFSA). FISTA provides sparse solutions by minimizing both the misfit
between the modeled and the observed data, and the l1-norm of the solution. VFSA is an stochastic com-
putational algorithm to finding near-optimal solutions to hard optimization problems. At the first stage,
FISTA sparse-solutions provide an estimate of the location in time of the main reflectors, information
that is subsequently used as an initial guess for the second stage, where accurate reflectivity amplitudes
are estimated by solving a more stable overdetermined inverse problem. The second stage also involves
the use of VFSA for tuning the location in time of the main reflectors and the source wavelet. FISTA
does not require the inversion of matrices in explicit form. At each iteration only matrix-vector multipli-
cations are involved, making it easy to apply, economic in computational terms, and adequate for solving
large-scale problems. As a result, the FISTA+VFSA strategy represents a simple and cost-effective new
procedure to solve the high-resolution AVA inversion problem. Results on synthetic data show that the
proposed hybrid method can obtain high-resolution AVA attributes from noisy observations, even when
the number of reflectors is not known a priori and the utilized wavelet is inaccurate, making it an inter-
esting alternative to conventional methods.
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1 INTRODUCTION

The inversion of prestack seismic data has been long recognized as a useful technique for the
characterization of hydrocarbon reservoirs. Like any other inversion problem it is based on an
appropriate set of observations, and a general knowledge of the desired solution. The objective
of the prestack seismic inverse problem is to make inferences about the contrasts between rock
properties such as P and S-wave propagation velocities and rock densities. These contrasts are
related to the variation of the amplitudes of the reflected compressional waves as a function of
the angle of incidence, for a given reflecting interface (or reflector) that separates two different
media. This variation, which is known as amplitude versus angle variation (AVA) or amplitude
versus offset variation (AVO), can be described by the Zoeppritz equations (Zoeppritz, 1919;
Yilmaz, 2001). Zoeppritz equations depend on the angle of incidence and six independent
elastic parameters, three on each side of the reflector. The high non-linearity of these equations
makes them impractical for their use in inversion problems and data interpretation. Because
of this, several linear approximations have been developed by various authors over the last
decades (Aki and Richards, 1980; Shuey, 1985; Fatti et al., 1994). These linear approximations
depend on the angle of incidence and various coefficients related to the physical properties of
the medium. The most common approximations, such as the ones developed by the authors
indicated above, only require two or three coefficients to approximate the Zoeppritz equations
with an acceptable error for angles of incidence smaller than the critical angle. The coefficients
of such approximations, which are the objective of the inversion, constitute AVA attributes that
may provide important information about fluid content, a key issue for the characterization of
hydrocarbon reservoirs.

The proposed inverse problem is multidimensional and ill posed. In practice, seismic records
contain many reflectors and therefore there will be as many sets of AVA coefficients as there
are reflectors within the selected record length. Also, uncertainties in the seismic wavelet used
in the forward model increase the no-uniqueness of the inverse problem. The main problem is
that not only there exist several sets of coefficients that honor the data equally well, but some
of them might exhibit a huge norm and thus are meaningless. Also, these solutions are strongly
affected by the omnipresent noise in the observed data. To alleviate these difficulties the space
of possible solutions must be constrained using an adequate regularization or a priori informa-
tion. Sparseness is a property that can be incorporated as a priori constraint via regularization
(Taylor et al., 1979; Oldenburg et al., 1983; Sacchi, 1997). Sparse solutions are desirable be-
cause they can be used to characterize significant and close reflectors more accurately that using
conventional solutions (Debeye and van Riel, 1990).

Many authors have studied the sparse-spike AVA inversion with very interesting results.
In the works of Downton and Lines (2003), Misra and Sacchi (2008) and Alemie and Sacchi
(2011) sparseness is obtained through a Bayesian approach, using an appropriate long-tailed a
priori probability distribution. Pérez and Velis (2011) obtained sparse solutions by fixing the
number of reflectors and finding the model that best adjusts the observed data using a global
optimization algorithm. Further, Pérez et al. (2012) obtained sparse solutions by minimizing,
simultaneously, the l1-norm of the solution and the misfit between the modeled and the observed
data using an iterative shrinkage-thresholding algorithm.

