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 Knee osteoarthritis is a degenerative joint disease which affects people 

mostly from elderly population. Knee cartilage segmentation is still a driving 

force in managing early symptoms of knee pain and its consequences of 

physical disability. However, manual delineation of the tissue of interest by 

single trained operator is very time consuming. This project utilized a fully-

automated segmentation that combined a series of image processing methods 

to process sagittal knee images. MRI scans undergo Bi-Bezier curve contrast 

enhancement which increase the distinctiveness of cartilage tissue. Bone-

cartilage complex is extracted with dilation of mask resulted from region 

growing at distal femoral bone. Later, the processed image is clustered with k 

= 2, into two groups, including coarse cartilage group and background. The 

thin layer of cartilage is successfully clustered with satisfactory accuracy of 

0.987±0.004, sensitivity 0.685±0.065 of and specificity of 0.994±0.004. The 

results obtained are promising and potentially replace the manual labelling 

process of training set in convolutional neural network model.  
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1. INTRODUCTION  

 Osteoarthritis (OA) is the main culprit of chronic disabilities in the United States, 26.9 million of 

adults are estimated to be affected [1]. The statistic is believed to surge to 59 million by 2020 [2]. 

Meanwhile, 16%  of the elderly population was estimated to be affected by knee OA [3]. Knee pain problem 

is becoming more common among adults aged 40 years and above. According to the Control of Rheumatic 

Diseases (COPCORD) study carried out in Malaysia, there were 23% of patients who aged over 55 years 

showed significant clinical symptoms while 39% among those who were over 65 years old [4].  

 Knee OA is a degenerative joint disease of whole knee joint in which all its articular cartilage 

structures are damaged. In early detection of the disease, the pathologic events are dynamic that matrix 

synthesis and repair will be increased while osteophytes start forming to stabilize the injured joint. Clinically, 

patients may start a series of rehabilitation programs or simply stop the activities which induce joint pain. 

Late in disease, OA is said to be a total joint failure that most of the joint structures have undergone 

irreversible pathologic mutation. The transition of knee OA from a dynamic to an irreversible pathologic 

changes differs greatly from people, in many persons, may never experience the disease too [5]. 

Human knee articular cartilage is a composition of dense extracellular matrix, which is made of 

water, type II collagen, proteoglycans, with numerous glycoproteins and other non-collagenous proteins [6]. 

Referring to Figure 1, both femur and tibia have thin cartilage layers that allow two bones to glide against 

each other essentially without friction. Progressive loss of articular cartilage causes the friction between the 

two bones to increase which then generates inflammation and triggers pain through the nerve endings in the 

joint space. Felson and his team declared that there were systemic factors (genetics, dietary intake, oestrogen 
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used and bone density) and local biomechanical factors (muscle weakness, body mass index and joint laxity) 

contributing in increment of OA diseases [7].  

 

 
Figure 1.  Human knee anatomy. [24] 

  

Although there are several pharmaceutical treatments for OA patients who are facing severe pain 

and functional or mobility disability, it was still insufficient. Therefore, non-pharmacological interventions 

for instance, knee cartilage magnetic resonance imaging (MRI) segmentation is still a motivational force in 

managing early symptoms of pain and the consequences of physical disability [9] [20]. Generally, knee joint 

segmentation methods can be grouped into manual segmentation, semi-automatic segmentation or interactive 

segmentation, and finally fully automatic segmentation model. In this paper, we proposed a fully automatic 

knee cartilage segmentation framework with K-means clustering in which the coarse result is then adapted to 

Chan-Vese model for active contour to obtain the cartilage segmentation.   

 

1.1 Related Work 

 Knee joint segmentation is adopted to conduct quantitative assessment of OA marker, for instance, 

bone deformation, cartilage thickness and volume and osteophytes formation. Among the existing 

radiography, MRI sequence is more suitable for quantitative assessment of cartilage status compared to other 

conventional radiography methods. MR imaging provides sufficient signal-to-noise ratio (SNR) and contrast-

to-noise ratio (CNR) with no significant artifacts such as geometric distortion and signal distortion [10]. 

