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In this paper, we propose a new heuristic symbolic tool for unveiling chaotic and stochastic

dynamics: the permutation spectrum test. Several numerical examples allow us to confirm the

usefulness of the introduced methodology. Indeed, we show that it is robust in situations in which

other techniques fail (intermittent chaos, hyperchaotic dynamics, stochastic linear and nonlinear

correlated dynamics, and deterministic non-chaotic noise-driven dynamics). We illustrate the

applicability and reliability of this pragmatic method by examining real complex time series from

diverse scientific fields. Taking into account that the proposed test has the advantages of being con-

ceptually simple and computationally fast, we think that it can be of practical utility as an alterna-

tive test for determinism. VC 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4891179]

The importance of distinguishing between periodic, cha-

otic, and stochastic dynamics from time series analysis is

well-recognized for understanding the mechanisms that

govern the regarded complex systems. In this work, we

have introduced a conceptually simple and computation-

ally fast symbolic visual test for discriminating chaotic

and stochastic dynamics, called the permutation spec-

trum test. Because the symbolization is made by imple-

menting the Bandt and Pompe methodology, all the

advantages associated with this natural encoding (sim-

plicity, extremely fast calculation, robustness, and invari-

ance with respect to monotonous transformations) are

inherited by the permutation spectrum test. We have

shown that this pragmatic approach is robust in situa-

tions in which other tests fail. We have also confirmed its

practical utility by examining several experimental and

natural time series.

I. INTRODUCTION

It is widely accepted that identifying chaos from time

series data is a very relevant problem for understanding,

modeling, and forecasting purposes. Chaotic dynamics are

deterministic, and hence predictable, albeit on short time

scales. However, the accurate discrimination between low-

dimensional chaotic and stochastic dynamics is regarded as

one of the most challenging issues in nonlinear time series

analysis. Essentially, the main difficulty lies in the fact that

both, stochastic and chaotic processes, share many features.1

A lot of effort has been done to try to shed some light on this

critical and elusive problem. Without being exhaustive, we

mention the correlation dimension,2 Kolmogorov entropy,3

Lyapunov exponents,4 nonlinear predictive models,5,6 deter-

minism test,7 “noise titration” technique,8 and 0–1 test.9

Nevertheless, none of these measures and tests are fully reli-

able and all of them suffer from severe limitations.10–16

Moreover, experimental chaotic signals are unavoidably con-

taminated by noise, making the classification task even more

difficult. These drawbacks motivate the search of new meth-

ods that can efficiently distinguish chaotic from stochastic

time series.17

In this paper, we present a conceptually simple and com-

putationally fast symbolic tool for unveiling the intrinsic dy-

namics of a system from which a time series has been

measured. More precisely, we estimate the symbolic spec-

trum, originally suggested fifteen years ago by Yang and

Zhao18 and very recently took up again by Kulp and Smith,19

but using the Bandt and Pompe (BP) symbolization scheme.20

With this change, all the advantages associated with the BP

recipe, namely, simplicity, extremely fast calculation, robust-

ness, and invariance with respect to monotonous transforma-

tions are directly inherited. The proposed symbolic approach,

hereafter called the permutation spectrum test (PST), allows

us to distinguish between regular, chaotic, and stochastic dy-

namics from complex time series. Furthermore, it can be eas-

ily applied to the time series obtained from a representative

variable of the complex system under analysis. Several con-

ventional numerical simulation systems were analyzed in

order to check the performance of the introduced approach on

systems with known dynamics. We have found that reliable

results are obtained in situations in which other methodolo-

gies fail. We have further illustrated the applicability of the

PST characterizing the underlying dynamics associated with

several experimental and natural time series. It is worth

emphasizing here that the proposed heuristic approach is not

introduced for replacing any of the presently available techni-

ques. On the contrary, it is proposed to complement the infor-

mation provided by them.