In this work we propose an hybrid algorithm by combining an iterative shrinkage-thresholding
algorithm known as Fast Iterative Shrinkage-Thresholding Algorithm (FISTA) (Beck and Teboulle,
2009) and a global optimization technique known as Very Fast Simulated Annealing (VFSA)
(Ingber, 1989). FISTA is used, in a first stage, to find an initial estimation of the number of
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reflectors and their positions. Then, in a second stage, VFSA is used to improve the solution
given by FISTA, tuning the seismic wavelet and adjusting, if necessary, the position of the re-
flectors at the same time. In each iteration of the VFSA, the amplitudes of the reflectors are
estimated using least-squares (LS). This LS strategy was also used by Velis (2008) in the con-
text of sparse-spike deconvolution of postack data. It is worth mentioning that FISTA only uses
matrix-vector multiplications and no matrix inversion. The initial solution provided by FISTA
allows one to increase the computational efficiency of a versatile, but very expensive algorithm
like VFSA. The use of a global optimization technique such as VFSA is necessary because the
inversion problem proposed in this work is highly non-linear in terms of the position of the
reflectors and the parameters that define the seismic wavelet. In that sense, the goal of the pro-
posed hybrid method is to get the best out of these two algorithms: the simplicity of FISTA and
the versatility of VFSA, with a reasonable computational burden. One advantage of the method
is that, since VFSA is an stochastic algorithm, the uncertainty of the solutions can be estimated
due to the large number of solutions that are tested during the inversion process.

The proposed method was tested on noisy synthetic normal-move-out (NMO) corrected
prestack data. For the approximation to the Zoeppritz equations we used the well-known two-
term Shuey’s equation (Shuey, 1985). To account for absorption and dispersion effects associ-
ated with the wave propagation through the earth, we considered a time-varying Ricker wavelet
(Ricker, 1940) as the source signature both to generate the data and during the inversion pro-
cess. To this end, we allowed for a wavelet central frequency linearly decreasing with time, and
a constant phase rotation linearly varying with time. These parameters were estimated during
the inversion process, together with the reflectors positions and amplitudes, as mean to take into
account the fact that only an approximate source wavelet might be available. The results show
that high-resolution AVA attributes can be derived from noisy data accurately, even when the
number of reflectors is not known a priori, and the initial wavelet is inaccurate.

2 THEORY

The convolutional model is used as the base of the inversion method (Yilmaz, 2001). This
model assumes that the medium is composed of a series of flat, parallel, homogeneous and
isotropic layers. Then, the trace s for the i-th angle of incidence θi can be expressed as

s(θi) =
Nr
∑

t=1

wt ∗ Itr(θi) + n(θi), i = 1, · · · , N (1)

where the symbol “∗” denotes convolution, wt is source wavelet of dimension Lw at time t, r(θi)
is the vector of dimension Lr that contains the primary reflection coefficients (reflectivity), and
n(θi) is the random noise. Both n(θi) and s(θi) have dimension Ls = Lw + Lr − 1. Finally, It
is a Lr × Lr matrix given by

It{l,m} =

{

1 l,m = t,
0 otherwise. (2)

Equation (1) can be expressed in matrix form as

s(θi) =
Nr
∑

t=1

WtItr(θi) + n(θi), (3)
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where Wt is the convolution matrix of dimension Ls × Lr corresponding to the wavelet wt.
Then, setting

W =
Nr
∑

t=1

WtIt, (4)

equation (3) can be expressed as

s(θi) = Wr(θi) + n(θi), i = 1, · · · , N. (5)

For a given angle of incidence θ, the reflection coefficient for a reflector at sample t can be
approximated, in a general form, as

rt(θ) =
n

∑

k=1

xtkgk(θ), (6)

where xtk are coefficients that depend on physical properties of the rocks at each side of the
interface (velocities and densities), and n is the order of the chosen Zoeppritz approximation
(usually n = 2 or 3). The functions gk(θ) depend on the angle of incidence which must be less
than the critical angle.

When the reflectivity is sparse-spike, we can use equation (5) to represent the trace s(θi) by
only changing the appropriate indices of the matrix It. If there are M non-zero spikes at the
samples τj , where j = 1, ...,M and M ≪ Lr, then t = τ1, ..., τM . Then, matrices Wt, and
W, are quite sparse. Thus, combining equations (1) to (6), and omitting the noise term for
simplicity, the trace s(θi) associated with a sparse-spike reflectivity can be rewritten as

s(θi) = A(θi)x, i = 1, · · · , N (7)

where x = (x11, · · · , xM1, · · · , x1n, · · · , xMn)
T , and A(θi) is a matrix of dimension Ls ×Mn

that can be expressed as

A(θi) =
(

Ŵg1(θi)|...|Ŵgn(θi)
)

. (8)

Here, Ŵ is a convolution matrix of dimension Ls × M defined in the same way that W, but
now considering that t = τ1, ..., τM , only. Since usually M≪Lr, the constraint given by the
sparse-spike assumption reduces significantly the size of the matrices required for the inversion
process, decreasing at the same time the computational cost of the method.