Besides, high spatial resolution of MRI ensures sufficient pixels for cartilage thickness measurement such 

that articular cartilage is relatively thin, about 1.3 – 2.5mm thick in a healthy knee [11].  

 Substantial effort has been contributed by the researchers around the world working on knee 

cartilage MRI segmentation for decades. The segmentation methods are different in their level of automation 

and the level of priori knowledge needed for the user to classify the region of interest (ROI) [8]. The methods 

which require high level of user interaction need low level of priori knowledge on the knee structure and vice 

versa. A good example of interactive segmentation model was presented to segment knee cartilage by using 

locally statistical level set method (LSLSM) and compute its thickness using normal distance [12]. 

Meanwhile, a low-level priori knowledge needed segmentation framework is proposed to segment the knee 

cartilage through canny edge detection to extract the edge of cartilage for further region of interest (ROI) 

masking [13]. The model requiring moderate priori knowledge and user interaction is best illustrated by 

Folkesson, who proposed to implement unsupervised k-nearest neighbours framework to cluster tissue by 

selecting specific features such as voxel position, raw and Gaussian smoothed intensities and intensity 

derivatives [15]. Yin described a new approach named Layered Optimal Graph Image Segmentation of 

Multiple Objects and Surfaces (LOGISMOS) that introduced multi-surface interaction constraints to inhibit 

oversegmentation of cartilages and bones [16]. A high priori knowledge of knee structure is needed in 

allocating the segmentation barrier for a good segmentation result. As can be seen in Figure 2, random 

walker interactive segmentation model reported in [6] required user interaction to place seeds to label 

background and manually label the tibial, femoral and patellar cartilages as foreground. The model aims to 

reduce the error caused by inter- and intra- observer variability and hence ensuring the segmentation result 

reproducibility.  
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.  

Figure 2. User interaction on labelling a knee MR image. 

 

 A fully automated cartilage segmentation using multiple atlases built and local structural analysis 

method was proposed by June-Goo to determine the seed points location for graph-cut based method. The 

results are promising but there are drawbacks in computation time, 30 minutes for atlas building procedure 

and 10 minutes for fusion labelling and region adjustment procedures, and incomplete segmentation when the 

femoral cartilage and tibial cartilage are too closely juxtaposed [17]. Intervention of deep learning in 

evaluating knee MR images is reported in [14]. A depth of 5 convolutional encoder-decoder network is 

trained with substantial amount of labelled image by an experienced radiologist. The results obtained are 

convincing with trade-off of laborious label work and long model training time. Active shape model (ASM) 

overcomes the limitation of region-based segmentation methods such as active contour and region growing. 

ASM includes the knowledge of the shape of the ROI and forms a deformable shape model to fit into an 

interested region, for instance, extracting distal femur and proximal tibia bone for joint space width 

accessment in [21]. ASM initialization was obtained by placing landmarks according to the shape of the 

objects. The landmarks will then move to new points in the normal direction from their original points. The 

model will change its shape based on the eigenvalues and repeat the process until convergence [8]. Fripp et 

al. proposed 3D ASM in knee bone segmentation. The author highlighted the necessity of larger training 

databases so as to improve the segmentation results [22].   

 

1.2  Problem Definition 

 Manual delineation of the tissue in interest by a single trained operator is very time consuming [18]. 

The segmentation performed in clinical routine, is irreproducible and its reconstruction times up to several 

hours [19]. In recent years, researchers are looking forward for semi-automated segmentation and fully-

automated segmentation methods to reduce the delineation time of knee cartilage. From the study, computer-

aided segmentation provides more consistent segmentation on ROI with less bias or variability compared to 

manual delineation of cartilage structure [19].   