In the remainder of this work, we first describe our PST

algorithm, then we apply this approach to several time series

generated from model systems with known dynamics in

a)Kulp@lycoming.edu
b)lucianoz@ciop.unlp.edu.ar

1054-1500/2014/24(3)/033116/9/$30.00 VC 2014 AIP Publishing LLC24, 033116-1

CHAOS 24, 033116 (2014)

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:
186.59.134.131 On: Wed, 23 Jul 2014 13:06:48

http://dx.doi.org/10.1063/1.4891179
http://dx.doi.org/10.1063/1.4891179
http://dx.doi.org/10.1063/1.4891179
mailto:Kulp@lycoming.edu
mailto:lucianoz@ciop.unlp.edu.ar
http://crossmark.crossref.org/dialog/?doi=10.1063/1.4891179&domain=pdf&date_stamp=2014-07-23


order to confirm its effectiveness. Next, the test is applied to

several real-world data sets with well-understood dynamical

behavior. Finally, some concluding remarks are included.

II. PERMUTATION SPECTRUM TEST

The symbol spectrum test, developed by Yang and

Zhao,18 was proposed for distinguishing deterministic from

stochastic dynamics. It begins by partitioning the original

binary-symbolized time series into disjoint subsets of a par-

ticular length l. After that the symbol spectrum, i.e. the fre-

quency of “words” at a particular level L of the symbol tree,

is estimated for each partition. To estimate the symbol spec-

trum for each partition for a chosen L–value, the elements of

the partition are grouped into “words” of length L. It was

shown that the symbol spectra for the different partitions cor-

responding to deterministic signals preserve its form while

those associated with stochastic time series do not have a

definite shape. Summarizing, the symbol spectrum test is

based on the repeatability of the frequency of “words” con-

sidered in the symbolization for shorter disjoint segments of

the original records. The symbol spectra for the different par-

titions are plotted on the same graph and the degree of over-

lap is visually detected. The degree of overlap is used for

classifying the type of dynamics. Please see Ref. 19 for fur-

ther details about this methodology.

In this work, we introduce two modifications to the origi-

nal symbol spectrum test. First, the encoding scheme due to

BP20 is implemented instead of the binary alphabet. It is well-

known that this very simple and fast symbolic approach,21

based on the ordinal relation between the amplitude of neigh-

boring values, naturally arises from the time series, and allows

one to avoid amplitude threshold dependencies that affect

more conventional methods based on range partitioning.22

This dynamic, difference-based symbolization,23 as opposed

to most of those in current practice, takes into account the

causal information that stems from the temporal structure of

the time series. Moreover, the ordinal pattern distribution is

robust to noise and invariant with respect to any monotonous

transformations. These properties are highly appreciated for

the analysis of experimental data. Information-theory derived

quantifiers estimated by implementing this ordinal pattern

probability distribution have been successfully used in a wide

range of applications; see, e.g., Ref. 24 and references therein.

Furthermore, several ordinal-related tools have been proposed

for the discrimination of chaotic and stochastic

dynamics.1,25–30

Here, we will illustrate how to create ordinal patterns

from the time series data. After the time series has been par-

titioned into disjoint windows of length l, as done in the

Yang and Zhao test, two parameters, the embedding dimen-

sion D> 1 (D 2N, number of symbols that form the ordinal

pattern) and the embedding delay s (s 2N, time separation

between symbols) are chosen. Guidelines for choosing D and

s will be discussed momentarily. Next, each window is fur-

ther partitioned into subsets of length D with delay s similar

to phase space reconstruction by means of time-delay-

embedding. The elements in each new partition (of length D)

are replaced by their rank in the subset. For example, the

partition with D¼ 4 given by {1.2, 7.8, 2.3, 1.0} would

become {2, 4, 3, 1}. Furthermore, each permutation of {1, 2,

3, 4} could be assigned a value called the ordinal pattern

index, or more simply, ordinal pattern. To continue our

example, the ordinal pattern {2, 4, 3, 1} could be assigned

the value 12. Finally, the probability distribution of the ordi-

nal patterns for each window of length l can be estimated

and then plotted on the same graph, similar to the Yang and

Zhao test. Figure 1 shows all possible ordinal patterns for

D¼ 4. Taking into account that there are D! potential permu-

tations for a D-dimensional vector, the condition l � D!

must be satisfied in order to obtain a reliable estimation of

the spectrum.31 For practical purposes, BP suggest in their

cornerstone paper20 to estimate the frequency of ordinal pat-

terns with 3 � D � 7 and time lag s¼ 1 (consecutive points).

