
Texts in Computer Science

Java in Two
Semesters

Quentin Charatan
Aaron Kans

Featuring JavaFX

Fourth Edition

Texts in Computer Science

Series editors

David Gries, Department of Computer Science, Cornell University, Ithaca, NY,
USA
Orit Hazzan, Faculty of Education in Science and Technology, Technion—Israel
Institute of Technology, Haifa, Israel

More information about this series at http://www.springer.com/series/3191

http://www.springer.com/series/3191

Quentin Charatan • Aaron Kans

Java in Two Semesters
Featuring JavaFX

Fourth Edition

123

Quentin Charatan
University of East London
London, UK

Aaron Kans
University of East London
London, UK

ISSN 1868-0941 ISSN 1868-095X (electronic)
Texts in Computer Science
ISBN 978-3-319-99419-2 ISBN 978-3-319-99420-8 (eBook)
https://doi.org/10.1007/978-3-319-99420-8

Library of Congress Control Number: 2018961214

1st edition: © The McGraw-Hill Companies 2002
2nd edition: © McGraw-Hill Education (UK) Limited 2006
3rd edition: © McGraw-Hill Education (UK) Limited 2009
4th edition: © Springer Nature Switzerland AG 2019
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt from
the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, express or implied, with respect to the material contained herein or
for any errors or omissions that may have been made. The publisher remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-319-99420-8

To Alexi
Quentin Charatan

To Wendy
Aaron Kans

Preface

Accompanying Web site: https://www.springer.com/book/9783319994192.
As with previous editions, this book is designed for university students taking a

first module in software development or programming, followed by a second, more
advanced module. This book uses Java as the vehicle for the teaching of pro-
gramming concepts—design concepts are explained using the UML notation. The
topic is taught from first principles and assumes no prior knowledge of the subject.

This book is organized so as to support two twelve-week, one-semester modules,
which might typically comprise a two-hour lecture, a one-hour seminar, and a one-
or two-hour laboratory session. The outcomes at the start of each chapter highlight
its key learning objectives, the self-test questions at the end of each chapter ensure
that the learning objectives for that chapter have been met, while the programming
exercises that follow allow these learning objectives to be applied to complete
programs. In addition to these exercises and questions, a case study is developed in
each semester to illustrate the use of the techniques covered in the text to develop a
non-trivial application. Lecturers who teach on modules that run for fewer than
twelve weeks in a semester could treat these case studies as a self-directed student
learning experience, rather than as taught topics.

The approach taken in this book is ideal for all students including those entering
university with little or no background in the subject matter, perhaps coming from
pre-degree courses in other disciplines, or perhaps returning to study after long
periods away from formal education. It is the authors’ experience that such students
have enormous difficulties in grasping the fundamental programming concepts the
first time round and therefore require a simpler and gentler introduction to the
subject that is presented in most standard texts.

This book takes an integrated approach to software development by covering
such topics as basic design principles and standards, testing methodologies, and the
user interface, as well as looking at detailed implementation topics.

In the first semester, considerable time is spent concentrating on the fundamental
programming concepts such as declarations of variables and basic control struc-
tures, methods and arrays, prior to introducing students to classes and objects,
inheritance, graphics, and event-driven programming.

The second semester covers more advanced topics such as interfaces, exceptions,
collection classes from the Java collections framework, advanced graphics,

vii

https://www.springer.com/book/9783319994192

file-handling techniques, packages, the implementation of multi-threaded programs,
socket programming, and processing collections using streams.

The fourth edition achieves three main goals. Firstly, it incorporates all the very
useful feedback on the third edition that we have received from students and
lecturers since its publication. Secondly, it includes many new questions and pro-
gramming exercises at the end of the chapters. Finally, it includes new material to
bring it completely up to date with the current developments in the field—in par-
ticular a number of key developments that were introduced in Java 8 which,
according to OracleTM, is “the most significant re-engineering of the language since
its launch.”

One key feature of this new edition is that all graphical user interface devel-
opments are based on JavaFX, rather than the Swing Technology used in previous
editions. JavaFX allows for the creation of sophisticated modern graphical inter-
faces that can run on a variety of devices and is now Oracle’s preferred technology
for building such interfaces, having decided that Swing will no longer be devel-
oped. JavaFX therefore plays a very significant role throughout the new text, and
three new chapters are devoted to it.

Other key developments arising from Java 8 that have been incorporated into the
new text include lambda expressions, which allow us to simplify development
considerably by passing functions as arguments to methods, and the new Stream
API, a technology that allows us to process collections in a very concise, declarative
style of programming.

In addition to the above key changes, we also introduce techniques to improve
the robustness of code—in particular the Optional class for dealing with empty
values and the try-with-resources construct to ensure resources such as files are
safely closed before exiting methods.

As well as adding these new features, some existing chapters have undergone
significant enhancements. The Java Collections Framework chapter, for example,
has been expanded to include a comprehensive section on the sort methods
available in various classes and interfaces in Java. The coverage of generics has also
been considerably expanded and the packages chapter now introduces the Hiber-
nate ORM technology for accessing remote databases.

The accompanying Web site (see URL above) contains all the codes from the
textbook and a guide on how to install and use the NetBeans™ Java IDE, as well as
a collection of other useful resources.

We would like to thank our publisher, Springer, for the encouragement and
guidance that we have received throughout the production of this book. Addi-
tionally, we would especially like to thank the computing students of the University
of East London for their thoughtful comments and feedback and Steven Martin for
his help and advice. For support and inspiration, special thanks are due once again
to our families and friends.

London, UK Quentin Charatan
Aaron Kans

viii Preface

Contents

Part I Semester One

1 The First Step . 3
1.1 Introduction . 3
1.2 Software . 4
1.3 Compiling Programs . 4
1.4 Programming in Java . 5
1.5 Integrated Development Environments (IDEs) 6
1.6 Java Applications . 8
1.7 Your First Program . 10

1.7.1 Analysis of the “Hello World” Program 11
1.7.2 Adding Comments to a Program 13

1.8 Output in Java . 14
1.9 Self-test Questions . 16
1.10 Programming Exercises . 17

2 Building Blocks . 19
2.1 Introduction . 19
2.2 Simple Data Types in Java . 19
2.3 Declaring Variables in Java . 21
2.4 Assignments in Java . 23
2.5 Creating Constants . 25
2.6 Arithmetic Operators . 25
2.7 Expressions in Java . 27
2.8 More About Output . 30
2.9 Input in Java: The Scanner Class . 31
2.10 Program Design . 35
2.11 Self-test Questions . 36
2.12 Programming Exercises . 38

3 Selection . 41
3.1 Introduction . 41
3.2 Making Choices . 42

ix

3.3 The ‘if’ Statement . 43
3.3.1 Comparison Operators . 46
3.3.2 Multiple Instructions Within an ‘if’ Statement 47

3.4 The ‘if…else’ Statement . 49
3.5 Logical Operators . 51
3.6 Nested ‘if…else’ Statements . 53
3.7 The ‘switch’ Statement . 55

3.7.1 Grouping Case Statements . 56
3.7.2 Removing Break Statements 57

3.8 Self-test Questions . 59
3.9 Programming Exercises . 61

4 Iteration . 65
4.1 Introduction . 65
4.2 The ‘for’ Loop . 67

4.2.1 Varying the Loop Counter . 70
4.2.2 The Body of the Loop . 72
4.2.3 Revisiting the Loop Counter 76

4.3 The ‘while’ Loop . 77
4.4 The ‘do…while’ Loop . 79
4.5 Picking the Right Loop . 83
4.6 The ‘break’ Statement . 84
4.7 The ‘continue’ Statement . 86
4.8 Self-test Questions . 88
4.9 Programming Exercises . 91

5 Methods . 95
5.1 Introduction . 95
5.2 Declaring and Defining Methods . 96
5.3 Calling a Method . 98
5.4 Method Input and Output . 99
5.5 More Examples of Methods . 103
5.6 Variable Scope . 107
5.7 Method Overloading . 109
5.8 Using Methods in Menu-Driven Programs 112
5.9 Self-test Questions . 115
5.10 Programming Exercises . 117

6 Arrays . 119
6.1 Introduction . 119
6.2 Creating an Array . 120
6.3 Accessing Array Elements . 124
6.4 Passing Arrays as Parameters . 129
6.5 Varargs . 131

x Contents

6.6 Returning an Array from a Method . 134
6.7 The Enhanced ‘for’ Loop . 137
6.8 Some Useful Array Methods . 139

6.8.1 Array Maximum . 139
6.8.2 Array Summation . 141
6.8.3 Array Membership . 141
6.8.4 Array Search . 142
6.8.5 The Final Program . 143

6.9 Multi-dimensional Arrays . 148
6.9.1 Creating a Two-Dimensional Array 148
6.9.2 Initializing Two-Dimensional Arrays 149
6.9.3 Processing Two-Dimensional Arrays 150
6.9.4 The MonthlyTemperatures Program 151

6.10 Ragged Arrays . 155
6.11 Self-test Questions . 158
6.12 Programming Exercises . 161

7 Classes and Objects . 163
7.1 Introduction . 163
7.2 Classes as Data Types . 163
7.3 Objects . 165
7.4 The Oblong Class . 166
7.5 The OblongTester Program . 171
7.6 Strings . 173

7.6.1 Obtaining Strings from the Keyboard 173
7.6.2 The Methods of the String Class 174
7.6.3 Comparing Strings . 176
7.6.4 Entering Strings Containing Spaces 178

7.7 Our Own Scanner Class for Keyboard Input 179
7.8 The Console Class . 181
7.9 The BankAccount Class . 182
7.10 Arrays of Objects . 185
7.11 The ArrayList Class . 188
7.12 Self-test Questions . 190
7.13 Programming Exercises . 192

8 Implementing Classes . 195
8.1 Introduction . 195
8.2 Designing Classes in UML Notation 196
8.3 Implementing Classes in Java . 198

8.3.1 The Oblong Class . 198
8.3.2 The BankAccount Class . 202

8.4 The static Keyword . 205
8.5 Initializing Attributes . 208

Contents xi

8.6 The EasyScanner Class . 209
8.7 Passing Objects as Parameters . 209
8.8 Collection Classes . 211

8.8.1 The Bank Class . 211
8.8.2 Testing the Bank Class . 217

8.9 The Benefits of Object-Oriented Programming 223
8.10 Self-test Questions . 223
8.11 Programming Exercises . 227

9 Inheritance . 235
9.1 Introduction . 235
9.2 Defining Inheritance . 236
9.3 Implementing Inheritance in Java . 237
9.4 Extending the Oblong Class . 241
9.5 Method Overriding . 245
9.6 Abstract Classes . 250
9.7 Abstract Methods . 253
9.8 The final Modifier . 257
9.9 The Object Class . 257
9.10 The toString Method . 258
9.11 Wrapper Classes and Autoboxing . 259
9.12 Self-test Questions . 260
9.13 Programming Exercises . 264

10 Introducing JavaFX . 265
10.1 Introduction . 265
10.2 A Brief History of Java Graphics . 266
10.3 JavaFX: An Overview . 267
10.4 2D Graphics: The SmileyFace Class . 269
10.5 Event-Handling in JavaFX: The ChangingFace Class 275
10.6 Some More 2D Shapes . 281
10.7 An Interactive Graphics Class . 282
10.8 A Graphical User Interface (GUI) for the Oblong Class 285
10.9 Containers and Layouts . 288

10.9.1 More About HBox and VBox 288
10.9.2 GridPane . 290
10.9.3 StackPane . 291
10.9.4 FlowPane and BorderPane 292

10.10 Borders, Fonts and Colours . 293
10.10.1 Borders . 294
10.10.2 Fonts . 295
10.10.3 Colours . 296

10.11 Number Formatting . 297
10.12 A Metric Converter . 299

xii Contents

10.13 Self-test Questions . 302
10.14 Programming Exercises . 303

11 Case Study—Part 1 . 307
11.1 Introduction . 307
11.2 The Requirements Specification . 308
11.3 The Design . 308
11.4 Implementing the Payment Class . 310
11.5 The PaymentList Class . 313

11.5.1 Javadoc . 317
11.5.2 Code Layout . 319

11.6 Testing the PaymentList Class . 320
11.7 Implementing the Tenant Class . 328
11.8 Implementing the TenantList Class . 330
11.9 Self-test Questions . 334
11.10 Programming Exercises . 334

12 Case Study—Part 2 . 335
12.1 Introduction . 335
12.2 Keeping Permanent Records . 335
12.3 Design of the Hostel Class . 336
12.4 Design of the GUI . 338
12.5 Designing the Event-Handlers . 341
12.6 Implementing the Hostel Class . 344
12.7 Testing the System . 350
12.8 What Next? . 353
12.9 Self-test Questions . 354
12.10 Programming Exercises . 354

Part II Semester Two

13 Interfaces and Lambda Expressions . 357
13.1 Introduction . 357
13.2 An Example . 358
13.3 Interfaces . 359
13.4 Inner Classes . 364
13.5 Anonymous Classes . 364
13.6 Lambda Expressions . 368

13.6.1 The Syntax of Lambda Expressions 369
13.6.2 Variable Scope . 371
13.6.3 Example Programs . 371
13.6.4 Method References—The Double Colon

Operator . 374
13.7 Generics . 376

Contents xiii

13.7.1 Bounded Type Parameters . 379
13.7.2 Wildcards . 382

13.8 Other Interfaces Provided with the Java Libraries 383
13.9 Polymorphism and Polymorphic Types 385

13.9.1 Operator Overloading . 385
13.9.2 Method Overloading . 385
13.9.3 Method Overriding . 385
13.9.4 Type Polymorphism . 386

13.10 Self-test Questions . 386
13.11 Programming Exercises . 391

14 Exceptions . 393
14.1 Introduction . 393
14.2 Pre-defined Exception Classes in Java 394
14.3 Handling Exceptions . 395

14.3.1 Claiming an Exception . 398
14.3.2 Catching an Exception . 401

14.4 The ‘finally’ Clause . 403
14.5 The ‘Try-with-Resources’ Construct . 406
14.6 Null-Pointer Exceptions . 408
14.7 The Optional Class . 410
14.8 Exceptions in GUI Applications . 413
14.9 Using Exceptions in Your Own Classes 416

14.9.1 Throwing Exceptions . 417
14.9.2 Creating Your Own Exception Classes 419

14.10 Documenting Exceptions . 421
14.11 Self-test Questions . 422
14.12 Programming Exercises . 423

15 The Java Collections Framework . 427
15.1 Introduction . 427
15.2 The List Interface and the ArrayList Class 428

15.2.1 Creating an ArrayList Collection Object 429
15.2.2 The Interface Type Versus the Implementation

Type . 430
15.2.3 List Methods . 431

15.3 The Enhanced for Loop and Java Collections 434
15.4 The forEach Loop . 435
15.5 The Set Interface and the HashSet Class 436

15.5.1 Set Methods . 437
15.5.2 Iterating Through the Elements of a Set 438
15.5.3 Iterator Objects . 440

xiv Contents

15.6 The Map Interface and the HashMap Class 443
15.6.1 Map Methods . 444
15.6.2 Iterating Through the Elements of a Map 446

15.7 Using Your Own Classes with Java’s Collection Classes 447
15.7.1 The Book Class . 448
15.7.2 Defining an equals Method 450
15.7.3 Defining a hashCode Method 450
15.7.4 The Updated Book Class . 452

15.8 Developing a Collection Class for Book Objects 453
15.9 Sorting Objects in a Collection . 456

15.9.1 The Collections.sort and Arrays.sort Methods 456
15.9.2 The Comparable<T> Interface 458
15.9.3 The Comparator<T> Interface 459

15.10 Self-test Questions . 463
15.11 Programming Exercises . 465

16 Advanced JavaFX . 469
16.1 Introduction . 469
16.2 Input Events . 470

16.2.1 Mouse Events . 470
16.2.2 Key Events . 473

16.3 Binding Properties . 477
16.4 The Slider Class . 479
16.5 Multimedia Nodes . 482

16.5.1 Embedding Images . 483
16.5.2 Embedding Videos . 486
16.5.3 Embedding Web Pages . 489

16.6 Cascading Style Sheets . 491
16.7 Self-test Questions . 496
16.8 Programming Exercises . 497

17 JavaFX: Interacting with the User . 499
17.1 Introduction . 499
17.2 Drop-Down Menus . 500
17.3 Context (Pop-Up) Menus . 503
17.4 Combo Boxes . 507
17.5 Check Boxes and Radio Buttons . 509
17.6 A Card Menu . 513
17.7 The Dialog Class . 518
17.8 Self-test Questions . 524
17.9 Programming Exercises . 525

Contents xv

18 Working with Files . 527
18.1 Introduction . 527
18.2 Input and Output . 528
18.3 Input and Output Devices . 528
18.4 File-Handling . 530

18.4.1 Encoding . 530
18.4.2 Access . 531

18.5 Reading and Writing to Text Files . 531
18.6 Reading and Writing to Binary Files 539
18.7 Reading a Text File Character by Character 541
18.8 Object Serialization . 542
18.9 Random Access Files . 544
18.10 Self-test Questions . 549
18.11 Programming Exercises . 550

19 Packages . 553
19.1 Introduction . 553
19.2 Understanding Packages . 553
19.3 Accessing Classes in Packages . 555
19.4 Developing Your Own Packages . 558
19.5 Package Scope . 559
19.6 Running Applications from the Command Line 560
19.7 Deploying Your Packages . 563
19.8 Adding External Libraries . 564

19.8.1 Accessing Databases Using JDBC 564
19.8.2 Accessing Databases Using Hibernate 568

19.9 Self-test Questions . 574
19.10 Programming Exercises . 575

20 Multi-threaded Programs . 577
20.1 Introduction . 577
20.2 Concurrent Processes . 578
20.3 Threads . 578
20.4 The Thread Class . 580
20.5 Thread Execution and Scheduling . 582
20.6 Synchronizing Threads . 584
20.7 Thread States . 585
20.8 Multithreading and JavaFX . 587

20.8.1 The Task Class . 587
20.8.2 The Service Class . 590
20.8.3 Automating the ChangingFace Application 591
20.8.4 Running a Task in the Background 594
20.8.5 Animation Using a Series of Images 596

xvi Contents

20.9 Self-test Questions . 599
20.10 Programming Exercises . 600

21 Advanced Case Study . 603
21.1 Introduction . 603
21.2 System Overview . 604
21.3 Requirements Analysis and Specification 604
21.4 Design . 606
21.5 Enumerated Types in UML . 608
21.6 Implementation . 609

21.6.1 Implementing Enumerated Types in Java 609
21.6.2 The Runway Class . 611
21.6.3 The Plane Class . 612
21.6.4 The Airport Class . 616

21.7 Testing . 624
21.8 Design of the JavaFX Interface . 625
21.9 The TabPane Class . 626
21.10 The AirportFrame Class . 628
21.11 Self-test Questions . 638
21.12 Programming Exercises . 639

22 The Stream API . 641
22.1 Introduction . 641
22.2 Streams Versus Iterations: Example Program 643
22.3 Creating Streams . 646
22.4 Intermediate Operations . 648
22.5 Operations for Terminating Streams . 652

22.5.1 More Examples . 652
22.5.2 Collecting Results . 654

22.6 Concatenating Streams . 656
22.7 Infinite Streams . 656
22.8 Stateless and Stateful Operations . 657
22.9 Parallelism . 658
22.10 Self-test Questions . 659
22.11 Programming Exercises . 659

23 Working with Sockets . 661
23.1 Introduction . 661
23.2 Sockets . 662
23.3 A Simple Server Application . 663
23.4 A Simple Client Application . 668
23.5 Connections from Multiple Clients . 673

Contents xvii

23.6 A Client–Server Chat Application . 676
23.7 Self-test Questions . 686
23.8 Programming Exercises . 686

24 Java in Context . 689
24.1 Introduction . 689
24.2 Language Size . 690

24.2.1 Pointers . 690
24.2.2 Multiple Inheritance . 691

24.3 Language Reliability . 694
24.3.1 Aliasing . 695
24.3.2 Overriding the clone Method 697
24.3.3 Immutable Objects . 700
24.3.4 Using the clone Method of the Object Class 701
24.3.5 Copy Constructors . 703
24.3.6 Garbage Collection . 704

24.4 The Role of Java . 706
24.5 What Next? . 706
24.6 Self-test Questions . 707
24.7 Programming Exercises . 708

Index . 709

xviii Contents

Part I
Semester One

1The First Step

Outcomes:

By the end of this chapter you should be able to:

• explain the meaning of the terms software, program, source code, program
code;

• distinguish between application software and system software;
• explain how Java programs are compiled and run;
• provide examples of different types of java applications;
• write Java programs that display text on the screen;
• join messages in output commands by using the concatenation (+) operator;
• add comments to programs.

1.1 Introduction

Like any student starting out on a first programming module, you will be itching to
do just one thing—get started on your first program. We can well understand that,
and you won’t be disappointed, because you will be writing programs in this very
first chapter. Designing and writing computer programs can be one of the most
enjoyable and satisfying things you can do, although it can seem a little daunting at
first because it is like nothing else you have ever done. But, with a bit of perse-
verance, you will not only start to get a real taste for it but you may well find
yourself sitting up till two o’clock in the morning trying to solve a problem. And
just when you have given up and you are dropping off to sleep, the answer pops into
your head and you are at the computer again until you notice it is getting light
outside! So if this is happening to you, then don’t worry—it’s normal!

However, before you start writing programs we need to make sure that you
understand what we mean by important terms such as program, software, code and
programming languages.

© Springer Nature Switzerland AG 2019
Q. Charatan and A. Kans, Java in Two Semesters, Texts in Computer Science,
https://doi.org/10.1007/978-3-319-99420-8_1

3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99420-8_1&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99420-8_1&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99420-8_1&domain=pdf
https://doi.org/10.1007/978-3-319-99420-8_1

1.2 Software

A computer is not very useful unless we give it some instructions that tell it what to
do. This set of instructions is called a program. Programs that the computer can use
can be stored on electronic chips that form part of the computer, or can be stored on
devices like hard disks, CDs, DVDs, and USB drives (sometimes called memory
sticks), and can often be downloaded via the Internet.

The word software is the name given to a single program or a set of programs.
There are two main kinds of software:

• Application software. This is the name given to useful programs that a user
might need; for example, word-processors, spreadsheets, accounts programs,
games and so on. Such programs are often referred to simply as applications.

• System software. This is the name given to special programs that help the
computer to do its job; for example, operating systems (such as UNIX™ or
Windows™, which help us to use the computer) and network software (which
helps computers to communicate with each other).

Of course software is not restricted simply to computers themselves. Many of
today’s devices—from mobile phones to microwave ovens to games consoles—rely
on computer programs that are built into the device. Such software is referred to as
embedded software.

Both application and system software are built by writing a set of instructions for
the computer to obey. Programming, or coding, is the task of writing these
instructions. These instructions have to be written in a language specially designed
for this purpose. These programming languages include C++, Visual Basic,
Python and many more. The language we are going to use in this book is Java. Java
is an example of an object-oriented programming language. Right now, that phrase
might not mean anything to you, but you will find out all about its meaning as we
progress through this book.

1.3 Compiling Programs

Like most modern programming languages, the Java language consists of
instructions that look a bit like English. For example, words such as while and if are
part of the Java language. The set of instructions written in a programming lan-
guage is called the program code or source code.

Ultimately these instructions have to be translated into a language that can be
understood by the computer. The computer understands only binary instructions—
that means instructions written as a series of 0s and 1s. So, for example, the
machine might understand 01100111 to mean add. The language of the computer is
often referred to as machine code. A special piece of system software called a
compiler translates the instructions written in a programming language into

4 1 The First Step

machine instructions consisting of 0s and 1s. This process is known as compiling.
Figure 1.1 illustrates how this process works for many programming languages.

Programming languages have a very strict set of rules that you must follow. Just
as with natural languages, this set of rules is called the syntax of the language.
A program containing syntax errors will not compile. You will see when you start
writing programs that the sort of things that can cause compiler errors are the
incorrect use of special Java keywords, missing brackets or semi-colons, and many
others. If, however, the source code is free of such errors the compiler will suc-
cessfully produce a machine code program that can be run on a computer, as
illustrated.

Once a program has been compiled and the machine code program saved, it can
be run on the target machine as many times as necessary. When you buy a piece of
software such as a game or a word processor, it is this machine code program that
you are buying.

1.4 Programming in Java

Before the advent of Java, most programs were compiled as illustrated in Fig. 1.1.
The only problem with this approach is that the final compiled program is suitable
only for a particular type of computer. For example, a program that is compiled for
a PC will not run on a Mac™ or a UNIX™ machine.

But this is not the case with Java. Java—and nowadays many other languages—is
platform-independent. A Java program will run on any type of computer.

How is this achieved? The answer lies in the fact that any Java program requires
the computer it is running on to also be running a special program called a Java
Virtual Machine, or JVM for short. This JVM is able to run a Java program for the
particular computer on which it is running.

For example, you can get a JVM for a PC running Windows™; there is a JVM
for a MAC™, and one for a Unix™ or Linux™ box. There is a special kind of JVM
for mobile phones; and there are JVMs built into machines where the embedded
software is written in Java.

We saw earlier that conventional compilers translate our program code into
machine code. This machine code would contain the particular instructions appro-
priate to the type of computer it was meant for. Java compilers do not translate the
program into machine code—they translate it into special instructions called Java
byte code. Java byte code, which, like machine code, consists of 0s and 1s, contains
instructions that are exactly the same irrespective of the type of computer—it is
universal, whereas machine code is specific to a particular type of computer. The job
of the JVM is to translate each byte code instruction for the computer it is running on,
before the instruction is performed. See Fig. 1.2.

There are various ways in which a JVM can be installed on a computer. In the
case of some operating systems a JVM comes packaged with the system, along with
the Java libraries, or packages, (pre-compiled Java modules that can be integrated

1.3 Compiling Programs 5

with the programs you create) and a compiler. Together the JVM and the libraries
are known as the Java Runtime Environment (JRE). If you do not have a JRE on
your computer (as will be the case with any Windows™ operating system), then the
entire Java Development Kit (JDK), comprising the JRE, compiler and other tools,
can be downloaded from Oracle™, the owners of the Java platform.1

1.5 Integrated Development Environments (IDEs)

It is very common to compile and run your programs by using a special program
called an Integrated Development Environment or IDE. An IDE provides you
with an easy-to-use window into which you can type your code; other windows will
provide information about the files you are using; and a separate window will be
provided to tell you of your errors.

Not only does an IDE do all these things, it also lets you run your programs as
soon as you have compiled them. Depending on the IDE you are using, your screen
will look something like that in Fig. 1.3.

Fig. 1.1 The compilation process

1The original developers of Java were Sun Microsystems™. This company was acquired by
Oracle™ in 2010.

6 1 The First Step

The IDE shown in Fig. 1.3 is NetBeans™, a very commonly used compiler for
Java—another widely used IDE is Eclipse™. Instructions for installing and using
an IDE are on the website (see preface for details).

It is perfectly possible to compile and run Java programs without the use of an
IDE—but not nearly so convenient. You would do this from a command line in a
console window. The source code that you write is saved in the form of a simple
text file which has a .java extension. The compiler that comes as part of the JDK
is called javac.exe, and to compile a file called, for example, MyPro-
gram.java, you would write at the command prompt:

Fig. 1.2 Compiling Java programs

1.5 Integrated Development Environments (IDEs) 7

javac MyProgram.java

This would create a file called MyProgram.class, which is the compiled file in
Java byte code. The name of the JVM is java.exe and to run the program you
would type:

java MyProgram

To start off with however, we strongly recommend that you use an IDE such as
NetBeans™ or Eclipse™.

1.6 Java Applications

As we explained in Sect. 1.2, Java applications can run on a computer, on such
devices as mobile phones and games consoles, or sometimes can be embedded into
an electronic device. In the last case you would probably be unaware of the fact that
the software is running at all, whereas in the former cases you would be seeing

File information windows

Menu for carrying out tasks such
as compiling, running and saving
your programs

Console output window

Error message

Code window where you
type in your Java source
code

Fig. 1.3 A typical Java IDE screen

8 1 The First Step

output from your program on a screen and providing information to your program
via a keyboard and mouse, via a touch screen, or via a joystick or game controller.

The screen that provides output from your program, and prompts you to enter
information, is known as the user interface. There are two principal types of user
interface:

• text based;
• graphics based.

With text based user interfaces, information is displayed simply as text—with no
pictures. Text based programs make use of the keyboard for user input. Text based
programs are known as console applications. If you are using an IDE, the console
window is usually integrated into the IDE as you saw in Fig. 1.3. However, if you
are running a program from the command prompt you will see a window similar to
that shown in Fig. 1.4.

You are probably more accustomed to running programs that have a graphical
user interface (GUI). Such interfaces allow for pictures and shapes to be drawn on
the screen (such as text boxes and buttons) and make use of the mouse as well as
the keyboard to collect user input. An example of a GUI is given in Fig. 1.5.

Eventually we want all your programs to have graphical interfaces, but these
obviously require a lot more programming effort to create than simple console
applications. So, for most of the first semester, while we are teaching you the
fundamentals of programming in Java, we are going to concentrate on getting the
program logic right and we will be sticking to console style applications. Once you
have mastered these fundamentals, however, you will be ready to create attractive
graphical interfaces before the end of this very first semester.

Fig. 1.4 A Java console application

1.6 Java Applications 9

1.7 Your First Program

Now it is time to write your first program. Anyone who knows anything about
programming will tell you that the first program that you write in a new language
has always got to be a program that displays the words “Hello world” on the screen;
so we will stick with tradition, and your first program will do exactly that!

When your program runs you will see the words “Hello world” displayed. The
type of window in which this is displayed will vary according to the particular
operating system you are running, and the particular compiler you are using.

The code for the “Hello world” program is written out for you below.

Fig. 1.5 A graphical application

HelloWorld
public class HelloWorld
{

public static void main(String[] args)
{

System.out.println ("Hello world");
}

}

10 1 The First Step

1.7.1 Analysis of the “Hello World” Program

Let’s start with the really important bit—the line of code that represents the
instruction display “Hello world” on the screen. The line that does this looks like
this:

System.out.println("Hello world");

This is the way we are always going to get stuff printed on a simple text screen;
we use System.out.println (or sometimes System.out.print, as
explained below) and put whatever we want to be displayed in the brackets. The
println is short for “print line” by the way. You won’t understand at this stage
why it has to be in this precise form (with each word separated by a full stop, and
the actual phrase in double quotes), but do make sure that you type it exactly as you
see it here, with an upper case S at the beginning. Also, you should notice the
semi-colon at the end of the statement. This is important; every Java instruction has
to end with a semi-colon.

Now we can consider the meaning of the rest of the program. The first line,
which we call the header, looks like this:

The first, and most important, thing to pay attention to is the word class. We
noted earlier that Java is referred to as an object-oriented programming language.
Now, the true meaning of this will start to become clear in Chap. 7—but for the
time being you just need to know that object-oriented languages require the pro-
gram to be written in separate units called classes. The simple programs that we are
starting off with will contain only one class (although they will interact with other
classes from the “built-in” Java libraries). We always have to give a name to a class
and in this case we have simply called our class HelloWorld.

When choosing a name for a class, you can choose any name as long as:

• the name is not already a keyword in the Java language (such as static,
void);

• the name has no spaces in it;
• the name does not include operators or mathematical symbols such as + and −;
• the name starts either with a letter, an underscore (_), or a dollar sign ($).

So, the first line tells the Java compiler that we are writing a class with the name
HelloWorld. However, you will also have noticed the word public in front of

public class HelloWorld

1.7 Your First Program 11

the word class; placing this word here makes our class accessible to the outside
world and to other classes—so, until we learn about specific ways of restricting
access (in the second semester) we will always include this word in the header.
A public class should always be saved in a file with the same name as the
class itself—so in this case it should be saved as a file with the name Hello
World.java.

Notice that everything in the class has to be contained between two curly
brackets (known as braces) that look like this {}; these tell the compiler where the
class begins and ends.

There is one important thing that we must emphasize here. Java is case-sensitive
—in other words it interprets upper case and lower case characters as two com-
pletely different things—it is very important therefore to type the statements exactly
as you see them here, paying attention to the case of the letters.

The next line that we come across (after the opening curly bracket) is this:

This looks rather strange if you are not used to programming—but you will see
that every application we write is going to contain one class with this line in it. In
Chap. 7 you will find out that this basic unit called a class is made up of, among
other things, a number of methods. You will find out a lot more about methods in
Chap. 5, but for now it is good enough for you to know that a method contains a
particular set of instructions that the computer must carry out. Our HelloWorld
class contains just one method and this line introduces that method. In fact it is a
very special method called a main method. Applications in Java must always
contain a class with a method called main: this is where the program begins.
A program starts with the first instruction of main, then obeys each instruction in
sequence (unless the instruction itself tells it to jump to some other place in the
program). The program terminates when it has finished obeying the final instruction
of main.2

So this line that we see above introduces the main method; the program
instructions are now written in a second set of curly brackets that show us where
this main method begins and ends. At the moment we will not worry about the
words public static void in front of main, and the bit in the brackets
afterwards (String[] args)3—we will just accept that they always have to be
there; you will begin to understand their significance as you learn more about

public static void main(String[] args)

2In Chap. 10 you will learn to create graphics programs with a package called JavaFX, and in the
case of JavaFX applications you will see that in some instances it is possible to run a JavaFX
application without a main method.
3In fact, if you left out the words in brackets your program would still compile—but it wouldn’t do
what you wanted it to do!

12 1 The First Step

programming concepts. The top line of a method is referred to as the method
header and words such as public and static, that are part of the Java lan-
guage, are referred to as keywords.4

As we have said, we place instructions inside a method by surrounding them
with opening and closing curly brackets. In Java, curly brackets mark the beginning
and end of a group of instructions. In this case we have only one instruction inside
the curly brackets but, as you will soon see, we can have many instructions inside
these braces.

By the way, you should be aware that the compiler is not concerned about the
layout of your code, just that your code meets the rules of the language. So we
could have typed the method header, the curly brackets and the println com-
mand all on one line if we wished! Obviously this would look very messy, and it is
always important to lay out your code in a way that makes it easy to read and to
follow. So throughout this book we will lay out our code in a neat easy-to-read
format, lining up opening and closing braces.

1.7.2 Adding Comments to a Program

When we write program code, we will often want to include some comments to
help remind us what we were doing when we look at our code a few weeks later, or
to help other people to understand what we have done.

Of course, we want the compiler to ignore these comments when the code is
being compiled. There are different ways of doing this. For short comments we
place two slashes (//) at the beginning of the line—everything after these slashes, up
to the end of the line, is then ignored by the compiler.

For longer comments (that is, ones that run over more than a single line) we
usually use another approach. The comment is enclosed between two special
symbols; the opening symbol is a slash followed by a star (/*) and the closing
symbol is a star followed by a slash (*/). Everything between these two symbols is
ignored by the compiler. The program below shows examples of both types of
comment; when you compile and run this program you will see that the comments
have no effect on the code, and the output is exactly the same as that of the original
program.

4You will notice that we are using bold courier font for Java keywords.

1.7 Your First Program 13

In Chap. 11 you will learn about a special tool called Javadoc for documenting
your programs. In that chapter you will see that in order to use this tool you must
comment your classes in the Javadoc style—as you will see, Javadoc comments
must begin with /** and end with */.

1.8 Output in Java

As you have already seen when writing your first program, to output a message on
to the screen in Java we use the following command:

System.out.println(message to be printed on screen);

For example, we have already seen:

This prints the message “Hello world” onto the screen. There is in fact an
alternative form of the System.out.println statement, which uses System.
out.print. As we said before, println is short for print line and the effect of
this statement is to start a new line after displaying whatever is in the brackets. You
can see the effect of this below—we have adapted our program by adding an
additional line.

HelloWorld – with comments
// this is a short comment, so we use the first method
public class HelloWorld
{

public static void main(String[] args)
{

System.out.println("Hello world");
}

/* this is the second method of including comments – it is more convenient to use this
method here, because the comment is longer and goes over more than one line */
}

System.out.println("Hello world");

HelloWorld – with an addi onal line
public class HelloWorld
{

public static void main(String[] args)
{

System.out.println("Hello world"); // notice the use of println
System.out.println("Hello world again!");

}
}

14 1 The First Step

When we run this program, the output looks like this:

Hello world
Hello world again!

Now let’s change the first System.out.println to System.out.print:

Now our output looks like this:

Hello worldHello world again!

You can see that the output following the System.out.print statement
doesn’t start on a new line, but follows straight on from the previous line.

By the way, if you want a blank line in the program, then you can simply use
println with empty brackets:

Messages such as “Hello world” are in fact what we call strings (collections of
characters). In Java, literal strings like this are always enclosed in speech marks. We
shall explore strings in depth in Chap. 7. However, it is useful to know now how
several strings can be printed on the screen using a single output command.

In Java, two strings can be joined together with the plus symbol (+). When using
this symbol for this purpose it is known as the concatenation operator. For
example, instead of printing the single string “Hello world”, we could have joined
two strings, “Hello” and “world”, for output using the following command:

Note that spaces are printed by including them within the speech marks
(“Hello ”), not by adding spaces around the concatenation operator (which has no
effect at all).

HelloWorld – adapted to show the effect of using print instead of println
public class HelloWorld
{

public static void main(String[] args)
{

System.out.print("Hello world"); // notice the use of 'print'
System.out.println("Hello world again!");

}
}

System.out.println();

System.out.println("Hello " + "world");

1.8 Output in Java 15

1.9 Self-test Questions

1. Explain the meaning of the following terms:

• program;
• software;
• application software;
• system software;
• machine code;
• source code;.
• embedded software;
• compilation;
• Java byte code;
• Java virtual machine;
• integrated development environment;

2. Explain how Java programs are compiled and run.

3. Describe two different ways of adding comments to a Java program.

4. What is the difference between using System.out.println and System.
out.print to produce output in Java?

5. What, precisely, would be the output of the following programs?

(a)
public class Question5A
{

public static void main(String[] args)
 {

System.out.print("Hello, how are you? ");
System.out.println("Fine thanks.");

 }
}

(b)
public class Question5B
{

public static void main(String[] args)
 {

System.out.println("Hello, how are you? ");
System.out.println("Fine thanks.");

 }
}

16 1 The First Step

6. Identify the syntax errors in the following program:

public class
{

public Static void main(String[] args)
 {

system.out.println(I want this program to compile)
 }

1.10 Programming Exercises

1. If you do not have access to a Java IDE go to the accompanying website and
follow the instructions for installing an IDE. You will also find instructions on
the website for compiling and running programs.

2. Type and compile the Hello World program. If you make any syntax errors, the
compiler will indicate where to find them. Correct them and re-compile your
program. Keep doing this until you no longer have any errors. You can then run
your program.

3. Make the changes to the Hello World program that are made in this chapter, then
each time re-compile and run the program again.

4. Type and compile the program given in self test question 6 above. This program
contained compiler errors that you should have identified in your answer to that
question. Take a look at how the compiler reports on these errors then fix them
so that the program can compile and run successfully.

5. Write a program that displays your name, address and telephone number, each
on separate lines.

6. Adapt the above program to include a blank line between your address and
telephone number.

(c)

public class Question5C
{

public static void main(String[] args)
 {

System.out.println("1 + 2 " + "+ 3" + " = 6");
 }

}

1.9 Self-test Questions 17

7. Write a program that displays your initials in big letters made of asterisks. For
example:

* * *
* * * *
**** * *

* * * *
 *
* * * *

Do this by using a series of println commands, each printing one row of
asterisks.

18 1 The First Step

2Building Blocks

Outcomes:

By the end of this chapter you should be able to:

• distinguish between the eight built-in primitive types of Java;
• declare and assign values to variables;
• create constant values with the keyword final;
• use the input methods of the Scanner class to get data from the keyboard;
• design the functionality of a method using pseudocode.

2.1 Introduction

The Hello world program that we developed in Chap. 1 is of course very simple
indeed. One way in which this program is very limited is that it has no data to work
on. All interesting programs will have to store data in order to give interesting
results; what use would a calculator be without the numbers the user types into add
and multiply? For this reason, one of the first questions you should ask when
learning any programming language is “what types of data does this language allow
me to store in my programs?”

2.2 Simple Data Types in Java

We begin this topic by taking a look at the basic types available in the Java
language. The types of value used within a program are referred to as data types. If
you wish to record the price of a cinema ticket in a program, for example, this value
would probably need to be kept in the form of a real number (a number with a

© Springer Nature Switzerland AG 2019
Q. Charatan and A. Kans, Java in Two Semesters, Texts in Computer Science,
https://doi.org/10.1007/978-3-319-99420-8_2

19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99420-8_2&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99420-8_2&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99420-8_2&domain=pdf
https://doi.org/10.1007/978-3-319-99420-8_2

decimal point in it). However, if you wished to record how many tickets have been
sold you would need to keep this in the form of an integer (whole number). It is
necessary to know whether suitable types exist in the programming language to
keep these items of data.

In Java there are a few simple data types that programmers can use. These simple
types are often referred to as the primitive types of Java; they are also referred to as
the scalar types, as they relate to a single piece of information (a single real
number, a single character etc.).

Table 2.1 lists the names of these types in the Java language, the kinds of value
they represent, and the exact range of these values.

As you can see, some kinds of data, namely integers and real numbers, can be
kept as more than one Java type. For example, you can use the byte type, the
short type or the int type to hold integers in Java. However, while each numeric
Java type allows for both positive and negative numbers, the maximum size of
numbers that can be stored varies from type to type.

For example, the type byte can represent integers ranging only from −128 to
127, whereas the type short can represent integers ranging from −32,768 to
32,767. Unlike some programming languages, these ranges are fixed no matter
which Java compiler or operating system you are using.

The character type, char, is used to represent characters from a standard set of
characters known as the Unicode character set. This contains nearly all the char-
acters from most known languages. For the sake of simplicity, you can think of this
type as representing any character that can be input from your keyboard.

Finally, the boolean type is used to keep only one of two possible values:
true or false. This type can be useful when creating tests in programs. For
example, the answer to the question “have I passed my exam?” will either be either
yes or no. In Java a boolean type could be used to keep the answer to this
question, with the value true being used to represent yes and the value false to
represent no.

Table 2.1 The primitive types of Java

Java type Allows for Range of values

byte Very small integers −128 to 127

short Small integers −32,768 to 32,767

int Big integers −2,147,483,648 to 2,147,483,647

long Very big integers −9,223,372,036,854,775,808 to
9,223,372,036,854,775,807

float Real numbers ±1.4 * 10−45 to 3.4 * 1038

double Very big real
numbers

±4.9 * 10−324 to 1.8 * 10308

char Characters Unicode character set

boolean True or false Not applicable

20 2 Building Blocks

2.3 Declaring Variables in Java

The data types listed in Table 2.1 are used in programs to create named locations in
the computer’s memory that will contain values while a program is running. This
process is known as declaring. These named locations are called variables because
their values are allowed to vary over the life of the program.

For example, a program written to develop a computer game might need a piece
of data to record the player’s score as secret keys are found in a haunted house. The
value held in this piece of data will vary as more keys are found. This piece of data
would be referred to as a variable. To create a variable in your program you must:

• give that variable a name (of your choice);
• decide which data type in the language best reflects the kind of values you wish

to store in the variable.

What name might you choose to record the score of the player in our computer
game?

The rules for naming variables are the same as those we met when discussing the
rules for naming classes in the previous chapter. However, the convention in Java
programs is to begin the name of a variable with a lower case letter (whereas the
convention is to start class names with an upper case letter). We could just pick a
name like x, but it is best to pick a name that describes the purpose of the item of
data; an ideal name would be score.

Which data type in Table 2.1 should you use if you wish to record a player’s
score? Well, since the score would always be a whole number, an integer type
would be appropriate. There are four Java data types that can be used to hold
integers (byte, short, int and long). As we said before, the only difference
among these types is the range of values that they can keep. Unless there is specific
reason to do otherwise, however, the int type is normally chosen to store integer
values in Java programs. Similarly, when it comes to storing real numbers we will
choose the double type rather than the float type.

Once the name and the type have been decided upon, the variable is declared as
follows:

dataType variableName;

where dataType is the chosen primitive type and variableName is the chosen
name of the variable. So, in the case of a player’s score, the variable would be
declared as follows:

int score;

2.3 Declaring Variables in Java 21

Figure 2.1 illustrates the effect of this instruction on the computer’s memory. As
you can see, a small part of the computer’s memory is set aside to store this item.
You can think of this reserved space in memory as being a small box, big enough to
hold an integer. The name of the box will be score.

In this way, many variables can be declared in your programs. Let’s assume that
the player of a game can choose a difficulty level (A, B, or C); another variable
could be declared in a similar way.

What name might you give this variable? An obvious choice would be dif-
ficulty level but remember names cannot have spaces in them. You could use
an underscore to remove the space (difficulty_level) or start the second word
with a capital letter to distinguish the two words (difficultyLevel). Both are
well-established naming conventions in Java. Alternatively you could just shorten
the name to, say, level; that is what we will do here.

Now, what data type in Table 2.1 best represents the difficulty level? Since the
levels are given as characters (A, B and C) the char type would be the obvious
choice. At this point we have two variables declared: one to record the score and
one to record the difficulty level.

Finally, several variables can be declared on a single line if they are all of the
same type. For example, let’s assume that there are ghosts in the house that hit out
at the player; the number of times a player gets hit by a ghost can also be recorded.
We can call this variable hits. Since the type of this variable is also an integer, it
can be declared along with score in a single line as follows:

Fig. 2.1 The effect of declaring a variable in Java

int score;
char level;

int score, hits; // two variables declared at once
char level ; // this has to be declared separately

22 2 Building Blocks

Figure 2.2 illustrates the effect of these three declarations on the computer’s
memory.

Notice that the character box, level, is half the size of the integer boxes score and
hits. That is because, in Java, the char type requires half the space of the int type.
You should also be aware that the double type in Java requires twice the space of
the int type.

You’re probably wondering: if declaring a variable is like creating a box in
memory, how do I put values into this box? The answer is with assignments.

2.4 Assignments in Java

Assignments allow values to be put into variables. They are written in Java with the
use of the equality symbol (=). In Java this symbol is known as the assignment
operator. Simple assignments take the following form:

variableName = value;

For example, to put the value zero into the variable score, the following as-
signment statement could be used:

This is to be read as “set the value of score to zero” or alternatively as “score
becomes equal to zero”. Effectively, this puts the number zero into the box in
memory we called score. If you wish, you may combine the assignment statement
with a variable declaration to put an initial value into a variable as follows:

This is equivalent to the two statements below:

Fig. 2.2 The effect of declaring many variables in Java

score = 0;

int score = 0;

2.3 Declaring Variables in Java 23

Although in some circumstances Java will automatically put initial values into
variables when they are declared, this is not always the case and it is better
explicitly to initialize variables that require an initial value.

Notice that the following declaration will not compile in Java:

int score = 2.5;

Can you think why?
The reason is that the right-hand side of the assignment (2.5) is a real number.

This value could not be placed into a variable such as score, which is declared to
hold only integers, without some information loss. In Java, such information loss is
not permitted, and this statement would therefore cause a compiler error.

You may be wondering if it is possible to place a whole number into a variable
declared to hold real numbers. The answer is yes. The following is perfectly legal:

double someNumber = 1000;

Although the value on the right-hand side (1000) appears to be an integer, it can
be placed into a variable of type double because this would result in no infor-
mation loss. Once this number is put into the variable of type double, it will be
treated as the real number 1000.0.

Clearly, you need to think carefully about the best data type to choose for a
particular variable. For instance, if a variable is going to be used to hold whole
numbers or real numbers, use the double type as it can cope with both. If the
variable is only ever going to be used to hold whole numbers, however, then
although the double type might be adequate, use the int type as it is specifically
designed to hold whole numbers.

When assigning a value to a character variable, you must enclose the value in
single quotes. For example, to set the initial difficulty level to A, the following
assignment statement could be used:

char level = 'A';

Remember: you need to declare a variable only once. You can then assign values
to it as many times as you like. For example, later on in the program the difficulty
level might be changed to a different value as follows:

int score;
score = 0;

24 2 Building Blocks

char level = 'A'; // initial difficulty level
// other Java instructions
level = 'B'; // difficulty level changed

2.5 Creating Constants

There will be occasions where data items in a program have values that do not
change. The following are examples of such items:

• the maximum score in an exam (100);
• the number of hours in a day (24);
• the mathematical value of p (approximately 3.1416).

In these cases the values of the items do not vary. Values that remain constant
throughout a program (as opposed to variable) should be named and declared as
constants.

Constants are declared much like variables in Java except that they are preceded
by the keyword final. Once they are given a value, then that value is fixed and
cannot later be changed. Normally we fix a value when we initialize the constant.
For example:

final int HOURS = 24;

Notice that the standard Java convention has been used here of naming constants
in upper case. Any attempt to change this value later in the program will result in a
compiler error. For example:

final int HOURS = 24; // create constant
HOURS = 12; // will not compile!

2.6 Arithmetic Operators

Rather than just assign simple values (such as 24 and 2.5) to variables, it is often
useful to carry out some kind of arithmetic in assignment statements. Java has the
four familiar arithmetic operators, plus a remainder operator, for this purpose. These
operators are listed in Table 2.2.

2.5 Creating Constants 25

You can use these operators in assignment statements, much like you might use
a calculator. For example, consider the following instructions:

int x;
x = 10 + 25;

After these instructions the variable x would contain the value 35: the result of
adding 10 to 25. Terms on the right-hand side of assignment operators (like
10 + 25) that have to be worked out before they are assigned are referred to as
expressions. These expressions can involve more than one operator.

Let’s consider a calculation to work out the price of a product after a sales tax
has been added. If the initial price of the product is 500 and the rate of sales tax is
17.5%, the following calculation could be used to calculate the total cost of the
product:

double cost;
cost = 500 * (1 + 17.5/100);

After this calculation the final cost of the product would be 587.5.
By the way, in case you are wondering, the order in which expressions such as

these are evaluated is the same as in arithmetic: terms in brackets are calculated
first, followed by division and multiplication, then addition and subtraction. This
means that the term in the bracket (1 + 17.5/100) evaluates to 1.175, not 0.185, as
the division is calculated before the addition. The final operator (%) in Table 2.2
returns the remainder after integer division (this is often referred to as the modu-
lus). Table 2.3 illustrates some examples of the use of this operator together with
the values returned.

As an illustration of the use of both the division operator and the modulus
operator, consider the following example.

Table 2.2 The arithmetic
operators of Java

Operation Java operator

Addition +

Subtraction –

Multiplication *

Division /

Remainder %

Table 2.3 Examples of the
modulus operator in Java

Expression Value

29 % 9 2

6 % 8 6

40 % 40 0

10 % 2 0

26 2 Building Blocks

A large party of 30 people is going to attend a school reunion. The function
room will be furnished with a number of tables, each of which seats four people.

To calculate how many tables of four are required, and how many people will be
left over, the division and modulus operators could be used as follows:

int tablesOfFour, peopleLeftOver;
tablesOfFour = 30/4; // number of tables
peopleLeftOver = 30%4; // number of people left over

After these instructions the value of tablesOfFour will be 7 (the result of
dividing 30 by 4) and the value of peopleLeftOver will be 2 (the remainder
after dividing 30 by 4). You may be wondering why the calculation for ta-
blesOfFour (30/4) did not yield 7.5 but 7. The reason for this is that there are, in
fact, two different in-built division routines in Java, one to calculate an integer
answer and another to calculate the answer as a real number.

Rather than having two division operators, however, Java has a single division
symbol (/) to represent both types of division. The division operator is said to be
overloaded. This means that the same operator (in this case the division symbol)
can behave in different ways. This makes life much easier for programmers as the
decision about which routine to call is left to the Java language.

How does the Java compiler know which division routine we mean? Well, it
looks at the values that are being divided. If at least one value is a real number (as
in the product cost example), it assumes we mean the division routine that calcu-
lates an answer as a real number, otherwise it assumes we mean the division routine
that calculates an answer as a whole number (as in the reunion example).1

2.7 Expressions in Java

So far, variable names have appeared only on the left-hand side of assignment
statements. However, the expression on the right-hand side of an assignment
statement can itself contain variable names. If this is the case then the name does not
refer to the location, but to the contents of the location. For example, the assignment
to calculate the cost of the product could have been re-written as follows:

double price, tax, cost; // declare three variables
price = 500; // set price
tax = 17.5; // set tax rate
cost = price * (1 + tax/100); // calculate cost

1To force the use of one division routine over another, a technique known as type casting can be
used. We will return to this technique in later chapters.

2.6 Arithmetic Operators 27

Here, the variables price and tax that appear in the expression

price * (1 + tax/100)

are taken to mean the values contained in price and tax respectively. This
expression evaluates to 587.5 as before. Notice that although this price happens to
be a whole number, it has been declared to be a double as generally prices are
expressed as real numbers.

There is actually nothing to stop you using the name of the variable you are
assigning to in the expression itself. This would just mean that the old value of the
variable is being used to calculate its new value. Rather than creating a new
variable, cost, to store the final cost of the product, the calculation could, for
example, have updated the original price as follows:

price = price * (1 + tax/100);

Now only two variables are required, price and tax. Let’s look at this as-
signment a bit more closely.

When reading this instruction, the price in the right-hand expression is to be read
as the old value of price, whereas the price on the left-hand side is to be read as the
new value of price.

You might be wondering what would happen if we used a variable in the right
hand side of an expression before it had been given a value. For example, look at
this fragment of code:

double price = 500;
double tax;
cost = price * (1 + tax/100);

The answer is that you would get a compiler error telling you that you were
trying to use a variable before it has been initialized.

You will find that one very common thing that we have to do in our programs is
to increase (or increment) an integer by 1. For example, if a variable x has been
declared as an int, then the instruction for incrementing x would be:

28 2 Building Blocks

x = x + 1;

In fact, this is so common that there is a special shorthand for this instruction,
namely:

x++;

The ‘++’ is therefore known as the increment operator. Similarly there exists a
decrement operator, ‘− −’.

Thus:

x− −;

is shorthand for:

x = x – 1;

It is possible to use the increment and decrement operators in expressions. We
will show you a couple of examples of this here, as you might easily come across
them in other texts. However, we will not be using this technique in the remainder
of this book, because we think it can sometimes be confusing for new programmers.
If x and y are ints, the expression:

y = x++;

means assign the value of x to y, then increment x by 1.
However the expression:

y = ++x;

means increment x by 1, then assign this new value to y. The decrement operator
can be used in the same way.

While we are on the subject of shortcuts, there is one more that you might come
across in other places, but which, once again, we won’t be using in this text:

y += x;

is shorthand for:

y = y + x;

The code fragments we have been writing so far in this chapter are, of course,
not complete programs. As you already know, to create a program in Java you must
write one or more classes. In the example that follows, we write a class, Find-
Cost, where the main method calculates the price of the product.

2.7 Expressions in Java 29

FindCost
// a program to calculate the cost of a product after a sales tax has been added

public class FindCost
{

public static void main(String[] args)
{

double price, tax;
price = 500;
tax = 17.5;
price = price * (1 + tax/100);

}
}

What would you see when you run this program? The answer is nothing! There
is no instruction to display the result on to the screen. You have already seen how to
display messages onto the screen. It is now time to take a closer look at the output
command to see how you can also display results onto the screen.

2.8 More About Output

As well as displaying messages, Java also allows any values or expressions of the
primitive types that we showed you in Table 2.1 to be printed on the screen using
the same output commands. It does this by implicitly converting each
value/expression to a string before displaying it on the screen. In this way numbers,
the value of variables, or the value of expressions can be displayed on the screen.
For example, the square of 10 can be displayed on the screen as follows:

System.out.print(10*10);

This instruction prints the number 100 on the screen. Since these values are
converted into strings by Java they can be joined onto literal strings for output.

For example, let’s return to the party of 30 people attending their school reunion
that we discussed in Sect. 2.6. If each person is charged a fee of 7.50 for the
evening, the total cost to the whole party could be displayed as follows:

System.out.print("cost = " + (30*7.5));

Here the concatenation operator (+), is being used to join the string, “cost = ”,
onto the value of the expression, (30 * 7.5). Notice that when expressions like 30 *
7.5 are used in output statements it is best to enclose them in brackets. This would
result in the following output:

cost = 225.0

30 2 Building Blocks

Bear these ideas in mind and look at the next version of FindCost, which we
have called FindCost2; the program has been re-written so that the output is
visible.

FindCost2
// a program to calculate and display the cost of a product after sales tax has been added

public class FindCost2
{

public static void main(String[] args)
{

double price, tax;
price = 500;
tax = 17.5;
price = price * (1 + tax/100); // calculate cost
// display results
System.out.println("*** Product Price Check ***");
System.out.println("Cost after tax = " + price);

}
}

This program produces the following output:

*** Product Price Check ***
Cost after tax = 587.5

Although being able to see the result of the calculation is a definite improvement,
this program is still very limited. The formatting of the output can certainly be
improved, but we shall not deal with such issues until later on in the book. What
does concern us now is that this program can only calculate the cost of products
when the sales tax rate is 17.5% and the initial price is 500!

What is required is not to fix the rate of sales tax or the price of the product but,
instead, to get the user of your program to input these values as the program runs.

2.9 Input in Java: The Scanner Class

Java provides a special class called Scanner, which makes it easy for us to write a
program that obtains information that is typed in at the keyboard. Scanner is
provided as part of what is known, in Java, as a package. A package is a collection
of pre-compiled classes—lots more about that in the second semester! The
Scanner class is part of a package called util. In order to access a package we
use a command called import. So, to make the Scanner class accessible to the
compiler we have to tell it to look in the util package, and we do this by placing
the following line at the top of our program:

import java.util.Scanner;

2.8 More About Output 31

Sometimes you might come across an import statement that looks like this:

import java.util.*;

This asterisk means that all the classes in the particular package are made
available to the compiler. Although using the asterisk notation is perfectly
acceptable, nowadays it is considered better practice to specify only those classes
that we need, as in the first statement, as this clarifies precisely which classes are
being used within a program—so that is what we will do in this text.

As long as the Scanner class is accessible, you can use all the input methods
that have been defined in this class. We are going to show you how to do this now.
Some of the code might look a bit mysterious to you at the moment, but don’t worry
about this right now. Just follow our instructions for the time being—after a few
chapters, it will become clear to you exactly why we use the particular format and
syntax that we are showing you.

Having imported the Scanner class, you will need to write the following
instruction in your program:

Scanner keyboard = new Scanner(System.in);

What we are doing here is creating an object, keyboard, of the Scanner
class. Once again, the true meaning of the phrase creating an object will become
clear in the next few chapters, so don’t worry too much about it now. However, you
should know that, in Java, System.in represents the keyboard, and by associ-
ating our Scanner object with System.in, we are telling it to get the input from
the keyboard as opposed to a file on disk or a modem for example. Just to note that,
like a variable, you can choose any name for this object, but we have chosen the
obvious name here—keyboard.

The Scanner class has several input methods, each one associated with a
different input type, and once we have declared a Scanner object we can use these
methods. Let’s take some examples. Say we wanted a user to type in an integer at
the keyboard, and we wanted this value to be assigned to an integer variable called
x. We would use the Scanner method called nextInt; the instruction would
look like this:

x = keyboard.nextInt();

32 2 Building Blocks

In the case of a double, y, we would do this:

y = keyboard.nextDouble();

Notice that to access a method of a class you need to join the name of the method
(getInt or getDouble) to the name of the object (keyboard) by using the
full-stop. Also you must remember the brackets after the name of the method.

What about a character? Unfortunately this is a little bit more complicated, as
there is no nextChar method provided. Assuming c had been declared as a
character, we would have to do this:

c = keyboard.next().charAt(0);

You won’t understand exactly why we use this format until Chap. 7—for now
just accept it and use it when you need to.

Let us return to the haunted house game to illustrate this. Rather than assigning a
difficulty level as follows:

char level;
level = 'A';

you could take a more flexible approach by asking the user of your program to input
a difficulty level while the program runs. Since level is declared to be a character
variable, then, after declaring a Scanner object, keyboard, you could write this
line of code:

level = keyboard.next().charAt(0);

Some of you might be wondering how we would get the user to type in strings
such as a name or an address. This is a bit more difficult, because a string is not a
simple type like an int or a char, but contains many characters. In Java a
String is not a simple data type but a class—so to do this you will have to wait
until Chap. 7 where we will study classes and objects in depth.

Let us re-write our previous program that calculated the cost of an item after tax;
this time the price of the product and the rate of sales tax are not fixed in the
program, but are input from the keyboard. Since the type used to store the price and
the tax is a double, the appropriate input method is nextDouble, as can be seen
below.

2.9 Input in Java: The Scanner Class 33

FindCost3
import java.util.Scanner; // import the Scanner class from the util package

/* a program to input the initial price of a product and then calculate and display its cost after tax
has been added */

public class FindCost3
{

public static void main(String[] args)
 {

Scanner keyboard = new Scanner(System.in); // create Scanner object
double price, tax;
System.out.println("*** Product Price Check ***");
System.out.print("Enter initial price: "); // prompt for input
price = keyboard.nextDouble(); // input method called
System.out.print("Enter tax rate: "); // prompt for input
tax = keyboard.nextDouble(); // input method called
price = price * (1 + tax/100); // perform the calculation
System.out.println("Cost after tax = " + price);

}
}

Note that, by looking at this program code alone, there is no way to determine
what the final price of the product will be, as the initial price and the tax rate will be
determined only when the program is run.

Let’s assume that we run the program and the user interacts with it as follows2:

*** Product Price Check ***
Enter initial price: 1000
Enter tax rate: 12.5
Cost after tax = 1125.0

You should notice the following points from this test run:

• whatever the price of the computer product and the rate of tax, this program
could have evaluated the final price;

• entering numeric values with additional formatting information, such as cur-
rency symbols or the percentage symbol, is not permitted;

• after an input method is called, the cursor always moves to the next line.

The programs we are looking at now involve input commands, output com-
mands and assignments. Clearly, the order in which you write these instructions
affects the results of your programs. For example, if the instructions to calculate the
final price and then display the results were reversed as follows:

System.out.println("Cost after tax = " + price);
price = price * (1 + tax/100);

2We have used bold italic font to represent user input.

34 2 Building Blocks

the price that would be displayed would not be the price after tax but the price
before tax! In order to avoid such mistakes it makes sense to design your code by
sketching out your instructions before you type them in.

2.10 Program Design

Designing a program is the task of considering exactly how to build the software,
whereas writing the code (the task of actually building the software) is referred to as
implementation. As programs get more complex, it is important to spend time on
program design, before launching into program implementation.

As we have already said, Java programs consist of one or more classes, each
with one or more methods. In later chapters we will introduce you to the use of
diagrams to help design such classes. The programs we have considered so far,
however, have only a single class and a single method (main), so a class diagram
would not be very useful here. We will therefore return to this design technique as
we develop larger programs involving many classes.

At a lower level, it is the instructions within a method that determine the be-
haviour of that method. If the behaviour of a method is complex, then it will also be
worthwhile spending time on designing the instructions that make up the method.
When you sketch out the code for your methods, you don’t want to have to worry
about the finer details of the Java compiler such as declaring variables, adding
semi-colons and using the right brackets. Very often a general purpose “coding
language” can be used for this purpose to convey the meaning of each instruction
without worrying too much about a specific language syntax.

Code expressed in this way is often referred to as pseudocode. The following is
an example of pseudocode that could have been developed for the main method of
FindCost3 program:

BEGIN
DISPLAY program title
DISPLAY prompt for price
ENTER price
DISPLAY prompt for tax
ENTER tax
SET price TO price * (1 + tax/100)
DISPLAY new price

END

Note that these pseudocode instructions are not intended to be typed in and
compiled as they do not meet the syntax rules of any particular programming
language. So, exactly how you write these instructions is up to you: there is no fixed
syntax for them. However, each instruction conveys a well-understood program-
ming concept and can easily be translated into a given programming language.
When you read these instructions you should be able to see how each line would be
coded in Java.

2.9 Input in Java: The Scanner Class 35

Wouldn’t it be much easier to write your main method if you have pseudocode
like this to follow? In future, when we present complex methods to you we will do
so by presenting their logic using pseudocode.

2.11 Self-test Questions

1. What would be the most appropriate Java data type to use for the following
items of data?

• the maximum number of people allowed on a bus;
• the weight of a food item purchased in a supermarket;
• the grade awarded to a student (for example ‘A’, ‘B’ or ‘C’).

2. Explain which, if any, of the following lines would result in a compiler error:

int x = 75.5;
double y = 75;

3. Which of the following would be valid names for a variable in Java?

• ticket
• cinema ticket
• cinemaTicket
• cinema_ticket
• void
• Ticket

4. Identify and correct the errors in the program below, which prompts for the
user’s age and then attempts to work out the year in which the user was born.

import java.util.Scanner;

public class SomeProg
{

public static void main (String[] args)
{

Scanner keyboard = new Scanner(System.in);
final int YEAR;
int age, bornIn;
System.out.print(How old are you this year?);
age = keyboard.nextDouble();
bornIn = YEAR – age;
System.out.println("I think you were born in " + BornIn);

}
}

36 2 Building Blocks

5. What is the final value of z in the following program?

public class SomeProg
{

public static void main (String[] args)
{

int x, y, z;
x = 5;
y = x + 2;
x = 10;
z = y * x;

 }
}

6. What would be the final output from the program below if the user entered the
number 10?

import java.util.Scanner;

public class Calculate
{

public static void main(String[] args)
{

Scanner keyboard = new Scanner(System.in);
int num1, num2;
num2 = 6;
System.out.print("Enter value ");
num1 = keyboard.nextInt();
num1 = num1 + 2;
num2 = num1 / num2;
System.out.println("result = " + num2);

}
}

7. Use pseudocode to design a program that asks the user to enter values for the
length and height of a rectangle and then displays the area and perimeter of that
rectangle.

8. The program below was written in an attempt to swap the value of two vari-
ables. However it does not give the desired result:

/* This program attempts to swap the value of two variables - it doesn't give the desired
result however! */

import java.util.Scanner;

public class SwapAttempt
{

public static void main(String[] args)
 {

// declare variables
int x, y;
// enter values
System.out.print("Enter value for x ");
x = keyboard.nextInt();
System.out.print("Enter value for y ");
y = keyboard.nextInt();

// code attempting to swap two variables
x = y;
y = x;

//display results
System.out.println("x = " + x);
System.out.println("y = " + y);

 }
}

2.11 Self-test Questions 37

(a) Can you see why the program doesn’t do what we hoped?
(b) What would be the actual output of the program?
(c) How could you modify the program above so that the values of the two

variables are swapped successfully?

2.12 Programming Exercises

1. Implement the FindCost3 program from this chapter.

2. Implement the programs from self-test questions 4, 5, 6 and 8 above in order to
verify your answers to those questions.

3. Implement the rectangle program that you designed in self-test question 7.

4. The following pseudocode has been arrived at for a program that converts
pounds to kilos (1 kilo = 2.2 lb).

BEGIN
PROMPT for value in pounds
ENTER value in pounds
SET value to old value ÷ 2.2
DISPLAY value in kilos

END

Implement this program, remembering to declare any variables that are
necessary.

5. An individual’s Body Mass Index (BMI) is a measure of a person’s weight in
relation to their height. It is calculated as follows:

• divide a person’s weight (in kg) by the square of their height (in meters)
Design and implement a program to allow the user to enter their weight and
height and then print out their BMI.

6. A group of students has been told to get into teams of a specific size for their
coursework. Design and implement a program that prompts for the number of
students in the group and the size of the teams to be formed, and displays how
many teams can be formed and how many students are left without a team.

38 2 Building Blocks

7. Design and implement a program that asks the user to enter a value for the
radius of a circle, then displays the area and circumference of the circle.

Note that the area is calculated by evaluating pr2 and the circumference by
evaluating 2pr. You can take the value of p to be 3.1416—and ideally you
should declare this as a constant at the start of the program.3

3Of course you will not be able to use the Greek letter p as a name for a variable or constant. You
will need to give it a name like PI.

2.12 Programming Exercises 39

3Selection

Outcomes:

By the end of this chapter you should be able to:

• explain the difference between sequence and selection;
• use an if statement to make a single choice in a program;
• use an if…else statement to make a choice between two options in a program;
• use nested if…else statements to make multiple choices in a program;
• use a switch statement to make multiple choices in a program.

3.1 Introduction

One of the most rewarding aspects of writing and running a program is knowing
that you are the one who has control over the computer. But looking back at the
programs you have already written, just how much control do you actually have?
Certainly, it was you who decided upon which instructions to include in your
programs but the order in which these instructions were executed was not under
your control. These instructions were always executed in sequence, that is one after
the other, from the beginning to the end of the main method. You will soon find that
there are numerous instances when this order of execution is too restrictive and you
will want to have much more control over the order in which instructions are
executed.

© Springer Nature Switzerland AG 2019
Q. Charatan and A. Kans, Java in Two Semesters, Texts in Computer Science,
https://doi.org/10.1007/978-3-319-99420-8_3

41

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99420-8_3&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99420-8_3&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99420-8_3&domain=pdf
https://doi.org/10.1007/978-3-319-99420-8_3

3.2 Making Choices

Very often you will want your programs to make choices among different courses
of action. For example, a program processing requests for airline tickets could have
the following choices to make:

• display the price of the seats requested;
• display a list of alternative flights;
• display a message saying that no flights are available to that destination.

A program that can make choices can behave differently each time it is run,
whereas programs in which instructions are just executed in sequence behave the
same way each time they are run.

As we have already mentioned, unless you indicate otherwise, program
instructions are always executed in sequence. Selection, however, is a method of
program control in which a choice can be made about which instructions to execute.

For example, consider the following program, which welcomes customers
queuing up for a roller-coaster ride:

As you can see, following the variable declarations, there are four remaining
instructions in this program. Remember that at the moment these instructions will
be executed in sequence, from top to bottom. Consider the following interaction
with this program:

How old are you?
10
Hello Junior!
Enjoy your ride

This looks fine but the message “Hello Junior!” is only meant for children. Now
let’s assume that someone older comes along and interacts with this program as
follows:

RollerCoaster
import java.util.Scanner;

public class RollerCoaster
{

public static void main(String[] args)
{

// declare variables
int age;
Scanner keyboard = new Scanner (System.in);

// four instructions to process information
System.out.println("How old are you?");
age = keyboard.nextInt();
System.out.println("Hello Junior!");
System.out.println("Enjoy your ride");

 }
}

42 3 Selection

How old are you?
45
Hello Junior!
Enjoy your ride

The message “Hello Junior!”, while flattering, might not be appropriate in this
case! In other words, it is not always appropriate to execute the following
instruction:

What is required is a way of deciding (while the program is running) whether or
not to execute this instruction. In effect, this instruction needs to be guarded so that
it is only executed when appropriate. Assuming we define a child as someone
under 13 years of age, we can represent this in pseudocode as follows:

In the above, we have emboldened the lines that have been added to guard the
“Hello Junior!” instruction. The emboldened lines are not to be read as additional
instructions; they are simply a means to control the flow of the existing instructions.
The emboldened lines say, in effect, that the instruction to display the message
“Hello Junior!” should only be executed if the age entered is under 13.

This, then, is an example of the form of control known as selection. Let’s now
look at how to code this selection in Java.

3.3 The ‘if’ Statement

The particular form of selection discussed above is implemented by making use of
Java’s if statement. The general form of an if statement is given as follows:

System.out.println("Hello Junior!");

DISPLAY “How old are you?”

ENTER age

IF age is under 13

BEGIN

DISPLAY "Hello Junior!"

END

DISPLAY "Enjoy your ride"

if (/* a test goes here */)
{

// instruction(s) to be guarded go here
}

3.2 Making Choices 43

As you can see, the instructions to be guarded are placed inside the braces of the
if statement. A test is associated with the if statement. A test is any expression
that produces a result of true or false. For example x > 100 is a test as it is an
expression that either gives an answer of true or false (depending upon the value of
x). We call an expression that returns a value of true or false a boolean
expression, as true and false are boolean values. Examples of tests in
everyday language are:

• this password is valid;
• there is an empty seat on the plane;
• the temperature in the laboratory is too high.

The test must follow the if keyword and be placed in round brackets. When the
test gives a result of true the instructions inside the braces of the if statement are
executed. The program then continues by executing the instructions after the braces
of the if statement as normal. If, however, the if test gives a result of false the
instructions inside the if braces are skipped and not executed.

We can rewrite the RollerCoaster program by including an appropriate if
statement around the “Hello Junior!” message with the test (age < 13) as follows:

Now the message “Hello Junior!” will only be executed if the test (age < 13) is
true, otherwise it will be skipped (see Fig. 3.1).

Let’s assume we run the above program with the same values entered as when
running the previous version. First, the child approaches the ride:

How old are you?
10
Hello Junior!
Enjoy your ride

In this case, the if statement has allowed the “Hello Junior!” message to be
displayed as the age entered is less than 13. Now the adult approaches the ride:

RollerCoaster2
import java.util.Scanner;

// This program is an example of the use of selection in a Java program

public class RollerCoaster2
{

public static void main(String[] args)
{
int age;
Scanner keyboard = new Scanner (System.in);
System.out.println("How old are you?");
age = keyboard.nextInt();
if (age < 13) // test controls if the next instruction is executed
{

System.out.println("Hello Junior!");
}
System.out.println("Enjoy your ride");

}
}

44 3 Selection

How old are you?
45
Enjoy your ride

In this case the if statement has not allowed the given instruction to be executed
as the associated test was not true. The message is skipped and the program con-
tinues with the following instruction to display “Enjoy your ride”.

In this program there was only a single instruction inside the if statement.

When there is only a single instruction associated with an if statement, the braces
can be omitted around this instruction, if so desired, as follows:

The compiler will always assume that the first line following the if test is the
instruction being guarded. For clarity, however, we will always use braces around
instructions.

Fig. 3.1 The if statement allows a choice to be made in programs

age = keyboard.nextInt();
if (age < 13)
{

System.out.println("Hello Junior!"); // single instruction inside 'if'
}
System.out.println("Enjoy your ride");

age = keyboard.nextInt();
if (age < 13)
System.out.println("Hello Junior!"); // braces can be omitted around this line
System.out.println("Enjoy your ride");

3.3 The ‘if’ Statement 45

3.3.1 Comparison Operators

In the example above, the “less than” operator (<) was used to check the value of
the age variable. This operator is often referred to as a comparison operator as it is
used to compare two values. Table 3.1 shows all the Java comparison operator
symbols.

Since comparison operators give a boolean result of true or false they are
often used in tests such as those we have been discussing. For example, consider a
temperature variable being used to record the temperature for a particular day of the
week. Assume that a temperature of 18° or above is considered to be a hot day. We
could use the “greater than or equal to” operator (�) to check for this as follows:

You can see from Table 3.1 that a double equals (= =) is used to check for
equality in Java and not the single equals (=), which, as you know, is used for
assignment. To use the single equals is a very common error! For example, to check
whether an angle is a right angle the following test should be used:

To check if something is not equal to a particular value we use the exclamation
mark followed by an equals sign (! =). So to test if an angle is not a right angle we
can have the following:

if (temperature >= 18) // test to check for hot temperature
{

// this line executed only when the test is true
System.out.println("Today is a hot day!");

}

if(angle == 90)// note the use of the double equals
{

System.out.println("This IS a right angle");
}

if (angle != 90)
{

System.out.println("This is NOT a right angle");
}

Table 3.1 The comparison
operators of Java

Operator Meaning

¼ = Equal to

! = Not equal to

< Less than

> Greater than

� Greater than or equal to

� Less than or equal to

46 3 Selection

3.3.2 Multiple Instructions Within an ‘if’ Statement

You have seen how an if statement guarding a single instruction may or may not
be implemented with braces around the instruction. When more than one instruc-
tion is to be guarded by an if statement, however, the instructions must be placed
in braces. As an example, consider once again the program we presented in the
previous chapter that calculated the cost of a product.

Now assume that a special promotion is in place for those products with an
initial price over 100. For such products the company pays half the tax. The
program below makes use of an if statement to apply this promotion, as well as
informing the user that a tax discount has been applied. Take a look at it and then
we will discuss it.

Now, the user is still always prompted to enter the initial price and tax as before:

FindCost3
import java.util.Scanner; // import the Scanner class from the util package

/* a program to input the initial price of a product and then calculate and display its cost after
tax has been added */

public class FindCost3
{

public static void main(String[] args)
{

Scanner keyboard = new Scanner(System.in); // create Scanner object
double price, tax;
System.out.println("*** Product Price Check ***");
System.out.print("Enter initial price: "); // prompt for input
price = keyboard.nextDouble(); // input method called
System.out.print("Enter tax rate: "); // prompt for input
tax = keyboard.nextDouble(); // input method called
price = price * (1 + tax/100); // perform the calculation
System.out.println("Cost after tax = " + price);

}
}

FindCostWithDiscount
import java.util.Scanner;

public class FindCostWithDiscount
{

public static void main(String[] args)
{

double price, tax;
Scanner keyboard = new Scanner(System.in);
System.out.println("*** Product Price Check ***");
System.out.print("Enter initial price: ");
price = keyboard.nextDouble();
System.out.print("Enter tax rate: ");
tax = keyboard.nextDouble();
// the following 'if' statement allows a selection to take place
if (price > 100) // test the price to see if a discount applies
{

// these two instructions executed only when the test is true
System.out.println("Special Promotion: We pay half your tax!");
tax = tax * 0.5;

}
// the remaining instructions are always executed
price = price * (1 + tax/100);
System.out.println("Cost after tax = " + price);

}
}

3.3 The ‘if’ Statement 47

The next two instructions are then placed inside an if statement. This means they
may not always be executed:

Notice that if the braces were omitted in this case, only the first instruction would
be taken to be inside the if statement—the second statement would not be guarded
and so would always be executed!

With braces around both instructions, they will be executed only when the test
(price > 100) returns a boolean result of true. So, for example, if the user had
entered a price of 150 the discount would be applied; but if the user entered a price of
50 these instructions would not be executed and a discount would not be applied.

Regardless of whether or not the test was true and the instructions in the if
statement executed, the program always continues with the remaining instructions:

Here is a sample program run when the test returns a result of false and the
discount is not applied:

*** Product Price Check ***
Enter initial price: 20
Enter tax rate: 10
Cost after tax = 22.0

In this case the program appears to behave in exactly the same way as the
original program. Here, however, is a program run when the test returns a result of
true and a discount does apply:

*** Product Price Check ***
Enter initial price: 1000
Enter tax rate: 10
Special Promotion: We pay half your tax!
Cost after tax = 1050.0

42

System.out.print("Enter initial price: ");
price = keyboard.nextDouble();
System.out.print("Enter tax rate: ");
tax = keyboard.nextDouble();

if (price > 100)
{

System.out.println("Special Promotion: We pay half your tax!");
tax = tax * 0.5;

}

price = price * (1 + tax/100);
System.out.println("Cost after tax = " + price);

48 3 Selection

3.4 The ‘if…else’ Statement

Using the if statement in the way that we have done so far has allowed us to build
the idea of a choice into our programs. In fact, the if statement made one of two
choices before continuing with the remaining instructions in the program:

• execute the conditional instructions, or
• do not execute the conditional instructions.

The second option amounts to “do nothing”. Rather than do nothing if the test is
false, an extended version of an if statement exists in Java to state an alternative
course of action. This extended form of selection is the if…else statement. As
the name implies, the instructions to be executed if the test evaluates to false are
preceded by the Java keyword else as follows:

This is often referred to as a double-branched selection as there are two
alternative groups of instructions, whereas a single if statement is often referred to
as a single-branched selection. The program below, DisplayResult, illustrates
the use of a double-branched selection.

This program checks a student’s exam mark and tells the student whether or not
he or she has passed (gained a mark greater than or equal to 40), before displaying a
good luck message on the screen. Let’s examine this program a bit more closely.

if (/* test goes here */)
{

// instruction(s) if test is true go here
}
else
{

// instruction(s) if test is false go here
}

DisplayResult

import java.util.Scanner;

public class DisplayResult
{

public static void main(String[] args)
{

int mark;
Scanner keyboard = new Scanner(System.in);
System.out.println("What exam mark did you get? ");
mark = keyboard.nextInt();
if (mark >= 40)
{

// executed when test is true
System.out.println("Congratulations, you passed");

}
else
{

// executed when test is false
System.out.println("I'm sorry, but you failed");

}
System.out.println("Good luck with your other exams");

}
}

3.4 The ‘if…else’ Statement 49

Prior to the if…else statement the following lines are executed in sequence:

Then the following condition is tested as part of the if…else statement:

(mark >= 40)

When this test is true the following line is executed:

When the test is false, however, the following line is executed instead:

Finally, whichever path was chosen the program continues by executing the
last line:

The if…else form of control has allowed us to choose from two alternative
courses of action. Here is a sample program run:

What exam mark did you get?
52
Congratulations, you passed
Good luck with your other exams

Here is another sample run where a different course of action is chosen.

What exam mark did you get?
35
I’m sorry, but you failed
Good luck with your other exams

44

int mark;
Scanner keyboard = new Scanner(System.in);
System.out.println("What exam mark did you get? ");
mark = keyboard.nextInt();

System.out.println("Congratulations, you passed");

System.out.println("I'm sorry, but you failed");

System.out.println("Good luck with your other exams");

50 3 Selection

3.5 Logical Operators

As we’ve already pointed out, the test in an if statement is an expression that
produces a boolean result of true or false. Often it is necessary to join two or
more tests together to create a single more complicated test.

As an example, consider a program that checks the temperature in a laboratory.
Assume that, for the experiments in the laboratory to be successful, the tempera-
ture must remain between 5 and 12 °C. An if statement might be required as
follows:

The test should check if the temperature is safe. This involves combining two
tests together:

1. check that the temperature is greater than or equal to 5 (temperature >= 5)
2. check that the temperature is less than or equal to 12 (temperature <= 12)

Both of these tests need to evaluate to true in order for the temperature to be
safe. When we require two tests to be true we use the following symbol to join the
two tests:

&&

This symbol is read as “AND”. So the correct test is:

Now, if the temperature were below 5 the first test (temperature >= 5)
would evaluate to false giving a final result of false; the if statement would
be skipped and the else statement would be executed:

UNSAFE: RAISE ALARM!!

If the temperature were greater than 12 the second part of the test (tempera-
ture <= 12) would evaluate to false also giving an overall result of false and
again the if statement would be skipped and the else statement would be
executed.

However, when the temperature is between 5 and 12 both tests would evaluate to
true and the final result would be true as required; the if statement would then
be executed instead:

if (/* test to check if temperature is safe */)
{

System.out.println ("TEMPERATURE IS SAFE!");
}
else
{

System.out.println("UNSAFE: RAISE ALARM!!");
}

if (temperature >= 5 && temperature <= 12)

3.5 Logical Operators 51

TEMPERATURE IS SAFE!

Notice that the two tests must be completely specified as each needs to return a
boolean value of true or false. It would be wrong to try something like the
following:

This is wrong as the second test (<= 12) is not a legal boolean expression.
Symbols that join tests together to form longer tests are known as logical opera-
tors. Table 3.2 lists the Java counterparts to the three common logical operators.

Both the AND and OR operators join two tests together to give a final result.
While the AND operator requires both tests to be true to give a result of true,
the OR operator requires only that at least one of the tests be true to give a result
of true. The NOT operator flips a value of true to false and a value of false
to true. Table 3.3 gives some examples of the use of these logical operators.

As an example of the use of the NOT operator(!), let us return to the tem-
perature example. We said that we were going to assume that a temperature of
greater than 18° was going to be considered a hot day. To check that the day is not a
hot day we could use the NOT operator as follows:

Table 3.2 The logical operators of Java

Logical operator Java counterpart

AND &&

OR ||

NOT !

// wrong! second test does not mention 'temperature'!
if (temperature >= 5 && <= 12)

if (!(temperature > 18)) // test to check if temperature is not hot
{

System.out.println("Today is not a hot day!");
}

Table 3.3 Logical operators: some examples

Expression Result Explanation

10 > 5 && 10 > 7 true Both tests are true

10 > 5 && 10 > 20 false The second test is false

10 > 15 && 10 > 20 false Both tests are false

10 > 5 || 10 > 7 true At least one test is true (in this case both tests are true)

10 > 5 || 10 > 20 true At least one test is true (in this case just one test is true)

10 > 15 || 10 > 20 false Both tests are false

! (10 > 5) false Original test is true

! (10 > 15) true Original test is false

52 3 Selection

Of course, if a temperature is not greater than 18° then it must be less than or
equal to 18°. So, another way to check the test above would be as follows:

3.6 Nested ‘if…else’ Statements

Instructions within if and if…else statements can themselves be any legal Java
commands. In particular they could contain other if or if…else statements.
This form of control is referred to as nesting. Nesting allows multiple choices to be
processed.

As an example, consider the following program, which asks a student to enter his
or her tutorial group (A, B, or C) and then displays on the screen the time of the
software lab.

As you can see, nesting can result in code with many braces can become difficult
to read, even with our careful use of tabs. Such code can be made easier to read by
not including the braces associated with all the else branches, as in the second
version of the timetable program shown below:

if (temperature <= 18) // this also checks if temperature is not hot
{

System.out.println("Today is not a hot day!");
}

Timetable
import java.util.Scanner;

public class Timetable
{

public static void main(String[] args)
{

char group; // to store the tutorial group
Scanner keyboard = new Scanner(System.in);
System.out.println("***Lab Times***"); // display header
System.out.println("Enter your group (A,B,C)");
group = keyboard.next().charAt(0);

// check tutorial group and display appropriate time
if (group == 'A')
{

System.out.print("10.00 a.m"); // lab time for group A
}
else
{

if (group == 'B')
{

System.out.print("1.00 p.m"); // lab time for group B
}
else
{

if (group == 'C')
{

System.out.print("11.00 a.m"); // lab time for group C
}
else
{

System.out.print("No such group"); // invalid group
}

}
}

}
}

3.5 Logical Operators 53

This program is a little bit different from the ones before because it includes
some basic error checking. That is, it does not assume that the user of this program
will always type the expected values. If the wrong group (not A, B or C) is entered,
an error message is displayed saying “No such group”.

Error checking like this is a good habit to get into.
There is one other point to notice here. The program is set up so that only the

upper case letters, ‘A’, ‘B’ and ‘C’ are accepted as valid. If the user were to enter ‘a’
for example then “No such group” would be displayed. Can you think how to fix
this? You will have the opportunity to do that in the programming exercises at the
end of the chapter.

This use of nested selections is okay up to a point, but when the number of
options becomes large the program can again look very untidy. Fortunately, this
type of selection can also be implemented in Java with another form of control: a
switch statement.

TimetableVersion2
import java.util.Scanner;

public class TimetableVersion2
{

public static void main(String[] args)
{

char group; // to store the tutorial group
Scanner keyboard = new Scanner(System.in);
System.out.println("***Lab Times***"); // display header
System.out.println("Enter your group (A,B,C)");
group = keyboard.next().charAt(0);

if (group == 'A')
{

System.out.println("10.00 a.m");
}
else if (group == 'B')
{

System.out.println("1.00 p.m");
}
else if(group == 'C')
{

System.out.println("11.00 a.m");
}
else
{

System.out.println("No such group");
}

}
}

// valid groups checked above
else // if this 'else' is reached, group entered must be invalid
{

System.out.println("No such group"); // error message
}

54 3 Selection

3.7 The ‘switch’ Statement

Our next program, TimetableWithSwitch, behaves in exactly the same way
as the previous program but using a switch instead of a series of nested if…
else statements allows a neater implementation. Take a look at it and then we’ll
discuss it.