 We utilize a fully-automated segmentation that combined a series of image processing methods. 

Initially, the knee MR images were pre-processed with contrast and intensity enhancement before smoothing 

filter and unsharp masking were applied. K-means clustering method was used to cluster the tissues, divide 

cartilage from noisy background including fat tissue, synovial fluid, bones and ligaments. In this study, 

sagittal knee MR images were tested with the proposed segmentation framework. Comparisons between 

manual segmentation and the proposed method with comparison of random walker segmentation model were 

discussed in section 3. 

 

2. RESEARCH METHOD  

All the MRI data are obtained from the Osteoarthritis Initiative (OAI). The MRI will be pre-

processed to improve their contrast, reduce the existing noise and sharpen the edges.   

 

2.1 MR Image Acquisition and Software Used 

The knee joint MR images are provided by The Osteoarthritis Initiative. The images were captured 

using water excitation double echo steady-state (DESS) imaging protocol with sagittal slices at 3.0T.  Given 

that imaging parameters for the sequence is TR/TE: 16.32/4.71ms, size: 384x384. MATLAB 2019a was used 

to do the image enhancement and segmentation. 
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2.2.  Proposed Framework 

 Figure 3 shows the proposed framework used in this study. The DICOM format knee slice is 

converted into 16-bit grayscale TIFF file format that remains full image details. The image is smoothened 

with median filter of window size of 3 x 3 to remove most existing noises. Later, we apply unsharp masking 

to enhance the acutance of the boundaries of bones and cartilages.  

 

2.2.1 Bone-cartilage Mask Generation 

 As a common problem in medical images, the appearance of MR image is dark in nature and the 

contrast of cartilage is indistinctive among the neighbouring tissues. To overcome the problem, Bi-Bezier 

curve contrast enhancement (BBCCE) [23] is conducted to enhance the global brightness while preserving 

the mean brightness of the image. Conventional histogram equalization is not prioritized in medical image 

processing as its mapping curve, also named as cumulative frequency density curve, experiences a sudden 

jump which could pull the intensity distribution naively that distorts the image quality. Therefore, with gentle 

nature offered by BBCCE, the knee MR image can be enhanced by preserving pertinent knee features while 

retaining its nature image appearance. Then, a seed is placed in femoral bone region. Obtaining the binary 

mask for the femoral bone, we dilate the mask with disk size of 30 to crop the bone-cartilage interface (BCI).  

  

 

 
Figure 3. Flowchart of the proposed framework. 

 

2.2.2 K-means classification framework 

 The bone-cartilage complex obtained from the previous stage is then input into the K-means 

classification framework. K-means clustering aims to partition the targeted observation into k cluster with the 

nearest mean. Given that a set of observations 𝑥1, 𝑥2, … , 𝑥𝑛 where every observation is a d-dimensional real 

vector. This clustering method would divide the n observations into k sets, which is less than n.  

 Each centroid defines its cluster. At first, each data point is assigned to its nearest centroid with 

squared Euclidean distance. For instance, if 𝑜𝑖  is the collection of centroids in set O, each observation x is 

assigned to their relative cluster based on: 

 

𝑎𝑟𝑔 𝑚𝑖𝑛 𝑑𝑖𝑠𝑡 (𝑜𝑖 , 𝑥)2, 𝑜 ∈ 𝑂  ( 1 ) 

 Centroids, S will be recomputed by taking the mean of all observations assigned to the centroid’s 

cluster: 

 

𝑜𝑖 =
1

|𝑆𝑖|
∑ 𝑥𝑖𝑥𝑖∈𝑆𝑖

   ( 2 ) 

 

 The clustering algorithm iterates until a stopping criterion is met, for instance, when there is no 

observation change clusters, the sum of the distances is minimized or the maximum number of iterations set 

initially is reached. In this study, k = 2 is defined to separate cartilage as the foreground while the other 

tissues and bones as background. 