Nevertheless, other values of s> 1 (non-consecutive points)

might provide additional relevant information as has been

recently shown.30,32,33 By changing the value of the embed-

ding delay s different time scales are being considered.34 It

is worth noticing that s physically corresponds to multiples

of the sampling time of the signal under analysis. For further

details about the BP methodology, we strongly recommend

Ref. 33, where the construction principle of ordinal patterns

and all possible orderings (patterns) for different embedding

dimensions are clearly illustrated.

The second modification we propose for improving the

symbol spectrum test is the estimation of the standard devia-

tion of the frequency of each ordinal pattern for the different

disjoint subsets of length l. The standard deviation of the

spectra as a function of ordinal pattern is a more objective

quantifier of the degree of overlap among the spectra than

visual inspection alone. Thus, the permutation spectrum test
analyzes the variability, via the standard deviation, of the

spectrum of ordinal patterns for different disjoint segments

of the time series. The term permutation refers to the fact

that the symbolization is accomplished following the BP

scheme.

III. NUMERICAL SIMULATIONS

In this section, the PST is demonstrated on time series

generated by several model systems, both deterministic and

stochastic, which cover a broad range of dynamical behav-

iors. The systems studied are the logistic map with various

parameter values, uniformly distributed random numbers,

fractional Brownian motion, the generalized H�enon map,

stochastic nonlinear correlated dynamics, and a noise-driven

sine map. In each case (except the noise-driven sine map, see

below), time series of length N¼ 200 000 data points were

generated from each system. The PST was applied to those

systems with a window length of l¼ 1000 data points, an

embedding dimension D¼ 4 and an embedding delay s¼ 1.

Similar results (not shown) were obtained for D¼ 5 and

s¼ 1. Parameters were chosen considering the results

obtained in Ref. 35: for discrete models higher D-values and

s¼ 1 lead to clearer distinction between different dynamical

regimes. Ordinal patterns were indexed following the same

convention used by Parlitz et al. (please see Fig. 2 of Ref.

33). Although we check the PST on long time series, the
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PST can also be applied to shorter time series as well. In the

case of shorter time series, instead of partitioning the series

into non-overlapping windows, one chooses a random ele-

ment from a series. That random element would serve as the

first element of the window from which the permutation

spectrum can be found. Next, one would choose another (dif-

ferent) random element from the series, create the window,

and find the permutation spectrum. This process can be

repeated for as many windows as one wishes to use.

Examples of using this overlapped implementation of the

PST are presented in Sec. IV, where shorter experimental

and natural records are analyzed. On the other hand, it is

worth mentioning here that the window length l should be

chosen in such a way that the overall dynamics of the sys-

tems under analysis will be included in each one of the over-

lapping or non-overlapping segments, e.g., in the case of a

periodic signals several periods should be covered in each

window.

We begin with a basic test for the PST, distinguishing

between periodic, chaotic, and stochastic dynamics. Figure 2

shows the results of the PST when applied to time series gen-

erated by the logistic map, xkþ1¼ rxk(1� xk), and uniformly

distributed random numbers. Figure 2, like all of the next fig-

ures (except Figs. 5, 8, and 9) in this paper, consists of three

rows, a short sample of the time series (top row), the permu-

tation spectra (middle row), and the standard deviation of the

spectra (bottom row). The left column of Fig. 2 shows the

results of the PST applied to the logistic map with periodic

dynamics, r¼ 3.55. Because the dynamics is periodic, the

same ordinal patterns repeat in the time series, hence there is

no variation in the permutation spectra. The lack of variation

can be seen in the graph of the permutation spectrum (middle

row), where all 200 of the spectra lie on top of one another.