As you can see, this looks a lot neater. The switch statement works in exactly
the same way as a set of nested if statements, but is more compact and readable.
A switch statement may be used when

• only one variable is being checked in each condition (in this case every con-
dition involves checking the variable group);

• the check involves specific values of that variable (e.g. ‘A’, ‘B’) and not ranges
(for example � 40).

As can be seen from the example above, the keyword case is used to precede a
possible value of the variable that is being checked. There may be many case
statements in a single switch statement. The general form of a switch statement
in Java is given as follows:

TimetableWithSwitch
import java.util.Scanner;

public class TimetableWithSwitch
{

public static void main(String[] args)
{

char group;
Scanner keyboard = new Scanner(System.in);
System.out.println("***Lab Times***");
System.out.println("Enter your group (A,B,C)");
group = keyboard.next().charAt(0);
switch(group) // beginning of switch
{

case 'A': System.out.println("10.00 a.m.");
break;

case 'B': System.out.println("1.00 p.m.");
break;

case 'C': System.out.println("11.00 a.m.");
break;

default: System.out.println("No such group");
} // end of switch

}
}

switch(someVariable)
{
 case value1: // instructions(s) to be executed

break;
 case value2: // instructions(s) to be executed

break;
 // more values to be tested can be added
 default: // instruction(s) for default case
}

3.7 The ‘switch’ Statement 55

where

• someVariable is the name of the variable being tested. This variable is most
commonly of type int or char.

• value1, value2, etc. are the possible values of that variable.
• break is a command that forces the program to skip the rest of the switch

statement.
• default is an optional (last) case that can be thought of as an “otherwise”

statement. It allows you to code instructions that deal with the possibility of
none of the cases above being true.

The break statement is important because it means that once a matching case is
found, the program can skip the rest of the cases below. If it is not added, not only
will the instructions associated with the matching case be executed, but also all the
instructions associated with all the cases below it. Notice that the last set of
instructions does not need a break statement as there are no other cases to skip.

3.7.1 Grouping Case Statements

There will be instances when a particular group of instructions is associated with
more than one case option. As an example, consider the time table again. Let’s
assume that both groups ‘A’ and ‘C’ have a lab at 10.00 a.m. The following switch
statement would process this without grouping case ‘A’ and ‘C’ together:

While this will work, both case ‘A’ and case ‘C’ have the same instruction
associated with them:

Rather than repeating this instruction, the two case statements can be combined
into one as follows:

// groups A and C have labs at the same time
switch(group)
{
 case 'A': System.out.println("10.00 a.m.");

break;
 case 'B': System.out.println("1.00 p.m.");

break;
case 'C': System.out.println("10.00 a.m.");

break;
 default: System.out.println("No such group");
}

System.out.println("10.00 a.m.");

56 3 Selection

In the example above a time of 10.00 a.m. will be displayed when the group is
either ‘A’ or ‘C’. The example above combined two case statements, but there is
no limit to how many such statements can be combined.

3.7.2 Removing Break Statements

In the examples above we have always used a break statement to avoid executing
the code associated with more than one case statement. There may be situations
where it is not appropriate to use a break statement and we do wish to execute the
code associated with more than one case statement.

For example, let us assume that spies working for a secret agency are allocated
different levels of security clearance, the lowest being 1 and the highest being 3.
A spy with the highest clearance level of 3 can access all the secrets, whereas a spy
with a clearance of level of 1 can see only secrets that have the lowest level of
security. An administrator needs to be able to view the collection of secrets that a
spy with a particular clearance level can see. We can implement this scenario by
way of a switch statement in the below. Take a look at it and then we will
discuss it.

You can see that there is just a single break statement at the end of case 1.

// groups A and C have been processed together
switch(group)
{
 case 'A': case 'C': System.out.println("10.00 a.m.");

break;
 case 'B': System.out.println("1.00 p.m.");

break;
 default: System.out.println("No such group");
}

SecretAgents

import java.util.Scanner;

public class SecretAgents
{

public static void main(String[] args)
{

int security;
Scanner keyboard = new Scanner(System.in);
System.out.println("***Secret Agents***");
System.out.println("Enter security level (1,2,3)");
security = keyboard.nextInt();
switch(security) // check level of security
{

// level 3 security
case 3: System.out.println("The code to access the safe is 007.");
// level 2 security
case 2: System.out.println("Jim Kitt is really a double agent.");
// level 1 security
case 1: System.out.println("Martinis in the hotel bar may be poisoned.");

break; // necessary to avoid error message below
default: System.out.println("No such security level.");

}
}

}

3.7 The ‘switch’ Statement 57

If the user entered a security level of 3 for example, the println instruction
associated with this case would be executed:

However, as there is no break statement at the end of this instruction, the
instruction associated with the case below is then also executed:

We have still not reached a break statement so the instruction associated with
the next case statement is then executed:

Here we do reach a break statement so the switch terminates. Here is a
sample test run:

Secret Agents
Enter security level (1, 2, 3)
3
The code to access the safe is 007.
Jim Kitt is really a double agent.
Martinis in the hotel bar may be poisoned.

Because the security level entered is 3 all secrets can be revealed. Here is
another sample test run when security level 2 is entered:

Secret Agents
Enter security level (1, 2, 3)
2
Jim Kitt is really a double agent.
Martinis in the hotel bar may be poisoned.

case 3: System.out.println("The code to access the safe is 007.");
case 2: System.out.println("Jim Kitt is really a double agent.");
case 1: System.out.println("Martinis in the hotel bar may be poisoned.");
break; // the only break statement

case 3: System.out.println("The code to access the safe is 007.");

System.out.println("Jim Kitt is really a double agent.");

System.out.println("Martinis in the hotel bar may be poisoned.");
break; // the only break statement

58 3 Selection

Because the security level is 2 the first secret is not revealed.
The last break statement is necessary as we wish to avoid the final error message

if a valid security level (1, 2 or 3) is entered. The error message is only displayed if
an invalid security level is entered:

Secret Agents
Enter security level (1, 2, 3)
8
No such security level.

3.8 Self-test Questions

1. Explain the difference between sequence and selection.

2. When would it be appropriate to use

• an if statement?
• an if…else statement?
• a switch statement?

3. Consider the following Java program, which is intended to display the cost of a
cinema ticket. Part of the code has been replaced by a comment:

Replace the comment so that children under the age of 14 get half price tickets.

4. Consider the following program:

import java.util.Scanner;

public class CinemaTicket
{

public static void main(String[] args)
{

double price = 10.00;
int age;
Scanner keyboard = new Scanner(System.in);
System.out.print("Enter your age: ");
age = keyboard.nextInt();
// code to reduce ticket price for children goes here
System.out.println("Ticket price = " + price);

 }
}

3.7 The ‘switch’ Statement 59

What would be the output from this program if

(a) the user entered 10 when prompted?
(b) the user entered 20 when prompted?
(c) the braces used in the if statement are removed, and the user enters 10 when

prompted?
(d) the braces used in the if statement are removed, and the user enters 20 when

prompted?

5. Consider the following program:

What would be the output from this program if

(a) the user entered 10 when prompted?
(b) the user entered 20 when prompted?

import java.util.Scanner;

public class Colours
{

public static void main(String[] args)
 {

int x;
Scanner keyboard = new Scanner(System.in);
System.out.print("Enter a number: ");
x = keyboard.nextInt();
if (x > 10)

 {
System.out.println("Green");
System.out.println("Blue");

 }
System.out.println("Red");

 }
}

import java.util.Scanner;

public class Colours2
{

public static void main(String[] args)
{

int x;
Scanner keyboard = new Scanner(System.in);
System.out.print("Enter a number: ");
x = keyboard.nextInt();
if (x > 10)
{

System.out.println("Green");
}
else
{

System.out.println("Blue");
}
System.out.println("Red");

}
}

60 3 Selection

6. Consider the following program:

What would be the output from this program if

(a) the user entered 1 when prompted?
(b) the user entered 2 when prompted?
(c) the user entered 3 when prompted?
(d) the user entered 10 when prompted?
(e) the break statements were removed from the switch statement and the

user entered 3 when prompted?
(f) the default were removed from the switch statement and the user

entered 10 when prompted?

3.9 Programming Exercises

1. Design and implement a program that asks the user to enter two numbers and
then displays the message “NUMBERS ARE EQUAL”, if the two numbers are
equal and “NUMBERS ARE NOT EQUAL”, if they are not equal.

Hint: Don’t forget to use the double equals (= =) to test for equality.

2. Adapt the program developed in the question above so that as well as checking
if the two numbers are equal, the program will also display “FIRST NUMBER
BIGGER” if the first number is bigger than the second number and display
“SECOND NUMBER BIGGER” if the second number is bigger than the first.

3. Design and implement a program that asks the user to enter two numbers and
then guess at the sum of those two numbers. If the user guesses correctly a
congratulatory message is displayed, otherwise a commiseration message is
displayed along with the correct answer.

import java.util.Scanner;

public class Colours3

{
public static void main(String[] args)

{
int x;
Scanner keyboard = new Scanner(System.in);
System.out.print("Enter a number: ");
x = keyboard.nextInt();
switch (x)
{

case 1: case 2: System.out.println("Green"); break;
case 3: case 4: case 5: System.out.println("Blue"); break;
default: System.out.println("numbers 1-5 only");

}
System.out.println("Red");

}
}

3.8 Self-test Questions 61

4. Implement the DisplayResult program from Sect. 3.4 which processed an
exam mark, and then adapt the program so that marks of 70 or above are
awarded a distinction rather than a pass.

5. In programming Exercise 5 of the previous chapter you were asked to calculate
the BMI of an individual. Adapt this program so that it also reports on whether
the BMI is in a healthy range, or if it indicates the person is underweight or
overweight, using the following table:

6. Write a program to take an order for a new computer. The basic system costs
375.99. The user then has to choose from a 38 cm screen (costing 75.99) or a
43 cm screen (costing 99.99). The following extras are optional.

The program should allow the user to select from these extras and then display
the final cost of the order.

7. (a) Implement the TimetableVersion2 program (Sect. 3.6) so that it
accepts both upper case and lower case letters for the group.

(b) Adapt the TimetableWithSwitch program (Sect. 3.7) in the same way.

8. Consider a bank that offers four different types of account (‘A’, ‘B’, ‘C’
and ‘X’). The following table illustrates the annual rate of interest offered for
each type of account.

Design and implement a program that allows the user to enter an amount of
money and a type of bank account, before displaying the amount of money that

BMI Classification

<18.5 Underweight

18.5—24.9 Healthy

>24.9 Overweight

Item Price

Antivirus software 65.99

Printer 125.00

Account Annual rate of interest (%)

A 1.5

B 2

C 1.5

X 5

62 3 Selection

can be earned in one year as interest on that money for the given type of bank
account. You should use the switch statement when implementing this pro-
gram.

Hint: be careful to consider the case of the letters representing the bank
accounts. You might want to restrict this to, say, just upper case. Or you could
enhance your program by allowing the user to enter either lower case or upper
case letters.

9. Consider the bank accounts discussed in Exercise 8 again. Now assume that
each type of bank account is associated with a minimum balance as given in the
table below:

Adapt the switch statement of the program in Exercise 8 above so that the
interest is applied only if the amount of money entered satisfies the minimum
balance requirement for the given account. If the amount of money is below the
minimum balance for the given account an error message should be displayed.

Account Minimum balance

A 250

B 1000

C 250

X 5000

3.9 Programming Exercises 63

4Iteration

Outcomes:

By the end of this chapter you should be able to:

• explain the term iteration;
• repeat a section of code with a for loop;
• repeat a section of code with a while loop;
• repeat a section of code with a do…while loop;
• select the most appropriate loop for a particular task;
• use a break statement to terminate a loop;
• use a continue statement to skip an iteration of a loop;
• explain the term input validation and write simple validation routines.

4.1 Introduction

So far we have considered sequence and selection as forms of program control. One of
the advantages of using computers rather than humans to carry out tasks is that they
can repeat those tasks over and over again without ever getting tired.With a computer
we do not have to worry about mistakes creeping in because of fatigue, whereas
humans would need a break to stop them becoming sloppy or careless when carrying
out repetitive tasks over a long period of time. Neither sequence nor selection allows
us to carry out this kind of control in our programs. As an example, consider a program
that needs to display a square of stars (five by five) on the screen as follows:

* * * * *
* * * * *
* * * * *
* * * * *
* * * * *

© Springer Nature Switzerland AG 2019
Q. Charatan and A. Kans, Java in Two Semesters, Texts in Computer Science,
https://doi.org/10.1007/978-3-319-99420-8_4

65

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99420-8_4&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99420-8_4&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99420-8_4&domain=pdf
https://doi.org/10.1007/978-3-319-99420-8_4

This could be achieved with five output statements executed in sequence, as
shown in below in a program which we have called DisplayStars:

DisplayStars
public class DisplayStars
{

public static void main (String[] args)
{

System.out.println("*****"); // instruction to display one row
System.out.println("*****"); // instruction to display one row
System.out.println("*****"); // instruction to display one row
System.out.println("*****"); // instruction to display one row
System.out.println("*****"); // instruction to display one row

}
}

While this produces the desired result, the program actually consists just of the
following instruction to print out one row, but repeated 5 times:

System.out.println("*****"); // this instruction is written 5 times

Writing out the same line many times is somewhat wasteful of our precious time
as programmers. Imagine what would happen if we wanted a square 40 by 40!

Rather than write out this instruction five times we would prefer to write it out
once and get the program to repeat that same line another four times. Something
like:

public class DisplayStars
{

public static void main (String[] args)
{

// CARRY OUT THE FOLLOWING INSTRUCTION 5 TIMES
System.out.println("*****");

 }
}

Iteration is the form of program control that allows us to instruct the computer
to carry out a task several times by repeating a section of code. For this reason this
form of control is often also referred to as repetition. The programming structure
that is used to control this repetition is often called a loop; we say that the loop
iterates a certain number of times. There are three types of loop in Java:

• for loop;
• while loop;
• do…while loop.

We will consider each of these in turn.

66 4 Iteration

4.2 The ‘for’ Loop

If we wish to repeat a section of code a fixed number of times (five in the example
above) we would use Java’s for loop. For example, the program below re-writes
DisplayStars by making use of a for loop. Take a look at it and then we will
discuss it:

DisplayStars2

public class DisplayStars2
{

public static void main (String[] args)
{

for(int i = 1; i <= 5; i++) // loop to repeat 5 times
{

System.out.println("*****"); // instruction to display one row
}

}
}

As you can see there are three bits of information in the header of the for loop,
each bit separated by a semi-colon:

for(int i = 1; i <= 5; i++) // three bits of information in the brackets
{

System.out.println("*****");
}

All three bits of information relate to a counter. A counter is just another
variable (usually integer) that has to be created. We use it to keep track of how
many times we have been through the loop so far. In this case we have called our
counter i, but we could give it any variable name—often though, simple names like
i and j are chosen.

Let’s look carefully at how this for loop works. First the counter is initialized to
some value. We have decided to initialize it to 1:

for(int i = 1; i <= 5; i++) // counter initialized to 1
{

System.out.println("*****");
}

Notice that the loop counter i is declared as well as initialized in the header of
the loop. Although it is possible to declare the counter variable prior to the loop,
declaring it within the header restricts the use of this variable to the loop itself. This
is often preferable.

The second bit of information in the header is a test, much like a test when
carrying out selection. When the test returns a boolean value of true the loop
repeats; when it returns a boolean value of false the loop ends. In this case the

4.2 The ‘for’ Loop 67

counter is tested to see if it is less than or equal to 5 (as we wish to repeat this loop 5
times):

for(int i = 1; i <= 5; i++) // counter tested
{

System.out.println("*****");
}

Since the counter was set to 1, this test is true and the loop is entered. We
sometimes refer to the instructions inside the loop as the body of the loop. As with
if statements, the braces of the for loop can be omitted when only a single
instruction is required in the body of the loop—but for clarity we will always use
braces with our loops. When the body of the loop is entered, all the instructions
within the braces of the loop are executed. In this case there is only one instruction
to execute:

for(int i = 1; i <= 5; i++)
{

System.out.println("*****"); // this line is executed
}

This line prints a row of stars on the screen. Once the instructions inside the
braces are complete, the loop returns to the beginning where the third bit of
information in the header of the for loop is executed. The third bit of information
changes the value of the counter so that eventually the loop test will be false. If
we want the loop to repeat 5 times and we have started the counter off at 1, we
should add 1 to the counter each time we go around the loop:

for(int i = 1; i <= 5; i++) // counter is changed
{

System.out.println("*****");
}

After the first increment, the counter now has the value of 2. Once the counter
has been changed the test is examined again to see if the loop should repeat:

for(int i = 1; i <= 5; i++) // counter tested again
{

System.out.println("*****");
}

This test is still true as the counter is still not greater than 5. Since the test is
true the body of the loop is entered again and another row of stars printed. This
process of checking the test, entering the loop and changing the counter repeats

68 4 Iteration

until five rows of stars have been printed. At this point the counter is incremented as
usual:

for(int i = 1; i <= 5; i++) // counter eventually equals 6
{

System.out.println("*****");
}

Now when the test is checked it is false as the counter is greater than five:

for(int i = 1; i <= 5; i++) // now the test is false
{

System.out.println("*****");
}

When the test of the for loop is false the loop stops. The instructions inside
the loop are skipped and the program continues with any instructions after the loop.

Now that you have seen one example of the use of a for loop, the general form
of a for loop can be given as follows:

for(/* start counter */ ; /* test counter */ ; /* change counter */)
{

// instruction(s) to be repeated go here
}

Be very careful that the loop counter and the test achieve the desired result. For
example, consider the following test:

for(int i = 1; i >= 10; i++) // something wrong with this test!
{

// instruction(s) to be repeated go here
}

Can you see what is wrong here?
The test to continue with the loop is that the counter be greater than or equal to

10 (i >= 10). However, the counter starts at 1 so this test is immediately false!
Because this test would be false immediately, the loop does not repeat at all and
it is skipped altogether!

Now consider this test:

for(int i = 1; i >= 1; i++) // something wrong with this test again!
{

// instruction(s) to be repeated go here
}

4.2 The ‘for’ Loop 69

Can you see what is wrong here?
The test to continue with the loop is that the counter be greater than or equal to 1

(i >= 1). However, the counter starts at 1 and increases by 1 each time, so this test
will always be true! Because this test would be true always, the loop will never
stop repeating when it is executed!

As long as you are careful with your counter and your test, however, it is a very
easy matter to set your for loop to repeat a certain number of times. If, for
example, we start the counter at 1 and increment it by 1 each time, and we need to
carry out some instructions 70 times, we could have the following test in the for
loop:

for(int i = 1; i <= 70; i++) // this loop carries out the instructions 70 times
{

// instruction(s) to be repeated goes here
}

4.2.1 Varying the Loop Counter

The DisplayStars2 program illustrated a common way of using a for loop;
start the counter at 1 and add 1 to the counter each time the loop repeats. However,
you may start your counter at any value and change the counter in any way you
choose when constructing your for loops.

For example, we could have re-written the for loop of the above program so
that the counter starts at 0 instead of 1. In that case, if we wish the for loop to still
execute the instructions 5 times the counter should reach 4 and not 5:

// this counter starts at 0 and goes up to 4 so the loop still executes 5 times
for(int i = 0; i <= 4; i++)
{

System.out.println("*****");
}

Another way to ensure that the counter does not reach a value greater than 4 is to
insist that the counter stays below 5. In this case we need to use the “less than”
operator (<) instead of the “less than or equal to” operator (<=):

// this loop still executes 5 times
for(int i = 0; i < 5; i++)
{

System.out.println("*****");
}

70 4 Iteration

We can also change the way we modify the counter after each iteration.
Returning to the original for loop, we would increment the counter by 2 each time
instead of 1. If we still wish the loop to repeat 5 times we could start at 2 and get the
counter to go up to 10:

// this loop still executes 5 times
for(int i = 2; i <= 10; i = i+2) // the counter moves up in steps of 2
{

System.out.println("*****");
}

Finally, counters can move down as well as up. As an example, look at the
following program that prints out a countdown of the numbers from 10 down to 1.

Countdown
public class Countdown
{

public static void main(String[] args)
{

System.out.println("*** Numbers from 10 to 1 ***");
System.out.println();
for (int i=10; i >= 1; i--) // counter moving down from 10 to 1
{

System.out.println(i);
}

}
}

Here the counter starts at 10 and is reduced by 1 each time. The loop stops when
the counter falls below the value of 1. Note the use of the loop counter inside the
loop:

System.out.println(i); // value of counter 'i' used here

This is perfectly acceptable as the loop counter is just another variable. However,
when you do this, be careful not to inadvertently change the loop counter within the
loop body as this can throw the test of your for loop off track! Running the
Countdown program gives us the following result:

*** Numbers from 10 to 1 ***

10
9

8

7

6

4.2 The ‘for’ Loop 71

5

4

3

2
1

4.2.2 The Body of the Loop

The body of the loop can contain any number and type of instructions, including
variable declarations, if statements, switch statements, or even another loop!
For example, the DisplayEven program below modifies our Countdown by
including an if statement inside the for loop so that only the even numbers from
10 to 1 are displayed:

DisplayEven
public class DisplayEven
{

public static void main(String[] args)
 {

System.out.println("*** Even numbers from 10 to 1 ***");
System.out.println();
for(int i=10; i >= 1; i--) // loop through the numbers 10 down to 1

 {
// body of the loop contains in ‘if’ statement
if (i%2 == 0) // check if number is even

 {
System.out.println(i); // number displayed only when it is checked to be even

 }
 }
 }
}

You can see that the body of the for loop contains within it an if statement.
The test of the if statement checks the current value of the loop counter ‘i’ to see
if it is an even number:

for(int i=10; i >= 1; i--)
{

if (i%2 == 0) // use the modulus operator to check the value of the loop counter
 {

System.out.println(i);
 }
}

An even number is a number that leaves no remainder when divided by 2, so we
use the modulus operator (%) to check this. Now the loop counter is displayed only
if it is an even number. Running the program gives us the obvious results:

72 4 Iteration

*** Even numbers from 10 to 1 ***

10

8

6

4

2
In this example we included an if statement inside the for loop. It is also

possible to have one for loop inside another. When we have one loop inside
another we refer to these loops as nested loops. As an example of this consider the
program DisplayStars3 below, which displays a square of stars as before, but
this time uses a pair of nested loops to achieve this:

DisplayStars3

public class DisplayStars3
{

public static void main (String[] args)
 {

for(int i = 1; i <= 5; i++) // outer loop as before
 {

for (int j = 1; j <= 5; j++) // inner loop to display one row of stars
 {

System.out.print("*");
} // inner loop ends here
System.out.println(); // necessary to start next row on a new line

} // outer loop ends here
 }
}

You can see that the outer for loop is the same as the one used previously in
DisplayStars2. Whereas in the original program we had a single instruction to
display a single row of stars inside our loop:

System.out.println("*****"); // original instruction inside the ‘for’ loop

in DisplayStars3 we have replaced this instruction with another for loop,
followed by a blank println instruction:

// new instructions inside the original ‘for’ loop to print a single row of stars
for (int j = 1; j <= 5; j++) // new name for this loop counter
{

System.out.print("*");
}
System.out.println();

Notice that when we place one loop inside another, we need a fresh name for the
loop counter in the nested loop. In this case we have called the counter ‘j’. These
instructions together allow us to display a single row of 5 stars and move to a new
line, ready to print the next row.

4.2 The ‘for’ Loop 73

Let’s look at how the control in this program flows. First the outer loop counter
is set to 1:

for(int i = 1; i <= 5; i++) // outer loop counter initialized
{

for (int j = 1; j <= 5; j++)
 {

System.out.print("*");
 }

System.out.println();
}

The test of the outer loop is then checked:

for(int i = 1; i <= 5; i++) // outer loop counter tested
{

for (int j = 1; j <= 5; j++)
 {

System.out.print("*");
 }

System.out.println();
}

This test is found to be true so the body of the outer loop is executed. First the
inner loop repeats five times:

for(int i = 1; i <= 5; i++)
{

for (int j = 1; j <= 5; j++) // this loop repeats 5 times
 {

System.out.print("*");
 }

System.out.println();
}

The inner loop prints five stars on the screen as follows:

After the inner loop stops, there is one more instruction to complete: the com-
mand to move the cursor to a new line:

for(int i = 1; i <= 5; i++)
{

for (int j = 1; j <= 5; j++)
 {

System.out.print("*");
 }

System.out.println(); // last instruction of outer loop
}

74 4 Iteration

This completes one cycle of the outer loop, so the program returns to the
beginning of this loop and increments its counter:

for(int i = 1; i <= 5; i++) // counter moves to 2
{

for (int j = 1; j <= 5; j++)
 {

System.out.print("*");
 }

System.out.println();
}

The test of the outer loop is then checked and found to be true and the whole
process repeats, printing out a square of five stars as before.

DisplayStars3 displayed a five by five square of stars. Now take a look at
the next program and see if you can work out what it does. Look particularly at the
header of the inner loop:

DisplayShape

public class DisplayShape
{

public static void main (String[] args)
{

for(int i = 1; i <= 5; i++) // outer loop controlling the number of rows
{
for (int j = 1; j <= i; j++) // inner loop controlling the number of stars in one row
{

System.out.print("*");
}
System.out.println();

}
}

}

You can see this is very similar to the previous program, except that in that
program the inner loop displayed 5 stars each time. In this case the number of stars
is not fixed to a number, but to the value of the outer loop counter i:

for(int i = 1; i <= 5; i++) // outer loops controls the number of rows
{

// inner loop determines how many stars in each row
for (int j = 1; j <= i; j++) // inner loop displays ‘i’ number of stars

 {
System.out.print("*");

 }
System.out.println();

}

The first time around this loop the inner loop will display only 1 star in the row
as the i counter starts at 1. The second time around this loop it will display 2 stars
as the i counter is incremented, then 3 stars. Eventually it will display 5 stars the
last time around the loop when the outer i counter reaches 5. Effectively this means
the program will display a triangle of stars as follows:

4.2 The ‘for’ Loop 75

*
* *
* * *
* * * *
* * * * *

4.2.3 Revisiting the Loop Counter

Before we move on to look at other kinds of loops in Java it is important to
understand that, although a for loop is used to repeat something a fixed number of
times, you don’t necessarily need to know this fixed number when you are writing
the program. This fixed number could be a value given to you by the user of your
program, for example. This number could then be used to test against your loop
counter. The program below modifies DisplayStars3 by asking the user to
determine the size of the square of stars.

DisplayStars4

import java.util.Scanner;

public class DisplayStars4
{

public static void main(String[] args)
{

int num; // to hold user response
Scanner keyboard = new Scanner(System.in);
// prompt and get user response
System.out.println("Size of square?");
num = keyboard.nextInt();
// display square
for(int i = 1; i <= num; i++) // number of rows fixed to 'num'
{

for (int j = 1; j <= num; j++) // number of stars in a row fixed to 'num'
{

System.out.print("*");
}
System.out.println();

}
}

}

In this program you cannot tell from the code exactly how many times the loops
will iterate, but you can say that they will iterate num number of times—whatever
the user may have entered for num. So in this sense the loop is still fixed. Here is a
sample run of DisplayStars4:

Size of square?
7
* * * * * * *
* * * * * * *
* * * * * * *
* * * * * * *
* * * * * * *
* * * * * * *
* * * * * * *

76 4 Iteration

Here is another sample run:

Size of square?
3
* * *
* * *
* * *

4.3 The ‘while’ Loop

Much of the power of computers comes from the ability to ask them to carry out
repetitive tasks, so iteration is a very important form of program control. The for
loop is an often used construct to implement fixed repetitions.

Sometimes, however, a repetition is required that is not fixed and a for loop is
not the best one to use in such a case. Consider the following scenarios, for
example:

• a racing game that repeatedly moves a car around a track until the car crashes;
• a ticket issuing program that repeatedly offers tickets for sale until the user

chooses to quit the program;
• a password checking program that does not let a user into an application until he

or she enters the right password.

Each of the above cases involves repetition; however, the number of repetitions
is not fixed but depends upon some condition. The while loop offers one type of
non-fixed iteration. The syntax for constructing this loop in Java is as follows:

while (/* test goes here */)
{

// instruction(s) to be repeated go here
}

As you can see, this loop is much simpler to construct than a for loop; as this
loop is not repeating a fixed number of times, there is no need to create a counter to
keep track of the number of repetitions.

When might this kind of loop be useful? The first example we will explore is the
use of the while loop to check data that is input by the user. Checking input data
for errors is referred to as input validation.

4.2 The ‘for’ Loop 77

For example, look back at the program DisplayResult in the last chapter,
which asked the user to enter an exam mark:

System.out.println("What exam mark did you get?");
mark = keyboard.nextInt();
if (mark >= 40)
// rest of code goes here

The mark that is entered should never be greater than 100 or less than 0. At the
time we assumed that the user would enter the mark correctly. However, good
programmers never make this assumption!

Before accepting the mark that is entered and moving on to the next stage of the
program, it is good practice to check that the mark entered is indeed a valid one. If it
is not, then the user will be allowed to enter the mark again. This will go on until the
user enters a valid mark.

We can express this using pseudocode as follows:

PROMPT for mark
ENTER mark
KEEP REPEATING WHILE mark < 0 OR mark > 100
BEGIN

DISPLAY error message to user
ENTER mark

END
// REST OF PROGRAM HERE

The design makes clear that an error message is to be displayed every time the
user enters an invalid mark. The user may enter an invalid mark many times so an
iteration is required here.

However, the number of iterations is not fixed as it is impossible to say how
many, if any, mistakes the user will make.

This sounds like a job for the while loop.

System.out.println("What exam mark did you get?");
mark = keyboard.nextInt();
while (mark < 0 || mark > 100) // check for invalid input
{

// display error message and allow for re-input
System.out.println("Invalid mark: Re-enter!");
mark = keyboard.nextInt();

}
if (mark >= 40)
// rest of code goes here

The program below shows the whole of the DisplayResult rewritten to
include the input validation. Notice how this works–we ask the user for the mark; if
it is within the acceptable range, the while loop is not entered and we move past it
to the other instructions. But if the mark entered is less than zero or greater than 100
we enter the loop, display an error message and ask the user to input the mark again.
This continues until the mark is within the required range.

78 4 Iteration

DisplayResult2

import java.util.Scanner;

public class DisplayResult2
{

public static void main(String[] args)
{

int mark;
Scanner keyboard = new Scanner(System.in);
System.out.println("What exam mark did you get?");
mark = keyboard.nextInt();
// input validation
while (mark < 0 || mark > 100) // check if mark is invalid
{

// display error message
System.out.println("Invalid mark: please re-enter");
// mark must be re-entered
mark = keyboard.nextInt();

}
// by this point loop is finished and mark will be valid
if (mark >= 40)
{

System.out.println("Congratulations, you passed");
}
else
{

System.out.println("I'm sorry, but you failed");
}
System.out.println("Good luck with your other exams");

}
}

Here is a sample program run:

What exam mark did you get?

101

Invalid mark: please re-enter

−10

Invalid mark: please re-enter

10

I’m sorry, but you failed

Good luck with your other exams

4.4 The ‘do…while’ Loop

There is one more loop construct in Java that we need to tell you about: the do…
while loop.

The do…while loop is another variable loop construct, but, unlike the while
loop, the do…while loop has its test at the end of the loop rather than at the
beginning.

The syntax of a do…while loop is given below:

4.3 The ‘while’ Loop 79

do
{

// instruction(s) to be repeated go here
} while (/* test goes here */); // note the semi-colon at the end

You are probably wondering what difference it makes if the test is at the end or
the beginning of the loop. Well, there is one subtle difference. If the test is at the end
of the loop, the loop will iterate at least once. If the test is at the beginning of the
loop, however, there is a possibility that the condition will be false to begin with,
and the loop is never executed. A while loop therefore executes zero or more
times whereas a do…while loop executes one or more times.

To make this a little clearer, look back at the while loop we just showed you
for validating exam marks. If the user entered a valid mark initially (such as 66), the
test to trap an invalid mark (mark < 0 || mark > 100) would be false and the
loop would be skipped altogether. A do…while loop would not be appropriate
here as the possibility of never getting into the loop should be left open.

When would a do…while loop be suitable? Well, any time you wish to code a
non-fixed loop that must execute at least once. Usually, this would be the case when
the test can take place only after the loop has been entered.

To illustrate this, think about all the programs you have written so far. Once the
program has done its job it terminates—if you want it to perform the same task
again you have to go through the whole procedure of running the program again.

In many cases a better solution would be to put your whole program in a loop
that keeps repeating until the user chooses to quit your program. This would involve
asking the user each time if he or she would like to continue repeating the program,
or to stop.

A for loop would not be the best loop to choose here as this is more useful
when the number of repetitions can be predicted. A while loop would be difficult
to use, as the test that checks the user’s response to the question cannot be carried
out at the beginning of the loop. The answer is to move the test to the end of the
loop and use a do…while loop as follows:

char response; // variable to hold user response
do // place code in loop
{

// program instructions go here
System.out.println("another go (y/n)?");
response = keyboard.next().charAt(0); // get user reply

} while (response == 'y' || response == ‘Y’); // test must be at the end of the loop

Notice the test of the do…while loop allows the user to enter either a lower
case or an upper case ‘Y’ to continue running the program:

80 4 Iteration

while (response == 'y' || response == 'Y');

As an example of this application of the do…while loop, the program below
amends the FindCost3 program of Chap. 2, which calculated the cost of a
product, by allowing the user to repeat the program as often as he or she chooses.

FindCost4

import java.util.Scanner;

public class FindCost4
{

public static void main(String[] args)
{

double price, tax;
char reply;
Scanner keyboard = new Scanner(System.in);
do
{

// these instructions as before
System.out.println("*** Product Price Check ***");
System.out.print("Enter initial price: ");
price = keyboard.nextDouble();
System.out.print("Enter tax rate: ");
tax = keyboard.nextDouble();
price = price * (1 + tax/100);
System.out.println("Cost after tax = " + price);

// now see if user wants another go
System.out.println();
System.out.print("Would you like to enter another product(y/n)?: ");
reply = keyboard.next().charAt(0);
System.out.println();

} while (reply == 'y' || reply == 'Y');
}

}

Here is sample program run:

*** Product Price Check ***
Enter initial price: 50
Enter tax rate: 10
Cost after tax = 55.0
Would you like to enter another product (y/n)?: y

*** Product Price Check ***
Enter initial price: 70
Enter tax rate: 5
Cost after tax = 73.5

Would you like to enter another product (y/n)?: Y

*** Product Price Check ***
Enter initial price: 200
Enter tax rate: 15

4.4 The ‘do…while’ Loop 81

Cost after tax = 230.0

Would you like to enter another product (y/n)?: n

Another way to allow a program to be run repeatedly using a do…while loop
is to include a menu of options within the loop (this was very common in the days
before windows and mice). The options themselves are processed by a switch
statement. One of the options in the menu list would be the option to quit and this
option is checked in the while condition of the loop. The program below is a
reworking of the time table program of the previous chapter using this technique.

TimetableWithLoop
import java.util.Scanner;

public class TimetableWithLoop
{

public static void main(String[] args)
{

char group, response;
Scanner keyboard = new Scanner(System.in);
System.out.println("***Lab Times***");
do // put code in loop
{

// offer menu of options
System.out.println(); // create a blank line
System.out.println("[1] TIME FOR GROUP A");
System.out.println("[2] TIME FOR GROUP B");
System.out.println("[3] TIME FOR GROUP C");
System.out.println("[4] QUIT PROGRAM");
System.out.print("enter choice [1,2,3,4]: ");
response = keyboard.next().charAt(0); // get response
System.out.println(); // create a blank line
switch(response) // process response
{

case '1': System.out.println("10.00 a.m ");
break;

case '2': System.out.println("1.00 p.m ");
break;

case '3': System.out.println("11.00 a.m ");
break;

case '4': System.out.println("Goodbye ");
break;

default: System.out.println("Options 1-4 only!");
}

} while (response != '4'); // test for Quit option
}

}

Notice that the menu option is treated as a character here, rather than an integer.
So option 1 would be interpreted as the character ‘1’ rather than the number 1, for
example. The advantage of treating the menu option as a character rather than a
number is that an incorrect menu entry would not result in a program crash if the
value entered was non-numeric. Here is a sample run of this program:

Lab Times

[1] TIME FOR GROUP A
[2] TIME FOR GROUP B
[3] TIME FOR GROUP C
[4] QUIT PROGRAM

82 4 Iteration

enter choice [1,2,3,4]: 2

1.00 p.m

[1] TIME FOR GROUP A
[2] TIME FOR GROUP B
[3] TIME FOR GROUP C
[4] QUIT PROGRAM
enter choice [1,2,3,4]: 5

Options 1-4 only!

[1] TIME FOR GROUP A
[2] TIME FOR GROUP B
[3] TIME FOR GROUP C
[4] QUIT PROGRAM
enter choice [1,2,3,4]: 1

10.00 a.m

[1] TIME FOR GROUP A
[2] TIME FOR GROUP B
[3] TIME FOR GROUP C
[4] QUIT PROGRAM
enter choice [1,2,3,4]: 3

11.00 a.m

[1] TIME FOR GROUP A
[2] TIME FOR GROUP B
[3] TIME FOR GROUP C
[4] QUIT PROGRAM enter choice [1,2,3,4]: 4

Goodbye

4.5 Picking the Right Loop

With three types of loop to choose from in Java, it can sometimes be difficult to
decide upon the best one to use in each case, especially as it is technically possible
to pick any type of loop to implement any type of repetition! For example, while
and do…while loops can be used for fixed repetitions by introducing your own
counter and checking this counter in the test of the loop. However, it is always best

4.4 The ‘do…while’ Loop 83

to pick the most appropriate loop construct to use in each case, as this will simplify
the logic of your code. Here are some general guidelines that should help you:

• if the number of repetitions required can be determined prior to entering the
loop—use a for loop;

• if the number of repetitions required cannot be determined prior to entering the
loop, and you wish to allow for the possibility of zero iterations—use a while
loop;

• if the number of repetitions required cannot be determined before the loop, and
you require at least one iteration of the loop—use a do…while loop.

4.6 The ‘break’ Statement

In the previous chapter we met the break statement when looking at switch
statements. Here for example is a switch statement from the previous chapter that
processed a student’s timetable:

switch(group)
{

case 'A': System.out.print("10.00 a.m ");
break; // terminates switch

case 'B': System.out.print("1.00 p.m ");
break; // terminates switch

case 'C': System.out.print("11.00 a.m ");
break; // terminates switch

default: System.out.print("No such group");
}

Here the break statement allowed the switch to terminate without processing
the remaining cases. The break statement can also be used with Java’s loops to
terminate a loop before it reaches its natural end. For example, consider a program
that allows the user a maximum of three attempts to guess a secret number. This is
an example of a non-fixed iteration—but the iteration does have a fixed upper limit
of three.

We could use any of the loop types to implement this. If we wished to use a for
loop, however, we would need to make use of the break statement. Take a look at
the following program that does this for a secret number of 27:

84 4 Iteration

SecretNumber
import java.util.Scanner;

// This program demonstrates the use of the ‘break’ statement inside a ‘for’ loop

public class SecretNumber
{

public static void main(String[] args)
 {

Scanner keyboard = new Scanner (System.in);
final int SECRET = 27; // secret number
int num; // to hold user's guess
boolean guessed = false; // so far number not guessed

System.out.println("You have 3 goes to guess the secret number");
System.out.println("HINT: It is a number less than 50!");
System.out.println();

// look carefully at this loop
for (int i= 1; i <= 3; i++) // loop repeats 3 times

 {
System.out.print("Enter guess: ");
num = keyboard.nextInt();
// check guess
if (num == SECRET) // check if number guessed correctly

 {
guessed = true; // record number has been guessed correctly
break; // exit loop

 }
 }

// now check to see if the number was guessed correctly or not
if (guessed)

 {
System.out.println("Number guessed correctly");

 }
else

 {
System.out.println("Number NOT guessed");

 }
 }
}

The important part of this program is the for loop. You can see that it has been
written to repeat three times:

for (int i= 1; i <= 3; i++) // loop executes 3 times
{

System.out.print("Enter guess: ");
num = keyboard.nextInt();
// code here to check the guess

}

Each time around the loop the user gets to have a guess at the secret number. We
need to do two things if we determine that the guess is correct. Firstly, set a
boolean variable to true to indicate a correct guess. Then, secondly, we need to
terminate the loop, even if this is before we reach the third iteration. We do so by
using a break statement if the guess is correct:

4.6 The ‘break’ Statement 85

for (int i= 1; i <= 3; i++)
{

System.out.print("Enter guess: ");
num = keyboard.nextInt();
if (num == SECRET) // check if number guessed correctly

 {
guessed = true; // record number has been guessed correctly
break; // exit loop even if it has not yet finished three iterations

 }
}

Here is a sample program run:

You have 3 goes to guess the secret number
HINT: It is a number less than 50!
Enter guess: 49
Enter guess: 27
Number guessed correctly

Here the user guessed the number after two attempts and the loop terminated
early due to the break statement. Here is another program run where the user fails
to guess the secret number:

You have 3 goes to guess the secret number
HINT: It is a number less than 50!

Enter guess: 33
Enter guess: 22
Enter guess: 11
Number NOT guessed

Here the break statement is never reached so the loop iterates three times
without terminating early.

4.7 The ‘continue’ Statement

Whereas the break statement forces a loop to terminate, a continue statement
forces a loop to skip the remaining instructions in the body of the loop and to
continue to the next iteration. As an example of this here is a reminder of the earlier
program that displayed the even numbers from 10 down to 1:

86 4 Iteration

DisplayEven – a reminder
public class DisplayEven
{

public static void main(String[] args)
 {

System.out.println("*** Even numbers from 10 to 1 ***");
System.out.println();
for(int i=10; i >= 1; i--) // loop through the numbers 10 down to 1

 {
// body of the loop contains in ‘if’ statement
if (i%2 == 0) // check if number is even

 {
System.out.println(i); // number displayed only when it is checked to be even

 }
 }
 }
}

Here the body of the loop displayed the loop counter if it was an even number.
An alternative approach would have been to skip a number if it was odd and move
on to the next iteration of the loop. If the number is not skipped then it must be
even, so can be displayed. This is what we have done in the following program:

DisplayEven2

public class DisplayEven2
{

public static void main(String[] args)
 {

System.out.println("*** Even numbers from 10 to 1 ***");
System.out.println();
for(int i=10; i>=1; i--)

 {
if (i%2 != 0) // check if number is NOT even

 {
continue; // skips the rest of this iteration and moves to the next iteration

 }
System.out.println(i); // even number only displayed if we have not skipped this iteration

 }
 }
}

The if statement checks to see if the number is odd (not even). If this is the case
the rest of the instructions in the loop can be skipped with a continue statement,
so the loop moves to the next iteration:

if (i%2 != 0) // check if number is NOT even
{

continue; // skips the rest of the loop body and moves to the next iteration
}
System.out.println(i); // this line only executed if this iteration is not skipped

The last println instruction is only executed if the number is even and the
iteration has not been skipped. Of course, the result of running this program will be
the same as the result of running the original program.

4.7 The ‘continue’ Statement 87

4.8 Self-test Questions

1. Consider the following program:

public class IterationQ1
{

public static void main(String[] args)
 {

for(int i = 1; i <= 4; i++)
 {

System.out.println("YES");
 }

System.out.println("OK");
 }
}

(a) How many times does this for loop repeat?
(b) What would be the output of this program?

2. Consider the following program:

public class IterationQ2
{

public static void main(String[] args)
 {

for(int i = 1; i < 4; i++)
 {

System.out.println("YES");
System.out.println("NO");

 }
System.out.println("OK");

 }
}

(a) How many times does this for loop repeat?
(b) What would be the output of this program?

3. Consider the following program:

import java.util.Scanner;

public class IterationQ3
{

public static void main(String[] args)
 {

int num;
Scanner keyboard = new Scanner(System.in);

System.out.print("Enter a number: ");
num = keyboard.nextInt();

for(int i= 1; i< num; i++)
 {

System.out.println("YES");
System.out.println("NO");

 }
System.out.println("OK");

 }
}

88 4 Iteration

(a) What would be the output of this program if the user entered 5 when
prompted?

(b) What would be the output of this program if the user entered 0 when
prompted?

4. Consider the following program

public class IterationQ4
{

public static void main(String[] args)
 {

for(int i=1; i<=15; i= i +2)
 {

System.out.println(i);
 }
 }
}

(a) How many times does this for loop repeat?
(b) What would be the output of this program?
(c) What would be the consequence of changing the test of the loop to

(i >= 15)?

5. Consider the following program:

public class IterationQ5
{

public static void main(String[] args)
 {

for(int i=5; i>=2; i--)
 {

switch (i)
 {

case 1: case 3: System.out.println("YES"); break;
case 2: case 4: case 5: System.out.println("NO");

 }
 }

System.out.println("OK");
 }
}

(a) How many times does this for loop repeat?
(b) What would be the output of this program?
(c) What would be the consequence of changing the loop counter to (i++)

instead of (i−−)

6. What would be the output from the following program?

public class IterationQ6
{

public static void main(String[] args)
 {

for(int i=1; i <= 3; i++)
 {

for(int j=1; j <= 7; j++)
 {

System.out.print("*");
 }

System.out.println();
 }
 }
}

4.8 Self-test Questions 89

7. Examine the program below that aims to allow a user to guess the square of a
number that is entered. Part of the code has been replaced by a comment:

import java.util.Scanner;

public class IterationQ7
{

public static void main(String[] args)
 {

int num, square;
Scanner keyboard = new Scanner(System.in);
System.out.print("Enter a number ");
num = keyboard.nextInt();
System.out.print("Enter the square of this number ");
square = keyboard.nextInt();
// loop to check answer
while (/* test to be completed */)

 {
System.out.println("Wrong answer, try again");
square = keyboard.nextInt();

}
System.out.println("Well done, right answer");

 }
}

(a) Why is a while loop preferable to a for loop or a do…while loop
here?

(b) Replace the comment with an appropriate test for this loop.

8. What would be the output of the following program?

public class IterationQ8
{

public static void main(String[] args)
 {

for(int i=1; i<=10; i++)
 {

if (i > 5)
 {

break;
 }

System.out.println(i);
 }
 }
}

9. What would be the output of the following program?

public class IterationQ9
{

public static void main(String[] args)
 {

for(int i=1; i<=10; i++)
 {

if (i <= 5)
 {

continue;
 }

System.out.println(i);
 }
 }
}

90 4 Iteration

4.9 Programming Exercises

1. Implement a few of the programs from this chapter, and then implement the
programs from the self-test questions above in order to verify your answers to
those questions.

2. (a) Modify the DisplayEven program from Sect. 4.2.2 so that the program
displays the even numbers from 1 to 20 instead of from 10 down to 1.

(b) Modify the program further so that the user enters a number and the pro-
gram displays all the even numbers from 1 up to the number entered by the
user.

(c) Modify the program again so that it identifies which of these numbers are
odd and which are even. For example, if the user entered 5 the program
should display something like the following:

1 is odd
2 is even
3 is odd
4 is even
5 is odd

3. Write a program that makes use of nested for loops to display the following
shapes:

(a) * * * * * *
* * * * * *
* * * * * *

(b) * * *
* * *
* * * * * * * * *
* * * * * * * * *
* * *
* * *

Hint: make use of an if…else statement inside your for loops.
(c) * * * *

* * *
* *
*

4.9 Programming Exercises 91

6. (a) Using a for loop, write a program that displays a “6 times” multiplication
table; the output should look like this:

1 � 6 = 6
2 � 6 = 12
3 � 6 = 18
4 � 6 = 24
5 � 6 = 30
6 � 6 = 36
7 � 6 = 42
8 � 6 = 48
9 � 6 = 54
10 � 6 = 60
11 � 6 = 66
12 � 6 = 72

(b) Adapt the program so that instead of a “6 times” table, the user chooses
which table is displayed

(c) Modify the program further by making use of a while loop to carry out
some input validation that ensures that the user enters a number that is never
less than 2. If a number less than 2 is entered an error message should be
displayed and the user is asked to enter another number.

(d) Finally, make use of a do…while loop so that the user is asked to enter ‘y’
or ‘n’ to indicate if they wish to run the program again. Ideally the program
should run again if the user enters ‘y’ or ‘Y’.

7. Implement the program DisplayStars4 from Sect. 4.2.3 (which allows the
user to determine the size of a square of stars) and then

(a) adapt it so that the user is allowed to enter a size only between 2 and 20;
(b) adapt the program further so that the user can choose whether or not to have

another go.

8. Modify programming Exercise 7, from Sect. 2.12, that caries out some calcu-
lations related to a circle as follows:

(a) Add input validation to ensure that the radius entered is always non-negative
(b) Provide a menu interface for this program. For example:

[1] Set radius
[2] Display radius
[3] Display area
[4] Display perimeter
[5] Quit

92 4 Iteration

9. Consider a vending machine that offers the following options:

[1] Get gum
[2] Get chocolate
[3] Get popcorn
[4] Get juice
[5] Display total sold so far
[6] Quit

Design and implement a program that continuously allows users to select from
these options. When options 1–4 are selected an appropriate message is to be
displayed acknowledging their choice. For example, when option 3 is selected the
following message could be displayed:

Here is your popcorn

When option 5 is selected, the number of each type of item sold is displayed. For
example:

3 items of gum sold
2 items of chocolate sold
6 items of popcorn sold
9 items of juice sold

When option 6 is chosen the program terminates. If an option other than 1–6 is
entered an appropriate error message should be displayed, such as:

Error, options 1-6 only!

4.9 Programming Exercises 93

5Methods

Outcomes:

By the end of this chapter you should be able to:

• explain the meaning of the term method;
• declare and define methods;
• call a method;
• explain the meaning of the terms actual parameters and formal parameters;
• devise simple algorithms with the help of pseudocode;
• identify the scope of a particular variable;
• explain the meaning of the term polymorphism;
• declare and use overloaded methods.

5.1 Introduction

As early as Chap. 1 we were using the term method. There you found out that a
method is a part of a class, and contains a particular set of instructions. So far, all
the classes you have written have contained just one method, the main method. In
this chapter you will see how a class can contain not just a main method, but many
other methods as well.

Normally a method will perform a single well-defined task. Examples of the
many sorts of task that a method could perform are calculating the area of a circle,
displaying a particular message on the screen, converting a temperature from
Fahrenheit to Celsius, and many more. In this chapter you will see how we can
collect the instructions for performing these sorts of tasks together in a method.

You will also see how, once we have written a method, we can get it to perform
its task within a program. When we do this we say that we are calling the method.
When we call a method, what we are actually doing is telling the program to jump

© Springer Nature Switzerland AG 2019
Q. Charatan and A. Kans, Java in Two Semesters, Texts in Computer Science,
https://doi.org/10.1007/978-3-319-99420-8_5

95

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99420-8_5&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99420-8_5&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99420-8_5&domain=pdf
https://doi.org/10.1007/978-3-319-99420-8_5

to a new place (where the method instructions are stored), carry out the set of
instructions that it finds there, and, when it has finished (that is, when the method
has terminated), return and carry on where it left off.

So in this chapter you will learn how to write a method within a program, how to
call a method from another part of the program and how to send information into a
method and get information back.

5.2 Declaring and Defining Methods

Let’s illustrate the idea of a method by thinking about a simple little program. The
program prompts the user to enter his or her year of birth, month of birth and day of
birth; each time the prompt is displayed, it is followed by a message, consisting of a
couple of lines, explaining that the information entered is confidential. This is
shown in the program below. The program would obviously then go on to do other
things with the information that has been entered, but we are not interested in that,
so we have just replaced all the rest of the program with a comment.

DataEntry
import java.util.Scanner;

public class DataEntry
{

public static void main(String[] args)
 {

Scanner keyboard = new Scanner(System.in);

int year, month, day;

// prompt for year of birth
System.out.println("Please enter the year of your birth");

// display confidentiality message
System.out.println("Please note that all information supplied is confidential");
System.out.println("No personal details will be shared with any third party");

// get year from user
year = keyboard.nextInt();

// prompt for month of birth
System.out.println("Please enter the month of your birth as a number from 1 to 12");

// display confidentiality message
System.out.println("Please note that all information supplied is confidential");
System.out.println("No personal details will be shared with any third party");

// get month from user
month = keyboard.nextInt();

// prompt for day of birth
System.out.println("Please enter the day of your birth as a number from 1 to 31");

// display confidentiality message
System.out.println("Please note that all information supplied is confidential");
System.out.println("No personal details will be shared with any third party");

// get day from user
day = keyboard.nextInt();

// more code here
 }
}

96 5 Methods

You can see from the above program that we have had to type out the two lines
that display the confidentiality message three times. It would be far less
time-consuming if we could do this just once, then send the program off to
wherever these instructions are stored, and then come back and carry on with what
it was doing. You will probably have realized by now that we can indeed do this—
by writing a method. The job of this particular method will be simply to display the
confidentiality message on the screen. We need to give our method a name so that
we can refer to it when required, so let’s call it displayMessage. Here is how it
is going to look:

static void displayMessage()
{

System.out.println("Please note that all information supplied is confidential");
System.out.println("No personal details will be shared with any third party");

}

The body of this method, which is contained between the two curly brackets,
contains the instructions that we want the method to perform, namely to display two
lines of text on the screen. The first line, which declares the method, is called the
method header, and consists of three words—let’s look into each of these a bit
more closely:

static

You have seen this word in front of the main method many times now.
However, we won’t be explaining its meaning to you properly until Chap. 8. For
now, all you need to know is that methods that have been declared as static
(such as main) can only call other methods in the class if they too are static.
So, if we did not declare displayMessage as static and tried to call it
from the main method then our program would not compile.

void

In the next section you will see that it is possible for a method to send back or
return some information once it terminates. This particular method simply
displays a message on the screen, so we don’t require it to send back any
information when it terminates. The word void indicates that the method does
not return any information.

displayMessage()

This is the name that we have chosen to give our method. You can see that the
name is followed by a pair of empty brackets. Very soon you will learn that it is
possible to send some information into a method—for example, some values
that the method needs in order to perform a calculation. When we need to do
that we list, in these brackets, the types of data that we are going to send in; here,
however, as the method is doing nothing more that displaying a message on the
screen we do not have to send in any data, and the brackets are left empty.

5.2 Declaring and Defining Methods 97

5.3 Calling a Method

Now that we have declared and defined our method, we can make use of it. The
idea is that we get the method to perform its instructions as and when we need it to
do so—you have seen that this process is referred to as calling the method. To call a
method in Java, we simply use its name, along with the following brackets, which
in this case are empty. So in this case our method call, which will be placed at the
point in the program where we need it, looks like this:

Now we can rewrite our DataEntry program, replacing the appropriate lines
of code with the simple method call. The whole program is shown below:

You can see that the method itself is defined separately after the main method—
although it could have come before it, since the order in which methods are pre-
sented doesn’t matter to the compiler. When the program is run, however, it always
starts with main. The overall result is of course that this program runs in exactly
the same way as the previous one.

We should emphasize again here that when one method calls another method,
the first method effectively pauses at that point, and the program then carries out the
instructions in the called method; when it has finished doing this, it returns to the
original method, which then resumes. In most of the programs in this chapter it will

displayMessage();

DataEntry2
import java.util.Scanner;

public class DataEntry2
{

public static void main(String[] args)
 {

Scanner keyboard = new Scanner(System.in);

int year, month, day;

System.out.println("Please enter the year of your birth");
displayMessage(); // call displayMessage method
year = keyboard.nextInt();

System.out.println("Please enter the month of your birth as a number from 1 to 12");
displayMessage(); // call displayMessage method
month = keyboard.nextInt();

System.out.println("Please enter the day of your birth as a number from 1 to 31");
displayMessage(); // call displayMessage method
day = keyboard.nextInt();

// more code here
 }

// the code for displayMessage method
static void displayMessage()

 {
System.out.println("Please note that all information supplied is confidential");
System.out.println("No personal details will be shared with any third party");

 }
}

98 5 Methods

be the main method that calls the other method. This doesn’t have to be the case,
however, and it is perfectly possible for any method to call another method—
indeed, the called method could in turn call yet another method. This would result
in a number of methods being “chained”. When each method terminates, the control
of the program would return to the method that called it.

You can see an example of a method being called by a method other than main
in Sect. 5.6.

5.4 Method Input and Output

We have already told you that it is possible to send some data into a method, and
that a method can send data back to the method that called it. Now we will look into
this in more detail.

In order to do this we will use as an example a program that we wrote in Chap. 2.
Here is a reminder of that program:

The line that calculates the new price, with the sales tax added, is this one:

Let’s create a method that performs this calculation—in a real application this
would be very useful, because we might need to call this method at various points
within the program, and, as you will see, each time we do so we could get it to carry
out the calculation for different values of the price and the tax. We will need a way
to send in these values to the method. But on top of that, we need to arrange for the
method to tell us the result of adding the new tax—if it didn’t do that, it wouldn’t be
much use!

FindCost3 - a reminder
import java.util.Scanner;

/* a program to input the initial price of a product and then calculate and display its cost after tax
has been added */

public class FindCost3
{

public static void main(String[] args)
 {

Scanner keyboard = new Scanner(System.in);
double price, tax;
System.out.println("*** Product Price Check ***");
System.out.print("Enter initial price: ");
price = keyboard.nextDouble();
System.out.print("Enter tax rate: ");
tax = keyboard.nextDouble();
price = price * (1 + tax/100);
System.out.println("Cost after tax = " + price);

 }
}

price = price * (1 + tax/100);

5.3 Calling a Method 99

The method is going to look like this:

First, take a careful look at the header. You are familiar with the first word,
static, but look at the next one; this time, wherewe previously saw thewordvoid,
we now have the word double. As we have said, this method must send back—or
return—a result, the new price of the item. So the type of data that the method is to
return in this case is adouble. In fact what we are doing here is declaring amethod of
type double. Thus, the type of a method refers to its return type. It is possible to
declare methods of any type—int, boolean, char and so on.

After the type declaration, we have the name of the method, in this case addTax
—and this time the brackets aren’t empty. You can see that within these brackets
we are declaring two variables, both of type double. The variables declared in this
way are known as the formal parameters of the method. Formal parameters are
variables that are created exclusively to hold values sent in from the calling method.
They are going to hold, respectively, the values of the price and the tax that are
going to be sent in from the calling method (you will see how this is done in a
moment). Of course, these variables could be given any name we choose, but we
have called them priceIn and taxIn respectively. We will use this convention
of adding the suffix In to variable names in the formal parameter list throughout
this book.

Now we can turn our attention to the body of the method, which as you can see,
in this case, consists of a single line:

The word return in a method serves two very important functions. First it ends
the method—as soon as the program encounters this word, the method terminates,
and control of the program jumps back to the calling method. The second function
is that it sends back a value. In this case it sends back the result of the calculation:

priceIn * (1 + taxIn/100)

You should note that if the method is of type void, then there is no need to
include a return instruction—the method simply terminates once the last
instruction is executed.

static double addTax(double priceIn, double taxIn)
{

return priceIn * (1 + taxIn/100);
}

return priceIn * (1 + taxIn/100);

100 5 Methods

Now we can discuss how we actually call this method and use its return value.
The whole program appears below:

The line in main that calls the method is this one:

First, we will consider the items in brackets after the method name. As you
might have expected, there are two items in the brackets—these are the actual
values that we are sending into our method. They are therefore referred to as the
actual parameters of the method. Their values are copied onto the formal pa-
rameters in the called method. This process, which is referred to as passing pa-
rameters, is illustrated in Fig. 5.1.

FindCost4
public class FindCost4
{

public static void main(String[] args)
{

Scanner keyboard = new Scanner(System.in);
double price, tax;

System.out.println("*** Product Price Check ***");

System.out.print("Enter initial price: ");
price = keyboard.nextDouble();
System.out.print("Enter tax rate: ");
tax = keyboard.nextDouble();

price = addTax(price, tax); // call the addTax method
System.out.println("Cost after tax = " + price);

}

static double addTax(double priceIn, double taxIn)
{

return priceIn * (1 + taxIn/100);
}

}

price = addTax(price, tax);

Fig. 5.1 Passing parameters from one method to another method

5.4 Method Input and Output 101

You might have been wondering how the program knows which values in the
actual parameter list are copied onto which variables in the formal parameter list.
The answer to this is that it is the order that is important—you can see this from
Fig. 5.1—the value of price is copied onto priceIn; the value of tax is copied
onto taxIn. Although the variable names have been conveniently chosen, the
names themselves have nothing to do with which value is copied to which variable.

You might also be wondering what would happen if you tried to call the method
with the wrong number of variables. For example:

The answer is that you would get a compiler error, because there is no method
called addTax that requires just one single variable to be passed into it.

You can see then that the actual parameter list must match the formal parameter
list exactly. Now this is important not just in terms of the number of variables, but
also in terms of the types. For example, using actual values this time instead of
variable names, the following method call would be perfectly acceptable:

However, the one below would cause a compiler error:

The reason, of course, is that addTax requires two doubles, not a double
and a char.

We can now move on to looking at how we make use of the return value of a
method.

The addTax method returns the result that we are interested in, namely the new
price of the item. What we need to do is to assign this value to the variable price.
As you have already seen we have done this in the same line in which we called
the method:

price = addTax(price);

price = addTax(187.65, 17.5);

price = addTax(187.65, 'c');

price = addTax(price, tax);

102 5 Methods

A method that returns a value can in fact be used just as if it were a variable of
the same type as the return value! Here we have used it in an assignment
statement—but in fact we could have simply dropped it into the println
statement, just as we would have done with a simple variable of type double:

5.5 More Examples of Methods

Just to make sure you have got the idea, let’s define a few more methods. To start
with, we will create a very simple method, one that calculates the square of a
number. When we are going to write a method, there are four things to consider:

• the name that we will give to the method;
• the inputs to the method (the formal parameters);
• the output of the method (the return value);
• the body of the method (the instructions that do the job required).

In the case of the method in question, the name square would seem like a
sensible choice. We will define the method so that it will calculate the square of any
number, so it should accept a single value of type double. Similarly, it will return
a double.

The instructions will be very simple—just return the result of multiplying the
number by itself. So here is our method:

Remember that we can choose any names we want for the input parameters; here
we have stuck with our convention of using the suffix In for formal parameters.

To use this method in another part of the program, such as the main method, is
now very easy. Say, for example, we had declared and initialized two variables as
follows:

System.out.println("Cost after tax = " + addTax(price, tax));

static double square(double numberIn)
{

return numberIn * numberIn;
}

double a = 2.5;
double b = 9.0;

5.4 Method Input and Output 103

Let’s say we wanted to assign the square of a to a double variable x and the
square of b to a double variable y. We could do this as follows:

After these instructions, x would hold the value 6.25 and y would hold the
value 81.0.

For our next illustration we will choose a slightly more complicated example.
We will define a method that we will call max; it will accept two integer values, and
will return the bigger value of the two (of course, if they are equal, it can return the
value of either one). It should be pretty clear that we will require two integer
parameters, and that the method will return an integer. As far as the instructions are
concerned, it should be clear that an if…else statement should do the job—if the
first number is greater than the second, return the first number, if not return the
second. Here is our method:

You should note that in this example we have two return statements, each
potentially returning a different value—the value that is actually returned is decided
at run-time by the values of the variables firstIn and secondIn. Remember, as
soon as a return statement is reached the method terminates.

Working out how to write the instructions for this method was not too hard a job.
In fact it was so simple, we didn’t bother to design it with pseudocode. However,
there will be many occasions in the future when the method has to carry out a much
more complex task, and you will need to think through how to perform this task.
A set of instructions for performing a job is known as an algorithm—common
examples of algorithms in everyday life are recipes and DIY (Do-It-Yourself)
instructions. Much of a programmer’s time is spent devising algorithms for par-
ticular tasks, and, as you saw in Chap. 2, we can use pseudocode to help us
design our algorithms. We will look at further examples as we progress through
this chapter.

Let’s develop one more method. There are many instances in our programming
lives where we might need to test whether a number is even or odd. Let’s provide a
method that does this job for us. We will call our method isEven, and it will

x = square(a);
y = square(b);

static int max(int firstIn, int secondIn)
{

if(firstIn > secondIn)
 {

return firstIn;
 }

else
 {

return secondIn;
 }
}

104 5 Methods

report on whether or not a particular number is an even number. The test will be
performed on integers, so we will need a single parameter of type int. The return
value is interesting—the method will tell us whether or not a number is even, so it
will need to return a value of true if the number is even or false if it is not.
So our return type is going to be boolean. The instructions are quite simple to
devise—again, an if…else statement should certainly do the job. But how can
we test whether a number is even or not? Well, an even number will give a
remainder of zero when divided by 2. An odd number will not. So we can use the
modulus operator here. Here is our method:

Actually there is a slightly neater way we could have written this method. The
expression:

numberIn % 2 == 0

will evaluate to either true or false—and we could therefore simply have
returned the value of this expression and written our method like this:

It is interesting to note that the calling method couldn’t care less how the called
method is coded—all it needs is for it to do the calculation correctly and return the
desired value. This is something that will become very significant when we look at
methods that call methods of other classes later in this semester.

A method that returns a boolean value can be referred to as a boolean
method. In Chap. 3 you came across boolean expressions (expressions that
evaluate to true or false) such as:

temperature > 10

or

y == 180

static boolean isEven(int numberIn)
{

if(numberIn % 2 == 0)
 {

return true;
 }

else
 {

return false;
 }
}

static boolean isEven(int numberIn)
{

return (numberIn % 2 == 0);
}

5.5 More Examples of Methods 105

Because boolean methods also evaluate to true or false (that is, they
return a value of true or false) they can—as with boolean expressions—be
used as the test in a selection or loop.

For example, assuming that a variable called number had been declared as an
int, we could write something like:

or

To test for a false value we simply negate the expression with the not
operator (!):

Before we leave this section, there is one thing we should make absolutely
clear—a method cannot change the original value of a variable that was passed to it
as a parameter. The reason for this is that all that is being passed to the method is a
copy of whatever this variable contains. In other words, just a value. The method
does not have access to the original variable. Whatever value is passed is copied to
the parameter in the called method. We will illustrate this with a very simple
program indeed:

if(isEven(number))
{

// code here
}

while(isEven(number))
{

// code here
}

if(!isEven(number))
{

// code here
}

ParameterDemo

public class ParameterDemo
{

public static void main(String[] args)
{

int x = 10;
demoMethod(x);
System.out.println(x);

}

static void demoMethod(int xIn)
{

xIn = 25;
System.out.println(xIn);

}
}

106 5 Methods

You can see that in the main method we declare an integer, x, which is ini-
tialized to 10. We then call a method called demoMethod, with x as a parameter.
The formal parameter of this method—xIn—will now of course hold the value 10.
But the method then assigns the value of 25 to the parameter—it then displays the
value on the screen.

The method ends there, and control returns to the main method. The final line of
this method displays the value of x.

The output from this method is as follows:

25
10

This shows that the original value of x has not in any way been affected by what
happened to xIn in demoMethod.

5.6 Variable Scope

Looking back at the FindCost4 program in Sect. 5.4, it is possible that some of
you asked yourselves the following questions: Why do we need to bother with all
this stuff in the brackets? We’ve already declared a couple of variables called
price and tax—why can’t we just use them in the body of the method? Well, go
ahead and try it—you will see that you get a compiler error telling you that these
variables are not recognized!

How can this be? They have certainly been declared. The answer lies in the matter
of where exactly these variables have been declared. In actual fact variables are only
“visible” within the pair of curly brackets in which they have been declared—this
means that if they are referred to in a part of the program outside these brackets, then
you will get a compiler error. Variables that have been declared inside the brackets of
a particular method are called local variables—so the variables price and tax are said
to be local to the main method. We say that variables have a scope—this means that
their visibility is limited to a particular part of the program. If price or tax were
referred to in the addTax method, they would be out of scope.

Let’s take another, rather simple, example:

ScopeTest
public class ScopeTest
{

public static void main(String[] args)
{

int x = 1; // x is local to main
int y = 2; // y is local to main
method1(x, y); // call method1

}

static void method1(int xIn, int yIn)
{

int z; // z is local to method1
z = xIn + yIn;
System.out.println(z);

}
}

5.5 More Examples of Methods 107

In this program the variables x and y are local to main. The variable z is local
to method1. The variables xIn and yIn are the formal parameters of method1.
This program will compile and run without a problem, because none of the vari-
ables is referred to in the wrong place.

Imagine, however, that we were to rewrite this program as we have done below:

As the comments indicate, the lines in bold will give rise to compiler errors, as
the variables referred to are out of scope.

It is interesting to note that, since a method is completely unaware of what has
been declared inside any other method, you could declare variables with the same
name inside different methods. The compiler would regard each variable as being
completely different from any other variable in another method which simply had
the same name. So, for example, if we had declared a local variable called x in
method1, this would be perfectly ok—it would exist completely independently
from the variable named x in main.

To understand why this is so, it helps to know a little about what goes on when
the program is running. A part of the computer’s memory called the stack is
reserved for use by running programs. When a method is called, some space on the
stack is used to store the values for that method’s formal parameters and its local
variables. That is why, whatever names we give them, they are local to their
particular method. Once the method terminates, this part of the stack is no longer
accessible, and the variables effectively no longer exist. And this might help you to
understand even more clearly why the value of a variable passed as a parameter to a
method cannot be changed by that method.

Before we move on, it will be helpful if we list the kinds of variables that a
method can access:

• a method can access variables that have been declared as formal parameters;
• a method can access variables that have been declared locally—in other words

that have been declared within the curly brackets of the method;

ScopeTest2

// this program will give rise to two compiler errors

public class ScopeTest2
{

public static void main(String[] args)
 {

int x = 1; // x is local to main
int y = 2; // y is local to main
method1(x, y); // call method1
System.out.println(z); // this line will cause a compiler error as z is local to method1

 }

static void method1(int xIn, int yIn)
 {

int z; // z is local to method1
z = x + y; // this line will cause a compiler error as x and y are local to main
System.out.println(z);

 }
}

108 5 Methods

• as you will learn in Chap. 8, a method has access to variables declared as
attributes of the class (don’t worry—you will understand what this means in
good time!).

A method cannot access any other variables.

5.7 Method Overloading

You have already encountered the term overloading in previous chapters, in con-
nection with operators. You found out, for example, that the division operator (/)
can be used for two distinct purposes—for division of integers, and for division of
real numbers. The + operator is not only used for addition, but also for concate-
nating two strings. So the same operator can behave differently depending on what
it is operating on—operators can be overloaded.

Methods too can be overloaded. To illustrate, let’s return to the max method of
Sect. 5.5. Here it is again:

As you will recall, this method accepts two integers and returns the greater of the
two. But what if we wanted to find the greatest of three integers? We would have to
write a new method, which we have shown below. We are just showing you the
header here—we will think about the actual instructions in a moment:

You can see that we have given this method the same name as before—but this
time it has three parameters instead of two. And the really clever thing is that we
can declare and call both methods within the same class. Both methods have the
same name but the parameter list is different—and each one will behave differently.
In our example, the original method compares two integers and returns the greater
of the two; the second one, once we have worked out the algorithm for doing this,

static int max(int firstIn, int secondIn)
{

if(firstIn > secondIn)
 {

return firstIn;
 }

else
 {

return secondIn;
 }
}

static int max(int firstIn, int secondIn, int thirdIn)
{

// code goes here
}

5.6 Variable Scope 109

will examine three integers and return the value of the one that is the greatest of the
three. When two or more methods, distinguished by their parameter lists, have the
same name but perform different functions we say that they are overloaded.
Method overloading is actually one example of what is known as polymorphism.
Polymorphism literally means having many forms, and it is an important feature of
object-oriented programming languages. It refers, in general, to the phenomenon of
having methods and operators with the same name performing different functions.
You will come across other examples of polymorphism in later chapters.

Now, you might be asking yourself how, when we call an overloaded method,
the program knows which one we mean. The answer of course depends on the
actual parameters that accompany the method call—they are matched with the
formal parameter list, and the appropriate method will be called. So, if we made this
call somewhere in a program:

then the first version of max would be called—the version that returns the bigger of
two integers. This, of course, is because the method is being called with two integer
parameters, matching this header:

However, if this call, with three integer parameters, were made:

then it would be the second version that was called:

int x = max(3, 5);

static int max(int firstIn, int secondIn)

int x = max(3, 5, 10);

static int max(int firstIn, int secondIn, int thirdIn)

One very important thing we have still to do is to devise the algorithm for this
second version. Can you think of a way to do it? Have go at it before reading on.

One way to do it is to declare an integer variable, which we could call result,
and start off by assigning to it the value of the first number. Then we can consider
the next number. Is it greater than the current value of result? If it is, then we should
assign this value to result instead of the original value. Now we can consider the
third number—if this is larger than the current value of result, we assign its value to
result. You should be able to see that result will end up having the value of the
greatest of the three integers. It is helpful to express this as pseudocode:

110 5 Methods

Here is the code:

The following program illustrates how both versions of our max method can be
used in the same program:

SET result TO first number
IF second number > result
BEGIN

SET result TO second number
END
IF third number > result
BEGIN

SET result TO third number
END
RETURN result

static int max(int firstIn, int secondIn, int thirdIn)
{

int result;
result = firstIn;
if(secondIn > result)

 {
result = secondIn;

 }
if(thirdIn > result)

 {
result = thirdIn;

 }
return result;

OverloadingDemo
public class OverloadingDemo
{

public static void main(String[] args)
 {

int maxOfTwo, maxOfThree;
maxOfTwo = max(2, 10); // call the first version of max
maxOfThree = max(-5, 5, 3); // call the second version of max
System.out.println(maxOfTwo);
System.out.println(maxOfThree);

 }

// this version of max accepts two integers and returns the greater of the two
static int max(int firstIn, int secondIn)

 {
if(firstIn > secondIn)

 {
return firstIn;

 }
else

 {
return secondIn;

 }
 }

 // this version of max accepts three integers and returns the greatest of the three
static int max(int firstIn, int secondIn, int thirdIn)

 {
int result;
result = firstIn;
if(secondIn > result)

 {
result = secondIn;

 }
if(thirdIn > result)

 {
result = thirdIn;

 }
return result;

 }
}

5.7 Method Overloading 111

As the first call to max in the main method has two parameters, it will call
the first version of max; the second call, with its three parameters, will call
the second version. Not surprisingly then the output from this program looks
like this:

10
5

It might have occurred to you that we could have implemented the second
version of max (that is the one that takes three parameters) in a different way. We
could have started off by finding the maximum of the first two integers (using the
first version of max), and then doing the same thing again, comparing the result of
this with the third number.

This version is an example of how we can call a method not from the main
method, but from another method.

Some of you might be thinking that if we wanted similar methods to deal with
lists of four, five, six, or even more numbers, it would be an awful lot of work to
write a separate method for each one—and indeed it would! But don’t worry—in
the next chapter you will find that there is a much easier way to deal with situations
like this.

5.8 Using Methods in Menu-Driven Programs

In Chap. 4 we developed a program that presented the user with a menu of choices;
we pointed out that this was a very common interface for programs before the days
of graphics. Until we start working with graphics later in the semester, we will use
this approach with some of our more complex programs.

Here is a reminder of that program:

static int max(int firstIn, int secondIn, int thirdIn)
{

int step1, result;
step1 = max(firstIn, secondIn); // call the first version of max
result = max(step1, thirdIn); // call the first version of max again
return result;

}

112 5 Methods

In this program, each case statement consisted of a single instruction
(apart from the break), which simply displayed one line of text. Imagine, though,
that we were to develop a more complex program in which each menu choice
involved a lot of processing. The switch statement would start to get very messy,
and the program could easily become very unwieldy. In this situation, confining
each menu option to a particular method will make our program far more
manageable.

The next program, CircleCalulation is an example of such a program.
The program allows a user enter the radius of a circle and then enables the area and
circumference of the circle to be calculated and displayed. Four menu options are
offered. The first allows the user to enter the radius. The second displays the area of
the circle, and the third the circumference. The final option allows the user to quit
the program.

Study it carefully, and then we will point out some of the interesting features.

TimetableWithLoop - a reminder
import java.util.Scanner;

public class TimetableWithLoop
{

public static void main(String[] args)
{

char group, response;
Scanner keyboard = new Scanner(System.in);
System.out.println("***Lab Times***");
do // put code in loop
{

// offer menu of options
System.out.println(); // create a blank line
System.out.println("[1] TIME FOR GROUP A");
System.out.println("[2] TIME FOR GROUP B");
System.out.println("[3] TIME FOR GROUP C");
System.out.println("[4] QUIT PROGRAM");
System.out.print("enter choice [1,2,3,4]: ");
response = keyboard.next().charAt(0); // get response
System.out.println(); // create a blank line
switch(response) // process response
{

case '1': System.out.println("10.00 a.m ");
break;

case '2': System.out.println("1.00 p.m ");
break;

case '3': System.out.println("11.00 a.m ");
break;

case '4': System.out.println("Goodbye ");
break;

default: System.out.println("Options 1-4 only!");
}

} while (response != '4'); // test for Quit option
}

}

5.8 Using Methods in Menu-Driven Programs 113

CircleCalcula on
import java.util.Scanner;

/* This program demonstrates how methods can be used in a menu-driven program */

public class CircleCalculation
{
public static void main(String[] args)
{

Scanner keyboard = new Scanner(System.in);

/* The variable below is local to the main method; if the value is needed by another method,
it must be passed in as a parameter */

double radius = -999; // initialize with a dummy value to show that nothing has been entered
char choice; // to store menu choice
do
{

System.out.println();
System.out.println("*** CIRCLE CALCULATIONS ***");
System.out.println();
System.out.println("1. Enter the radius of the circle");
System.out.println("2. Display the area of the circle");
System.out.println("3. Display the circumference of the circle");
System.out.println("4. Quit");
System.out.println();
System.out.println("Enter a number from 1 - 4");
System.out.println();
choice = keyboard.next().charAt(0);
switch(choice)
{

case '1' : radius = option1(); // call method option1
break;

case '2' : option2(radius); // call method option2
break;

case '3' : option3(radius); // call method option3
break;

case '4' : break;
default : System.out.println("Enter only numbers from 1 - 4");

System.out.println();
}

} while(choice != '4');
}

// option1 gets the user to enter the radius of the circle
static double option1()
{

double myRadius; // local variable
Scanner keyboard = new Scanner(System.in);
System.out.print("Enter the radius of the circle: ");
myRadius = keyboard.nextDouble();
return myRadius;

}

// option2 calculates and displays the area of the circle
static void option2(double radiusIn)
{

if(radiusIn == -999)
{

System.out.println("Radius has not been entered");
}
else
{

double area; // local variable
area = 3.1416 * radiusIn * radiusIn; // calculate the area
System.out.println("The area of the circle is: " + area);

}
}

// option3 calculates and displays the circumference of the circle
static void option3(double radiusIn)
{

if(radiusIn == -999)
{

System.out.println("Radius has not been entered");
}
else
{

double circumference; // local variable
circumference = 2 * 3.1416 * radiusIn; // calculate the circumference
System.out.println("The circumference of the circle is: " + circumference);

}
}

}

114 5 Methods

There are no new programming techniques in this program; it is the design that is
interesting. The comments are self-explanatory; so we draw your attention only to a
few important points:

• The radius is initialized with a “dummy” value of −999. This allows us to check
if the radius has been entered before attempting to perform a calculation.

• Choosing menu option 1 causes the method option1 to be called—the value
of the radius entered by the user is returned.

• Choosing menu option 2 causes the method option2 to be called. The radius
of the circle is sent in as a parameter. After using the dummy value to check that
a value for the radius has been entered, the area is then calculated and displayed.

• Choosing menu option 3 causes the method option3 to be called. This is
similar to option2, but for the circumference instead of the area.

• Choosing option 4 causes the program to terminate—this happens because the
body of the while loop executes only while choice is not equal to 4. If it is
equal to 4, the loop is not executed and the program ends. The associated case
statement consists simply of the instruction break, thus causing the program to
jump out of the switch statement.

• You can see that we have had to declare a new Scanner object in each method
where it is needed—now that you understand the notion of variable scope, you
should understand why we have had to do this.

5.9 Self-test Questions

1. Explain the meaning of the term method.

2. What would be the output of the following program?

public class SomeApp
{

public static void main(String[] args)
{
 method1();

System.out.println(“England”);
 method2();

System.out.println(“Ireland”);
}

static void method1()
{

System.out.println(“Wales”);
}

static void method2()
{

System.out.println(“Scotland”);
 method1();
}

}

5.8 Using Methods in Menu-Driven Programs 115

3. Consider the following program:

(a) By referring to this program:

(i) Distinguish between the terms actual parameters and formal
parameters.

(ii) Explain what is meant by a method’s return type.

(iii) Explain the meaning of the terms polymorphism and method
overloading.

(b) What would be displayed on the screen when this program was run?

(c) Explain, giving reasons, the effect of adding either of the following lines into
the main method:

(i) System.out.println(myMethod(3));

(ii) System.out.println(myMethod(3, 5.7, 10));

4. What would be displayed on the screen as a result of running the following
program?

public class MethodsQ3
{

public static void main(String[] args)
 {

System.out.println(myMethod(3, 5));
System.out.println(myMethod(3, 5, 10));

 }

static int myMethod(int firstIn, int secondIn, int thirdIn)
 {

return firstIn + secondIn + thirdIn;
 }

static int myMethod(int firstIn, int secondIn)
 {

return firstIn - secondIn;
 }
}

public class MethodsQ4
 {

public static void main(String[] args)
 {

int x = 3;
int y = 4;
System.out.println(myMethod(x, y));
System.out.println(y);

 }

static int myMethod(int firstIn, int secondIn)
 {

int x = 10;
int y;
y = x + firstIn + secondIn;
return y;

 }
 }

116 5 Methods

5. What would be displayed on the screen as a result of running the following
program?

public class MethodsQ5
{
public static void main(String[] args)

 {
int x = 2;
int y = 7;
System.out.println(myMethod(x, y));
System.out.println(y);

 }

static int myMethod(int a, int x)
 {

int y = 20;
return y - a - x;

 }
}

5.10 Programming Exercises

1. Implement the programs from the self-test questions in order to verify your
answers.

2. For one of the programming exercises in Chap. 2, you wrote a program that
converted pounds to kilograms. Rewrite this program, so that the conversion
takes place in a separate method which is called by the main method.

3. In the exercises at the end of Chap. 2 you were asked to write a program that
calculated the area and perimeter of a rectangle. Re-write this program so that
now the instructions for calculating the area and perimeter of the rectangle are
contained in two separate methods.

4. (a) Design and implement a program that converts a sum of money to a different
currency. The amount of money to be converted, and the exchange rate, are
entered by the user. The program should have separate methods for:

• obtaining the sum of money from the user;

• obtaining the exchange rate from the user;

• making the conversion;

• displaying the result.

(b) Adapt the above program so that after the result is displayed the user is asked
if he or she wishes to convert another sum of money. The program continues
in this way until the user chooses to quit.

5. (a) Write a menu-driven program that provides three options:

• the first option allows the user to enter a temperature in Celsius and displays
the corresponding Fahrenheit temperature;

5.9 Self-test Questions 117

• the second option allows the user to enter a temperature in Fahrenheit and
displays the corresponding Celsius temperature;

• the third option allows the user to quit.
The formulae that you need are as follows, where C represents a Celsius tem-
perature and F a Fahrenheit temperature:

F ¼ 9C
5

þ 32

C ¼ 5ðF � 32Þ
9

(b) Adapt the above program so that the user is not allowed to enter a tem-
perature below absolute zero; this is −273.15C, or −459.67F.

118 5 Methods

6Arrays

Outcomes:

By the end of this chapter you should be able to:

• create arrays;
• use for loops to process arrays;
• use an enhanced for loop to process an array;
• use arrays as method inputs and outputs;
• use arrays to send a variable number of arguments to a method;
• develop routines for accessing and manipulating arrays;
• distinguish between one-dimensional arrays and multi-dimensional arrays;
• create and process two-dimensional arrays;
• create ragged arrays.

6.1 Introduction

In previous chapters we have shown you how to create variables and store data in
them. In each case the variables created could be used to hold a single item of data.
How, though, would you deal with a situation in which you had to create and
handle a very large number of data items?

An obvious approach would be just to declare as many variables as you need.
Declaring a large number of variables is a nuisance but simple enough. For
example, let’s consider a very simple application that records seven temperature
readings (one for each day of the week):

© Springer Nature Switzerland AG 2019
Q. Charatan and A. Kans, Java in Two Semesters, Texts in Computer Science,
https://doi.org/10.1007/978-3-319-99420-8_6

119

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99420-8_6&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99420-8_6&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99420-8_6&domain=pdf
https://doi.org/10.1007/978-3-319-99420-8_6

public class TemperatureReadings
{

public static void main(String[] args)
{

// declare 7 variables to hold readings
double temperature1, temperature2, temperature3, temperature4, temperature5,

temperature6, temperature7;
// more code will go here

}
}

Here we have declared seven variables each of type double (as temperatures
will be recorded as real numbers). So far so good. Now to write some code that
allows the user to enter values for these temperatures. Getting one temperature is
easy (assuming we have created a Scanner object, keyboard), as shown below:

System.out.println("max temperature for day 1 ?");
temperature1 = keyboard.nextDouble();

But how would you write the code to get the second temperature, the third
temperature and all the remaining temperatures? Well, you could repeat the above
pair of lines for each temperature entered, but surely you’ve got better things to do
with your time!

Essentially you want to repeat the same pair of lines seven times. You already
know that a for loop is useful when repeating lines of code a fixed number of
times. Maybe you could try using a for loop here?

for (int i=1; i<=7; i++)
{

// what goes here?
}

This looks like a neat solution, but the problem is that there is no obvious
instruction we could write in the for loop that will allow a value to be entered into
a different variable each time the loop repeats. As things stand there is no way
around this, as each variable has a distinct name.

Ideally we would like each variable to be given the same name (tempera-
ture, say) so that we could use a loop here, but we would like some way of being
able to distinguish between each successive variable. In fact, this is exactly what an
array allows us to do.

6.2 Creating an Array

An array is a special data type in Java that can be thought of as a container to store
a collection of items. These items are sometimes referred to as the elements of the
array. All the elements stored in a particular array must be of the same type but there

120 6 Arrays

is no restriction on which type this is. So, for example, an array can be used to hold
a collection of int values or a collection of char values, but it cannot be used to
hold a mixture of int and char values.

Let’s look at how to use arrays in your programs. First you need to know how to
create an array. Array creation is a two-stage process:

1. declare an array variable;
2. allocate memory to store the array elements.

An array variable is declared in much the same way as a simple variable except
that a pair of square brackets is added after the type. For example, if an array was to
hold a collection of integer variables it could be declared as follows:

int[] someArray;

Here a name has been given to the array in the same way you would name any
variable. The name we have chosen is someArray. If the square brackets were
missing in the above declaration this would just be a simple variable capable of
holding a single integer value only. But the square brackets indicate this variable is
an array allowing many integer values to be stored.

So, to declare an array temperature containing double values, you would
write the following:

double[] temperature;

At the moment this simply defines temperature to be a variable that can be
linked to a collection of double values. The temperature variable itself is said
to hold a reference to the array elements. A reference is a variable that holds a
location in the computer’s memory (known as a memory address) where data is
stored, rather than the data itself. This illustrated in Fig. 6.1.

Computer Memory

double[] temperature;

Java instructions

temperature

Fig. 6.1 The effect on computer memory of declaring an array reference

6.2 Creating an Array 121

At the moment the memory address stored in the temperature reference is
not meaningful as the memory that will eventually hold the array elements has not
been allocated yet. This is stage two.