The N systems of equations (7) can be re-arranged into a unique system of equations in the
form

s = Ax, (9)

where A and s are the “stacks” of A(θi) and s(θi), respectively.
Assuming Gaussian noise, the solution x̂ can be obtained by minimizing the discrepancy E

between the observed data s and the modeled data:

E =‖ Ax̂− s ‖22 . (10)

In an inverse problem the relation between the model parameters and the measured data is not
necessarily linear, then a global optimization technique can be used to find a correct solution
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to avoid local minima and other convergence issues (Buland and Omre, 2003). In practice, we
minimize E with respect to the positions τj and the parameters that define the wavelets wt

using Very Fast Simulated Annealing (VFSA) (Ingber, 1989) (see Appendix). In each iteration
of the VFSA, given the M values of τj and the parameters that define the wavelets, equation (9)
becomes linear. Hence, the optimum vector x̂ can estimated by solving the sparse least-squares
problem (10), which leads to

x̂ =
(

ATA
)

−1 (

AT s
)

. (11)

VFSA is a powerful and versatile non-linear optimization algorithm that does not require the
use of gradients or derivatives to find the global minimum of a function. It is also independent
of the initial model. However, the computational cost of the iterative process until convergence
can be very high if the number of model parameters is unnecessarily large, and the initial model
is too far from the optimum solution. To avoid these undesired consequences, we decided to
estimate the number of reflectors M and their initial approximate position τj using a shrinkage-
thresholding algorithm.

To this end we first obtain an estimated sparse solution of the system of equations (9) using
M = Lr. This new system can be expressed as

s = By, (12)

where B is a matrix of dimension Ls × nLr, and y is a vector of dimension nLr. To construct
the model matrix B an initial estimate of the wavelet is required. A sparse solution of the system
given by equation (12) can be estimated through l1-norm regularization (Oldenburg et al., 1983),
which implies to find the vector y that minimizes

‖ By − s ‖22 +λ ‖ y ‖1, (13)

where λ is a trade-off parameter used to balance the weight or impact of the two terms. We
use the Fast Iterative Shrinkage-Thresholding Algorithm (FISTA) (Beck and Teboulle, 2009) to
solve this non-linear inverse problem (see Appendix).

Step-by-step, the proposed hybrid inverse strategy is as follow:

1. An initial seismic wavelet is estimated from the available data.

2. Matrix B (equation (12)) is constructed using the approximate wavelet, and an initial
sparse solution ŷ is estimated using FISTA through the minimization of equation (13).

3. Both M and τj , j = 1, · · · ,M , are determined based on the non-zero components of ŷ.

4. VFSA is used to minimize equation (10), which includes the tuning of the initial wavelet
and adjusting the position of the reflectors. Amplitudes are obtained using equation (11)
at each annealing iteration.

3 NUMERICAL EXAMPLES

3.1 The synthetic data

To test the proposed method we generated a synthetic NMO-corrected gather consisting of
31 traces with θi ∈ (0◦, 30◦), and 6 reflectors with times between 0.04 and 0.24 s. The AVA re-
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sponse was modeled using the two-terms Shuey approximation (Shuey, 1985). So, equation (6)
becomes

rt(θ) = It +Gt sin
2(θ). (14)

The coefficients I and G, which are the objective of the inversion, are known as Intercept
and Gradient. Data traces were generated by convolving the reflectivities with a phase-rotated
Ricker wavelet of central frequency f0 (Ricker, 1940). In order to account for the expected time-
varying attenuation and other propagation effects that change the shape of the source wavelet,
in this example the central frequency f0 and the phase rotation ϕ0 are allowed to vary lin-
early from f i

0 = 30 Hz and ϕi
0 = 20◦ for the first sample of the data, to f f

0 = 20 Hz and
ϕf
0 = 40◦ for the last sample of the data. Gaussian noise was added with standard deviation

σ = maxti |st(θi)|/SNR, where SNR is the signal-to-noise ratio. Figures 1a and 1b show the
Intercept and Gradient used to generate the data. Figures 1c and 1c show the noisy data with
SNR=20 and 10, respectively. Figure 1e shows the wavelets for those particular times where
the reflectors are located. Note the broadening of the pulse due to the f0 and ϕ0 time variations.
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Figure 1: a) Actual Intercept and b) actual Gradient, c) noisy data with SNR=20, d) noisy data with SNR=10, and
d) evolution of the wavelet as a function of the propagation time.