Furthermore, this lack of variation results in a zero standard

deviation for the spectra. The middle column of Fig. 2 shows

the results of the PST applied to the logistic map with cha-

otic dynamics, r¼ 3.91. Notice that there is more variation

among the spectra as compared to the periodic case, illus-

trated by less overlap between the spectra and non-zero

standard deviations for some ordinal patterns. The peak of

each spectrum occurs at the same ordinal patterns, but the

height of each peak varies from one window to the next. The

variations in peak height for each ordinal pattern demon-

strate that the dynamics is not periodic. However, the fact

that the same ordinal patterns appear in each spectra show

that the system is deterministic. Notice that there are some

“forbidden patterns,”25,26,28 ordinal patterns that do not occur

in the spectra. These forbidden ordinal patterns are not pro-

duced by the mathematical rules (in this case, the logistic

map) that govern the system. Forbidden patterns have been

successfully applied to a wide range of problems, such as to

demonstrate evidence of deterministic dynamics during epi-

leptic states36,37 and to quantify the degree of market ineffi-

ciency.38 The forbidden patterns are obviously consistent

from one spectrum to the next, as shown by the zero standard

deviation of those patterns. This is in contrast to the uni-

formly distributed uncorrelated noise whose results are pre-

sented in the right column of Fig. 2. Notice that like the

chaotic dynamics, there is variation between the spectra.

However, unlike the chaotic dynamics, there are no consis-

tently forbidden patterns in the spectra. All ordinal patterns

appear, because the dynamics is random. As will be seen in

later examples, it is the presence of consistently forbidden

ordinal patterns, ordinal patterns that do not appear in the

spectra and have zero standard deviation, that distinguishes

deterministic from stochastic dynamics.

Figure 3 illustrates the results of the PST applied to frac-

tional Brownian motion (fBm) with various Hurst exponents,

FIG. 1. The 24 possible outcomes for

ordinal patterns with embedding

dimension D¼ 4. Ordinal patterns are

numbered following the convention

used by Parlitz et al.33
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H. Applying the PST to fBm gives the opportunity to see

how well the PST handles linearly correlated stochastic proc-

esses, traditionally a difficult case for tests for determin-

ism.10,11,14 Figure 3 shows that the PST can successfully

determine the stochasticity of each time series. Although in

Fig. 3 the permutation spectra appear to be similar to those

of a chaotic series, the standard deviation clearly shows no

consistent forbidden patterns. Furthermore, the strong posi-

tive correlation for the H¼ 0.7 case appears in the permuta-

tion spectra with each spectrum having a peak at similar

ordinal patterns (please compare with the PST for the fully

uncorrelated stochastic process, right column of Fig. 2).

Figure 4 shows the results of the PST applied to the gen-

eralized H�enon map

xkþ1 ¼ a� ðxkþ2�nÞ2 � bxkþ1�n; (1)

where n¼ 3, a¼ 1.76, and b¼ 0.1.39 The parameters chosen

result in the generalized H�enon map displaying high-

dimensional chaotic or hyperchaotic behavior in which there

is more than one positive Lyapunov exponent. Note that in

Ref. 39, Eq. (1) is shown to be a reduction of an n-dimen-

sional map, hence it is possible to discuss multiple Lyapunov

exponents for the system described by this equation. The per-

mutation spectra have significant amounts of variation for

almost all of the ordinal patterns. However, there are some,

albeit very few, consistently forbidden patterns, as shown by

the standard deviation. The presence of consistently forbidden

patterns shows that the dynamics is deterministic. The small

FIG. 2. Short sample of the time series

(top row), permutation spectra (middle

row), and standard deviation of the

spectra (bottom row) for numerical

realizations of the logistic map with

periodic (r¼ 3.55) and chaotic dynam-

ics (r¼ 3.91) in the left and middle

columns, respectively, and for an uni-

formly distributed noise in the right

column. Two hundred permutation

spectra for the different disjoint subsets

of length l¼ 1000 data points were

plotted (middle row). D¼ 4 and s¼ 1

were chosen for the BP symbolization

recipe.