What information do you think would be required in order to reserve enough
space in the computer’s memory for all the array elements?

Well, it would be necessary to state the size of the array, that is the maximum
number of elements required by the array. Also, since each data type requires a
different amount of memory space, it is also necessary to state the type of each
individual array element (this will be the same type used in stage one of the array
declaration). The array type and size are then put together with a special new
operator. For example, if we required an array of 10 integers the following would be
appropriate.

The new operator creates the space in memory for an array of the given size and
element type.1

someArray = new int[10];

We will come back to look at this new operator when looking at classes and
objects in the next chapter. Once the size of the array is set it cannot be changed, so
always make sure you create an array that is big enough for your purpose.
Returning to the temperature example above, if you wanted the array to hold seven
temperatures you would allocate memory as follows:

temperature = new double[7];

Let’s see what effect the new operator has on computer memory by looking at
Fig. 6.2.

As can be seen from Fig. 6.2, the array creation has created seven continuous
locations in memory. Each location is big enough to store a value of type double.
The temperature variable is linked to these seven elements by containing the
address of the very first element. In effect, the array reference, temperature, is
linked to seven new variables. Each of these variables will automatically have some
initial value placed in them. If the variables are of some number type (such as int
or double) the value of each will be initially set to zero; if the variables are of type
char their values will be set initially to a special Unicode value that represents an
empty character; if the variables are of boolean type they will each be set initially
to false.

1Of course this size should not be a negative value. A negative value will cause an error in your
program. We will discuss these kinds of errors further in Chap. 14.

122 6 Arrays

The two stages of array creation (declaring and allocating memory space for the
elements) can also be combined into one step as follows:

double[] temperature = new double[7];

You may be wondering: what names have each of these variables been given?
The answer is that each element in an array shares the same name as the array, so in
this case each element is called temperature. The individual elements are then
uniquely identified by an additional index value. An index value acts rather like a
street number to identify houses on the same street (see Fig. 6.3). In much the same
way as a house on a street is identified by the street name and a house number, an
array element is identified by the array name and the index value.

Like a street number, these index values are always contiguous integers. Note
carefully that, in Java, array indices start from 0 and not from 1. This index value is
always enclosed in square brackets, so the first temperature in the list is identified as
temperature[0], the second temperature by temperature[1] and so on.

This means that the size of the array and the last index value are not the same
value. In this case the size is 7 and the last index is 6. There is no such value as
temperature[7], for example. Remember this, as it is a common cause of

Fig. 6.2 The effect on computer memory of declaring an array of seven ‘double’ values

6.2 Creating an Array 123

errors in programs! If you try to access an invalid element such as temperature
[7], the following program error will be generated by the system:

java.lang.ArrayIndexOutOfBoundsException

This type of error is called an exception. You will find out more about exceptions
in the second semester but you should be aware that, very often, exceptions will
result in program termination.

Usually, when an array is created, values will be added into it as the program
runs. If, however, all the values of the array elements are known beforehand, then
an array can be created without the use of the new operator by initializing the array
as follows:

double[] temperature = {9, 11.5, 11, 8.5, 7, 9, 8.5} ;

The initial values are placed in braces and separated by commas. The compiler
determines the length of the array by the number of initial values (in this case 7).
Each value is placed into the array in order, so temperature[0] is set to 9,
temperature[1] to 11.5 and so on. This is the only instance in which all the
elements of an array can be assigned explicitly by listing out the elements in a single
assignment statement.

Once an array has been created, elements must be accessed individually.

6.3 Accessing Array Elements

Once an array has been created, its elements can be used like any other variable of
the given type in Java. If you look back at the temperature example, initializing the
values of each temperature when the array is created is actually quite unrealistic. It
is much more likely that temperatures would be entered into the program as it runs.
Let’s look at how to achieve this.

Fig. 6.3 Elements in an array are identified in much the same way as houses on a street

124 6 Arrays

Whether an array is initialized or not, values can be placed into the individual
array elements. We know that each element in this array is a variable of type
double. As with any variable of a primitive type, the assignment operator can be
used to enter a value.

The only thing you have to remember when using the assignment operator with
an array element is to specify which element to place the value in. For example, to
allow the user of the program to enter the value of the first temperature, the
following assignment could be used (again, assuming the existence of a Scanner
object, keyboard):

temperature[0] = keyboard.nextDouble();

Note again that, since array indices begin at 0, the first temperature is not at
index 1 but index 0.

Array elements could also be printed on the screen. For example, the following
command prints out the value of the sixth array element:

System.out.println(temperature[5]); // index 5 is the sixth element!

Note that an array index (such as 5) is just used to locate a position in the array;
it is not the item at that position.

For example, assume that the user enters a value of 25.5 for the first temperature
in the array; the following statement:

System.out.println("temperature for day 1 is " + temperature[0]);

would then print out the message:

temperature for day 1 is 25.5

Statements like the println command above might seem a bit confusing at
first. The message refers to “temperature for day 1” but the temperature that is
displayed is temperature[0]. Remember though that the temperature at index
position 0 is the first temperature! After a while you will get used to this indexing
system.

As you can see from the examples above, you can use array elements in exactly
the same way you can use any other kind of variable of the given type. Here are a
few more examples:

6.3 Accessing Array Elements 125

temperature[4] = temperature[4] * 2;

This assignment doubles the value of the fifth temperature. The following if
statement checks if the temperature for the third day was a hot temperature:

if (temperature[2] >= 18)
{

System.out.println("it was hot today");
}

So far so good, but if you are just going to use array elements in the way you
used regular variables, why bother with arrays at all?

The reason is that the indexing system of arrays is in fact a very powerful
programming tool. The index value does not need to be a literal number such as 5 or
2 as in the examples we have just shown you; it can be any expression that
evaluates to an integer.

More often than not an integer variable is used, in place of a fixed index value,
to access an array element. For example, if we assume that i is some integer
variable, then the following is a perfectly legal way of accessing an array element:

System.out.println(temperature[i]); // index is a variable

Here the array index is not a literal number (like 2 or 5) but the variable i. The
value of i will determine the array index. If the value of i is 4 then this will display
temperature[4], if the value of i is 6 then this will display temperature
[6], and so on. One useful application of this is to place the array instructions
within a loop (usually a for loop), with the loop counter being used as the array
index. For example, returning to the original problem of entering all seven tem-
perature readings, the following loop could now be used:

for(int i = 0; i<7; i++) // note, loop counter runs from 0 to 6
{

System.out.println("enter max temperature for day "+(i+1));
temperature[i] = keyboard.nextDouble(); // use loop counter

}

126 6 Arrays

Note carefully the following points from this loop:

• Unlike many of the previous examples of for loop counters that started at 1,
this counter starts at 0. Since the counter is meant to track the array indices, 0 is
the appropriate number to start from.

• The counter goes up to, but does not include, the number of items in the array.
In this case this means the counter goes up to 6 and not 7. Again this is because
the array index for an array of size 7 stops at 6.

• The println command uses the loop counter to display the number of the
given day being entered. The loop counter starts from 0, however. We would not
think of the first day of the week as being day 0! In order for the message to be
more meaningful for the user, therefore, we have displayed (i + 1) rather than i.

Effectively the following statements are executed by this loop:

System.out.println("enter max temperature for day 1 "); 1st time round loop
temperature[0] = keyboard.nextDouble();

 System.out.println("enter max temperature for day 2 "); 2nd time round loop
temperature[1] = keyboard.nextDouble();

//as above but with indices 2–5 3rd–6th time round loop

System.out.println("enter max temperature for day 7 "); 7th time round loop
temperature[6] = keyboard.nextDouble();

You should now be able to see the benefit of an array. This loop can be made
more readable if we make use of a built-in feature of all arrays that returns the
length of an array. It is accessed by using the word length after the name of the
array. The two are joined by a full stop. Here is an example:

System.out.print("number of temperatures = ");
System.out.println(temperature.length); // returns the size of the array

which displays the following on to the screen:

number of temperatures = 7

Note that length feature returns the size of the array, not necessarily the
number of items currently stored in the array (which may be fewer). This attribute
can be used in place of a fixed number in the for loop as follows:

6.3 Accessing Array Elements 127

for (int i = 0; i < temperature.length, i++)
{

// code for loop goes here
}

To see this technique being exploited, look at the program below to see the
completed TemperatureReadings program, which stores and displays the
maximum daily temperatures in a week.

TemperatureReadings
import java.util.Scanner;

public class TemperatureReadings
{

public static void main(String[] args)
{

Scanner keyboard = new Scanner(System.in);
// create array
double[] temperature;
temperature = new double[7];
// enter temperatures
for (int i = 0; i < temperature.length; i++)
{

System.out.println("enter max temperature for day " + (i+1));
temperature[i] = keyboard.nextDouble();

}
// display temperatures
System.out.println(); // blank line
System.out.println("***TEMPERATURES ENTERED***");
System.out.println(); // blank line
for (int i = 0; i < temperature.length; i++)
{

System.out.println("day "+(i+1)+" "+ temperature[i]);
}

}
}

Note how length was used to control the two for loops. Here is a sample
test run.

enter max temperature for day 1 12.2
enter max temperature for day 2 10.5
enter max temperature for day 3 13
enter max temperature for day 4 15
enter max temperature for day 5 13
enter max temperature for day 6 12.5
enter max temperature for day 7 12

TEMPERATURES ENTERED

day 1 12.2
day 2 10.5
day 3 13.0
day 4 15.0
day 5 13.0
day 6 12.5
day 7 12.0

128 6 Arrays

6.4 Passing Arrays as Parameters

In Chap. 5 we looked at how methods can be used to break up a programming
task into manageable chunks. Methods can receive data in the form of parameters
and can send back data in the form of a return value. Arrays can be used both as
parameters to methods and as return values. In the next section we will see an
example of an array as a return value from a method. In this section we will look
at passing arrays as parameters to a method. As an example of passing an array to
a method, consider once again the TemeratureReadings program from the
previous section. That program contains all the processing within the main
method. As a result, the code for this method is a little difficult to read. Let’s do
something about that. We will create two methods, enterTemps and dis-
playTemps, to enter and display temperatures respectively. To give these
methods access to the array they must receive it as a parameter. Here, for example,
is the header for the enterTemps method. Notice that when a parameter is
declared as an array type, the size of the array is not required but the empty square
brackets are:

static void enterTemps(double[] temperatureIn)
{

// rest of method goes here
}

Now, although in the previous chapter we told you that a parameter just receives
a copy of the original variable, this works a little differently with arrays. We will
explain this a little later, but for now just be aware that this method will actually fill
the original array. The code for the method itself is straightforward:

Scanner keyboard = new Scanner(System.in); // create local Scanner object
for (int i = 0; i < temperatureIn.length; i++)
{

System.out.println("enter max temperature for day " + (i+1));
temperatureIn[i] = keyboard.nextDouble();

}

Similarly the displayTemps method will require the array to be sent as a
parameter. The program below rewrites our previous program by adding the two
methods mentioned above. Take a look at it and then we will discuss it.

6.4 Passing Arrays as Parameters 129

TemperatureReadings2
import java.util.Scanner;
public class TemperatureReadings2
{

public static void main(String[] args)
{

double[] temperature;
temperature = new double[7];
enterTemps(temperature); // call method
displayTemps(temperature); // call method

}
// method to enter temperatures
static void enterTemps(double[] temperatureIn)
{

Scanner keyboard = new Scanner(System.in);
for (int i = 0; i < temperatureIn.length; i++)
{

System.out.println("enter max temperature for day " + (i+1));
temperatureIn[i] = keyboard.nextDouble();

}
}

// method to display temperatures
static void displayTemps(double[] temperatureIn)
{

System.out.println();
System.out.println("***TEMPERATURES ENTERED***");
System.out.println();
for (int i = 0; i < temperatureIn.length; i++)
{

System.out.println("day "+(i+1)+" "+ temperatureIn[i]);
}

}
}

Notice that when sending an array as a parameter, the array name alone is
required:

public static void main(String[] args)
{

double[] temperature;
temperature = new double[7];
enterTemps(temperature); // array name sent in
displayTemps(temperature); // array name sent in

}

Now let us return to the point we made earlier. You are aware that, in the case of
a simple variable type such as an int, it is the value of the variable that is copied
when it is passed as a parameter. This means that if the value of a parameter is
altered within a method, the original variable is unaffected outside that method. This
works differently with arrays.

As we said earlier, the enterTemps method actually fills the original array.
How can this be? The answer is that in the case of arrays, the value sent as a
parameter is not a copy of each array element but, instead, a copy of the array
reference. In other words, the location of the array is sent to the receiving method
not the value of the contents of the array. Now, even though the receiving parameter
(temperatureIn) has a different name to the original variable in main
(temperature), they are both pointing to the same place in memory so both are
modifying the same array! This is illustrated in Fig. 6.4: Sending the array reference
to a method rather than a copy of the whole array is a very efficient use of the
computer’s resources, especially when arrays become very large.

130 6 Arrays

6.5 Varargs

Look back at the displayTemps method given in Sect. 6.4 above. By declaring
the parameter to be an array of double values, the displayTemps method is
able to work with any number of double values contained in the given array
parameter:

static void displayTemps(double[] temperatureIn) // can accept an array of any size
{

// code to display temperatures goes here

}

In our TemperatureReadings2 program we created an array of size 7, but
we could have created an array of any size—for example an array of size 365 for
each day of the year. This displayTemps method would still correctly receive
this data and display all temperatures, irrespective of the size of an array.

Very closely related to the idea of sending an array to a method is a Java feature
called varargs, which is short for variable arguments. Just like sending an array,
the varargs feature allows us to send a variable number of data items to a method,
as long as each item is of the same type, without having to fix the number of data
items in any way. We can re-write the displayTemps header by using the
varargs syntax as follows:

Java Instructions

main(String[] args)
{

// create local array
temperature = new double[7];
// call method
enterTemps(temperature);

// more code here
}

// method receives array reference
enterTemps(double[] temperatureIn)
{

// code here using temperatureIn
}

Computer Memory

temperature

item of type double

item of type double

item of type double

item of type double

item of type double

item of type double

item of type double

temperatureIn

Fig. 6.4 The effect on computer memory of passing an array as a parameter

6.5 Varargs 131

static void displayTemps(double... temperatureIn) // note the varargs syntax
{

// code to display temperatures goes here
}

As you can see, instead of using the array syntax of square brackets (double
[]) we use the varargs syntax (double…)—as you can see this consists of an
ellipsis (three consecutive dots). This indicates that a variable number (zero or
more) of double values will be sent to the method. The code inside the method
remains the same as the varargs parameter, temperatureIn in this case, is
implicitly converted into an array within the method.

static void displayTemps(double... temperatureIn) // temperatureIn converted to an array
{

// code inside the method remains the same
System.out.println();
System.out.println("***TEMPERATURES ENTERED***");
System.out.println();
for (int i = 0; i < temperatureIn.length; i++)
{

System.out.println("day "+(i+1)+" "+ temperatureIn[i]);
}

}

You may be thinking, if varargs is just another notation for sending an array of
values, why not just stick to array syntax? Well, while the code for the method
remains the same we are given more flexible ways of calling this method. We can
send an array as before, but we can also send individual values if we wish. The
DisplayTemperaturesWithVarargs program below illustrates this. Take a
look at it and then we will discuss it.

DisplayTemperaturesWithVarargs
public class DisplayTemperaturesWithVarargs
{

public static void main(String[] args)
{

double[] temperature = {7.5, 8.2, 7.7, 11.3, 10.75}; // create array with 5 readings
System.out.println("Sending Array");
displayTemps(temperature); // call method with a single array
System.out.println();
System.out.println("Sending individual items");
displayTemps(7.5, 8.2, 7.7, 11.3, 10.75); // call method with 5 individual readings
displayTemps(9.9); // call method with 1 value only
displayTemps(); // call method with no values

}

// method to display temperatures using varargs
static void displayTemps(double... temperatureIn)
{

System.out.println();
System.out.println("***TEMPERATURES***");
System.out.println("Number of temperatures: "+ temperatureIn.length); // count items
// display temperatures
for (int i = 0; i < temperatureIn.length; i++)
{

System.out.println(temperatureIn[i]+ " ");
}

}
}

132 6 Arrays

You can see, in the main method, we have initialised an array with five tem-
perature readings:

double[] temperature = {7.5, 8.2, 7.7, 11.3, 10.75};

Our displayTemps method has been written to accept a varargs collection of
values:

// method to display temperatures using varargs
static void displayTemps(double... temperatureIn)
{

// code to display temperatures goes here
}

One way to call this method is with the array of five temperatures we created:

displayTemps(temperature); // call method with a single array

However, we can also send individual values to a varargs parameter rather than
using an array. To illustrate we have called the displayTemps method with the
same values that were in our array, but sent as individual values rather than stored
in an array:

displayTemps(7.5, 8.2, 7.7, 11.3, 10.75); // call method with 5 individual readings

We can send any number of values in this way, including a single value or no
values at all:

displayTemps(9.9); // call method with 1 value only
displayTemps(); // call method with no values

Here is a program run to clarify the results:

Sending Array

TEMPERATURES
Number of temperatures: 5
7.5
8.2
7.7
11.3
10.75

6.5 Varargs 133

Sending individual items

TEMPERATURES
Number of temperatures: 5
7.5
8.2
7.7
11.3
10.75

TEMPERATURES
Number of temperatures: 1
9.9

TEMPERATURES
Number of temperatures: 0

Notice that if you wish to send additional parameters to a method as well as a
varargs parameter, the varargs parameter must come last in the parameter list. So,
for example, the following method header would not compile:

// this method header will cause a compiler error
static void someMethd(int... varargParam, int param2)
{

// code to for method goes here
}

Here we have two parameters, a vararg collection of integers, varagsParam,
and a single integer parameter, param2. This will cause a compiler error as the
varargs parameter should be the last parameter in the list. The correct method
header is given as follows:

// this method header will not cause a compiler error
static void someMethd(int param1, int... varargParam)
{

// code to for method goes here
}

6.6 Returning an Array from a Method

Amethod can return an array as well as receive arrays as parameters. As an example,
let us reconsider the enterTemps method from the TemperatureReading2
program of Sect. 6.4 again. At the moment, this method accepts an array as a
parameter and fills this array with temperature values. Since this method fills the

134 6 Arrays

original array sent in as a parameter, it does not need to return a value—its return
type is therefore void:

static void enterTemps(double[] temperatureIn)
{

// code to fill the parameter, 'temperatureIn', goes here
}

An alternative approach would be not to send an array to this method but,
instead, to create an array within this method and fill this array with values. This
array can then be returned from the method:

// this method receives no parameters but returns an array of doubles

static double[] enterTemps()
{

Scanner keyboard = new Scanner(System.in);
// create an array within this method
double[] temperatureOut = new double[7];
// fill up the array created in this method
for (int i = 0; i < temperatureOut.length; i++)
{

System.out.println("enter max temperature for day " + (i+1));
temperatureOut[i] = keyboard.nextDouble();

}
// send back the array created in this method
return temperatureOut;

}

As you can see, we use square brackets to indicate that an array is to be returned
from a method:

static double[] enterTemps()

The array itself is created within the method. We have decided to call this array
temperatureOut:

double[] temperatureOut = new double[7];

After the array has been filled it is sent back with a return statement. Notice
that, to return an array, the name alone is required:

6.6 Returning an Array from a Method 135

return temperatureOut;

Now that we have changed the enterTemps method, we need to revisit the
original main method also. It will no longer compile now that the enterTemps
method has changed:

// the original 'main' method will no loger compile!
public static void main(String[] args)
{

double[] temperature = new double[7];
enterTemps(temperature); // this line will now cause a compiler error !!
displayTemps(temperature);

}

The call to enterTemps will no longer compile as the new enterTemps
does not expect to be given an array as a parameter. The correct way to call the
method is as follows:

enterTemps(); // this method requires no parameter

However, this method now returns an array. We really should do something
with the array value that is returned from this method. We should use the returned
array value to set the value of the original temperature array:

// just declare the 'temperature' array but do not allocate it memory yet
double[] temperature;
// 'temperature' array is now set to the return value of 'enterTemps'
temperature = enterTemps();

As you can see, we have not sized the temperature array once it has been
declared. Instead the temperature array will be set to the size of the array
returned by enterTemps, and it will contain all the values of the array returned
by enterTemps. The complete program, TemperatureReadings3, is shown
below:

136 6 Arrays

TemperatureReadings3
import java.util.Scanner;
public class TemperatureReadings3
{

public static void main(String[] args)
{

double[] temperature ;
temperature = enterTemps(); // call new version of this method
displayTemps(temperature);

}

// method to enter temperatures returns an array
static double[] enterTemps()
{

Scanner keyboard = new Scanner(System.in);
double[] temperatureOut = new double[7];
for (int i = 0; i < temperatureOut.length; i++)
{

System.out.println("enter max temperature for day " + (i+1));
temperatureOut[i] = keyboard.nextDouble();

}
return temperatureOut;

}

// this method is unchanged
static void displayTemps(double[] temperatureIn)
{

System.out.println();
System.out.println("***TEMPERATURES ENTERED***");
System.out.println();
for (int i = 0; i < temperatureIn.length; i++)
{

System.out.println("day "+(i+1)+" "+ temperatureIn[i]);
}

}
}

This program behaves in exactly the same way as the previous one, so whichever
way you implement enterTemps is really just a matter of preference.

6.7 The Enhanced ‘for’ Loop

As you can see from the examples above, when processing an entire array a loop is
required. Very often, this will be a for loop. With a for loop, the loop counter is
used as the array index within the body of the loop. In the examples above, the loop
counter was used not only as an array index but also to display meaningful mes-
sages to the user. For example:

for(int i = 0; i < temperature.length; i++)
{

System.out.println("day " + (i+1) + " " + temperature[i]);
}

Here the loop counter was used to determine the day number to display on the
screen, as well as the index of an array element. Very often, when a for loop is
required, the only use made of the loop counter is as an array index to access all the
elements of the array consecutively. Java provides an enhanced version of the for
loop especially for this purpose.

6.6 Returning an Array from a Method 137

Rather than use a counter, the enhanced for loop consists of a variable that,
upon each iteration, stores consecutive elements from the array.2 For example, if we
wished to display on the screen each value from the temperature array, the
enhanced for loop could be used as follows:

/* the enhanced for loop iterates through elements of an array without the need
for an array index */

for (double item : temperature) // see discussion below
{

System.out.println(item);
}

In this case we have named each successive array element as item. The loop
header is to be read as “for each item in the temperature array”. For this
reason the enhanced for loop is often referred to as the for each loop. Notice that
the type of the array item also has to be specified. The type of this variable is
double as we are processing an array of double values. Remember that this is
the type of each individual element within the array.

You should note that the variable item can be used only within the loop, we
cannot make reference to it outside the loop. Within the body of the loop we can
now print out an array element by referring directly to the item variable rather than
accessing it via an index value:

System.out.println(item); // 'item' is an array element

This is a much neater solution than using a standard for loop, which would
require control of a loop counter in the loop header, and array look up within the
body of the loop.

You will remember, from Sect. 6.5, that varargs parameters are implicitly turned
into arrays when they are received. So the enhanced for loop can also be used with
such parameters. Here, for example, is the displayTemps method of the
DisplayTemperaturesWithVarargs program, from Sect. 6.5, re-written
with an enhanced for loop:

// method to display temperatures using varargs
static void displayTemps(double... temperatureIn)// temperaturenIn implictly convereted to array
{

// previous code here

// dipslay items using enhanced for loop
for (double item: temperatureIn)
{

System.out.println(item+ " ");
}

}

2The enhanced for loop also works with other classes in Java, which act as alternatives to arrays.
We will explore some of these classes in Chap. 15.

138 6 Arrays

Be aware that the enhanced for loop should not be used if you wish to modify
the array items. Modifying array items with such a loop will not cause a compiler
error, but it is unsafe as it may cause your program to behave unreliably. So you
should use an enhanced for loop only when:

• you wish to access the entire array (and not just part of the array);
• you wish to read the elements in the array, not modify them;
• you do not require the array index for additional processing.

Very often, when processing an array, it is the case that these three conditions
apply. In the following sections we will make use of this enhanced for loop where
appropriate.

6.8 Some Useful Array Methods

Apart from the length feature, an array does not come with any useful built in
routines. So we will develop some of our own methods for processing an array. We
will use a simple integer array for this example. Here is the outline of the program
we are going to write in order to do this:

import java.util.Scanner;

public class SomeUsefulArrayMethods
{

public static void main (String[] args)
{

Scanner keyboard = new Scanner(System.in);
int[] someArray; // declare an integer array
// ask user to determine size of array
System.out.println("How many elements to store?");
int size = keyboard.nextInt();
// size array now
someArray = new int[size];

// call methods here
}
// methods to process an array here

}

As you can see, we have delayed the second stage of array creation here until the
user tells us how many elements to store in the array. Now to some methods.

6.8.1 Array Maximum

The first method we will develop will allow us to find the maximum value in an
array. For example, we may have a list of scores and wish to know the highest score
in this list. Finding the maximum value in an array is a much better approach than

6.7 The Enhanced ‘for’ Loop 139

the one we took in Chap. 5, where we looked at a method to find the maximum of
two values and another method to find the maximum of three values. This array
method can instead be used with lists of two, three, four or any other number of
values. The approach we will use will be similar to the max method we developed
in Chap. 5 for finding the maximum of three values. Here is the pseudocode again.

SET result TO first number
IF second number > result
BEGIN

SET result TO second number
END
IF third number > result
BEGIN

SET result TO third number
END
RETURN result

Here, the final result is initialized to the first value. All other values are then
compared with this value to determine the largest value. Now that we have an array,
we can use a loop to process this comparison, rather than have a series of many if
statements. Here is a suitable algorithm:

SET result TO first value in array
LOOP FROM second element in array TO last element in array
BEGIN

IF current element > result
BEGIN

SET result TO current element
END

END
RETURN result

This method will need the array that it has to search to be sent in as a parameter.
Also, this method will return the maximum item so it must have an integer return
type.

static int max (int[] arrayIn)
{

int result = arrayIn[0]; // set result to the first value in the array

// this loops runs from the 2nd item to the last item in the array
for (int i = 1; i < arrayIn.length; i++)
{

if(arrayIn[i] > result)
{

result = arrayIn[i]; // reset result to new maximum
}

}
return result;

}

140 6 Arrays

Notice we did not use the enhanced for loop here, as we needed to iterate from
the second item in the array rather than through all items, and the standard for
loop gives us this additional control.

6.8.2 Array Summation

The next method we will develop will be a method that calculates the total of all the
values in the array. Such a method might be useful, for example, if we had a list of
deposits made into a bank account and wished to know the total value of these
deposits. A simple way to calculate the sum is to keep a running total and add the
value of each array element to that running total. Whenever you have a running
total it is important to initialize this value to zero. We can express this algorithm
using pseudocode as follows:

SET total TO zero
LOOP FROM first element in array TO last element in array
BEGIN

SET total TO total + value of current element
END
RETURN total

This method will again need the array to be sent in as a parameter, and will
return an integer (the value of the sum), giving us the following:

static int sum(int[] arrayIn)
{

int total = 0;
for (int currentElement : arrayIn)
{

total = total + currentElement;
}
return total;

}

Notice the use of the enhanced for loop here—as we need to iterate through all
elements within the array.

6.8.3 Array Membership

It is often useful to determine whether or not an array contains a particular value.
For example, if the list were meant to store a collection of unique student ID
numbers, this method could be used to check if a new ID number already exists
before adding it to the list. A simple technique is to check each item in the list one
by one, using a loop, to see if the given value is present. If the value is found the
loop is exited. If the loop reaches the end without exiting then we know the item is
not present. Here is the pseudocode:

6.8 Some Useful Array Methods 141

LOOP FROM first element in array TO last element in array
BEGIN
IF current element = item to find
BEGIN

EXIT loop and RETURN true
END

END
RETURN false

Notice in the algorithm above that a value of false would be returned only if
the given item is not found. If the value is found, the loop would terminate without
reaching its end and a value of true would be returned.

Here is the Java code for this method. We need to ensure that this method
receives the array to search and the item being searched for. Also the method must
return a boolean value:

static boolean contains(int[] arrayIn, int valueIn)
{

// enhanced 'for' loop used here
for (int currentElement : arrayIn)
{
if (currentElement == valueIn)

{
return true; // exit loop early if value found

}
}
return false; // value not present

}

6.8.4 Array Search

One of the most common tasks relating to a list of values is to determine the
position of an item within the list. For example, we may wish to know the position
of a job waiting in a printer queue.

How will we go about doing this?
Just as we did when devising the contains algorithm, we will need to use a

loop to examine every item in the array. Inside the loop we check each item one at a
time and compare it to the item we are searching for.

What do we do if we find the item we are searching for? Well, we are interested
in its position in the array so we just return the index of that item.

Now we need to decide what we do if we reach the end of the loop, having
checked all the elements in the array, without finding the item we are searching for.
This method needs to return an integer regardless of whether or not we find an item.
What number shall we send back if the item is not found? We need to send back a

142 6 Arrays

value that could never be interpreted as an array index. Since array indices will
always be positive numbers we could send back a negative number, such as −999,
to indicate a valid position has not been found.

Here is the pseudocode:

LOOP FROM first element in array TO last element in array
BEGIN
IF current element = item to find
BEGIN

EXIT loop and RETURN current index
END

END
RETURN -999

This approach is often referred to as a linear search. Here is the Java code for
this method. Once again we need to ensure that this method receives the array to
search and the item being searched for. This method must return an integer value:

static int search (int[] arrayIn, int valueIn)
{

// enhanced 'for' loop should not be used here!
for (int i=0; i < arrayIn.length; i++)
{

if (arrayIn[i] == valueIn)
{

return i; // exit loop with array index
}

}
return -999; // indicates value not in list

}

Notice, in this case, we could not use the enhanced for loop. The reason for this
is that we required the method to return the array index of the item we are searching
for. This index is best arrived at by making use of a loop counter in a standard for
loop.

6.8.5 The Final Program

The complete program for manipulating an array is now presented below. The array
methods are accessed via a menu. We have included some additional methods here
for entering and displaying an array:

6.8 Some Useful Array Methods 143

SomeUsefulArrayMethods
import java.util.Scanner;

// a menu driven program to test a selection of useful array methods

public class SomeUsefulArrayMethods
{

public static void main (String[] args)
{

char choice;
Scanner keyboard = new Scanner(System.in);
int[] someArray; // declare an integer array
System.out.print("How many elements to store?: ");
int size = keyboard.nextInt();
// size the array
someArray = new int [size];
// menu
do
{

System.out.println();
System.out.println("[1] Enter values");
System.out.println("[2] Find maximum");
System.out.println("[3] Calculate sum");
System.out.println("[4] Check membership");
System.out.println("[5] Search array");
System.out.println("[6] Display values");
System.out.println("[7] Exit");
System.out.print("Enter choice [1-7]: ");
choice = keyboard.next().charAt(0);
System.out.println();
// process choice by calling additional methods
switch(choice)
{

case '1': fillArray(someArray);
break;

case '2': int max = max(someArray);
System.out.println("Maximum array value = " + max); break;

case '3': int total = sum(someArray);
System.out.println("Sum of array values = " + total); break;

case '4': System.out.print ("Enter value to find: ");
int value = keyboard.nextInt();
boolean found = contains(someArray, value);
if (found)
{

System.out.println(value + " is in the array");
}
else
{

System.out.println(value + " is not in the array");
}
break;

case '5': System.out.print ("Enter value to find: ");
int item = keyboard.nextInt();
int index = search(someArray, item);
if (index == -999) // indicates value not found
{

System.out.println ("This value is not in the array");
}
else
{

System.out.println ("This value is at array index " + index);
}
break;

case '6': System.out.println("Array values");
displayArray(someArray);
break;

}
} while (choice != '7');
System.out.println("Goodbye");

}

// additional methods

// fills an array with values
static void fillArray(int[] arrayIn)
{

Scanner keyboard = new Scanner (System.in);
for (int i = 0; i < arrayIn.length; i++)
{

System.out.print("enter value ");
arrayIn[i] = keyboard.nextInt();

}
}

144 6 Arrays

// checks if a given item is contained within the array
static boolean contains (int[] arrayIn, int valueIn)
{

// enhanced 'for' loop used here
for (int currentElement : arrayIn)
{

if (currentElement == valueIn)
{

return true; // exit loop early if value found
}

}
return false; // value not present

}

/* returns the position of an item within an array or -999 if the value is not present within the array */
static int search (int[] arrayIn, int valueIn)
{

for (int i = 0; i < arrayIn.length; i++)
{

if (arrayIn[i] == valueIn)
{

return i;
}

}
return -999;

}

// displays the array values on the screen
static void displayArray(int[] arrayIn)
{

System.out.println();
// standard 'for' loop used here as the array index is required
for (int i = 0; i < arrayIn.length; i++)
{

System.out.println("array[" + i + "] = " + arrayIn[i]);
}

}
}

// returns the total of all the values held within an array
static int sum (int[] arrayIn)
{

int total = 0;
for (int currentElement : arrayIn)
{

total = total + currentElement;
}
return total;

}

// returns the maximum value in an array
static int max (int[] arrayIn)
{

int result = arrayIn[0]; // set result to the first value in the array
// this loops runs from the 2nd item to the last item in the array
for (int i=1; i < arrayIn.length; i++)
{

if (arrayIn[i] > result)
{

result = arrayIn[i]; // reset result to new maximum
}

}
return result;

}

Here is a sample program run:

How many elements to store?: 5

[1] Enter values
[2] Find maximum
[3] Calculate sum
[4] Check membership
[5] Search array
[6] Display values
[7] Exit

6.8 Some Useful Array Methods 145

Enter choice [1-7]: 1

enter value 12
enter value 3
enter value 7
enter value 6
enter value 2

[1] Enter values
[2] Find maximum
[3] Calculate sum
[4] Check membership
[5] Search array
[6] Display values
[7] Exit
Enter choice [1-7]: 2

Maximum array value = 12

[1] Enter values
[2] Find maximum
[3] Calculate sum
[4] Check membership
[5] Search array
[6] Display values
[7] Exit
Enter choice [1-7]: 3

Sum of array values = 30

[1] Enter values
[2] Find maximum
[3] Calculate sum
[4] Check membership
[5] Search array
[6] Display values
[7] Exit Enter choice [1-7]: 4

Enter value to find: 10

10 is not in the array

[1] Enter values
[2] Find maximum
[3] Calculate sum
[4] Check membership
[5] Search array

146 6 Arrays

[6] Display values
[7] Exit
Enter choice [1-7]: 4

Enter value to find: 7

7 is in the array

[1] Enter values
[2] Find maximum
[3] Calculate sum
[4] Check membership
[5] Search array
[6] Display values
[7] Exit
Enter choice [1-7]: 5

Enter value to find: 7
This value is at array index 2

[1] Enter values
[2] Find maximum
[3] Calculate sum
[4] Check membership
[5] Search array
[6] Display values
[7] Exit
Enter choice [1-7]: 6

Array values

array[0] = 12
array[1] = 3
array[2] = 7
array[3] = 6
array[4] = 2

[1] Enter values
[2] Find maximum
[3] Calculate sum
[4] Check membership
[5] Search array
[6] Display values
[7] Exit
Enter choice [1-7]: 7

Goodbye

6.8 Some Useful Array Methods 147

6.9 Multi-dimensional Arrays

In the temperature reading example we used at the beginning of this chapter we
used an array to hold seven temperature readings (one for each day of the week).
Creating an array allowed us to use loops when processing these values, rather than
having to repeat the same bit of code seven times—once for each different tem-
perature variable.

Now consider the situation where temperatures were required for the four weeks
of a month. We could create four arrays as follows:

double[] temperature1 = new double [7]; // to hold week 1 temperatures
double[] temperature2 = new double [7]; // to hold week 2 temperatures
double[] temperature3 = new double [7]; // to hold week 3 temperatures
double[] temperature4 = new double [7]; // to hold week 4 temperatures

How would the temperatures for these four months be entered? The obvious
solution would be to write four loops, one to process each array. Luckily there is a
simpler approach—create a multi-dimensional array.

A multi-dimensional array is an array that has more than one index. So far, the
arrays that we have shown you have had only one index—for this reason they are
very often referred to as one-dimensional arrays. However, an array may have as
many indices as is necessary (up to the limit of the memory on your machine). In
this particular example we need two indices to access a temperature reading (one for
the week number the other for the day number). If we required temperatures for
each month of the year we may require three indices (one for the month number,
one for the week number and one for the day number) and so on. The number of
dimensions an array has corresponds to the number of indices required. Usually, no
more than two indices will ever need to be used. An array with two indices is called
a two-dimensional array.

6.9.1 Creating a Two-Dimensional Array

To create a two-dimensional (2D) array, simply provide the size of both indices.
In this example we have four lots of seven temperatures:

double [][] temperature ; // declares a 2D array
temperature = new double [4][7]; // creates memory for a 4 by 7 array

148 6 Arrays

As you can see, this is very similar to creating a one-dimensional array except
that we have two pairs of brackets for a two-dimensional array. For larger
dimensions we can have more pairs of brackets, 3 pairs for 3 dimensions, 4 for 4
dimensions and so on. In this example we have chosen to treat the first index as
representing the number of weeks (4) and the second representing the number of
days (7), but we could have chosen to treat the first index as the number of days and
the second as the number of weeks.

While you would think of a one-dimensional array as a list, you would probably
visualize a two-dimensional array as a table with rows and columns (although
actually it is implemented in Java as an array of arrays). The name of each item in a
two-dimensional array is the array name, plus the row and column index (see
Fig. 6.5).

Note again that both indices begin at zero, so that the temperature for the third
week of the month and the sixth day of the week is actually given as temper-
ature[2][5].

6.9.2 Initializing Two-Dimensional Arrays

As with one-dimensional arrays, it is possible to declare and initialize a
multi-dimensional array with a collection of values all in one instruction. With a
one-dimensional array we separated these values by commas and enclosed these
values in braces. For example:

// this array of integers is initialized with four values
int[] a1DArray = { 11, -25, 4, 77};

12.5

15.2

14.0

13.212.2

11.9

13.2

14.0

11.8

11.8

12.2

12.7 12.4

13.0

14.7

14.5

11.0

13.0

13.2

9.75 12.711.8 11.9 13.013.5

14.0 14.3 11.9

day index

0 1 2 3

0

1

2

3

4 5 6

week
index

this value is
temperature[2][5]

Fig. 6.5 To access an element in a 2D array requires both a row and a column index

6.9 Multi-dimensional Arrays 149

This creates an array of size 4 with the given elements stored in the given order.
A similar technique can be used for multi-dimensional arrays. With a
two-dimensional array the sets of values in each row are surrounded with braces as
above, then these row values are themselves enclosed in another pair of braces.
A two-dimensional array of integers might be initialized as follows, for example:

// this creates a 2 dimensional array with two rows and four columns
int[][] a2DArray = {

{ 11, -25, 4, 77},
 {-21, 55, 43, 11}

};

This instruction creates the same array as the following group of instructions:

int[][] a2DArray = new int[2][4]; // size array
// initialize first row of values
a2DArray[0][0] = 11;
a2DArray[0][1] = -25;
a2DArray[0][2] = 4;
a2DArray[0][3] = 77;
// initialize second row of values
a2DArray[1][0] = -21;
a2DArray[1][1] = 55;
a2DArray[1][2] = 43;
a2DArray[1][3] = 11;

As with one dimensional arrays, however, it is not common to initialize
two-dimensional arrays in this way. Instead, once an array has been created, values
are added individually to the array once the program is running.

6.9.3 Processing Two-Dimensional Arrays

With the one-dimensional arrays that we have met we have used a single for loop
to control the value of the single array index. How would you process a
two-dimensional array that requires two indices?

With a two-dimensional array, a pair of nested loops is commonly used to
process each element—one loop for each array index. Let’s return to the
two-dimensional array of temperature values. We can use a pair of nested loops,
one to control the week number and the other the day number. As with the example
of the one-dimensional array of TemperatureReadings programs in previous
sections, in the following code fragment we’ve started our day and week counters at
1, and then taken 1 off these counters to get back to the appropriate array index:

150 6 Arrays

// create Scanner object for user input
Scanner keyboard = new Scanner (System.in);

// the outer loop controls the week row
for (int week = 1; week <= temperature.length; week++)
{

// the inner loop controls the day column
for (int day = 1; day <= temperature[0].length; day++)
{

System.out.println("enter temperature for week " + week + " and day " + day);

// as array indices start at zero not 1, we must take one off the loop counters
temperature[week-1][day-1] = keyboard.nextDouble();

}
}

Notice that in a two-dimensional array, the length attribute returns the length
of the first index (this is, what we have visualized as the number of rows):

// here, the length attribute returns 4 (the number of rows)
for (int week = 1; week <= temperature.length; week++)

The number of columns is determined by obtaining the length of a particular
row. In the example below we have chosen the first row but we could have chosen
any row here:

// the length of a row returns the number of columns (7 in this case)
for (int day = 1; day <= temperature[0].length; day++)

Here we have used a pair of nested loops as we wish to process the entire
two-dimensional array. If, however, you just wished to process part of the array
(such as one row or one column) then a single loop may still suffice. In the next
section we present a program that demonstrates this.

6.9.4 The MonthlyTemperatures Program

The program below provides the user with a menu of options. The first option
allows the user to enter the temperature readings for the 4 weeks of the month. The
second option allows the user to display all these readings. The third option allows
the user to display the reading for a particular week (for example all the temper-
atures for week 3). The final option allows the user to display the temperatures for a
particular day of the week (for example all the readings for the first day of each
week). Take a look at it and then we will discuss it.

6.9 Multi-dimensional Arrays 151

public class MonthlyTemperatures
{

public static void main(String[] args)
{

Scanner keyboard = new Scanner (System.in);
char choice;

double[][] temperature = new double[4][7]; 11 etgcvg 4F cttc{
11 qhhgt ogpw
do
{

System.out.println();
System.out.println("[1] Enter temperatures");
System.out.println("[2] Display all");
System.out.println("[3] Display one week");
System.out.println("[4] Display day of the week");
System.out.println("[5] Exit");
System.out.print("Enter choice [1-5]: ");
choice = keyboard.next().charAt(0);
System.out.println();
11 rtqeguu ejqkeg d{ ecnnkpi cffkvkqpcn ogvjqfu
switch(choice)
{

case '1': enterTemps(temperature);
break;

case '2': displayAllTemps(temperature);
break;

case '3': displayWeek(temperature);
break;

case '4': displayDays(temperature);
break;

case '5': System.out.println ("Goodbye");
break;

default: System.out.println("ERROR: options 1-5 only!");
}

} while (choice != '5');
}

11 ogvjqf vq gpvgt vgorgtcvwtgu kpvq vjg 4F cttc{ tgswktgu c pguvgf nqqr
static void enterTemps(double[][] temperatureIn)
{

Scanner keyboard = new Scanner (System.in);
11 vjg qwvgt nqqr eqpvtqnu vjg yggm pwodgt
for (int week = 1; week <= temperatureIn.length; week++)
{

11 vjg kppgt nqqr eqpvtqnu vjg fc{ pwodgt
for (int day = 1; day <= temperatureIn[0].length; day++)
{

System.out.println("enter temperature for week " + week + " and day " + day);
temperatureIn[week-1][day-1] = keyboard.nextDouble();

}
}

}

MonthlyTemperatures
import java.util.Scanner;

11 ogvjqf vq fkurnc{ cnn vgorgtcvwtgu kp vjg 4F cttc{ tgswktgu c pguvgf nqqr
static void displayAllTemps(double[][] temperatureIn)
{

System.out.println();
System.out.println("***TEMPERATURES ENTERED***");
11 vjg qwvgt nqqr eqpvtqnu vjg yggm pwodgt
for (int week = 1; week <= temperatureIn.length; week++)
{

11 vjg kppgt nqqr eqpvtqnu vjg fc{ pwodgt
for (int day = 1; day <= temperatureIn[0].length; day++)
{

System.out.println("week " +week+" day "+day+": "+ temperatureIn[week-1][day-1]);
}

}
}

11 ogvjqf vq fkurnc{ vgorgtcvwtgu hqt c ukping yggm tgswktgu c ukping nqqr
static void displayWeek(double[][] temperatureIn)

System.out.print("Enter week number (1-4): ");
week = keyboard.nextInt();
11 kprwv xcnkfcvkqp< yggm pwodgt ujqwnf dg dgvyggp 3 cpf 6
while (week<1 || week > 4)
{

System.out.println("Inavlid week number!!");
System.out.print("Enter again (1-4 only): ");
week = keyboard.nextInt();

}

{
Scanner keyboard = new Scanner (System.in);
int week;
11 gpvgt yggm pwodgt

152 6 Arrays

11 fkurnc{ vgorgtcvwtgu hqt ikxgp yggm
System.out.println();
System.out.println("***TEMPERATURES ENTERED FOR WEEK "+week+"***");
System.out.println();
11 yggm pwodgt ku hkzgf uq nqqr tgswktgf vq rtqeguu fc{ pwodgtu qpn{
for (int day = 1; day <= temperatureIn[0].length; day++)
{

System.out.println("week "+week+" day "+day+": "+ temperatureIn[week-1][day-1]);
}

}

// ogvjqf vq fkurnc{ vgorgtcvwtgu hqt c ukping fc{ qh gcej yggm tgswktgu c ukping nqqr
static void displayDays(double[][] temperatureIn)
{

Scanner keyboard = new Scanner (System.in);
int day;
11 gpvgt fc{ pwodgt
System.out.print("Enter day number (1-7): ");
day = keyboard.nextInt();
11 kprwv xcnkfcvkqp< fc{ pwodgt ujqwnf dg dgvyggp 3 cpf 9
while (day<1 || day > 7)
{

System.out.println("Inavlid day number!!");
System.out.print("Enter again (1-7 only): ");
day = keyboard.nextInt();

}
11 fkurnc{ vgorgtcvwtgu hqt ikxgp fc{ qh vjg yggm
System.out.println();
System.out.println("***TEMPERATURES ENTERED FOR DAY "+day+"***");
System.out.println();
11 fc{ pwodgt ku hkzgf uq nqqr tgswktgf vq rtqeguu yggm pwodgtu qpn{
for (int week = 1; week <= temperatureIn.length; week++)
{

System.out.println("week "+week+" day "+day+": " + temperatureIn[week-1][day-1]);
}

}
}

Here you can see that the first menu option contains the code we have just
discussed for entering values into a two-dimensional array. Notice how you pass a
two-dimensional array to a method. As with a one-dimensional array you do not
refer to the size of the array, just its dimensions:

/* As with a standard 1D array, to pass a 2D array to a method the number of dimensions needs to
be indicated but not the size of these dimensions */

static void enterTemps(double[][] temperatureIn)
{

// code for entering temperatures goes here
}

This method uses a pair of nested loops as we wish to process the entire
two-dimensional array. Similarly, when we wish to display the entire array we use a
pair of nested loops to control the week and day number:

// method to display all temperatures in the 2D array requires a nested loop
static void displayAllTemps(double[][] temperatureIn)
{

System.out.println();
System.out.println("***TEMPERATURES ENTERED***");
// the outer loop controls the week number
for (int week = 1; week <= temperatureIn.length; week++)
{

// the inner loop controls the day number
for (int day = 1; day <= temperatureIn[0].length; day++)
{

System.out.println("week " +week+" day "+day+": "+
temperatureIn[week-1][day-1]);

}
}

}

6.9 Multi-dimensional Arrays 153

However, when we need to display just one of the dimensions of an array we do
not need to use a pair of loops. For example, the displayWeek method, that
allows the user to pick a particular week number so that just the temperatures for
that week alone are displayed, just requires a single loop to move through the day
numbers, as the week number is fixed by the user:

// method to display temperatures for a single week requires a single loop
static void displayWeek(double[][] temperatureIn)
{

Scanner keyboard = new Scanner (System.in);
int week;
// enter week number
System.out.print("Enter week number (1-4): ");
week = keyboard.nextInt();
// input validation: week number should be between 1 and 4
while (week<1 || week > 4)
{

System.out.println("Inavlid week number!!");
System.out.print("Enter again (1-4 only): ");
week = keyboard.nextInt();

}
// display temperatures for given week
System.out.println();
System.out.println("***TEMPERATURES ENTERED FOR WEEK "+week+"***");
System.out.println();
// week number is fixed so loop required to process day numbers only
for (int day = 1; day <= temperatureIn[0].length; day++)
{

System.out.println("week "+week+" day "+day+": "+
temperatureIn[week-1][day-1]);

}
}

First the user enters the week number:

System.out.print("Enter week number (1-4): ");
week = keyboard.nextInt();

We will use this week number to determine the value of the first index when
looking up temperatures in the array, so we need to be careful that the user inputs a
valid week number (1–4) as invalid numbers would lead to an illegal array index
being generated. We have used a while loop here to implement this input
validation:

// input validation: week number should be between 1 and 4
while (week<1 || week > 4)
{

System.out.println("Inavlid week number!!");
System.out.print("Enter again (1-4 only): ");
week = keyboard.nextInt();

}

154 6 Arrays

Once we get past this loop we can be sure that the user has entered a valid week
number. For example, assume that we have filled the 2D array with the tempera-
tures given in Fig. 6.5. Now assume that the user calls the option to display one
week’s temperature, and chooses week 2. This is illustrated in Fig. 6.6.

Since array indices in Java begin at zero, the week index (1) is determined by
taking one off the week number entered by the user (2). All we need to do now is to
iterate through all the day numbers for that week by using a single for loop:

// week number is fixed by the user so a single loop is required to process day numbers only

for (int day = 1; day <= temperatureIn[0].length; day++)
{

System.out.println("week "+ week +" day " + day + ": " +
temperatureIn[week-1][day-1]);

}

The displayDays method works in a similar way but with the day number
fixed and the week number being determined by the for loop.

6.10 Ragged Arrays

In the examples of two-dimensional arrays discussed so far, each row of the array
had the same number of columns. Each row of the two-dimensional tempera-
ture array, for example, had 7 columns and each row of a2DArray had 4
columns. Very often this will be the case. However, very occasionally, it may be
necessary for rows to have a variable number of columns. A two-dimensional array

12.5

15.2

14.0

13.212.2

11.9

13.2

14.0

11.8

11.8

12.2

12.7 12.4

13.0

14.7

14.5

11.0

13.0

13.2

9.75 12.711.8 11.9 13.013.5

14.0 14.3 11.9

day index

0 1 2 3

0

1

2

3

4 5 6

week
index

temperatures for week 2

Fig. 6.6 To access temperatures for a single week, the week index remains fixed and the day
index changes

6.9 Multi-dimensional Arrays 155

with a variable number of columns is called a ragged array. For example, here is
how we might declare and initialize a two-dimensional array of characters with a
variable number of columns for each row:

// this creates a 2 dimensional array with a variable number of columns
char[][] animals = {

{‘M’, ‘O’, ‘N’, ‘K’, ‘E’, ‘Y’}, // 6 columns
{‘C’, ‘A’, ‘T’ }, // 3 columns
{‘B’, ‘I’, ‘R’, ‘D’} // 4 columns

};

Figure 6.7 illustrates the array created after this initialization.
To declare such an array without initialization, we need to specify the number of

rows first and leave the number of columns unspecified. In the example above we
have 3 rows:

// columns left unspecified
char[][] animals = new char[3][];

Now, for each row we can fix the appropriate size of the associated column. In
the example above the first row has 6 columns, the second row 3 columns and the
last row 4 columns:

animals[0] = new char[6]; // number of columns in first row
animals[1] = new char[3]; // number of columns in second row
animals[2] = new char[4]; // number of columns in third row

You can see clearly from these instructions that Java implements a
two-dimensional array as an array of arrays. When processing ragged arrays you
must be careful not to use a fixed number to control the number of columns. The
actual number of columns can always be retrieved by calling the length attribute

‘C’ ‘A’

0

1

2

 0 1 2 3 4 5

‘T’

‘M’ ‘O’ ‘N’ ‘K’ ‘E’ ‘Y’

‘B’ ‘I’ ‘R’ ‘D’

Fig. 6.7 The array ‘animals’ is a ragged array

156 6 Arrays

of each row. For example the following instructions would display the number of
columns for each row:

System.out.println(animals[0].length); // displays 6
System.out.println(animals[1].length); // displays 3
System.out.println(animals[2].length); // displays 4

The program below uses a pair of nested loops to display the animals array:

RaggedArray

public class RaggedArray
{

public static void main(String[] args)
{

// initialize ragged array
char[][] animals = {

{'M', 'O', 'N', 'K', 'E', 'Y'}, // 6 columns
{'C', 'A', 'T' }, // 3 columns
{'B', 'I', 'R', 'D'} // 4 columns

};

for (int row = 0; row < animals.length; row++) //row number is fixed
{

for (int col = 0; col < animals[row].length; col++) // column number is variable
{

System.out.print(animals[row][col]); // display one character
}
System.out.println(); // new line after one row displayed

}
}

}

Notice how the inner loop, controlling the column number, instead of being
fixed to the length of one particular row, will vary each time depending upon the
current row number:

for (int row = 0; row < animals.length; row++)
{

// column number is variable and is determined by current row number
for (int col = 0; col < animals[row].length; col++)
{

System.out.print(animals[row][col]);
}
System.out.println();

}

As expected this program produces the following output when run:

MONKEY
CAT
BIRD

6.10 Ragged Arrays 157

6.11 Self-test Questions

1. When is it appropriate to use an array in a program?

2. Consider the following explicit creation of an array:

int[] someArray = {2,5,1,9,11};

(a) What would be the value of someArray.length?

(b) What is the value of someArray[2]?

(c) What would happen if you tried to access someArray[6]?

(d) Create the equivalent array by using the new operator and then assigning
the value of each element individually.

(e) Write a standard for loop that will double the value of every item in
someArray.

(f) Explain why, in this example, it would not be appropriate to use an
enhanced for loop.

(g) Use an enhanced for loop to display the values inside the array.

(h) Modify the enhanced for loop above so that only numbers greater than 2
are displayed.

3. Look back at the program TemperatureReadings3 from Sect. 6.6, which
read in and displayed a series of temperature readings. Design and write the
code for an additional method, wasHot, which displays all days that recorded
temperatures of 18° or over.

4. Assume that an array has been declared in main as follows:

int[] javaStudents;

This array is to be used to store a list of student exam marks. Now, for each of
the following methods, write the code for the given method and the instruction
in main to call this method:

(a) A method, enterExamMarks, that prompts the user to enter some exam
marks (as integers), stores the marks in an array and then returns this array.

(b) A method, increaseMarks, that accepts an array of exam marks and
increases each mark by 5.

(c) A method, allHavePassed, that accepts an array of exam marks and
returns true if all marks are greater than or equal to 40, and false
otherwise.

158 6 Arrays

5: (a) Describe the varargs feature of Java.

(b) Re-write the contains method below, from Sect. 6.8.5, to make use of
this varargs feature:

static boolean contains(int[] arrayIn, int valueIn)
{

// enhanced 'for' loop used here
for (int currentElement : arrayIn)
{
if (currentElement == valueIn)

{
return true; // exit loop early if value found

}
}
return false; // value not present

}

(c) Give examples of different ways in which you could call this re-written
contains method now that you have used varargs.

6. Consider the following array declaration, to store a collection of student grades.

char [][] grades = new char[4][20];

Grades are recorded for 4 tutorial groups, and each tutorial group consists of 20
students.

(a) How many dimensions does this array have?

(b) What is the value of grades.length?

(c) What is the value of grades[0].length?

(d) Write the instruction to record the grade ‘B’ for the first student in the first
tutorial group.

7. Consider the following scenarios and, for each, declare the appropriate array:

(a) goals: an array to hold the number of goals each team in a league scores
in each game of a season. The league consist of 20 teams and a season
consists of 38 games.

(b) seats: an array to record whether or not a seat in a theatre is booked or not.
There are 70 rows of seats in the theatre and each row has 20 seats.

6.11 Self-test Questions 159

8. Consider the MonthlyTemperatures program of Sect. 6.9.4. Write an
additional method, max, that returns the maximum temperature recorded in the
given two-dimensional array.

Hint: look back at the algorithm for finding the maximum value in a one-
dimensional array in Sect. 6.8.1

9. Consider an application that records the punctuality of trains on a certain route.

(a) Declare a 2D array, late, to hold the number of times a train on this route
was late for each day of the week, and for each week of the year.

(b) Write a fragment of code that adds up the total number of days in the year
when a train was late more than twice in a given day.

10. A magic word square is a square in which a word can be formed by reading
each row and each column. For example, the following is a 4 by 4 magic word
square:

‘P’ ‘R’ ‘E’ ‘Y’

‘L’ ‘A’ ‘V’ ‘A’

‘O’ ‘V’ ‘E’ ‘R’

‘T’ ‘E’ ‘N’ ‘D’

(a) Declare and initialize a 2D array, magicSquare, to hold the words
illustrated above.

(b) Write a method, displayRow, that accepts the magicSquare array and
a row number and displays the word in that row.

(c) Write a method, displayColumn, that accepts the magicSquare array
and a column number and displays the word in that column.

11. (a) Distinguish between a regular 2D array and a ragged array.

(b) Write instructions to create a ragged 2D array of integers, called tri-
angle, that has the following form:

160 6 Arrays

(c) Write a fragment of code to find the largest number in the triangle
array.

6.12 Programming Exercises

1. Implement the program TemperatureReadings3 from Sect. 6.6, which
read in and displayed a series of temperature readings for a given week. Now

(a) implement the wasHot method that you designed in self-test question 3
above;

(b) add a final instruction into the main method that calls this wasHot
method.

2. Implement the program SomeUsefulArrayMethods from Sect. 6.8.5,
which manipulates an array of integers, then

(a) re-write the contains method using varargs syntax as discussed in self
test question 5 above;

(b) add an additional method to return the average from the array of integers
(make use of the sum method to help you calculate the average);

(c) add one more method to display on the screen all those values greater than
or equal to the average.

3. Implement a program for entering and displaying student scores that tests your
answers to self-test question 4 above.

6.11 Self-test Questions 161

4. Implement the MonthlyTemperatures program from Sect. 6.9.4, which
read in and displayed temperature readings for four weeks of a month. Now

(a) implement the max method that you designed in self-test question 8 above;

(b) add a final instruction into the main method that calls this max method.

5. Design and implement a magic word square program that allows you to test your
answers to self-test question 10 above. The program should initialize the word
square given in the question and then use the methods displayRow and
displayColumn to display all the words in the magic word square.

6. Design and implement a program that allows the user to enter into an array the
price of 5 products in pounds sterling. The program should then copy this array
into another array but convert the price of each product from pounds sterling to
US dollars. The program should allow the user to enter the exchange rate of
pounds to dollars, and should, when it terminates, display the contents of both
arrays. Once again, make use of methods in your program to carry out these
tasks.

7. Amend the program in Exercise 6 above so that

(a) the user is asked how many items they wish to purchase and the arrays are
then sized accordingly;

(b) the total cost of the order is displayed in both currencies.

8. Design and implement a program that allows you to test your answers to
self-test question 11 above. The program should allow the user to enter numbers
into the ragged triangle array and then find the largest number in the array as
discussed in the question.

162 6 Arrays

7Classes and Objects

Outcomes:

By the end of this chapter you should be able to:

• explain the meaning of the term object-oriented;
• explain and distinguish between the terms class and object;
• create objects in Java;
• call the methods of an object;
• use a number of methods of the String class;
• create and use arrays of objects;
• create an ArrayList and make use of the add and get methods of this class.

7.1 Introduction

In the 1990s it became the norm for programming languages to use special con-
structs called classes and objects. Such languages are referred to as object-oriented
programming languages. In this chapter and the next one we will explain what is
meant by these terms, and show you how we can exploit the full power of
object-oriented languages like Java.

7.2 Classes as Data Types

So far you have been using data types such as char, int and double. These are
simple data types that hold a single piece of information. But what if we want a
variable to hold more than one related piece of information? Think for example of a
book—a book might have a title, an author, an ISBN number and a price—or a

© Springer Nature Switzerland AG 2019
Q. Charatan and A. Kans, Java in Two Semesters, Texts in Computer Science,
https://doi.org/10.1007/978-3-319-99420-8_7

163

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99420-8_7&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99420-8_7&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99420-8_7&domain=pdf
https://doi.org/10.1007/978-3-319-99420-8_7

student might have a name, an enrolment number and marks for various subjects.
Types such as char and int can hold a single piece of information only, and
would therefore be completely inadequate for holding all the necessary information
about a book or a student. An array would also not do because the different bits of
data will not necessarily be all of the same type. Earlier languages such as C and
Pascal got around this problem by allowing us to create a type that allowed more
than one piece of information to be held—such types were known by various names
in different languages, the most common being structure and record.

Object-oriented languages such as Java and C++ went one stage further how-
ever. They enabled us not only to create types that stored many pieces of data, but
also to define within these types the methods by which we could process that data.
For example a book ‘type’ might have a method that adds tax to the sale price; a
student ‘type’ might have a method to calculate an average mark.

Do you remember that in the exercises at the end of Chap. 2 you wrote a little
program that asked the user to provide the length and height of a rectangle, and then
displayed the area and perimeter of that rectangle? In Chap. 5 you were asked to
adapt this program so that it made use of separate methods to perform the calcu-
lations. Such a program might look like this:

Can you see how useful it might be if, each time we wrote a program dealing
with rectangles, instead of having to declare several variables and write methods to
calculate the area and perimeter of a rectangle, we could just use a rectangle ‘type’
to create a single variable, and then use its pre-written methods? In fact you
wouldn’t even have to know how these calculations were performed.

This is exactly what an object-oriented language like Java allows us to do. You
have probably guessed by now that this special construct that holds both data and
methods is called a class. You have already seen a class as the basic unit which

RectangleCalculations
import java.util.Scanner;

public class RectangleCalculations
{

public static void main(String[] args)
 {

double length, height, area, perimeter;
Scanner keyboard = new Scanner(System.in);
System.out.print("What is the length of the rectangle? "); // prompt for length
length = keyboard.nextDouble(); // get length from user
System.out.print("What is the height of the rectangle? "); // prompt for height
height = keyboard.nextDouble(); // get height from user
area = calculateArea(length, height); // call calculateArea method
perimeter = calculatePerimeter(length, height); // call calculatePerimeter method
System.out.println("The area of the rectangle is " + area); // display area
System.out.println("The perimeter of the rectangle is " + perimeter); // display perimeter

 }

// method to calculate area
static double calculateArea(double lengthIn, double heightIn)

 {
return lengthIn * heightIn;

 }

// method to calculate perimeter
static double calculatePerimeter(double lengthIn, double heightIn)

 {
return 2 * (lengthIn + heightIn);

 }
}

164 7 Classes and Objects

contains our main method and any other additional methods. Now we can also use
classes to define new ‘types’.

You can see that there are two aspects to a class:

• the data that it holds;
• the tasks it can perform.

In the next chapter you will see that the different items of data that a class holds
are referred to as the attributes of the class; the tasks it can perform, as we have
seen, are referred to as the methods of the class—you have seen in Chap. 5 how we
define methods. However, in Chap. 5, the methods were called only from within the
class itself. Now we are going to see how to call the methods of another class. In
fact you have already been doing this without quite realizing it—because you have,
since the second chapter, been calling the methods of the Scanner class!

7.3 Objects

In order to use the methods of a class you need to create an object of that class. To
understand the difference between classes and objects, you can think of a class as a
blueprint, or template, from which objects are generated, whereas an object refers to
an individual instance of that class. For example, imagine a system that is used by a
bookshop. The shop will contain many hundreds of books—but we do not need to
define a book hundreds of times. We would define a book once (in a class) and then
generate as many objects as we want from this blueprint, each one representing an
individual book.

This is illustrated in Fig. 7.1.
In one program we may have many classes, as we would probably wish to

generate many kinds of objects. A bookshop system might have books, customers,
suppliers and so on. A university administration system might have students,
courses, lecturers etc.

Object-oriented programming therefore consists of defining one or more classes
that may interact with each other.

We will now illustrate all of this by creating and using objects of predefined
classes—defined either by ourselves or defined by the Java developers and provided
as a standard part of the Java Development Kit. We are going to start by considering
the example we discussed in Sect. 7.2 where we proposed a single “type” that dealt
with calculating the area and perimeter of a rectangle. We are in fact not going to
call our new class Rectangle, but Oblong. The reason for this is that there are
in fact more than one Rectangle classes defined in the “built-in” Java libraries;
now, while it is perfectly possible to have more than one class with the same name,
it is better to avoid any possible confusion at this stage. In Chap. 19, you will learn
how to avoid naming conflicts, but for now it is better to call our new class by a
unique name.

7.2 Classes as Data Types 165

And here is a “fun fact” for you—an oblong is not actually the same as a
rectangle, because in an oblong the length and the height must be unequal, whereas
a rectangle can have four equal sides—in other words it can be a square. Put another
way a square is a kind of rectangle but not a kind of oblong.

7.4 The Oblong Class

We have written an Oblong class for you. The class we have created is saved in a
file called Oblong.java. and you will need to download it from the website in
order to use it. You must make sure that it is in the right place for your compiler to
find it. You will need to place it in your project according to the rules of the
particular IDE you are using.

In the next chapter we will look inside this class and see how it was written. For
now, however, you can completely ignore the program code, because you can use a
class without knowing anything about the details.

Once you have been provided with this Oblong class, instead of being
restricted to making simple declarations like this:

Book class

Author

Title

ISBN Number

Price

Methods

The book class

Individual book objects

Fig. 7.1 Many objects can be generated from a single class template

166 7 Classes and Objects

you will now be able to make declarations like:

You can see that this line is similar to a declaration of a variable; however what
we are doing here is not declaring a variable of a primitive type such as int, but
declaring the name of an object (myOblong) of the class (Oblong)—effectively
we have created a new type, Oblong.

You need to be sure that you understand what this line actually does; all it does
in fact is to create a variable that holds a reference to an object, rather than the
object itself. As explained in the previous chapter, a reference is simply a name for
a location in memory. At this stage we have not reserved space for our new
Oblong object; all we have done is named a memory location myOblong, as
shown in Fig. 7.2.

Now of course you will be asking the question “How is memory for the Oblong
object going to be created, and how is it going to be linked to the reference
myOblong?”.

As we have indicated, an object is often referred to as an instance of a class; the
process of creating an object is referred to as instantiation. In order to create an
object we use a very special method of the class called a constructor.

The constructor is a method that always has the same name as the class. When
you create a new object this special method is always called; its function is to
reserve some space in the computer’s memory just big enough to hold the required
object (in our case an object of the Oblong class).

As we shall see in the next chapter, a constructor can be defined to do other
things, as well as reserve memory. In the case of our Oblong class, the constructor
has been defined so that every time a new Oblong object is created, the length and
the height are set—and they are set to the values that the user of the class sends in.
So every time you create an Oblong object you have to specify its length and its
height at the same time. Here for example is how you would call the constructor and
create an oblong with length 7.5 and height 12.5:

int x;

Oblong myOblong;

Computer Memory

Oblong myOblong;

Java instructions

myOblong

Fig. 7.2 Declaring an object reference

7.4 The Oblong Class 167

This is the statement that reserves space in memory for a new Oblong. Using
the constructor with the keyword new, reserves memory for a new Oblong object.
Now, in the case of the Oblong class, the people who developed it (in this case it
was us!) defined the constructor so that it requires that two items of data, both of
type double, get sent in as parameters. Here we have sent in the numbers 7.5 and
12.5. The location of the new object is stored in the named location myOblong.
This is illustrated in Fig. 7.3.

Now every time we want to refer to our new Oblong object we can use the
variable name myOblong.

As is the case with the declaration and initialization of simple types, Java allows
us to declare a reference and create a new object all in one line:

There are all sorts of ways that we can define constructors (for example, in a
BankAccount class we might want to set the overdraft limit to a particular value
when the account is created) and we shall see examples of these as we go along.
You have of course already seen another example of this, namely with the
Scanner class:

myOblong = new Oblong(7.5, 12.5);

Oblong Oblong;

myOblong = new Oblong(7.5, 12.5);

Computer Memory Java Instructions

This is the space
for the new

Oblong object

myOblong
(location of

object is
stored here)

Fig. 7.3 Creating a new object

Oblong myOblong = new Oblong(7.5, 12.5);

Scanner keyboard = new Scanner(System.in);

168 7 Classes and Objects

You can understand now how this line creates a new Scanner object, key-
board, by calling the constructor. The parameter that we are sending in, System.
in, represents a keyboard object and by using this parameter we are associating the
new Scanner object with the keyboard.

You will see in the next chapter that when a class is written we make sure that no
program can assign values to the attributes directly. In this way the data in the class
is protected. Protecting data in this way is known as encapsulation. The only way
to interact with the data is via the methods of the class.

This means that in order to use a class all we need to know are details about its
methods: their names, what the methods are expected to do, and also their inputs
and outputs.1 In other words you need to know what parameters the method
requires, and its return type. Once we know this we can interact with the class by
using its methods—and it is important to understand that the only way we can
interact with a class is via its methods.

Table 7.1 lists all the methods of our Oblong class with their inputs and outputs
—including the constructor.

As far as our Oblong class is concerned we have, as expected, provided two
methods which will return values for the area and perimeter of the oblong
respectively. However, the class wouldn’t be very useful if we did not have some
means of giving values to the length and height of the oblong. As you have seen we
do this initially via the constructor, but we might also want to be able to change
these values during the course of a program. We have therefore provided methods
called setLength and setHeight so that we can write values to the attributes.
It is very likely that we will want to display these values—we have therefore
provided methods to return, or read, the values of the attributes. These we have
called getLength and getHeight.

You have used methods of the Scanner class on many occasions, for example:

You can see that in order to call a method of one class from another class we use
the name of the object (in this case keyboard) together with the name of the
method (nextInt) separated by a full stop (often referred to as the dot operator).

In the case of the Oblong class, we might, for example, call the setLength
method with a statement such as:

x = keyboard.nextInt();

myOblong.setLength(5.0);

1A list of a method’s inputs and outputs is often referred to as the method’s interface—though this
should not be confused with the user interface, the meaning of which we described in the first
chapter.

7.4 The Oblong Class 169

In Chap. 5, when we called the methods from within a class, we used the name
of the method on its own. In actual fact, what we were doing is form of shorthand.
When we write a line such as

we are actually saying call demoMethod, which is a method of this class. In Java
there exists a special keyword this. The keyword this is used within a class
when we wish to refer to an attribute of the class itself, rather than an attribute of
some other class. The line of code above is actually shorthand for:

As your programming skills advance, you will find that there are occasions when
you actually have to use the this keyword, rather than simply allowing it to be
assumed.

Table 7.1 The methods of the Oblong class

Method Description Inputs Output

Oblong The constructor Two items of data, both of type
double, representing the length
and height of the oblong
respectively

Not
applicable

setLength Sets the value of
the length of the
oblong

An item of type double None

setHeight Sets the value of
the height of the
oblong

An item of type double None

getLength Returns the length
of the oblong

None An item
of type
double

getHeight Returns the height
of the oblong

None An item
of type
double

calculateArea Calculates and
returns the area of
the oblong

None An item
of type
double

calculatePerimeter Calculates and
returns the
perimeter of the
oblong

None An item
of type
double

demoMethod(x);

this.demoMethod(x);

170 7 Classes and Objects

You should be aware of the fact that, just as you cannot use a variable that has
not been initialized, you cannot call a method of an object if no storage is allocated
for the object; so watch out for this happening in your programs—it would cause a
problem at run-time. In Java, when a reference is first created without assigning it to
a new object in the same line, it is given a special value of null; a null value
indicates that no storage is allocated. We can also assign a null value to a
reference at any point in the program, and test for it as in the following example:

In the next section we will write a program that creates an Oblong object and
then uses the methods described in Table 7.1 to interact with this object.

7.5 The OblongTester Program

The following program shows how the Oblong class can be used by another class,
in this case a class called OblongTester. Study the program code and then we
will discuss it.

Oblong myOblong; // at this point myOblong has a null value
myOblong = new Oblong(5.0, 7.5); // create a new Oblong object with length 5.0 and height 7.5

// more code goes here

myOblong = null; // re-assign a null value
if(myOblong == null) // test for null value
{

System.out.println("No storage is allocated to this object");
}

OblongTester
import java.util.Scanner;

public class OblongTester
{

public static void main(String[] args)
{

Scanner keyboard = new Scanner(System.in);

// declare two variables to hold the length and height of the Oblong as input by the user
double oblongLength, oblongHeight;

// declare a reference to an Oblong object
Oblong myOblong;

// now get the values from the user
System.out.print("Please enter the length of your Oblong: ");
oblongLength = keyboard.nextDouble();
System.out.print("Please enter the height of your Oblong: ");
oblongHeight = keyboard.nextDouble();

// create a new Oblong object
myOblong = new Oblong(oblongLength, oblongHeight);

/* use the various methods of the Oblong class to display the length, height, area and
perimeter of the Oblong */

System.out.println("Oblong length is " + myOblong.getLength());
System.out.println("Oblong height is " + myOblong.getHeight());
System.out.println("Oblong area is " + myOblong.calculateArea());
System.out.println("Oblong perimeter is " + myOblong.calculatePerimeter());

}
}

7.4 The Oblong Class 171

Let’s analyse the main method line by line. After creating the new Scanner
object, the method goes on to declare two variables:

As you can see, these are of type double and they are going to be used to hold
the values that the user chooses for the length and height of the oblong.

The next line declares the Oblong object:

After getting the user to enter values for the length and height of the oblong we
have this line of code:

Here we have called the constructor and sent through the length and height as
entered by the user.

Now the next line:

This line displays the length of the oblong. It uses the method of Oblong called
getLength, and as we said in the previous section to do this we use the dot
operator to separate the name of the object and the name of the method.

The next three lines are similar:

We have called the getHeight method, the calculateArea method and
the calculatePerimeter method to display the height, area and perimeter of
the oblong on the screen.

You might have noticed that we haven’t used the setLength and
setHeight methods—that is because in this program we didn’t wish to change
the length and height once the oblong had been created—but this is not the last you
will see of our Oblong class—and in future programs these methods will come in
useful.

Now we can move on to look at using some other classes. The first is not one of
our own, but the built-in String class provided with all versions of Java.

double oblongLength, oblongHeight;

Oblong myOblong;

myOblong = new Oblong(oblongLength, oblongHeight);

System.out.println("Oblong Length is " + myOblong.getLength());

System.out.println("Oblong height is " + myOblong.getHeight());
System.out.println("Oblong area is " + myOblong.calculateArea());
System.out.println("Oblong Perimeter is "+ myOblong.calculatePerimeter());

172 7 Classes and Objects

7.6 Strings

You know from Chap. 1 that a string is a sequence of characters—like a name, a
line of an address, a car registration number, or indeed any meaningless sequence of
characters such as “h83hdu2&e£8”. Java provides a String class that allows us to
use and manipulate strings.

As we shall see in a moment, the String class has a number of constructors—
but in fact Java actually allows us to declare a string object in the same way as we
declare variables of simple type such as int or char. You should remember of
course that String is a class, and starts with a capital letter. For example we could
make the following declaration:

and we could then give this string a value:

We could also do this in one line:

We should bear in mind, however, that this is actually just a convenient way of
declaring a String object by calling its constructor, which we would do like this
with exactly the same effect:

You should be aware that the String class is the only class that allows us to
create new objects by using the assignment operator in this way.

7.6.1 Obtaining Strings from the Keyboard

In order to get a string from the keyboard, you should use the next method of
Scanner. However, a word of warning here—when you do this you should not
enter strings that include spaces, as this will give you unexpected results. We will
show you in the next section a way to get round this restriction.

Below is a little program that uses the Java String class. Some of you might
find it amusing (although others might not!).

String name;

name = "Quentin";

String name = "Quentin";

String name = new String("Quentin");

7.6 Strings 173

One thing to notice in this program is the way in which the + operator is used
for two very different purposes. It is used with strings for concatenation—for
example:

"Hello" + name

It is also used with numbers for addition—for example:

age + 1

Notice that we have had to enclose this expression in brackets to avoid any
confusion:

Here is a sample run from the above program:

What is your name? Aaron
What is your age? 15

Hello Aaron
When I was your age I was 16

7.6.2 The Methods of the String Class

The String class has a number of interesting and useful methods, and we have
listed some of them in Table 7.2.

StringTest
import java.util.Scanner;

public class StringTest
{

public static void main(String[] args)
{

Scanner keyboard = new Scanner(System.in);
String name; // declaration of a String
int age;
System.out.print("What is your name? ");
name = keyboard.next(); // the 'next' method is for String input
System.out.print("What is your age? ");
age = keyboard.nextInt();
System.out.println();
System.out.println("Hello " + name);
// now comes the joke!!
System.out.println("When I was your age I was " + (age + 1));

}
}

System.out.println("When I was your age I was " + (age + 1));

174 7 Classes and Objects

Table 7.2 Some String methods

Method Description Inputs Output

length Returns the length of the string None An item of
type int

charAt Accepts an integer and returns the character
at that position in the string. Note that
indexing starts from zero, not 1! You have
been using this method in conjunction with
the next method of the Scanner class to
obtain single characters from the keyboard

An item
of type
int

An item of
type char

substring Accepts two integers (for example m and n)
and returns a copy of a chunk of the string.
The chunk starts at position m and finishes at
position n-1. Remember that indexing starts
from zero. (Study the example below.)

Two
items of
type int

A
String
object

concat Accepts a string and returns a new string
which consists of the string that was sent in
joined on to the end of the original string

A
String
object

A
String
object

toUpperCase Returns a copy of the original string, all
upper case

None A
String
object

toLowerCase Returns a copy of the original string, all
lower case

None A
String
object

compareTo Accepts a string (say myString) and
compares it to the object’s string. It returns
zero if the strings are identical, a negative
number if the object’s string comes before
myString in the alphabet, and a positive
number if it comes later

A
String
object

An item of
type int

equals Accepts an object (such as a String) and
compares this to another object (such as
another String). It returns true if these
are identical, otherwise returns false

An object
of any
class

A
boolean
value

equalsIgnoreCase Accepts a string and compares this to the
original string. It returns true if the strings
are identical (ignoring case), otherwise
returns false

A
String
object

A
boolean
value

startsWith Accepts a string (say str) and returns
true if the original string starts with str
and false if it does not (e.g. “hello world”
starts with “h” or “he” or “hel” and so on)

A
String
object

A
boolean
value

endsWith Accepts a string (say str) and returns
true if the original string ends with str
and false if it does not (e.g. “hello world”
ends with “d” or “ld” or “rld” and so on)

A
String
object

A
boolean
value

trim Returns a String object, having removed
any spaces at the beginning or end

None A
String
object

7.6 Strings 175

There are many other useful methods of the String class which you can look
up. The following program provides examples of how you can use some of the
methods listed above; others are left for you to experiment with in your practical
sessions.

A sample run:

Enter a string without spaces: Europe
The length of the string is 6
The character at position 3 is r
Characters 2 to 4 are uro
Europe was the string entered
This is upper case: EUROPE
This is lower case: europe

7.6.3 Comparing Strings

When comparing two objects, such as Strings, we should do so by using a
method called equals. We should not use the equality operator (==); this should
be used for comparing primitive types only. If, for example, we had declared two
strings, firstString and secondString, we would compare these in, say, an
if statement as follows:

StringMethods
import java.util.Scanner;

public class StringMethods
{

public static void main(String[] args)
{

Scanner keyboard = new Scanner(System.in);
// create a new string
String str;
// get the user to enter a string
System.out.print("Enter a string without spaces: ");
str = keyboard.next();
// display the length of the user's string
System.out.println("The length of the string is " + str.length());
// display the third character of the user's string
System.out.println("The character at position 3 is " + str.charAt(2));
// display a selected part of the user's string
System.out.println("Characters 2 to 4 are " + str.substring(1,4));
// display the user's string joined with another string
System.out.println(str.concat(" was the string entered"));
// display the user's string in upper case
System.out.println("This is upper case: " + str.toUpperCase());
// display the user's string in lower case
System.out.println("This is lower case: " + str.toLowerCase());

}
}

if(firstString.equals(secondString))
{

// more code here
}

176 7 Classes and Objects

Using the equality operator (==) to compare strings is a very common mistake
that is made by programmers. Doing this will not result in a compilation error, but it
won’t give you the result you expect! The reason for this is that all you are doing is
finding out whether the objects occupy the same address space in memory—what
you actually want to be doing is comparing the actual value of the string attributes
of the objects.

Notice that an object of type String can also be used within a switch
statement to check to see if it is equal to one of several possible String values.
The simple StringCheckWithSwitch program below illustrates this by giving
a meaning for three symbols on a game controller for a particular game:

Here is a sample run from the program:

Enter the symbol(square/circle/triangle)
triangle
JUMP

Here is another sample run from the program:

Enter the symbol(square/circle/triangle)
square
ATTACK

The String class also has a very useful method called compareTo. As you
can see from Table 7.2 this method accepts a string (called myString for
example) and compares it to the string value of the object itself. It returns zero if the
strings are identical, a negative number if the original string comes before
myString in the alphabet, and a positive number if it comes later.

The program below provides an example of how the compareTo method is
used.

StringCheckWithSwitch

import java.util.Scanner;

public class StringCheckWithSwitch
{

public static void main(String[] args)
{

Scanner keyboard = new Scanner (System.in);
String symbol;
// get symbol from user
System.out.println("Enter the symbol(square/circle/triangle)");
symbol = keyboard.next();
// use String object in switch
switch(symbol)
{

case "square": System.out.println("ATTACK"); break;
case "circle": System.out.println("BLOCK"); break;
case "triangle": System.out.println("JUMP"); break;
default: System.out.println("Invalid Choice");

}
}

}

7.6 Strings 177

Here is a sample run from the program:

Enter a String: hello
Enter another String: goodbye
goodbye comes before hello in the alphabet

You should note that (as with the equals method) the compareTo method is
case-sensitive—upper-case letters will be considered as coming before lower-case
letters (their Unicode value is lower). If you are not interested in the case of the letters,
you should convert both strings to upper (or lower) case before comparing them.

If all you are interested in is whether the strings are identical, it is easier to use
the equals method. If the case of the letters is not significant you can use
equalsIgnoreCase.

7.6.4 Entering Strings Containing Spaces

As we mentioned above there is a problem with using the next method of
Scanner when we enter strings that contain spaces. If you try this you will see
that the resulting string stops at the first space, so if you enter the string “Hello
world” for example, the resulting string would actually be “Hello”.

To enter a string that contains spaces you need to use the method nextLine.
Unfortunately however there is also an issue with this. If the nextLine method is
used after a nextInt or nextDouble method, then it is necessary to create a
separate Scanner object (because using the same Scanner object will make

StringComparison
import java.util.Scanner;

public class StringComparison
{

public static void main(String[] args)
{

Scanner keyboard = new Scanner(System.in);
String string1, string2;
int comparison;

// get two strings from the user
System.out.print("Enter a String: ");
string1 = keyboard.next();
System.out.print("Enter another String: ");
string2 = keyboard.next();

// compare the strings
comparison = string1.compareTo(string2);
if(comparison < 0) // compareTo returned a negative number
{

System.out.println(string1 + " comes before " + string2 + " in the alphabet");
}
else if(comparison > 0) // compareTo returned a positive number
{

System.out.println(string2 + " comes before " + string1 + " in the alphabet");
}
else // compareTo returned zero
{

System.out.println("The strings are identical");
}

}
}

178 7 Classes and Objects

your program behave erratically). So, if your intention is that the user should be
able to enter strings that contain spaces, the best thing to do is to declare a separate
Scanner object for string input. This is illustrated below:

Here is a sample run from this program:

Enter a double: 3.4
Enter an integer: 10
Enter a string: Hello world

You entered:
Double: 3.4
Integer: 10
String: Hello world

7.7 Our Own Scanner Class for Keyboard Input

It might have occurred to you that using the Scanner class to obtain keyboard
input can be a bit of a bother.

• it is necessary to create a new Scanner object in every method that uses the
Scanner class;

• there is no simple method such as nextChar for getting a single character like
there is for the int and double types;

• as we have just seen there is an issue when it comes to entering strings con-
taining spaces.

StringExample2
import java.util.Scanner;

public class StringExample2
{

public static void main(String[] args)
 {

double d;
int i;
String s;
Scanner keyboardString = new Scanner(System.in); // Scanner object for string input
Scanner keyboard = new Scanner(System.in); // Scanner object for all other types of input
System.out.print("Enter a double: ");

 d = keyboard.nextDouble();
System.out.print("Enter an integer: ");

 i = keyboard.nextInt();
System.out.print("Enter a string: ");

 s = keyboardString.nextLine(); // use the Scanner object reserved for string input
System.out.println();
System.out.println("You entered: ");
System.out.println("Double: " + d);
System.out.println("Integer: " + i);
System.out.println("String: " + s);

 }
}

7.6 Strings 179

To make life easier, we have created a new class which we have called
EasyScanner. In the next chapter we will “look inside” it to see how it is written—
in this chapter we will just show you how to use it. The methods of EasyScanner
are described in Table 7.3.

To make life really easy we have written the class so that we don’t have to create
new Scanner objects in order to use it (that is taken care of in the class itself)—
and we have written it so that you can simply use the name of the class itself when
you call a method (you will see how to do this in the next chapter). The following
program demonstrates how to use these methods.

You can see from this program how easy it is to call the methods, just by using
the name of the class itself—for example:

In the next chapter you will see how it is possible to do this.
Here is a sample run:

Enter a double: 23.6
You entered: 23.6

Table 7.3 The input
methods of the EasyScanner
class

Java type EasyScanner method

int nextInt()

double nextDouble()

char nextChar()

String nextString()

EasyScannerTester
public class EasyScannerTester
{
 public static void main(String[] args)
 {
 System.out.print("Enter a double: ");
 double d = EasyScanner.nextDouble(); // to read a double
 System.out.println("You entered: " + d);
 System.out.println();

 System.out.print("Enter an integer: ");
 int i = EasyScanner.nextInt(); // to read an int
 System.out.println("You entered: " + i);
 System.out.println();

 System.out.print("Enter a string: ");
 String s = EasyScanner.nextString(); // to read a string
 System.out.println("You entered: " + s);
 System.out.println();

 System.out.print("Enter a character: ");
 char c = EasyScanner.nextChar(); // to read a character
 System.out.println("You entered: " + c);
 System.out.println();
 }
}

double d = EasyScanner.nextDouble();

180 7 Classes and Objects

Enter an integer: 50
You entered: 50

Enter a string: Hello world
You entered: Hello world

Enter a character: B
You entered: B

You are now free to use the EasyScanner class if you wish. You can copy it
from the website—as usual make sure it is in the right place for your compiler to
find it.

7.8 The Console Class

In Chap. 1 we talked briefly about the possibility of running a program in a console,
the text window provided by operating systems such as Windows™. We will
discuss this in more detail in Chap. 19.

A special class called Console is provided (in the java.io library) as an
alternative to Scanner, should you wish to use it—you should note however that
the Console class is not suitable for running programs within an IDE. An example
of a little program that uses the Console class is shown in Fig. 7.4.

Fig. 7.4 Using the Console class

7.7 Our Own Scanner Class for Keyboard Input 181

The program below shows how keyboard input is obtained with the Console
class:

You can see from the example in Fig. 7.4 that there is no problem entering a
string containing spaces; if, however, you wanted to use the Console class for
entering doubles or ints, you would have to enter a string and then convert this
to the desired type. You will find out how to do this in Chap. 10.