3.2 Using FISTA to estimate the initial model

To use FISTA to estimate an initial model we first need to select the appropriate trade-off pa-
rameter λ in equation (13). In general, the selection of this parameter depends on the noise level
of the data at hand. Clearly, if λ is too large, a very sparse solution would be obtained, but data
may not be honored and thus some of the reflectors may be missed. Conversely, if λ is too small,
data would be over-fit and there would be too many spurious reflectors, leading to non-sparse
solutions. Further, an excessively large number of reflectors implies an unnecessary compu-
tational cost in the VFSA stage. Therefore, an appropriate strategy is required to select this
key parameter. There are various methods to estimate λ, such as the L-curve criterion, the dis-
crepancy principle, and the generalized cross-validation criterion (Farquharson and Oldenburg,
2004). Since we are interested in sparse solutions that fit the data, we want to keep the number
of reflectors to a minimum, provided that data are honored without overfitting. To estimate the
correct parameter λ we analyzed the variation of the different magnitudes of interest that are
involved in the equation (13), and built a set of curves as a guide (Figure 2). These curves
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have been built by applying FISTA on both data sets, and then counting the number of non-zero
reflectors while varying λ from 0 to 15. Thick continuous lines in Figure 2a and 2b show the
variation of the number of reflectors as a function of λ, while thin dashed lines show the actual
number of reflectors, which is equal to 6 in both cases. From these curves we can infer that, to
obtain a solution with 6 (or less) reflectors, λ should be no smaller than 14. Since the actual
number of reflectors is not known a priori, and in order guarantee that data would be honored,
we decided to choose a smaller value for λ. This gave us the opportunity to test the behavior
of VFSA against a number of reflectors larger than the actual one. Hence, in these numerical
examples we chose λ = 12, which lead to solutions with 8 and 10 reflectors for the data with
SNR=20 and 10, respectively.
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Figure 2: Number of reflectors as a function of the trade-off parameter λ: a) SNR=20, b) SNR=10.

Once estimated an appropriate trade-off parameter λ we analyzed the behavior of the solu-
tions given by FISTA using different wavelets. Figures 3a, 3b, 3f and 3g show the solutions for
the Intercept and Gradient obtained using a wavelet with an incorrect variation of the phase ro-
tation ϕ0, while the variation of the central frequency f0 is the one used to generate the data (i.e.
30 Hz - 20 Hz). On the other hand, Figures 3d, 3e, 3i and 3j show the solutions using a wavelet
with the correct variation of the phase rotation (i.e. 20◦ − 40◦), but with an incorrect variation
of the central frequency. For comparison, Figures 3c and 3h show the solution given by FISTA
using the exact wavelet. All these solutions where obtained applying FISTA on the data with
SNR=10 and using the trade-off parameter λ = 12 as indicated above. As can be observed,
FISTA solutions are very sensitive to the wavelet. The use of the correct wavelet produces a
very good solution, as concluded by comparing Figures 3c and 3h with the actual Intercept and
Gradient shown in Figures 1a and 1b. All reflector positions and amplitudes are correctly esti-
mated, with almost no spurious spikes. On the other hand, the use of an incorrect wavelet gives
solutions that are sparse, as desired, but unstable, showing a relatively large number of spurious
spikes of significant amplitudes.

3.3 The FISTA+VFSA hybrid algorithm

Clearly, FISTA solutions using incorrect wavelets are not acceptable. Even though, they
might be good initial models for the VFSA stage, as we will show later. In practice, the estima-
tion of an accurate wavelet from noisy data is a very difficult task, usually requiring complex
processes and the use a priori information such as sonic profiles from well logs (Henry, 1997),
which are rarely available. As an initial estimate to be used by FISTA, we decided to use a
unique time invariant zero-phase Ricker wavelet with f0 = 25 Hz. This is a very raw approxi-
mation to the actual wavelet contained in the data, but sufficient to provide an initial estimate to
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Figure 3: FISTA solutions using different wavelets (data with SNR=10); a), b), f) and g) wavelets with correct
central frequency but incorrect phase rotation; d), e), i) and h) wavelets with correct phase rotation but incorrect
central frequency; c) and h) solutions with the correct wavelet.