FIG. 3. Short sample of the time series

(top row), permutation spectra (middle

row), and standard deviation of the

spectra (bottom row) for numerical

realizations of fBm with H¼ 0.3 (left

column), H¼ 0.5 (middle column),

and H¼ 0.7 (right column). Two hun-

dred permutation spectra for the differ-

ent disjoint subsets of length l¼ 1000

data points were plotted (middle row).

D¼ 4 and s¼ 1 were chosen for the

BP symbolization recipe.
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number of forbidden patterns is a hallmark of the hyper-

chaotic behavior. Hence, the PST is able to distinguish high-

dimensional chaos from stochastic behavior. Furthermore,

this result shows that, in principle, the PST could also distin-

guish between hyperchaotic and chaotic dynamics, although

more work needs to be done in this area.

Before moving on to other model series, we can compare

the results of the PST to a well-known global-permutation-in-

formation theoretic quantifier typically used for characteriz-

ing regular, chaotic, and random behavior, the permutation

entropy (PE).20,21 The PE is just the normalized Shannon en-

tropy, S½P� ¼ �
PD!

i¼1 pi ln pi=ln D!, evaluated using the ordi-

nal pattern probability distribution P ¼ fp1;…; pD!g, where

pi represents the relative frequency of the ordinal pattern

whose index is i. PE characterizes the diversity of the order-

ings present in the complex time series. As an example of

how the PST compares to the PE, we estimate the mean and

standard deviation of the PE for two hundred disjoint win-

dows of length l¼ 1000 for the generalized H�enon map and

for fBm with Hurst exponents H 2 f0:1; 0:2; :::0:9g. The

results are plotted in Fig. 5. Because the PE result for the gen-

eralized H�enon map falls with in the range of PE’s for fBm

with H> 0.5, we can see that the PE is not able to distinguish

the hyperchaotic dynamics of the generalized H�enon map

from persistent correlated stochastic processes. We believe

that a further study comparing the PST to the PE would be a

valuable avenue for future research.

Figure 6 shows the results of the PST applied to an inter-

mittent chaotic system: the logistic map with r¼ 3.8284.16

Intermittent chaotic dynamics are shown by systems that dis-

play chaotic behavior for short periods of time between lon-

ger periods of regular behavior. This behavior is illustrated

in the top plot of Fig. 6, where long periods of periodicity

are interrupted by short periods of chaos. As mentioned in

Ref. 16, traditional methods for computing Lyapunov expo-

nents, based on global average, fail in intermittent chaotic

systems since the laminar phase dominates. The PST,

however, is able to detect the chaotic behavior. Notice in

Fig. 6, the permutation spectra have some variation, unlike a

periodic system. Furthermore, there are clear consistent for-

bidden ordinal patterns. Both the permutation spectra and the

standard deviation are more similar to the chaotic logistic

map results in Fig. 2 than the periodic logistic map results.

Another case that is difficult for many tests for determin-

ism is stochastic nonlinear correlated dynamics. An example

of such a system is

xkþ1 ¼ a�k þ b�k�1ð1� �kÞ; (2)

where �k is a uniform independently and identically distrib-

uted (iid) random variable with values between 0 and 1,

a¼ 3 and b¼ 4.15,16 A discussion about the stochasticity of

Eq. (2) is found in Ref. 15. Figure 7 shows the results of the

PST applied to this system. Notice that each spectrum has a

peak at similar ordinal patterns, a sign that the PST is detect-

ing correlations in the data, similar to the fBm case.

However, there are no consistently forbidden ordinal pat-

terns. Hence, the PST successfully detects the stochasticity

FIG. 4. Short sample of the time series (top row), permutation spectra (mid-

dle row), and standard deviation of the spectra (bottom row) for numerical

realizations of the generalized H�enon map displaying hyperchaotic behavior.