7.9 The BankAccount Class

We have created a class called BankAccount, which you can download. This
could be a very useful class in a real world application—for example as part of a
financial control system. Once again you do not need to look at the details of how
this class is coded in order to use it. You do need to know, however, that the class
holds three pieces of information—the account number, the account name and the
account balance. The first two of these will be String objects and the final one
will be a variable of type double.

The methods are listed in Table 7.4.
The methods are straightforward, although you should pay particular attention to

the withdraw method. Our simple BankAccount class does not allow for an
overdraft facility, so, unlike the deposit method, which simply adds the specified
amount to the balance, the withdraw method needs to check that the amount to be
withdrawn is not greater than the balance of the account; if this were to be the case
then the balance would be left unchanged. The method returns a boolean value to
indicate if the withdrawal was successful or not. A boolean value of true would
indicate success and boolean value of false would indicate failure. This
enables a program that uses the BankAccount class to check whether the with-
drawal has been made successfully. You can see how this is done in the program
that follows, which makes use of the BankAccount class.

ConsoleTester
// demonstration of the console class for keyboard input

import java.io.Console;

public class ConsoleTester
{

public static void main(String[] args)
{

System.out.println();
System.out.println("Console Tester");
System.out.println();
Console con = System.console();
String name; // declaration of a String
name = con.readLine("Please enter your name: "); // allow user to enter name
System.out.println("Hello " + name); // display a message to the user

}
}

182 7 Classes and Objects

Table 7.4 The methods of the BankAccount class

Method Description Inputs Output

BankAccount A constructor. It accepts two strings and
assigns them to the account number and
account name respectively. It also sets the
account balance to zero

Two
String
objects

Not
applicable

getAccountNumber Returns the account number None An item of
type
String

getAccountName Returns the account name None An item of
type
String

getBalance Returns the balance None An item of
type
double

deposit Accepts an item of type double and adds
it to the balance

An item of
type
double

None

withdraw Accepts an item of type double and
checks if there are sufficient funds to make
a withdrawal. If there are not, then the
method terminates and returns a value of
false. If there are sufficient funds,
however, the method subtracts the amount
from the balance and returns a value of
true

An item of
type
double

An item of
type
boolean

BankAccountTester
import java.util.Scanner;

public class BankAccountTester
{
 public static void main(String[] args)
 {
 Scanner keyboard = new Scanner(System.in);
 double amount;
 boolean ok;

 BankAccount account1 = new BankAccount("99786754","Susan Richards");

 System.out.print("Enter amount to deposit: ");
 amount = keyboard.nextDouble();
 account1.deposit(amount);
 System.out.println("Deposit was made");
 System.out.println("Balance = " + account1.getBalance());
 System.out.println();

 System.out.print("Enter amount to withdraw: ");
 amount = keyboard.nextDouble();
 ok = account1.withdraw(amount); // get the return value of the withdraw method
 if(ok)
 {
 System.out.println("Withdrawal made");
 }
 else
 {
 System.out.println("Insufficient funds");
 }
 System.out.println("Balance = " + account1.getBalance());
 System.out.println();
 }
}

7.9 The BankAccount Class 183

The program creates a BankAccount object and then asks the user to enter an
amount to deposit. It then confirms that the deposit was made and shows the new
balance.

It then does the same thing for a withdrawal. The withdraw method returns a
boolean value indicating if the withdrawal has been successful or not, so we have
assigned this return value to a boolean variable, ok:

Depending on the value of this variable, the appropriate message is then
displayed:

Two sample runs from this program are shown below. In the first the withdrawal
was successful:

Enter amount to deposit: 1000
Deposit was made
Balance = 1000.0

Enter amount to withdraw: 400
Withdrawal made
Balance = 600.0

In the second there were not sufficient funds to make the withdrawal:

Enter amount to deposit: 1000
Deposit was made
Balance = 1000.0

Enter amount to withdraw: 1500
Insufficient funds
Balance = 1000.0

ok = account1.withdraw(amount);

if(ok)
{
 System.out.println("Withdrawal made");
}
else
{
 System.out.println("Insufficient funds");
}

184 7 Classes and Objects

7.10 Arrays of Objects

In Chap. 6 you learnt how to create arrays of simple types such as int and char.
It is perfectly possible, and often very desirable, to create arrays of objects. There,
are, however, some important issues that we need to be aware of. We will illustrate
this with a new version of the BankAccountTester from the previous section.
In BankAccountTester2, instead of creating a single bank account, we have
created several bank accounts by using an array. Take a look at the program, and
then we will explain the important issues to you:

The first line of the main method looks no different from the statements that you
saw in the last chapter that created arrays of primitive types:

However, what is actually going on behind the scenes is slightly different. The
above statement does not set up an array of BankAccount objects in memory;
instead it sets up an array of references to such objects (see Fig. 7.5).

At the moment, space has been reserved for the three BankAccount references
only, not the three BankAccount objects. As we told you earlier, when a refer-
ence is initially created it points to the constant null, so at this point each ref-
erence in the array points to null.

This means that memory would still need to be reserved for individual
BankAccount objects each time we wish to link a BankAccount object to the
array. We can now create new BankAccount objects and associate them with
elements in the array as we have done with these lines:

BankAccountTester2
public class BankAccountTester2
{

public static void main(String[] args)
{

// create an array of references
BankAccount[] accountList = new BankAccount[3];
// create three new accounts, referenced by each element in the array
accountList[0] = new BankAccount("99786754","Susan Richards");
accountList[1] = new BankAccount("44567109","Delroy Jacobs");
accountList[2] = new BankAccount("46376205","Sumana Khan");

// make various deposits and withdrawals
accountList[0].deposit(1000);
accountList[2].deposit(150);
accountList[0].withdraw(500);

// print details of all three accounts
for(BankAccount item : accountList)
{

System.out.println("Account number: " + item.getAccountNumber());
System.out.println("Account name: " + item.getAccountName());
System.out.println("Current balance: " + item.getBalance());
System.out.println();

}
}

}

BankAccount[] accountList = new BankAccount[3];

7.10 Arrays of Objects 185

Three BankAccount objects have been created; the first one, for example, has
account number of “99786754” and name “Susan Richards”, and the reference at
accountList[0] is set to point to it. This is illustrated in Fig. 7.6.

Once we have created these accounts, we make some deposits and withdrawals.

Look carefully at how we do this. To call a method of a particular array element,
we place the dot operator after the final bracket of the array index. This is made
clear below:

Notice that in this case when we call the withdraw method we have decided
not to check the boolean value returned.

It is not always necessary to check the return value of a method and you may
ignore it if you choose.

Fig. 7.5 The effect on computer memory of creating an array of objects

accountList[0] = new BankAccount("99786754","Susan Richards");
accountList[1] = new BankAccount("44567109","Delroy Jacobs");
accountList[2] = new BankAccount("46376205","Sumana Khan");

accountList[0].deposit(1000);
accountList[2].deposit(150);
accountList[0].withdraw(500);

accountList[0].deposit(1000);

returns a
BankAccount

object

calls a
BankAccount

method

accountList[0].withdraw(500); // return value not checked

186 7 Classes and Objects

Having done this we display the details of all three accounts. As we are ac-
cessing the entire array, we are able to use an enhanced for loop for this purpose;
and since we are dealing with an array of BankAccount objects here, the type of
the items is specified as BankAccount.

As you might expect, the output from this program is as follows:

Account number: 99786754
Account name: Susan Richards
Current balance: 500.0

Fig. 7.6 Objects are linked to arrays by reference

for(BankAccount item : accountList) // type of items is BankAccount
{

System.out.println("Account number: " + item.getAccountNumber());
System.out.println("Account name: " + item.getAccountName());
System.out.println("Current balance: " + item.getBalance());
System.out.println();

}

7.10 Arrays of Objects 187

Account number: 44567109
Account name: Delroy Jacobs
Current balance: 0.0

Account number: 46376205
Account name: Sumana Khan
Current balance: 150.0

7.11 The ArrayList Class

When you studied arrays in Chap. 6, it might have occurred to you that working
with arrays can sometimes seem a bit cumbersome. That is because arrays are what
we could term a “low-level” construct, which means that they mirror quite closely
the workings of the computer itself, and match the way that data is stored in
memory. As computer programmers it is vital that you have an understanding of
arrays and how they work; however in modern day computing it is not uncommon
for a programming language to provide higher level classes whose methods are
closer to how we do things in real life; these classes deal with low level detail
“behind the scenes”, thus enabling the user to keep such detail at arms length.

One example of higher level classes are known as collection classes. These
classes allow the programmer to deal with collections such as simple lists (like the
BankAccount list from the previous section) with methods that will simply add a
new item to the end of the list or easily remove an item from a particular position.

Collection classes are examples of classes known as generic classes. There are
some quite advanced concepts involved in understanding generic classes, so most
of this is left until the second semester. In particular we will examine collection
classes in depth in Chap. 15. However, here we are going to introduce you to one
such collection class called ArrayList (which resides in the java.util
library) and provide you with just enough information to get you started.

You will see in the program that follows that there is some new notation
involved. This is because when we declare an object of a collection class we need to
indicate the type of object that it will hold, so you will see declarations like this:

ArrayList<BankAccount> accountList;

The type of object held is indicated within the angle brackets; so ac-
countList will hold a list of BankAccounts. Similarly, if you wanted to
declare an ArrayList object called names which was to hold Strings, you
would do so like this:

ArrayList<String> names;

188 7 Classes and Objects

The program below, BankAccountTester3, rewrites Bank-
AccountTester2 using an ArrayList instead of an array.

As you can see the full declaration of accountList is as follows:

When we call the constructor of a generic class we don’t need to re-state the type
of object held, so the angle brackets are left empty (this is sometimes referred to as a
“diamond”). The compiler infers the type from the first part of the declaration—this
is an example of type inference (more about this in Chap. 13).

The other thing you will notice is that we don’t need to specify how many items
an ArrayList will hold. It expands and contracts dynamically as we add and
remove items.

To add items to the list we use the add method of ArrayList, which takes as
a parameter the object that we are adding:

To make deposits and withdrawals, we need to retrieve the individual items that
we require. We do this with the get method of ArrayList, which takes as a
parameter the particular index (starting with zero, as with arrays):

BankAccountTester3
import java.util.ArrayList;

public class BankAccountTester3
{
 public static void main(String[] args)
 {

// create an array of references
 ArrayList<BankAccount> accountList = new ArrayList<>();

// create three new accounts, referenced by each element in the array
 accountList.add(new BankAccount("99786754","Susan Richards"));
 accountList.add(new BankAccount("44567109","Delroy Jacobs"));
 accountList.add(new BankAccount("46376205","Sumana Khan"));

// make various deposits and withdrawals
 accountList.get(0).deposit(1000);
 accountList.get(2).deposit(150);
 accountList.get(0).withdraw(500);

 // print details of all three accounts
 for(BankAccount item : accountList)
 {
 System.out.println("Account number: " + item.getAccountNumber());
 System.out.println("Account name: " + item.getAccountName());
 System.out.println("Current balance: " + item.getBalance());
 System.out.println();
 }
 }
}

ArrayList<BankAccount> accountList = new ArrayList<>();

accountList.add(new BankAccount("99786754","Susan Richards"));
accountList.add(new BankAccount("44567109","Delroy Jacobs"));
accountList.add(new BankAccount("46376205","Sumana Khan"));

accountList.get(0).deposit(1000);
accountList.get(2).deposit(150);
accountList.get(0).withdraw(500);

7.11 The ArrayList Class 189

Finally we display the items—the enhanced for loop works nicely with classes
such as ArrayList, so the code for displaying the bank accounts is the same as in
the original program:

One final word about collection classes such as ArrayList. These classes
cannot be used to hold primitive types such as int and double. But don’t
worry—there is a way around this using what are known as wrapper classes. These
will be introduced to you in Chap. 9.

7.12 Self-test Questions

1. Examine the program below and then answer the questions that follow:

(a) By referring to the program above distinguish between a class and an object.

(b) By referring to the program above explain the purpose of the constructor.

(c) By referring to the program above explain how you call the method of one
class from another class.

(d) What output would you expect to see from the program above?

2. (a) Write the code that will create two BankAccount objects, acc1 and
acc2. The account number and account name of each should be set at the
time the object is created.

(b) Write the lines of code that will deposit an amount of 200 into acc1 and
100 into acc2.

for(BankAccount item : accountList)
{

System.out.println("Account number: " + item.getAccountNumber());
System.out.println("Account name: " + item.getAccountName());
System.out.println("Current balance: " + item.getBalance());
System.out.println();

}

public class SampleProgram
{

public static void main(String[] args)
 {

Oblong oblong1 = new Oblong(3.0, 4.0);
Oblong oblong2 = new Oblong(5.0, 6.0);
System.out.println("The area of oblong1 is " + oblong1.calculateArea());
System.out.println("The area of oblong2 is " + oblong2.calculateArea());

 }
}

190 7 Classes and Objects

(c) Write the lines of code that attempt to withdraw an amount of 150 from
acc1 and displays the message “WITHDRAWAL SUCCESSFUL” if the
amount was withdrawn successfully and “INSUFFICIENT FUNDS” if it
was not.

(d) Write a line of code that will display the balance of acc1.

(e) Write a line of code that will display the balance of acc2.

3. In what way does calling methods from the EasyScanner class differ from
calling methods from the other classes you have met (BankAccount,
Oblong, String and Scanner)?

4. Consider the following fragment of code that initializes one string constant with
a password (“java”) and creates a second string to hold the user’s guess for the
password. The user is then asked to enter their guess:

(a) Write a line of code that uses the EasyScanner class to read the guess
from the keyboard.

(b) Write the code that displays the message “CORRECT PASSWORD” if the
user entered the correct password and “INCORRECT PASSWORD” if not.

5. How do arrays of objects differ from arrays of primitive types?

6. (a) Declare an array called rooms, to hold three Oblong objects. Each
Oblong object will represent the dimensions of a room in an apartment.

(b) The three rooms in the apartment have the following dimensions:
Add three appropriate Oblong objects to the rooms array to represent
these 3 rooms.

(c) Write the line of code that would make use of the rooms array to display
the area of room 3 to the screen.

7. Repeat the previous question using and ArrayList instead of an array.

String final PASSWORD = “java”; // set password
String guess; // to hold user’s guess
System.out.print(“Enter guess: “);

room 1 room 2 room 35.2m

4.7m

5.2m

5.7m

8.1m

5.0 m

7.12 Self-test Questions 191

7.13 Programming Exercises

In order to tackle these exercises make sure that the classes Oblong, Bank-
Account and EasyScanner have been copied from the website and placed in
the correct directory for your compiler to access them.

1: (a) Implement the program given in self-test question 1 and run it to confirm
your answer to part (d) of that question.

(b) Adapt the program above so that the user is able to set the length and height
of the two oblongs. Make use of the EasyScanner class to read in the
user input.

2. Consider a program to enter and confirm a suitable code name for an agent.
Declare two string objects, called codeName and confirm and then

(a) Prompt to get the user to enter a suitable name into the codeName string;

(b) Use a while loop to ensure that the string entered is greater than 6 char-
acters in length, if it is not print “INVALID CODENAME” and ask the user
to re-enter a code name;

(c) Once a valid code name has been entered ask the user to re-enter the code
name into the confirm string and then use an if else statement to ensure
that the string entered matches the original code name; if it does, print a
message “CODE NAME CONFIRMED” otherwise print a message saying
“CODE NAME MIS-MATCH”;

(d) Use the charAt method to ensure that the code name ends with an ‘X’
character;

(e) Finally use the startsWith method to ensure that, as well as being
greater than 6 characters in length, the code name entered also starts with the
words “Agent”.

3. Adapt the StringComparison program from Sect. 7.6.3, which compares
two strings, in the following ways:

(a) Rewrite the program so that it ignores case;

(b) Rewrite the program, using the equals method, so that all it does is to test
whether the two strings are the same;

(c) Repeat (b) using the equalsIgnoreCase method;

(d) Use the trim method so that the program ignores leading or trailing spaces.

4. Design and implement a program that performs in the following way:

192 7 Classes and Objects

• When the program starts, two bank accounts are created, using names and
numbers which are written into the code;

• The user is then asked to enter an account number, followed by an amount to
deposit in that account;

• The balance of the appropriate account is then updated accordingly—or if an
incorrect account number was entered a message to this effect is displayed;

• The user is then asked if he or she wishes to make more deposits;

• If the user answers does wish to make more deposits, the process continues;

• If the user does not wish to make more deposits, then details of both accounts
(account number, account name and balance) are displayed.

5. Write a program that creates an array of Oblong objects to represent the
dimensions of rooms in an apartment as described in self test question 6. The
program should allow the user to:

• Determine the number of rooms;

• Enter the dimensions of the rooms;

• Retrieve the area and dimensions of any of the rooms.

6. Repeat the previous question making use of the ArrayList class.

7.13 Programming Exercises 193

8Implementing Classes

Outcomes:

By the end of this chapter you should be able to:

• design classes using the notation of the Unified Modeling Language (UML);
• write the Java code for a specified class;
• explain the difference between public and private access to attributes and

methods;
• explain the meaning of the term encapsulation;
• explain the use of the static keyword;
• pass objects as parameters;
• develop their own collection classes in Java;
• identify the advantages of object-oriented programming.

8.1 Introduction

This chapter is arguably the most important so far, because it is here that you are
going to learn how to develop the classes that you need for your programs. You are
already familiar with the concept of a class, and the idea that we can create objects
that belong to a class; in the last chapter you saw how to create and use objects, and
you saw how we could use the methods of a class without knowing anything about
how they work.

In this chapter you will look inside the classes you have studied to see how they
are constructed, and how you can write classes of your own. We start with the
Oblong class.

© Springer Nature Switzerland AG 2019
Q. Charatan and A. Kans, Java in Two Semesters, Texts in Computer Science,
https://doi.org/10.1007/978-3-319-99420-8_8

195

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99420-8_8&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99420-8_8&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99420-8_8&domain=pdf
https://doi.org/10.1007/978-3-319-99420-8_8

8.2 Designing Classes in UML Notation

In the last chapter you saw that a class consists of:

• a set of attributes (the data);
• a set of methods that can access or change those attributes.

When we design a class we must, of course, consider what data the class needs
to hold, and what methods are needed to access that data. The Oblong class that
we develop here will need to hold two items of data—the length and the height of
the oblong; these will have to be real numbers, so double would be the appro-
priate type for each of these two attributes. You have already seen the methods that
we provided for this class in Table 7.1 in the previous chapter.

When we design classes, it is very useful to start off by using a diagrammatic
notation. The usual way this is done is by making use of the notation of the Unified
Modeling Language (UML).1 In this notation, a class is represented by a box
divided into three sections. The first section provides the name of the class, the
second section lists the attributes, and the third section lists the methods. The UML
class diagram for the Oblong class is shown in Fig. 8.1.

You can see that the UML notation requires us to indicate the names of the
attributes along with their types, separated by a colon.

In the last chapter we introduced you to the concept of encapsulation or
information-hiding. This is the technique of making attributes accessible only to the
methods of the same class, and it is this feature of object-oriented languages that has
contributed to object-orientation becoming the standard way of programming in
today’s world. By restricting access in this way, programmers can keep the data in
their classes “sealed off” from other classes, because they are the ones in control of
how it is actually accessed.

Class nameOblong

-length : double
-height : double

+Oblong(double, double)
+getLength() : double
+getHeight() : double
+setLength(double)
+setHeight(double)
+calculateArea() : double
+calculatePerimeter() : double

Attributes

Methods

Fig. 8.1 The design of the
Oblong class

1Martina Seidl et al., UML @Classroom, An Introduction to Object Oriented Modeling, Springer
2015.

196 8 Implementing Classes

The way our Oblong class has been set up means that you cannot directly use
the length and height attributes in another program. If you want to find out the
area of the oblong in, say, the main method of another program then you can’t do
this by accessing the length and height data directly, because access to these
attributes is denied.

Instead we would, as you know, call the calculateArea method of the
Oblong object. We design our classes like this because doing so means that
no-one can inadvertently change the values of length and height—our data is
kept secure. If access to these attributes were not restricted in this way, then the
length and height data could inadvertently be changed. Instead we limit access
of the Oblong class to its methods. This is illustrated in Fig. 8.2.

The plus and minus signs that you can see in the UML diagram in Fig. 8.1 are all
to do with this idea of encapsulation; a minus sign means that the attribute or
method is private—that is, it is accessible only to methods within the same class.
A plus sign means that it is public—it is accessible to methods of other classes.
Normally we make the attributes private, and the methods public, in this way
achieving encapsulation. You will see how it is done in a Java class in the next
section.

Now let’s consider the notation for the methods. You can see from the diagram
that the parameter types are given in brackets—for example:

+setLength(double)

Here you can see that the setLength method requires one double parameter (in
this case the new length value). The return types are placed after the brackets,
preceded by a colon—for example:

Program

calculateArea

Data

main

Oblong object

Fig. 8.2 Encapsulation requires data be kept hidden inside an object

8.2 Designing Classes in UML Notation 197

+getLength() : double

Here you can see that the getLength method returns a value of type double (in
this case the current value of the private length attribute).

Where there is no return type, nothing appears after the brackets, as in the
setlength and setHeight methods.

The first method, Oblong, is the constructor. As we know the constructor
always has the same name as the class, and in this case it requires two parameters of
type double:

+Oblong(double, double)
You should note that a constructor never has a return type. In fact you will see

later that in Java we don’t even put the word void in front of a constructor; if we
did the compiler would think it was a regular method.

As you saw in the previous chapter, we have provided our Oblong class with
methods for reading and writing to the attributes—and it is conventional to begin
the name of such methods with get- and set-respectively. However, it is not
always the case that we choose to supply methods such as setLength and
setHeight, which allow us to change the attributes. Sometimes we set up our
class so that the only way that we can assign values to the attributes is via the
constructor. This would mean that the values of the length and height could be
set only at the time a new Oblong object was created, and could not be changed
after that. Whether or not you want to provide a means of writing to individual
attributes depends on the nature of the system you are developing and should be
discussed with potential users. However, we believe that it is a good policy to
provide write access to only those attributes that clearly require to be changed
during the object’s lifetime, and we have taken this approach throughout this book.
In this case we have included “set” methods for length and height because we
are going to need them in Chap. 10.

8.3 Implementing Classes in Java

8.3.1 The Oblong Class

Now that we have the basic design of the Oblong class we can go ahead and write
the Java code for it. We present the code here—when you have had a look at it we
will discuss it.

198 8 Implementing Classes

Let’s take a closer look at this. The first line declares the Oblong class:

Next come the attributes. An Oblong object will need attributes to hold values
for the length and the height of the oblong, and these will be of type double. The
declaration of the attributes in the Oblong class took the following form in our
UML diagram:

-length : double
-height : double

The Oblong class
public class Oblong
{
 // the attributes
 private double length;
 private double height;

 // the methods

 // the constructor
 public Oblong(double lengthIn, double heightIn)
 {
 length = lengthIn;
 height = heightIn;
 }

 // this method allows us to read the length attribute
 public double getLength()
 {
 return length;
 }

 // this method allows us to read the height attribute
 public double getHeight()
 {
 return height;
 }

 // this method allows us to write to the length attribute
 public void setLength(double lengthIn)
 {
 length = lengthIn;
 }

 // this method allows us to write to the height attribute
 public void setHeight(double heightIn)
 {
 height = heightIn;
 }

 // this method returns the area of the Oblong
 public double calculateArea()
 {
 return length * height;
 }

 // this method returns the perimeter of the Oblong
 public double calculatePerimeter()
 {
 return 2 * (length + height);

}
}

public class Oblong

8.3 Implementing Classes in Java 199

In Java this is implemented as:

As you can see, attributes are declared like any other variables, except that they
are declared outside of any method, and they also have an additional word in front
of them—the word private, corresponding to the minus sign in the UML
notation. In Java, this keyword is used to restrict the scope of the attributes to
methods of this class only, as we described above.

You should note that the attributes of a class are accessible to all the methods of
the class—unlike local variables, which are accessible only to the methods in which
they are declared.

Figure 8.1 made it clear which methods we need to define within our Oblong class.
First comes the constructor. You should recall that it has the same name as the class,
and, unlike any other method, it has no return type—not even void! It looks like this.

The first thing to notice is that this method is declared as public. Unlike the
attributes, we want our methods to be accessible from outside so that they can be
called by methods of other classes.

In our class we are defining the constructor so that when a new Oblong object is
created (with the keyword new) then not only do we get some space reserved in
memory, but some other stuff occurs also; in this case two assignment statements are
executed. The first assigns the value of the parameter lengthIn to the length
attribute, and the second assigns the value of the parameter heightIn to the height
attribute. We are sticking to our naming convention for attributes here by appending the
word ‘In’ to them, but of course you can use any names for your parameters. Remember
once again that the attributes are visible to all the methods of the class.

When we define a constructor like this in a class it is termed a user-defined2

constructor. If we don’t define our own constructor, then one is automatically
provided for us—this is referred to as the default constructor. The default con-
structor takes no parameters and when it is used to create an object—for example in
a line like this:

private double length;
private double height;

public Oblong(double lengthIn, double heightIn)
{
 length = lengthIn;
 height = heightIn;
}

Oblong myOblong = new Oblong();

2Here the word user is referring to the person writing the program, not the person using it!

200 8 Implementing Classes

then all that happens is that memory is reserved for the new object—no other
processing takes place. Any attributes will be given initial values according to the
rules that we give you later in Sect. 8.5.

One more thing about constructors: once we have defined our own constructors, this
default constructor is no longer automatically available. If we want it to be available
then we have to re-define it explicitly. In the Oblong case we would define it as:

You can see that just like regular methods, constructers can be overloaded, and
we can define several constructors in one class. When we create an object it will be
clear from the parameter list which constructor we are referring to.

Now let’s take a look at the definition of the next method, getLength. The
purpose of this method is simply to send back the value of the length attribute. In
the UML diagram it was declared as:

+getLength() : double

In Java this becomes:

Once again you can see that the method has been declared as public (indicated
by the plus sign in UML), enabling it to be accessed by methods of other classes.

The next method, getHeight, behaves in the same way in respect of the
height attribute.

Next comes the setLength method:

+setLength(double)

We implement this as:

This method does not return a value, so its return type is void. However, it does
require a parameter of type double that it will assign to the length attribute. The
body of the method consists of a single line which assigns the value of lengthIn
to the length attribute.

The next method, setHeight, behaves in the same way in respect of the
height attribute.

public Oblong()
{
}

public double getLength()
{
 return length;
}

public void setLength(double lengthIn)
{
 length = lengthIn;
}

8.3 Implementing Classes in Java 201

After this comes the calculateArea method:

+calculateArea() : double

We implement this as:

Once again there are no formal parameters, as this method does not need any
data in order to do its job; it returns a double. The actual code is just one line,
namely the statement that returns the area of the oblong, calculated by multiplying
the value of the length attribute by the value of the height attribute.

The calculatePerimeter method is similar and thus the definition of the
Oblong class is now complete.

One important thing to note here. Unlike some of the methods we developed in
Chap. 5, the methods that we have defined here deal only with the basic func-
tionality of the class—they do not include any routines that deal with input or
output. That is because the methods of Chap. 5 were only being used by the class in
which they were written—but now our methods will be used by other classes that
we cannot as yet predict. So when developing a class we should always strive to
restrict our methods to the essential functions that define the class (in this case, for
example, calculating the area and perimeter of the oblong), and to exclude anything
that is concerned with the input or output functions of a program. If we do this, then
our class can be used in any sort of application, regardless of whether it is a simple
console application like the ones we have developed so far, or a complex graphical
application like the ones you will come across later in this book.

8.3.2 The BankAccount Class

The UML class diagram for the BankAccount class, which we used in the
previous chapter, is shown in Fig. 8.3.

public double calculateArea()
{
 return length * height;
}

BankAccount

-accountNumber : String
-accountName : String
-balance : double

+BankAccount (String, String)
+getAccountNumber() : String
+getAccountName() : String
+getBalance() : double
+deposit(double)
+withdraw(double) : boolean

Fig. 8.3 The design of BankAccount class

202 8 Implementing Classes

You will notice here that accountNumber and accountName are declared as
Strings; it is perfectly possible for the attributes of one class to be objects of another
class.

We can now inspect the code for this class:

Now that we are getting the idea of how to define a class in Java, we do not need
to go into so much detail in our analysis and explanation.

The first three lines declare the attributes of the class, and are as we would expect:

private String accountNumber;
private String accountName;
private double balance;

8.3 Implementing Classes in Java 203

Now the constructor:

You can see that when a new object of the BankAccount class is created, the
accountName and accountNumber will be assigned the values of the
parameters passed to the method. In this case, the balance will be assigned the
value zero; this makes sense because when someone opens a new account there is a
zero balance until a deposit is made.3

The next three methods, getAccountNumber, getAccountName and
getBalance, are all set up so that the values of the corresponding attributes
(which of course have been declared as private) can be read.

After these we have the deposit method:

This method does not return a value; it is therefore declared to be of type void.
It does however require that a value is sent in (the amount to be deposited), and
therefore has one parameter—of type double—in the brackets. As you would
expect with this method, the action consists of adding the deposit to the balance
attribute of the BankAccount object.

Now the withdraw method:

public BankAccount(String numberIn, String nameIn)
{
 accountNumber = numberIn;
 accountName = nameIn;
 balance = 0;
}

public void deposit(double amountIn)
{
 balance = balance + amountIn;
}

public boolean withdraw(double amountIn)
{
 if(amountIn > balance)
 {
 return false; // no withdrawal was made
 }
 else
 {
 balance = balance – amountIn;
 return true; // money was withdrawn successfully
 }
 }

3You would be right in thinking that the balance attribute would automatically be assigned a value
of zero if we did not specifically do that here. However it is good practice always to ensure that
variables are initialized with the values that we require—particularly because in many other
programming languages attributes are not initialized as they are in Java.

204 8 Implementing Classes

The amount is subtracted only if there are sufficient funds—in other words if the
amount to be withdrawn is no bigger than the balance. If this is not the case then a
value of false is returned and the method terminates. Otherwise the amount is
subtracted from the balance and a value of true is returned. The return type of the
method therefore is boolean.

8.4 The static Keyword

You have already seen the keyword static in front of the names of methods in
some Java classes. A word such as this (as well as the words public and
private) is called a modifier. A modifier determines the particular way a class,
attribute or method is accessed.

Let’s explore what this static modifier does. Consider the BankAccount
class that we discussed in the previous section. Say we wanted to have an additional
method which added interest, at the current rate, to the customer’s balance. It would
be useful to have an attribute called interestRate to hold the value of the current
rate of interest. But of course the interest rate is the same for any customer—and if it
changes, we want it to change for every customer in the bank; in other words for
every object of the class. We can achieve this by declaring the variable as static.
An attribute declared as static is a class attribute; any changes that are made to it
are made to all the objects in the class. The way this is achieved is by the program
creating only one copy of the attribute and making it accessible to all objects.

It would make sense if there were a way to access this attribute without reference
to a specific object; and so there is! All we have to do is to declare methods such as
setInterestRate and getInterestRate as static. This makes a
method into a class method; it does not refer to any specific object. As you will see
in our next program, BankAccountTester2, we can call a class method by
using the class name instead of the object name.

BankAccount2

-accountNumber : String
-accountName : String
-balance : double
-interestRate : double

+BankAccount2 (String, String)
+getAccountNumber() : String
+getAccountName() : String
+getBalance() : double
+deposit(double)
+withdraw(double) : boolean
+setInterestRate(double)
+getInterestRate() : double
+addInterest()

Fig. 8.4 The design of the
BankAccount2 class

8.3 Implementing Classes in Java 205

We have rewritten our BankAccount class, and called it BankAccount2.
We have included three new methods as well as the new static attribute
interestRate. The first two of these—setInterestRate and
getInterestRate—are the methods that allow us to read and write to our new
attribute. These have been declared as static. The third—addInterest—is
the method that adds the interest to the customer’s balance. As can be seen in
Fig. 8.4, the UML notation is to underline static attributes and methods.

Here is the code for the class. The new items have been emboldened.

BankAccount2 - the modified BankAccount class
public class BankAccount2
{
 private String accountNumber;
 private String accountName;
 private double balance;

private static double interestRate;
 public BankAccount2(String numberIn, String nameIn)
 {
 accountNumber = numberIn;
 accountName = nameIn;
 balance = 0;
 }

 public String getAccountName()
 {
 return accountName;
 }

 public String getAccountNumber()
 {
 return accountNumber;
 }

 public double getBalance()
 {
 return balance;
 }

 public void deposit(double amountIn)
 {
 balance = balance + amountIn;
 }

 public boolean withdraw(double amountIn)
 {
 if(amountIn > balance)
 {
 return false;
 }
 else
 {
 balance = balance - amountIn;
 return true;
 }
 }

public static void setInterestRate(double rateIn)
 {
 interestRate = rateIn;
 }
 public static double getInterestRate()
 {
 return interestRate;
 }
 public void addInterest()
 {
 balance = balance + (balance * interestRate)/100;
 }
}

206 8 Implementing Classes

The following program, BankAccountTester2, uses this modified version
of the BankAccount class.

Take a closer look at the first four lines of the main method of the above
program. We have created two new bank accounts which we have called ac-
count1 and account2, and have assigned account numbers and names to them
at the time they were created (via the constructor). We have then deposited amounts
of 1000 and 2000 respectively into each of these accounts.

Now look at the next line:

This line sets the interest rate to 10. Because setInterestRate has been
declared as a static method, we have been able to call it by using the class name
BankAccount2. Because interestRate has been declared as a static
attribute this change is effective for any object of the class. Therefore, when we add
interest to each account as we do with the next two lines:

we should expect it to be calculated with an interest rate of 10, giving us new
balances of 1100 and 2200 respectively.

BankAccount2.setInterestRate(10);

account1.addInterest();
account2.addInterest();

8.4 The static Keyword 207

This is exactly what we get, as can be seen from the output below:

Account number: 99786754
Account name: Gayle Forcewind
Interest Rate 10.0
Current balance: 1100.0

Account number: 99887776
Account name: Stan Dandy-Liver
Interest Rate 10.0
Current balance: 2200.0

Class methods can be very useful indeed and we shall see further examples of
them in this chapter. Of course, we have always declared our main method, and
other methods within the same class as the main method, as static—because
these methods belong to the class and not to a specific object.

8.5 Initializing Attributes

Looking back at the BankAccount2 class in the previous section, some of you
might have been asking yourselves what would happen if we called the
getInterestRate method before the interest rate had been set using the
setInterestRate method. In fact, the answer is that a value of zero would be
returned. This is because, while Java does not give an initial value to local variables
(which is why you get a compiler error if you try to use an uninitialized variable),
Java always initializes attributes. Numerical attributes such as int and double
are initialized to zero; boolean attributes are initialized to false and objects are
initialized to null. Character attributes are given an initial Unicode value of zero.

Despite the above, it is nonetheless good programming practice always to give
an initial value to your attributes, rather than leave it to the compiler. One very good
reason for this is that you cannot assume that every programming language ini-
tializes variables in the same way—if you were using C++, for example, the initial
value of any variable is completely a matter of chance—and you won’t get a
compiler error to warn you! In the BankAccount2 class, it would have done no
harm at all to have initialized the interestRate variable when it was declared:

In fact, one technique you could use is to give the interestRate attribute
some special initial value (such as a negative value) to indicate to the user of this
class that the interest rate had not been set. You will see another example where this
technique can be used in question 2 of the programming exercises.

private static double interestRate = 0;

208 8 Implementing Classes

8.6 The EasyScanner Class

In the previous chapter we used a class called EasyScanner that could make
keyboard input a lot easier. We have now covered all the concepts you need in
order to understand how this class works. Here it is:

You can see that we have made every method a static method, so that we can
simply use the class name when we call a method. For example:

You can see that the nextString method uses the nextLine method of the
Scanner class—but as a new Scanner object is created each time the method is
called there is no problem about using it after a nextInt or a nextDouble
method as there is with nextLine itself.

We will use the EasyScanner class later, in Sect. 8.8.2.

8.7 Passing Objects as Parameters

In Chap. 5 it was made clear that when a variable is passed to a method it is simply
the value of that variable that is passed—and that therefore a method cannot change
the value of the original variable. In Chap. 6 you found out that in the case of an

The EasyScanner class
import java.util.Scanner;

public class EasyScanner
{
 public static int nextInt()
 {
 Scanner keyboard = new Scanner(System.in);
 int i = keyboard.nextInt();
 return i;
 }

 public static double nextDouble()
 {
 Scanner keyboard = new Scanner(System.in);
 double d = keyboard.nextDouble();
 return d;
 }

 public static String nextString()
 {
 Scanner keyboard = new Scanner(System.in);
 String s = keyboard.nextLine();
 return s;
 }

 public static char nextChar()
 {
 Scanner keyboard = new Scanner(System.in);
 char c = keyboard.next().charAt(0);
 return c;
 }
}

int number = EasyScanner.nextInt();

8.6 The EasyScanner Class 209

array it is the value of the memory location (a reference) that is passed and con-
sequently the value of the original array elements can be changed by the called
method.

What about objects? Let’s write a little program (ParameterTest) to test this
out.

The output from this program is as follows:

Account Number: 1
Account Name: Ann T Dote
Balance: 2500.0

You can see that the deposit has successfully been made—in other words the
attribute of the object has actually been changed. This is because what was sent to the
method was, of course, a reference to the original BankAccount object, testA-
ccount. Thus accountIn is a copy of the testAccount reference and so points
to the original object and invokes that object’s methods. So the following line of code:

calls the deposit method of the original BankAccount object.
You might think this is a very good thing, and will make life easier for you as a

programmer. However, you need a word of caution here. It is very easy inadver-
tently to allow a method to change an object’s attributes, so you need to take care—
more about this in the second semester.

ParameterTest
public class ParameterTest
{
 public static void main(String[] args)
 {
 // create new bank account
 BankAccount testAccount = new BankAccount("1", "Ann T Dote");
 test(testAccount); // send the account to the test method
 System.out.println("Account Number: " + testAccount.getAccountNumber());
 System.out.println("Account Name: " + testAccount.getAccountName());
 System.out.println("Balance: " + testAccount.getBalance());
 }

 // a method that makes a deposit in the bank account
 static void test(BankAccount accountIn)
 {
 accountIn.deposit(2500);
 }
}

accountIn.deposit(2500);

210 8 Implementing Classes

8.8 Collection Classes

In Chap. 7 we introduced you to the idea of a collection class—a class which holds
a collection of objects. We showed you how to use the ArrayList class to hold a
collection of objects of a specific type, and how to use a couple of ArrayList
methods.

Methods of Java’s collection classes are of course not tailored to any specific
type. A method such as remove, for example, requires us to send in a reference to
the object to be removed. Normally, however, we would reference an object such as
a bank account by a unique field such as an account number—so any program using
an ArrayList would need to first search the list to find the object we want, and
then to remove it.

While this approach would work perfectly well, it would be a lot more conve-
nient if we could tailor our collection classes so that they provided the specific
methods that we need. For example, in the case of a list of bank accounts it would
be useful to deposit or withdraw funds from a specific account referenced by its
account number, or to remove an account with a particular number.

We can do this quite easily by creating our own collection class with an attribute
which is itself a collection, such as ArrayList. We have done this below; we
have called our collection class Bank.

8.8.1 The Bank Class

When one object itself consists of other objects, this relationship is called aggre-
gation. This association, represented in UML by a diamond, is often referred to as a
part-of relationship. For example, the association between a car and the passengers
in the car is aggregation. Composition (represented by a filled diamond) is a
special, stronger, form of aggregation whereby the “whole” is actually dependent
on the “part”. For example, the association between a car and its engine is one of
composition, as a car cannot exist without an engine. A collection class is an
implementation of the aggregation relationship.

The association between the container object, Bank, and the contained object,
BankAccount, is shown in the UML diagram of Fig. 8.5.

Fig. 8.5 The Bank object can contain many BankAccount objects

8.8 Collection Classes 211

The asterisk at the other end of the joining line indicates that the Bank object
contains zero or more BankAccount objects. The design for the Bank class is
now given in Fig. 8.6.

As can be seen in Fig. 8.6, the class will have a single attribute, list, which is
a collection of BankAccounts. Here we have decided to use an ArrayList of
BankAccount objects to store this collection:

-list: ArrayList <BankAccount>

There are seven methods, which are described below:

-search(String) : int
This is what we can term a helper method; it will be declared as private (note
the minus sign in the UML notation), because it is not intended for it to be called by
other classes. It accepts a String representing the account number. It then returns
the index of the account with that account number in the ArrayList. If the
account number does not exist, then a “phoney” index (−999) will be returned to
indicate failure.

+getTotal(): int
This method simply returns the total number of accounts currently in the system.

Bank

-list: ArrayList <BankAccount>

-search(String) : int
+getTotal() : int
+getItem(String) : BankAccount
+addAccount(String, String) : boolean
+depositMoney(String, double) : boolean
+withdrawMoney(String, double) : boolean
+removeAccount(String) : boolean

Fig. 8.6 The design of the Bank class

212 8 Implementing Classes

+getItem(String): BankAccount

This method receives a String representing an account number, and returns the
BankAccount with that account number.

If the account number is not valid, a null value will be returned.

+addAccount(String, String): boolean

This method receives two strings representing the account number and name
respectively, and adds an account with these details to the list of accounts. If an
account with this number already exists, the new account will not be added and the
method will return a value offalse. However, if the operation has been completed
successfully a value of true is returned.

+depositMoney(String, double) : boolean

Accepts a String, representing the account number of a particular account, and an
amount of money which is to be deposited in that account. Returns true if the
deposit was made successfully, or false otherwise (no such account number).

+withdrawMoney(String, double) : boolean

Accepts a String, representing the account number of a particular account, and an
amount of money which is to be withdrawn from that account. Returns true if the
withdrawal was made successfully, or false otherwise. The reason for the
withdrawal not taking place could be that there is no such account number or that
there are insufficient funds. In this version of Bank, the method does not indicate
which of these reasons caused the failure—that is left for you as an end of chapter
exercise.

+removeAccount(String) : boolean

Accepts a String, representing an account number, and removes that account
from the list. Returns true if the account was removed successfully, or false
otherwise (no such account number).

The code for the Bank class is presented below. Take a careful look at it, then
we will discuss it.

8.8 Collection Classes 213

The Bank class
import java.util.ArrayList;

public class Bank
{

 ArrayList<BankAccount> list = new ArrayList<>();

 // helper method to find the index of a specified account
 private int search(String accountNumberIn)
 {
 for(int i = 0; i <= list.size() - 1; i++)
 {
 BankAccount tempAccount = list.get(i); // find the account at index i
 String tempNumber = tempAccount.getAccountNumber(); // get account number
 if(tempNumber.equals(accountNumberIn)) // if this is the account we are looking for
 {
 return i; // return the index
 }
 }
 return -999;
 }

 // return the total number of items
 public int getTotal()
 {
 return list.size();
 }

 // return an account with a particular account number
 public BankAccount getItem(String accountNumberIn)
 {
 int index = search(accountNumberIn);
 if(index != -999) // check that account exists
 {
 return list.get(index);
 }
 else
 {
 return null; // no such account
 }
 }

// add an item to the list
 public boolean addAccount(String accountNumberIn, String nameIn)
 {
 if(search(accountNumberIn) == -999) // check that account does not already exist
 {
 list.add(new BankAccount(accountNumberIn, nameIn)); // add new account
 return true;
 }
 return false;
 }

// deposit money in a specified account
 public boolean depositMoney(String accountNumberIn, double amountIn)
 {
 BankAccount acc = getItem(accountNumberIn);
 if(acc != null)
 {
 acc.deposit(amountIn);
 return true; // indicate success
 }
 else
 {
 return false; // indicate failure
 }
 }

// withdraw money from a specified account
 public boolean withdrawMoney(String accountNumberIn, double amountIn)
 {
 BankAccount acc = getItem(accountNumberIn);
 if(acc != null && acc.getBalance() >= amountIn)
 {
 acc.withdraw(amountIn);
 return true; // indicate success
 }
 else
 {
 return false; // indicate failure
 }
 }

// remove an account
 public boolean removeAccount(String accountNumberIn)
 {
 int index = search(accountNumberIn); // find index of account
 if(index != -999) // if account exists account
 {
 list.remove(index);
 return true; // remove was successful
 }
 else
 {
 return false; // remove was unsuccessful
 }
 }
}

214 8 Implementing Classes

As you can see, we have declared and initialized a single attribute, an
ArrayList which will hold BankAccount objects.

Now the methods. Firstly the search method, which is declared as private
because it is there only to assist other methods of the class, rather than to be
accessed by other classes:

You have seen something like this before in Chap. 6 when we searched an
integer array—you can see we are using the same technique of sending back a
“dummy” value if the account number is not valid.

On each iteration of the loop the account at that index is retrieved using the get
method of ArrayList and assigned to a BankAccount object, tempAc-
count. The account number of tempAccount is then assigned to a String
variable tempNumber. This is compared with the account number that has been
input. If the account number matches, the loop returns the index of that item and
terminates. Otherwise, the loop continues to the end of the list (determined by using
the size method of ArrayList). The method then returns the dummy value of
−999, indicating that no item with that account number exists.

The next method simply returns the total number of items currently in the list,
again using the size method of ArrayList:

Next we have a method to retrieve an account with a particular account number:

ArrayList<BankAccount> list = new ArrayList<>();

 private int search(String accountNumberIn)
 {
 for(int i = 0; i <= list.size() - 1; i++)
 {
 BankAccount tempAccount = list.get(i); 11"hkpf"vjg"ceeqwpv"cv"kpfgz"k
 String tempNumber = tempAccount.getAccountNumber(); 11"igv"ceeqwpv"pwodgt
 if(tempNumber.equals(accountNumberIn)) 11"kh"vjku"ku"vjg"ceeqwpv"yg"ctg"nqqmkpi"hqt"
 {
 return i; 11"tgvwtp"vjg"kpfgz
 }
 }
 return -999;
 }

 public int getTotal()
 {
 return list.size();
 }

public BankAccount getItem(String accountNumberIn)
{
 int index = search(accountNumberIn);
 if(index != -999) // check that account exists
 {
 return list.get(index);
 }
 else
 {
 return null; // no such account
 }
}

8.8 Collection Classes 215

Here you can see how we utilize our searchmethod—we use it to find the index
of the account with the given account number, then we check that the index is not
equal to −999 (in other words that the account exists), and as long it is a valid index
we return the relevant account. If the index is not valid a null value is returned.

Now we come to the addAccount method:

Once again we use the search method, this time to check that an account with
this number does not already exist—so we are hoping that search returns a value
−999. If this is the case we use the add method of ArrayList to add a new
BankAccount object, which we create from the account number and account
name that are received as parameters to the method—the method then returns
true, indicating success.

Should the account already exist, a value of false is returned, indicating that
no new account was added.

Now for the depositMoney method.

The method receives the account number of the account in which we wish to
place the money, and the amount to be deposited. We retrieve the correct account
with the getItem method that we developed earlier. We check that this is not a
null value, and if all is well we use the deposit method of BankAccount to
deposit the money, and return a value of true, to indicate success. If the account
returned was null, that indicates that there was no account with the account
number in question, and in that case a value of false is returned.

The withdrawMoney method is similar except that we need to have an
additional check in the if statement to see whether or not there were sufficient
funds for the withdrawal to go ahead:

 public boolean depositMoney(String accountNumberIn, double amountIn)
 {
 BankAccount acc = getItem(accountNumberIn);
 if(acc != null)
 {
 acc.deposit(amountIn);
 return true; // indicate success
 }
 else
 {
 return false; // indicate failure
 }
 }

 public boolean addAccount(String accountNumberIn, String nameIn)
 {
 if(search(accountNumberIn) == -999) // check that account does not already exist
 {
 list.add(new BankAccount(accountNumberIn, nameIn)); // add new account
 return true;
 }
 return false;
 }

216 8 Implementing Classes

As we mentioned above, the method could be improved if there were a way to
determine whether the withdrawal was declined because there was no such account
or because there were insufficient funds. This is left for the exercises at the end of
the chapter.

Finally we have the method that removes an account:

As you can see, we make use of the remove method of ArrayList, which
removes an item at a particular index. The index is found by calling the search
method as before, and as before we first test to make sure the account exists; if it
does, then the account is removed and a value of true is returned—if not the
method returns a value of false.

It is worth considering how much more complex it would have been to remove
an item from the collection if we had used an array rather than an ArrayList.
Since the array might be only partially full, we would have to introduce a variable
to keep track of the position of the last item in the array. Then all the items
following the one to be removed would have to be shuffled along by one position in
order to overwrite the given item. Finally, we would need to make sure when any
new item is added, it is added to the end of the reduced array, so we would have to
reduce the ‘end-of-array’ variable by 1. That’s rather a lot of work we don’t need to
do now we have used an ArrayList and can do all that with just one call to its
remove method!

8.8.2 Testing the Bank Class

The program below, BankApplication uses the Bank class—notice that we
are using our new EasyScanner class here.

 public boolean removeAccount(String accountNumberIn)
 {
 int index = search(accountNumberIn); // find index of account
 if(index != -999) // if account exists account
 {
 list.remove(index);
 return true; // remove was successful
 }
 else
 {
 return false; // remove was unsuccessful
 }
 }

 public boolean withdrawMoney(String accountNumberIn, double amountIn)
 {
 BankAccount acc = getItem(accountNumberIn);
 if(acc != null && acc.getBalance() >= amountIn)
 {
 acc.withdraw(amountIn);
 return true; // indicate success
 }
 else
 {
 return false; // indicate failure
 }
 }

8.8 Collection Classes 217

218 8 Implementing Classes

You are familiar with this sort of menu-driven program, so there is not too much
to say about it, except to observe that this is probably the first example of an
application which, although not all that complex, could actually be thought of as the
kind of application that could be used in a real business environment. Of course, in
the outside world such applications are much more sophisticated than this, but they
are, in principle, not too different from the sort of thing we have just done. Notice
that our application involves a number of classes that we have written ourselves,
and have pulled together to form a single application.

8.8 Collection Classes 219

It is worth drawing attention to the way that the program makes use of some of
the features of the Bank class that we incorporated into the BankApplication.
For example, in option1 (and similarly in other methods) we make use of the fact
that the addAccount method of Bank returns true if the new account was
successfully added, and false otherwise:

In a similar way, in option5, we use the fact that the getItem method
returns null if the account was not found:

206

boolean success = bankIn.addAccount(number, name);
if(success)
{
 System.out.println("Account added");
}
else
{
 System.out.println("Account number already exists");
}

if(account != null)
{
 System.out.println("Account number: " + account.getAccountNumber());
 System.out.println("Account name: " +account.getAccountName());
 System.out.println("Balance: " + account.getBalance());
 System.out.println();
}
else
{
 System.out.println("No such account");
}

We end this chapter with an example program run from BankApplication,
followed by a few ideas on how our application could be improved.

1. Create new account
2. Remove an account
3. Deposit money
4. Withdraw money
5. Check account details
6. Quit

Enter choice [1–6]: 1

Enter account number: 63488965
Enter account name: Mary Land–Cookies
Account added

1. Create new account
2. Remove an account
3. Deposit money
4. Withdraw money
5. Check account details
6. Quit

220 8 Implementing Classes

Enter choice [1–6]: 1

Enter account number: 98654322
Enter account name: Laura Norder
Account added

1. Create new account
2. Remove an account
3. Deposit money
4. Withdraw money
5. Check account details
6. Quit

Enter choice [1–6]: 1

Enter account number: 12347890
Enter account name: Gary Baldi–Biscuits
Account added

1. Create new account
2. Remove an account
3. Deposit money
4. Withdraw money
5. Check account details
6. Quit

Enter choice [1–6]: 3

Enter account number: 12347890
Enter amount to deposit: 1500
Money deposited

1. Create new account
2. Remove an account
3. Deposit money
4. Withdraw money
5. Check account details
6. Quit

Enter choice [1–6]: 2

Enter account number: 98654322
Account removed

8.8 Collection Classes 221

1. Create new account
2. Remove an account
3. Deposit money
4. Withdraw money
5. Check account details
6. Quit

Enter choice [1–6]: 5

Enter account number 55566777
No such account

1. Create new account
2. Remove an account
3. Deposit money
4. Withdraw money
5. Check account details
6. Quit

Enter choice [1–6]: 5

Enter account number 12347890
Account number: 12347890
Account name: Gary Baldi–Biscuits
Balance: 1500.0

1. Create new account
2. Remove an account
3. Deposit money
4. Withdraw money
5. Check account details
6. Quit

Enter choice [1–6]: 6

We should point out that for our application to be useful to any organization, it
would need to be able to store the account information even after the application
terminates. However, before you are able to achieve this you will have to wait until
the second semester, where you will find out how to create files to hold permanent
records.

222 8 Implementing Classes

8.9 The Benefits of Object-Oriented Programming

In this chapter and the previous one you have seen how to create classes and use
them as data types in your programs. You have seen how the process of building
classes enables us to hide data within a class. Programming languages based on
classes and objects—in other words object-oriented languages—have brought a
number of benefits, and are now the standard. Below we have summarized some of
the benefits that this has brought us.

• As we have demonstrated, the ability to encapsulate data within a class has
enabled us to build far more secure systems.

• The object-oriented approach makes it far easier for us to re-use classes again
and again. Having defined a BankAccount class or a Student class for
example, we can use them in many different programs without having to write a
new class each time. In the next chapter you will also see how it is possible to
refine existing classes to meet additional needs by the technique known as
inheritance. If systems can be assembled from re-usable objects, this leads to
far higher productivity.

• With the object-oriented approach it is possible to define and use classes which
are not yet complete. They can then be extended without upsetting the operation
of other classes. This greatly improves the testing process. We can easily build
prototypes without having to build a whole system before testing it and letting
the user of the system see it.

• The object-oriented approach makes it far easier to make changes to systems
once they have been completed. Whole classes can be replaced, or new classes
can easily be added.

• The object-oriented way of doing things is a far more “natural” approach. We
base our programs on objects that exist in the real world—students, bank
accounts, customers and so on.

• The modular nature of object-oriented programming improves the whole
development process. The modular approach means that the old methodologies
whereby systems were first analysed, then designed, and then implemented and
tested were able give way to new methods whereby these processed were far
more integrated and systems were developed far more rapidly.

8.10 Self-test Questions

1. In question 7 of the programming exercises at the end of Chap. 2 you wrote a
program that calculated the area and circumference of a circle. Now consider a
class that we could develop for this purpose; we have called it Circu-
larShape. Here is the UML design:

8.9 The Benefits of Object-Oriented Programming 223

(a) Distinguish between attributes and methods in this class.
(b) Explain what it meant by the term encapsulation, how it is recorded in this

UML diagram and how it is implemented in a Java class.
(c) For each method in the CircularShape class, determine

• the number of parameters;
• the type of any parameters;
• the return type;
• the equivalent method header in Java.

(d) Add an additional method into this UML diagram, calculateDiame-
ter, which calculates and returns the diameter of the circle.

(e) Write the Java code for the calculateDiameter method.

2. The UML diagram below represents the design for a Student class.

CircularShape

-radius : double

+CircularShape(double)
+setRadius(double)
+getRadius() : double
+calculateArea() : double
+calculateCircumference() : double

Student

-studentNumber : String
-studentName : String
-markForMaths : int
-markForEnglish : int
-markForScience : int
-fee: double

+Student(String, String)
+getNumber() : String
+getName() : String
+enterMarks(int, int, int)
+getMathsMark() : int
+getEnglishMark() : int
+getScienceMark() : int
+calculateAverageMark() : double
+getFee(): double
+setFee(double)

224 8 Implementing Classes

You can see that students have a name, a number, some marks for subjects they
are studying and the fee. Methods are then provided to process this data.

(a) What is indicated by the fact that certain attributes and methods have been
underlined?

(b) Write the Java code for the parts of the class that have been underlined.

3. Consider the following class:

(a) What would be the output from the following program?

(b) What would be the output from the following program?

public class SomeClass
{
 private int x;

 public SomeClass()
 {
 x = 10;
 }

 public SomeClass(int xIn)
 {
 x = xIn;
 }

 public void setX(int xIn)
 {
 x = xIn;
 }

 public int getX()
 {
 return x;
 }
}

public class Test1
{
 public static void main(String[] args)
 {
 SomeClass myObject = new SomeClass();
 System.out.println(myObject.getX());
 }
}

public class Test2
{
 public static void main(String[] args)
 {
 SomeClass myObject = new SomeClass(5);
 System.out.println(myObject.getX());
 }
}

8.10 Self-test Questions 225

(c) Explain why the following program would not compile.

(d) What would be the output from the following program?

4. Consider the Bank program from Sect. 8.8.1.

(a) Adapt the withdrawMoney method so that it distinguishes the two reasons
why the method might fail—namely that there is no account with the given
account number, or there is not enough money in the account to make a
withdrawal.

A boolean method would no longer suffice as there is more then one pos-
sibility. One solution would be for the method to return an integer—perhaps 1
for success, −1 to indicate that the method failed because there was no such
account number, and −2 to indicate that it failed because there were insufficient
funds.

(b) Adapt the BankApplication program from Sect. 8.8.2 so that option 4 now
uses the new version of withdrawMoney.

5. Identify some of the reasons why the object-oriented approach has become the
norm for programming.

public class Test3
{
 public static void main(String[] args)
 {
 SomeClass myObject = new SomeClass(5, 8);
 System.out.println(myObject.getX());
 }
}

public class Test4
{
 public static void main(String[] args)
 {
 int y = 20;
 SomeClass myObject = new SomeClass(5);
 System.out.println(myObject.getX());
 test(y, myObject);
 System.out.println(y);
 System.out.println(myObject.getX());
 }

 static void test(int z, SomeClass classIn)
 {
 z = 50;
 classIn.setX(100);
 }
}

226 8 Implementing Classes

8.11 Programming Exercises

1: (a) Implement the CircularShape class that was discussed in self-test
question 1 above.

(b) Add the calculateDiameter method into this class as discussed in
self-test question 1d and 1e above.

(c) Write a program to test out your class. This program should allow the user
to enter a value for the radius of the circle, and then display the area,
circumference and diameter of this circle on the screen by calling the
appropriate methods of the CircularShape class.

(d) Modify the tester program above so that once the information has been
displayed the user is able to reset the radius of the circle. The area, cir-
cumference and diameter of the circle should then be displayed again.

2: (a) Write the code for the Student class discussed in self-test question 2
above. You should note that in order to ensure that a double is returned
from the calculateAverageMark method you should specifically
divide the total of the three marks by 3.0 and not simply by 3 (look back at
Chap. 2 to remind yourself why this is the case).

Another thing to think about is what you choose for the initial values of the
marks. If you chose to give each mark an initial value of zero, this could be
ambiguous; a mark of zero could mean that the mark simply has not been
entered—or it could mean the student actually scored zero in the subject!
Can you think of a better initial value?

You can assume that the fees for the student are set initially to 3000.

(b) Write a tester class to test out your Student class; it should create two or
three students (or even better an ArrayList of students), and use the
methods of the Student class to test whether they work according to the
specification.

3. A system is being developed for use in a store that sells electrical appliances.
A class called StockItem is required for this system. An object of the
StockItem class will require the following attributes:

• a stock number;

• a name;

• the price of the item;

• the total number of these items currently in stock.

The first three of the above attributes will need to be set at the time a
StockItem object is created—the total number of items in stock will be set to
zero at this time. The stock number and name will not need to be changed after
the item is created.

8.11 Programming Exercises 227

The following methods are also required:

• a method that allows the price to be re-set during the object’s lifetime;

• a method that receives an integer and adds this to the total number of items
of this type in stock;

• a method that returns the total value of items of this type in stock; this is
calculated by multiplying the price of the item by the number of items in
stock;

• methods to read the values of all four attributes.

The design of the StockItem class is shown in the following UML diagram:

(a) Write the code for the StockItem class.
(b) Consider the following program, which uses the StockItem class, and

in which some of the code has been replaced by comments:

Replace the comments with appropriate code.

SStockItem

-stockNumber : String
-name : String
-price : double
-totalStock : int

+StockItem(String, String, double)
+setPrice(double)
+increaseTotalStock(int)
+getStockNumber() : String
+getName() : String
+getTotalStock() : int
+getPrice() : double
+calculateTotalPrice() : double

import java.util.Scanner;
public class TestProg
{
 public static void main(String[] args)
 {
 Scanner keyboard = new Scanner(System.in);
 Scanner keyboardString = new Scanner(System.in);
 String tempNumber;
 String tempName;
 double tempPrice;

 System.out.print("Enter the stock number: ");
 tempNumber = keyboardString.nextLine();
 System.out.print("Enter the name of the item: ");
 tempName = keyboardString.nextLine();
 System.out.print("Enter the price of the item: ");
 tempPrice = keyboard.nextDouble();

 // Create a new item of stock using the values that were entered by the user
 // Increase the total number of items in stock by 5
 // Display the stock number
 // Display the total price of all items in stock
 }
}

228 8 Implementing Classes

(c) i. A further attribute, salesTax, is required. The value of this attribute
should always be the same for each object of the class. Write the dec-
laration for this attribute.

ii. Provide a class method, setSalesTax, for this class—it should receive
a double and set the value of the sales tax to this value.

iii. Write a line of code that sets the sales tax for all objects of the class to 10
without referring to any particular object.

4. The class shown below keeps track of a pressure sensor in a laboratory.

When a Sensor object is created using the first constructor, the initial pressure
is set to zero. When it is created using the second constructor it is set to the value
of the parameter.

The pressure should not be set to a value less than zero. Therefore, if the input
parameter to the setPressure method is a negative number, the pressure
should not be changed and a value of false should be returned. If the pressure
is set successfully, a value of true should be returned.

(a) Write the code for the Sensor class.

(b) Develop a SensorTester program to test the Sensor class.

5. Consider a class that keeps track of the temperature within an incubator.
The UML diagram is shown below:

When an Incubator object is created, the temperature is initially set to 5°.

Incubator

-temperature : int
+MAX : int
+MIN : int

+Incubator()
+getTemperature() : int
+increaseTemperature(boolean)
+decreaseTemperature(boolean)

Sensor

-pressure: double

+Sensor ()
+Sensor (double)
+setPressure(double) : boolean
+getPressure() : double

8.11 Programming Exercises 229

The increaseTemp method increases the temperature by 1, and the de-
creaseTemp method decreases the temperature by 1. However, the temper-
ature must never be allowed to rise above a maximum value of 10 nor fall below
a minimum value of −10. If an attempt is made to increase or decrease the
temperature so it falls outside this range, then an alarm must be raised; the
methods in this case should not increase or decrease the temperature but should
return a value of false, indicating that the alarm should be raised. If the
temperature is changed successfully, however, a value of true is returned.

(a) Write the code for the Incubatotor class.

(b) Develop a IncubatorTester program to test the Incubator class.

6. Implement the changes to the Bank class and the BankApplication pro-
gram suggested in question 4 of the self-test questions. The source code for the
Bank class and the BankApplication class can be downloaded from the
website.

7: (a) In programming Exercise 6 of the last chapter you were asked to develop a
program to process a collection of rooms in an apartment. Now consider a
collection class, Apartment, for this purpose. The Apartment class
would store a collection of Oblong objects, where each Oblong object
represents a particular room in the apartment. The UML diagram depicting
the association between the Apartment class and the Oblong class is
shown below:

The single attribute of the Apartment class consists of a collection of
Oblong objects, rooms, which makes use of an ArrayList.

AApartment Oblong

-rooms : ArrayList <Oblong> -length: double
-height: double

*
+Oblong(double, double)

+add(Room) +getLength() : double
+getRoomArea(int):double +getHeight() : double
+getRoomLength(int):double +setLength(double)
+getRoomHeight(int):double +setHeight(double)

+calculateArea():double
+calculatePerminiter():double

230 8 Implementing Classes

The methods of the Apartment class are described below:

+add(Room) : boolean
Adds the given room to the list of rooms.

+getRoomArea(int) : double
Returns the area of the given room number sent in as a parameter. If an
invalid room number is sent in as a parameter this method should send back
some dummy value (for example −999).

+getRoomLength(int) : double
Returns the length of the given room number sent in as a parameter. If an
invalid room number is sent in as a parameter this method should send back
some dummy value (for example −999).

+getRoomHeight(int) : double
Returns the height of the given room number sent in as a parameter. If an
invalid room number is sent in as a parameter this method should send back
some dummy value (for example −999).

Implement the Apartment class.
(b) Develop an ApartmentTester program to test the Apartment class.

8. Consider a scenario in which a university allows lecturers to borrow equipment.
The equipment is available for use 5 days a week and for 7 periods during each
day. When the equipment is booked for use, the details of the booking (room
number and lecturer name) are recorded. When no booking is recorded, the
equipment is available for use.

(a) Create a Booking class defined in the UML diagram below:

(b) Now a TimeTable class is defined to process these bookings. Its UML
diagram is given below:

BBooking

-room : String

-name : String

+Booking(String, String)

+getRoom() : String

+getName() : String

8.11 Programming Exercises 231

As you can see, the attribute of this class is a two-dimensional array of
Booking objects. The methods of this class are defined below:

+TimeTable(int, int)
A constructor that accepts the number of days per week and number of
periods per day and sizes the timetable accordingly.

You should note that initially all elements in the array will of course have a
null value—a null value will represent an empty slot.

+makeBooking(int, int, Booking) : boolean
Accepts the booking details for a particular day and period and, as long as
this slot is not previously booked and the day and period numbers are valid,
updates the timetable accordingly. Returns true if the booking was
recorded successfully and false if not.

+cancelBooking(int, int) : boolean
Cancels the booking details for a particular day and period. Returns false
if the given slot was not previously booked or the day and period number
are invalid, and true if the slot was cancelled successfully.

+isFree(int, int) : boolean
Accepts a day and period number and returns true if the day and period
numbers are valid and the given slot is free, and false otherwise.

+getBooking(int, int) : Booking
Accepts a day and period number and returns the booking for the given slot
if the day and period number are valid and the slot has been booked or
null otherwise.

TimeTable

-times: Booking[][]

+TimeTable(int, int)
+makeBooking(int, int, Booking) : boolean
+cancelBooking(int, int) : boolean
+isFree(int, int) : boolean
+getBooking(int, int) : Booking
+numberOfDays() : int
+numberOfPeriods() : int

232 8 Implementing Classes

+numberOfDays() : int
Returns the number of days associated with this timetable.

+numberOfPeriods() : int
Returns the number of periods associated with this timetable.
Implement this class in Java.

(c) Write a suitable tester for this class.

9. Add some additional methods such as nextByte and nextLong to the
EasyScanner class.

8.11 Programming Exercises 233

9Inheritance

Outcomes:

By the end of this chapter you should be able to:

• explain the term inheritance;
• design inheritance structures using UML notation;
• implement inheritance relationships in Java;
• distinguish between method overriding and method overloading;
• explain the term type cast and implement this in Java;
• explain the use of the abstract modifier when applied to classes and

methods;
• explain the use of the final modifier, when applied to classes and methods;
• describe the way in which all Java classes are derived from the Object class.

9.1 Introduction

One of the greatest benefits of the object-oriented approach to software develop-
ment is that it offers the opportunity for us to reuse classes that have already been
written—either by ourselves or by someone else. Let’s look at a possible scenario.
Say you wanted to develop a software system and you have, during your analysis,
identified the need for a class called Employee. You might be aware that a
colleague in your organization has already written an Employee class; rather than
having to write your own class, it would be easier to approach your colleague and
ask her to let you use her Employee class.

So far so good, but what if the Employee class that you are given doesn’t quite
do everything that you had hoped? Perhaps your employees are part-time
employees, and you want your class to have an attribute like hourlyPay, or

© Springer Nature Switzerland AG 2019
Q. Charatan and A. Kans, Java in Two Semesters, Texts in Computer Science,
https://doi.org/10.1007/978-3-319-99420-8_9

235

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99420-8_9&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99420-8_9&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99420-8_9&domain=pdf
https://doi.org/10.1007/978-3-319-99420-8_9

methods like calculateWeeklyPay and setHourlyPay, and these attributes
and methods do not exist in the Employee class you have been given.

You may think it would be necessary to go into the old class and start messing
about with the code. But there is no need, because object-oriented programming
languages provide the ability to extend existing classes by adding attributes and
methods to them. This is called inheritance.

9.2 Defining Inheritance

Inheritance is the sharing of attributes and methods among classes. We take a
class, and then define other classes based on the first one. The new classes inherit
all the attributes and methods of the first one, but also have attributes and methods
of their own. Let’s try to understand this by thinking about the Employee class.

Employee

 -number : String
 -name : String

 +Employee(String, String)
 +setName(String)
 +getNumber() : String
+getName() : String

PartTimeEmployee

 -hourlyPay : double

+PartTimeEmployee(String, String, double)
 +setHourlyPay(double)
 +getHourlyPay() :double
+calculateWeeklyPay(int) :double

Fig. 9.1 An inheritance
relationship

236 9 Inheritance

Say our Employee class has two attributes, number and name, a user-defined
constructor, and some basic get- and set-methods for the attributes. We now
define our PartTimeEmployee class; this class will inherit these attributes and
methods, but can also have attributes and methods of its own. We will give it one
additional attribute, hourlyPay, some methods to access this attribute and one
additional method, calculateWeeklyPay.

This is illustrated in Fig. 9.1 which uses the UML notation for inheritance,
namely a triangle.

You can see from this diagram that an inheritance relationship is a hierarchical
relationship. The class at the top of the hierarchy—in this case the Employee class
—is referred to as the superclass (or base class) and the PartTimeEmployee as
the subclass (or derived class).

The inheritance relationship is also often referred to as an is-a-kind-of rela-
tionship; in this case a PartTimeEmployee is a kind of Employee.

9.3 Implementing Inheritance in Java

The code for the Employee class is shown below:

Employee
public class Employee
{

private String number;
private String name;
public Employee(String numberIn, String nameIn)

 {
number = numberIn;
name = nameIn;

 }

public void setName(String nameIn)
 {

name = nameIn;
 }

public String getNumber()
 {

return number;
 }

public String getName()
 {

return name;
 }
}

There is nothing new here, so let’s get on with our PartTimeEmployee class.
We will present the code first and analyse it afterwards.

9.2 Defining Inheritance 237

PartTimeEmployee
public class PartTimeEmployee extends Employee // this class is a subclass of Employee
{

private double hourlyPay; // this attribute is unique to the subclass

// the constructor
public PartTimeEmployee(String numberIn, String nameIn, double hourlyPayIn)

 {
super(numberIn, nameIn); // call the constructor of the superclass
hourlyPay = hourlyPayIn;

 }

// these methods are also unique to the subclass
public double getHourlyPay()

 {
return hourlyPay;

 }

public void setHourlyPay(double hourlyPayIn)
 {

hourlyPay = hourlyPayIn;
 }

public double calculateWeeklyPay(int noOfHoursIn)
 {

return noOfHoursIn * hourlyPay;
 }
}

The first line of interest is the class header itself:

public class PartTimeEmployee extends Employee // this class is a subclass of Employee

Here we see the use of the keyword extends. Using this word in this way
means that the PartTimeEmployee class (the subclass) inherits all the attributes
and methods of the Employee class (the superclass). So although we haven’t
coded them, any object of the PartTimeEmployee class will have, for example,
an attribute called name and a method called getNumber.
A PartTimeEmployee is now a kind of Employee.

But can you see a problem here? The attributes have been declared as private
in the superclass so although they are now part of our PartTimeEmployee class,
none of the PartTimeEmployee class methods can directly access them—the
subclass has only the same access rights as any other class!

There are a number of possible ways around this:

1. We could declare the original attributes as public—but this would take away
the whole point of encapsulation.

2. We could use the special keyword protected instead of private. The
effect of this is that anything declared as protected is accessible to the
methods of any subclasses. There are, however, two issues to think about here.
The first is that you have to anticipate in advance when you want your class to
be able to be inherited. The second problem is that it weakens your efforts to
encapsulate information within the class, since, in Java, protected attributes
are also accessible to any other class in the same package (you will find out
much more about the meaning of the word package in Chap. 19).

238 9 Inheritance

The above remarks notwithstanding, this is a perfectly acceptable approach to
use, particularly in situations where you are writing a class as part of a discrete
application, and you will be aware in advance that certain classes will need to be
subclassed. You will see an example of this in Sect. 9.5.
Incidentally, in a UML diagram a protected attribute is indicated by a hash
symbol, #.

3. The other solution, and the one we will use now, is to leave the attributes as
private, but to plan carefully in advance which get- and set-methods we
are going to provide.

After the class header we have the following declaration:

private double hourlyPay;

This declares an attribute, hourlyPay, which is unique to our subclass—but
remember that the attributes of the superclass, Employee, will be inherited, so in
fact any PartTimeEmployee object will have three attributes.

Next comes the constructor. We want to be able to assign values to the number
and name at the time that the object is created, just as we do with an Employee
object; so our constructor will need to receive parameters that will be assigned to
the number and name attributes.

But wait a minute! How are we going to do this? The number and name
attributes have been declared as private in the superclass—so they aren’t
accessible to objects of the subclass. Luckily there is a way around this problem.
We can call the constructor of the superclass by using the keyword super. Look
how this is done:

public PartTimeEmployee(String numberIn, String nameIn, double hourlyPayIn)
{

super(numberIn, nameIn); // call the constructor of the superclass
hourlyPay = hourlyPayIn;

}

After calling the constructor of the superclass, we need to perform one more task
—namely to assign the third parameter, hourlyPayIn, to the hourlyPay
attribute. Notice, however, that the line that calls super has to be the first one—if
we had written our constructor like this it would not compile:

/* This version of the constructor would not compile - the call to super has to be the
 first instruction */

public PartTimeEmployee(String numberIn, String nameIn, double hourlyPayIn)
{

hourlyPay = hourlyPayIn;
super(numberIn, nameIn); // this call should have been the first instruction!

}

9.3 Implementing Inheritance in Java 239

The remaining methods of PartTimeEmployee are new methods specific to
the subclass:

public double getHourlyPay()
{

return hourlyPay;
}
public void setHourlyPay(double hourlyPayIn)
{

hourlyPay = hourlyPayIn;
}
public double calculateWeeklyPay(int noOfHoursIn)
{

return noOfHoursIn * hourlyPay;
}

The first two provide read and write access respectively to the hourlyPay
attribute. The third one receives the number of hours worked and calculates the pay
by multiplying this by the hourly rate. Th program below demonstrates the use of
the PartTimeEmployee class.

PartTimeEmployeeTester
import java.util.Scanner;
public class PartTimeEmployeeTester
{

public static void main(String[] args)
{

Scanner keyboard = new Scanner(System.in);
Scanner keyboardString = new Scanner(System.in);
String number, name;
double pay;
int hours;
PartTimeEmployee emp;

// get the details from the user
System.out.print("Employee Number? ");
number = keyboardString.nextLine();
System.out.print("Employee's Name? ");
name = keyboardString.nextLine();
System.out.print("Hourly Pay? ");
pay = keyboard.nextDouble();
System.out.print("Hours worked this week? ");
hours = keyboard.nextInt();

// create a new part-time employee
emp = new PartTimeEmployee(number, name, pay);

// display part-time employee's details, including the weekly pay
System.out.println();

// the next two methods have been inhreted from the Employee class
System.out.println(emp.getName());
System.out.println(emp.getNumber());

System.out.println(emp.calculateWeeklyPay(hours));
}

}

Here is a sample test run:

Employee Number? A103456
Employee’s Name? Mandy Lifeboats
Hourly Pay? 15.50
Hours worked this week? 20

240 9 Inheritance

Mandy Lifeboats
A103456
310.0

We can now move on to look at another inheritance example; let’s choose the
Oblong class that we developed in the last chapter.

9.4 Extending the Oblong Class

We are going to define a new class called ExtendedOblong, which extends the
Oblong class. First, let’s remind ourselves of the Oblong class itself.

The Oblong class – a reminder
public class Oblong
{

// the attributes
private double length;
private double height;

// the methods

// the constructor
public Oblong(double lengthIn, double heightIn)

 {
length = lengthIn;
height = heightIn;

}

// this method allows us to read the length attribute
public double getLength()

 {
return length;

 }

// this method allows us to read the height attribute
public double getHeight()

 {
return height;

 }

// this method allows us to write to the length attribute
public void setLength(double lengthIn)

 {
length = lengthIn;

 }

// this method allows us to write to the height attribute
public void setHeight(double heightIn)

 {
height = heightIn;

 }

// this method returns the area of the Oblong
public double calculateArea()

 {
return length * height;

 }

// this method returns the perimeter of the Oblong
public double calculatePerimeter()

 {
return 2 * (length + height);

 }
}

9.3 Implementing Inheritance in Java 241

The original Oblong class had the capability of reporting on the perimeter and
area of the oblong. Our extended class will have the capability of sending back a
string representation of itself composed of a number of symbols such as asterisks—
for example:

Now at first glance you might think that this isn’t a string at all, because it
consists of several lines. But if we think of the instruction to start a new line as just
another character—which for convenience we could call <NEWLINE>—then our
string could be written like this.

*****<NEWLINE>*****<NEWLINE>*****

In Java we are able to represent this <NEWLINE> character with a special character
that looks like this:

‘\n’

This is one of a number of special characters called escape characters, which
are always introduced by a backslash (\). Another useful escape character is ‘\t’
which inserts a tab.1

Our ExtendedOblong class will need an additional attribute, which we will
call symbol, to hold the character that is to be used to draw the oblong. We will
also provide a setSymbol method, and of course we will need a method that
sends back the string representation. We will call this method draw. The new
constructor will accept values for the length and height as before, but will also
receive the character to be used for drawing the oblong.

The design is shown in Fig. 9.2.
Now for the implementation. As well as those aspects of the code that relate to

inheritance, there is an additional new technique used in this class—this is the
technique known as type casting. Take a look at the complete code first—then we
can discuss this new concept along with some other important features of the class.

1You would also have to place a backslash in front of a double quote (\”), a single quote (\’) or
another backslash (\\) if you wanted any of these to be output as part of a string. This is because the
compiler would interpret these as having a special meaning such as terminating the string.

242 9 Inheritance

ExtendedOblong
public class ExtendedOblong extends Oblong
{

private char symbol;

// the constructor
public ExtendedOblong(double lengthIn, double heightIn, char symbolIn)
{

super(lengthIn, heightIn);
symbol = symbolIn;

}

public void setSymbol(char symbolIn)
{

symbol = symbolIn;
}

public String draw()
{

String s = new String(); // start off with an empty string
int l, h;

/* in the next two lines we type cast from double to integer so that we are able to count how
many times we print the symbol */
l = (int) getLength();
h = (int) getHeight();
for (int i = 1; i <= h; i++)
{

for (int j = 1; j <= l; j++)
{

s = s + symbol; // add the symbol to the string
}
s = s + '\n'; // add the <NEWLINE> character

}
return s; // return the string representation

}
}

ExtendedOblong

 -symbol : char

+ExtendedOblong(double, double, char)
 +setSymbol(char)

+draw() : String

Oblong

-length : double
-height : double

+Oblong(double, double)
+setLength(double)
+setHeight(double)
+getLength() : double
+getHeight() : double
+calculateArea() : double
+calculatePerimeter() : double

Fig. 9.2 The Oblong hierarchy

9.4 Extending the Oblong Class 243

So let’s take a closer look at all this. After the class header—which extends the
Oblong class—we declare the additional attribute, symbol, and then define our
constructor:

public ExtendedOblong(double lengthIn, doubleheightIn, char symbolIn)
{

super(lengthIn, heightIn);
symbol = symbolIn;

}

Once again we call the constructor of the superclass with the keyword super.
After the constructor comes the setSymbol method—which allows the symbol to
be changed during the oblong’s lifetime—and then we have the draw method,
which introduces the new concept of type casting:

public String draw()
{

String s = new String(); // start off with an empty string
int l, h;
l = (int) getLength();
h = (int) getHeight();
for (int i = 1; i <= h; i++)

 {
for (int j = 1; j <= l; j++)

 {
s = s + symbol; // add a symbol to end of the string

 }
s = s + '\n'; // add a new line to the string

 }
return s;

}

Inspect the code carefully—notice that we have declared two local variables of
type int. In order to understand the purpose of these two variables, l and h, we
need to explore this business of type casting, which means forcing an item to
change from one type to another.

The draw method is going to create a string of one or more rows of stars or
crosses or whatever symbol is chosen. Now the dimensions of the oblong are
defined as doubles. Clearly our draw method needs to be dealing with whole
numbers of rows and columns—so we must convert the length and height of the
oblong from doubles to ints. There will obviously be some loss of precision
here, but that won’t matter in this particular case.

As you can see from the above code, type casting is achieved by placing the new
type name in brackets before the item you wish to change. This is illustrated in
Fig. 9.3.

The following program uses the ExtendedOblong class. It creates an oblong
of length 10 and height 5, with an asterisk as the symbol; it then draws the oblong,
changes the symbol to a cross, and draws it again.

244 9 Inheritance

ExtendedOblongTester
public class ExtendedOblongTester
{

public static void main(String[] args)
 {

ExtendedOblong extOblong = new ExtendedOblong(10.2,5.3,'*');
System.out.println(extOblong.draw());
extOblong.setSymbol('+');
System.out.println(extOblong.draw());

 }
}

The output from this program is shown below:

++++++++++
++++++++++
++++++++++
++++++++++
++++++++++

9.5 Method Overriding

In Chap. 5 you were introduced to the concept of polymorphism—the idea that we
can have different methods and operators with the same name, but whose behaviour
is different. You saw in that chapter that one way of achieving polymorphism was
by method overloading, which involves methods of the same class having the same
name, but being distinguished by their parameter lists.

l = (int) getLength();

this converts the
double value to

an int value

method returns
a double

Fig. 9.3 Type casting

9.4 Extending the Oblong Class 245

Now we are going to explore another way of achieving polymorphism, namely
by method overriding. In order to do this we are going to extend the Bank-
Account class that we developed in the previous chapter. You will recall that the
class we developed there did not provide any overdraft facility—the withdraw
method was designed so that the withdrawal would take place only if the amount to
be withdrawn did not exceed the balance.

Now let’s consider a special account which is the same as the original account,
but allows holders of the account to be given an overdraft limit and to withdraw
funds up to this limit. We will call this account GoldAccount. Since a Gold-
Account is a kind of BankAccount, we can use inheritance here to design the
GoldAccount class. In addition to the attributes of a BankAccount, a
GoldAccount will need to have an attribute to represent the overdraft limit, and
should have get- and set-methods for this attribute. As far as the methods are
concerned, we need to reconsider the withdraw method. This will differ from the
original method, because, instead of checking that the amount to be withdrawn does
not exceed the balance, it will now check that the amount does not exceed the total
of the balance plus the overdraft limit. So what we are going to do is to re-write—or
override—the withdraw method in the subclass.

The UML diagram for the BankAccount class and the GoldAccount class
appear in Fig. 9.4. You will notice that we have made a small change to the original
BankAccount class. The balance attribute has a hash sign (#) in front of it instead
of a minus sign. You will remember from our previous discussion that this means
access to the attribute is protected, rather than private. The reason why we
have decided to make this change is explained below.

You will also notice that the withdraw method appears in both classes—this,
of course, is because we are going to override it in the subclass.

You might already be thinking about how to code the withdraw method in the
GoldAccount class. If you are doing this, you will probably have worked out that
this method is going to need access to the balance attribute, which of course was
declared as private in the BankAccount class, and (for good reason) was not
provided with a set-method.

When we developed the BankAccount class in Chap. 8, we developed it as a
stand-alone class, and we didn’t think about how it might be used in a larger
application where it could be refined. Had we known about inheritance at that point
we might have given the matter a little more thought, and realised that it would be
useful if any sub-classes of BankAccount that were developed in the future had
access to the balance attribute. As we explained in Sect. 9.3, we can achieve that
by declaring that attribute as protected instead of private. That is what we
have done here. The version of BankAccount that we are going to use in this

246 9 Inheritance

chapter is therefore exactly the same as the previous one, with the single difference
that the declaration of the balance attribute now looks like this, with the keyword
protected replacing private:

protected double balance;

This new version of the BankAccount class is available on the website.
Here is the code for the GoldAccount class you will notice that there is

something new here, namely the line that reads @Override—have a look at the
code, then we will explain this.

BankAccount

-accountNumber : String
-accountName : String
#balance : double

+BankAccount (String, String)
+getAccountNumber() : String
+getAccountName() : String
+getBalance() : double
+deposit(double)
+withdraw(double) : boolean

GoldAccount

-overdra Limit : double

+GoldAccount (String, String, double)
+setLimit(double)
+getLimit() : double
+withdraw(double) : boolean

Fig. 9.4 The UML diagram
for the BankAccount
hierarchy

9.5 Method Overriding 247

GoldAccount
public class GoldAccount extends BankAccount
{

private double overdraftLimit;

public GoldAccount(String numberIn, String nameIn, double limitIn)
 {

super(numberIn, nameIn);
overdraftLimit = limitIn;

 }

public void setLimit(double limitIn)
 {

overdraftLimit = limitIn;
 }

public double getLimit()
 {

return overdraftLimit;
 }

@Override
public boolean withdraw(double amountIn)

 {
if(amountIn > balance + overdraftLimit) // the customer can withdraw up to the overdraft limit

 {
return false; // no withdrawal was made

 }
else

 {
balance = balance - amountIn; // balance is protected so we have direct access to it
return true; // money was withdrawn successfully

 }
 }
}

The thing that we are interested in here is the withdraw method. As we have
pointed out this is introduced with @Override. This is an example of a Java
annotation. Annotations begin with the @ symbol, and always start with an upper
case letter. Although it is not mandatory that we include this annotation, it is very
good practice to do so. Its purpose is to inform the compiler that we are overriding a
method from the superclass. This helps us to avoid making the common error of not
giving the overridden method exactly the same name and parameter list as the
method it is supposed to be overriding. Without the annotation, this would escape
the notice of the compiler, and you would have simply written a new method. But
with the annotation included you would get a compile error if the method headings
did not match.

As far as the method itself is concerned, the test in the if statement differs from
the original method in the BankAccount class (as shown below), in order to take
account of the fact that customers with a gold account are allowed an overdraft:

withdraw method in BankAccount class withdraw method in GoldAccount class

public boolean withdraw(double amountIn)
{

if(amountIn > balance)
 {

return false;
 }

else
 {

balance = balance - amountIn;
return true;

 }
}

public boolean withdraw(double amountIn)
{

if(amountIn > balance + overdraftLimit)
 {

return false;
 }

else
 {

balance = balance - amountIn;
return true;

 }
}

248 9 Inheritance

When we dealt with method overloading in Chap. 5 we told you that the
methods with the same name within a class are distinguished by their parameter
lists. In the case of method overriding, the methods have the same parameter list but
belong to different classes—the superclass and the subclass. In this case they are
distinguished by the object with which they are associated. We illustrate this in the
program below.