 Morphological opening operation is carried out so as to disconnect the cartilage with the unwanted 

parts. Then, Chan-Vese for active contour is applied to recover the losing details that caused by the opening 

process. Finally, the cartilages are extracted which can be seen in Figure 3. The segmentation result will be 

tested with Dice Similarity Coefficient and its classification performance test. 
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2.3 Evaluation Metrics 

 In this work, 40 saggital knee MR images are tested with the proposed framework. Dice similarity 

coefficient (DSC) is used to verify the performance of our framework. As there is no ground truth provided 

by the database, manual segmentation of the images is normally done by an experienced operator. DSC refers 

to degree of agreement of both segmented results. Given that A is the segmentation result from the proposed 

framework while B is the manual segmented result by the operator: 

 

𝐷𝑖𝑐𝑒 =  
2(𝐴∩𝐵)

𝐴+𝐵
    ( 3 )   

  

Sensitivity measures the performance of the proposed framework on classifying the cartilage pixels 

while specificity measures the ability of the framework to classify non-cartilage pixels. Accuracy measures 

the overall classification performance. Given that true positive (TP), false positive (FP), true negative (TN) 

and false negative (FN), sensitivity, specificity and accuracy can be defined as: 

 

𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
  ( 4 ) 

𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =  
𝑇𝑁

𝑇𝑁+𝐹𝑃
  ( 5 ) 

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 ( 6 ) 

 

 

 

3.  RESULTS AND ANALYSIS 

 Referring to Figure 4b, a BBCCE enhanced knee MR image can be seen. The cartilages are 

highlighted and appear to be more distinctive from the neighbouring fat tissues which could increase the 

accuracy of classification at the following stage. Clustering the bone-cartilage complex with k = 2, coarse 

cartilage information is extracted from the background. The segmented result can be contaminated with the 

fat tissues or synovial fluid which has homogeneous intensity with the hyaline layers. Therefore, the coarse 

result undergoes opening process to remove the unwanted parts and recover the lossed details with Chan-

Vese active contour method with fixed of 200 iteration and the final segmentation can be seen in Figure 4c.  

 We compared our fully automated cartilage segmentation model with random walker interactive 

segmentation model [a] and the results from their performance evaluation are tabulated in Table 1 and Table 

2. From 40 successful segmentations, the proposed method yields DSC of 0.689 ± 0.059, accuracy of 

0.987 ± 0.004, sensitivity 0.685 ± 0.065 of and specificity of 0.994 ± 0.004. Meanwhile, random walker 

interactive model gives DSC of 0.694 ± 0.062, accuracy of 0.988 ± 0.003, sensitivity 0.678 ± 0.092 of 

and specificity of 0.994 ± 0.003.  Notably that both frameworks acquire lower DSC value and sensitivity 

value indicating that both frameworks are sensitive to the intensity variation of the cartilages. As can be seen 

in Figure 5, hyaline cartilage will experience structure change with variant intensity distribution which can 

lead to wrong classification of cartilage pixels. In other words, the proposed model is sensitive and potential 

to detect cartilage lesion at early OA stage. Besides, both the segmentation models give high accuracy and 

specificity in cartilage classification.  

 

 

 
Figure 4. Cartilage classification by the proposed method. (a) Original input image. (b)BBCCE enhanced 

image. (c) Cartilage classification result. (d) Overlap result of original image and segmented result. 
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Table 1. Random walker interactive segmentation model evaluation metrics. 