Two hundred permutation spectra for the different disjoint subsets of length

l¼ 1000 data points were plotted (middle row). D¼ 4 and s¼ 1 were chosen

for the BP symbolization recipe.

FIG. 5. Estimated PE values, with D¼ 4 and s¼ 1, for fBm with Hurst H 2
f0:1; 0:2; :::0:9g (blue) and the generalized H�enon map (red). Mean and

standard deviation of the PE values obtained for the two hundreds disjoint

windows of length l¼ 1000 are plotted.

FIG. 6. Same as Fig. 4 but for an intermittent chaotic dynamics.
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of the system. It is worth remarking here that the “noise

titration” technique fails to distinguish this non-chaotic

signal.15,16

The final model system studied is the noise-driven sine

map

xkþ1 ¼ l sinðxkÞ þ Ykgk; (3)

where, as described in Ref. 15, l is the map parameter, gk is

an iid random variable with a uniform distribution between

�b and b, and Yk is a random variable from a Bernoulli pro-

cess. The variable Yk takes on the value 1 with a probability

of q and a value of 0 with a probability of 1� q. The value

of q serves as a measure of the amount of dynamical noise;

when q is small, noise perturbations are very rare. In Refs.

15 and 16, it was shown that the “noise titration” technique

incorrectly characterizes this system as chaotic for l¼ 2.4,

b¼ 2, and q¼ 0.01. Figure 8 shows the result of the PST

applied to numerical realizations of Eq. (3) with the same pa-

rameter values used in Refs. 15 and 16. Notice that the stand-

ard deviation, while small is never zero. This illustrates the

presence of a small amount of noise in the system. The sym-

bol spectra, however, suggest that the system has some peri-

odicity due to the presence of a few distinct peaks. Those

peaks have significant variations in height (due to the noise),

but appear similar to the periodic logistic map results in Fig.

2. This is different from the intermittent chaos case, because

unlike intermittent chaos, the noise-driven sine map has no

consistently forbidden ordinal patterns. Hence, the PST

shows that Eq. (3) is a noisy periodic system. It should also

be noted that for this example, longer time series were

needed to illustrate the fact that there are no forbidden pat-

terns when an encoding with embedding dimension D¼ 5 is

implemented. More precisely, 200 windows of l¼ 5000 ele-

ments were used, for a total time series of N¼ 1 000 000 data

points. The first time the PST was applied to this system, 200

windows of l¼ 1000 elements were used and two apparently

forbidden patterns appeared for the PST with D¼ 5 as it can

be seen in the top plot of Fig. 9. The test was ran again with

the longer time series and it was found that those patterns

which were initially thought to be forbidden, in fact, were

simply missing40 from the shorter time series (bottom plot of

Fig. 9). It should be emphasized that for D¼ 4, the false for-

bidden patterns did not occur in the noise-driven sine map.

Furthermore, all of the systems studied in this section were

examined with both D¼ 4 and D¼ 5, although the results

for D¼ 5 are not shown for most of the systems. The noise-

driven sine map was the only numerical system studied that

demonstrated sensitivity to the length of the time series used

in the PST with D¼ 5.

According to the findings obtained with the numerical

analysis performed in this section, the following decision

rules can be concluded: (i) if no forbidden patterns are

detected, the system is stochastic; (ii) permutation spectrum

with a zero standard deviation suggests that the dynamics is

periodic; and (iii) chaotic dynamics will have some forbid-

den patterns and a non-zero standard deviation for some pat-

terns. Our results also indicate that hyperchaotic dynamics

have fewer forbidden patterns. However, using forbidden

patterns to discriminate between chaotic and hyperchaotic

dynamics is an avenue of future research.

FIG. 7. Same as Fig. 4 but for a stochastic nonlinear correlated dynamics.

FIG. 8. Same as Fig. 4 but for the noise-driven sine map. The bottom plot

shows an enlargement of the region with low standard deviation of the spec-

tra for a better visualization.