OverridingDemo
public class OverridingDemo
{

public static void main(String[] args)
 {

boolean ok;
//declare a BankAccount object
BankAccount bankAcc = new BankAccount("123", "Ordinary Account Holder");
//declare a GoldAccount object
GoldAccount goldAcc = new GoldAccount("124", "Gold Account Holder", 500);

bankAcc.deposit(1000);
goldAcc.deposit(1000);

ok = bankAcc.withdraw(1250); // the withdraw method of BankAccount is called
if(ok)

 {
System.out.print("Money withdrawn. ");

 }
else

 {
System.out.print("Insufficient funds. ");

 }
System.out.println("Balance of " + bankAcc.getAccountName() + " is " + bankAcc.getBalance());
System.out.println();

ok = goldAcc.withdraw(1250); // the withdraw method of GoldAccount is called
if(ok)

 {
System.out.print("Money withdrawn. ");

 }
else

 {
System.out.print("Insufficient funds. ");

 }
System.out.println("Balance of " + goldAcc.getAccountName() + " is " + goldAcc.getBalance());
System.out.println();

 }
}

In this program we create an object of the BankAccount class and an object of
the GoldAccount class (with an overdraft limit of 500), and deposit an amount of
1000 in each:

BankAccount bankAcc = new BankAccount("123", "Ordinary Account Holder");
GoldAccount goldAcc = new GoldAccount("124", "Gold Account Holder", 500);
bankAcc.deposit(1000);
goldAcc.deposit(1000);

Next we attempt to withdraw the sum of 1250 from the BankAccount object
and assign the return value to a boolean variable, ok:

ok = bankAcc.withdraw(1250);

9.5 Method Overriding 249

The withdraw method that is called here will be that of BankAccount,
because it is called via the BankAccount object, bankAcc.

Once this is done we display a message showing whether or not the withdrawal
was successful, followed by the balance of that account:

if(ok)
{

System.out.print("Money withdrawn. ");
}
else
{

System.out.print("Insufficient funds. ");
}
System.out.println("Balance of " + bankAcc.getAccountName() + " is " + bankAcc.getBalance());

Now the withdraw method is called again, but in this case via the Gold-
Account object, goldAcc:

ok = goldAcc.withdraw(1250);

This time it is the withdraw method of GoldAccount that will be called,
because goldAcc is an object of this class. The appropriate message and the
balance are again displayed.

The output from this program is shown below:

Insufficient funds. Balance of Ordinary Account Holder
is1000.0

Money withdrawn. Balance of Gold Account Holder is -250.0

As we would expect, the withdrawal from BankAccount does not take place
—the balance is 1000, and since there is no overdraft facility a request to withdraw
1250 is denied.

In the case of the GoldAccount, however, a withdrawal of 1250 would result
in a negative balance of 250, which is allowed, because it is within the overdraft
limit of 500.

9.6 Abstract Classes

Let’s think again about our Employee class. Imagine that our business expands,
and we now employ full-time employees as well as part-time employees.
A full-time employee object, rather than having an hourly rate of pay, will have an

250 9 Inheritance

annual salary. It might also need a method that calculates the monthly pay (by
dividing the annual salary by 12).

Figure 9.5 shows the structure of an employee hierarchy with the two types of
employee, the full-time and the part-time employee.

Notice how the two subclasses contain the attributes and methods appropriate to
the class. If you think about this a bit more, it will occur to you that any employee
will always be either a full-time employee or a part-time employee. There is never
going to be a situation in which an individual is just a plain old employee! So users
of a program that included all these classes would never find themselves creating
objects of the Employee class. In fact, it would be a good idea to prevent people
from doing this—and, as you might have guessed, there is a way to do so, which is
to declare the class as abstract. Once a class has been declared in this way it
means that you are not allowed to create objects of that class. In order to make our
employee class abstract all we have to do is to place the keyword abstract in the
header:

public abstract class Employee

The Employee class simply acts a basis on which to build other classes. Now,
if you tried to create an object of the Employee class you would get a compiler
error.

FullTimeEmployee
-annualSalary : double

+FullTimeEmployee(String, String, double)
+setAnnualSalary(double)
+getAnnualSalary() : double
+calculateMonthlyPay () : double

-hourlyPay : double

+PartTimeEmployee(String,String, double)
+setHourlyPay(double)
+getHourlyPay() : double
+calculateWeeklyPay(int) : double

PartTimeEmployee

Employee
-number : String
-name : String

+Employee(String, String)
 +setName(String)
 +getNumber() : String
 +getName() : String

Employee
-number : String
-name : String

Fig. 9.5 An inheritance relationship showing the superclass Employee and the subclasses
FullTimeEmployee and PartTimeEmployee

9.6 Abstract Classes 251

We have already seen the code for Employee and PartTimeEmployee;
Here is the code for the FullTimeEmployee class:

FullTimeEmployee
public class FullTimeEmployee extends Employee
{

private double annualSalary;

public FullTimeEmployee(String numberIn, String nameIn, double salaryIn)
{

super(numberIn,nameIn);
annualSalary = salaryIn;

}

public void setAnnualSalary(double salaryIn)
{

annualSalary = salaryIn;
}

public double getAnnualSalary()
{

return annualSalary;
}

public double calculateMonthlyPay()
{

return annualSalary/12;
}

}

As we said before, an inheritance relationship is often referred to as an “is-a-
kind-of” relationship. A full-time employee is a kind of employee, as is a part-time
employee. Therefore an object that is of type PartTimeEmployee is also of type
Employee—an object is the type of its class, and also of any of the superclasses in
the hierarchy.

Let’s see how this relationship works in a Java program. Imagine a method
which is set up to receive an Employee object. If we call that method and send in
a FullTimeEmployee object or a PartTimeEmployee object, either is
absolutely fine—because both are kinds of Employee. We demonstrate this in the
program that follows:

EmployeeTester
public class EmployeeTester
{

public static void main(String[] args)
 {

FullTimeEmployee fte = new FullTimeEmployee("A123", "Ms Full-Time", 25000);
PartTimeEmployee pte = new PartTimeEmployee("B456", "Mr Part-Time",30);
testMethod(fte); // call testMethod with a full-time employee object
testMethod(pte); // call testMethod with a part-time employee object

 }

static void testMethod(Employee employeeIn) // the method expects to receive an Employee object
 {

System.out.println(employeeIn.getName());
 }
}

In this program testMethod expects to receive an Employee object. It calls
the getName method of Employee in order to display the employee’s name.

252 9 Inheritance

In the main method, we create two objects, one FullTimeEmployee and
one PartTimeEmployee:

FullTimeEmployee fte = new FullTimeEmployee("A123", "Ms Full-Time", 25000);
PartTimeEmployee pte = new PartTimeEmployee("B456", "Mr Part-Time",30);

We then call testMethod twice—first with FullTimeEmployee object
and then with the PartTimeEmployee object:

testMethod(fte); // call testMethod with a full-time employee object
testMethod(pte); // call testMethod with a part-time employee object

The method accepts either object, and calls the getName method. The output is,
as expected:

Ms Full-Time
Mr Part-Time

9.7 Abstract Methods

In the last program we conveniently gave our objects the names “Ms Full-Time”
and “Mr Part-Time” so that we could easily identify them in our output. In fact, it
wouldn’t be a bad idea—particularly for testing purposes—if every Employee
type actually had a method that returned a string telling us the kind of object we
were dealing with. Adding such a method—we could call it getStatus—would
be simple. For the FullTimeEmployee the method would look like this:

@Override
public String getStatus()
{

return "Full-Time";
}

Notice that we have included the @Override annotation, even though it is not
compulsory to do so.

9.6 Abstract Classes 253

For the PartTimeEmployee, getStatus would look like this:

@Override
public String getStatus()
{

return "Part-Time";
}

It would be very useful if we could say to anyone using any of the Employee
types, that we guarantee that this class will have a getStatus method. That way,
a developer could, for example, write a method that accepts an Employee object,
and call that object’s getStatus method, even without knowing anything else
about the class.

As you have probably guessed, we can guarantee it! What we have to do is to
write an abstract method in the superclass—in this case Employee. Declaring
a method as abstract means that any subclass is forced to override it—otherwise
there would be a compiler error. So in this case we just have to add the following
line into the Employee class:

public abstract String getStatus();

You can see that to declare an abstract method, we use the Java keyword
abstract, and we define the header, but no body—the actual implementation is
left to the individual subclasses. Of course, abstract methods can only be
declared in abstract classes—it wouldn’t make much sense to try to declare an
object if one or more of its methods were undefined.

Now, having defined the abstract getStatus method in the Employee
class, if we tried to compile the FullTimeEmployee or the PartTimeEm-
ployee class (or any other class that extends Employee) without including a
getStatus method we would be unsuccessful.

Once we have added the different getStatus methods into the Employee
classes, we could re-write our EmployeeTester program from the previous
sections using the getStatus method in testMethod. We have done this with
EmployerTester2 below:

EmployeeTester2
public class EmployeeTester2
{

public static void main(String[] args)
 {

FullTimeEmployee fte = new FullTimeEmployee("A123", "Ms Full-Time", 25000);
PartTimeEmployee pte = new PartTimeEmployee("B456", "Mr Part-Time",30);
testMethod(fte); // call testMethod with a full-time employee object
testMethod(pte); // call testMethod with a part-time employee object

 }

static void testMethod(Employee employeeIn) // the method expects to receive an Employee object
 {

System.out.println(employeeIn.getStatus());
 }
}

254 9 Inheritance

In the above program it was clear at the time the program was compiled which
version of getStatus was being referred to. The first time that the tester
method is called, a FullTimeEmployee object is sent in, so the getStatus
method of FullTimeEmployee is called; the second time that the tester
method is called, a PartTimeEmployee object is sent in, so the getStatus
method of PartTimeEmployee is called. But now have a look at the next
program (where, incidentally, we have made use of our EasyScanner class for
input).

EmployeeTester3
public class EmployeeTester3
{

public static void main(String[] args)
{

Employee emp; // a reference to an Employee
char choice;
String numberEntered, nameEntered;
double salaryEntered, payEntered;
System.out.print("Choose (F)ull-Time or (P)art-Time Employee: ");
choice = EasyScanner.nextChar();

System.out.print("Enter employee number: ");
numberEntered = EasyScanner.nextString();

System.out.print("Enter employee name: ");
nameEntered = EasyScanner.nextString();

if(choice == 'F' || choice == 'f')
{

System.out.print("Enter annual salary: ");
salaryEntered = EasyScanner.nextDouble();

// create a FullTimeEmployee object
emp = new FullTimeEmployee (numberEntered, nameEntered, salaryEntered);

}
else
{

System.out.print("Enter hourly pay: ");
payEntered = EasyScanner.nextDouble();

// create a PartTimeEmployee object
emp = new PartTimeEmployee (numberEntered, nameEntered, payEntered);

}
testMethod(emp); // call tester with the object created

}

static void testMethod(Employee employeeIn)
{

System.out.println(employeeIn.getStatus());
}

}

In this program, we call testMethod only once, and allow the user of the
program to decide whether a FullTimeEmployee object is sent in as a
parameter, or a PartTimeEmployee object. You can see that at the beginning of
the program we have declared a reference to an Employee:

Employee emp;

Although Employee is an abstract class, it is perfectly possible to declare a
reference to this class—what we would not be allowed to do, of course, is to create
an Employee object. However, as you will see in a moment, we can point this

9.7 Abstract Methods 255

reference to an object of any subclass of Employee, since such objects, like
FullTimeEmployee and PartTimeEmployee, are kinds of Employee.

You can see that we request the employee number and name from the user, and
then ask if the employee is full-time or part-time. In the former case we get the
annual salary and then create a FullTimeEmployee object which we assign to
the Employee reference, emp.

if(choice == 'F' || choice == 'f')
{

System.out.print("Enter annual salary: ");
salaryEntered = input.nextDouble();

// create a FullTimeEmployee object
emp = new FullTimeEmployee (numberEntered, nameEntered, salaryEntered);

}

In the latter case we request the hourly pay and then assign emp to a new
PartTimeEmployee object:

else
{

System.out.print("Enter hourly pay: ");
payEntered = input.nextDouble();

// create a PartTimeEmployee object
emp = new PartTimeEmployee (numberEntered, nameEntered, payEntered);

}

Finally we call the testMethod with emp:

testMethod(emp);

The getStatus method of the appropriate Employee object will then be
called.

Here are two sample runs from this program:

Choose (F)ull-Time or (P)art-Time Employee: F
Enter employee number: 123
Enter employee name: Robertson
Enter annual salary: 23000
Full-Time

Choose (F)ull-Time or (P)art-Time Employee: P
Enter employee number: 876
Enter employee name: Adebayo
Enter hourly pay: 25
Part-Time

256 9 Inheritance

As you can see, we do not know until the program is run whether the
getStatus method is going to be called with a FullTimeEmployee object
or a PartTimeEmployee object—and yet when the getStatus method is
called, the correct version is executed.

The technique which makes it possible for this decision to be made at run-time is
quite a complex one, and differs slightly from one programming language to another.

9.8 The final Modifier

You have already seen the use of the keyword final in Chap. 2, where it was used
to modify a variable and turn it into a constant. It can also be used to modify a class
and a method. In the case of a class it is placed before the class declaration, like this:

public final class SomeClass
{

// code goes here
}

This means that the class cannot be subclassed. In the case of a method it is used
like this:

public final void someMethod()
{

// code goes here
}

This means that the method cannot be overridden.

9.9 The Object Class

One of the very useful things about inheritance is the is-a-kind-of relationship that
we mentioned earlier. For example, when the ExtendedOblong class extended
the Oblong class it became a kind of Oblong—so, we can use Extended-
Oblong objects with any code written for Oblong objects. When the Part-
TimeEmployee class extended the Employee class it became a kind of
Employee. We have seen in Sect. 9.6 that, in Java, if a method of some class
expects to receive as a parameter an object of another class (say, for example,
Vehicle), then it is quite happy to receive instead an object of a subclass of
Vehicle—this is because that object will be a kind of Vehicle.

In Java, every single class that is created is in fact derived from what we might
call a special “super superclass”. This super superclass is called Object. So every
object in Java is in fact a kind of Object. Any code written to accept objects of type
Object can be used with objects of any type.

9.7 Abstract Methods 257

9.10 The toString Method

In the previous chapter you saw a menu-driven program, BankApplication,
which provided an option to display the details of a particular bank account—and
this option of course made use of the get-methods of the Bank class.

If this were to be a real-world application, then—as you will see from our case
study—there would be an extensive period of testing. In order to test an application,
it would be very useful if we had a way of simply displaying all the information
about an object without having to invoke a lot of individual methods each time.

We are able to do this by making use of a method called toString which
belongs to the Object class, and is therefore inherited by all classes, and can be
overridden for each individual class.

The System.out.print and println methods are overloaded, and have a
version which simply accepts a whole object as a parameter, and then displays
whatever has been defined in the object’s toString method.

For example, we could add the following method to our BankAccount class:

@Override
public String toString()
 {
 return "Name: " + accountName + '\n' + "Account number: " + accountNumber + '\n'
 + "Balance: " + balance;
 }

We can test this out with a little program—notice how the println method is
called simply with the name of the object:

ToStringDemo
public class ToStringDemo
{

public static void main(String[] args)
{

BankAccount acc = new BankAccount("12345678", "Patel");
System.out.println(acc);

}
}

The output from this program would be:

Name: Patel
Account number: 12345678
Balance: 0.0

And if you are wondering what happens if we haven’t overridden the toString
method, the answer is that the output is simply the name of the class and its location
in memory. So the above program would have given us something like:

BankAccount@15db9742

258 9 Inheritance

9.11 Wrapper Classes and Autoboxing

We mentioned previously that collection classes such as ArrayList cannot be
used to hold simple types such as int or char. However it is not uncommon that
you would want to be able to do exactly that. Well, there is no need to worry—Java
provides a very simple means of doing this.

To understand how it works you need to know about wrapper classes. For every
primitive type, Java provides a corresponding class—the name of the class is
similar to the basic type, but begins with a capital letter—for example Integer,
Character, Float, Double. They are called wrappers because they “wrap” a
class around the basic type. So an object of the Integer class, for example, holds
an integer value. In future chapters you will find that these classes also contain
some other very useful methods.

We could declare a list of integers by using the Integer class with the fol-
lowing statement:

ArrayList<Integer> myList = new ArrayList<>();

One way of storing an integer value such as 37 in this array would be as follows:

myList.add(new Integer(37));

The constructor of the Integer class accepts a primitive value and creates the
corresponding Integer object—here we have created an Integer object from
the primitive value 37, and this is now stored in the array.

Java, however, allows us to make use of a technique known as autoboxing. This
involves the automatic conversion of a primitive type such as an int to an object of
the appropriate wrapper class. This allows us to do the following, which as you can
see is much simpler:

myList.add(37);

Java also allows us to make use of a technique called unboxing, which converts
from the wrapper class back to the primitive type—so to assign the first item in the
list to an integer x, we would simply write:

int x = myList.get(0);

Exactly the same technique would be used to store other primitive types such as
char and double.

9.11 Wrapper Classes and Autoboxing 259

9.12 Self-test Questions

1. Below is a UML diagram for an inheritance relationship between two classes—
Vehicle and SecondHandVehicle.

(a) By referring to the diagram, explain the meaning of the term inheritance.

(b) What do you think might be the function of each of the constructors?

(c) What do you think might be the reason for the fact that in the Vehicle
class there is a set-method for the value attribute, but not for the other
three?

(d) Write the header for the SecondHandVehicle class.

2. (a) Consider the following classes and arrange them into an inheritance hier-
archy using UML notation:

Circle Shape Square FilledCircle

260 9 Inheritance

(b) Write the top line of the class declaration for each of these classes when
implementing them in Java.

(c) Explain what effect the abstract modifier has on a class and identify
which, if any, of the classes above could be considered as abstract classes?

3. Consider once again an application to record the reading of a pressure sensor as
discussed in programming exercise 4 of the previous chapter. Now assume a
SafeSensor class is developed that ensures that the pressure is never set
above some maximum value. A SafeSensor is a kind of Sensor. The UML
design is given below:

Sensor

-pressure : double

+Sensor ()
+Sensor (double)
+setPressure(double): boolean
+getPressure(): double

SafeSensor

-max: double
+SafeSensor (double)
+SafeSensor (double, double)
+setPressure(double): boolean
+getMax(): double

The SafeSensor class has two constructors. The first sets the maximum safe
value to the given parameter and the actual value of the sensor reading to 10.
The second constructor accepts two parameters, the first is used to set the
maximum safe value and the second is used to set the initial value for the
reading of the sensor.
The setPressure method is redefined so that only safe values (values no
greater than the safe maximum value and no less than zero) are set.

(a) In the example above, distinguish between method overriding and method
overloading.

(b) Below is one attempt at the Java code for the first SafeSensor con-
structor. Identify why it will not compile.

9.12 Self-test Questions 261

(c) Here is another attempt at the Java code for the first SafeSensor con-
structor. Identify why it will not compile.

(d) Write the correct code for the first SafeSensor constructor.

4. By referring to the BankAccount class of Sect. 9.5, distinguish between
private, public and protected access.

5. How are all classes in Java related to the Object class?

6. Explain, with an example, the term type cast.

7. (a) Consider the following definition of a class called Robot:

// THIS WILL NOT COMPILE!!
public SafeSensor(double maxIn)
{

max = maxIn;
pressure = 10;

}

// THIS WILL NOT COMPILE!!
public SafeSensor(double maxIn)
{

max = maxIn;
super();

}

public abstract class Robot
{

private String id;
private int securityLevel;
private int warningLevel = 0;

public Robot(String IdIn, int levelIn)
{

id = IdIn;
securityLevel = levelIn;

}

public String getId()
{

return id;
}

public int getSecurityLevel()
{

return securityLevel;
}

public abstract void calculateWarningLevel();
}

262 9 Inheritance

(i) The following line of code is used in a program that has access to the
Robot class:

Explain why this line of code would cause a compiler error.

(ii) Consider the following class:

Explain why any attempt to compile this class would result in a compiler error.

8. What is the effect of the final modifier, when applied to both classes and
methods?

9. Look back at the EmployeeTester class from Sect. 9.6. What do you think
would happen if you replaced this line of testMethod:

with the following line?

Give a reason for your answer.

Robot aRobot = new Robot("R2D2", 1000);

public class CleaningRobot extends Robot
{

public String typeOfCleaningFluid;

public CleaningRobot(String IdIn, int levelIn, String fluidIn)
{

super(IdIn, levelIn);
typeOfCleaningFluid = fluidIn;

}

public String getTypeOfCleaningFluid()
{

return typeOfCleaningFluid;
}

}

System.out.println(employeeIn.getName());

System.out.println(employeeIn.getAnnualSalary());

9.12 Self-test Questions 263

9.13 Programming Exercises

1. (a) Copy the ExtendedOblong class from the website, then implement the
ExtendedOblongTester from Sect. 9.4. You will, of course, need to
ensure that the Oblong class itself is accessible to the compiler.

(b) Modify the ExtendedOblongTester program so that the user is able to
choose the symbol used to display the oblong.

2. (a) Implement the SafeSensor class of self-test question 3. You will need to
ensure that the Sensor class itself is accessible to the compiler.

(b) Write a tester class to test the methods of the SafeSensor class.

3. (a) Implement the Vehicle and the SecondHandVehicle classes of
self-test question 1.
You should note that:

• the calculateAge method of Vehicle accepts an integer repre-
senting the current year, and returns the age of the vehicle as calculated
by subtracting the year of manufacture from the current year;

• the hasMultipleOwners method of SecondHandVehicle
should return true if the numberOfOwners attribute has a value
greater than 1, or false otherwise.

(b) Write a tester class that tests all the methods of the SecondHandVehicle
class.

4. Write a menu-driven program that uses an ArrayList to hold Vehicles.
The menu should offer the following options:

1. Add a vehicle
2. Display a list of vehicle details
3. Delete a vehicle
4. Quit

264 9 Inheritance

10Introducing JavaFX

Outcomes:

By the end of this chapter you should be able to:

• briefly describe the history of graphics programming in Java;
• explain the structure and life cycle of a JavaFX application;
• produce 2D graphical shapes in JavaFX;
• build an interactive graphics application in JavaFX using common components

such as buttons, textfields and labels;
• program a JavaFX control to listen for events using a lambda expression;
• make use of a variety of different JavaFX containers;
• create borders, fonts and colours;
• format decimal numbers so that they appear in an appropriate form in a

graphics application.

10.1 Introduction

At last it is time to learn about graphics programming. In this chapter you will start
to move away from that rather uninteresting text screen you have been using and
build attractive windows programs for input and output.

In order to do this you are going to be using the Java graphics package known as
JavaFX. This package provides all the graphics tools and components that you
need to produce the sort of graphical interfaces that we have all become used to in
modern day applications.

© Springer Nature Switzerland AG 2019
Q. Charatan and A. Kans, Java in Two Semesters, Texts in Computer Science,
https://doi.org/10.1007/978-3-319-99420-8_10

265

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99420-8_10&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99420-8_10&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99420-8_10&domain=pdf
https://doi.org/10.1007/978-3-319-99420-8_10

10.2 A Brief History of Java Graphics

First we will give you a little bit of history. In the earliest versions of Java, graphical
programming was achieved exclusively by making use of a package known as the
Abstract Window Toolkit (AWT). The idea with AWT was to provide a system of
graphics in which any component that we create is associated with the corre-
sponding component in the native operating system. So with AWT, if we were to
create a graphics component (such as a button or text field for example) the
component would be provided by the operating system—Windows™ or macOS™
for example—so that your button or text field would look exactly like the one you
were used to in the particular operating system. Components that rely on the native
operating system make extensive use of the system’s resources and are therefore
described as heavyweight components.

Because it used a lot of resources, and because of functional differences between
operating systems, AWT was not entirely successful, and this system was replaced
by a package called Swing. Swing classes are for the most part written in Java, and
because they do not rely on the system components they are known as lightweight
components. Unlike AWT, Swing components look the same regardless of the
operating system the program is running on.

From around the year 2000–2014, Swing was the main platform for producing
Java Graphics. However, its look and feel became rather old-fashioned compared to
today’s graphics that run across multiple devices, and with the release of Java 8 in
2014 came the latest version of a new technology known as JavaFX, together with
the announcement that Swing will not be developed further (although it will con-
tinue to be packaged with Java).

In Fig. 10.1 you can see some examples of common graphics components using
the three different technologies.

(c) AWT (Windows)(a) JavaFX (b) Swing

Fig. 10.1 Some typical JavaFX components compared with equivalent Swing and AWT
components

266 10 Introducing JavaFX

10.3 JavaFX: An Overview

In this book we will be using JavaFX exclusively for our graphics applications. So
first, some terminology. Firstly, you need to know that a JavaFX program is
referred to as an application. Your JavaFX class will extend the Application
class, for which you need the following import statement:

import javafx.application.Application

The top-level window in which the application runs is called a stage—normally
this will be a window such as you see in Fig. 10.1a—but if, as you can do with
many JavaFX applications, you run the program in full-screen mode, then the
screen becomes the stage. Some applications can be made to run in a browser, in
which case the browser is the stage. The contents of the stage—the graphic itself—
is called a scene, and is often referred to as a scene graphic. The items that make up
the scene are referred to as nodes. They are very commonly the kind of components
that allow interaction with the user, such as buttons, text fields, labels and check
boxes, which are often referred to collectively as controls. They can also be 2D or
3D graphics shapes. But nodes can also be containers. Containers are components
that hold other nodes, and each container arranges the nodes in a particular way—
for example, vertically, horizontally, in a grid, or stacked one on top of the other.
Normally, we wouldn’t see the container, but it is perfectly possible to put a border
around it if we want to. Importantly, containers can contain other containers, so we
can develop a hierarchy in our scene. We normally place a single top level node in
our scene, and this is referred to as the root node. We use the terms parent and
children for the containing and contained nodes respectively.

Figure 10.2 should make this clear. Here we have a sample scene in which the
root node is a VBox—this is a container that arranges its child nodes vertically. We
have given it a black border so that you can see it. The VBox has three children—a
TextField, a Label and an HBox, around which we have again put a border.
As you can probably guess, an HBox is similar to a VBox, but arranges its child
nodes horizontally. In this case it has three child nodes which are Buttons. All of
these components will become familiar to you as you proceed through this chapter
—in particular you will see how we have made extensive use of the VBox and
HBox to construct our scene graphics.

VBox
(root node)

HBox

Stage

Scene

Fig. 10.2 A hierarchical scene

10.3 JavaFX: An Overview 267

To help you understand the way that a scene is constructed in a hierarchal way,
we have shown you in Fig. 10.3 the hierarchy that makes up the scene graphic in
the above example.

When a JavaFX application begins, there are three methods that are called in
order. These are:

void init()
abstract void start(Stage stage)
void stop()

The first of these, init, is where we would place any routines that need to be
carried out before the application itself starts, while the stop method is where we
would place any code that we would want to be executed after the application
finishes. We will not be concerning ourselves with these two methods in this
chapter. What we will be concerning ourselves with, however, is the very important
start method. As you can see, it is an abstract method and therefore has to be
coded. It is in this method that the code for our application is placed. You can, of
course, break this up by adding some helper methods, but it is with this method that
the application itself begins.

So how do we launch a JavaFX application? Surprisingly it is not always via a
main method. If the application is run from a command line, as described in the
first chapter, then it doesn’t actually require a main method to launch it. Neither
does it need a main method if it is deployed as a .jar file, which is something you
will learn about in Chap. 19. But if you run your program within an IDE, as most of
you will be doing at first, then we do require a main method, and for that reason we
have chosen to include such a method with each application that we develop here.
You will see that the main method takes the following form:

Label HBoxTextField

VBox

Stage

Scene

Bu on Bu on Bu on

Fig. 10.3 The hierarchical
structure of the scene in
Fig. 10.2

268 10 Introducing JavaFX

As you can see the main method calls the application’s launch method, and
passes to it any arguments received by the main method itself.

The launch method is a static method, and we can use it to launch a
JavaFX application from another program. It is overloaded to accept the name of
the compiled .class file as its first parameter. If we wanted a program called, say,
LaunchApplication to run an application called MyApp, we would do it like
this:

So now that you know how a JavaFX application is structured, and you are
aware of the sequence in which its methods are called, we can go on to develop our
first graphics application.

10.4 2D Graphics: The SmileyFace Class

Our first graphics application is going to create a smiley face, as shown in Fig. 10.4.

 public static void main(String[] args)
 {
 launch(args);
 }

import javafx.application.Application;

class LaunchApplication
{
 public static void main(String[] args)
 {
 Application.launch(MyApp.class, args);
 }
}

Fig. 10.4 The Smiley Face
application

10.3 JavaFX: An Overview 269

Although it is a rather simple application, in that there is no user interaction, it
nonetheless introduces many new concepts. In particular it shows you how to create
a scene, to add items to the scene, and to add the scene to a stage. It also introduces
you to 2D graphics, which enables you to draw two-dimensional shapes such as
circles, lines, ellipses, rectangles and arcs. Here we draw circles for the face and
eyes, and an arc for the mouth. You will also see how to create text which you can
configure using different colours and fonts.

As explained in the previous section, we have included a main method which
launches the application. The complete code is shown below:

SmileyFace
import javafx.application.Application;
import javafx.scene.Group;
import javafx.scene.Scene;
import javafx.scene.paint.Color;
import javafx.scene.shape.Arc;
import javafx.scene.shape.ArcType;
import javafx.scene.shape.Circle;
import javafx.scene.text.Font;
import javafx.scene.text.Text;
import javafx.stage.Stage;

public class SmileyFace extends Application
{

@Override
 public void start(Stage stage)
 {

// create and configure the main circle for the face
 Circle face = new Circle(125, 125, 80);
 face.setFill(Color.YELLOW);
 face.setStroke(Color.RED);

// create and configure the circle for the right eye
 Circle rightEye = new Circle(86, 100, 10);
 rightEye.setFill(Color.YELLOW);
 rightEye.setStroke(Color.BLUE);

 // create and configure the circle for the left eye
 Circle leftEye = new Circle(162, 100, 10);
 leftEye.setFill(Color.YELLOW);
 leftEye.setStroke(Color.BLUE);

// create and configure a smiling mouth
 Arc mouth = new Arc(125, 150, 45, 35, 0, -180);
 mouth.setFill(Color.YELLOW);
 mouth.setStroke(Color.BLUE);
 mouth.setType(ArcType.OPEN);

// create and configure the text
 Text caption = new Text(80, 240, "Smiley Face");
 caption.setFill(Color.BLUE);
 caption.setFont(Font.font("Verdana", 15));

 // create a group that holds all the features
 Group root = new Group(face, rightEye, leftEye, mouth, caption);

// create and configure a new scene
 Scene scene = new Scene(root, 250, 275, Color.YELLOW);

270 10 Introducing JavaFX

There are a number of new concepts here. First, let’s take a look at the import
clauses, which show you that all of our classes come from a package called
javafx, which as you can see has many subpackages including scene and
stage.

Now look at the class header:

As we explained, all JavaFX programs run as an application, and we therefore
have to extend the Application class. Application requires you to code the
start method, which we talked about in the previous section. Let’s take a look at
it now, starting with the header:

When start is called, it is automatically sent an object of the Stage class,
which will be the main container for our graphic.

The first thing we do within the start method is to create and configure the
main circle for the face:

// add the scene to the stage, then set the title
 stage.setScene(scene);
 stage.setTitle("Smiley Face");

// show the stage
 stage.show();
 }

 public static void main(String[] args)
 {
 launch(args);
 }

}

import javafx.application.Application;
import javafx.scene.Group;
import javafx.scene.Scene;
import javafx.scene.paint.Color;
import javafx.scene.shape.Arc;
import javafx.scene.shape.ArcType;
import javafx.scene.shape.Circle;
import javafx.scene.text.Font;
import javafx.scene.text.Text;
import javafx.stage.Stage;

public class SmileyFace extends Application

public void start(Stage stage)

Circle face = new Circle(125, 125, 80);
face.setFill(Color.YELLOW);
face.setStroke(Color.RED);

10.4 2D Graphics: The SmileyFace Class 271

The Circle class, which resides in a the javafx.scene.shape library,
has a number of constructors (which you can look up on the Oracle™ site). The
constructor we are using here takes three parameters of type double.

The first two of these parameters represent, respectively, the x and y positions of
the centre of the circle (with respect to the top left hand corner of the parent node),
measured in pixels. The third parameter represents the radius of the circle, also in
pixels. You will see later that we have chosen our initial scene to be 250 � 275
pixels, so that our circle with its centre at (125, 125) will be horizontally centred,
but will leave enough vertical room for a caption.

We have used two other methods of Circle, namely setFill and set-
Stroke, to set the fill colour and line colour of the circle. To each of these we have
passed a pre-defined attribute of the Color class (note the American spelling),
which resides in javafx.scene.paint. In Sect. 10.10 you will find how to
create your own colours if you want to—but the paint library provides a great many
colours that you can use, and which you can look up—or which you can choose
from the list of suggestions that your IDE will make after pressing the full stop.

In a similar manner we draw the right eye and the left eye:

You might be wondering how we decided upon the exact position in which to
draw these circles. In theory it is possible to calculate exactly where you want
everything to be on a graphic—but often it is easier (and actually quite good fun)
simply to make an estimate and see how it looks, then change the values until you
are happy. That’s what we did here. We strongly recommend that once you have
got the application up and running, you play about with the different values to
explore what they do. This is the best way to become familiar with all of the
graphics objects.

Now we come to the smiling mouth, which is a little more complicated.

Circle rightEye = new Circle(86, 100, 10);
rightEye.setFill(Color.YELLOW);
rightEye.setStroke(Color.BLUE);

Circle leftEye = new Circle(162, 100, 10);
leftEye.setFill(Color.YELLOW);
leftEye.setStroke(Color.BLUE);

Arc mouth = new Arc(125, 150, 45, 35, 0, -180);
mouth.setFill(Color.YELLOW);
mouth.setStroke(Color.BLUE);
mouth.setType(ArcType.OPEN);

272 10 Introducing JavaFX

Creating an object of the Arc class draws part (or all) of an ellipse. The con-
structor we have used is specified on the Oracle™ website like this:

The names of the parameters mostly speak for themselves. The first two rep-
resent the position of the centre of the ellipse. The next two are the horizontal and
vertical radii respectively. startAngle represents the angle at which we start
drawing the arc. The only confusing name is the last one, length, which repre-
sents the size of the angle through which the arc is drawn. Figure 10.5 should make
it clear.

In our case we have chosen the radii to give us an arc of an ellipse which is
somewhat wider than it is high. We have chosen a start angle of 0° and you will
notice that the value of the final angle (the length parameter) is set to −180. The
negative sign indicates that this angle is formed by moving from the start angle in
an a clockwise direction (so that the mouth is smiling). A positive sign indicates an
anticlockwise direction (as, for example, in Fig. 10.5).

The next lines of code set the fill colour and line colour (referred to as the stroke
colour) of the mouth. The final line of code selects the type of arc we want, which in
this case is ArcType.OPEN. Two other types exist (ArcType.CHORD and
ArcType.ROUND), and these are demonstrated in Sect. 10.6.

The next thing we do is to add a caption:

Arc(double centreX, double centreY, double radiusX, double radiusY,
 double startAngle, double length)

Text caption = new Text(80, 240, "Smiley Face");
caption.setFill(Color.BLUE);
caption.setFont(Font.font("Verdana", 15));

centreY

radiusX

length
startAngle

centreX

radiusY

Fig. 10.5 The Arc class

10.4 2D Graphics: The SmileyFace Class 273

For this purpose we are creating an instance of the Text class, which resides in
javafx.scene.text. The constructor takes three parameters—two doubles
and a String. The first two are used to position the text (they are the co-ordinates
of the beginning of the String), and the final one holds the value of the text itself.

We have gone on to set the colour, using the setFill method, and then we
have set the font, with the setFont method. There will be more in Sect. 10.10 on
how to create your own fonts, but for now you can just look at the syntax to see
how we select the name and size of the font—in this case “Verdana”, 15 points.

Now that we have defined all of our features we want them to stay together as a
group. We can do this with the Group class from the javafx.scene package.
This class acts like an invisible container—it is very useful when we have already
defined the position of our shapes (as we have done here), so we don’t have to
worry any further about how they will be laid out within the container:

We are using the convention of naming the first node that we add to our scene
root, as it is the root node. In this case it is the only node. We have created our
new scene like this:

Here we have chosen to use the constructor that allows us to set the size (width
and height) of the initial scene, together with the background colour. If you don’t
set these values initially, the Scene class (and other graphics components) have
many set-methods such as setMinWidth and setMaxHeight that you can
code later.

Now all that remains to complete the start method is to add the scene to the
stage, set the title, and finally make the stage visible, which we do by calling its
show method:

As we mentioned before, we have included a main method (and will continue to
do so) in order that you can run the application in any environment.

Group root = new Group(face, rightEye, leftEye, mouth, caption);

Scene scene = new Scene(root, 250, 275, Color.YELLOW);

 stage.setScene(scene);
 stage.setTitle("Smiley Face");
 stage.show();

public static void main(String[] args)
{
 launch(args);
}

274 10 Introducing JavaFX

10.5 Event-Handling in JavaFX: The ChangingFace Class

The SmileyFace class that we developed in the last section was “passive” and
didn’t involve any interaction with the user. In practice of course, graphics appli-
cations will normally require input from the user in the form of clicking a button,
entering text and so on.

Controls such as buttons need to respond when the user performs some action
such as clicking a mouse. The way this works is that in response to the user
performing such an action, the control generates an Event object. This object is
sent to an EventHandler which we attach to a particular control and supply it
with the instructions for what to do when the action occurs. There are many actions
that the user could perform, such as pressing a key, dragging a mouse and so on, but
in this chapter we will concern ourselves only with a simple mouse-click on a
button.

Our first application will modify our SmileyFace class and turn it into a
ChangingFace class that can change its mood so it can be sad as well as happy.
We are going to add a couple of buttons, as shown in Figs. 10.6 and 10.7.

You can see that we have now changed our title and caption from “Smiley Face”
to “Changing Face”—because when we have finished we will be able to click on
the Frown button and get the face to look like the one you see in Fig. 10.7. Clicking
the Smile button will get the face to smile again.

The code for our class is shown below. There are quite a lot of new concepts and
techniques here, so we will discuss it in detail once you have had a look at it.

Fig. 10.6 The
ChangingFace class (still
smiling)

10.5 Event-Handling in JavaFX: The ChangingFace Class 275

ChangingFace
import javafx.application.Application;
import javafx.scene.Group;
import javafx.scene.Scene;
import javafx.scene.control.Button;
import javafx.scene.layout.Background;
import javafx.scene.layout.HBox;
import javafx.scene.layout.VBox;
import javafx.scene.paint.Color;
import javafx.scene.shape.Arc;
import javafx.scene.shape.ArcType;
import javafx.scene.shape.Circle;
import javafx.scene.text.Font;
import javafx.scene.text.Text;
import javafx.stage.Stage;
import javafx.geometry.Pos;

public class ChangingFace extends Application
{

 @Override
 public void start(Stage stage)
 {

// create and configure the main circle for the face
 Circle face = new Circle(125, 125, 80);
 face.setFill(Color.YELLOW);
 face.setStroke(Color.RED);

 // create and configure the circle for the right eye
 Circle rightEye = new Circle(86, 100, 10);
 rightEye.setFill(Color.YELLOW);
 rightEye.setStroke(Color.BLUE);

// create and configure the circle for the left eye
 Circle leftEye = new Circle(162, 100, 10);
 leftEye.setFill(Color.YELLOW);
 leftEye.setStroke(Color.BLUE);

 // create and configure a smiling mouth (this is how it will start)
 Arc mouth = new Arc(125, 150, 45, 35, 0, -180);
 mouth.setFill(Color.YELLOW);
 mouth.setStroke(Color.BLUE);
 mouth.setType(ArcType.OPEN);

// create and configure the text
 Text caption = new Text(68, 240, "Changing Face");
 caption.setFill(Color.BLUE);
 caption.setFont(Font.font ("Verdana", 15));

 // create a group that holds all the features
 Group group = new Group(face, rightEye, leftEye, mouth, caption);

// create a button that will make the face smile
 Button smileButton = new Button("Smile");

 // create a button that will make the face frown
 Button frownButton = new Button("Frown");

 // create and configure a horizontal container to hold the buttons
 HBox buttonBox = new HBox(10);
 buttonBox.setAlignment(Pos.CENTER);

//add the buttons to the horizontal container
 buttonBox.getChildren().addAll(smileButton, frownButton);

// create and configure a vertical container to hold the button box and the face group
 VBox root = new VBox(10);

276 10 Introducing JavaFX

We have proceeded as before when it comes to creating the face. Once we have
done this we have created two instances of the Button class. A button is an
extremely common feature of graphics programming, and the Button class, along
with many other similar components is to be found in javafx.scene.con-
trol. Here is the code for the buttons:

 root.setBackground(Background.EMPTY);
 root.setAlignment(Pos.CENTER);

//add the button box and the face group to the vertical container
 root.getChildren().addAll(buttonBox, group);

 // create and configure a new scene
 Scene scene = new Scene(root, 250, 275, Color.YELLOW);

 // supply the code that is executed when the smile button is pressed
 smileButton.setOnAction(e -> mouth.setLength(-180));

 // supply the code that is executed when the frown button is pressed
 frownButton.setOnAction(e -> mouth.setLength(180));

// add the scene to the stage, then set the title
 stage.setScene(scene);
 stage.setTitle("Changing Face");

 // show the stage
 stage.show();
 }

 public static void main(String[] args)
 {
 launch(args);
 }

}

Fig. 10.7 The
ChangingFace class
(frowning)

10.5 Event-Handling in JavaFX: The ChangingFace Class 277

You can see that we have used a version of the constructor that allows us to set
the text that appears on the button. You can also use the setText method of
Button for this purpose.

Having created our two buttons, we now go on to create a container to hold
them:

We have created an instance of an HBox. As we mentioned earleir, this is a
container that arranges the contained nodes horizontally. The constructor we have
used takes a parameter that sets the distance between the items, in this case 10
pixels. We have then gone on to use its setAlignment method, into which we
send a pre-defined constant, an attribute of the Pos class which is found in the
package javafx.geometry. The constant we have chosen is Pos.CENTER in
order to centre the components that the HBox contains. There are a number of other
options, and these are demonstrated in Sect. 10.9.1.

Having created our HBox, we need to add our buttons to it. We do this by calling
a method of HBox, called getChildren, which returns a list of all the child
nodes. This list has two methods for adding the nodes: the add method will add a
single item, and addAll a list of items. As we need to add two buttons, we have
used the latter:

So now have an HBox containing our buttons and a Group containing the
shapes that make up our face. We need to organize these so that the face is placed
vertically below the buttons, so we use a VBox which lines the items up vertically,
just as the HBox does horizontally. We have given the name root to this instance
of VBox, because this will be the root node that we add to our scene.

Button smileButton = new Button("Smile");

Button frownButton = new Button("Frown");

HBox buttonBox = new HBox(10);
buttonBox.setAlignment(Pos.CENTER);

buttonBox.getChildren().addAll(smileButton, frownButton);

VBox root = new VBox(10);
root.setBackground(Background.EMPTY);
root.setAlignment(Pos.CENTER);
root.getChildren().addAll(buttonBox, group);

278 10 Introducing JavaFX

You will notice that we have done something else here, which is to add an empty
background to the VBox—this is so that the yellow colour of the scene isn’t hidden.

Now we can add the HBox containing the buttons, and the group containing the
face, to the VBox. We then add this VBox to the scene graphic:

We are almost ready to take the final step of adding the scene to the stage.
Almost but not quite! There is one really vital thing we have to do, which is to

enable the buttons to respond when they are pressed, and to provide the code that
tells the buttons what to do when this happens. At the beginning of this section we
explained that a control can be programmed to generate an Event object in
response to some action taken by the user. The type of Event that we are interested
in here is called an ActionEvent, which is the one that handles a simple
mouse-click. We need to add an EventHandler to each button, which means it
will generate the ActionEvent as soon as the mouse is clicked. Effectively we
are programming our button to “listen out” for a mouse-click.

EventHandler has a method called handle, and it is the code for this
method that we need to supply in order that the button knows what to do when the
mouse is clicked.

Now, you might think that all this sounds rather complicated—but we are in
luck! Java 8 has furnished us with two things that mean our code for doing all this
stuff is very simple. The code for doing this for each button is shown below. It
contains some new syntax, which we will explain once you have had a look at it:

You can see that a Button has a method called setOnAction. This an
example of what is known as a convenience method, a feature of JavaFX. It
certainly is convenient because it means that all we have to do in order to add an
EventHandler is to supply the code it needs for its handle method. Most
controls have these convenience methods, all starting with setOn-. Other exam-
ples that you will come across in the second semester are setOnMouseMoved
and setOnKeyTyped, as well as many others.

You can see that the code (which looks rather unfamiliar because of the - >
notation) is sent directly into themethod. This is the other thing that we have been able
to do as a result of innovations in Java 8. The code that you see is called a lambda
expression. Lambda expressions allow us to simply send in some code to a method as
an argument, just as wewouldwith a value of a primitive type likeint, or an object of
a class like String.

root.getChildren().addAll(buttonBox, group);
Scene scene = new Scene(root, 250, 275, Color.YELLOW);

smileButton.setOnAction(e -> mouth.setLength(-180));
frownButton.setOnAction(e -> mouth.setLength(180));

10.5 Event-Handling in JavaFX: The ChangingFace Class 279

We will look in detail at lambda expressions in Chap. 13. For now we will just
tell you what you need to know in order to code the setOnAction method.

In each case we are using the setLength method of Arc to redraw the mouth.
As we have seen, giving this a negative value draws it clockwise, so that the mouth
smiles, and giving it a positive value makes the mouth frown. So the instructions for
the smileButton and frownButton respectively are mouth.setLength
(-180) and mouth.setLength(180).

These instructions are the ones we have to supply to the handle method of the
EventHandler. As we have said, lambda expressions enable us to supply this
code by passing it as an argument to the setOnAction method. You can see from
the above that our lambda expressions look like this:

e - > mouth.setLength(-180) //smile
e - > mouth.setLength(180) //frown

There are two parts to a lambda expression, one on either side of the - > symbol.
The code goes on the right of the symbol. On the left we give names to the
parameters that the method (in this case handle) expects to receive. The handle
method receives an ActionEvent, and we have given this the name e. Even
though we are not, in this case, going to use this variable, we nonetheless have to
give a name.

There is a lot more to lambda expressions. But for now you are only going to use
them in connection with a setOnAction method, so this is all you need for the
moment. One thing we should add, however, is that if there is more than one
instruction to our code we have to enclose the code in curly brackets. For example,
if we wanted to paint the mouth violet when it smiles, our lambda expression would
look like this:

Finally we can add the scene to the stage, set the title and make the stage visible:

smileButton.setOnAction(e -> {
 mouth.setLength(-180);
 mouth.setStroke(Color.VIOLET);
 }
);

stage.setScene(scene);
stage.setTitle("Changing Face");

stage.show();

280 10 Introducing JavaFX

10.6 Some More 2D Shapes

Before we move away from 2D graphics, we will draw your attention to a some
more shapes that will increase your repertoire.

We have shown a few examples in Fig. 10.8.
You can see that we have experimented with different colours, and with using

the setFill and setStroke methods.
The rectangle that you see in the top left-hand corner was created with the

following code:

Rectangle rectangle = new Rectangle(50, 50, 50, 100);

In this constructor, the first two parameters (all of which are of type double)
represent the x and y co-ordinates of the top left hand corner, and the next two
represent the width and height of the rectangle respectively.

The line underneath was created using the following constructor:

Line line = new Line(50, 180, 80, 250);

Fig. 10.8 Some more 2D shapes

10.6 Some More 2D Shapes 281

The first two parameters are the x and y co-ordinates of the start position, and the
last two are the co-ordinates of the end position.

The ellipse that you see in the top right hand corner was drawn simply by
creating an Arc and drawing the line through an angle of 360°. In our previous
examples you saw the effect of choosing ArcType.OPEN for our arc type. The
two arcs you see on the bottom row show the effect of choosing ArcType.CHORD
and ArcType.ROUND respectively.

All of the above shapes reside in javafx.scene.shape. You can check out
the many other constructors and methods of these and other shapes on the Oracle™
website.

10.7 An Interactive Graphics Class

Most common applications involve controls (buttons, check boxes, text fields and
so on) rather than graphical shapes. The next class—which we have called PushMe
—is going to have controls that allow the user to input information via a graphics
screen. The program isn’t all that sophisticated, but it introduces the basic elements
that you need to build interactive graphics classes.

This application allows the user to enter some text and then, by clicking on a
button, to see the text that was entered displayed below the button. You can see
what it looks like in Fig. 10.9.

Before pushing the bu on

A er pushing the bu on

Fig. 10.9 The PushMe class

282 10 Introducing JavaFX

As usual we will show you the code first and discuss it afterwards:

The box into which we type our text is called a TextField. This allows us to
type in one line of text:

You can see that we have set the maximum width of our TextField to 250—
if we had not done this, it would simply have filled the width of its parent container.
You might want to explore a similar class, TextArea, that allows you to add
several rows of text—you will see an example of this in the next section.

PushMe

import javafx.application.Application;
import javafx.geometry.Pos;
import javafx.scene.Scene;
import javafx.scene.control.Button;
import javafx.scene.control.Label;
import javafx.scene.control.TextField;
import javafx.scene.layout.VBox;
import javafx.scene.paint.Color;
import javafx.scene.text.Font;
import javafx.stage.Stage;

public class PushMe extends Application
{

@Override
 public void start(Stage stage)
 {

// create and configure a text field for user entry
 TextField pushMeTextField = new TextField();
 pushMeTextField.setMaxWidth(250);

// create and configure a label to display the output
 Label pushMeLabel= new Label();
 pushMeLabel.setTextFill(Color.RED);
 pushMeLabel.setFont(Font.font("Arial", 20));

 // create and configure a label which will cause the text to be displayed
 Button pushMeButton = new Button();
 pushMeButton.setText("Type something in the box then push me");
 pushMeButton.setOnAction(e -> pushMeLabel.setText("You entered: " + pushMeTextField.getText()));

 // create and configure a VBox to hold our components
 VBox root = new VBox();
 root.setSpacing(10);
 root.setAlignment(Pos.CENTER);

//add the components to the VBox
 root.getChildren().addAll(pushMeTextField, pushMeButton, pushMeLabel);

// create a new scene
 Scene scene = new Scene(root, 350, 150);

 //add the scene to the stage, then configure the stage and make it visible
 stage.setScene(scene);
 stage.setTitle("Push Me");
 stage.show();
 }

 public static void main(String[] args)
 {
 launch(args);
 }

}

TextField pushMeTextField = new TextField();
pushMeTextField.setMaxWidth(250);

When the button is pressed, the text entered will be displayed underneath the
button on a Label. As its name suggests, its purpose is simply to display some
chosen text. We have created and configured it with the following lines of code:

10.7 An Interactive Graphics Class 283

Next we have the code for the Button:

We have already seen how to create and code a button, so this should be familiar
to you. Look carefully a the lambda expression, which is explained in Fig. 10.10.

Having done all this, we create and configure a VBox, add the three components,
and then add the VBox to the scene.

Finally we add the scene to the stage, then add a title and make it visible.

Label pushMeLabel= new Label();
pushMeLabel.setTextFill(Color.RED);
pushMeLabel.setFont(Font.font("Arial", 20));

Button pushMeButton = new Button();
pushMeButton.setText("Type something in the box then push me");
pushMeButton.setOnAction(e -> pushMeLabel.setText("You entered: " + pushMeTextField.getText()));

Use the getText method of TextField to read the
current text, then append this to an introductory String

e -> pushMeLabel.setText("You entered: " + pushMeTextField.getText())

Use the setText method of Label to display the message

Fig. 10.10 The lambda expression explained

 VBox root = new VBox();
 root.setSpacing(10);
 root.setAlignment(Pos.CENTER);

 root.getChildren().addAll(pushMeTextField, pushMeButton, pushMeLabel);

 Scene scene = new Scene(root, 350, 150);

stage.setScene(scene);
stage.setTitle("Push Me");
stage.show();

284 10 Introducing JavaFX

10.8 A Graphical User Interface (GUI) for the Oblong Class

Up till now,whenwewanted towrite programs that utilize our classes,we havewritten
text-based programs. Inmost cases, however, youwill bewanting to a create graphical
user interface (GUI) for your classes. Let’s do this for the Oblong class that we
developed inChap. 8. The sort of interfacewe are talking about is shown in Fig. 10.11.

Here is the code for the GUI:

OblongGUI

import javafx.application.Application;
import javafx.geometry.Pos;
import javafx.scene.Scene;
import javafx.scene.control.Button;
import javafx.scene.control.Label;
import javafx.scene.control.TextArea;
import javafx.scene.control.TextField;
import javafx.scene.layout.HBox;
import javafx.scene.layout.VBox;
import javafx.scene.paint.Color;
import javafx.scene.text.Font;
import javafx.stage.Stage;

public class OblongGUI extends Application
{

// create an object of the Oblong class as an attribute
 private Oblong testOblong = new Oblong(0, 0);

@Override
 public void start(Stage stage)
 {

// create and configure text fields for input
 TextField lengthField = new TextField();
 lengthField.setMaxWidth(50);

 TextField heightField = new TextField();
 heightField.setMaxWidth(50);

// create and configure a non-editable text area to display the results
 TextArea display = new TextArea();
 display.setEditable(false);
 display.setMinSize(210,50);
 display.setMaxSize(210,50);

 // create and configure Labels for the text fields
 Label lengthLabel = new Label("Length");
 lengthLabel.setTextFill(Color.RED);
 lengthLabel.setFont(Font.font("Arial", 20));

 Label heightLabel= new Label("Height");
 heightLabel.setTextFill(Color.RED);
 heightLabel.setFont(Font.font("Arial", 20));

 // create and configure a button to perform the calculations
 Button calculateButton = new Button();
 calculateButton.setText("Calculate");
 calculateButton.setOnAction(e ->
 {

// check that fields are not empty
 if(lengthField.getText().isEmpty() || heightField.getText().isEmpty())
 {
 display.setText("Length and height must be entered");
 }
 else
 {

//convert text input to doubles and set the length and height of the Oblong
 testOblong.setLength(Double.parseDouble(lengthField.getText()));
 testOblong.setHeight(Double.parseDouble(heightField.getText()));

// use the methods of Oblong to calculate the area and perimeter
 display.setText("The area is: " + testOblong.calculateArea()
 + "\n" + "The perimeter is: "
 + testOblong.calculatePerimeter());
 }
 }
);

// create and configure an HBox for the labels and text inputs
 HBox inputComponents = new HBox(10);

10.8 A Graphical User Interface (GUI) for the Oblong Class 285

In order to connect a GUI to a class, we create an object of that class within the
GUI class—and as you can see that is what we have done here. We have declared
an attribute, testOblong, which we have initialized as a new Oblong with a
length and height of zero (since the user hasn’t entered anything yet):

After this we declare the graphics components; the only one of these that you
have not yet come across is the TextArea, which is the large text area that you see
in Fig. 10.8, where the area and perimeter of the oblong will be displayed. As you
can see, it is a useful component for entering and displaying text, although this time
we are using it only to display text, not to enter it. We have declared and configured
it as follows:

Fig. 10.11 A GUI for the
Oblong class

 inputComponents.setAlignment(Pos.CENTER);
 inputComponents.getChildren().addAll(lengthLabel, lengthField, heightLabel, heightField);

 // create and configure a vertical container to hold all the components
 VBox root = new VBox(25);
 root.setAlignment(Pos.CENTER);
 root.getChildren().addAll(inputComponents, calculateButton, display);

// create a new scene and add it to the stage
 Scene scene = new Scene(root, 350, 250);
 stage.setScene(scene);
 stage.setTitle("Oblong GUI");
 stage.show();
 }

 public static void main(String[] args)
 {
 launch(args);
 }

}

private Oblong testOblong = new Oblong(0,0);

TextArea display = new TextArea();
display.setEditable(false);
display.setMinSize(210,50);
display.setMaxSize(210,50);

286 10 Introducing JavaFX

We have prevented the possibility of entering text by the use of the setE-
ditable method, and we have given it a fixed size by calling both the set-
MinSize and setMaxsize methods.

The only other thing we need to draw your attention to is the lambda expression
that we have sent into the setOnAction method of the calculate button.

The first thing that we do here is to check that something has actually been
entered. We do this by reading the String that is currently in the TextField by
calling its getText method, and then calling the isEmpty method of String.

If either one of the fields is empty then an error message is displayed; otherwise
we continue with the task. We could have, if we had wanted to, done some more
input validation—for example we could have checked that zeros or negative
numbers hadn’t been entered. Or, if we wanted to be very strict about the definition
of “oblong”, we could have checked that the two adjacent sides were not equal.
These are left as exercises at the end of the chapter.

If there is no error, we use the setLength and setHeight methods of
Oblong to set the length and the height of testOblong to the values entered.
However, these methods expect to receive doubles—but the getText method of
TextField, which we use to see what has been entered, returns a String!

We must therefore perform a conversion. To do this we use the parseDouble
method of the Double class—one of the wrapper classes you learnt about in
Chap. 8. parseDouble takes a String and converts it to a double:

It might have occurred to you that if the String did not contain a number, then
this would cause a problem. We will show you how we deal with this sort of error
in Chap. 14.

calculateButton.setOnAction(e ->
 {

// check that fields are not empty
 if(lengthField.getText().isEmpty() || heightField.getText().isEmpty())
 {
 display.setText("Length and height must be entered");
 }
 else
 {

//convert text input to doubles and set the length and height of the Oblong
 testOblong.setLength(Double.parseDouble(lengthField.getText()));
 testOblong.setHeight(Double.parseDouble(heightField.getText()));

// use the methods of Oblong to calculate the area and perimeter
 display.setText("The area is: " + testOblong.calculateArea()
 + "\n" + "The perimeter is: "
 + testOblong.calculatePerimeter());
 }
 }
);

testOblong.setLength(Double.parseDouble(lengthField.getText()));
testOblong.setHeight(Double.parseDouble(heightField.getText()));

10.8 A Graphical User Interface (GUI) for the Oblong Class 287

You should note that had we wanted to convert the Strings to ints, we would
have used the parseInt method of the Integer class.

Incidentally, if you want to do this the other way round and convert a double
or an int to a String you can do so simply by concatenating it onto an empty
String, as shown in the examples below:

or:

If you take a look at the rest of the code you will see that we have arranged our
items by using an HBox to hold the labels and fields for input so they are lined up
horizontally, and then used a VBox to line this up vertically with the button and the
display area. This is something you should be getting used to by now, so we can
move on to the next section where we explain more about how to use these boxes, as
well as other containers, each of which lays out the components in a different way.

10.9 Containers and Layouts

You have already seen how much we can achieve just with an HBox and a VBox—
we have found these containers to be very versatile, and for simple applications you
can do an enormous amount just with these two containers. So we start this section
telling you a bit more about what we can do with these, and then we go on to show
you some other containers with different layout policies.

10.9.1 More About HBox and VBox

In Fig. 10.12 you can see twelve VBoxes (although they could have been HBoxes
because each one contains only one component), organized in four groups of three.
We have drawn a border around each one and coloured the background (we will
show you how to do this in a moment). Each box contains a Button—the pres-
ence of the border shows the effect of setting the alignment to different values.

You will recall that the only alignment we have seen so far is Pos.CENTER, but
there are 11 others that we can choose from. Most are self-explanatory—but the
three on the right need a little explanation. Pos.BASELINE_LEFT, Pos.
BASELINE_CENTER and Pos.BASELINE_RIGHT place the component in the

or:String s = "" + 3;

String s = "" + 3.12;

288 10 Introducing JavaFX

lowest position available, and are most relevant to text fields where we want the text
to appear at the bottom of a window—as in a chat application, for example. In our
diagram we have set our boxes to have a top inset, and the buttons are then
positioned accordingly.

To set some insets on a component we use the setPadding method, with a
statement such as this:

box.setPadding(new Insets(10, 20, 10, 20));

The parameters to the Insets constructor are all doubles, and define the
insets for the top, right, bottom and left insets respectively. A single parameter
would set all four insets to the same value.

Here box could be any component such as a VBox or HBox, or a Button,
Label or TextField for example, as all these inherit the setPadding method
from a higher level class.

We also promised to show you how to create a border and background colour.
To get the black borders that you see in the diagram we did the following:

This does seem to be a rather complicated process, but if you study it you can
easily see what’s going on. The setBorder method requires an object of the class
Border. To create this we have to send the constructor an object of Border-
Stroke, which requires four arguments. The argument names should speak for
themselves, except perhaps for ConerRadii, which determines the roundness of
the corners; in this example a value of zero produces square corners. To achieve the
background colour we did this:

box.setBorder(new Border(new BorderStroke(Color.BLACK, BorderStrokeStyle.SOLID,
 new CornerRadii(0),new BorderWidths(2))));

Fig. 10.12 Aligning nodes

10.9 Containers and Layouts 289

Again, although it looks complicated at first sight, it isn’t hard to work out what
is actually going on.

All of these border and background classes reside in javafx.scene.
layout.

We will do some more work on borders and colours in Sect. 10.10.

10.9.2 GridPane

A GridPane is a very useful container. As its name suggests, it lays out the
components in a matrix of rows and columns, as shown in Fig. 10.13.

The following lines of code would create a GridPane object, and configure it
to position the components in the centre of each cell, and to leave a 10 pixel vertical
gap (the gap between rows) and a 5 pixel horizontal gap (the gap between
columns).

The really good thing about a GridPane is its flexibility—it is sized dynam-
ically as you insert the components, as are the individual cells. For example we
could insert a Button, myButton, to the above GridPane object as follows:

pane.add(myButton, columnIndex, rowIndex);

columnIndex and rowIndex are ints—we start counting from zero, so the
following line of code would add the button in column 4, row 6:

Fig. 10.13 Using a
GridPane

GridPane pane = new GridPane();
pane.setAlignment(Pos.CENTER);
pane.setVgap(10);
pane.setHgap(5);

box.setBackground(new Background(new BackgroundFill(Color.LIGHTYELLOW,
 new CornerRadii(0), new Insets(0))));

290 10 Introducing JavaFX

pane.add(myButton, 3, 5);

Because of its flexibility, GridPane can be very versatile and will allow you to
create quite complex presentations—the best thing you can do, as usual, is to try
some experiments of your own.

10.9.3 StackPane

A StackPane, as its name suggests, stacks components on top of each other. In
Fig. 10.14 we have created three different coloured rectangles, each one smaller
than the previous one, and added them to the StackPane from largest to smallest.

The components are added as before by calling the getChildren method
inherited by StackPane. Here we have chosen to align them in the centre of the
pane. You can see that there is a lot of potential here for drawing interesting shapes,
and as before you should conduct your own experiments.

There is another very useful way in which we can utilize this container, by
creating several items each the same size and stacking them one on top of the other.
We can then choose which one is visible, so that the stack behaves like a pack of
cards. In this way we can create a series of screens which could, for example, be
forms that need to be filled in progressively. We will show you an example of this
in Chap. 17.

Fig. 10.14 Using a
StackPane

10.9 Containers and Layouts 291

10.9.4 FlowPane and BorderPane

As we explained in Sect. 10.2, prior to the existence of JavaFX the principal
package for producing graphics in Java was Swing. With Swing, the way that a
container arranged its components (its layout policy) was determined by associating
a particular layout manager with it. Two of the most common of these were
FlowLayout and BorderLayout. As you have already seen, JavaFX works by
providing different containers, each with its own layout policy—and with the
existence of VBox and HBox, flow layout and border layout policies are not as
useful as they were in the days of Swing. However, two containers that produce
similar results to these are nonetheless provided in JavaFX—these are FlowPane
and BorderPane.

A FlowPane operates by arranging the items in a row, in the order that they
were added, starting a new row when necessary. If the window is resized, the
components move about accordingly, as shown in Fig. 10.15.

As with the VBox and HBox, nodes are added to a FlowPane object by calling
the getChildren method and then using add or addAll.

The BorderPane operates by dividing the window into five regions called
Top, Bottom, Left, Right, Center, as shown in Fig. 10.16.

If we use a BorderPane the components don’t get moved around when the
window is resized, as you can see from Fig. 10.17.

To add an item called myButton, for example, to the top region of a Bor-
derPane named pane, we would do the following:

pane.setTop(myButton);

Before resizing

A er resizing

Fig. 10.15 The effect of resizing when using FlowPane

292 10 Introducing JavaFX

Similarly, for the other regions BorderPane has methods setBottom,
setLeft, setRight and setCenter.

10.10 Borders, Fonts and Colours

You have already seen examples of how we can place borders around components
and how we can determine the colour of text and background, and define different
fonts. In this section we will give you a few more pointers as to how to enhance
your applications with these features.

A er resizingBefore resizing

Fig. 10.17 The effect of resizing when using BorderPane

Top

Le Center Right

Bo om

Fig. 10.16 The BorderPane layout strategy

10.9 Containers and Layouts 293

10.10.1 Borders

In Fig. 10.18 we see six buttons all with different border styles.
Youwill recall from Sect. 10.9.1 that in order to place a border round a component

such as a button we use the setBordermethod—this requires an object of the class
Border, which in turn is created with an object of the class BorderStroke.

So, for example, for the first button (button1) we created the following
BorderStroke:

We then applied this to our button:

BorderStroke stroke1
 = new BorderStroke(Color.BLACK, BorderStrokeStyle.SOLID, new CornerRadii(0), new BorderWidths(6)

button1.setBorder(new Border(stroke1));

Fig. 10.18 Examples of border styles

Fig. 10.19 Titled panes

294 10 Introducing JavaFX

One further effect is to create a titled border as shown in Fig. 10.19.
To do this we use a TitledPane, which is actually a control class, and resides

in the package javafx.scene.control. The pane comes with a downward
arrow that allows you to collapse the pane, as you see in the second box in
Fig. 10.19. If you want a title only for decorative purposes you can turn this feature
off as in the first box. In each case a VBox was added to the pane; other nodes could
then be added to the VBox.

The code for creating the first pane is as follows:

As you can see, the last line turns off the collapsible feature.

10.10.2 Fonts

Figure 10.20 shows some different font examples.
In our example we have applied our fonts to various Text objects. To achieve

this we used the setFont method of Text—controls such as Button also have
a setFont method.

There are two ways of doing this. Firstly we can use the font method of Font.
In our first example, assuming the Text object is called caption1, we would
have written:

VBox box1 = new VBox();
box1.setMinSize(100, 75);
TitledPane firstPane = new TitledPane("Pane 1", box1);
firstPane.setCollapsible(false);

Fig. 10.20 Font examples

Font font1 = Font.font ("Verdana", FontWeight.BOLD, FontPosture.ITALIC, 12);
caption1.setFont(font1);

10.10 Borders, Fonts and Colours 295

There are a number of different versions of the font method which you can
look up on the Oracle™ website.

The other way of doing this is to create a new font with one of two constructors.
The first requires only the font size (a double) and uses the default system font.
The second requires the name of the font and the size. Our fifth example in
Fig. 10.20 was achieved like this:

Underlining is done by using the setUnderline method of a component.

10.10.3 Colours

You have seen how the JavaFX Color class has a great many predefined colours.
However we can, if we wish, create our own colours. Those of you who have studied
some elementary physics will know that there are three primary colours, red, green
and blue1; all other colours can be obtained by mixing these in different proportions.

Mixing red, green and blue in equal intensity produces white light; the colour we
know as black is in fact the absence of all three. Mixing equal amounts of red and
green (and no blue) produces yellow light; red and blue produce a mauvish colour
called magenta; and mixing blue and green produces cyan, a sort of turquoise.

The Color class has a method called rgb which allows us to specify the
intensity of each of the primary colours, red, green, blue respectively. The intensity
for each colour can range from a minimum of zero to a maximum of 255. So there
are 256 possible intensities for each primary colour, and the total number of dif-
ferent colours available to us is therefore 256 � 256 � 256, or 16,777,216.

As an example, you could create the following colour:

You could then, for example, set the text colour of a button, button1, like this:

This particular combination produces a kind of orange—you should experiment
with different values.

Font font5 = new Font("Calibri", 40);

Color color1 = Color.rgb(200, 100, 50);

button1.setTextFill(color1);

1Don’t confuse this with the mixing of coloured paints, where the rules are different. In the case of
mixing coloured lights (as on a computer monitor) we are dealing with reflection of light—in the
case of paints we are dealing with absorption, so the primary colours, and the rules for mixing, are
different. For paints the primary colours are red, blue and yellow.

296 10 Introducing JavaFX

10.11 Number Formatting

We are now going to tell you about a technique that is not specifically related to
JavaFX, but is something you will often want to use in your graphics applications.
We frequently need our numerical output to appear in a suitable format—for
example with no more than two numbers after the decimal point—or perhaps with
exactly two numbers after the decimal point. In order to do this we make use of the
DecimalFormat class that resides in the java.text package. We would need
the following import statement:

Once you have access to this class you can create DecimalFormat objects in
your program. These objects can then be used to format decimal numbers for you.
The DecimalFormat constructor has one parameter, the format string. This
string instructs the object on how to format a given decimal number. Some of the
important elements of such a string are given in Table 10.1.

In the example in the next section we are going to create the following Dec-
imalFormat object:

Here the DecimalFormat object, df, is being informed on how to format any
decimal numbers that may be given to it, as shown in see Fig. 10.21.

Having created a DecimalFormat object, we could then create a String, s,
from a double, d, as follows:

import java.text.DecimalFormat;

Table 10.1 Special
DecimalFormat characters

Character Meaning

. Insert a decimal point

, Insert a comma

0 Display a single digit

Display a single digit or empty if no digit present

DecimalFormat df = new DecimalFormat("0.0#");

String s = df.format(d);

10.11 Number Formatting 297

The program below shows some examples:

The output from the above program is as follows:

4,376.79
4376.79
4376.8
004376.78630
004,376.7863

In the next chapter you will see how a similar technique can be used to output
numbers as a particular currency.

NumberFormatExample
import java.text.DecimalFormat;

public class NumberFormatExample
{
 public static void main(String[] args)
 {
 double number = 4376.7863;

 DecimalFormat df1 = new DecimalFormat("###,##0.0#");
 DecimalFormat df2 = new DecimalFormat("###000.00");
 DecimalFormat df3 = new DecimalFormat("00.0");
 DecimalFormat df4 = new DecimalFormat("000000.00000");
 DecimalFormat df5 = new DecimalFormat("000,000.00####");

 System.out.println(df1.format(number));
 System.out.println(df2.format(number));
 System.out.println(df3.format(number));
 System.out.println(df4.format(number));
 System.out.println(df5.format(number));
 }
}

"0.0#"

Always display at least
one digit a er the

decimal point

Always display at least one
digit before the decimal

point

Fig. 10.21 A format String used with the DecimalFormat class

298 10 Introducing JavaFX

10.12 A Metric Converter

Our final example in this chapter is a practical application that pulls together
everything that we’ve learnt so far about JavaFX. Most of the world uses the metric
system; however, if you are in the United Kingdom as we are, then you will still be
only halfway there—sometimes using kilograms and kilometres, sometimes pounds
and miles. Of course if you are in the USA (and you are not a scientist or an
engineer) you will still be using the old imperial values for everything. Some might
say it’s time that the UK and the USA caught up with the rest of the world! But until
that happens this little program, which converts back and forth from metric to
imperial, is going to be very handy.

We will be building a MetricConverter class. Figure 10.22 shows what we
are going to achieve.

The application will have a VBox at its root—this VBox will hold three HBoxes,
one for each row that you see in Fig. 10.22. Each row requires two Buttons which
will perform the calculations in either direction; these two Buttons will be held
together in a VBox.

The code for the MetricConverter class is now presented; it looks quite
long, but most of it is just more of what you already know. Take a look at the code
and then we will draw your attention to a few points.

MetricConverter

import java.text.DecimalFormat;
import javafx.application.Application;
import javafx.geometry.Pos;
import javafx.scene.Scene;
import javafx.scene.control.Button;
import javafx.scene.control.Label;
import javafx.scene.control.TextField;
import javafx.scene.layout.HBox;
import javafx.scene.layout.VBox;
import javafx.stage.Stage;

public class MetricConverter extends Application
{

@Override
 public void start(Stage stage)
 {
 DecimalFormat df = new DecimalFormat("0.0#"); // see discussion in previous section

// first the components for converting back and forth from inches to centimetres

// create input fields, and labels to show the units
 TextField cmText = new TextField();
 Label cmLabel = new Label("Cm");
 TextField inchText = new TextField();
 Label inchLabel = new Label("Inches");

// create buttons to perform the calculations
 Button cmToInchButton = new Button(" ===> ");
 Button inchToCmButton = new Button(" <=== ");

10.12 A Metric Converter 299

// create a VBox to hold the buttons
 VBox inchCmButtons = new VBox();
 inchCmButtons.getChildren().addAll(cmToInchButton, inchToCmButton);

// create an HBox to hold all the items for the first row
 HBox inchCmPanel = new HBox(10); // compound container
 inchCmPanel.getChildren().addAll(cmText, cmLabel, inchCmButtons, inchText, inchLabel);
 inchCmPanel.setAlignment(Pos.CENTER);

// next the components for converting back and forth from miles to kilometres

// create input fields, and labels to show the units
 TextField kmText = new TextField();
 Label kmLabel = new Label("Km");
 TextField mileText = new TextField();
 Label mileLabel = new Label("Miles "); // extra spaces make all labels the same length

// create buttons to perform the calculations
 Button kmToMileButton = new Button(" ===> ");
 Button mileToKmButton = new Button(" <=== ");

// create a VBox to hold the buttons
 VBox mileKmButtons = new VBox();
 mileKmButtons.getChildren().addAll(kmToMileButton, mileToKmButton);

// create an HBox to hold all the items for the second row
 HBox mileKmPanel = new HBox(10);
 mileKmPanel.getChildren().addAll(kmText, kmLabel, mileKmButtons, mileText, mileLabel);
 mileKmPanel.setAlignment(Pos.CENTER);

// finally the components for converting back and forth from pounds to kilograms

// create input fields, and labels to show the units
 TextField kgText = new TextField();
 Label kgLabel = new Label("Kg "); // extra spaces make all labels the same length
 TextField poundText = new TextField();
 Label poundLabel = new Label("Lb "); // extra spaces make all labels the same length

// create buttons to perform the calculations
 Button kgToPoundButton = new Button(" ===> ");
 Button poundToKgButton = new Button(" <=== ");

// create a VBox to hold the buttons
 VBox poundKgButtons = new VBox();
 poundKgButtons.getChildren().addAll(kgToPoundButton, poundToKgButton);

// create an HBox to hold all the items for the third row
 HBox poundKgPanel = new HBox(10);
 poundKgPanel.getChildren().addAll(kgText, kgLabel, poundKgButtons, poundText, poundLabel);
 poundKgPanel.setAlignment(Pos.CENTER);

// create a VBox to hold all three rows
 VBox root = new VBox(10);
 root.getChildren().addAll(inchCmPanel, mileKmPanel, poundKgPanel);
 root.setAlignment(Pos.CENTER);

// write the code for the buttons
 cmToInchButton.setOnAction(e -> {
 String s = new String(cmText.getText());
 double d = Double.parseDouble(s);
 d = d / 2.54;
 s = df.format(d);
 inchText.setText(s);
 }
);

 inchToCmButton.setOnAction(e -> {
 String s = new String(inchText.getText());

300 10 Introducing JavaFX

As we have said, there is nothing here that you haven’t seen before. But do study
the code for the buttons. The code for each one is very similar, differing only in the
particular calculation that needs to be made. Look carefully at how we have made
use to the DecimalFormat class that we described in the previous section. We
declared an object of this class at the beginning of the start method, and applied
it to each of the buttons. The particular format we chose will always display at least
one digit after the decimal point once the calculation has been made; you might
want to try other formats.

We will be returning to graphics and JavaFX in the second semester. For the time
being you already have a very big repertoire with which to build graphical applications.
Please do explore the classes available, and try your own programs—everything

 double d = Double.parseDouble(s);
 d = d * 2.54;
 s = df.format(d);
 cmText.setText(s);
 }
);

 kmToMileButton.setOnAction(e -> {
 String s = new String(kmText.getText());
 double d = Double.parseDouble(s);
 d = d / 1.609;
 s = df.format(d);
 mileText.setText(s);
 }
);

 mileToKmButton.setOnAction(e -> {
 String s = new String(mileText.getText());
 double d = Double.parseDouble(s);
 d = d * 1.609;
 s = df.format(d);
 kmText.setText(s);
 }
);

 kgToPoundButton.setOnAction(e -> {
 String s = new String(kgText.getText());
 double d = Double.parseDouble(s);
 d = d * 2.2;
 s = df.format(d);
 poundText.setText(s);
 }
);

 poundToKgButton.setOnAction(e -> {
 String s = new String(poundText.getText());
 double d = Double.parseDouble(s);
 d = d / 2.2;
 s = df.format(d);
 kgText.setText(s);
 }
);

// create a new scene
 Scene scene = new Scene(root);

// add the scene to the stage, then configure the stage and make it visible
 stage.setScene(scene);
 stage.setTitle("Metric Converter");
 stage.setWidth(500);
 stage.setHeight(250);
 stage.show();
 }

 public static void main(String[] args)
 {
 launch(args);
 }
}

10.12 A Metric Converter 301

you need is on the Oracle™ site. The more you try things out, the more you will learn
and the more you will become familiar with what is available. And of course the more
fun you will have!

10.13 Self-test Questions

1. Briefly describe the history of graphics programming in Java.

2. What is the name of the three methods that are called when a JavaFX application
is launched? what is the purpose of each?

3. Which containers have been used in the following two scene graphics?

Fig. 10.22 The metric converter

(a) (b)

302 10 Introducing JavaFX

4. Describe how the following containers lay out the nodes that they contain:

10.14 Programming Exercises

1. Implement a few of the programs that we have developed in this chapter, and
experiment with different settings in order to change some the features—for
example size, colour, position and so on.

2. Consider some changes or additions you could make to the PushMe class. For
example, pushing the button could display your text in upper case—or it could
say how many letters it contains. Maybe you could add some extra buttons.

3. The application shown below produces a triangle:

See if you can write the code to produce this triangle using three lines. We
suggest the following vertices:

(100, 70) (100, 250) (400, 250).

4. Below you see an application called ColourChanger which produces the
following graphic in which two buttons can be used to change the background
colour:

(a) a VBox; (b) an HBox (c) a GridPane (d) a StackPane

(e) a FlowPane (f) a BorderPane

10.13 Self-test Questions 303

Write the code for this application.

5. Add some additional features to the MetricConverter—for example Cel-
sius to Fahrenheit or litres to pints.

6. Look back at the final version of the Incubator class that you wrote in
programming Exercise 5 of Chap. 8. Now you can create a graphical user
interface for it, instead of a text menu. A suggested interface is shown below:

7. Below is a variation on the ChangingFace class, which has three possible
moods!

Rewrite the original code to produce this new design.

304 10 Introducing JavaFX

Hint: The easiest way to achieve the “thinking” mouth is to set the radius
attribute of Arc to zero.
A more difficult approach would be to draw a line, but then you would
have to create three different mouths, and each time check which was
the current mouth, remove that, and add the mouth you require. It is
perfectly possible to do this because the list of nodes returned by the
getChildren method has methods named contains and remove
as well as the add and addAll methods that you are used to.

8. Look back at the OblongGUI that we developed in Sect. 10.8. Modify the code
so that as well as checking that the values have been entered, it also checks that
the values entered are not zero, and that the length and height are not equal.

10.14 Programming Exercises 305

11Case Study—Part 1

Outcomes:

By the end of this chapter you should be able to:

• describe each stage of the software development process;
• design a complete application using UML;
• implement a detailed UML design in Java;
• document their code using Javadoc comments;
• distinguish between unit testing and integration testing;
• test individual program units by creating suitable drivers;
• document their test results professionally using a test log.

11.1 Introduction

The process of developing software requires us to carry out several tasks. They can
be summarized as follows:

• analysis and specification: determining what the system is required to do
(analysis) and writing it down in a clear and unambiguous manner
(specification);

• design: making decisions about how the system is to be built in order to meet
the specification;

• implementation: turning the design into an actual program;
• testing: ensuring that the system has been implemented correctly to meet the

original specification;
• installation: delivering and setting up the completed system;
• operation and maintenance: running the final system and reviewing it over

time—in light of changing requirements.

© Springer Nature Switzerland AG 2019
Q. Charatan and A. Kans, Java in Two Semesters, Texts in Computer Science,
https://doi.org/10.1007/978-3-319-99420-8_11

307

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99420-8_11&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99420-8_11&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99420-8_11&domain=pdf
https://doi.org/10.1007/978-3-319-99420-8_11

Rather than completely finishing one task before beginning the next,
object-oriented languages like Java encourage systems to be developed a little bit at
a time. So, for example, we can build one class and test it (maybe in the presence of
the client) before moving onto the next, rather than waiting for the whole system to
be developed before testing and involving the client.

In this and the following chapter we will demonstrate this process by developing
a case study that will enable you to get an idea of how a commercial system can be
developed from scratch; we start with an informal description of the requirements,
and then specify and design the system using UML notation and pseudocode where
necessary. From there we go on to implement our system in Java. Java applications,
such as this, typically consist of many classes working together. When testing for
errors we will start with a process of unit testing (testing individual classes) fol-
lowed by integration testing (testing classes that together make up an application).

The system that we are going to develop will keep records of the residents of a
student hostel. In order not to cloud your understanding, we have simplified things,
keeping details of individuals to a minimum, and keeping the functionality fairly
basic; you will have the opportunity to improve on what we have done in the
practical exercises at the end of the next chapter.

11.2 The Requirements Specification

The local university requires a program to manage one of its student hostels, which
contains a number of rooms, each of which can be occupied by a single tenant who
pays rent on a monthly basis. The program must keep a list of tenants and their
monthly payments. The information held for each tenant will consist of a name, a
room number and a list of all the payments a tenant has made (month and amount)
for one year. The program must allow the user to add and delete tenants, to display
a list of all tenants, to record a payment for a particular tenant, and to display the
payment history of a tenant.

11.3 The Design

The two core classes required in this application are Tenant (to store the details of
a tenant) and Payment (to store the details of a payment). We have made a number
of design decisions about how the system will be implemented, and these are listed
below:

308 11 Case Study—Part 1

*

Hostel

TenantList

+TenantList(int)
+addTenant(Tenant): boolean
+removeTenant (int) : boolean
+getTenant(int) : Tenant
+search(int) : Tenant
+isEmpty() : boolean
+isFull () : boolean
+getTotal() : int
+toString(): String

-tList: ArrayList<Tenant>
+MAX: int

-pList: ArrayList<Payment>
+MAX: int

PaymentList

+PaymentList(int)
+addPayment(Payment): boolean
+getPayment(int) : Payment
+calculateTotalPaid() : double
+isFull(): boolean
+getTotal(): int
+toString(): String

*

Payment

-month : String
-amount : double

+Payment(String, double)
+getMonth() : String
+getAmount() : double
+toString(): String

Tenant

-name : String
-room : int
-payments : PaymentList
+MAX : int

+Tenant : (String , int)
+makePayment(Payment)
+getName() : String
+getRoom() : int
+getPayments() : PaymentList
+toString(): String

Application

Fig. 11.1 The design of the student hostel system

11.3 The Design 309

• instances of the Tenant class and instances of the Payment class will each be
held in a separate collection class, PaymentList and TenantList
respectively;

• the collection classes PaymentList and TenantList both make use of an
ArrayList;

• the Hostel class, which will hold the TenantList, will also act as the
graphical interface for the system.

The design of the system is shown in Fig. 11.1. In this design there are two
arrows from one class to another. In UML these represent associations. An asso-
ciation is a link from objects of one class to objects of another class. For example, a
customer might have one or more accounts; a student might have one or more
tutors. The simplest form of association is a one-to-one relationship whereby a
single instance of one class is associated with a single instance of another class—for
example a purchase transaction and an invoice. You have already come across
inheritance and aggregation—these are special examples of association.

In our example, the associations represented by the arrows are one-to-one
associations—a Tenant requires a single instance of a PaymentList and a
Hostel requires a single instance of a TenantList.

The Hostel class itself has not yet been designed and this will be left until the
next chapter where we consider the overall system design and testing; for this
reason it has been drawn with a dotted line, but we can see it is a graphics class as it
inherits from the JavaFX Application class.

In order to implement this application we should start with those classes that do
not depend on any other, so that they can be unit tested in isolation. For example,
we should not start by implementing the Tenant class as it requires the Pay-
mentList class to be implemented first. You can see from the associations in
Fig. 11.1 that the only class that does not require any other class for its imple-
mentation is the Payment class.

11.4 Implementing the Payment Class

Throughout this case study we will make use of the Javadoc style of comments
(that we briefly mentioned back in Chap. 1) to document our classes. We will
discuss how to read and write Javadoc comments in more detail in the next
section.

The code for the Payment class is shown below.

310 11 Case Study—Part 1

As you can see, this class is fairly simple and does not require much explanation.
Note that we have overridden the toString method (hence the @Override tag)
to provide a convenient way of printing a Payment object (as discussed in Chap. 9).

Before incorporating this class into a larger program you would to test if it was
working reliably. Eventually, when this class is incorporated into the final program
we will have a JavaFX Hostel class to run the application, but we need to test this
class before an entire suite of classes has been developed. As we said before, testing
an individual class in this way is often referred to as unit testing.

In order to unit test this class we will need to implement a separate class
especially for this purpose. This new class will contain a main method and it will
act as a driver for the original class. A driver is a special program designed to do

Payment
/** Class used to store details of a single payment in a hostel
 * @author Charatan and Kans
 * @version 6th April 2018
 */
public class Payment
{
 private String month;
 private double amount;

 /** Constructor initialises the payment month and the amount paid
 * @param monthIn: month of payment
 * @param amountIn: amount of payment
 */
 public Payment(String monthIn, double amountIn)
 {
 month = monthIn;
 amount = amountIn;
 }

 /** Reads the month for which payment was made
 * @return Returns the month for which payment was made
 */
 public String getMonth()
 {
 return month;
 }

 /** Reads the amount paid
 * @return Returns the amount paid
 */
 public double getAmount()
 {
 return amount;
 }

@Override
 public String toString()
 {
 return "(" + month + ", " + amount + ")";
 }

}

@Override
public String toString()
{

return "(" + month + " : " + amount + ")"; // a convenient way of displaying attributes
}

11.4 Implementing the Payment Class 311

nothing except exercise a particular class. If you look back at all our previous
examples, this is exactly how we tested individual classes. Initially you should
generate an object from the given class. Once an object has been generated we can
then test that object by calling its methods. When testing your class by generating
objects and calling methods, you will want to display results on the screen, such as
the data stored within your object. We could access this data by calling the
appropriate get methods:

This will display the expected output:

Month: January
Amount: 175.0

While having multiple output statements like this might be necessary in the final
application, it is a rather cumbersome way of retrieving information from an object
during the testing phase—when you will not be so concerned with the format of the
output. This is where we can make use of the toString method we provided in
the Payment class to display all attributes of the class in one print statement. Here
is a modified tester:

Running this program will produce the following result:
(January : 175.0)
You can see the Payment object is displayed in the format given in our

toString method. From this example, you can see how useful the toString
method is. Now let’s move on to the more interesting parts of this system. This

public class PaymentTester
{

 public static void main(String[] args)
 {
 Payment p1 = new Payment ("January", 175);

// code to interrogate object data
System.out.println("Month: " + p1.getMonth());

 System.out.println("Amount: " + p1.getAmount());
 }
}

PaymentTester
// a very simple driver program that makes use of the toString method

public class PaymentTester
{

 public static void main(String[] args)
 {
 Payment p1 = new Payment ("January", 175); // create object to test

 System.out.println(p1); // this will call the toString method in our Payment class
 }
}

312 11 Case Study—Part 1

system requires us to develop two kinds of list, a PaymentList and a
TenantList. Both make use of ArrayList to store the respective collections.
A TenantList requires a PaymentList class to be developed first, so let’s
start by looking at this PaymentList class.