Image DSC TP TN FP FN Accuracy Sensitivity Specificity 

1 0.668 2199 143074 487 1696 0.985 0.565 0.997 

2 0.690 2338 143014 1329 775 0.986 0.751 0.991 

3 0.708 1765 144236 174 1281 0.990 0.579 0.999 

4 0.691 1427 144755 307 967 0.991 0.596 0.998 

5 0.762 2190 143895 545 826 0.991 0.726 0.996 

6 0.710 2416 143066 204 1770 0.987 0.577 0.999 

7 0.704 1761 144211 563 921 0.990 0.657 0.996 

8 0.679 1558 144426 727 745 0.990 0.677 0.995 

9 0.824 2443 143969 507 537 0.993 0.820 0.996 

10 0.680 1957 143653 740 1106 0.987 0.639 0.995 

11 0.731 2845 142517 798 1296 0.986 0.687 0.994 

12 0.729 1763 144385 352 956 0.991 0.648 0.998 

13 0.764 2401 143569 885 601 0.990 0.800 0.994 

14 0.636 1637 143946 328 1545 0.987 0.514 0.998 

15 0.567 1871 142733 814 2038 0.981 0.479 0.994 

16 0.664 2343 142740 685 1688 0.984 0.581 0.995 

17 0.680 2545 142511 1658 742 0.984 0.774 0.988 

18 0.603 1221 144624 1083 528 0.989 0.698 0.993 

19 0.682 2218 143170 1402 666 0.986 0.769 0.990 

20 0.677 1851 143838 570 1197 0.988 0.607 0.996 

21 0.668 2082 143307 1090 977 0.986 0.681 0.992 

22 0.667 2283 142896 880 1397 0.985 0.620 0.994 

23 0.638 2208 142739 609 1900 0.983 0.537 0.996 

24 0.755 1619 144788 617 432 0.993 0.789 0.996 

25 0.617 1503 144086 868 999 0.987 0.601 0.994 

26 0.555 1755 142882 1944 875 0.981 0.667 0.987 

27 0.609 2093 142681 1961 721 0.982 0.744 0.986 

28 0.695 1398 144832 893 333 0.992 0.808 0.994 

29 0.767 3048 142554 1007 847 0.987 0.783 0.993 

30 0.693 1721 144213 248 1274 0.990 0.575 0.998 

31 0.779 2073 144205 522 656 0.992 0.760 0.996 

32 0.734 1918 144147 490 901 0.991 0.680 0.997 

33 0.756 1879 144363 544 670 0.992 0.737 0.996 

34 0.662 1937 143537 956 1026 0.987 0.654 0.993 

35 0.644 1307 144707 594 848 0.990 0.606 0.996 

36 0.776 1985 144323 471 677 0.992 0.746 0.997 

37 0.623 2326 142314 2138 678 0.981 0.774 0.985 

38 0.691 2234 143220 732 1270 0.986 0.638 0.995 

39 0.771 2451 143550 722 733 0.990 0.770 0.995 

40 0.797 2962 142986 870 638 0.990 0.823 0.994 

Mean 0.694 
2038.27

5 
143616.550 

807.85

0 
993.325 0.988 0.678 0.994 

STD 0.062 430.851 755.949 
471.08

4 
415.757 0.003 0.092 0.003 
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Table 2. Proposed framework evaluation metrics. 