FIG. 9. Standard deviation of the permutation spectra for the noise-driven

sine map estimated with D¼ 5 and s¼ 1. Numerical realizations of lengths

N¼ 200 000 and N¼ 1 000 000 data points were analyzed by using 200 win-

dows of l¼ 1000 (top row) and 200 windows of l¼ 5000 (bottom row).

Note the presence of two missing patterns (ordinal patterns 37 and 115) in

the analysis of the shorter time series.
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IV. REAL-WORLD APPLICATIONS

In this section, we apply the PST to real-world time se-

ries with well-understood dynamics from several scientific

fields. The main intention is to illustrate its applicability and

reliability in practical contexts. For this purpose, we have an-

alyzed the performance of the PST for characterizing com-

plex time series derived from an experimental chaotic laser,

a geophysical process (North Atlantic oscillation (NAO))

and the historical price evolution described by two commod-

ities (crude oil and gold). In order to overcome the analysis

of these short time series, we have estimated the permutation

spectrum for overlapping segments of length l. More pre-

cisely, 1000 different subsets randomly chosen from the

original time series data were taken into consideration. The

degree of overlap of the permutation spectra for these 1000

subseries was employed to conclude in favor of a stochastic

or a chaotic dynamics.

As a first experimental example, we have analyzed the

longer data set (N¼ 9093 data points) of laser chaotic inten-

sity pulsations included in the Santa Fe Time Series

Competition (series A from Ref. 41). For further details

about this experimental record please see Ref. 42. Briefly,

chaotic intensity pulsations of an unidirectional far-infrared

NH3 ring laser at 81.5 lm were recorded with an oscillo-

scope. Signatures of an underlying chaotic dynamics is

directly concluded from the analysis performed with the PST

by estimating the permutation spectra for 1000 different ran-

domly selected subsets of length l¼ 1000 data points with

D¼ 4 and s¼ 1 (Fig. 10). A similar conclusion is derived by

implementing the PST with D¼ 5 and s¼ 1 (not shown).

As a second practical example, the NAO index, calcu-

lated as the difference between the normalized sea level pres-

sure at two action centres, the southernmost one located at the

Azores High and the northernmost at the Icelandic Low,43

was characterized through the PST. The NAO is an atmos-

pheric spatio-temporal phenomenon observed over the North

Atlantic Ocean, with significant influence on the winter

weather over Western and Central Europe. Since large

changes in surface temperature and precipitation in this region

are strongly influenced by the NAO, there is a particular inter-

est to unveil the underlying nature of its dynamics. The fluctu-

ations of the NAO phenomenon are quantified through the

NAO index. The monthly mean NAO index from January

1950 to January 2014 (N¼ 769 data points), downloaded

from the Climate Prediction Center website,44 was examined.

Results obtained for this geophysical processes are depicted in

Fig. 11. For this very short record, the study was performed

estimating the permutation spectra for 400 different randomly

selected subsets of length l¼ 200 data points with D¼ 4 and

s¼ 1. The PST concludes in favor of a stochastic dynamics

for modeling this climatic index in agreement with the finding

obtained by other authors.43,45–49

Finally, as the third and last real-world application, we

have studied the historical temporal daily price evolution of

two relevant commodities, namely, crude oil and gold. The

former is the major energy source for the present economic

activity, and the latter one is extremely popular for invest-

ment purposes. For these reasons, it is significant to try to

shed some light on the nature of their dynamics. More pre-

cisely, we have analyzed the daily closing spot price of the

West Texas Intermediate (WTI) from January 2nd, 1986 to

December 31st, 2013 (N¼ 7162 oil price observations)

obtained from the U.S. Energy Information Administration

(EIA) website50 (quoted in U.S. dollars per barrel), and the

daily gold price from January 2nd, 1973 to December 31st,

2013 (N¼ 10205 gold price observations) extracted from the

USAGOLD website51 (quoted in U.S. dollars per ounce).