11.5 The PaymentList Class

The design of the PaymentList class is similar to a collection class that we
showed you in Chap. 8—the Bank class. Both classes make use of an ArrayList
to store a collection of objects. The main difference between the two classes is that
in the Bank class the contained type was BankAccount, whereas in the Pay-
mentList class the contained type is Payment. Also, we have included a
constant MAX, to allow us to record the maximum number of payments we would
like to record in our list. As MAX is a constant it has been given public visibility (+).
Figure 11.2 provides a reminder of the design of the PaymentList class.

As you can see, as well as a constructor, there are methods to add a new payment
to the list, to check if the list is full and to count the total number of payments made
so far. There are also methods to get a payment based on a position number and to
calculate the total payments made so far. Finally, once again we have included a
toString method for ease of testing. Take a look at the code for the Pay-
mentList class below before we discuss it—once again we are using the
Javadoc style of comments which will be fully explained in the next section.

-pList: ArrayList<Payment>
+MAX: int

PaymentList

+PaymentList(int)
+addPayment(Payment): boolean
+isFull(): boolean
+getTotal(): int
+getPayment(int) : Payment
+calculateTotalPaid() : double
+toString(): String

*
Payment

Fig. 11.2 The design of the PaymentList collection class

11.4 Implementing the Payment Class 313

PaymentList
import java.util.ArrayList;

/** Collection class to hold a list of Payment objects
 * @author Charatan and Kans
 * @version 4th April 2018
 */
public class PaymentList
{

// attributes
 private ArrayList<Payment> pList;
 public final int MAX;

/** Constructor initialises the empty payment list and sets the maximum list size
 * @param maxIn: The maximum number of payments in the list
 */
 public PaymentList(int maxIn)
 {
 pList = new ArrayList<>();
 MAX = maxIn;
 }

/** Checks if the payment list is full
 * @return Returns true if the list is full and false otherwise
 */
 public boolean isFull()
 {
 return pList.size()== MAX;
 }

/** Gets the total number of payments
 * @return Returns the total number of payments currently in the list
 */
 public int getTotal()
 {
 return pList.size();
 }

/** Adds a new payment to the end of the list
 * @param pIn: The payment to add
 * @return Returns true if the object was added successfully and false otherwise
 */
 public boolean addPayment(Payment pIn)
 {
 if(!isFull())
 {
 pList.add(pIn);
 return true;
 }
 else
 {
 return false;
 }
 }

/** Reads the payment at the given position in the list
 * @param positionIn: The logical position of the payment in the list
 * @return Returns the payment at the given logical position in the list
 * or null if no payment at that logical position
 */
 public Payment getPayment(int positionIn)
 {

//check for valid logical position
 if (positionIn <1 || positionIn > getTotal())
 {

// no object found at given position
 return null;
 }
 else
 {

// take one off logical position to get ArrayList position
 return pList.get(positionIn - 1);
 }
 }

/** Calculates the total payments made by the tenant
 * @return Returns the total value of payments recorded
 */
 public double calculateTotalPaid()
 {
 double totalPaid = 0; // initialize totalPaid

// loop through all payments
 for (Payment p: pList)
 {

// add current payment to running total
 totalPaid = totalPaid + p.getAmount();
 }
 return totalPaid;
 }

@Override
 public String toString()
 {
 return pList.toString();
 }
}

314 11 Case Study—Part 1

Firstly you can see that we have imported the ArrayList class from the
java.util package:

We make use of the ArrayList class to store a collection of payments in the
pList attribute. In addition to this attribute we have a public constant value
MAX to record the maximum number of payments that we can record:

The constructor, as well as initialising the ArrayList attribute pList, sets
the value for MAX via a parameter (maxIn) sent to the constructor:

Now let’s take a look at the remaining methods of this class. Firstly, we have an
isFull method. The pList will be full when its size is equal to the value of our
constant MAX:

You can see that the size method of ArrayList has been used to check the
number of items currently in the pList.

The addPayment method makes use of isFull to check if there is space in
our pList before adding a new Payment object. A boolean value is returned to
indicate success or failure:

import java.util.ArrayList;

// attributes
private ArrayList<Payment> pList;
public final int MAX;

/** Constructor initialises the empty payment list and sets the maximum list size
 * @param maxIn: The maximum number of payments in the list
 */
public PaymentList(int maxIn)
{
 pList = new ArrayList<>();
 MAX = maxIn;
}

public boolean isFull()
{

 return pList.size()== MAX; // use the size method of ArrayList
}

public boolean addPayment(Payment pIn)
{

if(!isFull()) // ok to add Payment
 {

 pList.add(pIn);
 return true;
 }
 else
 {
 return false; // Payment not added to a full list
 }
}

11.5 The PaymentList Class 315

The sizemethod of ArrayList that we met earlier is used again to implement
the getTotal method, which returns the total number of payments made so far:

The getPayment method makes use of getTotal to check that the validity
of the parameter positionIn. The positionIn parameter is the logical
position of a payment in the list, which should be a number between 1 and the total
number of items in the list. If an invalid position is sent the null value is returned,
otherwise the payment at the associated ArrayList position is returned:

Next, the calculateTotalPaid method computes the sum of all payments
in the list. This calculateTotalPaid method uses a standard algorithm for
computing sums from a list of items. We met such an algorithm in Sect. 6.8.2 of
this book. This algorithm can be expressed in pseudocode as follows:

Since the loop in this algorithm is just reading the items in the payment list, it
can be implemented in Java with the use of an enhanced for loop:

Finally, we have overridden the toString method again to allow the payment
list to be displayed as a single String. This may seem like quite a challenging
task when dealing with a collection of objects. Maybe we need to loop through the

public int getTotal()
{

return pList.size();
}

public Payment getPayment(int positionIn)
{

//check for invalid logical position
 if (positionIn <1 || positionIn > getTotal())
 {

// no object to return at the position
 return null;
 }
 else
 {

// take one off logical position to get ArrayList position
 return pList.get(positionIn - 1);
 }
}

SET totalPaid TO 0
LOOP FROM first item in list TO last item in list
BEGIN
 SET totalPaid TO totalPaid + amount of current payment
END
return totalPaid

public double calculateTotalPaid()
{

double totalPaid = 0; // initialize totalPaid
// loop through all payments

 for (Payment p: pList)
 {

// add current payment to running total
 totalPaid = totalPaid + p.getAmount();
 }
 return totalPaid; // return sum
}

316 11 Case Study—Part 1

list and join all the payments together to form a single String? Luckily, we do not
have to go to such lengths as the ArrayList class has a toString method built
in! So all we need to do is call the toString method of the ArrayList attribute
here:

If we assume we have three payment objects in the payment list, say (“Jan” :
310), (“Feb” : 280) and (“March” : 310), the toString method of ArrayList
would return a String that looks as follows:

[(“Jan” : 310), (“Feb” : 280), (“March” : 310)]

As you can see, the toString method of ArrayList calls the toString
method of the contained items, separates them by commas and encloses the whole
list in a pair of square brackets.

We will make use of this toString method during the testing of the Pay-
mentList class, but first let’s have a closer look at the Javadoc comments that
we have included in the PaymentList class and the Javadoc tool itself.

11.5.1 Javadoc

Oracle’s Java Development Kit contains a tool, Javadoc, which allows you to
generate documentation for classes in the form of HTML files. In order to use this
tool you must comment your classes in the Javadoc style. As we mentioned in
Chap. 1, Javadoc comments must begin with /** and end with */. Javadoc
comments can also contain ‘tags’. Tags are special formatting markers that allow
you to record information such as the author of a piece of code. Table 11.1 gives
some commonly used tags in Javadoc comments.

The @author and @version tags are used in the Javadoc comments for the
class as a whole. You can see examples of these tags at the top of the Pay-
mentList class:

When Javadoc comments run over several lines, as in the example above, it is
common (though not necessary) to begin each line with a leading asterisk.

@Override
public String toString()
{

return pList.toString(); // call toString of ArrayList

}

/** Collection class to hold a list of Payment objects
 * @author Charatan and Kans
 * @version 4th April 2018
 */
public class PaymentList
{

// attributes and methods go here
}

11.5 The PaymentList Class 317

The @param and @return tags can be used in the Javadoc comments
preceding each method. The @param tag is used to name and describe the purpose
of a given parameter. The @return tag is used to describe the value returned by a
method. Here for example are the Javadoc comments for the addPayment
method, which makes use of both the @param and @return tags.

The @param tag has been used to provide a comment on the parameter (pIn)
and the @return tag has been used to comment the role of the boolean value
returned by this method. Using Javadoc comments in this way provides a
comprehensive explanation of the functionality of a class. Take a look at the
remaining Javadoc comments used in the PaymentList class for more
examples of these tags.

The Javadoc HTML documentation files themselves can then be generated
either from the command line using the javadoc command:

javadoc PaymentList.java

or invoked directly by your IDE. Figure 11.3 gives part of the documentation
generated as a result of the PaymentList class Javadoc comments.

Comments, such as the Javadoc comments we added into the PaymentList
class, provide one technique for documenting the code that you write. Documenting
your code is important as it assists in the maintenance of that code, should it need to
be modified in the future. Well documented code is also easier to fix if errors arise
during development. As well as commenting your code, you should ensure that the
code is well laid out so that it becomes easier to read and follow; more about this in
a moment.

Table 11.1 Some Javadoc tags

Tag Information

@author The name(s) of the code author(s)

@version A version number for the code (often a date is used here)

@param The name of a parameter and its description

@return A description of the return value of a method

/** Adds a new payment to the end of the list
 * @param pIn: The payment to add
 * @return Returns true if the object was added successfully and false otherwise
 */
public boolean addPayment(Payment pIn)
{
 if(!isFull())
 {

 pList.add(pIn);
 return true;

 }
 else
 {
 return false;
 }
}

318 11 Case Study—Part 1

11.5.2 Code Layout

Consistent and clear indentation is important to improve the readability of your
programs. Look at the example programs that we have presented to you and notice
the care we have taken with our indentation. We are following two simple rules all
the time:

• keep braces lined up under the structure to which they belong;
• indent, by one level, all code that belongs within those braces.

For example, look again at the addPayment method of the PaymentList
class:

Fig. 11.3 Javadoc documentation generated for the PaymentList class

11.5 The PaymentList Class 319

Notice how these rules are applied again with the braces of the inner if…else
statements:

11.6 Testing the PaymentList Class

As we have said before, it is always important to test classes in order to ensure that
they are functioning correctly before moving on to the rest of the development.
Whereas the testing of the Payment class was an example of unit testing, testing
this PaymentList class is an example of integration testing as it requires the
PaymentList class working in conjunction with the Payment class.

To test the PaymentList class we need a driver that not only creates a
PaymentList object, but also creates payments to add to this list.

We have quite a few methods to test in our PaymentList class, so we need to
spend some time considering how we will go about testing these methods. For
example, it would make sense to limit the size of our PaymentList so that we

public boolean addPayment(Payment pIn)
{
 if(!isFull())
 {
 pList.add(pIn);
 return true;
 }
 else
 {
 return false;
 }
}

matching
opening
and
closing
braces
lined up

code within
braces
indented

if(!isFull())
{

pList.add(pIn);
 return true;
}

matching
opening
and
closing
braces
lined up

code within
braces
indented

320 11 Case Study—Part 1

can quickly fill up our list to check the isFull method. Here is one possible test
strategy:

1. limit the size of the PaymentList to a relatively small number (say 4) using
the PaymentList constructor;

2. add two payments to this list, say (“Jan”, 310) and (“Feb”, 280) using the
addPayment method;

3. display the list (using the toString method) to check the items have been
added successfully;

4. check to see if the isFull method returns false;
5. add two more payments to this list, say (“March”, 310) and (“April”, 300) using

the addPayment method;
6. display the list (using the toString method) to check the items have been

added successfully;
7. check to see if the isFull method returns true;
8. get details of one of the payments made (say the second payment) using the

getPayment method.
9. attempt to retrieve a payment at an invalid position (say 5);

10. display the total number of payments made so far (using the getTotal
method);

11. display the total of the payments made so far (using the calcu-
lateTotalPaid method);

12. attempt to add another payment to this full list using the addPayment
method.

Notice that the test strategy should ensure that all methods of the class are tested
and all possible routes through a method are tested. So, for example, as well as
ensuring that the isFull method is called ensure we provide a scenario where the
method should return true and provide a scenario where the method should return
false.

Once a strategy is chosen, the test results should be logged in a test log. A test
log is a document that records the testing that took place during system develop-
ment. Each row of the test log associates an input with an expected output. If the
output is not as expected, reasons for this error have to be identified and recorded in
the log.

Figure 11.4 illustrates a suitable test log to document the testing strategy we
developed above.

Test logs such as this should be devised before the driver itself (and may even be
developed before the class we are testing has been developed). The test log can then
be used to prompt the development of the driver. As you can see by looking at the
test in Fig. 11.4, we assume that the driver is a menu driven program.

11.6 Testing the PaymentList Class 321

TEST LOG

Purpose: To test the PaymentList class

Run Number: Date:
Action Expected Output Pass/ Fail Reason for

failure
- Prompt for size of list

Enter 4 Display menu of options
Select ADD option Prompt for Payment details
Enter “Jan”, 310 Display menu of options
Select ADD option Prompt for Payment to add
Enter “Feb”, 280 Display menu of options
Select DISPLAY option Message

[(Jan : 310.0), (Feb : 280.0)]

Display menu of options
Select IS FULL option Message “list is NOT full”

Display menu of options
Select ADD option Prompt for Payment to add
Enter “March”, 310 Display menu of options
Select ADD option Prompt for Payment to add
Enter “April”, 300 Display menu of options
Select DISPLAY option Message

[(Jan : 310.0), (Feb : 280.0), (March : 310.0), (April : 300.0)]

Display menu of options
Select IS FULL option Message

“list is full”

Display menu of options
Select GET PAYMENT
option

Prompt for position to retrieve

Enter 2 Message
(Feb : 280.0)

Display menu of options
Select GET PAYMENT
option

Prompt for position to retrieve

Enter 5 Message
INVALID PAYMENT NUMBER

Display menu of options
Select GET TOTAL
option

Message
4

Display menu of options
Select CALCULATE
TOTAL PAID option

Message
1200.0

Display menu of options
Select ADD option Prompt for Payment to add
Enter “May”, 310 Message

Error – list full message

Display menu of options
Select EXIT option Program terminates

Fig. 11.4 Test log for the PaymentList class

322 11 Case Study—Part 1

The PaymentListTester program is one possible driver we could develop
in order to process the actions given in this test log:

PaymentListTester

public class PaymentListTester
{

 public static void main(String[] args)
 {
 char choice;
 int size;
 PaymentList list; // declare PaymentList object to test

// get size of list
 System.out.print("Size of list? ");
 size = EasyScanner.nextInt();
 list = new PaymentList(size); // create object to test

// menu
 do
 {

// display options
 System.out.println();
 System.out.println("[1] ADD");
 System.out.println("[2] DISPLAY");
 System.out.println("[3] IS FULL");
 System.out.println("[4] GET PAYMENT");
 System.out.println("[5] GET TOTAL");
 System.out.println("[6] CALCULATE TOTAL PAID");
 System.out.println("[7] Quit");
 System.out.println();
 System.out.print("Enter a choice [1-7]: ");

// get choice
 choice = EasyScanner.nextChar();
 System.out.println();

// process choice
 switch(choice)
 {
 case '1': option1(list); break;
 case '2': option2(list); break;
 case '3': option3(list); break;
 case '4': option4(list); break;
 case '5': option5(list); break;
 case '6': option6(list); break;
 case '7': System.out.println("TESTING COMPLETE"); break;
 default: System.out.print("1-7 only");
 }
 } while (choice != '7');
 }

// ADD
 static void option1(PaymentList listIn)
 {

// prompt for payment details
 System.out.print("Enter Month: ");
 String month = EasyScanner.nextString();
 System.out.print("Enter Amount: ");
 double amount = EasyScanner.nextDouble();

// create new Payment object from input
 Payment p = new Payment(month, amount);

// attempt to add payment to list
 boolean ok = listIn.addPayment(p); // value of false sent back if unable to add
 if (!ok)// check if item was not added
 {
 System.out.println("ERROR: list full");
 }
 }

// DISPLAY
 static void option2(PaymentList listIn)
 {
 System.out.println("ITEMS ENTERED");
 System.out.println(listIn); // calls toString method of PaymentList
 }

// IS FULL
 static void option3(PaymentList listIn)
 {
 if (listIn.isFull())
 {
 System.out.println("list is full");
 }
 else
 {
 System.out.println("list is NOT full");
 }
 }

// GET PAYMENT
 static void option4(PaymentList listIn)
 {

// prompt for and receive payment number
 System.out.print("Enter payment number to retrieve: ");

11.6 Testing the PaymentList Class 323

We are now in a position to run the driver and check the actions documented in
the test log:

Size of list? 4

[1] ADD
[2] DISPLAY
[3] IS FULL
[4] GET PAYMENT
[5] GET TOTAL
[6] CALCULATE TOTAL PAID
[7] Quit

Enter a choice [1-7]: 1

Enter Month: Jan

Enter Amount: 310

[1] ADD
[2] DISPLAY
[3] IS FULL
[4] GET PAYMENT
[5] GET TOTAL
[6] CALCULATE TOTAL PAID
[7] Quit

Enter a choice [1-7]: 1

Enter Month: Feb

Enter Amount: 280

[1] ADD
[2] DISPLAY
[3] IS FULL
[4] GET PAYMENT

 int num = EasyScanner.nextInt();
// retrieve Payment object form list

 Payment p = listIn.getPayment(num); // returns null if invalid position
 if (p != null)// check if Payment retrieved
 {
 System.out.println(p); // calls toString method of Payment
 }
 else
 {
 System.out.println("INVALID PAYMENT NUMBER"); // invalid position error
 }
 }

// GET TOTAL
 static void option5(PaymentList listIn)
 {
 System.out.print("TOTAL NUMBER OF PAYMENTS ENTERED: ");
 System.out.println(listIn.getTotal());
 }

// GET TOTAL PAID
 static void option6(PaymentList listIn)
 {
 System.out.print("TOTAL OF PAYMENTS MADE SO FAR: ");
 System.out.println(listIn.calculateTotalPaid());
 }
}

324 11 Case Study—Part 1

[5] GET TOTAL
[6] CALCULATE TOTAL PAID
[7] Quit

Enter a choice [1-7]: 2

ITEMS ENTERED

[(Jan : 310.0), (Feb : 280.0)]

[1] ADD
[2] DISPLAY
[3] IS FULL
[4] GET PAYMENT
[5] GET TOTAL
[6] CALCULATE TOTAL PAID
[7] Quit

Enter a choice [1-7]: 3

list is NOT full

[1] ADD
[2] DISPLAY
[3] IS FULL
[4] GET PAYMENT
[5] GET TOTAL
[6] CALCULATE TOTAL PAID
[7] Quit

Enter a choice [1-7]: 1

Enter Month: March

Enter Amount: 310

[1] ADD
[2] DISPLAY
[3] IS FULL
[4] GET PAYMENT
[5] GET TOTAL
[6] CALCULATE TOTAL PAID
[7] Quit

Enter a choice [1-7]: 1

Enter Month: April

Enter Amount: 300

[1] ADD
[2] DISPLAY
[3] IS FULL
[4] GET PAYMENT
[5] GET TOTAL

11.6 Testing the PaymentList Class 325

[6] CALCULATE TOTAL PAID
[7] Quit

Enter a choice [1-7]: 2

ITEMS ENTERED

[(Jan : 310.0), (Feb : 280.0), (March : 310.0), (April :
300.0)]

[1] ADD
[2] DISPLAY
[3] IS FULL
[4] GET PAYMENT
[5] GET TOTAL
[6] CALCULATE TOTAL PAID
[7] Quit

Enter a choice [1-7]: 3
list is full

[1] ADD

[2] DISPLAY
[3] IS FULL
[4] GET PAYMENT
[5] GET TOTAL
[6] CALCULATE TOTAL PAID
[7] Quit

Enter a choice [1-7]: 4

Enter payment number to retrieve: 2
(Feb : 280.0)

[1] ADD
[2] DISPLAY
[3] IS FULL
[4] GET PAYMENT
[5] GET TOTAL
[6] CALCULATE TOTAL PAID
[7] Quit

Enter a choice [1-7]: 4

Enter payment number to retrieve: 5

INVALID PAYMENT NUMBER

[1] ADD
[2] DISPLAY
[3] IS FULL
[4] GET PAYMENT
[5] GET TOTAL

326 11 Case Study—Part 1

[6] CALCULATE TOTAL PAID
[7] Quit

Enter a choice [1-7]: 5

TOTAL NUMBER OF PAYMENTS ENTERED: 4

[1] ADD
[2] DISPLAY
[3] IS FULL
[4] GET PAYMENT
[5] GET TOTAL
[6] CALCULATE TOTAL PAID
[7] Quit

Enter a choice [1-7]: 6

TOTAL OF PAYMENTS MADE SO FAR: 1200.0

[1] ADD
[2] DISPLAY
[3] IS FULL
[4] GET PAYMENT
[5] GET TOTAL
[6] CALCULATE TOTAL PAID

[7] Quit

Enter a choice [1-7]: 1

Enter Month: May

Enter Amount: 310
ERROR: list full

[1] ADD
[2] DISPLAY
[3] IS FULL
[4] GET PAYMENT
[5] GET TOTAL
[6] CALCULATE TOTAL PAID
[7] Quit

Enter a choice [1-7]: 7
TESTING COMPLETE

You have seen menu driven tester programmes such as this before so we will not
discuss it in any detail. Note that our EasyScanner class has been used in this
tester for ease of keyboard input. For example:

// get size of list
System.out.print("Size of list? ");
size = EasyScanner.nextInt(); // EasyScanner used to simplify keyboard input

11.6 Testing the PaymentList Class 327

Also, notice how the display method of our PaymentListTester (option 2
on the menu) displays the PaymentList object using the toString method we
discussed earlier:

The output from this method gives us the ArrayList values in the format we
discussed earlier, for example:

ITEMS ENTERED
[(Jan : 310.0), (Feb : 280.0), (March : 310.0), (April :

300.0)]

If unexpected results are produced during testing, you should stop and identify
the cause of the error in the class that you are testing. Both the cause of the error and
how the error was fixed should be documented in the test log. The driver can then
be run again with a fresh test log and this process should continue until all results
are delivered as predicted. In this case, however, the results were as expected, so we
can now move on to developing the rest of our system. We have two more classes
to look at Tenant and TenantList. Before we look at the TenantList class
we need to implement the Tenant class.

11.7 Implementing the Tenant Class

As you can see from the UML diagram of Fig. 11.1, the Tenant class contains
four attributes:

• name;
• room;
• payments;
• MAX.

The first two of these represent the name and the room of the tenant respectively.
The third attribute, payments, is to be implemented as a PaymentList object
and the last attribute, MAX, is to be implemented as a static class attribute. The
MAX attribute will also be implemented as a constant as we are assuming that
tenants make a fixed number of payments in a year (twelve—one for each month).
Since class constants cannot be modified, it makes sense to allow them to be
declared as public. Below is the code for the Tenant class.

// DISPLAY
static void option2(PaymentList listIn)
{

System.out.println("ITEMS ENTERED");
 System.out.println(listIn); // calls toString method of PaymentList
}

328 11 Case Study—Part 1

Tenant
/** Class used to record the details of a tenant
 * @author Charatan and Kans
 * @version 6th April 2018
 */
public class Tenant
{
 private String name;
 private int room;
 private PaymentList payments;
 public static final int MAX = 12;

/** Constructor initialises the name and room number of the tenant
 * and sets the payments made to the empty list
 * @param nameIn: name of tenant
 * @param roomIn: room number of tenant
 */
 public Tenant(String nameIn, int roomIn)
 {
 name = nameIn;
 room = roomIn;
 payments = new PaymentList(MAX);
 }

/** Records a payment for the tenant
 * @param paymentIn: payment made by tenant
 */
 public void makePayment(Payment paymentIn)
 {
 payments.addPayment(paymentIn); // call PaymentList method
 }

/** Reads the name of the tenant
 * @return Returns the name of the tenant
 */
 public String getName()
 {
 return name;
 }

/** Reads the room of the tenant
 * @return Returns the room of the tenant
 */
 public int getRoom()
 {
 return room;
 }

/** Reads the payments of the tenant
 * @return Returns the payments made by the tenant
 */
 public PaymentList getPayments()
 {
 return payments;
 }

@Override
 public String toString()
 {
 return name+", "+room +", "+payments;
 }
}

11.7 Implementing the Tenant Class 329

The Javadoc comments should be sufficient documentation for you to follow
the code in this class. Note how the Javadoc comments for the constructor
includes two @param tags, as the constructor has two parameters. Also, it is worth
noting that the payments attribute, being of type PaymentList, can respond to
any of the PaymentList methods we discussed in Sect. 11.5. The makePay-
ment method illustrates this by calling the addPayment method of
PaymentList:

We will leave the testing of this class and the next TenantList class as
exercises for you as end of chapter programming exercises.

11.8 Implementing the TenantList Class

The TenantList class is a collection class to hold our Tenant objects. Once
again we use an ArrayList to store this collection and have a MAX constant to fix
an upper limit on the number of tenants our hostel can accommodate. A reminder of
the design of the TenantList class is given in Fig. 11.5.

Most of the methods of the TenantList class should be familiar to you from
the PaymentList collection classed that we discussed earlier. We will just take a
closer look at two methods that were not mirrored in the PaymentList class,
namely the remove and search methods. Let’s start with the search method.
Here is a reminder of its UML interface:

TenantList

+TenantList(int)
+addTenant(Tenant): boolean
+removeTenant (int) : boolean
+getTenant(int) : Tenant
+search(int) : Tenant
+isEmpty() : boolean
+isFull () : boolean
+getTotal() : int
+toString(): String

-tList: ArrayList<Tenant>
+MAX: int

*
Tenant

Fig. 11.5 The design of the TenantList collection class

public void makePayment(Payment paymentIn)
{

payments.addPayment(paymentIn); // call PaymentList method
}

330 11 Case Study—Part 1

search (int): Tenant

The integer parameter represents the room number of the tenant that this method is
searching for. The tenant returned is the tenant living in that particular room; if no
tenant is found in that room then null is returned. Here is a suitable algorithm for
finding a tenant, expressed in pseudocode:

This is similar to the algorithm we looked at for searching an array in Sect. 8.8.1
except that we return the given item in the list rather than its index. This algorithm
requires a loop to search through the tenants in the list and an enhanced for loop is
a good way to do this:

Now let’s look at the removeTenant method. The UML interface for this
method is as follows:

removeTenant(int): boolean

Here the integer parameter represents the room number of the tenant that is to be
removed from the list and the boolean return value indicates whether or not such
a tenant has been removed successfully.

The previous search method can be used here to determine if a tenant exists in
that particular room (a value of null will be returned if no such tenant exists). If
such a tenant does exist it can be removed from the list using the remove method

public Tenant search(int roomIn)
{
 for(Tenant currentTenant: tList)// enhanced for loop to serach through the list of tenants
 {

// find tenant with given room number
 if(currentTenant.getRoom() == roomIn)
 {
 return currentTenant;
 }
 }
 return null; // no tenant found with given room number
 }

LOOP FROM first tenant in list TO last tenant in list
BEGIN
 IF current tenant’s room number = room to locate
 BEGIN
 return current tenant
 END
END
return null

11.8 Implementing the TenantList Class 331

of ArrayList and a boolean value of true can be returned, otherwise a
boolean value of false can be returned. Here is the code:

The complete code for the TenantList class is now presented below. The
Javadoc comments provided should now provide sufficient explanation of each
part of this class.

 {
 tList = new ArrayList<>();
 MAX = maxIn;
 }

/** Adds a new Tenant to the list
 * @param tIn The Tenant to add
 * @return Returns true if the tenant was added successfully and false otherwise
 */
 public boolean addTenant(Tenant tIn)
 {
 if(!isFull())
 {
 tList.add(tIn);
 return true;

TenantList
import java.util.ArrayList;

/** Collection class to hold a list of tenants
 * @author Charatan and Kans
 * @version 6th April 2018
 */
public class TenantList
{
 private ArrayList<Tenant> tList;
 public final int MAX;

/** Constructor initialises the empty tenant list and sets the maximum list size
 * @param maxIn The maximum number of tenants in the list
 */
 public TenantList(int maxIn)

public boolean removeTenant(int roomIn)
{
 Tenant findT = search(roomIn); // call search method
 if (findT != null) // check tenant is found at given room
 {

 tList.remove(findT); // remove given tenant
 return true;
 }
 else
 {
 return false; // no tenant in given room
 }
}

332 11 Case Study—Part 1

 }
 else
 {
 return false;
 }
 }

"1,,"Tgoqxgu"vjg"vgpcpv"kp"vjg"ikxgp"tqqo"pwodgt"
""""",""Brctco"tqqoKp"Vjg"tqqo"pwodgt"vq"qh"vjg"vgpcpv"vq"tgoqxg"
""""",""Btgvwtp"Tgvwtpu"vtwg"kh"vjg"vgpcpv"ku"tgoqxgf"uweeguuhwnn{"qt"hcnug"qvjgtykug"
""""",1"
 public boolean removeTenant(int roomIn)
 {
 Tenant findT = search(roomIn); 11"ecnn"ugctej"ogvjqf
 if (findT != null) 11"ejgem"vgpcpv"ku"hqwpf"cv"ikxgp"tqqo
 {
 tList.remove(findT); 11"tgoqxg"ikxgp"vgpcpv
 return true;
 }
 else
 {
 return false; 11"pq"vgpcpv"kp"ikxgp"tqqo
 }
 }

1,,"Ugctejgu"hqt"vjg"vgpcpv"kp"vjg"ikxgp"tqqo"pwodgt"
""""",""Brctco"tqqoKp"Vjg"tqqo"pwodgt"vq"ugctej"hqt"
""""",""Btgvwtp"Tgvwtpu"vjg"vgpcpv"kp"vjg"ikxgp"tqqo"qt"pwnn"kh"pq"vgpcpv"kp"vjg"ikxgp"tqqo"
""""",1"
 public Tenant search(int roomIn)
 {
 for(Tenant currentTenant: tList)
 {
 // find tenant with given room number
 if(currentTenant.getRoom() == roomIn)
 {
 return currentTenant;
 }
 }
 return null; // no tenant found with given room number
 }

1,,"Tgcfu"vjg"vgpcpv"cv"vjg"ikxgp"rqukvkqp"kp"vjg"nkuv"
""""",""Brctco""""""rqukvkqpKp"Vjg"nqikecn"rqukvkqp"qh"vjg"vgpcpv"kp"vjg"nkuv"
""""",""Btgvwtp"""""Tgvwtpu"vjg"vgpcpv"cv"vjg"ikxgp"nqikecn"rqukvkqp"kp"vjg"nkuv"
""""",""""""""""""""qt"pwnn"kh"pq"vgpcpv"cv"vjcv"nqikecn"rqukvkqp"
""""",1"
 public Tenant getTenant(int positionIn)
 {
 if (positionIn<1 || positionIn>getTotal()) 11"ejgem"hqt"xcnkf"rqukvkqp
 {
 return null; 11"pq"qdlgev"hqwpf"cv"ikxgp"rqukvkqp
 }
 else
 {

11"tgoqxg"qpg"hto"nqikecn"rqkvkqp"vq"igv"Cttc{Nkuv"rqukvkqp"
 return tList.get(positionIn -1);
 }
 }

1,,"Tgrqtvu"qp"yjgvjgt"qt"pqv"vjg"nkuv"ku"gorv{"
""""",""Btgvwtp"Tgvwtpu"vtwg"kh"vjg"nkuv"ku"gorv{"cpf"hcnug"qvjgtykug
""""",1"
 public boolean isEmpty()
 {
 return tList.isEmpty();
 }

"1,,"Tgrqtvu"qp"yjgvjgt"qt"pqv"vjg"nkuv"ku"hwnn"
""""",""Btgvwtp"Tgvwtpu"vtwg"kh"vjg"nkuv"ku"hwnn"cpf"hcnug"qvjgtykug"
""""",1
 public boolean isFull()
 {
 return tList.size()== MAX;
 }

1,,"Igvu"vjg"vqvcn"pwodgt"qh"vgpcpvu""
""""",""Btgvwtp"Tgvwtpu"vjg"vqvcn"pwodgt"qh"vgpcpvu"ewttgpvn{"kp"vjg"nkuv""
""""",1"
 public int getTotal()
 {
 return tList.size();
 }

"BQxgttkfg"
 public String toString()
 {
 return tList.toString();
 }
}

11.8 Implementing the TenantList Class 333

All that remains for us to do to complete our case study in the next chapter is to
design, implement and test the Hostel class which will not only keep track of the
tenants but will also act as the graphical user interface for the system.

11.9 Self-test Questions

1. Describe the class associations given in the UML design of Fig. 11.1.

2. Produce suitable Javadoc comments for the Oblong class from Chap. 8.

3. The test log of Sect. 11.5.3 did not include checks for the getItem and
getTotal methods of the PaymentList class. It also did not include a
check that attempts to add to a full list and remove from an empty list would fail.
Modify the test log to include these checks.

4. Develop test logs for testing the Tenant and TenantList classes.

5. Identify the benefits of adding a toString method into your classes and then
write a suitable toString method for the Bank class from Chap. 8.

11.10 Programming Exercises

You will need to copy the entire suite of classes that make up the student hostel
system and the Bank and BankApplication classes from the website.

1. Modify and then run the driver given in Program 11.2 in light of the changes
made to the test log in self-test question 3 above.

2. Develop suitable drivers to test the Tenant and TenantList classes.

3. Use the test logs you developed in self-test question 5 and the drivers you
developed in Exercise 2 above to test the Tenant and TenantList classes.

4. Incorporate the toString method into the Bank class from Chap. 8 you
developed in self-test question 4 above then modify and run the
BankApplication tester program from the same chapter to test make use of
this toString method.

334 11 Case Study—Part 1

12Case Study—Part 2

Outcomes:

By the end of this chapter you should be able to:

• design an attractive graphical user interface;
• use pseudocode to design event handling routines;
• implement the design in Java using a variety of JavaFX components;
• devise a testing strategy for a complete application and carry out the necessary

steps to implement that strategy.

12.1 Introduction

In the previous chapter we designed and developed the core classes required to
implement the functionality of our Student Hostel System. We now go on develop a
graphical user interface for this application.

12.2 Keeping Permanent Records

In practice, an application such as the Student Hostel System would not be much use
if we had no way of keeping permanent records—in other words, of saving a file to
disk. However, reading and writing files is something that you will not learn until
your second semester. So, in the meantime, in order to make it possible to keep a
permanent record of your data, we have created a special class for you to use; we
have called this class TenantFileHandler. This class (along with the rest of
the files from this case study) can be found on the accompanying website.

© Springer Nature Switzerland AG 2019
Q. Charatan and A. Kans, Java in Two Semesters, Texts in Computer Science,
https://doi.org/10.1007/978-3-319-99420-8_12

335

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99420-8_12&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99420-8_12&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99420-8_12&domain=pdf
https://doi.org/10.1007/978-3-319-99420-8_12

The TenantFileHandler class has two static methods: the first,
saveRecords, needs to be sent two parameters, an integer value indicating the
number of rooms in the hostel, and a TenantList, which is a reference to the list
to be saved; the second, readRecords, requires only a reference to a
TenantList so that it knows where to store the information that is read
from the file.

The readRecords method will be called when the application starts (so this
method call will therefore be coded into the start method of the JavaFX appli-
cation), and the saveRecords method will be called when we finish the appli-
cation (and will therefore be coded into the event-handler of a “Save and Quit”
button). The user can of course exit without saving by clicking the cross-hairs, just
in case, for any reason, the user should want to abandon any changes.

12.3 Design of the Hostel Class

In Fig. 11.1 of the previous chapter we presented the Hostel class as part of the
Student Hostel application design, but did not give any design details for this class.
Let’s consider this Hostel class now. Figure 12.1 is a reminder of the important
classes in the UML diagram and also includes some key attributes and methods.

As you can see, the Hostel class requires a single instance of the Tenant-
List collection class we developed in Chap. 11. In Fig. 12.1 this instance is
recorded as the private list attribute in the Hostel class.

Application

Hostel

TenantList
-list: TenantList
-noOfRooms: int

+start(Stage)
-getNumberOfRooms():int

Fig. 12.1 The initial design of the Hostel class

336 12 Case Study—Part 2

Our Student Hostel application will have a JavaFX interface, so the Hostel
class also needs to inherit from the JavaFX Application class. Consequently,
we need to provide a start method to add components to the Stage and process
the event-handling routines. This method will also initialise the tenant list and read
any data into this list from a file (using the aforementioned TenantFileHan-
dler class that we have provided).

In order to initialise the tenant list we have added a noOfRooms integer
attribute to record how many rooms to limit the hostel to. We have also added a
private method, getNumberOfRooms, to request this room limit from the user.
We have included a main method to launch the application (although, as we
explained in Chap. 10, this is not always necessary for JavaFX applications).

From this initial class design we have the following outline of our Hostel
class:

You can see, in the start method, we have called the private getNum-
berOfRoomsmethod to request and return the number of rooms to limit the tenant list
to. ThegetNumberOfRoomsmethoduses a standard textwindow for output and the
keyboard for input. The readRecords method of the TenantFileHandler
class is then used in the start method to load into the tenant list any pre-existing
Tenant records saved to file.

The remaining code within this class will relate to the GUI for this application,
so let’s consider the design of the GUI now.

import javafx.application.Application;
import javafx.stage.Stage;

public class Hostel extends Application
{

// attributes
private TenantList list;
private int noOfRooms;

// methods
@Override
public void start(Stage stage)

 {
noOfRooms = getNumberOfRooms(); // call private method
// initialise tenant list
list = new TenantList(noOfRooms);
TenantFileHandler.readRecords(list);
// code to layout components, process event handling routines and initialise the list here

}

/**
* Method to request number of hostel rooms from the user
* @return number of rooms
*/
private int getNumberOfRooms()

 {
System.out.print("How many rooms?: ");
int num = EasyScanner.nextInt();
return num;

}

public static void main(String[] args)
{

launch(args);
}

}

12.3 Design of the Hostel Class 337

12.4 Design of the GUI

There will be two aspects to the design of the graphical interface. Firstly, we need to
design the visual side of things; then we need to design the algorithms for our
event-handling routines so that the buttons do the jobs we want them to, like adding
or displaying tenants.

Let’s start with the visual design. We need to choose which graphics compo-
nents we are going to use and how to lay them out. One way to do this is to make a
preliminary sketch such as the one shown in Fig. 12.2.

It should be clear which JavaFX components we will be using here. We have a
selection of buttons on our GUI (Fig. 12.3).

The remaining components are Labels (“Hostel Application”, “Room” “Name”,
“Month” and “Amount”) and TextFields (for the five single-row boxes) or
TextAreas (for the two multiple-row boxes).

In the examples you saw in Chap. 10, you saw that we created our visual
components within our start method. This made sense as the algorithms for our
button event handlers (which needed access to these components) were also con-
tained within the start method. In this application, however, we would expect to
have much more complicated algorithms for our button event handlers, so we will
structure things a little differently. In this Hostel class we will implement our
event handlers in a series of private methods (one for each button).

Hostel Application

Room Name

Add Tenant Display Tenants Remove Tenant Save and Quit

Room Month Amount

Room Name
1 Bill Tin-Closet
2 Dan Druff
3 Sue Nora Later

1

Make Payment List Payments

Month Amount
JAN £200.00
FEB £175.00

Total paid so far : £375.00

Fig. 12.2 Preliminary design of the Hostel GUI

338 12 Case Study—Part 2

One implication of implementing the event handling code in separate methods is
that it makes more sense now to make our visual components accessible throughout
the class rather than just in the start method. To do that we make these visual
components attributes of the Hostel class. In the code snippet below we create
these component attributes in the order they appear in our GUI design of Fig. 12.2
(from top to bottom and left to right):

Buttons

Buttons

Fig. 12.3 Some graphical components in the Hostel GUI

public class Hostel extends Application
{

// previous attributes here
// visual components declared as attributes of the class
private Label headingLabel = new Label("Hostel Application");
private Label roomLabel1 = new Label("Room");
private TextField roomField1 = new TextField();
private Label nameLabel = new Label("Name");
private TextField nameField = new TextField();
private Button addButton = new Button("Add Tenant");
private Button displayButton = new Button("Display Tenants");
private Button removeButton = new Button("Remove Tenant");
private Button saveAndQuitButton = new Button("Save and Quit");
private TextArea displayArea1 = new TextArea();
private Label roomLabel2 = new Label("Room");
private TextField roomField2 = new TextField();
private Label monthLabel = new Label("Month");
private TextField monthField = new TextField();
private Label amountLabel = new Label("Amount");
private TextField amountField = new TextField();
private Button paymentButton = new Button("Make Payment");
private Button listButton = new Button("List Payments");
private TextArea displayArea2 = new TextArea();

// code for methods goes here
}

12.4 Design of the GUI 339

Now let’s turn to the layout of these components. We will use a mixture of
HBoxes and a VBox to organise our layout (see Fig. 12.4).

As always, we use the start method to organise our layout:

We have created the four HBoxes given in Fig. 12.4 and then added the relevant
components, we then do the same for the VBox. Finally, we add the VBox to the
Scene.

Eventually we will also customise the look of our visual components (by setting
fonts and borders for example) when we present the complete code for this class.
But now let’s turn our attention to designing the event-handlers for the buttons on
our GUI.

HBox

HBox

VBox

HBox

HBox

Fig. 12.4 Organizing the Hostel GUI with HBoxes and a VBox

public void start(Stage stage)
{

// previous code here
// create four HBoxes
HBox roomDetails = new HBox (10);
HBox tenantButtons = new HBox(10);
HBox paymentDetails = new HBox(10);
HBox paymentButtons = new HBox(10);
// add components to HBoxes
roomDetails.getChildren().addAll(roomLabel1, roomField1, nameLabel, nameField);
tenantButtons.getChildren().addAll(addButton, displayButton, removeButton, saveAndQuitButton);
paymentDetails.getChildren().addAll(roomLabel2, roomField2, monthLabel, monthField,

amountLabel, amountField);
paymentButtons.getChildren().addAll(paymentButton, listButton);
// create VBox
VBox root = new VBox(10);
// add components to VBox
root.getChildren().addAll(headingLabel, roomDetails, tenantButtons, displayArea1,

paymentDetails, paymentButtons, displayArea2);
// add the VBox to the Scene
Scene scene = new Scene(root, Color.LIGHTBLUE);

// rest of start method here
}

340 12 Case Study—Part 2

12.5 Designing the Event-Handlers

As you saw in Fig. 12.2, there are six buttons that need to be coded so that they
respond in the correct way when pressed:

• the “Add Tenant” button;
• the “Display Tenants” button;
• the “Remove Tenant” button;
• the “Save and Quit” button;
• the “Make Payment” button;
• the “List Payments” button.

As always, we will use the setOnAction method of each button to process
these button clicks, but (as we said in the previous section) we will place the code
for the event-handlers in separate private methods and call these methods from
our lambda expressions:

We have summarized below the task that each button’s event-handler method
must perform, and then gone on to design our algorithms using pseudocode.

The Add Tenant Button

The purpose of this button is to add a new Tenant to the list. The values entered in
roomField1 and nameField must be validated; first of all, they must not be
blank; second, the room number must not be greater than the number of rooms
available (or less than 1!); finally, the room must not be occupied. If all this is okay,
then the new tenant is added (we will make use of the addTenant method of
TenantList to do this) and a message should be displayed in displayArea1.
We can express this in pseudocode as follows:

public void start(Stage stage)
{

// previous code here
// call private methods for button event handlers
addButton.setOnAction(e -> addHandler());
displayButton.setOnAction(e -> displayHandler());
removeButton.setOnAction(e -> removeHandler());
paymentButton.setOnAction(e -> paymentHandler());
listButton.setOnAction(e -> listHandler());
saveAndQuitButton.setOnAction(e -> saveAndQuitHandler());

// rest of start method here
}

// private event handler methods here

12.5 Designing the Event-Handlers 341

The Display Tenants Button

Pressing this button will display the full list of tenants (room number and name) in
displayArea1.

If all the rooms are vacant a suitable message should be displayed; otherwise the
list of tenants’ rooms and names should appear under appropriate headings as can
be seen in Fig. 12.2. This can be expressed in pseudocode as follows:

The Remove Tenant Button

Clicking on this button will remove the tenant whose room number has been
entered in roomField1.

As with the Add Tenant button, the room number entered must be validated; if
the number is a valid one then the tenant is removed from the list (we will make use
of the remove method of TenantList to do this) and a confirmation message is
displayed. The pseudocode for this event-handler is given as follows:

read roomField1
read nameField
IF roomField1 blank OR nameField blank

display blank field error in displayArea1
ELSE IF roomField1 value < 1 OR roomField1 value > noOfRooms

display invalid room number error in displayArea1
ELSE IF tenant found in room

display room occupied error in displayArea1
ELSE
BEGIN

add tenant
blank roomField
blank nameField
display message to confirm success in displayArea1

END

IF list is empty
display rooms empty error in displayArea1

ELSE
BEGIN

display header in displayArea1
LOOP FROM first item TO last item in list
BEGIN

append tenant room and name to displayArea1
END

END

read roomField1
IF roomField1 blank

display blank field error in displayArea1
ELSE IF roomField1 value < 1 OR roomField1 value > noOfRooms

display invalid room number error in displayArea1
ELSE IF no tenant found in room

display room empty error in displayArea1
ELSE
BEGIN

remove tenant from list
display message to confirm success in displayArea1

END

342 12 Case Study—Part 2

The List Payment Button

This button records payments made by an individual tenant whose room number is
entered in roomField2. The values entered in roomField2, monthField
and amountField must be validated to ensure that none of the fields are blank,
that the room number is a valid one and, if so, that it is currently occupied.

If everything is okay then a new payment record is added to that tenant’s list of
payments (we will make use of the makePayment method of PaymentList to
do this) and a confirmation message is displayed in displayArea2. This design
is expressed in pseudocode as follows:

The List Payments Button

Pressing this button causes a list of payments (month and amount) made by the
tenant whose room number is entered in roomField2 to be displayed in
displayArea2.

After validating the values entered, each record in the tenant’s payment list is
displayed. Finally, the total amount paid by that tenant is displayed (we will make
use of the calculateTotalPaid method of PaymentList to do this). The
pseudocode is given as follows:

read roomField2
read monthField
read amountField
IF roomField2 blank OR monthField blank OR amountField blank

display fields empty error in displayArea2
ELSE IF roomField2 value < 1 OR roomField2 value > noOfRooms

display invalid room number error in displayArea2
ELSE IF no tenant found in room

display room empty error in displayArea2
ELSE
BEGIN

create payment from amountField value and monthField value
add payment into list
display message to confirm success in displayArea2

END

read roomField2
IF roomField2 blank
display room field empty error in displayArea2
ELSE IF roomField2 value < 1 OR roomField2 value > noOfRooms

display invalid room number error in displayArea2
ELSE IF no tenant found in room

display room empty error in displayArea2
ELSE
BEGIN

find tenant in given room
get payments of tenant
IF payments = 0

display no payments error in displayArea2
ELSE
BEGIN

display header in displayArea2
LOOP FROM first payment TO last payment
BEGIN

append amount and month to displayArea2
END
display total paid in displayArea2
blank monthField
blank amountField

END
END

12.5 Designing the Event-Handlers 343

The Save and Quit Button

Pressing this button causes all the records to be saved to a file (here we make use of
the saveRecords method of the TenantFileHandler class that we talked
about in Sect. 12.2); it then closes the application, terminating the program.

It will only contain a few lines of code and we have therefore not written
pseudocode for it.

12.6 Implementing the Hostel Class

The complete code for the Hostel class now appears below. When you see the
code, you should notice that we have utilized the NumberFormat class (which is
to be found in the java.text package) to print the amounts in the local currency.
Also note the use of two constants, WIDTH and HEIGHT, to help size our visual
components and the parseInt method of the Integer class to convert the room
values, entered as text, into integer values. We have also enhanced our visual
components by making use of borders and backgrounds as discussed in Chap. 10.

Study the code and the comments carefully (in particular compare the
event-handling code to the pseudocode we presented in the previous section) to
make sure you understand it and we will explain the new concepts to you after that.

Hostel
import java.text.NumberFormat;
import javafx.application.Application;
import javafx.application.Platform;
import javafx.geometry.Insets;
import javafx.geometry.Pos;
import javafx.scene.Scene;
import javafx.scene.control.Button;
import javafx.scene.control.Label;
import javafx.scene.control.TextArea;
import javafx.scene.control.TextField;
import javafx.scene.layout.Background;
import javafx.scene.layout.BackgroundFill;
import javafx.scene.layout.Border;
import javafx.scene.layout.BorderStroke;
import javafx.scene.layout.BorderStrokeStyle;
import javafx.scene.layout.BorderWidths;
import javafx.scene.layout.CornerRadii;
import javafx.scene.layout.HBox;
import javafx.scene.layout.VBox;
import javafx.scene.paint.Color;
import javafx.scene.text.Font;
import javafx.stage.Stage;
import javafx.scene.control.TextInputDialog;

1,,IWK"hqt"vjg"Jquvgn"crrnkecvkqp
,Bcwvjqt"Ejctcvcp"cpf"Mcpu
,Bxgtukqp"9vj"Crtkn"423:
,1

public class Hostel extends Application
{

11"vjg"cvvtkdwvgu

private int noOfRooms;
private TenantList list;
11"YKFVJ"cpf"JGKIJV"qh"IWK"uvqtgf"cu"eqpuvcpvu"
private final int WIDTH = 800;
private final int HEIGHT = 500;
11"xkuwcn"eqorqpgpvu
private Label headingLabel = new Label("Hostel Application");
private Label roomLabel1 = new Label("Room");
private TextField roomField1 = new TextField();
private Label nameLabel = new Label("Name");
private TextField nameField = new TextField();
private Button addButton = new Button("Add Tenant");

344 12 Case Study—Part 2

paymentDetails.getChildren().addAll(roomLabel2, roomField2, monthLabel, monthField,
amountLabel, amountField);

paymentButtons.getChildren().addAll(paymentButton, listButton);
11"etgcvg"XDqz
VBox root = new VBox(10);
11"cff"cnn eqorqpgpvu"vq"XDqz
root.getChildren().addAll(headingLabel, roomDetails, tenantButtons, displayArea1,

paymentDetails, paymentButtons, displayArea2);
11"etgcvg"vjg"uegpg
Scene scene = new Scene(root, Color.LIGHTBLUE);

11"ugv"hqpv"qh"jgcfkpi
Font font = new Font("Calibri", 40);
headingLabel.setFont(font);

11"ugv"cnkipogpv"qh"JDqzgu
roomDetails.setAlignment(Pos.CENTER);
tenantButtons.setAlignment(Pos.CENTER);
paymentDetails.setAlignment(Pos.CENTER);
paymentButtons.setAlignment(Pos.CENTER);
// set alignment of VBox
root.setAlignment(Pos.CENTER);

11"ugv"okpkowo"cpf"oczkowo"ykfvj"qh"eqorqpgpvu"
roomField1.setMaxWidth(50);
roomField2.setMaxWidth(50);

roomDetails.setMinWidth(WIDTH);
roomDetails.setMaxWidth(WIDTH);

tenantButtons.setMinWidth(WIDTH);
tenantButtons.setMaxWidth(WIDTH);

paymentDetails.setMinWidth(WIDTH);
paymentDetails.setMaxWidth(WIDTH);

paymentButtons.setMinWidth(WIDTH);
paymentButtons.setMaxWidth(WIDTH);

root.setMinSize(WIDTH, HEIGHT);
root.setMaxSize(WIDTH, HEIGHT);

displayArea1.setMaxSize(WIDTH - 80, HEIGHT/5);
displayArea2.setMaxSize(WIDTH - 80, HEIGHT/5);

stage.setWidth(WIDTH);
stage.setHeight(HEIGHT);

private Button displayButton = new Button("Display Tenants");
private Button removeButton = new Button("Remove Tenant");
private Button saveAndQuitButton = new Button("Save and Quit");
private TextArea displayArea1 = new TextArea();
private Label roomLabel2 = new Label("Room");
private TextField roomField2 = new TextField();
private Label monthLabel = new Label("Month");
private TextField monthField = new TextField();
private Label amountLabel = new Label("Amount");
private TextField amountField = new TextField();
private Button paymentButton = new Button("Make Payment");
private Button listButton = new Button("List Payments");
private TextArea displayArea2 = new TextArea();

BQxgttkfg
1,,"Kpkvkcnkugu"vjg"uetggp"
,""Brctco"uvcig<"""Vjg"uegpg)u"uvcig"
,1
public void start(Stage stage)
{

noOfRooms = getNumberOfRooms(); 11"ecnn"rtkxcvg"ogvjqf
11"kpkvkcnkug"vgpcpv"nkuv
list = new TenantList(noOfRooms);
TenantFileHandler.readRecords(list);

11"etgcvg"hqwt"JDqzgu
HBox roomDetails = new HBox (10);
HBox tenantButtons = new HBox(10);
HBox paymentDetails = new HBox(10);
HBox paymentButtons = new HBox(10);
11"cff"eqorqpgpvu"vq"JDqzgu
roomDetails.getChildren().addAll(roomLabel1, roomField1, nameLabel, nameField);
tenantButtons.getChildren().addAll(addButton, displayButton, removeButton,

saveAndQuitButton);

12.6 Implementing the Hostel Class 345

1,,
,"Ogvjqf"vq"tgswguv"pwodgt"qh"jquvgn"tqqou"htqo"vjg"wugt"
,"Btgvwtp"pwodgt"qh"tqqou
,1
private int getNumberOfRooms()
{

TextInputDialog dialog = new TextInputDialog();
dialog.setHeaderText("How many rooms?");
dialog.setTitle("Room Information Request");

String response = dialog.showAndWait().get();
return Integer.parseInt(response);

}

11"gxgpv"jcpfngt"ogvjqfu

private void addHandler()
{

String roomEntered = roomField1.getText();
String nameEntered = nameField.getText();
// check for errors
if(roomEntered.length()== 0 || nameEntered.length()== 0)
{

displayArea1.setText ("Room number and name must be entered");
}
else if(Integer.parseInt(roomEntered)< 1 || Integer.parseInt(roomEntered)>noOfRooms)
{

displayArea1.setText ("There are only " + noOfRooms + " rooms");
}
else if(list.search(Integer.parseInt(roomEntered)) != null)
{

displayArea1.setText("Room number " + Integer.parseInt(roomEntered) + " is occupied");
}
else 11"qm"vq"cff"c"Vgpcpv
{

Tenant t = new Tenant(nameEntered,Integer.parseInt(roomEntered));
list.addTenant(t);
roomField1.setText("");
nameField.setText("");
displayArea1.setText("New tenant in room " + roomEntered + " successfully added");

}
}

11"ewuvqokug"vjg"xkuwcn"eqorqpgpvu

11"ewuvqokug"vjg"XDqz"dqtfgt"cpf"dcemitqwpf
BorderStroke style = new BorderStroke(Color.BLACK, BorderStrokeStyle.SOLID,

new CornerRadii(0), new BorderWidths(2));
root.setBorder(new Border (style));
root.setBackground(Background.EMPTY);

11"ewuvqokug dwvvqpu
addButton.setBackground(new Background(new BackgroundFill(Color.LIGHTYELLOW,

new CornerRadii(10), Insets.EMPTY)));
displayButton.setBackground(new Background(new BackgroundFill(Color.LIGHTYELLOW,

new CornerRadii(10), Insets.EMPTY)));
removeButton.setBackground(new Background(new BackgroundFill(Color.LIGHTYELLOW,

new CornerRadii(10), Insets.EMPTY)));
saveAndQuitButton.setBackground(new Background(new BackgroundFill(Color.LIGHTYELLOW,

new CornerRadii(10), Insets.EMPTY)));
paymentButton.setBackground(new Background(new BackgroundFill(Color.LIGHTYELLOW,

new CornerRadii(10), Insets.EMPTY)));
listButton.setBackground(new Background(new BackgroundFill(Color.LIGHTYELLOW,

new CornerRadii(10), Insets.EMPTY)));

11"ecnn"rtkxcvg"ogvjqfu"hqt"dwvvqp"gxgpv"jcpfngtu
addButton.setOnAction(e -> addHandler());
displayButton.setOnAction(e -> displayHandler());
removeButton.setOnAction(e -> removeHandler());
paymentButton.setOnAction(e -> paymentHandler());
listButton.setOnAction(e -> listHandler());
saveAndQuitButton.setOnAction(e -> saveAndQuitHandler());

11"eqphkiwtg"vjg"uvcig"cpf"ocmg"vjg"uvcig"xkukdng
stage.setScene(scene);
stage.setTitle("Hostel Applicaton");
stage.setResizable(false); 11 ugg"fkuewuukqp"dgnqy
stage.show();

346 12 Case Study—Part 2

private void paymentHandler()
{

String roomEntered = roomField2.getText();
String monthEntered = monthField.getText();
String amountEntered = amountField.getText();
11"ejgem"hqt"gttqtu
if(roomEntered.length()== 0 || monthEntered.length()== 0 || amountEntered.length()== 0)
{

displayArea2.setText("Room number, month and amount must all be entered");
}
else if(Integer.parseInt(roomEntered) < 1 || Integer.parseInt(roomEntered)>noOfRooms)
{

displayArea2.setText("Invalid room number");
}
else if(list.search(Integer.parseInt(roomEntered)) == null)
{

displayArea2.setText("Room number " + roomEntered + " is empty");
}
else 11"qm"vq"rtqeguu"rc{ogpv
{

Payment p = new Payment(monthEntered,Double.parseDouble(amountEntered));
list.search(Integer.parseInt(roomEntered)).makePayment(p);
displayArea2.setText("Payment recorded");

}
}

private void listHandler()
{

int i;
String roomEntered = roomField2.getText();
11"ejgem"hqt"gttqtu
if(roomEntered.length()== 0)
{

displayArea2.setText("Room number must be entered");
}
else if(Integer.parseInt(roomEntered) < 1 || Integer.parseInt(roomEntered) > noOfRooms)
{

displayArea2.setText("Invalid room number");
}
else if(list.search(Integer.parseInt(roomEntered)) == null)
{

displayArea2.setText("Room number " + Integer.parseInt(roomEntered) + " is empty");
}

public void displayHandler()
{

int i;
if(list.isEmpty()) 11"pq"tqqou"vq"fkurnc{
{

displayArea1.setText("All rooms are empty");
}
else 11"fkurnc{"tqqou
{

displayArea1.setText("Room" + "\t" + "Name" + "\n");
for(i = 1; i <= list.getTotal(); i++)
{

displayArea1.appendText(list.getTenant(i).getRoom()
+ "\t\t"
+ list.getTenant(i).getName() + "\n");

}
}

}

private void removeHandler()
{

String roomEntered = roomField1.getText();
11"ejgem"hqt"gttqtu
if(roomEntered.length()== 0)
{

displayArea1.setText("Room number must be entered");
}
else if(Integer.parseInt(roomEntered) < 1 || Integer.parseInt(roomEntered)>noOfRooms)
{

displayArea1.setText("Invalid room number");
}
else if(list.search(Integer.parseInt(roomEntered))== null)
{

displayArea1.setText("Room number " + roomEntered + " is empty");
}
else 11"qm"vq"tgoqxg"Vgpcpv
{

list.removeTenant(Integer.parseInt(roomEntered));
displayArea1.setText("Tenant removed from room " + Integer.parseInt(roomEntered));

}

12.6 Implementing the Hostel Class 347

Before we complete our examination of the Hostel application we just draw
your attention to a few new features.

Firstly, we ask the user for the number of rooms in the hostel by calling the
helper method getNumberOfRooms:

This makes use of a class that we will not actually come across until Chap. 17—
the TextInputDialog class. This class provides a really useful way to get
information from the user during the running of a JavaFX application. However, as
it involves a few advanced concepts we won’t deal with it in detail until semester
two. For now, if you want to use it, you can just copy what we have done here. The
result is shown in Fig. 12.5.

Next, as mentioned above, one new feature we made use of is the Num-
berFormat class. This class is similar to DecimalFormat that you met in
Chap. 10, except that it is designed specifically to convert decimal numbers and
convert them into local currency formats. The getCurrencyInstance picks up

else 11"qm"vq"nkuv"rc{ogpvu
{

Tenant t = list.search(Integer.parseInt(roomEntered));
PaymentList p = t.getPayments();
if(t.getPayments().getTotal() == 0)
{

displayArea2.setText("No payments made for this tenant");
}
else
{

1, Vjg"PwodgtHqtocv"encuu"ku"ukoknct"vq"vjg"FgekocnHqtocv"encuu"vjcv"yg"wugf
rtgxkqwun{0
Vjg"igvEwttgpe{Kpuvcpeg"ogvjqf"qh"vjku"encuu"tgcfu"vjg"u{uvgo"xcnwgu"vq"hkpf"qwv"

yjkej"eqwpvt{"yg"ctg"kp."vjgp"wugu"vjg"eqttgev"ewttgpe{"u{odqn",1
NumberFormat nf = NumberFormat.getCurrencyInstance();
String s;
displayArea2.setText("Month" + "\t\t" + "Amount" + "\n");
for(i = 1; i <= p.getTotal(); i++)
{

s = nf.format(p.getPayment(i).getAmount());
displayArea2.appendText("" + p.getPayment(i).getMonth() + "\t\t\t" + s + "\n");

}
displayArea2.appendText("\n" + "Total paid so far : " +

nf.format(p.calculateTotalPaid()));
monthField.setText("");
amountField.setText("");

}
}

}

private void saveAndQuitHandler()
{

TenantFileHandler.saveRecords(noOfRooms,list);
Platform.exit();

}

public static void main(String[] args)
{

launch(args);
}

private int getNumberOfRooms()
{

TextInputDialog dialog = new TextInputDialog();
dialog.setHeaderText("How many rooms?");
dialog.setTitle("Room Information Request");

String response = dialog.showAndWait().get();
return Integer.parseInt(response);

}

348 12 Case Study—Part 2

the correct location by interrogating the system and it then returns an appropriate
format object:

This object’s format method can then be used to take decimal numbers and
format them as local currency values. So the following expression:

would take a decimal number and, as we are in the United Kingdom, would format
the number to two decimal places with a pound sterling symbol (£).

Finally, notice how we configure the stage before making it visible:

You can see we have used a new stage method here called setResizable.
This method takes a boolean parameter and giving it a value of false ensures
the user cannot resize the window. We thought that would be a good idea as we
have gone to such lengths in the code to size our window and the components
within it (using our WIDTH and HEIGHT constants)! One implication of a
non-resizable window is that the maximise icon of the window will be greyed out.
The final running JavaFX GUI can be seen now in Fig. 12.6.

Before concluding this case study we shall consider how to test the application to
ensure that it conforms to the original specification.

Fig. 12.5 Getting the
number of rooms by using a
text input dialog

// generate a NumberFormat object
NumberFormat nf = NumberFormat.getCurrencyInstance();

nf.format(p.calculateTotalPaid())

stage.setScene(scene);
stage.setTitle("Hostel Applicaton");
stage.setResizable(false); // stop the user resizing the stage window
stage.show();

12.6 Implementing the Hostel Class 349

12.7 Testing the System

If you look back at the Hostel class you can see that much of the event-handling
code is related to the validation of data entered from the graphical interface. Much
of the testing for such a system will, therefore, be geared around ensuring such
validation is effective.

Amongst the types of validation we need to test is the display of suitable error
messages when input text fields are left blank, or when inappropriate data has been
entered into these text fields. Of course, as well as input validation, we also need to
test the basic functionality of the system. Figure 12.7 is one possible test log that
may be developed for the purpose of testing the Hostel class.

We include a few sample screen shots produced from running the Student Hostel
Application against this test log in Figs. 12.8, 12.9 and 12.10. We will leave the
complete task of running Student Hostel Application against the test log as a pro-
gramming exercise at the end of this chapter.

Fig. 12.6 The Hostel GUI running in a non-resizable window

350 12 Case Study—Part 2

TEST LOG

Purpose: To test the Hostel class

Run Number: Date:

Action Expected Output Pass/ Fail Reason for failure

Request for how many rooms

Enter 5 Fire up the JavaFX GUI

Display tenants "Empty list" message

Add tenant: Patel, Room Number blank "Blank field" message

Add tenant: blank, Room Number 1 "Blank field" message

Add tenant: Patel, Room Number 1 Confirmation message

Add tenant: Jones, Room Number 6 Error message: There are only 5
rooms

Add tenant: Jones, Room Number 1 Error Message: Room 1 is occupied

Add tenant: Jones, Room Number 2 Confirmation Message

Display tenants ROOM NAME

1 Patel

2 Jones

List payments, Room Number 1 "Empty list" message

Make payment: Room blank, Month

January, Amount 100 "Blank field" message

Make Payment: Room 1, Month

blank, Amount 100 "Blank field" message

Make payment: Room 1, Month

January, Amount blank "Blank field" message

Make payment: Room 1, Month

January, Amount 100 Confirmation message

Make payment: Room 1, Month

February, Amount 200 Confirmation message

List payments: Room Number blank "Blank field" message

List payments, Room Number 1 MONTH AMOUNT

January £100

February £200

Total paid so far £300

List payments: Room Number 2 "Empty list" message

List payments: Room Number 5 "Room Empty" message

Remove tenant: Room Number blank "Blank field" message

Remove tenant: Room Number 1 Confirmation Message

Display tenants 2 Jones

List payments: Room Number 1 "Room Empty" message

Fig. 12.7 A test log to ensure the reliability of the Hostel class

12.7 Testing the System 351

Fig. 12.8 Error messages are produced in displayArea1. In this case an attempt is made to add a
tenant without filling in the roomField

Fig. 12.9 The displayArea1 is also used to display a list of tenants entered

352 12 Case Study—Part 2

12.8 What Next?

Congratulations—you have now completed your first semester of programming; we
hope you have enjoyed it. Many of you will be going on to at least one more
semester of software development and programming—so what lies ahead?

Well, you have probably realized that there are still a few gaps in your
knowledge and that some of the stuff that you have learnt can be developed further
to give you the power to write multi-functional programs. Think, for example,
about the case study we developed in this chapter; you will need to learn how to
write the code that stores the information permanently on a disk; also, the JavaFX
user interface could be made to look a bit more attractive; and it would be helpful if
we had a collection class other than an ArrayList that allows us to access an
object via a simple key (such as a room number) rather than having to search every
item in the collection.

And there is lots more; the standard Java packages provide classes for many
different purposes; there is more to learn about interfaces; about dealing with errors
and exceptions; about network programming; about accessing information stored in
a database and about how to write programs that can perform a number of tasks at

Fig. 12.10 Details of the payments for room 1 are displayed in displayArea2 when the List
Payments button is pressed

12.8 What Next? 353

the same time. As well finding out more about the standard Java packages, there is
more to learn about how to deploy your own programs as packages.

Does all this sound exciting? We think so—and we hope that you enjoy your
next semester as much as we have enjoyed helping you through this one.

12.9 Self-test Questions

1. Referring to the examples in this chapter and the previous chapter, explain the
difference between unit testing and integration testing.

2. Use pseudocode to design the event handling routine for a search button.
Clicking on the button should display the name of the tenant in the room entered
in the roomField text box. The name is to be displayed in displayArea1.
If no tenant is present in the given room, an error message should be displayed
in displayArea1.

3. Modify the screen design in Fig. 12.1 to include the search button discussed
in the question above.

4. How else might you improve the application developed in this case study?

12.10 Programming Exercises

You will need to copy the entire suite of classes that make up the student hostel
system from the accompanying website.

1. Run the Hostel application against the test log given in Fig. 12.7.

2. Modify the Hostel class by adding the search button you considered in
self-test questions 2 and 3 above.

3. Make any additions to the Hostel class that you considered in self-test
question 4 above. For example you might want to include additional validation
to ensure that negative money values are never accepted for payments.

354 12 Case Study—Part 2

Part II
Semester Two

13Interfaces and Lambda Expressions

Outcomes:

By the end of this chapter you should be able to:

• explain what is meant by the term interface in Java;
• create and use their own interfaces;
• implement inner classes and anonymous classes;
• explain the purpose and the importance of lambda expressions in Java;
• describe the syntax of lambda expressions, and utilize these expressions in a

variety of contexts;
• create and use generic classes and interfaces;
• create generic classes and interfaces containing upper bounded parameters;
• utilize wildcards in conjunction with generic types;
• describe how a programming language can support polymorphic types;
• summarize the ways in which polymorphism can be achieved in Java.

13.1 Introduction

Welcome back to the second semester of our programming course. We spent the
first semester laying the foundations you would need to develop programs in Java.
During that time you came a long way. You learnt about the idea of variables,
control structures, methods and arrays, and then went on to develop your own
classes and extend these classes using inheritance. Finally you developed appli-
cations consisting of many classes working closely together and interacting with
users via attractive graphical interfaces. Along the way you also learnt about the
UML notation and testing strategies. At the beginning of that semester you prob-
ably didn’t expect to come as far as you have. Well, the second semester might look
equally challenging but, with some help from us along the way, you can look
forward to new and more advanced challenges.

© Springer Nature Switzerland AG 2019
Q. Charatan and A. Kans, Java in Two Semesters, Texts in Computer Science,
https://doi.org/10.1007/978-3-319-99420-8_13

357

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99420-8_13&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99420-8_13&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99420-8_13&domain=pdf
https://doi.org/10.1007/978-3-319-99420-8_13

In the first semester, until we developed our case study, the applications we
created were fairly simple, consisting for the most part of only one or two classes.
In reality, applications that are developed for commercial and industrial use com-
prise a large number of classes, and are developed not by one person, but by a team.
Members of the team will develop different modules which can later be integrated
to form a single application. When groups of programmers work together in this
way, they often have to agree upon how they will develop their own individual
classes in order for them to be successfully integrated later. In this chapter we will
see how these agreements can be formalized in Java programs by making use of a
special kind of class called an interface. We will then move on to the subject of
lambda expressions, which we introduced in Chap. 10. The introduction of lambda
expressions in the release of Java 8 was a very significant addition to the language
—and in this chapter you will see just how useful they can be.

13.2 An Example

It is a very common occurrence that the attributes of a class should be allowed to
take only a particular set of values. Think, for example, of the BankAccount class
that we developed in the last semester. It is likely that the account number should be
restricted to numbers that contain, say, precisely eight digits. Similarly, a Cus-
tomer class might require that the customer number comprises a letter followed by
four digits. In some cases there are constraints that exist not because we choose to
impose them, but because they occur “naturally”—in the Oblong class, for
example, it would make no sense if an object of this class were to have a length or
height of zero or less.

In such cases, every effort must be made when developing the class to prevent
invalid values being assigned to the attributes. Constructors and other methods
should be designed so that they flag up errors if such an attempt is made—and one
of the advantages of object-oriented programming languages is precisely that they
allow us to restrict access to the attributes in this way.

The above remarks notwithstanding, it is the case that in industrial sized projects,
classes will be very complex and will contain a great many methods. It is therefore
possible that a developer will overlook a constraint at some point, and allow objects
to be created that break the rules. It might therefore be useful if, for testing pur-
poses, every object could contain a method, which we could call check, that could
be used to check the integrity of the object.

In a particular project, people could be writing test routines independently of the
people developing the modules, and these routines will be calling the check
method. We need, therefore, to be able to guarantee that every object contains such
a check method.

358 13 Interfaces and Lambda Expressions

You learnt in Chap. 9 that the way to guarantee that a class has a particular
method is for that class to inherit from a class containing an abstract method—
when a class contains an abstract method, then any subclass of that class is
forced to override that method—if it does not do so, a compiler error occurs.

In our example, we need to ensure that our classes all have a check method that
tests an object’s integrity, so one way to do this would be to write a class as follows:

Now all our classes could extend Checkable and would compile successfully
only if they each had their own check method.

While this would work, it does present us with a bit of a problem. What would
happen, for example, if our Oblong class were going to be part of a graphical
application and needed to extend another class such as Application? This
would be problematic, because, in Java, a class is not allowed to inherit from more
than one superclass. Inheriting from more than one class is known as multiple
inheritance and is illustrated in Fig. 13.1.

One reason that multiple inheritance is disallowed is that it can easily lead to
ambiguity, and hence to programming errors. Imagine for example that the two
superclasses shown in Fig. 13.1 both contained a method of the same name—which
version of the method would be inherited by the subclass?

Luckily, there is a way around this, because Java allows a kind of lightweight
inheritance, made possible by a construct known as an interface.

13.3 Interfaces

An interface is a special class that contains abstract methods. When we want a
class to inherit the methods of an interface we use the word implements, rather
than extends. Just as with inheritance, once a class implements an interface it has
the same type as that interface, as well as being of the type of its own class. So, for

Checkable
public abstract class Checkable
{

public abstract boolean check();
}

Fig. 13.1 Multiple
inheritance—not allowed in
Java

13.2 An Example 359

example, if a class implements EventHandler, then any object of that class is a
kind of EventHandler—in other words it is of type EventHandler, as well as
being of the type of its own class.

The Java libraries, particularly those associated with graphical applications,
contain a great many interfaces. And it is perfectly possible for us to write our own
interfaces as we will do in a moment when we turn our Checkable class into an
interface.

Figure 13.2 shows the UML notation for the implementation of interfaces—you
can see that interfaces are marked with the <<interface>> tag, and that a circle is
used to indicate a class implementing an interface.

As can be seen in Fig. 13.2, while it is possible to inherit from only one class, it
is perfectly possible to implement any number of interfaces. In this case Some-
OtherClass extends SomeClass and implements SomeInterface
and SomeOtherInterface—because the methods are abstract they are not
actually coded in the interface and this means that the problems with multiple
inheritance that we described earlier do not arise.

Prior to the release of Java 8 an interface could contain only abstract
methods—but now an interface can also contain static methods and default
methods. Regular classes have always been permitted to have static methods (as
you have seen before in Chap. 8)—now they can be included in interfaces too.
A default method is a new concept specifically to be used in interfaces, if
required. A default method is a regular method with a complete implementation
and so is automatically inherited by all classes that implement the interface (though
the implementing class may override this implementation if it chooses). Adding
default methods into interfaces means that additions can be made to an interface
without every class that implements the previous version of that interface having to
change (as would be the case if we added new abstract methods to an interface).

<<interface>>
SomeOtherInterface

+someOtherMethod(int)

<<interface>>
SomeInterface

+someMethod():int

SomeClass

SomeOtherClass

Fig. 13.2 A class can inherit from only one superclass, but can implement many interfaces

360 13 Interfaces and Lambda Expressions

We will meet interfaces with static and default methods in later chapters, but
in this chapter we will focus on interfaces with abstract methods only.

As with inheritance, a class is obliged to override all the abstract methods of the
interfaces that it implements. By implementing an interface we are guaranteeing
that the subclass will have certain methods.

So, in cases where we need a class such as Checkable in which all the
methods are abstract (apart from any static methods) we don’t create a
class—instead we create an interface.

Let’s turn our Checkable class into an interface. The code looks like this:

Notice the word interface instead of class—and notice also that we don’t
have to declare our method as abstract, because by definition all non-static
methods of an interface are abstract.

Let’s make the Oblong class from Chap. 8 checkable by defining a sub-class
that implements the Checkable interface. We will need to override the con-
structor, and of course to code the check method. The class will now look like
this:

You can see that the class now implements our Checkable interface:

The check method, which the class is forced to override (note the use of the
@Override annotation), returns a value of true if the attributes are both greater
than zero, and false otherwise:

The Checkable interface
public interface Checkable
{

public boolean check();
}

CheckableOblong
public class CheckableOblong extends Oblong implements Checkable
{

//override the constructor
public CheckableOblong(double lengthIn, double heightIn)
{

super(lengthIn, heightIn);
}

@Override
public boolean check() // the check method of Checkable must be overridden
{

// the length and height must both be greater than zero
return getLength() > 0 && getHeight() > 0;

}
}

public class CheckableOblong extends Oblong implements Checkable

13.3 Interfaces 361

Other classes can implement the Checkable interface in a similar way. Do you
remember the BankAccount class that we developed in Chapt. 8? One of the
attributes was the account number. In reality, an account number would need to
obey certain rules—the most common one in the UK is that the account number
should contain digits only and that it should comprise exactly eight digits. Let’s
create a CheckableBankAccount class which checks to see if this rule is
upheld.

You can see here how, in the check method, we check firstly that the string
contains exactly eight characters, and then check if every character is a digit by
making use of the isDigit method of the Character class.

In the Checker class below we create five objects—two Checkableblong
objects and three CheckableBankAccount objects. In each case the first object
is valid, but the others break the rules that we have set for these two classes.

You should notice that in each case the object—whether it is an oblong or a bank
account—is of type Checkable (as well as being a type of the particular class).
This is because both CheckableOblong and CheckableBankAccount
implement the Checkable interface.

@Override
public boolean check() // the check method of Checkable must be overridden
{

return length > 0 && height > 0;
}

CheckableBankAccount
public class CheckableBankAccount extends BankAccount implements Checkable
{

// override the constructor
public CheckableBankAccount(String numberIn, String nameIn)
{

super(numberIn, nameIn);
}

@Override
public boolean check()
{

// check that the account number is exactly 8 characters long
if(getAccountNumber().length() != 8)
{

return false;
}

// check that the account number contains only digits
for(int i=0; i <= 7; i++)
{

if(!Character.isDigit(getAccountNumber().charAt(i)))
{

return false;
}

}
return true;

}
}

362 13 Interfaces and Lambda Expressions

As you can see, we send the five objects in turn into a method called
checkValidity which calls the object’s check method and returns a
String—either “valid” or “invalid”; we append this to an initial string and the
whole message is displayed.

The checkValidity method accepts a parameter of type Checkable—and
of course both the CheckableOblong objects and the three Check-
ableBankAccount objects are of type Checkable because they both imple-
ment the Checkable interface.

As expected, the output from the program is as follows:

oblong1 is valid
oblong2 is invalid
account1 is valid
account2 is invalid
account3 is invalid

Implementing an interface is rather like making a contract with the user of a
class—it guarantees that the class will have a particular method or methods. In the
above case, a developer will know that any object that implements Checkable
will have a check method. This enables the developer to write methods such as
checkValidity that expect to receive an object of type Checkable, in the
certain knowledge that the object—whether it is a CheckableOblong,
CheckableBankAccount, or any other class that implements this interface—
will have a method called check.

Checker
public class Checker
{
public static void main(String[] args)
{
// create two oblongs
CheckableOblong oblong1 = new CheckableOblong(10, 8); // valid
CheckableOblong oblong2 = new CheckableOblong(0, 8); // invalid: first argument is zero
// create three bank accounts
CheckableBankAccount account1 = new CheckableBankAccount("12345678", "Smith"); // valid
CheckableBankAccount account2 = new CheckableBankAccount("S1234567", "Patel"); // invalid: account number

// must contain digits only
CheckableBankAccount account3 = new CheckableBankAccount("1234567", "Adewale"); // invalid: account number

// must be 8 characters long

// send objects to the checkValidity method
System.out.println("oblong1 is " + checkValidity(oblong1));
System.out.println("oblong2 is " + checkValidity(oblong2));

System.out.println("account1 is " + checkValidity(account1));
System.out.println("account2 is " + checkValidity(account2));
System.out.println("account3 is " + checkValidity(account3));

}

private static String checkValidity(Checkable objectIn) // receives any Checkable object
{
if(objectIn.check()) // call the check method
{

return "valid";
}
else
{

return "invalid";
}

 }
}

13.3 Interfaces 363

13.4 Inner Classes

It’s quite easy to imagine a situation in which a large application is being developed
that would make extensive use of a class such as CheckableBankAcount.
However there are other instances when such a class might be needed only once,
and it would seem like a lot of bother to create a new class just for that purpose. In
such a case it is possible to write the class “on the fly”, by making use of an inner
class—a class written inside another class.

The program below does this with the CheckableOblong class.

You can see how we have written the CheckableOblong class within our
main class.

It is also worth noting that, although we have not done this here, you can refer to
attributes of the outer class in the inner class: you can also refer to local variables,
but they must be final.

13.5 Anonymous Classes

Do you remember that when we introduced the Oblong class in Chap. 7 we
mentioned that a true oblong differs from a rectangle in one respect? An oblong,
unlike a rectangle, cannot have equal sides (in other words, a square is not a kind of

InnerClassDemo
public class InnerClassDemo
{

public static void main(String[] args)
{

// inner class
class CheckableOblong extends Oblong implements Checkable
{

public CheckableOblong(double lengthIn, double heightIn)
{

super(lengthIn, heightIn);
}
@Override
public boolean check()
{

return getLength() > 0 && getHeight() > 0;
}

}
Checkable oblong1 = new CheckableOblong(5, 0); //invalid
Checkable oblong2 = new CheckableOblong(5, 6); // valid
System.out.println("oblong1 is " + checkValidity(oblong1));
System.out.println("oblong2 is " + checkValidity(oblong2));

}

private static String checkValidity(Checkable objectIn)
{

if(objectIn.check())
{

return "valid";
}
else
{

return "invalid";
}

}
}

364 13 Interfaces and Lambda Expressions

oblong). So another test that we might want to perform on an oblong is to check that
its sides are not equal. It would seem rather unnecessary to have to write a whole
new class for this, and in fact there is a more flexible way of doing it. We can create
an anonymous class. Have a look at the program below, then we will explain
what’s going on here.

We have declared an Oblong of length 8 and height 8—it therefore passes
our original test (that both the length and height are greater than zero) but fails the
second test (that the length and height are unequal).

Now we have the following:

AnonymousClassDemoVersion1
public class AnonymousClassDemoVersion1
{

public static void main(String[] args)
{

// create a test oblong
Oblong testOblong = new Oblong (8,8);

/* declare an object of an anonymous class that checks that an oblong's length
and height are greater than zero */

Checkable checkableObject1 = new Checkable()
{

@Override
public boolean check()
{

return testOblong.getLength() > 0 && testOblong.getHeight() > 0;
}

};

/* declare an object of an anonymous class that checks that an oblong's length
and height are not equal */

Checkable checkableObject2 = new Checkable()
{

@Override
public boolean check()
 {

return testOblong.getLength() != testOblong.getHeight();
}

};

// this checks that the sides are greater than zero
System.out.println("checkableObject1 is " + checkValidity(checkableObject1));

// this checks that the length and height are not equal
System.out.println("checkableObject2 is " + checkValidity(checkableObject2));

}

private static String checkValidity(Checkable objectIn)
{

if(objectIn.check())
{

return "valid";
}
else
{

return "invalid";
}

}
}

Checkable checkableObject1 = new Checkable()
{

@Override
public boolean check()
{

return testOblong.getLength() > 0 && testOblong.getHeight() > 0;
}

};

13.5 Anonymous Classes 365

Here we have declared an object, checkableObject1, which is of type
Checkable, but which doesn’t belong to any named class. It is an object of an
anonymous class, as defined between the braces. Effectively we have defined a class
“as we go”—all we need for this class is its check method (because it is of type
Checkable). You can see that this method checks, as before, that both length and
height are greater than zero. You will notice that we have been able to refer to
testOblong, which was declared in the outer class.

After this we have gone on to declare another object, checkableObject2,
also of type checkable:

Here, however the code for the check method is different. We are now
checking for the second of our criteria—namely that the length and height of the
oblong are not the same.

Now we can send both these objects to the checkValidity method:

As expected, we get the following output:

checkableObject1 is valid
checkableObject2 is invalid

Before moving on, we should point out that it is not actually necessary to declare
a named object as we have done in the previous program. We can declare our object
as part of the call to the method we are sending it to. The program that follows
demonstrates how this is done.

Checkable checkableObject2 = new Checkable()
{

@Override
public boolean check()
{

return testOblong.getLength() != testOblong.getHeight();
}

};

// this tests that the sides are greater than zero
System.out.println("checkableObject1 is " + checkValidity(checkableObject1));

// this tests that the length and height are not equal
System.out.println("checkableObject2 is " + checkValidity(checkableObject2));

366 13 Interfaces and Lambda Expressions

As you can see, the first call to checkValidity looks like this:

We send in a new Checkable object, at the same time defining the anonymous
class to which the object belongs. The next call is the same apart from the code for
the check method.

If you think about it, all we are really interested in here is the check method—
so effectively what we are doing is sending the code for this method to
checkValidity by defining an anonymous class.

You will probably agree that although this is a very useful thing to be able to do
(because we can change our method each time), it does seem a bit cumbersome, and
the code doesn’t look very elegant. If only there was a way to simply send a block
of code to a method, instead of having to send a whole object!

System.out.println("oblong is " + checkValidity(new Checkable()
{

@Override
public boolean check()
{

return oblong.getLength() > 0 && oblong.getHeight() >
0;

}
}

))

AnonymousClassDemoVersion2
public class AnonymousClassDemoVersion2
{

public static void main(String[] args)
{

// create a test oblong
Oblong oblong = new Oblong (8,8);

// this checks that the sides are greater than zero
System.out.println("oblong is " + checkValidity(new Checkable()

{
@Override
public boolean check()
{

return oblong.getLength() > 0 && oblong.getHeight() > 0;
}

}
));

// this checks that the length and height are not equal
System.out.println("oblong is " + checkValidity(new Checkable()

{
@Override
public boolean check()
{

return oblong.getLength() != oblong.getHeight();
}

}
));

}

private static String checkValidity(Checkable objectIn)
{

if(objectIn.check())
{

return "valid";
}
else
{

return "invalid";
}

}
}

13.5 Anonymous Classes 367

Well, with the advent of Java 8, that’s is exactly what we can do. And you have
probably already worked out that the mechanism that we use for this is called a
lambda expression. You have already had some experience with such expressions
when you learnt about creating graphics programs with JavaFX in Chap. 10. But
now it is time to explore lambda expressions in greater depth.

13.6 Lambda Expressions

In the program below, LambdaDemo, the anonymous classes of the previous
example have been replaced by lambda expressions. As you have already seen, we
can use a lambda expression to send the code for a particular method to another
method. Here we send the code for the check method of checkable to the
checkValidity method. You will notice that the format of the lambda
expression used here is a little different to the format we saw in Chap. 10. Have a
look at it, then we will explain it.

The first lambda expression looks like this:

LambdaDemo

public class LambdaDemo
{

public static void main(String[] args)
{

// create a test oblong
Oblong testOblong = new Oblong (8,8);

// this checks that the sides are greater than zero
System.out.println("oblong is " + checkValidity(() ->

{
return testOblong.getLength() > 0 && testOblong.getHeight() > 0;

}
));

// this checks that the length and height are not equal
System.out.println("oblong is " + checkValidity(() ->

{
return testOblong.getLength() != testOblong.getHeight();

}
));

}

private static String checkValidity(Checkable objectIn)
{

if(objectIn.check())
{

return "valid";
}
else
{

return "invalid";
}

}
}

() -> {
 return testOblong.getLength() > 0 && testOblong.getHeight() > 0;

}

368 13 Interfaces and Lambda Expressions

The difference between this and the expressions you saw in Chap. 10 is that
instead of a variable name on the left of the arrow, we now have a pair of empty
brackets. The reason we have done this is because the check method does not
require any arguments. There are in fact a number of different formats to lambda
expressions and we will tell you about them shortly. Before we do that, we will say
a little more about how this all works, and the importance of this feature of Java
which was introduced with Java 8.