be fed into the VFSA stage. During this inversion stage, we set the search ranges for the time-
varying central frequencies and phase rotations (10, 60) Hz and (−90◦, 90◦), respectively. The
reflectors were free to move in time, but as a constraint side-by-side reflectors were forbidden.
For statistical purposes we carried out 100 inversions using different seeds for the generation
of the pseudo random numbers used in VFSA. As a stop criterion was set a maximum of 2000
iterations (cost function evaluations) or when the misfit was less or equal than the noise level.

Table 1 summarizes the statistical results of the estimated wavelets. As it can be seen, all
mean solutions are very close to the actual values for all the estimated magnitudes. The small
values of the standard deviations show the capacity of the proposed method to successfully
estimate a time-varying Ricker wavelet given a very raw initial estimate.

SNR=20 SNR=10
Mean value Standard deviation Mean value Standard deviation

f i
0 28.9 0.71 29.5 0.69

f f
0 20.5 0.43 20.3 0.41
ϕi
0 18.4 3.59 31.3 1.45

ϕf
0 40.5 2.48 39.2 0.77

Table 1: Statistical results of the estimated wavelet parameter after 100 realizations. Actual central frequencies
and phase rotation parameters are (30, 20) Hz and (20◦, 40◦), respectively.

Figure 4 shows the Intercept and Gradient sparse solutions. We can observe that the method
gives good results even in the presence of a significant amount of noise. Figure 4a and 4e show
the actual Intercept and Gradient. Figures 4b and 4f show the sparse solutions obtained by
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FISTA using the initial approximate wavelet for the data with SNR=10. Actually, these are
the initial models used for the subsequent VFSA stage. Figures 4c, 4d, 4g and 4h show the
mean sparse solutions and their corresponding standard deviations σ, for both the SNR=20 and
SNR=10 cases, after the VFSA stage. As expected, the estimated solutions from the data with
SNR=20 are more accurate than the ones obtained from the data with SNR=10. As shown in
the figure, the mean solutions in the two cases are very similar to the actual values. As in the
case of the wavelet parameters (Table 1), the standard deviations are very small, showing the
consistence of the method to find sparse solutions that honor the observed data.

It is worth noting that the FISTA solution using the approximate initial wavelet is, in fact, not
too far from the desired solution. However, as shown in the previous section, it has too many
spurious spikes of significant magnitude. In the solution obtained by VFSA those spurious
spikes did not disappear at all, but due to the capacity of the algorithm to move the position of
the reflectors, most of them where relocated to places where there is only noise. Then, their
amplitudes were reduced to negligible values.
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Figure 4: a) and e) Actual Intercept and Gradient; b) and f) FISTA solutions with the approximate wavelet
(SNR=10); c) and g) FISTA+VFSA solutions for the data with SNR=20; d) and h) FISTA+VFSA solutions for
the data with SNR=10.

4 CONCLUSIONS

In this work we presented a hybrid algorithm for sparse-spike AVA inversion. The proposed
hybrid algorithm is based on the usage of the Fast Iterative Shrinkage-Thresholding Algorithm
and Very Fast Simulated Annealing. The objective of the method is to obtain high resolution
AVA attributes from prestack data, such as Intercept and Gradient and, simultaneously, perform
an adjustment of the source wavelet. To this end, an initial sparse solution is obtained with
the very efficient FISTA using an initial approximate wavelet. Then, in a second stage, VFSA
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is used to tune both the the initial wavelet estimate and the reflector positions. Numerical test
using synthetic data showed that the proposed method is capable to obtain satisfactory sparse
solutions and a good estimation of the source wavelet, even in the presence of noise and a poor
initial estimation of the wavelet. The use of a stochastic optimization method, such as VFSA,
allowed one to obtain many solutions that fit the data by using different seeds, and thus the
solution uncertainties can be estimated. The small values of standard deviations obtained for all
the inverted magnitudes tell us about the consistency of the method.
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APPENDIX