Image DSC TP TN FP FN Accuracy Sensitivity Specificity 

1 0.552 2555 140760 2801 1340 0.972 0.656 0.980 

2 0.682 2521 142581 1762 592 0.984 0.810 0.988 

3 0.683 1796 143989 421 1250 0.989 0.590 0.997 

4 0.684 1508 144557 505 886 0.991 0.630 0.997 

5 0.721 2074 143774 666 942 0.989 0.688 0.995 

6 0.713 2574 142809 461 1612 0.986 0.615 0.997 

7 0.710 1811 144166 608 871 0.990 0.675 0.996 

8 0.659 1637 144128 1025 666 0.989 0.711 0.993 

9 0.721 2289 143396 1080 691 0.988 0.768 0.993 

10 0.708 2012 143786 607 1051 0.989 0.657 0.996 

11 0.684 2711 142245 1070 1430 0.983 0.655 0.993 

12 0.653 1790 143761 976 929 0.987 0.658 0.993 

13 0.766 2352 143669 785 650 0.990 0.783 0.995 

14 0.635 2105 142936 1338 1077 0.984 0.662 0.991 

15 0.620 2106 142766 781 1803 0.982 0.539 0.995 

16 0.692 2613 142518 907 1418 0.984 0.648 0.994 

17 0.734 2416 143292 877 871 0.988 0.735 0.994 

18 0.635 1328 144601 1106 421 0.990 0.759 0.992 

19 0.692 2124 143440 1132 760 0.987 0.736 0.992 

20 0.684 1943 143718 690 1105 0.988 0.637 0.995 

21 0.689 2001 143648 749 1058 0.988 0.654 0.995 

22 0.698 2144 143461 315 1536 0.987 0.583 0.998 

23 0.638 2398 142336 1012 1710 0.982 0.584 0.993 

24 0.724 1536 144750 655 515 0.992 0.749 0.995 

25 0.626 1581 143985 969 921 0.987 0.632 0.993 

26 0.534 1766 142606 2220 864 0.979 0.671 0.985 

27 0.599 1875 143070 1572 939 0.983 0.666 0.989 

28 0.729 1220 145330 395 511 0.994 0.705 0.997 

29 0.752 2854 142715 846 1041 0.987 0.733 0.994 

30 0.749 2016 144091 370 979 0.991 0.673 0.997 

31 0.777 2076 144190 537 653 0.992 0.761 0.996 

32 0.707 1788 144185 452 1031 0.990 0.634 0.997 

33 0.736 1929 144142 765 620 0.991 0.757 0.995 

34 0.745 2065 143980 513 898 0.990 0.697 0.996 

35 0.653 1434 144499 802 721 0.990 0.665 0.994 

36 0.725 1851 144199 595 811 0.990 0.695 0.996 

37 0.605 2195 142394 2058 809 0.981 0.731 0.986 

38 0.685 2172 143282 670 1332 0.986 0.620 0.995 

39 0.792 2466 143694 578 718 0.991 0.774 0.996 

40 0.784 2896 142963 893 704 0.989 0.804 0.994 

Mean 0.689 2063.200 
143510.30

0 

914.10

0 
968.400 0.987 0.685 0.994 

STD 0.059 407.393 864.287 
527.97

9 
339.059 0.004 0.065 0.004 
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Figure 5. Detection of hyaline extracellular matrix starts tearing down. 

 

 
Figure 6. Misclassification of neighbouring tissues with similar intensity. 

 

 As a trade-off of labelling work, the proposed framework classifies the bright cartilage from 

neighbouring dark tissues through intensity classification of k = 2. In Figure 6, misclassification of 

neighbouring tissue as patellar cartilage can be seen such that the intensity of the misclassified pixels is 

homogeneous with the cartilage pixels. To overcome this, morphological operations in breaking the 

connection and removal of unwanted region are suggested. Apart from that, a distance parameter can be 

added into the framework to compute the distance of the targeted pixels from the centroid. We can easily 

filter out the misclassified parts once it reaches the preset maximum distance.  

 In a nutshell, the proposed method that classifies the cartilages automatically is competitive with 

semi-automatic random walker segmentation model. The proposed model can be used to replace the tedious 

and time-consuming cartilage labelling work for deep learning model and active shape model which require 

large training database to ensure good classification results.  

 

 

4. CONCLUSION  

  In short, 40 knee joint MR images from sagittal view are successfully segmented through the 

proposed framework to extract the cartilage information. We introduced a novel framework of combining 

gentle BBCCE contrast enhancement, bone-cartilage complex extraction with region growing and dilation of 

binary mask and finally classification of cartilage with K-means clustering and active contour 

implementation to recover the lost information. The proposed fully automated model is competitive with 

other semi-automated model and shows great potential in assisting the physicians in OA diagnosis and 

labelling cartilage for substantial amount of training set for deep learning classification model.  
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