Figures 12 and 13 show the results obtained. In both cases,

1000 different randomly selected subsets of length l¼ 1000

data points, D¼ 4 and s¼ 1 were employed in the analysis

(similar results were obtained by using D¼ 5 and s¼ 1).

According to the PST, the dynamics of both commodities

appear to be consistent with a stochastic explanation. On the

one hand, the stochastic behavior found for the crude oil pri-

ces is supported by the recent characterization performed by

Barkoulas et al.52 implementing more conventional diagnos-

tic tools (correlation dimension, Lyapunov exponents, and

FIG. 10. Short sample of the time series (top row), permutation spectra

(middle row), and standard deviation of the spectra (bottom row) for laser

chaotic experimentally generated data. Permutation spectra with D¼ 4 and

s¼ 1 for 1000 different randomly selected subsets of length l¼ 1000 data

points were plotted (middle row).

FIG. 11. Time series (top row), permutation spectra (middle row), and

standard deviation of the spectra (bottom row) for the monthly mean NAO

index. Permutation spectra with D¼ 4 and s¼ 1 for 400 different randomly

selected subsets of length l¼ 200 data points were plotted (middle row).
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recurrence plots). On the other hand, the rejection of an

intrinsic deterministic nature for the gold prices is against

the evidence of a chaotic structure in the rates of return of

gold and silver obtained by Frank and Stengos.53 It is worth

remarking here that the high correlation and cointegration

confirmed between crude oil and gold markets54 allows to

conjecture that both commodities should share the same dy-

namics. The results we have obtained via the PST support

this fact. By comparing Figs. 12 and 13, it is concluded that

the permutation spectra look very similar.

V. CONCLUSIONS

We have introduced the permutation spectrum test, a

new heuristic and pragmatic test for determinism which can

also be potentially used for characterizing the dynamics of a

system from time series data. The standard deviation of the

permutation spectra is used to determine whether or not a

time series is deterministic by detecting consistently forbid-

den ordinal patterns in the spectra. In our studies thus far,

spectra that have a zero standard deviation represent periodic

data, whereas spectra with some variation but several con-

sistent forbidden patterns are hallmarks of chaotic data.

Stochastic data have a non-zero standard deviation for all or-

dinal patterns, i.e., no patterns are forbidden. The PST cor-

rectly identifies the stochasticity of linearly and nonlinearly

correlated noise, both are traditionally difficult cases for tests

for determinism. Likewise, the PST can also successfully

detect the determinism in other difficult cases such as hyper-

chaotic and intermittent chaotic dynamics. In one case, the

noise-driven sine map, the PST was able to correctly charac-

terize the system as noisy periodic dynamics. Finally,

through the analysis of several real-world complex time se-

ries data its applicability and reliability in practical contexts

were confirmed.

There are still several open avenues of research for the

PST. First, how well does the PST handle data measured

from continuous systems? This is essentially the question of

how sampling rates affect the PST’s ability to successfully

characterize a time series. Second, how does irregular sam-

pling affect the PST’s ability to detect determinism? The or-

dinal patterns are created from consecutive elements of the

series. What happens to the spectra when there are different

amounts of time between the elements used to create the or-

dinal patterns? Finally, and perhaps most importantly, how

robust is the PST to noise. The persistence of forbidden pat-

terns in noisy deterministic data numerically confirmed by

Amig�o et al.25 allows one to guess robustness of the PST in

a noisy environment. We saw with the noise-driven sine map

that the PST can successfully characterize periodic dynamics

with low levels of dynamical noise. Can the PST be success-

fully applied to chaotic systems with low levels of noise?

How well can the PST handle higher noise amounts? Can the

PST be reliably used to distinguish between noisy determin-

istic data and purely stochastic data? All of these questions

are beyond the scope of the present study, whose purpose

was simply to introduce the PST. However, all of these ques-

tions will need to be carefully answered in order to reliably

apply the PST to real-world data which is typically noisy and

irregularly sampled.
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