About the Fast Iterative Shrinkage-Thresholding Algorithm

Given the cost or objective function

J =‖ Ax− s ‖22 +λ ‖ x ‖1, (15)

where A is the model matrix, s is the observed data, x is the unknown, and λ is a trade-off
parameter, Fast Iterative Shrinkage-Thresholding Algorithm (FISTA) is a powerful algorithm to
minimize J very efficiently in terms of computational cost (Beck and Teboulle, 2009). FISTA
is based on the Iterative Shrinkage Thresholding Algorithm (ISTA) (Daubechies et al., 2004).
These algorithms are an extension of the classical gradient algorithm used to solve large-scale
linear inverse problems in a simple way. One of the advantages of ISTA and FISTA over other
known methods is that at each iteration only matrix-vector multiplications are required, making
them simple and cost-effective. ISTA is known to have linear convergence, but FISTA is shown
to be faster by several orders of magnitude (Beck and Teboulle, 2009). In this context, FISTA
promotes sparse-spike solutions in a simple and effective way.

The process carried out by FISTA to minimize equation (15) is summarized as follows:

1. Set α ≥ σmax, where σmax is the maximum eigenvalue of ATA.

2. Set z1 = x0 and t1 = 1, where x0 is an initial solution.

3. For each iteration k = 1, 2, 3, · · · :

(a)

xk = Tλ/2α

{

zk −
1

α
AT (Azk − s)

}

, (16)

where Tβ{·} is a soft-thresholding function which is applied to each element of its
vectorial argument and is defined by

Tβ{g} =

{

g (1− β/|g|) , |g| ≥ β
0. |g| < β

(17)

(b)

tk+1 =
1 +

√

1 + 4t2k
2

. (18)
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(c)
zk+1 = xk +

tk − 1

tk+1

(xk − xk−1) . (19)

(d) Check convergence or stopping condition.

Step 1 is required to prevent the argument of the soft-thresholding function to become nega-
tive. For more details about FISTA, please refer to Beck and Teboulle (2009).

About the Very Fast Simulated Annealing

Simulated Annealing (SA) is a powerful non-linear optimization algorithm that does not
require the use of gradients or derivatives to find the global minimum of any given cost or ob-
jective function. It is named after the annealing process, a metallurgical technique consisting
of heating and cooling a metallic material to change its physical properties (e.g. hardness, duc-
tility, etc.). These changes have been studied by Metropolis et al. (1953) using Monte Carlo
techniques. Kirkpatrick et al. (1983) generalized this concept and applied it to non-linear op-
timization problems. The unknown parameters of the model play the role of the particles of
the metallic material, and the energy state of the system is represented by a cost function. SA
optimization is an iterative process. At each iterative step the model configuration, analogous to
the position of the particles in the metal, is selected “randomly” using a predefined probability
density function that depends on a control parameter known as temperature. This new model
configuration is later accepted (or rejected) according to the Metropolis criterion. The Metropo-
lis criterion states that if the cost function decreases, the model is accepted with a probability
equal to one, but, if the cost function increases, the model is accepted with a non zero prob-
ability. This strategy allows the algorithm to accept solutions that increase the cost function,
thus avoiding getting trapped in local minima. It is important to notice that the temperature
should be slowly decreased during the optimization process, following a preset cooling sched-
ule. When the temperature is high, the space of possible models is explored in an approximately
uniform way. On the other hand, at low temperatures the models with smaller values of the cost
function are chosen. Should the temperature of the system be reduced too fast, the particles of
the material, represented by the unknown parameters of the model, would not reach the state
of minimum energy, represented by the global minimum of the cost function. For this reason,
the selection of an appropriate cooling schedule is essential for the proper operation of the al-
gorithm. Finally, note that this acceptance probability depends on the cost function and the
temperature. The lower the cost function, the higher the probability, and the lower the tempera-
ture, the lower the probability. Convergence is achieved when, at low temperatures, there is not
significant decrease in the cost function and the system is in the lowest energy state.

Very Fast Simulated Annealing (VFSA) is a variation of the SA algorithm proposed by Ingber
(1989). The main differences are the cooling schedule and the probability density function used
to select new models at each iteration. VFSA uses a long-tailed Cauchy-like distribution that
allows to explore the model space in a more efficient way than using Gaussian or uniform
distributions as in other conventional SA algorithms. This allows to select a faster cooling
schedule to accelerate convergence without limiting the capacity of the algorithm to escape
from local minima. Figure 5 shows the workflow of the VFSA.
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Figure 5: Workflow of the Very Fast Simulated Annealing. Φ is the cost function, Mk is the model at the k-iteration
and Mn is the temporary model with acceptance probability h.
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