Lambda expressions can be used to send a block of code to any method that
expects to receive a functional interface as a parameter. A functional interface is
an interface that contains only one abstract method. Checkable is a functional
interface for example, as it contains a single abstract method—check. The block
of code supplied in the lambda expression—which is the code for the abstract
method—might be used just once, as we saw in the above program, or many times
as we saw in the examples in Chap. 10 where a button can be pressed whenever the
user chooses.

Languages that are based on blocks of code being sent to methods are called
functional languages—examples being Lisp, Clojure and Scala. And while it is true
to say that the introduction of lambda expressions hasn’t put Java in the same
league as these, it has certainly given Java some of the same capabilities.

The Java APIs provide a great many interfaces, many of which are concerned
with graphics programming. Interfaces also play a very important role in the col-
lection classes that you will learn more about in Chap. 15 and in multi-threaded
programming which you will study in Chap. 20.

13.6.1 The Syntax of Lambda Expressions

You have already seen how lambda expressions are formed, with the instructions on
the right side of the arrow, and the parameters on the left.

As we explained in Chap. 10, the code on the right can be a single statement
(without the semi-colon), or a number of statements, enclosed in braces with a
semi-colon at the end of each statement.

An example of the first might look like this:

Whereas an example of the second could look like this:

() -> System.out.println(“Hello”)

() -> {
System.out.println(“Hello”);
System.out.println(“Goodbye”);

 }

13.6 Lambda Expressions 369

So, what about the left-hand side of the arrow? You have seen, as in the above
two examples, that if the code for the particular method of the interface does not
require parameters, then we simply place empty brackets in front of the arrow.

In Chap. 10, you saw that when a single parameter is required, we give that
parameter a name and place it in front of the arrow. So, for example we might have:

We don’t have to specify a type for str, because the compiler will infer this
from the header of the abstract method. This is another example of type
inference, which you first encountered in Chap. 7.

If there is more than one parameter, then we would list them in brackets. For
example:

On occasion, you might find that for some reason the compiler is unable to infer
the types of the variables, and you get a compiler error. To fix this you can simply
place the type name in front of the variable name:

There is one thing to watch out for when writing lambda expressions. If your
code consists of a single return statement you will get a compiler error if you use
the single line format without the semi-colon. For example, the following would
give you an error:

There are two ways you can avoid this error. Firstly you should note that if there
is a single expression on the right of the arrow, java will evaluate this and return the
value. So the above expression could be written as:

str -> System.out.println(“Hello ” + str)

(x, y) -> {
int z;
z = x + y;
System.out.println(“Sum = ” + z);

 }

(int x, int y) -> {
int z;
z = x + y;

System.out.println(“Sum = ” + z);
 }

x -> return 2 * x

x -> 2 * x

370 13 Interfaces and Lambda Expressions

Alternatively you could enclose the statement in braces and write:

13.6.2 Variable Scope

Lambda expressions can access the attributes of the enclosing class. They also have
access to any parameters that are passed to a method that encloses the expression
and to the local variables of that method. However in the case of parameters and
local variables, the lambda expression cannot change the value of these—in other
words they must be final, or effectively final.1

13.6.3 Example Programs

In this section we will develop a few simple programs to show the various ways that
lambda expressions can be written and utilized.

In each of the programs that follow we will refer to a functional interface called
TestInterface that will contain one abstract method called test. We will
re-define the header for this method in each of the programs.

For the first of our programs the test method will look like this:

The following program uses this version:

We call a method called testMethod, which expects to receive an object of
type TestInterface. We are able simply to send the code for the test method as
a lambda expression, which, since test does not require any parameters, has open
brackets in front of the arrow. There is only one line of code, so we can manage
without any braces.

x -> {
return 2 * x;

}

public void test();

LambdaSyntaxDemo1
public class LambdaSyntaxDemo1
{

public static void main(String[] args)
{

testMethod(() -> System.out.println("Hello "));
}

static void testMethod(TestInterface testObjectIn)
{

testObjectIn.test();
}

}

1A variable or parameter is said to be effectively final if its value is not changed after its
initialization.

13.6 Lambda Expressions 371

The output from this program is simply:

Hello

The next program shows the change in syntax when more than one line of code
is required.

The output from this program is of course:

For our next program we will change the test method of TestInterface to
the following:

The method now receives a parameter of type String. It also returns a
String, and we have used this in the version of testMethod in our next
program shown below.

LambdaSyntaxDemo2
public class LambdaSyntaxDemo2
{

public static void main(String[] args)
{

testMethod(() -> {
System.out.print("Hello ");
System.out.println("world");

}
);

}

static void testMethod(TestInterface testObjectIn)
{

testObjectIn.test();
}

}

Hello world

public String test(String stringIn);

LambdaSyntaxDemo3
public class LambdaSyntaxDemo3
{

public static void main(String[] args)
{

testMethod(str -> {
str = "Hello " + str;
return str;

}
);

}

static void testMethod(TestInterface testObjectIn)
{

String output = testObjectIn.test("world"); // test now requires a String argument
System.out.println(output);

}
}

372 13 Interfaces and Lambda Expressions

As you can see, because test now requires an input, we have named the argument
to this method on the left-hand side of the arrow. Our lambda expression looks like
this:

testMethod now calls test with the argument “world”. test obeys the
instructions sent to testMethod, and produces the following output:

For our final example we will change the header for the test method to the
following:

Now test accepts two ints. We have used this version in our next program:

Because test now requires two arguments, we place these in brackets in front
of the arrow:

As we mentioned before, we don’t have to specify the types for x and y, but we
could do so as follows, without changing the way the program works:

str -> {
str = "Hello " + str;
return str;

}

Hello world

public void test(int firstNumber, int secondNumber);

LambdaSyntaxDemo4
public class LambdaSyntaxDemo4
{

public static void main(String[] args)
{

testMethod((x, y) -> System.out.println("The sum is " + (x + y)));
}

static void testMethod(TestInterface testObjectIn)
{

testObjectIn.test(10, 5);
}

}

(x, y) -> System.out.println("The sum is " + (x + y))

(int x, int y) -> System.out.println("The sum is " + (x + y))

13.6 Lambda Expressions 373

testMethod calls test with arguments of 10 and 5, so the output is:

Before we leave this section, it is worth making one thing absolutely clear. While
lambda expressions enable us to effectively send a block of code, what we are
actually doing is sending an object which is a type of functional interface, and the
code we send is the code for its abstract method. In LambdaSyntaxDemo4 above,
for example, we could have written the instructions in the main method like this:

And of course, before we had lambda expressions, we would have to have used
an anonymous class:

13.6.4 Method References—The Double Colon Operator

It is sometimes the case that a lambda expression does nothing more than reference
a method of an existing class. To illustrate this, consider the following interface:

Now consider the following program that uses this interface:

The sum is 15

TestInterface t = (x, y) -> System.out.println("The sum is " + (x + y));
testMethod(t);

TestInterface t = new TestInterface()
 {

public void test(int x, int y)
 {

 System.out.println("The sum is " + (x + y));
 }

};
testMethod(t);

DoubleColonInterface
public interface DoubleColonInterface
{

public void test(String s);
}

MethodReference
public class MethodReference
{

public static void main(String[] args)
{

testMethod(str -> System.out.println(str));
}

static void testMethod(DoubleColonInterface testObjectIn)
{

testObjectIn.test("Hello world");
}

}

374 13 Interfaces and Lambda Expressions

All that the lambda expression does is to call the println method of Sys-
tem.out, with whatever parameter is specified when test is called. In cases such
as this, a notation exists that can simplify the code. This uses a double colon to
reference the method, as shown below:

This does exactly the same as the previous lambda expression—it calls the
println method of System.out with argument suppled to the test method.

Let’s look at one more example. We will change the interface we are using as
follows:

Now look at this program:

Here we are using the sqrt (square root) function of Java’s Math class. The
double colon replaces the following lambda expression:

In both cases, of course, the program will output 0.5.
The double colon notation is particularly useful when we are processing streams,

as explained in Chap. 22.

DoubleColonDemo
public class DoubleColonDemo
{

public static void main(String[] args)
{

testMethod(System.out::println);
}

static void testMethod(DoubleColonInterface testObjectIn)
{

testObjectIn.test("Hello world");
}

}

DoubleColonInterface
public interface DoubleColonInterface
{

public double test(int i);
}

DoubleColonDemo2
public class DoubleColonDemo2
{

public static void main(String[] args)
{

testMethod(Math::sqrt);
}

static void testMethod(DoubleColonInterface testObjectIn)
{

System.out.println(testObjectIn.test(25));
}

}

testMethod(i -> Math.sqrt(i));

13.6 Lambda Expressions 375

13.7 Generics

Do you remember in Chap. 7 that we introduced the ArrayList class, and briefly
explained that this class is an example of a generic class? We went on to use this
class in our case study in Chaps. 11 and 12.

The topic of generics is a very important one. A generic class (or interface) has
attributes and methods whose types are not defined within the class, but are left to
the user to decide upon when an object of the class is declared. Effectively we are
sending a type into a class (or interface) and for this reason we often refer to generic
classes and interfaces as parameterized types.

This is best illustrated by way of an example. Below we have created a very
simple generic class—it has only one attribute, together with a set- and a get-
method.

The angle brackets after the class name indicate that this is a generic class. The T
in these brackets indicates that there will be a single type chosen by the user, and we
will refer to this type as T throughout the definition. You can think of it as a
place-marker for whatever type is chosen by the user of this class. You will also see
in one of the examples that follow that we can indicate more than one type in the
brackets—so we could have, for example:

In our SimpleGenericClass you can see that the single attribute, value, is
declared as being of type T. Also, as we would expect, the set-method has a
parameter of type T and the get-method returns an object of type T. You should
note that the types have to be objects of a class—primitive types such as int or
double can’t be used here, so you would have to use the equivalent wrapper
classes such as Integer and Double.

SimpleGenericClass
public class SimpleGenericClass<T> // the angle brackets indicate that this is a generic class
{

private T value;

public void setValue(T valueIn)
{

value = valueIn;
}

public T getValue()
{

return value;
}

}

public class AnotherGenericClass<T, U, V>

376 13 Interfaces and Lambda Expressions

There follows a short program that uses this class.

You can see that we have declared three objects of type Sim-
pleGenericClass, each time choosing a different type for its attribute and
methods—in the third case we have used our own Oblong class. Notice also that
in the first case we have to use the wrapper class Double, rather than the
primitive type.

When calling the constructor of the class, we have left the angle brackets empty:

The empty brackets (sometimes referred to as the diamond) can be used in cases
where it is easy for the compiler to work out what type of arguments are required;
here, for example, it is apparent from the type declaration. This is another example
of type inference.

We have then gone on to use the setValue method to give a value to the
attribute for each object we created. Note that in the first case the argument of 10.0
(a double) is automatically type cast to Double.

In the last three statements we use getValue to return the object. In the first
two examples we can display the value without having to call a method of the
object (println is set up to automatically print the value of a Double or a
String). In the final example we display the area of the Oblong, using the
calculateArea method.

The output from this program is:

TestGenericClass
public class TestGenericClass
{

public static void main(String[] args)
{

SimpleGenericClass<Double> example1 = new SimpleGenericClass<>();
SimpleGenericClass<String> example2 = new SimpleGenericClass<>();
SimpleGenericClass<Oblong> example3 = new SimpleGenericClass<>();

example1.setValue(10.0);
example2.setValue("Hello");
example3.setValue(new Oblong(5, 3));

System.out.println(example1.getValue());
System.out.println(example2.getValue());
System.out.println(example3.getValue().calculateArea());

}
}

SimpleGenericClass<Double> example1 = new SimpleGenericClass<>();

10.0
Hello
15.0

13.7 Generics 377

Collection classes and graphics classes make extensive use of generic interfaces,
rather than classes. We could, for example, define a generic functional interface as
follows:

You can see that an object of type SimpleGenericInterface would
require three types, which are referred to in the definition as T, U and V. The single
abstract method returns an object of type T and receives objects of type U
and V.

Very often, however, we don’t need to define our own functional interface,
because Java provides us with a number of such interfaces “out of the box”.
Some of these are listed in Table 13.1. Most often these reside in the java.
util.function package. Some of these also contain static methods,
which you can look up on the Oracle™ site.

The two programs that follow demonstrate how we can use one of the above
interfaces—Function. In the first one we do this by declaring an anonymous
class, while in the second we do the same thing much more neatly with a lambda
expression. In both cases the output is:

In both programs you can see how we have pattern-matched Integer,
String to the types in the interface definition, T, R.

SimpleGenericInterface
public interface SimpleGenericInterface<T, U, V>
{

public T doSomething(U firstValue, V secondValue);
}

Table 13.1 Some common functional interfaces

Functional interface Abstract method name Parameter types Return type

Supplier<T> get none T

Consumer<T> accept T void

BiConsumer<T, U> accept T, U void

Function<T, R> apply T R

BiFunction<T, U, R> apply T, U R

UnaryOperator<T> apply T T

BinaryOperator<T, T> apply T, T T

Predicate<T> test T boolean

BiPredicate<T, U> test T, U boolean

You entered 10

378 13 Interfaces and Lambda Expressions

Notice that in the program above we do not need to include the word return in
the lambda expression as the code consists of a single return statement.

Before we move on there is one more thing to mention. If one of the types of our
generic class or interface refers to the return type of a method, it is possible that we
might want that method not to return any value—in other words to be of type
void. A special class, Void, exists for this purpose. Void is simply a placeholder
used to represent the keyword void. The method in this case would be defined so
that a null value is returned. So a generic type such as Task<V> could be
instantiated with, for example, Task<Integer>, Task<Double> or Task
<Void>. You will see an example of this in Chap. 20.

13.7.1 Bounded Type Parameters

When we develop a generic class we are somewhat limited as to the methods we
can provide. For example, if we were hoping that the class were going to hold 3D
geometrical shapes, we might want whatever types we were dealing with to have
methods such as calculateSurfaceArea, calculateVolume etc. If we
tried to reference these in our generic methods we would get a compiler error,
because a class which is simply declared as being of type T will not have these
methods until we know what T is.

Luckily there is a way around this. We can declare our unknown type with an
upper bound. This means that we specify that the types have to be a particular
type, or a derivative of that type. For example, classes such as Integer, Double

TestGenericInterfaceVersion1
import java.util.function.Function;

public class TestGenericInterfaceVersion1
{

public static void main(String[] args)
{

Function<Integer, String> t = new Function <Integer, String>()
{

@Override
public String apply(Integer i)
{

return "You entered " + i;
}

};
System.out.println(t.apply(10));

}
}

TestGenericInterfaceVersion2
import java.util.function.Function;

public class TestGenericInterfaceVersion2
{

public static void main(String[] args)
{

Function<Integer, String> str = i -> "You entered " + i ;

System.out.println(str.apply(10));
}

}

13.7 Generics 379

and Float are in fact all subclasses of a superclass called Number. We could
specify that the type must be Number, or a sub-type of Number such as
Integer, Double, Float etc.

We will develop an example to show you how we do this. Firstly, we are going to
define two classes to represent the 3D shapes sphere and cuboid. The JavaFX
libraries already contain shapes of this type, and, although it is perfectly possible to
have classes in different packages with the same name (more about this in Chap. 19),
we will avoid any confusion and call our classes Ball and Brick. Both of these
classes are going to implement the following interface:

Our Ball and Brick classes below implement this interface, and use the
appropriate formula in each case for calculating the volume.2

The Calculatable interface
public interface Calculatable
{

public double calculateVolume();
}

Ball
public class Ball implements Calculatable
{

private double radius;

public Ball (double radiusIn)
{

radius = radiusIn;
}

@Override
public double calculateVolume()
{

// uses the constant PI and the method pow from the java.Math package
return (4 * Math.PI * Math.pow(radius, 3))/3;

}
}

Brick
public class Brick implements Calculatable
{

private double length;
private double width;
private double height;

public Brick (double lengthIn, int widthIn, int heightIn)
{

length = lengthIn;
width = widthIn;
height = heightIn;

}

@Override
public double calculateVolume()
{

return length * width * height;
}

}

2Just in case you have forgotten your high school maths, the formula for calculating the volume of
a sphere is 4

3pr
3.

380 13 Interfaces and Lambda Expressions

Now we’ll develop a class, VolumeComparison, that can be used to compare
the volumes of two solids. It will be a generic class that will hold two solid objects
that implement Calculatable; our class will compare their volumes using the
calculateVolume method. Our intention is that the two items can be any
objects that implement Calculatable, and do not have to be specified until the
VolumeComparison class is instantiated.

The VolumeComparison class is presented below. You will notice that there
is something new in the class header. Study the code and then we will explain
what’s going on.

Take a look at the header:

You can see that each of the type parameters contains the words extends
Calculatable. Using extends in this context means that the types can be any
subtype of the class or interface that follows—in this case Calculatable. Our
types now have an upper bound—any types or subtypes of this bound will be
accepted.

Because both attributes will hold Calculatable objects, we have been able
to use the object’s calculateVolume method in the code for the
compareVolume method of our class.

The program below, ComparisonTester, tests out our VolumeCompar-
ison class. You can see how we have been able to create an object of this class
with a Ball and a Brick respectively—and of course we could have chosen to
compare any objects that implement our Calculatable interface.

VolumeComparison
public class VolumeComparison<T extends Calculatable, S extends Calculatable>
{

T first;
S second;

public VolumeComparison(T firstIn, S secondIn)
{

first = firstIn;
second = secondIn;

}

public int compareVolume()
{

if(first.calculateVolume() < second.calculateVolume())
{

return -1;
}
else if(first.calculateVolume() > second.calculateVolume())
{

return 1;
}
else
{

return 0;
}

}
}

public class VolumeComparison<T extends Calculatable, S extends Calculatable>

13.7 Generics 381

13.7.2 Wildcards

We have developed a program called WildCardTester which you see below. It
makes use of the SimpleGenericClass that we developed earlier in this sec-
tion, and also utilises the BankAccount class and CheckableBankAccount
class that we developed in Sect. 13.4. The line in bold gives rise to a compiler error.

Can you see what’s wrong here? The helper method expects to receive an object
of SimpleGenericClass<BankAccount>. So object1 is fine, but
object2 is of type SimpleGenericClass<CheckableBankAccount>.
The parameter of the receiving method is very specific—a Sim-
pleGenericClass<BankAccount> object is required.

We can fix this with a wildcard, which uses the? symbol. This is a mechanism
for making the variable less restrictive. The way we do it is shown below:

ComparisonTester
public class ComparisonTester
{

public static void main(String[] args)
{

Ball ballObject = new Ball(10);
Brick brickObject = new Brick(10, 10, 10);

VolumeComparison<Ball, Brick> comparison = new VolumeComparison<>(ballObject, brickObject);

switch(comparison.compareVolume())
{

case -1: System.out.println("The second object has a larger volume");
break;

case 1: System.out.println("The first object has a larger volume");
break;

case 0: System.out.println("The volumes are the same");
}

}

}

WildCardTester - Incorrect
public class WildcardTester
{

public static void main(String[] args)
{

SimpleGenericClass<BankAccount> object1 = new SimpleGenericClass<>();
SimpleGenericClass<CheckableBankAccount> object2 = new SimpleGenericClass<>();

object1.setValue(new BankAccount("12345678", "Smith"));
object2.setValue(new CheckableBankAccount("87654321", "Jones"));

helper(object1);
helper(object2); // this line causes the compiler error

}

static void helper(SimpleGenericClass<BankAccount> objectIn) // this causes an error
{

System.out.println(objectIn.getValue().getAccountName());
}

}

382 13 Interfaces and Lambda Expressions

The header for the helper method now looks like this:

Using <? extends SomeClass> means that the generic parameter can hold
items of SomeClass or any subtype of SomeClass. So now our program
compiles and runs without a problem.

You should note that in this case the keyword extends includes both classes
and interfaces, as it does with bounded types.

13.8 Other Interfaces Provided with the Java Libraries

Many important interfaces are provided in the Java libraries in addition to those
listed in Table 13.1, and many of these are not functional interfaces, as they contain
more than one abstract method. In Chap. 15 you will learn much more about
classes such as ArrayList, which are known as collection classes. As their name
suggests, these are the classes designed to hold collections of objects. Collection
classes implement generic interfaces such as the List interface and the Map
interface, in order to provide a wealth of classes which allow us to handle different
types of collections.

In Chap. 20 you will study multithreaded programs—programs in which more
than one task can effectively execute at the same time. In that chapter you will
encounter the very important Runnable interface.

Of particular interest are the interfaces provided in the JavaFX libraries. In
Chap. 10 we introduced you to the idea of event handling. In JavaFX, event
handling is achieved by means of a generic interface called EventHandler.
Now, as you saw in Chap. 10, in most cases we don’t actually have direct

WildCardTester - Correct
public class WildcardTester
{

public static void main(String[] args)
{

SimpleGenericClass<BankAccount> object1 = new SimpleGenericClass<>();
SimpleGenericClass<CheckableBankAccount> object2 = new SimpleGenericClass<>();

object1.setValue(new BankAccount("12345678", "Smith"));
object2.setValue(new CheckableBankAccount("87654321", "Jones"));

helper(object1);
helper(object2);

}

static void helper(SimpleGenericClass<? extends BankAccount> objectIn) // uses a wildcard
{

System.out.println(objectIn.getValue().getAccountName());
}

}

static void helper(SimpleGenericClass<? extends BankAccount> objectIn)

13.7 Generics 383

involvement with this interface, because it is hidden from us by convenience
methods such as setOnAction. Nonetheless, it is important that we know what is
going on behind the scenes, not least because—as you will see in Chap. 16—there
are times when we will not be able to use convenience methods.

If you cast your mind back to the PushMe class of Chap. 10, you will remember
that the code for the setOnAction method was as follows:

Had we not been able to use a convenience method we would have needed to use
a method called addEventHandler.

addEventHandler requires two parameters, of type EventType and
EventHandler respectively.

The interface EventHandler is a functional interface, with a single ab-
stract method handle. This method will contain the instructions that tell the
button what to do when the event occurs.

In our case we would declare an object of type EventHandler as follows:

As you can see, EventHandler is a generic interface and requires us to tell it
the type of objects it will be dealing with. In this case it will be an ActionEvent
—this is the event that occurs when a button is pushed. At present there is only one
type of ActionEvent, which is ActionEvent.ACTION, so that will be our
first parameter. In Chap. 16 you will see that for other events, such as MouseE-
vent, there are many types available such as MouseEvent.MOUSE_PRESSED,
MouseEvent.MOUSE_RELEASED, MouseEvent.MOUSE_MOVED and so on,
although in most cases we once again won’t have to worry about them, as con-
venience methods are available for each one.

Notice that we have been able to use a lambda expression to send the code for
the handle method, as EventHandler is a functional interface.

So now we can write the code for adding the EventHandler as follows:

Of course this could have been done in one line, without declaring the handler
object first, but doing it as we have should have made clear exactly what is
happening.

pushMeButton.setOnAction(e -> pushMeLabel.setText("You entered: " + pushMeTextField.getText()));

EventHandler<ActionEvent> handler =
e -> pushMeLabel.setText("You entered: " + pushMeText.getText());

pushMeButton.addEventHandler(ActionEvent.ACTION, handler);

384 13 Interfaces and Lambda Expressions

13.9 Polymorphism and Polymorphic Types

In this chapter we have seen how an object can have a number of different types. As
well as being the type of its own class, it is also the type of any superclasses in the
class hierarchy, and the type of any interfaces that it implements. You will recall
that we have used the term polymorphism to refer to the phenomenon whereby
methods and operators can have the same name, but exhibit different behaviour.
A language like Java that allows objects to be of more than one type is said to
support polymorphic types.

In general, polymorphism is an important feature of object-oriented languages,
and it is worth our while spending a little more time summarizing the different ways
in which polymorphism can be achieved.

13.9.1 Operator Overloading

We have seen several examples of operators that are overloaded, and that can
therefore behave differently depending upon the type of data they are manipulating.
The + operator, for example, can be used for the concatenation of strings as well as
for addition. The division operator, /, can be used for integer division as well as for
division of real numbers. The particular function performed is determined by the
operands. It should be noted that Java, as opposed to some other languages, does
not allow the user to overload operators.

13.9.2 Method Overloading

We are now very familiar with this type of polymorphism, whereby several
methods in a class have the same name and are distinguished by their parameter
lists. This is particularly useful for defining a number of different constructors, and
you will find many examples in the Java libraries where a number of constructors
are provided for a particular class. Just one of many examples is the String class
where, among others, a constructor is provided with no parameters to create an
empty string, and a constructor is provided that accepts a string value in order to
initialize the new String object.

13.9.3 Method Overriding

As we have seen, method overriding is a way of achieving polymorphism by
redefining a method of a class within a subclass. Here methods are distinguished not
by their parameter lists but by the object with which they are associated. As we
have described in this and previous chapters, this is made even more powerful by
having the ability to define abstract methods and therefore guaranteeing the
existence of these methods further down the hierarchy.

13.9 Polymorphism and Polymorphic Types 385

13.9.4 Type Polymorphism

Type polymorphism refers to the technique by which values of different types can
be handled in a uniform way. Examples of this are the System.out.print and
the System.out.println methods which are set up to accept objects of many
different types—int, char, double, String and so on. This is achieved, of
course, by defining many different (overloaded) methods. In this way it is possible
for a single method to appear to accept an object of any type. This is known as
parametric polymorphism.

Another way to create a method that accepts more than one type was demon-
strated in the EmployeeTester program of Sect. 9.6, where a method was set up
to accept an object of type Employee. We saw there how it was possible to call
this method and send in objects of any subclass of Employee such as Full-
TimeEmployee or PartTimeEmployee. Because objects of a subclass are of
the same type as the superclass, a method can effectively receive parameters of
more than one type. As we saw, the behaviour of methods of these classes might be
different, and hence this can be regarded as a kind of polymorphism—this is known
as subtype polymorphism.

13.10 Self-test Questions

1. Consider the UML design below of a class called MyClass.

Write the header of the MyClass class.

2. Consider the following interface, called SomeInterface:

MyClass

<<interface>>
Testable

<<interface>>
Checkable

TopClass

public interface SomeInterface
{

public double SomeMethod(double x);
}

386 13 Interfaces and Lambda Expressions

The following class is developed as shown below:

Explain why this class will not compile, and explain how it should be amended
in order to rectify the problem.

3. What is meant by a functional interface? Explain how lambda expressions are
used in conjunction with functional interfaces.

4. A lambda expression is characterized by the arrow symbol ->. What is placed
the left of this symbol, and what is placed to the right?

5. Consider the following interface:

Now consider the following program:

As its name suggests, this program gives rise to a compiler error. Can you see
why?

6. In order to tackle this exercise make sure that the classes Oblong and
BankAccount have been copied from the website and placed in the correct
directory for your compiler to access them.

The Testable interface
public interface Testable
{

public void test();
}

WontCompile
public class WontCompile
{

public static void main(String[] args)
{

int x = 2;

helper(() -> {
x = x * 2;
System.out.println(x);

}
);

}

static void helper(Testable objectIn)
{

objectIn.test();
}

}

public class SomeClass implements SomeInterface
{

private double y;

public double SomeMethod(int x)
 {

return 2.5 * x;
 }
}

13.10 Self-test Questions 387

Now consider the following Resetable interface:

The reset method takes no parameters and returns no value. The intention of
the reset method is to reset the object data to some basic initial value. For
example, an Oblong object might be reset by having both sides set to 1.

(a) Write the code for the Resetable interface.

(b) Write a tester program to check the Testable interface. An outline of
the tester is given below:

7. (a) Write the code for an interface, Computable, which has a single method,
compute, that accepts two doubles and returns a double:

<<interface>>
Resetable

reset()

Outline of a TestResetable program

public class TestResetable
{

public static void main(String[] args)
{

// create an Oblong object and BankAccount Object

// Make a deposit into the BankAccount object

/* call the resetObject method with a lambda expression that sets
the length and height of the Oblong to 1 */

/* call the resetObject method with a lambda expression that sets
the balance of the BankAccount object to zero. You can't do this
directly because there is no setBalance method - but you can
withdraw the total amount that is in the account */

/* display the length and height of the oblong (which should now
be 1) and the balance of the bank account (which should now be
zero) */

}

// write a resetObject method as follows:

static void resetObject(Resetable objectIn)
{

objectIn.reset();
}

}

<<interface>>
Computable

+compute(double, double):double

388 13 Interfaces and Lambda Expressions

(b) Consider the following program; a lambda expression has been replaced by
a comment:

Replace the comment with a lambda expression that causes the compute
method to return the sum of the two doubles it receives, and then test out
your program with some different values in the printResult method.

(c) Change the lambda expression so that it performs other calculations such as
subtraction or multiplication.

8. Explain, with examples, what is meant by the following terms, and how they are
implemented in Java:

(a) generic class;

(b) upper bound;

(c) wildcard.

9. (a) Adapt the code for the Computable interface that you developed in
question 7 so that it is generic interface, that is not restricted to dealing with
doubles only.

(b) Rewrite the TestComputable program from question 7 (b) so that it uses
your generic interface with number types other than double. Don’t forget
you will have to use the wrapper classes such as Double and Integer.

(c) Adapt your generic interface so it is restricted to accepting only Number
types (remember that classes such as Integer, Float and Double are
all sub-types of Number).

10. Consider the following two classes:

public class TestComputable
{

public static void main(String[] args)
{

Computable comp = // lambda expresion here ;
printResult(comp);

}

public static void printResult(Computable compIn)
{

System.out.println(compIn.compute(10, 5));
}

}

13.10 Self-test Questions 389

Give examples from these classes of:

(a) operator overloading;

(b) method overloading;

(c) method overriding;

(d) type polymorphism.

public class HighClass
{

private int num;
private String str;

public HighClass()
 {

num = 10;
str = "Hello ";

 }

public HighClass(int numIn, String strIn)
 {

num = numIn;
str = strIn;

 }

public void display(int mult)
 {

System.out.println(100 + mult * num);
 }

public void display(String strIn)
 {

System.out.println(str + strIn);
 }
}

public class LowClass
{

private char ch;

public LowClass()
 {

super();
ch = 'Q';

 }

public void display(String strIn)
 {

System.out.println(strIn + ch);
 }
}

390 13 Interfaces and Lambda Expressions

13.11 Programming Exercises

1. Implement a few of the programs from this chapter in order to make sure that
you fully understand the concepts involved.

2. A Customer class is being developed for a small business. The suggested code
for this class is shown below:

The owner of the business requires that the customer ID must comprise a single
letter followed by exactly 3 numbers.

(a) Create a CheckableCustomer class that inherits from the Customer
class and implements the Checkable interface that we developed in
Sect. 13.3. The class will override the check method according to the
above rule.

(b) Adapt the Checker program from Sect. 13.3 so that it now checks the
validity of a CheckableCustomer object, according to the above rule.

(c) Adapt the InnerClassDemo program from Sect. 13.4 so that Check-
ableCustomer is now specified as an inner class.

(d) Adapt the AnonymousClassDemoVersion1 and Anony-
mousClassDemoVersion2 programs from Sect. 13.5 so that an
anonymous class is used instead of an inner class to check the validity of a
Customer Object.

(e) Finally, adapt program LambdaDemo program from Sect. 13.6 to use a
lambda expression to check the validity of a Customer object.

public class Customer
{

private String customerId;
private String name;
private double creditLimit;

public Customer(String IdIn, String nameIn, double limitIn)
 {

customerId = IdIn;
name = nameIn;
creditLimit = limitIn;

 }

public String getCustomerId()
 {

return customerId;
 }

public String getName()
 {

return name;
 }

public double getCreditLimit()
 {

return creditLimit;
 }

public void setCreditLimit(double limitIn)
 {

creditLimit = limitIn;
 }
}

13.11 Programming Exercises 391

3. Implement the Resetable interface and the TestResetable class from
self-test question 6.

4. Implement the Computable interface and the test classes you developed in
self-test question 7.

5. Implement the generic version of the above classes as described in self-test
question 9.

6. In Sect. 13.7 the program TestGenericInterfaceVersion2 demon-
strated the use of one of the out-of-the-box interfaces (Function) listed in
Table 13.1. Design and implement some more programs to demonstrate the use
of some of the other functions listed in that table.

392 13 Interfaces and Lambda Expressions

14Exceptions

Outcomes:

By the end of this chapter you should be able to:

• explain the term exception;
• distinguish between checked and unchecked exception classes in Java;
• claim an exception using a throws clause;
• throw an exception using a throw command;
• catch an exception in a try…catch block;
• use a finally block or a try-with-resources construct to deal with clean-up

issues;
• use the Optional class to avoid NullPointerException errors;
• define and use their own exception classes.

14.1 Introduction

One way in which to write a program is to assume that everything proceeds
smoothly and as expected—users input values at the correct time and of the correct
format, files are never corrupt, array indices are always valid and so on. Of course
this view of the world is very rarely accurate. In reality, unexpected situations arise
that could compromise the correct functioning of your program.

Programs should be written that continue to function even if unexpected situa-
tions should arise. So far we have tried to achieve this by carefully constructed if
statements that send back error flags, in the form of boolean values, when
appropriate. However, in some circumstances, these forms of protection against
undesirable situations prove inadequate. In such cases the exception handling
facility of Java must be used.

© Springer Nature Switzerland AG 2019
Q. Charatan and A. Kans, Java in Two Semesters, Texts in Computer Science,
https://doi.org/10.1007/978-3-319-99420-8_14

393

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99420-8_14&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99420-8_14&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99420-8_14&domain=pdf
https://doi.org/10.1007/978-3-319-99420-8_14

14.2 Pre-defined Exception Classes in Java

An exception is an event that occurs during the life of a program which could cause
that program to behave unreliably. You can see that the events we described in the
introduction fall into this category. For example, accessing an array with an invalid
index could cause that program to terminate.

Each type of event that could lead to an exception is associated with a
pre-defined exception class in Java. When a given event occurs, the Java run-time
environment determines which exception has occurred and an object of the given
exception class is generated. This process is known as throwing an exception.

These exception classes have been named to reflect the nature of the exception.
For example, when an array is accessed with an illegal index an object of the
ArrayIndexOutOfBoundsException class is thrown.

All exception classes inherit from the base class Throwable which is found in
the java.lang package. These subclasses of Throwable are found in various
packages and are then further categorized depending upon the type of exception.
For example, the exception associated with a given file not being found
(FileNotFoundException) and the exception associated with an end of file
having been reached (EOFException) are both types of input/output exceptions
(IOException), which reside in the java.io package. Figure 14.1 illustrates
part of this hierarchy.

Fig. 14.1 A sample of Java’s pre-defined exception class hierarchy

394 14 Exceptions

As you can see from Fig. 14.1, there are two immediate subclasses of
Throwable: Exception and Error. The Error class describes internal
system errors that are very unlikely ever to occur (so called “hard” errors). For
example, one subclass of Error is VirtualMachineError where some error
in the JVM has been detected. There is little that can be done in the way of recovery
from such errors other than to end the program as gracefully as possible. All other
exceptions are subclasses of the Exception class and it is these exceptions that
programmers deal with in their programs. The Exception class is further sub-
divided. The two most important subdivisions are shown in Fig. 14.1,
IOException and RuntimeException.

The RuntimeException class deals with errors that arise from the logic of a
program. For example, a program that converts a string into a number, when the
string contains non-numeric characters (NumberFormatException) or acces-
ses an array using an illegal index (ArrayIndexOutOfBoundsException).

The IOException class deals with external errors that could affect the pro-
gram during input and output. Such errors could include, for example, the keyboard
locking, or an external file being corrupted.

Since nearly every Java instruction could result in a RuntimeException
error, the Java compiler does not flag such instructions as potentially error-prone.
Consequently these types of errors are known as unchecked exceptions. It is left to
the programmer to ensure that code is written in such a way as to avoid such
exceptions; for example, checking an array index before looking up a value in an
array with that index. Should such an exception arise, it will be due to a program
error and will not become apparent until runtime.

The Java compiler does, however, flag up those instructions that may generate
all other types of exception (such as IOException errors) since the programmer
has no means of avoiding such errors arising. For example, an instruction to read
from a file may cause an exception because the file is corrupt. No amount of
program code can prevent this file from being corrupt. The compiler will not only
flag such an instruction as potentially error-prone, it will also specify the exact
exception that could be thrown. Consequently, these kinds of errors are known as
checked exceptions. Programmers have to include code to inform the compiler of
how they will deal with checked exceptions generated by a particular instruction,
before the compiler will allow the program to compile successfully.

14.3 Handling Exceptions

Consider a simple program that allows the user to enter an aptitude test mark at the
keyboard; the program then informs the user if he or she has passed the test and
been allowed on a given course. We could use the nextInt method (from either
our EasyScanner class, or the original Scanner class) to allow the user to enter
this mark. However, in order to show you how exceptions can be dealt with in your
programs, we will not take this approach—instead we will devise our own class,

14.2 Pre-defined Exception Classes in Java 395

TestException, that will contain a class method called getInteger. Before
we do that, here is the outline of the main application:

Now let’s look at an outline for the TestException class.
The getInteger method must allow the user to enter an integer at the key-

board and then return that integer. There are many ways we could try and read an
integer from the keyboard. As we have said, rather than make use of the nextInt
method in the Scanner class, the approach we will take here will be to use a rather
low-level method called read in the System.in object. So far we have used the
System.out object to display information on the screen, but we have not
explored the System.in object. This object is an object of the InputStream
class that you will find out more about in Chap. 18.

You will remember from Chap. 2 that each character on the keyboard is rep-
resented by a Unicode number. For countries in which the standard western
alphabet is used, the lower case letters ‘a’ through to ‘z’ are represented by the
Unicode values 97 through to 122 inclusive. Special characters also have Unicode
values. For example, the carriage return character has a Unicode value 13. The
InputStream class provides a read method that is a bit like the next method
of the Scanner class, except that it treats the string as a series of Unicode
numbers. Each number is considered to be of type byte, so that the string itself is an
array of bytes. Figure 14.2 illustrates the effect of the read method when someone
enters the word “hello” at the keyboard.

public class TestException
{

// this method is declared 'static' as it is a class method
public static int getInteger()
{

// code for method goes here
}

}

Fig. 14.2 The ‘read’ method
stores characters entered at the
keyboard as an array of bytes

396 14 Exceptions

Notice that the array of bytes is not returned as a value but instead sent as a
parameter. Also note that the new-line character is given a Unicode value of 10.

The getInteger method will first have to take this array of bytes and convert
it into a String. Luckily a version of the String constructor returns a String
object from an array of bytes. We then remove any trailing spaces at the end of the
String; this can be done with the String method trim as follows:

Now, finally, we have to convert this string into an integer. We can use the
parseInt method of the Integer class to do this:

Our TestException class now looks like this:

Unfortunately, as things stand, this class will not compile. The cause of the error
is in the getInteger method, in particular the way we used the read method of
System.in. Whenever this method is used, the Java compiler insists that we be
very careful. To understand this better, take a look at the header for this read
method, taken from the Java language specification, in particular the part we have
emboldened:

Up until now you have not seen a method header of this form. The words
throws IOException are the new bits in this method header. In Java this is
known as a method claiming an exception.

byte [] buffer = new byte[512]; // declare a large byte array
System.in.read(buffer); // characters entered stored in array
String s = new String (buffer); // make string from byte array
s = s.trim(); // trim string

int num = Integer.parseInt(s); // converts string to an 'int'

// this is a first attempt, it will not compile!
public class TestException
{

public static int getInteger()
{

byte [] buffer = new byte[512];
System.in.read(buffer);
String s = new String (buffer);
s = s.trim();
int num = Integer.parseInt(s);
return num; // send back the integer value

}
}

public int read (byte[] b) throws IOExcep on

14.3 Handling Exceptions 397

14.3.1 Claiming an Exception

The term claiming an exception refers to a given method having been marked to
indicate that it will pass on an exception object that it might generate. So the term
throws IOException means that the method could cause an input/output
exception in your program. The type of error that could take place while data is
being read includes the loss of a network connection or a file being corrupted, for
example.

Remember, when an exception occurs, an exception object is created. This is an
unwanted object that could cause your program to fail or behave unpredictably, and
so should be dealt with and not ignored. Rather than dealing with this exception
object within the read method, the Java people decided it would be better if callers
of this method dealt with the exception object in whatever way they felt was
suitable. In effect, they passed the error on to the caller of the method (see
Fig. 14.3).

As the type of exception generated (IOException) is not a subclass of
RuntimeException, it is an example of a checked exception. In other words,
the compiler insists that if the read method is used, the programmer deals with this
exception in some way, and does not just ignore it as we did originally. That is why
we had a compiler error initially. There are always two ways to deal with an
exception:

1. deal with the exception within the method;
2. pass on the exception out of the method.

The developers of the read method decided to pass on the exception, so now
our getInteger method has to decide what to do with this exception. In a while
we will show you how to deal with an exception within a method, but for now we
will just make our getInteger method pass on the exception too. We do this by
simply adding a throws clause to our method:

Fig. 14.3 The ‘throws’ clause can be added to a method header to indicate that the method may
generate an exception

398 14 Exceptions

Notice that, as the IOException class is in the io package, we now need the
following import statement at the top of this class:

Now that the getInteger method has claimed the IOException, it will
compile as we have not just ignored the exception, we have made a conscious
decision to pass the exception on to any method that calls this getInteger
method. Now, let’s think about developing our aptitude test program.

Can you see what the problem with this program is? Well, this program will not
compile now as themainmethodmakes a call to ourgetIntegermethod, and this
method may now throw an IOException! The mainmethod now has to deal with
this exception and not just ignore it. For the time being, to keep the compiler happy,
we will just let the main method throw this exception as well. Here is the code:

import java.io.IOException;
public class TestException
{

// adding this throws clause will allow this method to compile
public static int getInteger() throws IOException
{

// as before
}

}

import java.io.IOException;

// something wrong here!
public class AptitudeTest
{

public static void main (String[] args)
{

int score;
System.out.print("Enter aptitude test score: ");
score = TestException.getInteger(); // calling class method
// test score here

}
}

AptitudeTest
import java.io.IOException;
public class AptitudeTest
{

// this main method will throw out any IOExceptions
public static void main (String[] args) throws IOException

 {
int score;
System.out.print("Enter aptitude test score: ");
// the 'getInteger' method may throw an IOException
score = TestException.getInteger();
if (score >= 50)

 {
System.out.println("You have a place on the course!");

 }
else

 {
System.out.println("Sorry, you failed your test");

 }
 }
}

14.3 Handling Exceptions 399

Dealing with the exception in the way we have is not a very good idea. We have
effectively continually passed on the exception object until it gets thrown out of our
program to the operating system. This may cause the program to terminate when
such an exception occurs. Before we deal with this problem let us show you a test
run. Take a look at it as something very interesting happens.

Enter aptitude test score: 12w
java.lang.NumberFormatException: 12w
at java.lang.Integer.parseInt(Integer.java:418)
at java.lang.Integer.parseInt(Integer.java:458)
at TestException.getInteger(TestException.java:10)
at AptitudeTest.main(AptitudeTest.java:11)

As you can see, when asked to enter an integer, the user inadvertently added a
character into the number (12w). This has led to an exception being generated and
thrown out of our program. Again, looking at the output generated, you can see that
when an exception is generated in this way the Java system gives you quite a lot of
information. This information includes the name of the method that threw the
exception, the class that the method belongs to, the line numbers in the source files
where the error arose, and the type of exception that was thrown. Such information
is referred to as the stack trace of the exception.

Look at the name of the exception that is thrown. It’s not the one we were worried
about, IOException, but NumberFormatException. This exception is raised
when trying to convert a string into a number when the string contains non-numeric
characters, as we were trying to do in this case within our getInteger method:

Why didn’t the compiler warn us about this when we first used the parseInt
method in our implementation of getInteger? Well, the reason is that the
exception that could arise (NumberFormatException) is a subclass of Run-
timeException and so is unchecked!

Notice that run-time exceptions do not need to be claimed in method headers in
order for them to be thrown. For example, although the following is valid in Java, it
is not necessary to claim the NumberFormatException in the header.

public static int getInteger() throws IOException
{

// some code here
int num = Integer.parseInt(s); /* will cause a NumberFormatException

if string s contains non-numeric characters*/
}

/* multiple exceptions can be claimed in the method header as follows by separating exception
names with commas. However run-time exceptions do not need to be claimed in this way */

public static int getInteger() throws IOException, NumberFormatException
{

// some code here
}

400 14 Exceptions

The way we have dealt with exceptions so far has not been very effective. As
you can see from the test run of program 14.1, continually throwing exceptions up
to the calling method does not really solve the problem. It may keep the compiler
happy, but eventually it means exception objects will escape from your programs
and cause them to terminate. Instead, it is better at some point to handle an
exception object rather than throw it. In Java this is known as catching an
exception.

14.3.2 Catching an Exception

One route for an exception object is out of the current method and up to the calling
method. That’s the approach we used in the previous section. Another way out for
an exception object, however, is into a catch block. Once an exception object is
trapped in a catch block, and that block ends, the exception object is effectively
terminated. In order to trap the exception object in a catch block you must
surround the code that could generate the exception in a try block. The syntax for
using a try and catch block is as follows:

There are a few things to note before we show you this try…catch idea in
action. First, any number of lines could be placed within the try block, and more
than one of them could cause an exception. If none of them causes an exception the
catch block is missed and the lines following the catch block are executed. If
any one of them causes an exception the program will leave the try block and look
for a catch block that deals with that exception.

Once such a catch clause is found, the statements within it will be executed
and the program will then continue with any statements that follow the catch
clause—it will not return to the code in the try clause. Look carefully at the syntax
for the catch block:

try
{

// code that could generate an exception
}
catch (Exception e) // type of exception must be specified as a parameter
{

// action to be taken when an exception occurs
}
// other instructions could be placed here

catch (Exception e)
{

// action to be taken when an exception occurs
}

14.3 Handling Exceptions 401

This looks very similar to a method header. You can see that the catch block
header has one parameter: an object, which we called e, of type Exception.
Since all exceptions are subclasses of the Exception class, this will catch any
exception that should arise. However, it is better to replace this exception class with
the specific class that you are catching so that you can be certain which exception
you have caught. As there may be more than one exception generated within a
method, there may be more than one catch block below a try block—each
dealing with a different exception. When an exception is thrown in a try block, the
catch blocks are inspected in order—the first matching catch block is the one
that will handle the exception.

Within the catch block, programmers can, if they choose, interrogate the
exception object using some Exception methods, some of which are listed in
Table 14.1.

With this information in mind we can deal with the exceptions in the previous
section in a different way. All we have to decide is where to catch the exception
object. For now we will leave the getInteger method as it is, and catch
offending exception objects in the main method of the AptitudeTest2 pro-
gram. Take a look at it and then we will discuss it.

Table 14.1 Some methods of the Exception class

Method Description

printStackTrace Prints (onto the console) a stack trace of the exception

toString Returns a detailed error message

getMessage Returns a summary error message

AptitudeTest2
import java.io.IOException;

public class AptitudeTest2
{

public static void main (String[] args)
{

try
 {

int score;
System.out.print("Enter aptitude test score: ");
// getInteger may throw IOException or NumberFomatException
score = TestException.getInteger();
if (score >= 50)

 {
System.out.println("You have a place on the course!");

 }
else

 {
System.out.println("Sorry, you failed your test");

 }
 }

// if something does goes wrong!
catch (NumberFormatException e)

 {
System.out.println("You entered an invalid number!");

 }
catch (IOException e)

 {
System.out.println(e); // calls toString method

 }
// even if no exception thrown/caught, this line will be executed
System.out.println("Goodbye");

}
}

402 14 Exceptions

Notice that by catching an offending exception object there is no need to pass
that object out of the method by raising that exception in the method header. Since
we catch the IOException here, the throws IOException clause can be
removed from the header of main. In this program we have chosen to print out an
error message if an IOException is raised (by implicitly calling the toString
method), whereas we have chosen to print our own message if a NumberFor-
matException is raised. Now look at a sample test run of the program:

Enter aptitude test score: 12w
You entered an invalid number!
Goodbye

As you can see the user once again entered an invalid integer, but this time the
program did not terminate. Instead the exception was handled with a clear message
to the user, after which the program continued to operate normally.

14.4 The ‘finally’ Clause

From the previous sections you can see that three courses of action may now take
place in a try block:

1. the instructions within the try block are all executed successfully;
2. an exception occurs within the try block; the try block is exited and a

matching catch block is found for this exception;
3. an exception occurs within the try block; the try block is exited but no

matching catch block is found for this exception, so the exception is thrown
from the method.

It may be the case that, no matter which of these courses of action take place,
you wish to execute some additional instructions before the method terminates.
Often such a scenario arises when you wish to carry out some clean-up code, such
as closing a file or a network connection that you have opened in the try block.
We will see some examples of these scenarios in later chapters. The finally clause
allows us to do this. The syntax for the finally clause is as follows:

try
{

// code that could generate an exception
}
catch (Exception e) /* if one or more 'catch' clauses are specified,

they must be given before the 'finally' clause */
{

// action to be taken when an exception occurs
}
finally
{

// cleanup code can go here
}

// other instructions could be placed here

14.3 Handling Exceptions 403

Notice that when catch clauses are specified, the finally clause must come
directly after such clauses. If no such catch clauses are specified, the finally
clause must follow directly after the try clause. Now, when the code in the try
block is executed the following three courses of action can take place:

1. the instructions within the try block are all executed successfully; if there are
any catch blocks specified they are skipped and the code in the finally block
is executed, followed by any code after the finally block;

2. an exception occurs within the try block; the try block is exited and a
matching catch block is found for this exception, after which the code in the
finally block is executed, followed by any code after the finally block;

3. an exception occurs within the try block; the try block is exited but no
matching catch block is found for this exception so the code in the finally
block is executed—after which the method terminates and the appropriate
exception is thrown by the given method.

We will use a very simple example of closing a Scanner resource as a way to
demonstrate how the finally clause works under the three scenarios outlined above.

We have seen many examples of creating Scanner objects. Scanner objects
point to a resource, in our case this resource has been the keyboard (System.in).
We would not ordinarily close this resource as this would be closed automatically
once the program terminates, but in the ClosingAResourceUsingFinally
program below we will close it explicitly in a finally clause. Take a look at the
code and then we will discuss it.

ClosingAResourceUsingFinally
import java.util.Scanner;

public class ClosingAResourceUsingFinally
{

public static void main(String[] args)
{

Scanner keyboard = new Scanner (System.in); // open a Scanner resource
try

 {
System.out.println("START TRY");
String[] colours = {"RED","BLUE","GREEN"}; // initialise array
System.out.print("Which colour? (1,2,3): ");
String pos = keyboard.next();
// next line could throw NumberFormatException
int i = Integer.parseInt(pos);
// next line could throw ArrayIndexOutOfBoundsException
System.out.println(colours[i-1]);
System.out.println("END TRY");

}
// include a catch only for ArrayIndexOutOfBoundsException
catch(ArrayIndexOutOfBoundsException e)

 {
System.out.println("ENTER CATCH ");
System.out.println(e);

 }
// this block will always be executed
finally

 {
System.out.println("ENTER FINALLY");
keyboard.close(); // Scanner resource closed
System.out.println("Scanner CLOSED");

 }
System.out.println("Goodbye");

}
}

404 14 Exceptions

Most of this code should be self-explanatory. Notice that we have provided a
catch block for the ArrayIndexOutOfBoundsException but we have not
provided a catch block for the NumberFormatException, so such an
exception would be thrown from main should it arise. Also, notice that we dis-
played messages to indicate when we are in each of the try, catch and finally
blocks. Finally, notice how we close a Scanner resource, in the finally block of
code, by calling the Scanner object’s close method:

Here is one test run:

START TRY
Which colour? (1,2,3): 2
BLUE
END TRY
ENTER FINALLY
Scanner CLOSED
Goodbye

Here the user enters a valid colour number, so the try block completes suc-
cessfully. The catch block is skipped and the finally block is executed, which
closes the Scanner resource. Following the finally block the last “Goodbye”
instruction is executed.

Here is another test run:

START TRY
Which colour? (1,2,3): 4
ENTER CATCH
java.lang.ArrayIndexOutOfBoundsException: 3
ENTER FINALLY
Scanner CLOSED
Goodbye

Here the user enters an invalid colour number, the try block does not complete
as an ArrayIndexOutOfBoundsException is thrown. A matching catch
block is found for this exception and executed. Upon completion of this catch
block the program continues with the code in the finally block, which closes the
Scanner resource. Following the finally block the last “Goodbye” instruction is
executed.

// this block will always be executed
finally
{

System.out.println("ENTER FINALLY");
keyboard.close(); // Scanner resource closed
System.out.println("Scanner CLOSED");

}

14.4 The ‘finally’ Clause 405

Here is the last test run:

START TRY
Which colour? (1,2,3): 2c
ENTER FINALLY
Scanner CLOSED
Exception in thread “main” java.lang.
NumberFormatException:
For input string: “2c”
at java.lang.NumberFormatException.forInputString
(NumberFormatException.java:48)
at java.lang.Integer.parseInt(Integer.java:456)
at java.lang.Integer.parseInt(Integer.java:497)
at
ClosingAResourceUsingFinally.main
(ClosingAResourceUsingFinally.java:11)

In this case, the user entered an invalid number causing a NumberFor-
matException—so the try block did not complete successfully. However,
there is no catch block provided for this exception. Without a finally
clause this would have led to program termination immediately as the exception
escapes from main. We have a finally clause, however, which closes the
Scanner resource. The program then terminates with the offending exception
(NumberFormatException).

These three test runs match the three scenarios we identified for the try/catch/
finally blocks earlier. You will notice from the three test runs above that, if the
instructions inside the finally clause were written as normal below the catch
clause (without putting them into a finally block), the first two test runs would
have produced exactly the same result. This is because code following a catch
block is always executed if no exception is thrown, or if an exception is thrown and
a matching catch clause is found and executed. Only in scenario three, when an
exception is thrown and no matching catch is found (perhaps because no catch
clauses were specified), does the finally clause really make a difference to pro-
gram flow.

You may well come across the third scenario when developing your programs,
and we shall see examples in later chapters, so the finally clause could be used here
for clean-up code. Using the finally clause in scenarios one and two is optional.

14.5 The ‘Try-with-Resources’ Construct

In the previous section we saw how a finally clause can be used to close a resource
before exiting a program. In the test runs ofClosingAResourceUsingFinally
we saw that, once the finally code is executed, any uncaught exception is reported

406 14 Exceptions

(NumberFormatException in the test runs of Sect. 14.4). However, you should
note that if the code in thefinally clause itself throws an exception it is this exception
that is thrown from the method rather than the original offending exception. The
close method of Scanner, for example, would itself throw an IOException if
the systemwas unable to close the Scanner resource. This is not ideal as the original
exception is probably more appropriate to report.

One of the more recent developments in Java allows for us to avoid writing fi-
nally clauses to close a resource, but instead adapt the try clause for this purpose.
This is known as try-with-resources. The try-with-resources clause automatically
closes a specified resource (or resources) for us and suppresses any exceptions that
might arise from doing so, leaving any original uncaught exceptions free to be
reported. The program below re-writes theClosingAResourceUsingFinally
program to make use of this try-with-resources clause. Take a look at it and then we
will discuss it.

You can see that, when using a try-with-resources clause, we include the
resource declaration (in this case the creation of a Scanner object) in round
brackets straight after the try keyword:

ClosingAResourceUsingTryWithResources
import java.util.Scanner;

public class ClosingAResourceUsingTryWithResources
{

public static void main(String[] args)
 {

try (Scanner keyboard = new Scanner (System.in)) // open a Scanner resource here
 {

System.out.println("START TRY");
String[] colours = {"RED","BLUE","GREEN"}; // initialise array
System.out.print("Which colour? (1,2,3): ");
String pos = keyboard.next();
// next line could throw NumberFormatException
int i = Integer.parseInt(pos);
// next line could throw ArrayIndexOutOfBoundsException
System.out.println(colours[i-1]);
System.out.println("END TRY");

}
// include a catch only for ArrayIndexOutOfBoundsException
catch(ArrayIndexOutOfBoundsException e)

 {
System.out.println("ENTER CATCH ");
System.out.println(e);

 }
// we have removed the finally clause
System.out.println("Goodbye");

 }
}

try (Scanner keyboard = new Scanner (System.in)) // Scanner resource created in brackets
{

// previous code as before
}

14.5 The ‘Try-with-Resources’ Construct 407

This Scanner resource is now treated as an object whose scope is the
try block.

If code in the try block completes, with no exception occurring, the given
resource (our Scanner object keyboard in this case) is automatically closed. If
an exception does occur during the try block, the given resource is still auto-
matically closed, whether or not that exception is caught. Unlike a finally block,
however, if an exception is thrown from the try block but not caught and an
exception is then also thrown by the close method of the given resource, the
exception thrown by the close method is suppressed and the original uncaught
exception from the try block is reported.

So, in the example above, if a NumberFormatException occurs that has no
catch block and closing the Scanner resource also throws an IOException,
the IOException is suppressed and the NumberFormatException is
thrown.

Note, we can create any object (or objects) within the try-with-resources
bracket as long its type is a class that implements the Closeable (or Auto-
Closeable) interfaces. Classes that implement these interfaces all include a
close method. Scanner is one example of such a class. We will see further
examples Chap. 18 when we study file-handling.

14.6 Null-Pointer Exceptions

One of the most common exception types you will come across when programming
is the dreaded NullPointerException. This is an example of an unchecked
RuntimeException and is a very common cause of program errors. It occurs
when we try to call the method of an object, but the object itself contains a null
value rather than valid object data. As a very simple example, consider the
following instructions that make use of our BankAccount class of Chap. 8:

Here the BankAccount object reference, acc1, is set to the null value. We
should not call any methods on this object as it is not yet referencing a valid
BankAccount object. However, we have then made an attempt to call the
getAccountNumber method on this object reference and, consequently, the
program will throw a NullPointerException.

While we are unlikely to make such obvious errors as the one demonstrated
above, null values can find their way into your programs in very subtle ways and
NullPointerExceptions can then easily arise.

BankAccount acc1 = null; // BankAccount reference set to null
System.out.println(acc1.getAccountName()); // ‘getAccountName’ will cause a NullPointerException

408 14 Exceptions

Think back to the Bank collection class of Sect. 8.8.1, for storing a collection of
BankAccount objects. Here is a reminder of its getItem method that retrieves a
BankAccount object given its account number.

You can see that, if the given account number exists in the list, the associated
BankAccount object is returned:

If, however, if no such account exists a null value is returned to indicate this:

Now consider the following simple program that adds two BankAccount
objects to the Bank collection class and then asks the user to enter an account
number to search for:

// returns the account assciated with a particular account number
public BankAccount getItem(String accountNumberIn)
{

int index = search(accountNumberIn);
if(index != -999) // check that account exists
{

return list.get(index); // return valid BankAccount object
}
else
{

return null; // no such account so return null value
}

}

if(index != -999) // check that account exists
{

return list.get(index); // return valid BankAccount object
}

389

else
{

return null; // no such account so return null value
}

NullPointerDemo
public class NullPointerDemo
{

public static void main(String[] args)
 {

// create Bank collection
Bank myBank = new Bank();
// add two BankAccount objects
myBank.addAccount("001", "Aaron");
myBank.addAccount("002", "Quentin");
// request user for account number
System.out.print("Enter account number to search for: ");
String account = EasyScanner.nextString(); // we are using our EasyScanner class here
// retrieve account name accociated with this account number
// this may throw a NullPointerException!
System.out.println(myBank.getItem(account).getAccountName());

 }
}

14.6 Null-Pointer Exceptions 409

Here is a sample program where the user enters a valid account number to
search for:

Enter account number to search for: 001
Aaron

Once a valid account number is entered, “001” in this case, the appropriate
account name (“Aaron”) is displayed.

Here is a sample program run with an invalid account number entered:

As you can see, in this case, having entered an invalid account number (“003”) a
NullPointerException is thrown. Here is the offending instruction:

The problem here is that, as we have seen, the getItem method (highlighted in
bold) does not return a valid BankAccount object but, instead, a null value
when the given account number is not present in the list. Consequently, the attempt
to get the account number via the getAccountNumber fails with a
NullPointerException then thrown.

Of course, we can avoid this error by using an if statement to check for a null
value and only call thegetAccoutNumbermethod if we do not have anull value:

While this would work, unfortunately very often these if checks are not
included and potential NullPointerExceptions can remain. To deal with this
problem, Java has recently introduced the Optional class to better deal with such
NullPointerExceptions.

14.7 The Optional Class

The Optional class is essentially a wrapper class that can contain the value of a
given type, or it can contain null. The best way to see how this Optional class
works is to use it in an example, so let’s re-write the getItem method in our
Bank collection class to make use of this new class.

Enter account number to search for: 003
Exception in thread "main" java.lang.NullPointerException

at NullPointerDemo.main(NullPointerDemo.java:15)

System.out.println(myBank.getItem(account).getAccountName());

if (myBank.getItem(account) != null) // add a check for non-null value
{

System.out.println(myBank.getItem(account).getAccountName()); // safe to call method
}

410 14 Exceptions

Firstly, the Optional class resides in the util folder, so we will need the
following import statement at the top of our Bank class:

Now, here is the new getItem method; take a look at it and then we will
discuss it:

Firstly, you can see that the return type is no longer just BankAccount, but an
Optional value that could contain a BankAccount—the generics mechanism
is used to fix the contained type:

We should point out here that changing the getItem method in this way would
mean that we would also have to change the deposit and withdraw methods,
both of which call getItem; we do this by using the get method of Optional,
as explained below.

The Optional return type makes it clear to anyone using this class that the
value being returned could contain a BankAccount or it could contain null,
whereas a return type of BankAccount would not have made this clear.

Now, when we wish to return a BankAccount object we wrap it up inside an
Optional value using the Optional class method of as follows:

import java.util.Optional;

public class Bank
{

// code for Bank class goes here
}

//note the Optional return type
public Optional<BankAccount> getItem(String accountNumberIn)
{

int index = search(accountNumberIn);
if(index != -999) // check that account exists
{

return Optional.of(list.get(index)); // send valid Optional value
}
else
{

return Optional.empty(); // send empty(null) Optional value
}

}

// Optional return type may contain a BankkAccount or null
public Optional<BankAccount> getItem(String accountNumberIn)
{

// code for getItem here
}

if(index != -999) // check that account exists
{

return Optional.of(list.get(index)); // send valid Optional value
}

14.7 The Optional Class 411

To indicate no BankAccount object can be found we wrap up a null value
inside an Optional value using the Optional class method empty as follows:

Programmers are no longer able to treat the returned value as a BankAccount
object. It is now an object of type Optional<BankAccount>. So, for example,
the following instruction from our NullPointerDemo program will no longer
compile:

Since getItem now returns an Optional<BankAccount> object we are
no longer able to call a BankAccount method such as getAccountNumber,
and attempting to do so raises a compiler error.

So how do we avoid this compiler error? One approach would be to check if a
valid value has been returned. We can use the isPresent method of the
Optional class, that returns true if a valid object is returned and false
otherwise, on the object returned:

Now can retrieve the BankAccount object before we call the getAccount-
Name method. We can use the get method of the Optional class to do this:

There is also another method we can use called ifPresent. This receives an
object of the functional interface Consumer, which you came across in Chap. 13.
It is one of the “out-of-the-box” interfaces and was described in Table 13.1. Its
abstract method, accept, receives a single parameter (of whatever type is chosen
for the generic interface) and its return type is void. We can therefore call
ifPresent with a lambda expression. Below, we have re-written the
NullPointerDemo program using this syntax; take a look at it and then we will
discuss it:

else
{

return Optional.empty(); // send empty(null) Optional value
}

System.out.println(myBank.getItem(account).getAccountName()); //compiler error

if (myBank.getItem(account).isPresent())
{

// code to retrieve valid object here
}

if (myBank.getItem(account).isPresent())
{

// notice use of ‘get’ method to retrieve the BankAccount object inside Optional
System.out.println(myBank.getItem(account).get().getAccountName());

}

412 14 Exceptions

You can see that we have retrieved a BankAccount using the new version of
getItem, and it will therefore be of type Optional<BankAccount>. We then
call the ifPresent method of Optional with the correct lambda expression for
the abstract method of the Consumer interface. The input to this method (which we
have called value) is the item held in the Optional object, which will be either a
BankAccount or a null value. The ifPresent method executes the lambda
expression only if the item held is a valid object—if it is not, it does nothing.

Thus, the program displays the account name if a valid object was retrieved,
otherwise nothing is displayed.

You can see how the Optional type alerts programmers that the null value
might be returned and ensures they unpack this value before proceeding, thus
avoiding NullPointerExceptions. It also provides a variety of methods that,
potentially, avoid the need for null value if checks in your code. There are a
variety of other methods contained in the Optional class, which you can look up
on the Oracle™ site.

14.8 Exceptions in GUI Applications

In Sect. 14.4 we showed you how the parseInt method could potentially result
in a NumberFormatException being thrown. If this were not handled at some
point, the exception object would escape out of your program and cause the pro-
gram to terminate.

However, this isn’t the first time that you used the parseIntmethod. You often
had to use it when implementing your JavaFX GUI applications. In such applications
all user input would normally be retrieved as strings, and then converted to numbers
by calling methods such as parseInt method and parseDouble.

NullPointerDemoWithOptional
public class NullPointerDemoWithOptional
{

public static void main(String[] args)
{

// create Bank collection
Bank myBank = new Bank(); // version with new getItem method
// add two BankAccount objects
myBank.addAccount("001", "Aaron");
myBank.addAccount("002", "Quentin");

// request user for account number
System.out.print("Enter account number to search for: ");
String account = EasyScanner.nextString(); // we are using our EasyScanner class here

// retrieve account name accociated with this account number using lambda, and display result
myBank.getItem(account).ifPresent(value -> System.out.println(value.getAccountName()));

}
}

myBank.getItem(account).ifPresent(value -> System.out.println(value.getAccountName()));

14.7 The Optional Class 413

At the time, you never considered handling these exceptions, and your appli-
cations never seemed to terminate as a result of invalid data entry. For example, do
you remember the Hostel case study of Chaps. 11 and 12? Figure 14.4 illustrates
a sample screen shot when a user enters an invalid room number.

When such an event occurred within your JavaFX application, the application
seemed to continue operating regardless. After our discussion on exceptions this
might seem surprising as the text entered is being processed by a parseInt
method. To remind you, here is a fragment from the addHandler method:

room number should be a whole number

Fig. 14.4 A sample screen shot from the ‘Hostel’ case study illustrating an invalid room number
having been entered

private void addHandler()
{

String roomEntered = roomField1.getText(); // code to read room number
String nameEntered = nameField.getText();

// previous additional code here

// code to check room number, parseInt could cause an exception!
if(Integer.parseInt(roomEntered)< 1 || Integer.parseInt(roomEntered)>noOfRooms)
{

displayArea1.setText ("There are only " + noOfRooms + " rooms");
}

// code to addTenant here
}

414 14 Exceptions

In fact, when an invalid number is entered as illustrated in Fig. 14.4, a Num-
berFormatException occurs—but:

• you will not see details of the exception in your graphics screen since they will
always be displayed in the output window of your IDE, or, if you are running
your program from the command line, on the black console window (which may
be hidden during the running of your application);

• exceptions do not terminate JavaFX applications; however, they may make them
behave unpredictably.

So, if you look at the console screen or output window, you will see a list of
exceptions that have been thrown during the running of your JavaFX applications—
you may be surprised to see how many are actually thrown when you thought your
program was operating correctly.

Often, graphical programs will continue to operate normally in the face of
exceptions. To ensure this is the case you should still add exception handling code
into your JavaFX applications. For example, we could amend the event-handler
above as follows:

invalid room number error message displayed

Fig. 14.5 Exceptions can still be dealt with in JavaFX applications

14.8 Exceptions in GUI Applications 415

Now if we run the application again, with the same input as depicted in
Fig. 14.4, we get the response given in Fig. 14.5.

14.9 Using Exceptions in Your Own Classes

So far we have mainly been dealing with how to handle predefined exceptions (as
summarised in Fig. 14.1) that are automatically thrown by your Java programs,
such a NullPointerException being thrown when calling a method of a
null value.

Sometimes, however we wish to generate an error under circumstances when
Java would not ordinarily raise an error. For example, think back to the Pay-
mentList collection class from the case study in Chap. 11. Here is an outline of
that class:

Here we have an ArrayList to hold the payments and a MAX value to record
the maximum number of payments. There are no Java exceptions we need to be
concerned about here. But take a look at the code for the constructor. Can you see a
potential problem here?

We are setting the value of MAX and this value is sent as an integer. We would
want this number to be a positive number, but integers in Java can be positive or
negative or zero. If a negative or zero value is sent, Java will still allow us to set

private void addHandler()
{

try // place previous code in try block
 {

// previous add handler code here
 }

catch (NumberFormatException e) // catch exception and diplay error message on GUI
{

displayArea1.setText("Invalid room number" + e.getMessage()
+ "\nEnter whole numbers only!");

}
}

import java.util.ArrayList;

public class PaymentList
{

private ArrayList<Payment> pList;
public final int MAX;

/** Constructor initialises the empty payment list and sets the maximum list size
* @param maxIn The maximum number of payments in the list
*/

public PaymentList(int maxIn)
{

pList = new ArrayList<>();
MAX = maxIn;

}

// remaining methods go here

416 14 Exceptions

MAX to this value but doing so would create knock on logical problems in our
program code.

Ideally, we should avoid setting MAX to a value that is less than 1, and would
instead wish to report an error. We could try and use an if else statement to
check the parameter, maxIn, and then try and report an error if need be:

How would we report back this error? One way, which we have used before,
would be to return a boolean value of false to indicate failure. A general
problem with reporting errors using boolean values is that these values can be
ignored. In this case we have another problem—constructors can have no return
value! The only way to report back errors from constructors is to throw exceptions.

14.9.1 Throwing Exceptions

We have seen circumstances where our programs automatically throw exceptions,
but we have not seen examples of where we throw our own exceptions. Let’s take a
look at the syntax to do this.

The first thing we need to decide is which exception to throw. We could make
use of one of the pre-existing Java exception class. Since the error we wish to report
is a logical error we could try throwing a RuntimeException. In order to throw
an exception object you must:

• write an instruction explicitly to throw the exception using a throw command;
• combine this with the new command to generate an object of the appropriate

exception type by calling the given exception class’s constructor.

Below is a modified PaymentList constructor that throws a
RuntimeException:

public PaymentList(int maxIn)
{

pList = new ArrayList<>();
if (maxIn < 1) // check if parameter is not positive

 {
// report error

 }
else

 {
MAX = maxIn; // ok to set MAX

 }
}

public PaymentList(int maxIn)
{

pList = new ArrayList<>();
if (maxIn < 1)

 {
throw new RuntimeException(); // force a RuntimeException to be thrown

 }
else

 {
MAX = maxIn;

 }
}

14.9 Using Exceptions in Your Own Classes 417

Notice this version of the RuntimeException constructor requires no
parameters:

Every Java exception class is provided with an alternative version of the con-
structor that can receive a String parameter, often used to bundle information
regarding the error within the exception object.

Let’s use this alternative version of the RuntimeException constructor to
provide some useful error information:

Now let’s look at a program that makes use of this modified PaymenList
constructor, catches the RuntimeException if it is thrown and displays this
exception object (containing our error message).

First, a normal test run:

Enter size of list: 5
END OF DEMO

throw new RuntimeException(); // no parameters required here

public PaymentList(int maxIn)
{

pList = new ArrayList<>();
if (maxIn < 1)

 {
throw new RuntimeException("invalid list size set " + maxIn); // send error info

 }
else

 {
MAX = maxIn;

 }
}

RuntimeExceptionDemo

public class RuntimeExceptionDemo
{

public static void main(String[] args)
{

try
{

System.out.print("Enter size of list: ");
int size = EasyScanner.nextInt(); // we are using our EasyScanner here
PaymentList p = new PaymentList(size); // can now throw RuntimeException

}
catch(RuntimeException e) // catch exception from PaymentList constructor
{

System.out.println(e); // display exception object
}
System.out.println("END OF DEMO");

}
}

418 14 Exceptions

Now a test run with an invalid list size:

Enter size of list: 0
java.lang.RuntimeException: invalid list size set 0
END OF DEMO

Here you can see an illegal list size of zero triggers the RuntimeException
and displaying this exception object reveals our error information.

In the example above we had an error that made sense to our program, avoiding
using a non-positive value when setting the maximum size of our list, but we have
co-opted an existing exception name to report this error (RuntimeException).

Using a pre-existing exception type name (such as RuntimeException) to
report your own program-specific errors has a few problems. Firstly, a clause to catch
this exception will also catch any other exception of the given type. However, you
might want very different error handling code for your program specific errors.
Secondly, the name of the exception type is not a good description of your
specific error. It would be better if we could invent a new name (or names) for
your program-specific errors. For example, if you were developing a game where
pieces moved on a board you might want to have an exception called
InvalidMoveException rather than use a generic name such as
RuntimeException.

Luckily, it is very simple to create your own exception classes with names of
your choice.

14.9.2 Creating Your Own Exception Classes

You can create your own exception class by inheriting from any predefined
exception class. Generally speaking, if you wish your exception class to be
unchecked then it should inherit from RuntimeException (or one of its sub-
classes), whereas if you wish your exception to be checked you can inherit from the
general Exception class.

In the case of the PaymentList class we wish to make the exception thrown by
the constructor unchecked, as it is a logical error not an input/output error. So we will
define our exception class by inheriting from the RuntimeException class. We
will call this new exception class HostelException so it can be used throughout
our Hostel application if need be. Look at the code first and then we will discuss it.

HostelException
public class HostelException extends RuntimeException
{

public HostelException () // constructor without parameter
 {

super("error in Hostel application");
 }

public HostelException (String message)// constructor with parameter
 {

super (message);
 }
}

14.9 Using Exceptions in Your Own Classes 419

As well as inheriting from some exception class, user-defined exception classes
should have two constructors defined within them. One should take no parameters
and simply call the constructor of the superclass with a default message of your
choosing:

The other constructor should allow a user-defined message to be supplied with
the exception object:

The PaymentList constructor can now be modified to make use of this
HostelException class as follows:

Finally, we can amend the tester so that the new HostelException is caught:

public HostelException () // constructor without parameter
{

super("error in Hostel application"); // default error info
}

public HostelException (String message)// constructor with parameter
{

super (message); // user defined message can be provided
}

public PaymentList(int maxIn)
{

pList = new ArrayList<>();
if (maxIn < 1)

 {
throw new HostelException("invalid list size set " + maxIn); // user-defined error

 }
else

 {
MAX = maxIn;

 }
}

HostelExceptionDemo

public class HostelExceptionDemo
{

public static void main(String[] args)
{

try
{

System.out.print("Enter size of list: ");
int size = EasyScanner.nextInt();
PaymentList p = new PaymentList(size); // can now throw HostelException

}
catch(HostelException e) // catch exception from PaymentList constructor
{

System.out.println(e); // display exception object
}
catch (Exception e) // note general catch clause added
{

System.out.println("Some unforseen error");
e.printStackTrace();

}
System.out.println("END OF DEMO");

}
}

420 14 Exceptions

Notice how we added a general catch clause to catch any exceptions that we
might not yet have considered. In this catch clause we have printed the stack trace
in this error-handler to determine the exact cause of this unexpected error:

During testing this is always a good strategy. However, you need to ensure that
the general catch clause is the last catch clause you specify. For example,
something like the following will not compile:

The above will not compile as the first general catch clause (catch
Exception) will catch all exception types (including HostelException). So,
any catch clauses below (such as catch HostelException) will never be
reached. To write unreachable code in Java causes a compiler error.

14.10 Documenting Exceptions

We finish off this chapter by looking at how to document methods that may throw
exceptions, using the Javadoc style of comments discussed in Chap. 11. The
@throws tag should be used to document the name of any exceptions that may be
thrown by a method. Here for example, is the PaymentList constructor, docu-
mented with Javadoc comments:

catch (Exception e) // catches all uncaught errors
{

System.out.println("Some unforseen error");
e.printStackTrace();

}

try
{

// some code here
}
catch (Exception e) // catches all uncaught errors
{

// some code here
}
catch (HostelException e) // will not compile!
{

// some code here
}

/** Constructor initialises the empty payment list and sets the maximum list size
* @param maxIn The maximum number of payments in the list
* @throws HostelException If the list is sized with a non-positive value
*/
public PaymentList(int maxIn)
{

pList = new ArrayList<>();
if (maxIn < 1)
{

throw new HostelException("invalid list size set " + maxIn);
}
MAX = maxIn;

}

14.9 Using Exceptions in Your Own Classes 421

Generally speaking, when documenting methods in this way, it is good practice
to document all exceptions that a method may throw. Multiple @throws tags can
be used to list multiple exceptions.

14.11 Self-test Questions

1. What is an exception?

2. Distinguish between checked and unchecked exceptions and then identify which
of the following exceptions are checked, and which are unchecked:

• FileNotFoundException;

• NegativeArraySizeException;

• NullPointerException;

• NumberFormatException;

• IOException;

• Exception;

• ArrayIndexOutOfBoundsException;

• RuntimeException.

3. Explain the following terms:

(a) claiming an exception;

(b) throwing an exception;

(c) catching an exception.

4. Look at the program below and then answer the questions that follow:

public class ExceptionsQ4
{

public static void main(String[] args)
{

int[] someArray = {12,9,3,11};
int position = getPosition();
display (someArray, position);
System.out.println("End of program");

}

static int getPosition()
{

System.out.println("Enter array position to display");
String positionEntered = EasyScanner.nextString(); // requires EasyScanner class
return Integer.parseInt(positionEntered);

}

static void display (int[] arrayIn, int posIn)
{

System.out.println("Item at this position is: " + arrayIn[posIn]);
}

}

422 14 Exceptions

(a) Will this result in any compiler errors?

(b) Which methods could throw exceptions?

(c) Identify the names of the exceptions that could be thrown and the cir-
cumstances under which they could be thrown.

5. What is the purpose of a finally clause?

6. When would you use the try-with-resources construct?

7. Consider once again the PaymentList class of Chap. 11. In particular here is
a reminder of its getItem method that returns a particular payment given a
position in the list:

(a) Explain the purpose of the Optional class.

(b) Re-write the getPayment method using an Optional class.

8. When would it be appropriate to define your own exception class?

14.12 Programming Exercises

1. Implement the program given in self-test question 4 above. Now:

(a) Re-write main so that it catches any exceptions it may now throw by
displaying a message on the screen indicating the exception thrown.

(b) At the moment, the “End of program” message may not always be executed.
Add an appropriate finally clause so that this message is always executed
at the end of the program.

(c) Add an additional catch clause in main to catch any unaccounted-for
exceptions (within this catch clause print out the stack trace of the exception).

(d) Create your own exception class InvalidPositionException (make
this an unchecked exception).

/** Reads the payment at the given position in the list
* @param positionIn The logical position of the payment in the list
 * @return Returns the payment at the given logical position in the list
* or null if no payment at that logical position
*/
public Payment getPayment(int positionIn)
{

//check for valid logical position
if (positionIn <1 || positionIn > getTotal())
{

// no object found at given position
return null;

}
else
{

// take one off logical position to get ArrayList position
return pList.get(positionIn - 1);

}
}

14.11 Self-test Questions 423

(e) Re-write the display method so that it throws the
InvalidPositionException.

(f) Re-write main to take account of this amended display method.

(g) Document these exceptions using appropriate Javadoc comments.

2. The Scanner class has methods nextInt and nextDouble for reading an
int and a double value from the keyboard respectively. Both of these
methods throw an exception if an appropriate numerical value is not entered.

(a) Write a tester program to find out the name of this exception.

(b) Develop a new version of the EasyScanner class, say EasyScan-
nerPlus, so that instead of throwing exceptions the methods nextInt and
nextDouble repeatedlydisplay anerrormessage and allow for data re-entry.

(c) Write a tester program to test out the methods of your EasyScan-
nerPlus class.

3. Look back at the time table application that you developed in programming
Exercise 8 of Chap. 8. Here is a reminder of the original design for the
TimeTable class:

As you can see several methods return boolean values. Some of these
boolean values were sent to indicate errors. Now modify this class to make
use of exceptions as follows:

(a) Develop a TimeTableException class (make this an unchecked
exception).

(b) Modify the TimeTable class so that the constructor, and the methods
makeBooking, and cancelBooking all throw a TimeTableExcep-
tion if an error occurs (this would mean that the methods makeBooking
and cancelBooking no longer need to return boolean values).

TimeTable

 -times: Booking[][]

+TimeTable(int, int)
+makeBooking(int, int, Booking) : boolean
+cancelBooking(int, int) : boolean
+isFree(int, int) : boolean
+getBooking(int, int) : Booking
+numberOfDays() : int
+numberOfPeriods() : int

424 14 Exceptions

(c) The getBooking method currently returns null if either the given day or
period number passed as parameters are invalid. Re-write this method to
return an Optional value instead.

(d) Modify the tester that you developed for the time table application to take
account of the exceptions and Optional value you incorporated in parts
(b) and (c) above.

4. Look back at the Hostel case study of Chaps. 11 and 12 and make use of
exceptions and Optional types where appropriate. Amend the Javadoc
documentation for this application to include information on any exceptions you
may have included.

14.12 Programming Exercises 425

15The Java Collections Framework

Outcomes:

By the end of this chapter you should be able to:

• use the ArrayList class to store a list of objects;
• use the HashSet class to store a set of objects;
• use the HashMap class to store objects in a map;
• use the enhanced for loop and a forEach loop to scan through a collection;
• use an Iterator object to scan through a collection;
• create objects of your own classes, and use them in conjunction with Java’s
collection classes;

• sort elements in a collection using the Comparable<T> and
Comparator<T> interfaces.

15.1 Introduction

An array is a very useful type in Java but it has its restrictions:

• once an array is created it must be sized, and this size is fixed;
• it contains no useful pre-defined methods.

Think back to the SomeUsefulArrayMethods program of Chap. 6. As this
program used an array to hold a collection of elements we had to put an upper limit
to the size of this collection. Sometimes, however, an upper limit is not known. Just
creating a very big array is very wasteful of memory—and what happens if even
this very big array proves to be too small? Another problem, as seen in our
SomeUsefulArrayMethods program, was that to carry out any interesting
processing (like searching the array) required us to write complex algorithms.

© Springer Nature Switzerland AG 2019
Q. Charatan and A. Kans, Java in Two Semesters, Texts in Computer Science,
https://doi.org/10.1007/978-3-319-99420-8_15

427

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99420-8_15&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99420-8_15&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99420-8_15&domain=pdf
https://doi.org/10.1007/978-3-319-99420-8_15

One solution to this problem might be to develop our own collection class that
hid the array from the user and contained the code to create a reasonable sized array
and, when the array is full, copy this array into a slightly bigger array and use this
new array and continue doing this every time the array gets full. This collection
class could also include a large group of useful methods to process the array (such
as searching and deleting). In order to make this collection class as useful as
possible we could incorporate generics (that we met in Chap. 13) to allow this
collection class to hold a collection of any type. This collection class could then be
used in place of an array to hold and process a collection of objects.

Luckily we do not need to go to such lengths; the Java developers have already
done this for us. They have developed a group of generic collection classes that
grow as more elements are added to them, and these classes provide lots of useful
methods. This group of collection classes are referred to as the Java Collections
Framework (JCF). These collection classes are organized around several collec-
tion interfaces that define different types of collections that we might be interested
in using. Three important interfaces from this group are:

• List;
• Set;
• Map.

The List and Set interfaces are themselves specialised types of the super
interface named Collection, and so share many common methods, whereas the
Map interface is distinct from Collection group of interfaces and so has several
methods that are unique to it.

As well as providing a wide group of collection interfaces, the Java Collections
Framework also contains many classes that implement these interfaces. In this
chapter we will focus on the three key interfaces named above (List, Set and
Map) and some of the classes provided in the JCF which implement these inter-
faces. To find out about all the interfaces and classes in the JCF you can refer to the
Oracle™ site.

15.2 The List Interface and the ArrayList Class

The List interface specifies the methods required to process an ordered list of
objects. Such a list may contain duplicates. Examples of a list of objects include
jobs waiting for a printer, emergency calls waiting for an ambulance and the names
of players that have won the Wimbledon tennis tournament over the last 10 years.
In each case ordering is important, and repetition may also be required. We often
think of such a collection as a sequence of objects.

428 15 The Java Collections Framework

There are two implementations provided for the List interface in the JCF. They
are ArrayList, and LinkedList. We have already introduced you to the
ArrayList in the Bank application in Chap. 8, that stored a collection of
BankAccount objects, so let’s take a closer look at the ArrayList class now.

15.2.1 Creating an ArrayList Collection Object

All classes in the JCF are in the java.util package, so to use the ArrayList
class we require the following import statement:

import java.util.ArrayList;

Like all the classes in JCF the ArrayList class is a generic collection class.
This means it can be used to store objects of any type.1 Let’s use an ArrayList to
store a queue of jobs waiting for a printer, and let us represent these jobs by a series
of Job ID Strings. The ArrayList constructor creates an empty list:

// creates an ArrayList object -'printQ'
ArrayList<String> printQ = new ArrayList<> ();

Notice the use of generics to set the type of objects stored in our list. In the case
of the printQ object, we want each element within this collection to be of type
String. As mentioned in Chap. 7, type inference means that we do not need to
include the String type in the angle brackets in the call to the constructor on the
right, as the type is inferred to be String in this case.

Of course, the generics mechanism can be used to fix any object type for the
elements within a collection. In Chap. 8, for example, we used an ArrayList to
store a collection of BankAccount objects in our Bank class. As another
example, if you wished create a list of Oblong objects you could do so as follows:

// this will make 'someOblongs' a list of Oblong objects
ArrayList<Oblong> someOblongs = new ArrayList<> ();

You should be aware that the type of any object created using this generics
mechanism is now the class name plus the contained type brackets. So, for example,
if we were to write a method that received a list of strings, we would specify it as
follows:

1As we mentioned in Chap. 7, generic collections cannot store primitive types like int and
double. If primitive types are required then objects of the appropriate wrapper class (Integer,
Double and so on) must be used. However, as discussed in Chap. 9, autoboxing and unboxing
automate the process of moving from a primitive type to its associated wrapper.

15.2 The List Interface and the ArrayList Class 429

// this method receives an ArrayList<String> object
public void someMethod (ArrayList<String> printQIn)
{

// some code here
}

15.2.2 The Interface Type Versus the Implementation Type

In order to create the object printQ, we have used the ArrayList class to
implement the List interface. What if, at some point, we decide to change to the
LinkedList implementation? Or some other implementation that might be
available in the future? If we did this, then all references to the type of this object
(such as in the method header of the previous section) would have to be modified to
give the new class name.

There is an alternative approach. It is actually considered better programming
practice to declare collection objects to be the type of the interface (List in this
case) rather than the type of the class that implements this collection. So this would
be a better way to create our printQ object:

// the type is given as 'List' not 'ArrayList'
List<String> printQ = new ArrayList<> ();

Notice that the interface type still needs to be marked as being a list of String
objects using the generics mechanism. A method that receives a printQ object
would now be declared as follows:

// this method receives a List<String> object
public void someMethod (List<String> printQIn)
{

// some code here
}

The advantage of this approach is that we can change our choice of imple-
mentation in the future (maybe by using LinkedList or some other class that
might be available that implements the List interface), without having to change
the type of the object (which will always remain as List). This is the approach that
we will take.

Remember, all classes in the JCF reside in the util package, so to use the
List interface in your code you now need to add an additional import statement
as follows:

import java.util.ArrayList;
import java.util.List;

Now, let us look at some List methods.

430 15 The Java Collections Framework

15.2.3 List Methods

The List interface defines two add methods for inserting into a list, one that
inserts the item at the end of the list and one that inserts the item at a specified
position in the list. Like arrays, ArrayList positions begin at zero. We wish to
use the add method that adds items to the end of the list as we are modelling a
queue here. This add method requires one parameter, the object to be added into
the list:

printQ.add("myLetter.doc");
printQ.add("myFoto.jpg");
printQ.add("results.xls");
printQ.add("chapter.doc");

Notice that, since we have marked this list as containing String objects only,
an attempt to add an object of any other type will result in a compiler error:

// will not compile as 'printQ' can hold Strings only!
printQ.add(new Oblong(10, 20));

All the Java collection types have a toString method defined, so we can
display the entire list to the screen:

System.out.println(printQ); // implicitly calling the toString method

When the list is displayed, the values in the list are separated by commas and
enclosed in square brackets. So this println instruction would display the fol-
lowing list:

[myLetter.doc, myFoto.jpg, results.xls, chapter.doc]

As you can see, the items in the list are kept in the order in which they were
inserted using the add method above.

As we said earlier, the add method is overloaded to allow an item to be inserted
into the list at a particular position. When the item is inserted into that position, the
item previously at that particular position and all items behind it shuffle along by
one place (that is they have their indices incremented by one). This add method
requires two parameters, the position into which the object should be inserted, and
the object itself. For example, let’s insert a high priority job at the start of the queue:

printQ.add(0, "importantMemo.doc"); // inserts into front of the queue

15.2 The List Interface and the ArrayList Class 431

Notice that the index is provided first, then the object. The index must be a valid
index within the current list or it may be the index of the back of the queue. An
invalid index throws an unchecked IndexOutOfBoundsException.

Displaying this list confirms that the given job (“importantMemo.doc”) has
been added to the front of the queue, and all other items shuffled by one place:

[importantMemo.doc, myLetter.doc, myFoto.jpg, results.
xls, chapter.doc]

If we wish to overwrite an item in the list, rather than insert a new item into the
list, we can use the set method. The set method requires two parameters, the
index of the item being overwritten and the new object to be inserted at that
position. Let us change the name of the last job from “chapter.doc” to
“newChapter.doc”. This is the fifth item in the list so its index is 4:

printQ.set(4, "newChapter.doc");

If the index used in the set method is invalid an IndexOutOf-
BoundsException is thrown once again. Displaying the new list now gives us
the following:

[importantMemo.doc, myLetter.doc, myFoto.jpg, results.
xls, newChapter.doc]

List provides a size method to return the number of items in the list, so we
could have renamed the last job in the queue in the following way also:

printQ.set(printQ.size()-1, "newChapter.doc"); // last position is size-1

The indexOf method returns the index of the first occurrence of a given object
within the list. It returns −1 if the object is not in the list. For example, the
following checks the index position of the job “myFoto.jpg” in the list:

int index = printQ.indexOf("myFoto.jpg"); // check index of job
if (index != -1) // check object is in list
{

System.out.println("myFoto.jpg is at index position: " + index);
}
else // when job is not in list
{

System.out.println("myFoto.jpg not in list");
}

432 15 The Java Collections Framework

This would display the following from our list:

myFoto.jpg is at index position: 2

Items can be removed either by specifying an index or an object. When an item
is removed, items behind this item shuffle to the left (i.e. they have their indices
decremented by one). As an example, let us remove the “myFoto.jpg” job. If we
used its index, the following is required:

printQ.remove(2);

Once again, an IndexOutOfBoundsException would be thrown if this
was not a valid index. This method returns the object that has been removed, which
could be checked if necessary. Displaying the list would confirm the item has
indeed been removed:

[importantMemo.doc, myLetter.doc, results.xls, newChapter.
doc]

Alternatively, we could have removed the item by referring to it directly rather
than by its index2:

printQ.remove("myFoto.jpg");

This method returns a boolean value to confirm that the item was in the list
initially, which again could be checked if necessary.

Behind the scenes you can guess how this remove method works. It looks in
the list for the given String object (“myFoto.jpg”). It uses the equals
method of the String class to identify a match. Once it finds such a match it
shuffles items along so there are no gaps in the list.

Of course, as we have already said, these collection classes can be used to store
objects of any type—not just Strings. For methods like remove to work
properly, the contained object must have a properly defined equals method. We
will return to this later in the chapter, when we look at how to use objects of our
own classes in conjunction with the classes in the JCF.

The get method allows a particular item to be retrieved from the list via its
index position. The following displays the job at the head of the queue:

// the first item is at position 0
System.out.println("First job is " + printQ.get(0));

2If there were more than one occurrence of the object, the first occurrence would be deleted.

15.2 The List Interface and the ArrayList Class 433

This would display the following:

First job is importantMemo.doc

The contains method can be used to check whether or not a particular item is
present in the list:

if (printQ.contains("poem.doc")) // check if value is in list
{

System.out.println("poem.doc is in the list");
}
else
{

System.out.println("poem.doc is not in the list");
}

Finally, the isEmpty method reports on whether or not the list contains any
items:

if (printQ.isEmpty()) // returns true when list is empty
{

System.out.println("Print queue is empty");
}
else
{

System.out.println("Print queue is not empty");
}

15.3 The Enhanced for Loop and Java Collections

In Chap. 6 we showed you how the enhanced for loop can be used to iterate
through an entire array. The use of this loop is not restricted to arrays, it can also be
used with the List (and Set) implementations provided in the JCF. For example,
here an enhanced for loop is used to iterate through the printQ list to find and
display those jobs that end with a “.doc” extension:

for (String item: printQ) // iterate through all items in the 'printQ'list
{

if(item.endsWith(".doc”)) // check extension of the job ID
{

System.out.println(item); // display this item
}

}

Notice that the type of each item in the printQ list is String. Within the loop
we use the String method endsWith to check if the given job ID ends with
String “.doc”. Assuming we had the following printQ:

[importantMemo.doc, myLetter.doc, results.xls, newChapter.
doc]

434 15 The Java Collections Framework

the enhanced for loop above would produce the following output:

importantMemo.doc
myLetter.doc
newChapter.doc

If we do not wish to iterate through the entire list, or if we wish to modify the
items within a list as we iterate through them, then (as we have said before) the
enhanced for loop should not be used.

For example, if we wished to display the items in the printQ that are behind
the head of the queue, the enhanced for loop is not appropriate as we are not
processing the entire printQ. Instead the following standard for loop could be
used:

// remember second item in list is at index 1!
for (int pos = 1; pos < printQ.size(); pos++)
{

System.out.println(printQ.get(pos)); // retrieve item in printQ
}

Notice how the size method is used to determine the last index in the loop
header. Within the loop, the get method is used to look up an item at the given
index.

Again, if we assume we have the following printQ:

[importantMemo.doc, myLetter.doc, results.xls, newChapter.
doc]

the for loop above would produce the following output:

myLetter.doc
results.xls
newChapter.doc

15.4 The forEach Loop

There is a very similar loop to the enhanced for loop known as the forEach
loop. The forEach loop makes use of the forEach method, which its to be
found in classes implementing the Collection interface (such as lists and sets).
The forEach method requires an implementation of a Consumer interface,
which can be provided via a lambda expression. Table 15.1 provides a reminder of
the Consumer interface that we discussed in Chap. 13.

15.3 The Enhanced for Loop and Java Collections 435

This implementation is then applied to each element in the underlying collection.
For example, lets revisit the code in Sect. 15.3 for searching through our printQ
list to display document names that end with “.doc”. This time we will use a lambda
expression and a forEach loop:

// using a forEach loop to iterate through a list
printQ.forEach(item ->

{
if(item.endsWith(".doc")) // check extension of the job ID
{

System.out.println(item); // display this item
}

});

As you can see, we use a forEach loop by calling the forEach method on
the list object printQ. The parameter to the lambda expression is a name we give
to one value from this collection, item in this case, and to the right of the lambda
arrow we define how we process this value (using the same code we used in
Sect. 15.3). The forEach loop will retrieve all the items within the collection to
be processed in this way. You should note that, as with the enhanced for loop, the
forEach loop should not be used to modify the underlying collection.

We will see further examples of the use of this forEach loop in this chapter.
However, the forEach loop is primarily designed to be used with streams, a
mechanism for processing Java collections that we will cover in Chap. 22.

15.5 The Set Interface and the HashSet Class

Like List, the Set interface is a specialised version of the general Collection
interface. The Set interface defines the methods required to process a collection of
objects in which there is no repetition, and ordering is unimportant. Let’s consider
the following collections and consider if they are suitable for a set:

• a queue of people waiting to see a doctor;
• a list of number-one records for each of the 52 weeks of a particular year;
• car registration numbers allocated parking permits.

The queue of people waiting to see a doctor cannot be considered to be a set as
ordering is important here. Order may also be important when recording the list of
number-one records in a year. It would also be necessary to allow for repetition—as
a record may be number-one for more than one week. So a set is not a good choice

Table 15.1 Reminder of the Consumer interface

Functional interface Abstract method name Parameter types Return type

Consumer<T> accept T void

436 15 The Java Collections Framework

for this collection. The collection of car registration numbers can be considered a
set, however, as there will be no duplicates and ordering is unimportant.

Java provides three implementations of this Set interface: HashSet, Tree-
Set and LinkedHashSet. Here we will look at the HashSet class. The con-
structor creates an empty set. We will use the set to store a collection of vehicle
registration numbers (as Strings):

// creates an empty set of String objects
Set<String> regNums = new HashSet<>();

Again, notice that we have used the generics mechanism to indicate that this is a
set of String objects, and we have given the type of this object as the interface
Set<String>. Now let us look at some Set methods.

15.5.1 Set Methods

Once a set is created the methods specified in the Set interface can be used. The
add method allows us to insert objects into the set, so let us add a few registration
numbers:

regNums.add("V53PLS");
regNums.add("X85ADZ");
regNums.add("L22SBG");
regNums.add("W79TRV");

We can display the entire set as follows:

System.out.println(regNums); // implicitly calling the toString method

The set is displayed in the same format as a list, in square brackets and separated
by commas:

[W79TRV, X85ADZ, V53PLS, L22SBG]

Notice that, unlike lists, the order in which the items are displayed is not
determined by the order in which the items were added. Instead, the set is displayed
in the order in which the items are stored internally (and over which we have no
control). This will not be a problem as ordering is unimportant in a set.

As with a list, the size method returns the number of items in the set:

System.out.println("Number of items in set: " + regNums.size());

15.5 The Set Interface and the HashSet Class 437

This would print the following onto the screen:

Number of items in set: 4

If we try to add an item that is already in the set, the set remains unchanged. Let
us assume the four items above have been added into the set and we now try and
add a registration number that is already in the set:

regNums.add("X85ADZ"); // this number is already in the set
System.out.println(regNums);

When this set is displayed, “X85ADZ” appears only once:

[W79TRV, X85ADZ, V53PLS, L22SBG]

The add method returns a boolean value to indicate whether or not the given
item was successfully added. This value can be checked if required.

boolean ok = regNums.add("X85ADZ"); // store boolean return value
if (!ok) //check if add method returned a value of false
{

System.out.println("item already in the set!");
}

The remove method deletes an item from the set if it is present. Again,
assuming that the four items given above are in the set, we can delete one item as
follows:

regNums.remove("X85ADZ");

If we now display the set, the given registration will have been removed:

[W79TRV, V53PLS, L22SBG]

As with the add method, the remove method returns a boolean value of
false if the given item to remove was not actually in the set. The Set interface
also includes contains and isEmpty methods that work in exactly the same
way as their List counterparts.

15.5.2 Iterating Through the Elements of a Set

Both the enhanced for loop and the forEach loop can be used to iterate through
all the elements of a set. Let us look at an example.

438 15 The Java Collections Framework

In the UK, the first letter of the registration number was at one time used to
determine the time period when the vehicle came to market. A registration
beginning with ‘S’, for example, denoted a vehicle that came to market between
August 1998 and February 1999, while a registration beginning with ‘T’ denoted a
vehicle that came to market between March 1999 and July 1999.

The following enhanced for loop will allow us to iterate through the collection
of registration numbers and display all registrations after ‘T’.

for (String item: regNums) // iterate through all items in 'regNums'
{

if (item.charAt(0) > 'T') // check first letter of registration

 {
System.out.println(item); // display this registration

 }
}

Here is the equivalent forEach loop:

regNums.forEach (item ->
{

if (item.charAt(0) > 'T') // check first letter of registration

 {
System.out.println(item); // display this registration

 }
});

Again, notice that the type of every element within our regNums set is
String. Within the loops we use the String method charAt to check the first
letter of registration. Assuming we have the following set of registration numbers:

[W79TRV, V53PLS, L22SBG]

the loops above would both produce the following result:

W79TRV
V53PLS

Let us consider a slightly different scenario now. Instead of simply displaying
registration numbers after ‘T’, we now wish to modify the original regNums set so
that registrations prior or equal to ‘T’ are removed. We could try using an enhanced
for loop again:

// this will compile but is not safe!
for (String item: regNums) // iterate through all items in 'regNums'
{

if (item.charAt(0) <= 'T') // check first letter of registration
{

regNums.remove(item); // remove this registration
}

}

15.5 The Set Interface and the HashSet Class 439

Here we are once again iterating over the elements of the regNums set. But this
time, within the loop, we are attempting to remove the given element from the set.
As we said, both the enhanced for loop and the forEach loop both should not be
used to modify or remove elements from the original collection. To do so would not
give a compiler error but may lead to run-time exceptions. If we cannot use these
loops here, how else can we iterate over the elements in a set? Unlike an array,
values in the set cannot be retrieved by an index value. Instead, to access the items
in a set, the iterator method can be used to obtain an iterator object.

15.5.3 Iterator Objects

An Iterator object allows the items in a collection to be retrieved by providing
three methods defined in the Iterator interface (see Table 15.2).

To obtain an Iterator object from the regNums set, the iterator method
could be called as follows:

// the 'iterator' method retrieves an Iterator object from a set
Iterator<String> elements = regNums.iterator();

Here we have called the iterator method and stored the item returned by this
method in a variable we have called elements. The generics mechanism has been
used here to indicate that the Iterator object will be used to iterate over
String objects only.

Table 15.2 Methods of the Iterator interface

Method Description Inputs Outputs

hasNext Returns true if there are
more elements in the
collection to retrieve and
false otherwise

None An item
of type
boolean

next Retrieves one element from
the collection

None An item
of the
given
element
type

remove Removes from the collection None None

forEachRemaining Performs the given action for
each remaining element until
all elements have been
processed or the action
throws an exception

An implementation
for the accept
method of the
Consumer
<T> interface

None

440 15 The Java Collections Framework

Once an Iterator object has been created, a while loop can be used to
iterate through the collection, with the hasNext method the test of the loop. The
body of the loop can then retrieve items with the next method and, if required,
delete items with the remove method. Let us see how this would work with the
regNums set.

/* an Iterator object can be used with a 'while' loop if we wish to iterate over a set and modify
its contents */

// first create an Iterator object as discussed before
Iterator<String> elements = regNums.iterator();
// repeatedly retrieve items as long as there are items to be retrieved
while (elements.hasNext())
{

String item = elements.next(); // retrieve next element from set
if (item.charAt(0) <= 'T') // check first letter of registration
{

elements.remove(); // call Iterator method to remove registration
 }
}

Within the loop we call the next method of our Iterator object to retrieve
the next item within the collection. Since we have specified the Iterator object
to retrieve String objects, we know that this method will return a String. We
have stored this String object in a variable we have called item:

// the String returned from the Iterator object is stored in a variable
String item = elements.next();

It is always a good idea to store the object returned by the next method in a
variable, as the next method should be called only once within the loop. Storing
the result in a variable allows us to refer to this object as many times as we like. In
this case we refer to the object only once, in the test of the if statement:

if (item.charAt(0)<= 'T') // check the first character in this String

If the registration number needs to be removed from the set, we may do so now
safely—by calling the remove method of our Iterator object:

elements.remove(); // call Iterator method to remove current item

The IteratorDemo class gathers this code into a complete program with a
few example registration numbers.

15.5 The Set Interface and the HashSet Class 441

IteratorDemo
import java.util.Set;
import java.util.HashSet;
import java.util.Iterator;

public class IteratorDemo
{

public static void main(String[] args)
{

Set<String> regNums = new HashSet<>();
regNums.add("V53PLS");
regNums.add("X85ADZ");
regNums.add("L22SBG");
regNums.add("W79TRV");
regNums.add("E16UEL");
System.out.println("items before removing: " + regNums);
11 etgcvg"cp"Kvgtcvqt"qdlgev
Iterator<String> elements = regNums.iterator();
11"tgrgcvgfn{"tgvtkgxg"kvgou"cu"nqpi"cu"vjgtg"ctg"kvgou"vq"dg"tgvtkgxgf"
while (elements.hasNext())
{

String item = elements.next(); 11"tgvtkgxg"pgzv"gngogpv"htqo"ugv
if (item.charAt(0) <= 'T') 11"ejgem"hktuv"ngvvgt"qh"tgikuvtcvkqp
{

elements.remove(); 11"ecnn"Kvgtcvqt"ogvjqf"vq"tgoqxg"tgikuvtcvkqp
}

}
System.out.println("items after removing: " + regNums);

}
}

The program produces the expected output demonstrating the removal of one of
the registration numbers that start with ‘T’ or earlier:

items before removing: [L22SBG, V53PLS, W79TRV, E16UEL,
X85ADZ]
items after removing: [V53PLS, W79TRV, X85ADZ]

An alternative approach we could have taken is to use the
forEachRemaining method from Table 15.2. This allows us to specify an
action to be carried out over the remaining items in an Iterator via a lambda
expression. As noted in Table 15.2, we provide an implementation for the Con-
sumer interface to code this action. The ForEachRemainingDemo program
rewrites the IteratorDemo program to illustrate the use of this method:

ForEachRemainingDemo
import java.util.HashSet;
import java.util.Iterator;
import java.util.Set;

public class ForEachRemainingDemo
{

public static void main(String[] args)
{

Set<String> regNums = new HashSet<>();
regNums.add("V53PLS");
regNums.add("X85ADZ");
regNums.add("L22SBG");
regNums.add("W79TRV");
regNums.add("E16UEL");
System.out.println("items before removing: " + regNums);
Iterator<String> elements = regNums.iterator();
11"vjg"ncodfc"gzrtguukqp"ku"crrnkgf"vq"gcej"tgockpkpi"kvgo"kp"vjg"eqnngevkqp
elements.forEachRemaining (item ->

{
if(item.charAt(0) <= 'T')
{

elements.remove();
}

});
System.out.println(regNums);

}
}

442 15 The Java Collections Framework

Effectively, behind the scenes, the forEachRemaining method repeatedly
calls the hasNext method on remaining items (in this case that is all items) and
applies the given lambda expression to an item retrieved by a next method. The
output will be the same as the output of the IteratorDemo before.

15.6 The Map Interface and the HashMap Class

The Map interface is not one of the interfaces that inherit from the general Col-
lections interface. The Map interface is separate from this group and defines the
methods required to process a collection consisting of pairs of objects. Rather than
looking up an item via an index value, the first object of the pair is used. The first
object in the pair is considered a key, and the second its associated value. Ordering
is unimportant in maps, and keys are unique.

It is often useful to think of a map as a look-up table, with the key object the item
used to look up (access) an associated value in the table. For example, the password
of users of a network can be looked up by entering their username. Table 15.3 gives
an example of such a look-up table.

We can look up the password of a user by looking up their user name in
Table 15.2. The password of lauraHaliwell, for example, is unicorn, whereas the
password of wendyHarris is bumble. Notice that it is important we make usernames
the key of the look-up table and not passwords. This is because usernames are
unique—no two users can have the same username. However, passwords are not
unique. Two or more users may have the same password. Indeed, in Table 15.2,
two users (lauraHaliwell and lucyLane) do have the same password (unicorn).

Let us implement this kind of look-up table using a Map. There are three
implementations provided for the Map interface: HashMap, TreeMap and
LinkedHashMap. Here we will look at the HashMap class.

The constructor creates the empty map:

Map<String, String> users = new HashMap<>();

Table 15.3 A look-up table for users of a network

Username Password

lauraHaliwell unicorn

wendyHarris bumble

bobbyMann elephant

lucyLane unicorn

kabirMohan magic

15.5 The Set Interface and the HashSet Class 443

As before the type of the collection is given as the interface: Map. Notice that to
use the generics mechanism to fix the types used in a Map object, we must provide
two types in the angle brackets. The first type will be the type of the key and the
second the type of its associated value. In this case, both are String objects, but in
general each may be of any object type.

15.6.1 Map Methods

To add a user’s name and password to this map we use the put method as follows.
The put method requires two parameters, the key object and the value object:

users.put("lauraHaliwell", "unicorn");

Note that the put method treats the first parameter as a key item and the second
parameter as its associated value. Really, we should be a bit more careful before we
add user IDs and passwords into this map—only user IDs that are not already taken
should be added. If we did not check this, we would end up overwriting a previous
user’s password. The containsKey method allows us to check this. This method
accepts an object and returns true if the object is a key in the map and false
otherwise:

if (users.containsKey("lauraHaliwell")) // check if ID taken
{

System.out.println("user ID already taken");
}
else // ok to use this ID
{

users.put("lauraHaliwell", "unicorn");
}

Notice we do not need to check that the password is unique as multiple users can
have the same password. If we did require unique passwords the con-
tainsValue method could be used in the same way we used the containsKey
method above.

Later a user might wish to change his or her password. The put method
overrides the value associated with a key if that key is already present in the
map. The following changes the password associated with “lauraHaliwell” to
“popcorn”:

users.put("lauraHaliwell", "popcorn");

The put method returns the value that was overwritten, or null if there was no
value before, and this can be checked if necessary.

444 15 The Java Collections Framework

Later, a user might be asked to enter his or her ID and password before being
able to access company resources. The get method can be used to check whether
or not the correct password has been entered. The get method accepts an object
and searches for that object among the keys of the map. If it is found, the associated
value object is returned. If it is not found the null value is returned:

System.out.print("enter user ID ");
String idIn = EasyScanner.nextString(); // requires EasyScanner class
System.out.print("enter password ");
String passwordIn = EasyScanner.nextString();// requires EasyScanner class
// retrieve the actual password for this user
String password = users.get(idIn);
// password will be 'null' if the user name was invalid
if (password != null)
{

if(passwordIn.equals(password))// check password is correct
 {

// allow access to company resources here
}
else // invalid password

 {
System.out.println ("INVALID PASSWORD!");

}
}
else // no such user
{

System.out.println ("INVALID USERNAME!");
}

As you can see, once the user has entered what they believe to be their username
and password, the actual password for the given user is retrieved using the get
method.

We know the password retrieved will be of type String as we created our Map
by specifying that both the keys and values of the Map object would be Strings.
We can then check whether this password equals the password entered by calling
the equals method of the String class:

if(passwordIn.equals(password))

We have to be careful when we use the equals method to compare two objects
in the way that we have done here. In this case, we are comparing the password
entered by the user with the password obtained by the get method. However, the
get method might have returned a null value instead of a password (if the key
entered was invalid). The equals method of the String class does not return
false when comparing a String with a null value, instead it throws a
NullPointerException. So, to avoid this exception, we must check the value
returned by the get method is not null before we use the equals method:

// check password returned is not 'null' before calling 'equals' method
if (password!= null)
{

if(passwordIn.equals(password))// now it is safe to call 'equals'
 {

// allow access to company resources
}
else

 {
System.out.println ("INVALID PASSWORD!")

}
}

15.6 The Map Interface and the HashMap Class 445

Note that the null value is always checked with primitive comparison opera-
tors (== for equality and != for inequality).

Like all the other Java collection classes, the HashMap class provides a
toString method so that the items in the map can be displayed:

System.out.print(users); // implicitly calls 'toString' method

Key and value pairs are displayed in braces. Let us assume we have added two
more users: “bobbyMann” and “wendyHarris”, with passwords “elephant” and
“bumble” respectively. Displaying the map would produce the following output:

{lauraHaliwell=popcorn, wendyHarris=bumble, bobbyMann=
elephant}

As with a set, the order in which the items are displayed is not determined by the
order in which they were added but upon how they have been stored internally.

As with the other collections, a map provides a remove method. In the case of
map, a key value is given to this method. If the key is present in the map both the
key and value pair are removed:

// this removes the given key and its associated value
users.remove("lauraHaliwell");

Displaying the map now shows the user’s ID and password have been removed:

{wendyHarris=bumble, bobbyMann=elephant}

The remove method returns the value of the object that has been removed, or
null if the key was not present. This value can be checked if necessary to confirm
that the given key was in the map.

Finally, the map collection provides size and isEmpty methods that behave
in exactly the same way as the size and isEmpty methods for sets and lists.

15.6.2 Iterating Through the Elements of a Map

In order to scan the items in the map, we can use any of the methods discussed so
far (the enhanced for loop, Iterators or the forEach loop).

An enhanced for loop cannot directly be used with a map as it is designed for
collections of single values such as arrays, lists and sets. A map, however, consists
of pairs of values. To use an enhanced for loop with a map we can extract the set
of keys, using the keySet method:

// the keySet method returns the keys of the map as a set object
Set<String> theKeys = users.keySet();

446 15 The Java Collections Framework

Again notice that we know this set of keys returned by the keySet method will
be a set of String objects, so we mark the type of this set accordingly.

An enhanced for loop can now be used to iterate through the keys of the map;
within the loop we can look up the associated password using the get method. For
example, we might wish to display the contents of the map in our own way, rather
than the format given to us by the toString method:

for(String username: theKeys)// iterate through the set of keys
{

String password = users.get(item); // retrieve password value
System.out.println(username + "\t" + password); // format output

}

This would display the map in the following table format:

lauraHaliwell popcorn
wendyHarris bumble
bobbyMann elephant

While the enhanced for loop is restricted to iterating over single values, the-
forEach loop can be used with pairs of values as well as a single value, as the
forEach method is overloaded to take a BiConsumer (see Table 15.4 for a
reminder) as well as a Consumer implementation.

Here is the forEach implementation for displaying items in our map:

// the forEach loop can take two parameters, representing the key and value item of a map pair
users.forEach((username, password) -> System.out.println(username + "\t" + password));

You can see that the two parameters given to this forEach method represent
the key and its associated value respectively. In this case the key is the username
and its associated value is a password.

15.7 Using Your Own Classes with Java’s Collection
Classes

In the examples above, we stuck to the pre-defined String type for the type of
objects used in the collection classes of Java. However, objects of any class can be
used inside these collections—including objects of your own classes. Care needs to
be taken, however, when using your own classes. As an example, let us consider an
application to store a collection of books that a person may own.

Table 15.4 Reminder of the BiConsumer interface

Functional interface Abstract method name Parameter types Return type

BiConsumer<T, U> accept T, U void

15.6 The Map Interface and the HashMap Class 447

15.7.1 The Book Class

Figure 15.1 gives the UML design for a Book class.
This class consists of an ISBN number, a title and an author. An ISBN number is

a unique International Standard Book Number that is allocated to each new book
title. Before we deal with a collection of books, here is the initial implementation of
the Book class.

The ini al Book class

public class Book

{

private String isbn;

private String title;

private String author;

public Book(String isbnIn, String titleIn, String authorIn)

{

isbn = isbnIn;

title = titleIn;

author = authorIn;

}

public String getISBN()

{

return isbn;

}

public String getTitle()

{

return title;

}

public String getAuthor()

{

return author;

}

}

Book

-isbn : String
-title : String
-author : String

+Book(String, String, String)
+getISBN() : String
+getTitle() : String
+getAuthor() : String

Fig. 15.1 Initial design of the Book class

448 15 The Java Collections Framework

There is nothing new here so let’s move on to see how objects of this class can
be stored in the Java collection classes. To begin with, let’s create a list to contain
Book objects:

// create empty list to contain Book objects
List<Book> books = new ArrayList<> ();

Note once again the use of the interface type, List, and generics to fix the
collection type to Book. Now let’s add some book objects and display the list:

// create two Book objects
Book b1 = new Book("9999999999", "Clowning Around", "Joe King");
Book b2 = new Book("2222222222", "Travel With Me", "Sandy Beach");
// add Book objects to list
books.add(b1);
books.add(b2);
System.out.println(books); // implicitly call toString method of List

As things stand this will display something like the following list on the screen:

[Book@15db9742, Book@6d06d69c]

This isn’t exactly what we require! When Java collections are displayed on the
screen by calling their toString method, each object in the collection is dis-
played by calling its own toString method. As we said explained in Chap. 9,
this will call the default toString method inherited from the Object class, and
all this does is display information on the memory address of the object.

If you wish to use objects of your own classes as types in the Java collection
classes, in Java’s toString method a meaningful toString method should be
defined in your class if you intend to make use of the toString method of the
collection class.

Here is one possible toString method we could provide for our Book class:

@Override
public String toString()
{

return "(" + isbn +", " + title + ", " + author + ")";
}

We create a single String by joining the ISBN, title and author Strings. To
improve the look of this String we have separated the attributes by commas and
have enclosed it in round brackets. Notice the @Override annotation here, as we
are overriding the toString method from the superclass (Object).

Now if we print out the list we get the following:

[(9999999999, Clowning Around, Joe King), (2222222222,
Travel With Me, Sandy Beach)]

While you might wish to improve this String representation of a book further
(maybe by adding more formatting), this is acceptable for testing purposes.

15.7 Using Your Own Classes with Java’s Collection Classes 449

15.7.2 Defining an equals Method

Another issue arises if we wish to use methods such as contains and remove.
Methods such as these call the equals method of the contained object to deter-
mine whether or not a given object is in the collection. The Book class does not
define its own equals method so again the inherited equals method of the
Object class is called. This method is inadequate as it simply compares the
memory address of two objects rather than the attributes of two objects. For
example, the following would display false on the screen when we would want it
to display true:

// check a book that is in the list
boolean check = books.contains(new Book("9999999999", "Clowning Around", "Joe King"));
// display result
System.out.println(check);

Here, while the Book parameter has the same attribute data as one of the books
in the list, it is a new Book object stored in a different memory location and so the
contains method will return false.

To use objects of your own classes effectively, a meaningful equals method
should be defined. One possible interpretation of two books being equal is simply
that their ISBNs are equal, so the following equals method could be added to the
Book class:

@Override
public boolean equals (Object objIn) // equals method must have this header
{

Book bookIn = (Book) objIn; // type cast to a Book
// check isbn
return isbn.equals(bookIn.isbn);

}

Again, we have added an @Override annotation. Notice that the equals
method must accept an item of type Object. The body of the method then needs
to type cast this item back to the required type (Book in this case).

If you are using lists, these are the only two additional methods you need to
provide in your class. Also, if you are using objects of your own classes only as
values of a map, then again these are the only two additional methods you need to
provide. If, however, you are using objects of your classes as keys of a map or as
the items of a set, then you need to include an additional method in your classes:
hashCode.

15.7.3 Defining a hashCode Method

To understand how to define your own hashCode method you need to understand
how the HashSet and HashMap implementations work. Both of these Java
classes have been implemented using an array. Unlike the ArrayList class

450 15 The Java Collections Framework

however (which has also been implemented using an array), the position of the
items in the HashSet and HashMap arrays is not determined by the order in
which they were added. Instead, the position into which items are added into these
arrays is determined by their hashCode method.

ThehashCodemethod returns an integer value from an object. This integer value
determines where in the array the given object is stored. Objects that are equal (as
determined by the equals method) should produce identical hashCode numbers
and, ideally, objects that are not equal should return different hashCode numbers.

The reason for using hashCode numbers is that they considerably reduce the
time it takes to search a given array for a given item. If items were stored con-
secutively, then a search of the array would require every item in the array being
checked using the equals method, until a match was found. This would become
very inefficient when the collection becomes very large. So, instead, the HashSet
and HashMap classes make use of the hashCode method, so that when a search is
required for an item, say x, that hashCode number is computed and this value is
used to look up other items in the array. Then, only objects with the same
hashCode number are compared to x using their equals method.

If you are using objects of your own classes, and you have not provided a
hashCode method, the inherited hashCode method from the Object class is
called. This does not behave in the way we would wish. It generates the hashCode
number from the memory address of the object, so two “equal” objects could have
different hashCode values. The TestHashCode program demonstrates this.

TestHashCode
public class TestHashCode
{

public static void main (String[] args)
{

// create two "equal" books
Book b1 = new Book("9999999999", "Clowning Around", "Joe King");
Book b2 = new Book("9999999999", "Clowning Around", "Joe King");
// check their hashCode numbers
System.out.println(b1.hashCode());
System.out.println(b2.hashCode());

}
}

When we run this program it produces the following hashCode numbers for
the two “equal” books:

1044036744
1826771953

As you can see, the hashCode numbers do not match—even though the objects
are “equal”. This means that if we were searching for the given book in a HashSet
or in the keys of a HashMap, the book would not be found, as only objects with
identical hashCode values are checked. Also, we cannot ensure that objects in the
HashSet or the keys of the HashMap will be unique, as two (or more) identical
books (with different hashCode values) would both be stored in the underlying
array at different array positions.

15.7 Using Your Own Classes with Java’s Collection Classes 451

We need to define our own hashCode method for the Book class so that
objects of this class can be used effectively with the HashSet and HashMap
classes.

Luckily, all of Java’s predefined classes (such as String) have a meaningful
hashCode method defined. These hashCode methods return equal hashCode
numbers for “equal” objects.

So one way of defining the hashCode number for an object of your class
would be to add together the hashCode numbers generated by all the attributes to
determine object equality. For Book equality we checked the ISBN only.
This ISBN is a String, so all we need to do is to return the hashCode number of
this String:

@Override
// this is a suitable hashCode method for our Book class
public int hashCode()
{

// derive hash code by returning hash code of ISBN string
return isbn.hashCode();

}

If you have more than one attribute that plays a role in determining object
equality, then add each such hashCode numbers (assuming the attribute is not of
primitive type) to determine your hashCode number.

If primitive attributes also play a part in object equality, they too can simply be
added into your hashCode formula by generating an integer value from each
primitive attribute. Here is a simple set of guidelines for generating an integer value
from the primitive types (although much more sophisticated algorithms exist than
these!):

• byte, short, int, long: leave as they are;
• float, double: type cast to an integer;
• char: use its Unicode value;
• boolean: use an if…e1se statement to allocate 1 if the attribute is true and
0 if it is false.

15.7.4 The Updated Book Class

The complete code for the updated Book class is now presented below with
toString, equals and hashCode methods included:

452 15 The Java Collections Framework

The updated Book class

public class Book

{

private String isbn;

private String title;

private String author;

public Book(String isbnIn, String titleIn, String authorIn)

{

isbn = isbnIn;

title = titleIn;

author = authorIn;

}

public String getISBN()

{

return isbn;

}

public String getTitle()

{

return title;

}

public String getAuthor()

{

return author;

}

BQxgttkfg

public String toString()

{

return "(" + isbn +", " + title + ", " + author + ")";

}

BQxgttkfg

public boolean equals (Object objIn)

{

Book bookIn = (Book) objIn; 11"v{rg"ecuv"vq"c"Dqqm

// check isbn

return isbn.equals(bookIn.isbn);

}

BQxgttkfg

public int hashCode()

{

11"fgtkxg"jcuj"eqfg"d{"tgvwtpkpi"jcuj"eqfg"qh"KUDP"uvtkpi"

return isbn.hashCode();

}

}

15.8 Developing a Collection Class for Book Objects

In the previous sectionwe amended theBook class by supplying it with atoString
method, an equals method and a hashCode method. If you look at the docu-
mentation of any class in the Java API you will see that it also possesses these three
methods. When developing classes professionally you should always include these
methods. That way, objects of these classes can be used with any collection type.

Now we have a suitable Book class we can store objects of this class in one of
the Java collection classes. Which collection shall we use? There is no ordering
required on the collection of books so we do not really need a list here. We could
store these books in a set, but since each book has a unique ISBN it makes more

15.8 Developing a Collection Class for Book Objects 453

sense to use a map and have ISBNs as the keys to the map, with Book objects
themselves as the values of the map.

We will use this collection to help us develop our own class, Library, which
keeps track of the books that a person may own. Figure 15.2 gives its UML design.

Notice that the keys of the map are specified to be String objects (to represent
ISBNs), and the values of the map are specified as Book objects.

Here is the implementation of the Library class. Take a look at it and then we
will discuss it.

Library

import java.util.Map;

import java.util.HashMap;

import java.util.Set;

import java.util.HashSet;

public class Library

{

Map <String, Book> books; 11"fgenctg"ocr"eqnngevkqp

11"etgcvg"gorv{"ocr"

public Library()

{

books = new HashMap<> ();

 }

11"cff"vjg"ikxgp"dqqm"kpvq"vjg"eqnngevkqp"

public boolean addBook(Book bookIn)

 {

String keyIn = bookIn.getISBN(); 11"kudp"yknn"dg"mg{"qh"ocr"

if (books.containsKey(keyIn)) 11"ejgem"kh"kudp"cntgcf{"kp"wug

{

return false; 11"kpfkecvg"gttqt

}

else 11"qm"vq"cff"vjku"dqqm

{

books.put(keyIn, bookIn); 11"cff"mg{"cpf"dqqm"rckt"kpvq"ocr"

return true;

}

 }

11"tgoqxg"vjg"dqqm"ykvj"vjg"ikxgp"kudp"

public boolean removeBook(String isbnIn)

{

if (books.remove(isbnIn)!= null) 11"ejgem"kh"kvgo"ycu"tgoqxgf"

{

return true;

}

else 11"yjgp"kvgo"ku"pqv"tgoqxgf

{

return false;

}
 }

11"tgvwtp"vjg"pwodgt"qh"dqqmu"kp"vjg"eqnngevkqp
public int getTotalNumberOfBooks()

 {
return books.size();

 }

11"tgvwtp"vjg"dqqm"ykvj"vjg"ikxgp"kudp"qt"pwnn"kh"pq"uwej"dqqm
public Book getBook (String isbnIn)

 {
return books.get(isbnIn);

 }

11"tgvwtp"vjg"ugv"qh"dqqmu"kp"vjg"eqnngevkqp
public Set<Book> getAllBooks ()

 {
Set<Book> bookSet = new HashSet<>(); 11"vq"uvqtg"vjg"ugv"qh"dqqmu
books.forEach((key,book) -> bookSet.add(book)); 11"wug"hqtGcej"nqqr"vq"cff"dqqmu
return bookSet; 11"tgvwtp"vjg"ugv"qh"dqqmu

 }
}

454 15 The Java Collections Framework

Most of this class should be self-explanatory. Just consider how complicated
some of these methods would have been if we had used an array instead of a map!

We just draw your attention to the getAllBooks method. The UML diagram
indicates that this method should return a set of books. An alternative approach
could have been to return the map itself, but it would be more useful for this method
to return a set of objects, as a set is easier to scan than a map. It is fine to use a set as
there is no repetition of books.

public Set<Book> getAllBooks ()
{
// code to create this set goes here

}

There is no map method that returns the set of values in the map directly,3 so a
suitable set needs to be created in this method. We begin by creating an empty set:

Set<Book> bookSet = new HashSet<>();

This set is empty initially and we must fill it with book objects. In order to access
these values we use a forEach loop and simply add the values of the map into this
set.

Finally, we return this set of books:

return bookSet;

That completes our discussion of the Library class. We leave the task of
creating a tester for this class to the end of chapter exercises.

Library

-books : Map<String, Book>

+Library ()
+addBook (Book) : boolean
+removeBook (String) : boolean
+getTotalNumberOfBooks() : int
+getBook (String) : Book
+getAllBooks() : Set<Book>

Fig. 15.2 UML design for the Library class

books.forEach((key,book) -> bookSet.add(book)); // use forEach loop to add books

3There are several approaches to indirectly create a set of values in a map. Here we look at just one
approach.

15.8 Developing a Collection Class for Book Objects 455

15.9 Sorting Objects in a Collection

We have seen how we can use implementations of the List interface (such as
ArrayList) to create an ordered collection in our programs. Previously we have
seen how arrays can also be used to store an ordered collection. There may be times
when you wish to sort these collections so they are presented in a different order.
For example, you may have an ordered collection of students and wish to re-order
these students based on their student ID, or their final mark.

15.9.1 The Collections.sort and Arrays.sort Methods

Sorting a collection can involve complex algorithms. Luckily Java provides two
classes that contain class methods to sort your ordered collections. The Col-
lections class and the Arrays class both have a number of utility methods for
processing collections in the JCF and arrays respectively. In particular, both classes
contain a sort method to sort a given list or array. Both classes are in the java.
util package. The StringSortDemo program below demonstrates how to use
these methods with an ordered collection of String objects. It introduces a few
new additional concepts. Take a look at it and then we will discuss it:

StringSortDemo
import java.util.Collections;

import java.util.Arrays;

import java.util.List;

public class StringSortDemo

{

public static void main(String[] args)

{

11"etgcvg"cttc{ qh"uvtkpiu

String[] citysArray = {"London", "Birmingham", "Manchester", "Liverpool"};

11"fkurnc{"cttc{"wukpi"Cttc{u0vqUvtkpi

System.out.println("Original Array " + Arrays.toString(citysArray));

11"eqpxgtv"cttc{"vq"Nkuv"wukpi"Cttc{u0cuNkuv

List<String> citysList = Arrays.asList(citysArray);

11"fkurnc{"Nkuv

System.out.println("Original List " + citysList);

11"uqtv"cttc{"

Arrays.sort(citysArray);

11"fkurnc{"cttc{"

System.out.println("Sorted Array " + Arrays.toString(citysArray));

11"uqtv"Nkuv

Collections.sort(citysList);

11"fkurnc{"Nkuv"

System.out.println("Sorted List " + citysList);

}

}

First you can see we have gone back to using an array type to store a collection
String objects:

// create array of strings
String[] citysArray = {"London", "Birmingham", "Manchester", "Liverpool"};

456 15 The Java Collections Framework

The Arrays utility class has a toString class method that allows us to
convert an array into a String which may then be displayed on the screen:

// display array using toString
System.out.println("Original Array " + Arrays.toString(citysArray));

Next we use the asList method of Arrays that returns an equivalent List
object containing the same items in the collection, in the same order—we store this
in a new List object, which we then display:

// convert array to List using asList
List<String> citysList = Arrays.asList(citysArray);
// display List
System.out.println("Original List " + citysList);

Now the really useful sort methods that re-order the given collection of strings
so they are sorted in ascending alphabetical order:

// sort array
Arrays.sort(citysArray);
// display array using toString
System.out.println("Sorted Array " + Arrays.toString(citysArray));
// sort List
Collections.sort(citysList);
// display List using toString
System.out.println("Sorted List " + citysList);

You can see that in order to sort an array we use the Arrays.sort method and
to sort a List we use the Collections.sort method. Here is the output from
this program:

Original Array [London, Birmingham, Manchester, Liverpool]
Original List [London, Birmingham, Manchester, Liverpool]
Sorted Array [Birmingham, Liverpool, London, Manchester]
Sorted List [Birmingham, Liverpool, London, Manchester]

As expected the sort methods re-order the items in the collection so that they
are now in ascending lexicographical order. Note that the Arrays.toString
method returns a String representation of the array in the same format as a List
(i.e. with items separated by commas and enclosed in square brackets).

For these sort methods to work the contained object needs to be derived from a
class that implements the generic Comparable<T> interface.

15.9 Sorting Objects in a Collection 457

15.9.2 The Comparable<T> Interface

The generic Comparable<T> interface consist of a single compareTo method
that accepts an object of type T and returns an integer (see Table 15.5).

A compareTo method should return a positive integer when the first object is
greater than the second, a negative integer when it is less than the second and zero
when the two objects are equal. As we saw in Chap. 7, the String class does have
such a method defined and so implements the Comparable<T> interface.

But what happens if we try to sort a collection of objects that do not have a
compareTo method defined? Well, the Collections.sort method would
result in a compiler error, whereas the Arrays.sort method would not give a
compiler error but would throw an exception at runtime.

To sort ordered collections of objects derived from classes that you have defined
you will need to ensure their associated class implements the Comparable<T>
interface.

As an example, let’s return to our Book class. We would be unable to use the
sort methods we have met to sort lists or arrays of Book objects as the Book
class does not implement the Comparable<T> interface. To implement this
interface we need to define a suitable compareTo method. One way of comparing
two Book objects might be just to compare their ISBN numbers. Since ISBN
numbers have been stored as Strings, we just need to use the compareTo
method of String and use that result as our Book compareTo result. Here is the
code:

A sortable Book class
11"vjku"encuu"ecp"dg"wugf"kp"eqplwpevkqp"ykvj"Eqnngevkqpu0uqtv"cpf"Cttc{u0uqtv

public class Book implements Comparable <Book> 11"pqvkeg"igpgtke"v{rg hkzgf"vq"Dqqm
{

11cvvtkdwvgu"cpf"ogvjqfu"cu"dghqtg

11"cff"c"eqorctgVq"ogvjqf"

BQxgttkfg
public int compareTo(Book bIn)
{

return isbn.compareTo(bIn.isbn); 11"eqorctg"KUDP"pwodgtu
}

}

Notice how we use the generics mechanism to indicate the type of object the
Comparable interface will be fixed to. In this case it is set to Book as we wish to
compare two books.

Table 15.5 The Comparable<T> interface

Functional interface Abstract method name Parameter types Return type

Comparable<T> compareTo T int

458 15 The Java Collections Framework

The BookSortDemo1 program below makes use our updated Book class to
sort a list of Book objects.

BookSortDemo1
import java.util.Collections;
import java.util.List;
import java.util.ArrayList;

public class BookSortDemo1
{

public static void main(String[] args)
{

11"etgcvg"vjtgg"Dqqm"qdlgevu
Book b1 = new Book("9999999999", "Clowning Around", "Joe King");
Book b2 = new Book("2222222222", "Travel With Me", "Sandy Beach");
Book b3 = new Book("4444444444", "Interior Design", "Anita Room");
11"etgcvg"cp"gorv{"nkuv"qh"dqqmu
List<Book> bookList = new ArrayList<>();
11"cff"vjg"vjtgg"Dqqm"qlgevu
bookList.add(b1);
bookList.add(b2);
bookList.add(b3);
11"fkurnc{"nkuv"dghqtg"cpf"chvgt"uqtvkpi
System.out.println("***COMPARABLE DEMO***");
System.out.println("\nBefore Sort\n"+bookList);
Collections.sort(bookList); 11"wugu"vjg"Dqqm"eqorctgVq"ogvjqf
System.out.println("\nAfter sort\n"+ bookList);

}
}

Here is the output from this program:

COMPARABLE DEMO

Before Sort
[(9999999999, Clowning Around, Joe King), (2222222222,
Travel With Me, Sandy Beach), (4444444444, Interior Design,
Anita Room)]

After sort
[(2222222222, Travel With Me, Sandy Beach), (4444444444,
Interior Design, Anita Room), (9999999999, Clowning Around,
Joe King)]

As you can see the Book objects have been sorted on ISBN numbers.

15.9.3 The Comparator<T> Interface

The previous section demonstrated one technique for comparing objects for sorting
purposes; implement the Comparable<T> interface. This technique is fine if we
always wish to use the same criteria for sorting objects; in our case if we always
wish to sort Book objects by their ISBN number.

But what if you wish to sort your collection by some other criteria, or multiple
criteria? For example, we may wish to sort our list of Book objects via their title, at
other times we might wish to sort via the author name. The Comparable<T>

15.9 Sorting Objects in a Collection 459

interface only allows us to define a single criteria for sorting purposes. But since
Java 8 a more flexible way of doing this with the Comparator<T> interface has
been introduced.

The Comparator<T> interface requires us to provide an implementation for a
compare method (see Table 15.6).

The compare method accepts two objects of a given type and (as with the
compareTo method) returns a positive integer indicating the first object is greater,
or a negative integer if the first object is less than the second object, or zero if both
objects are equal.

The List interface contains a default method4 called sort that takes a
single parameter of type Comparator. Since this is a default method of List
it is available to ArrayList objects. BookSortDemo2 makes use of this sort
method to sort the books based on author names. Take a look at it and then we will
discuss it.

BookSortDemo2
import java.util.List;
import java.util.ArrayList;

public class BookSortDemo2
{

public static void main(String[] args)
{

11"etgcvg"vjtgg"Dqqm"qdlgevu
Book b1 = new Book("9999999999", "Clowning Around", "Joe King");
Book b2 = new Book("2222222222", "Travel With Me", "Sandy Beach");
Book b3 = new Book("4444444444", "Interior Design", "Anita Room");
11"etgcvg"cp"gorv{"nkuv"qh"dqqmu
List<Book> bookList = new ArrayList<>();
11"cff"vjg"vjtgg"Dqqm"qlgevu
bookList.add(b1);
bookList.add(b2);
bookList.add(b3);
11"fkurnc{"nkuv"dghqtg"cpf"chvgt"uqtvkpi
System.out.println("***COMPARATOR DEMO***");
System.out.println("\nBefore Sort\n"+bookList);
11 uqtv"nkuv"wukpi"uqtv"ogvjqf"qh"Nkuv cpf"c"Eqorctcvqt"korngogpvcvkqp"wukpi"ncodfc
dqqmNkuv0uqtv*(book1,book2) -> {return book1.getAuthor().compareTo(book2.getAuthor());});
System.out.println("\nAfter Author sort\n"+ bookList);

 }
}

The key instruction here is call to bookList.sort(). You can see that this
accepts an implementation of a compare method. The compare method takes
two parameters representing two books that need to be compared. The given

Table 15.6 The Comparator interface

Functional interface Abstract method name Parameter types Return type

Comparator<T> compare T, T int

4Remember from Chap. 13, default methods were added in Java 8 and are fully implemented
methods within an interface.

460 15 The Java Collections Framework

lambda expression uses the author field of the two Book objects in order to
compare them (using the compareTo method of String):

// note the lambda expression to provide a Comparator implementation
bookList.sort((book1,book2) -> {return book1.getAuthor().compareTo(book2.getAuthor());});

When we run this program we get the expected output:

COMPARATOR DEMO

Before Sort
[(9999999999, Clowning Around, Joe King), (2222222222,
Travel With Me, Sandy Beach), (4444444444, Interior Design,
Anita Room)]

After Author sort
[(4444444444, Interior Design, Anita Room), (9999999999,
Clowning Around, Joe King), (2222222222, Travel With Me,
Sandy Beach)]

If we wished to use another attribute for comparison, such as the title, we could
replace the call to getAuthor with a call to getTitle (for example). In each
case we could use the compareTo method to compare the appropriate attribute
which acts as the key to our sort.

This pattern of picking a sort key (ISBN, author, title etc.) and then comparing
two keys using compareTo is a very common approach to implementing a
Comparator and a static comparing method of Comparator is provided
in order to simplify this task. As mentioned in Chap. 13, since Java 8 interfaces can
contain static methods.

The comparing method is provided with an appropriate sort key via a suitable
method (getAuthor for the author key, getTitle for the title key and so on).
Behind the scenes the comparing method then compares two keys for us using
their compareTo method. The appropriate key can be sent to the comparing
method via the method reference (double colon) notation we discussed in Chap. 13.
BookSortDemo3 illustrates how we can sort via all three attribute keys of a book
(ISBN, author and title) using this technique:

15.9 Sorting Objects in a Collection 461

BookSortDemo3

import java.util.List;
import java.util.ArrayList;
import java.util.Comparator;

public class BookSortDemo3
{

public static void main(String[] args)
{

// create three Book objects
Book b1 = new Book("9999999999", "Clowning Around", "Joe King");
Book b2 = new Book("2222222222", "Travel With Me", "Sandy Beach");
Book b3 = new Book("4444444444", "Interior Design", "Anita Room");
// create an empty list of books
List<Book> bookList = new ArrayList<>();
// add the three Book ojects
bookList.add(b1);
bookList.add(b2);
bookList.add(b3);
// display list before and after sorting
System.out.println("***COMPARATOR DEMO***");
System.out.println("\nBefore Sort\n"+bookList);

// sort list using getISBN method reference
bookList.sort(Comparator.comparing(Book::getISBN));
System.out.println("\nAfter ISBN sort\n"+ bookList);
// sort list using getAuthor method reference
bookList.sort(Comparator.comparing(Book::getAuthor));
System.out.println("\nAfter Author sort\n"+ bookList);
// sort list using the getTitle method reference
bookList.sort(Comparator.comparing(Book::getTitle));
System.out.println("\nAfter Title sort\n"+ bookList);

}
}

Here is the expected output:

COMPARATOR DEMO

Before Sort
[(9999999999, Clowning Around, Joe King), (2222222222,
Travel With Me, Sandy Beach), (4444444444, Interior Design,
Anita Room)]

After ISBN sort
[(2222222222, Travel With Me, Sandy Beach), (4444444444,
Interior Design, Anita Room), (9999999999, Clowning Around,
Joe King)]

After Author sort
[(4444444444, Interior Design, Anita Room), (9999999999,
Clowning Around, Joe King), (2222222222, Travel With Me,
Sandy Beach)]

After Title sort
[(9999999999, Clowning Around, Joe King), (4444444444,
Interior Design, Anita Room), (2222222222, Travel With Me,
Sandy Beach)]

462 15 The Java Collections Framework

The comparing method will work on numeric attributes too (such as dou-
bles, ints and longs) via the compareTo method provided in the equivalent
wrapper classes. However, to reduce the overhead of boxing and unboxing prim-
itive values you can use specific comparing methods for these types (com-
paringDouble, comparingInt, comparingLong etc.). You will see an
example of this in Chap. 22.

It is worth pointing out that you can always revert to the natural ordering key
defined in your own compareTo method by using the static naturalOrder
method of Comparator.

We used ISBNs as our built-in comparison key when writing the compareTo
method of Book, so instead of the following line from BookDemo4:

bookList.sort(Comparator.comparing(Book::getISBN));

we could have used the naturalOrder method instead as follows:

bookList.sort(Comparator.naturalOrder());

Note that if the underlying list contains strings or numeric values only, nat-
uralOrder will sort the given list in alphabetical or numerical order respectively.

To find out more about the Collections.sort, Arrays.sort and the
sort method of List, as well as more about the Comparable<T> and Com-
parator<T> interfaces, you can refer to the Oracle™ site.

15.10 Self-test Questions

1. Distinguish between the following types of collection in the Java Collections
Framework:

• List;
• Set;
• Map.

2. Identify, with reasons, the most appropriate Java collection type to implement
the following collections:

(a) An ordered collection of patient names waiting for a doctor;
(b) An unordered collection of patient names registered to a doctor;
(c) An unordered collection of BankAccount objects.

15.9 Sorting Objects in a Collection 463

3. Consider the following instruction:

Map <String, Student> javaStudents = new HashMap<>();

(a) Why is the type of this object given as Map and not HashMap?
(b) Assuming the object javaStudents has been created as above, why

would the following line cause a compiler error?

javaStudents.put("u0012345", "Jeet");

4. Consider again the StockItem class from the programming exercises of
Chap. 8. Here is the UML diagram:

StockItem

-stockNumber : String
-name : String
-price : double
-totalStock : int

+StockItem(String, String, double)
+setPrice(double)
+increaseTotalStock(int)
+getStockNumber() : String
+getName() : String
+getTotalStock() : int
+getPrice() : double
+calculateTotalPrice() : double

(a) Identify the purpose of a toString method and define an appropriate
toString method for this class.

(b) Identify the purpose of an equals method and define an appropriate
equals method for this class.

(c) Identify the purpose of a hashCode method and define an appropriate
hashCode method for this class.

5. In Sect. 15.5 a set called regNums was created to store a collection of car
registration numbers.

(a) Write a fragment of code that makes use of an enhanced for loop to display
all registrations ending in ‘S’.

(b) Write a fragment of code that makes use of a forEach loop to display all
registrations ending in ‘S’.

(c) Write a fragment of code, which makes use of the iterator method, to
remove all registration numbers ending in ‘S’.

464 15 The Java Collections Framework

6. In Chap. 8 we introduced a BankAccount class and a collection class to hold
bank accounts called Bank. The Bank class was implemented using a List in
the form of an ArrayList class.

(a) If we were to change from a List to a Map, what would be the key type of
the Map and what would be the value type?

(b) Write a fragment of code that declares a Map to hold BankAccount
objects and add two BankAccount objects into this map.

(c) Write a fragment of code that uses a forEach loop to display all
BankAccount objects in the map that have a balance over 100.

7. Consider the BankAccount class from Chaps. 7 and 8 once again. Assume we
have the following array to store a collection of BankAccount objects:

BankAccount[] accountList = new BankAccount[5];

Now assume five BankAccount objects have been added into this list.

(a) What method of the Arrays class would allow you to display this array?
(b) What method of the Arrays class would you allow you to create an

equivalent List from this array?
(c) Assuming the array has been converted to a list, describe how the Com-

parable<T> and Comparator<T> interfaces can be used to help sort
the list, via the account number, by making use of the Collections.-
sort method and the sort method of List.

15.11 Programming Exercises

1. Copy, from the accompanying website, the Book and Library classes and
then implement a tester for the Library class.

2. Make the changes to the StockItem class you considered in self-test question
4 above, then:

(a) Write a tester that adds five StockItem objects into a set.
(b) Modify the tester so that the set is displayed using the toString method

of Set.
(c) Use the contains method of Set method to search for one of the stock

items.

15.10 Self-test Questions 465

3. Copy, from the accompanying website, the Book and BookSortDemo2
classes and then:

(a) Rewrite the compareTo method (that implements the Compara-
ble<Book> interface) in the Book class so the length of the title is used to
compare two books. Run the BookSortDemo4 program to test this.

(b) Modify the BookSortDemo4 program to sort the list of books based on
length of title by using both the comparing method and natu-
ralOrdering methods of Comparator.

4. Write a tester program to test your answers to self-test question 7 above.

5. In this chapter we looked at an example of a printer queue. A queue is a
collection where the first item added into the queue is the first item removed
from the queue. Consequently, a queue is often referred to as a first in first out
(FIFO) collection.

A stack, on the other hand, is a last in first out (LIFO) collection—much like a
stack of plates, where the last plate added to the stack is the first plate removed
from the stack. The method to add an item onto a stack is often called push. The
method to remove an item from a stack is often called pop.

Below, we give the UML design for a NameStack class, which stores a stack
of names.

NameStack

-stack : List<String>

+NameStack()
+push(String)
+pop() : String
+size() : int
+isEmpty() : boolean
+toString() : String

A description of each NameStack method is given below:

+NameStack()
Initializes the stack of names to be empty.

+push(String)
Adds the given name onto the top of the stack.

+pop() : String
Removes and returns the name at the top of the stack. Throws a NameS-
tackException (which will also need to be implemented) if an attempt is
made to pop an item from an empty stack.

466 15 The Java Collections Framework

+size() : int
Returns the number of names in the stack.

+isEmpty() : boolean
Returns true if the stack is empty and false otherwise.

+toString() : String

Returns a String representation of the stack of names.

(a) Implement the NameStack class. You will also need to implement a
NameStackException class.

(b) Test the NameStack class with a suitable tester.

6. Consider an application that keeps track of the registration numbers of all cars
that have a permit to use a company car park. It also keeps track of the regis-
tration numbers of the cars actually in the car park at any one time. While there
is no limit to the number of cars that can have permits to park in the car park, the
capacity of the car park is limited. Below we give the UML design for the
CarRegister class:

CarRegister

-permit : Set<String>
-parked : Set<String>
-capacity : int

+CarRegister(int)
+givePermit (String) : boolean
+recordParking(String) : boolean
+recordExit (String) : boolean
+isParked(String) : boolean
+isFull() : boolean
+numberParked() : int
+getPermit() : Set<String>
+getParked() : Set<String>
+getCapacity() : int

A description of each CarRegister method is given below:

+CarRegister(int)
Initializes the permit and parked sets to be empty and sets the capacity of
the car park with the given parameter. Throws a CarRegisterException
(which will also need to be implemented) if the given parameter is negative.

+givePermit(String) : boolean
Records the registration of a car given a permit to park. Returns false if the
car has already been given a permit and true otherwise.

+recordParking(String) : boolean
Records the registration of a car entering the car park. Returns false if the car
park is full, or the car has no permit to enter the car park, and true otherwise.

15.11 Programming Exercises 467

+recordExit (String) : boolean
Records the registration of a car leaving the car park. Returns false if the car
was not initially registered as being parked and true otherwise.

+isParked(String) : boolean
Returns true if the car with the given registration is recorded as being parked
in the car park and false otherwise.

+isFull() : boolean

Returns true if the car park is full and false otherwise.

+numberParked() : int

Returns the number of cars currently in the car park.

+getPermit() : Set<String>

Returns the set of car registrations allocated permits.

getParked() : Set<String>

Returns the set of registration numbers of cars in the car park.

+getCapacity() : int

Returns the maximum capacity of the car park.

(a) Implement the CarRegister class. You will also need to implement a
CarRegisterException class.

(b) Test the CarRegister class with a suitable tester.

7. Re-write the Bank class of Chap. 8 so that it makes use of a Map instead of a
List, as discussed in self-test question 6 above.

468 15 The Java Collections Framework

16Advanced JavaFX

Outcomes:

By the end of this chapter you should be able to:

• program components to respond to mouse events and key events;
• explain the term property as applied to JavaFX components;
• bind properties of two or more components;
• use a slider to change the value of a variable;
• embed images, videos and webpages in applications;
• format applications by using cascading style sheets.

16.1 Introduction

In this chapter we will explore the more advanced aspects of programming with
JavaFX. We will begin by looking at the ways in which applications can be pro-
grammed to respond to input events such as keystrokes and mouse movements,
rather than just simple mouse clicks. We will then look at the unique nature of the
attributes of JavaFX classes and explain how we can add event handlers to the
individual attributes of a component, rather than to the component itself.

We will then go on to explore the way in which we can turn our programs into
multimedia applications, and finally we will introduce you to cascading style sheets
so that you can keep your formatting information separate from the rest of the
program, and apply different “skins” to an application.

© Springer Nature Switzerland AG 2019
Q. Charatan and A. Kans, Java in Two Semesters, Texts in Computer Science,
https://doi.org/10.1007/978-3-319-99420-8_16

469

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99420-8_16&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99420-8_16&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99420-8_16&domain=pdf
https://doi.org/10.1007/978-3-319-99420-8_16

16.2 Input Events

In Chap. 10 we introduced you to the idea of events and event handling. The only
event that we came across was an ActionEvent, the event that occurs when the
mouse is clicked on a component. There are other events that are defined as sub-
types of the Event class, the most important of which is the InputEvent. Two
subtypes of InputEvent are discussed here—MouseEvent and KeyEvent.
These occur, respectively, when a mouse button is pressed or the mouse is moved
or dragged, and when a key is pressed on the keyboard.

16.2.1 Mouse Events

We saw in Chaps. 10 and 13 that a JavaFX ActionEvent has only one
EventType defined (ACTION). In the case of MouseEvent, however, there are
a number of EventTypes, the most common of which we have summarised in
Table 16.1.

As you will see in a moment, there are convenience methods for all of these
events—and in order to demonstrate some of these, we have developed a little game
with which you can amuse your friends. Figure 16.1 shows how it looks when it
runs. We have called it—rather unimaginatively—the RedCircle game; a red
circle always moves away from the cursor so you can never click on it, despite
being told to do so! And if in desperation you start to click the mouse, the words
“Keep Trying” flash onto the screen!

Table 16.1 Types of mouse event

MOUSE_CLICKED This event occurs when the mouse has been clicked (pressed and
released)

MOUSE_PRESSED This event occurs when the mouse button is pressed

MOUSE_RELEASED This event occurs when the mouse button is released

MOUSE_MOVED This event occurs when the mouse moves within a node and no
buttons are pressed

MOUSE_DRAGGED This event occurs when the mouse moves within a node with a
pressed button

MOUSE_ENTERED This event occurs when the mouse enters a node

MOUSE_EXITED This event occurs when the mouse exits a node

470 16 Advanced JavaFX

Here is the code for the class:

Fig. 16.1 The RedCircle
application

RedCircle
import javafx.application.Application;
import javafx.scene.Group;
import javafx.stage.Stage;
import javafx.scene.text.Text;
import javafx.scene.Scene;
import javafx.scene.paint.Color;
import javafx.scene.shape.Circle;

public class RedCircle extends Application
{

BQxgttkfg
public void start(Stage stage)
{

final double WIDTH = 400;
final double HEIGHT = 400;

11"ekteng"uvctvu"kp"egpvtg"qh"uetggp
Circle circle = new Circle(WIDTH/2, HEIGHT/2, 20, Color.RED);

Text heading = new Text(WIDTH/2 - 50, 20, "Click on the red circle");
Text message = new Text(WIDTH/2 - 40, HEIGHT - 20 , "");

Group root = new Group(heading, circle, message);
Scene scene = new Scene(root, WIDTH, HEIGHT, Color.YELLOW);

1,"yjgp"vjg"oqwug"ku"oqxg"qt"ftciigf"vjg"egpvtg"qh"vjg"ekteng"ku
tgrqukvkqpgf"uq"vjcv"kv"ku"cnyc{u"72"rkzgnu"vq"vjg"nghv"cpf"
72"rkzgnu"cdqxg"vjg"ewtuqt",1

scene.setOnMouseMoved(e -> {
circle.setCenterX(e.getX()-50);
circle.setCenterY(e.getY()-50);

}
);

scene.setOnMouseDragged(e -> {
circle.setCenterX(e.getX()-50);
circle.setCenterY(e.getY()-50);

}
);

16.2 Input Events 471

We have begun by declaring two constants WIDTH and HEIGHT to represent the
dimensions of the scene, and then gone on to define a circle of radius 20 pixels that
will start off at the centre of the graphic:

Next we create two instances of the Text class. The first is the heading, the
second will hold the message that appears when the mouse button is depressed—
this one starts off empty.

Next we group these three items together and add them to the scene.

Now we come to the code that allows the graphic to respond to the mouse being
moved.

Notice that we attach this to the scene itself. We use the convenience method
setOnMouseMoved for this purpose. The idea is that whenever the mouse moves
the circle also moves so that it is always 50 pixels above and 50 pixels to the left of
the cursor.

So how do we find out where the cursor is? For this, we have made use of the
parameter that is received by the handle method of EventHandler, to which

11"c"oguucig"ku"fkurnc{gf"yjgp"vjg"oqwug"dwvvqp"ku"fgrtguugf
scene.setOnMousePressed(e -> message.setText("Keep trying!!!"));

11"vjg"oguucig"ku"dncpmgf"yjgp"vjg"oqwug"dwvvqp"ku"tgngcugf
scene.setOnMouseReleased(e -> message.setText(""));

stage.setScene(scene);
stage.setTitle("Red Circle");
stage.show();

}

public static void main(String[] args)
{

launch(args);
}

}

Circle circle = new Circle(WIDTH/2, HEIGHT/2, 20, Color.RED);

Text heading = new Text(WIDTH/2 - 50, 20, "Click on the red circle");
Text message = new Text(WIDTH/2 - 40, HEIGHT - 20 , "");

Group root = new Group(heading, circle, message);
Scene scene = new Scene(root, WIDTH, HEIGHT, Color.YELLOW);

scene.setOnMouseMoved(e -> {
circle.setCenterX(e.getX()-50);
circle.setCenterY(e.getY()-50);

}
);

472 16 Advanced JavaFX

the lambda expression refers. This parameter, e, to the left of the arrow is of type
MouseEvent and has methods getX and getY that return the current position of
the cursor. We use these to set the centre of the circle to the desired position.

We want exactly the same thing to happen when the mouse is dragged (that is, it
is moved with the button depressed), so the setOnMouseDragged method is
coded in the same way. However, when the button is pressed, we also want the
message at the bottom of the screen to change from blank to “Keep trying!!!”, and
for this purpose we use the setOnMousePressed method of Scene.

When the button is released, the message returns to a blank message:

The final lines of code add the scene to the stage, set the title and make the stage
visible, as you have seen in other examples.

16.2.2 Key Events

The other common input event is a key event. A key event occurs whenever a key is
pressed or released. One of the common applications of this event is to check if the
key pressed was the <Enter> key, which indicates that the entry is completed.

There are three common types of key event which are summarised in Table 16.2.
We have developed a couple of little applications to demonstrate these. The first

one, which we have called TextConverter, allows the user to type something
into a text field, and each time a character is entered, the content of the text field is
displayed below in upper case. This is shown in Fig. 16.2—you can see we have
used a similar interface to the PushMe class of Chap. 10, but this time there is no
button, as the application responds each time a character is entered (as you will see,
it actually responds when the key is released).

scene.setOnMousePressed(e -> message.setText("Keep trying!!!"));

scene.setOnMouseReleased(e -> message.setText(""));

Table 16.2 Types of key event

KEY_TYPED This event occurs when a key has been typed (pressed and released)

KEY_PRESSED This event occurs when a key has been pressed

KEY_RELEASED This event occurs when a key has been released

16.2 Input Events 473

Here is the code for the class:

Fig. 16.2 The
TextConverter application

TextConverter
import javafx.application.Application;
import javafx.geometry.Pos;
import javafx.scene.Scene;
import javafx.scene.control.Label;
import javafx.scene.control.TextField;
import javafx.scene.layout.VBox;
import javafx.scene.paint.Color;
import javafx.scene.text.Font;
import javafx.stage.Stage;

public class TextConverter extends Application
{

@Override
 public void start(Stage stage)
 {

// create and configure a text field for user entry
 TextField textField = new TextField();
 textField.setMaxWidth(250);

 // create and configure a label to display the output
 Label label= new Label();
 label.setTextFill(Color.RED);
 label.setFont(Font.font("Ariel", 20));

// display the contents of textField in upper case
 textField.setOnKeyReleased(e -> label.setText(textField.getText().toUpperCase()));

// create and configure a VBox to hold the components
 VBox root = new VBox();
 root.setSpacing(10);
 root.setAlignment(Pos.CENTER);

 //add the components to the VBox
 root.getChildren().addAll(textField, label);

// create a new scene
 Scene scene = new Scene(root);

//add the scene to the stage, then configure the stage and make it visible
 stage.setScene(scene);
 stage.setTitle("Text Converter");
 stage.setHeight(150);
 stage.setWidth(350);
 stage.show();
 }

 public static void main(String[] args)
 {
 launch(args);
 }

}

474 16 Advanced JavaFX

The only thing we need to draw your attention to is this line:

We are using the convenience method setOnKeyReleased to program the
response to a key stroke. The event is triggered when the key is released (as
opposed to when it is pressed), and as you can see from the lambda expression, after
each key press the entire content of the text field is copied to the label and converted
to upper case.

Our next program—the TextRepeater—is slightly different. In this appli-
cation, as soon as character is typed it is echoed on the label at the bottom—
however, if it is the <Enter> key that is pressed then the text field is cleared, and the
entire phrase that was typed is displayed. You can see how this works in Fig. 16.3.

The code for this application appears below:

Fig. 16.3 The TextRepeater application

textField.setOnKeyReleased(e -> label.setText(textField.getText().toUpperCase()));

16.2 Input Events 475

Once again, the only thing we need to discuss is how we code the convenience
method, in this case setOnKeyTyped:

TextRepeater
import javafx.application.Application;
import javafx.geometry.Pos;
import javafx.scene.Scene;
import javafx.scene.control.Label;
import javafx.scene.control.TextField;
import javafx.scene.layout.VBox;
import javafx.scene.paint.Color;
import javafx.scene.text.Font;
import javafx.stage.Stage;

public class TextRepeater extends Application
{

@Override
 public void start(Stage stage)
 {

// create and configure a text field for user entry
 TextField textfield = new TextField();
 textfield.setMaxWidth(250);

// create and configure a label to display the output
 Label repeatLabel= new Label();
 repeatLabel.setTextFill(Color.RED);
 repeatLabel.setFont(Font.font("Ariel", 20));

 textfield.setOnKeyTyped(e ->
 {
 if(e.getCharacter().equals("\r")) // check for the Enter key
 {
 repeatLabel.setText("You typed: " + textfield.getText());
 textfield.setText("");
 }
 else
 {
 repeatLabel.setText("Last character typed: " + e.getCharacter());
 }
 });

// create and configure a VBox to hold our components
 VBox root = new VBox();
 root.setSpacing(10);
 root.setAlignment(Pos.CENTER);

//add the components to the VBox
 root.getChildren().addAll(textfield, repeatLabel);

// create a new scene
 Scene scene = new Scene(root);

 //add the scene to the stage, then configure the stage and make it visible
 stage.setScene(scene);
 stage.setTitle("Text Repeater");
 stage.setHeight(150);
 stage.setWidth(350);
 stage.show();
 }

 public static void main(String[] args)
 {
 launch(args);
 }

}

476 16 Advanced JavaFX

You can see that the lambda expression deals with the possibility that the
<Enter> key has been pressed. In order to do this we have made use of
the getCharacter method of e, the KeyEvent parameter that is sent into the
handle method of EventHandler when the event concerned is a key event.
After a KEY_TYPED event, the getCharacter method returns a string which
holds the value of the character returned. We have checked to see if this is the
special character “\r” which represents the <Enter> key (Unicode 13). If it was the
<Enter> key, the entire string is copied from the text field to the label (appended to
the message “You typed:”), and the text field is cleared.

If the key pressed was any other key, the character is echoed on the label, again
appended to a message.

16.3 Binding Properties

When we refer to the classes in the JavaFX package, we tend not to talk about the
attributes of a class, but rather its properties.

In order to understand why we do this, let’s consider the JavaFX TextField
class for a moment. You have seen how we use the setText and getText
methods of this class—these methods accept and return Strings, and you would
therefore be forgiven for assuming that the TextField class has a text attribute
which is of type String. But you would be wrong. The attribute in question
(which is inherited from a higher level class) is actually of type StringProp-
erty. This class, along with many other similar classes such as DoubleProp-
erty, IntegerProperty, BooleanProperty and so on, is a wrapper class
—similar to classes such as Double and Integer that you came across in the
first semester.

Methods of control classes such as TextField hide the details of its properties
because they are set up to deal with the more familiar types such as String and
double. The interesting thing about these property classes is that they have some
useful methods. Some of these methods enable you to add event handlers to a
property rather than an object itself—you will see this in action in the next section.
But two particularly interesting methods are bind and bindBidirectional.

textfield.setOnKeyTyped(e ->
 {
 if(e.getCharacter().equals("\r")) // check for the Enter key
 {
 repeatLabel.setText("You typed: " + textfield.getText());
 textfield.setText("");
 }
 else
 {
 repeatLabel.setText("Last character typed: " + e.getCharacter());
 }
 });

16.2 Input Events 477

These allow us to bind the properties of two different objects so that they act in
unison.

To demonstrate this we have created a very simple application indeed, consisting
essentially of two textFields. We have bound the text property of each of these
with the result that the bottom one is frozen, while whatever is typed in the top one
is applied immediately to the bottom one.

You can see this in Fig. 16.4.
The code for this class is shown below:

Fig. 16.4 Binding properties

PropertyExample
import javafx.application.Application;
import javafx.scene.control.TextField;
import javafx.scene.layout.VBox;
import javafx.stage.Stage;
import javafx.geometry.Pos;
import javafx.scene.Scene;

public class PropertyExample extends Application
{

@Override
public void start(Stage stage)
{

TextField top = new TextField();
TextField bottom = new TextField();
top.setMaxWidth(420);
bottom.setMaxWidth(420);

// bind the text proerty of the bottom text field to that of the top
bottom.textProperty().bind(top.textProperty());

VBox root = new VBox(10);
root.getChildren().addAll(top, bottom);
root.setAlignment(Pos.CENTER);
Scene scene = new Scene(root, 480, 200);
stage.setScene(scene);
stage.setTitle("Property Example");
stage.show();

}

public static void main(String[] args)
{

launch(args);
}

}

478 16 Advanced JavaFX

All that we are interested in here is the line of code that binds the properties:

You have seen previously that the getText method of TextField returns a
String. However, the text property itself is retrieved by using the method
textProperty (inherited from the parent class). This is the general pattern for
properties of JavaFX classes: for example, you will see below that a Slider class
has a property called value of type DoubleProperty; this is retrieved with the
valueProperty method.

As we have said, properties have a method called bind. We have used this in
our example, calling the bind method of the text property of the bottom field.
The property that is sent into this bind method—in our case the text property of
the top field—is the one that can change and whose changes are mirrored in the
bound property.

We could have replaced the above line of code with this:

Using the bindBidirectional method means that we can change either
property and it is mirrored in the other one.

We could, of course, “chain” properties so that we could have three or more
properties working in unison. This is left for you to try in the end of chapter
exercises.

16.4 The Slider Class

A slider allows us to control the value of a variable by moving a sliding bar which is
used to vary the value within a particular range. The application we have developed
in Fig. 16.5 shows two sliders, one horizontal and one vertical. The current value of
the movable “thumb” on each slider is displayed below the slider.

The complete code is shown below. Once you have had a look at it we will go
through it with you.

bottom.textProperty().bind(top.textProperty());

bottom.textProperty().bindBidirectional(top.textProperty());

16.3 Binding Properties 479

SliderDemo
import java.text.DecimalFormat;
import javafx.application.Application;
import javafx.geometry.Insets;
import javafx.geometry.Orientation;
import javafx.geometry.Pos;
import javafx.stage.Stage;
import javafx.scene.Scene;
import javafx.scene.control.Label;
import javafx.scene.control.Slider;
import javafx.scene.layout.HBox;
import javafx.scene.layout.VBox;
public class SliderDemo extends Application
{

@Override
public void start(Stage stage)
{

final double horizSliderWidth = 300;
final double vertSliderHeight = 300;

// numbers will be formatted to one decimal place
DecimalFormat df = new DecimalFormat("0.0");

// create and configure the vertical slider
Slider vertSlider = new Slider(0, 20, 0);
vertSlider.setMinHeight(vertSliderHeight);
vertSlider.setShowTickMarks(true);
vertSlider.setShowTickLabels(true);
vertSlider.setSnapToTicks(true);
vertSlider.setMajorTickUnit(5.0);
vertSlider.setMinorTickCount(10);
vertSlider.setOrientation(Orientation.VERTICAL); // default is horizontal
// create and configure the horizontal slider
Slider horizSlider = new Slider(0, 10, 0);
horizSlider.setMinWidth(horizSliderWidth);
horizSlider.setShowTickMarks(true);
horizSlider.setShowTickLabels(true);
horizSlider.setSnapToTicks(true);
horizSlider.setMajorTickUnit(1.0);
horizSlider.setMinorTickCount(4);

// create two lables to keep track of each slider position
Label horizLabel = new Label("Current value is 0.0");
Label vertLabel = new Label("Current value is 0.0");

// add a listener to the vertical slider
vertSlider.valueProperty().addListener((observable, oldValue, newValue) ->

vertLabel.setText("Current value is " + df.format(newValue)));

// add a listener to the horizonal slider
horizSlider.valueProperty().addListener((obsValue, oldValue, newValue) ->

horizLabel.setText("Current value is " + df.format(newValue)));

// create and configure a VBox to hold the vertical slider and label
VBox vertBox = new VBox(10);
vertBox.setAlignment(Pos.BOTTOM_LEFT);
vertBox.setMinWidth(horizSliderWidth/3);
vertBox.getChildren().addAll(vertSlider, vertLabel);

// create and configure a VBox to hold the horizontal slider and label
VBox horizBox = new VBox(10);
horizBox.setAlignment(Pos.BOTTOM_LEFT);
horizBox.getChildren().addAll(horizSlider, horizLabel);

// create and configure an HBox as root
HBox root = new HBox(30);
root.setPadding(new Insets(10, 10, 10, 10));
root.getChildren().addAll(horizBox, vertBox);

// create and configure the scene and stage
Scene scene = new Scene(root, 460, 350);
stage.setScene(scene);
stage.setTitle("Slider Example");
stage.show();

}

public static void main(String[] args)
{

launch(args);
}

}

480 16 Advanced JavaFX

After declaring some constants for the preferred width and height of the sliders,
and defining a decimal format for the values, we create our sliders. First the vertical
slider:

The constructor takes three double values, which represent, respectively, the
minimum, maximum and initial values of the movable thumb. In our case the slider
will have a range of zero to 20, and start at zero.

The other methods that you see should be self-explanatory—there are still more
methods that you can explore, and as usual the best approach is to experiment with
these for yourself.

The horizontal slider is created and configured in the same way, but in this case
it is not necessary to specify the orientation, as horizontal is the default.

We go on to create the labels where the values will be displayed;

Fig. 16.5 A horizontal and a vertical slider

Slider vertSlider = new Slider(0, 20, 0);
vertSlider.setMinHeight(vertSliderHeight);
vertSlider.setShowTickMarks(true);
vertSlider.setShowTickLabels(true);
vertSlider.setSnapToTicks(true);
vertSlider.setMajorTickUnit(5.0);
vertSlider.setMinorTickCount(10);
vertSlider.setOrientation(Orientation.VERTICAL);

Label horizLabel = new Label("Current value is 0.0");
Label vertLabel = new Label("Current value is 0.0");

16.4 The Slider Class 481

Next we define what happens when the value of the slider is moved, starting with
the vertical slider. In the case of a slider we add the listener not to the slider itself
but to one of its properties, valueProperty, which is of type DoubleProp-
erty, and which holds the current position of the movable thumb:

We are not able to use a convenience method for this, but instead use the
addListener method. The kind of listener we are adding is a ChangeLis-
tener, which has an abstract method named changed. You can see that we are
using a lambda expression for this purpose. The JavaFX documentation tells us that
the changed method is specified as follows:

changed(ObservableValue<? extends T> observable, T old-
Value, T newValue)

When the value of the slider position changes, the changed method is called. It
receives three parameters. The first of these represents the current value, and is of
type ObservableValue—this is yet another wrapper class. As you can see it is a
generic class. You will notice that the method is specified using a wildcard so that it
will take objects of a particular type or subtypes of that type. In the case of a slider it
will handle values of type Double. The next two parameters are the old value
before it was changed, and the new value after the change.

Fortunately, in our lambda expression, we do not have to worry about specifying
the types of the parameters, because the compiler does this for us—another example
of the very useful ability of Java compilers to utilize type inference.

You can see that in our lambda expression we have used the new value
parameter to display the position of the slider on the correct label.

The behaviour of the horizontal slider is specified in exactly the same way.
The rest of the code is all to do with placing our sliders on the scene. There is not

too much to say about this because there is nothing new here—notice however that
the box holding the vertical slider has been specified to be one-third the width of the
box containing the horizontal slider.

16.5 Multimedia Nodes

It is very common that we want to embed such things as images or videos into our
applications. Here we will briefly explore three classes that help us to do this—
ImageView, MediaView and WebView.

vertSlider.valueProperty().addListener((observable, oldValue, newValue) ->
vertLabel.setText("Current value is " + df.format(newValue)));

482 16 Advanced JavaFX

16.5.1 Embedding Images

We will begin by looking at ImageView, a class that, as its name suggests, allows
us to embed images. In Fig. 16.6 we see a very simple application in which an
image is embedded into a scene graphic.

Fig. 16.6 Embedding an image

16.5 Multimedia Nodes 483

The application code below shows how we did this:

You can see that we created an object of the Image class from a file, Trees.
jpg.1

In order to be able to add this image to a container, we need create an object of
the ImageView class:

ImageView extends Node, and therefore, once we have wrapped it around an
image, it can be added to a container (in this case a FlowPane) in the usual way:

Figure 16.7 shows a variation of this application.

ImageHolder
import javafx.application.Application;
import javafx.geometry.Pos;
import javafx.stage.Stage;
import javafx.scene.Scene;
import javafx.scene.image.Image;
import javafx.scene.image.ImageView;
import javafx.scene.layout.FlowPane;

public class ImageHolder extends Application
{

@Override
 public void start(Stage stage)
 {
 Image image = new Image("Trees.jpg"); // create an image from a file
 ImageView imageView = new ImageView(image); // wrap the image in an ImageView node
 FlowPane root = new FlowPane();
 root.setAlignment(Pos.CENTER);
 root.getChildren().add(imageView); // add the ImageView object to the container
 Scene scene = new Scene(root, 400, 600);
 stage.setScene(scene);
 stage.setTitle("Image Example");

 stage.show();
 }

 public static void main(String[] args)
 {
 launch(args);
 }
}

Image image = new Image("Trees.jpg");

ImageView imageView = new ImageView(image);

root.getChildren().add(imageView);

1The program needs to have access to this file when it is run—normally it would be in the same
directory as the main class.

484 16 Advanced JavaFX

In this case, we have added our imageView object to a scroll pane, which we
have then configured with a particular width and height:

Then, instead of adding the imageView object directly to the FlowPane, we
have added the ScrollPane object instead:

We can also add images to controls such as buttons. Figure 16.8 shows an
image, a simple orange square, embedded in a button. In the first version the button
was created without a caption, in the second with the caption “Quit”.

Once the button was created, the image was added as follows:

Fig. 16.7 Embedding an
image with a scroll pane

ScrollPane scrollPane = new ScrollPane(imageView);
scrollPane.setPrefViewportWidth(250);
scrollPane.setPrefViewportHeight(350);

root.getChildren().add(scrollPane);

16.5 Multimedia Nodes 485

16.5.2 Embedding Videos

In the case of embedding a video there are some additional concepts that we need to
show you, but the process is similar. We create a Media object from a file from
which we then create a MediaPlayer object. This is then wrapped in a Med-
iaView object. MediaView is an extension of Node, so can be added to a
container. The video formats that are supported are MPEG-4 and FLV. MP3 audio
is also supported.

Our application is shown in Fig. 16.9.

Fig. 16.8 Adding an image
to a button

Image image = new Image("OrangeSquare.png");
ImageView imageView = new ImageView(image);
button.setGraphic(imageView);

Fig. 16.9 Embedding a video

486 16 Advanced JavaFX

As you can see, we have provided options for playing the video from the start as
well as pausing and resuming. The code below shows how we have achieved this:

VideoPlayer
import java.io.File;
import javafx.util.Duration;
import javafx.application.Application;
import javafx.geometry.Pos;
import javafx.scene.Scene;
import javafx.scene.control.Button;
import javafx.scene.layout.HBox;
import javafx.scene.layout.VBox;
import javafx.scene.media.Media;
import javafx.scene.media.MediaPlayer;
import javafx.scene.media.MediaView;
import javafx.stage.Stage;

public class VideoPlayer extends Application
{

@Override
public void start(Stage stage)
{

// create a File object from the video file
File file = new File("Trees.mp4");

// create a Media object from the File Object
Media media = new Media(file.toURI().toString());

// create a MediaPlayer object from the Media Object
MediaPlayer mp = new MediaPlayer(media);

// create a MediaView object from the MediaPlayer Object
MediaView mv = new MediaView(mp);

// create the buttons
Button playFromStartButton = new Button("Play from start");
Button pauseButton = new Button("Pause");
Button resumeButton = new Button("Resume");

// create and configure an HBox to hold the buttons
HBox buttonBox = new HBox(20);
buttonBox.setAlignment(Pos.CENTER);
buttonBox.getChildren().addAll(playFromStartButton, pauseButton, resumeButton);

// add event handlers to the buttons
playFromStartButton.setOnAction(e -> {

mp.seek(Duration.millis(0));
mp.play();
}

);

pauseButton.setOnAction(e -> mp.pause());

resumeButton.setOnAction(e-> mp.play());

// create the root container, and add it to the scene and stage
VBox root = new VBox(20);
root.setAlignment(Pos.CENTER);
root.getChildren().addAll(mv, buttonBox);

Scene scene = new Scene(root,800,500);
stage.setScene(scene);
stage.setTitle("Video Example");

stage.show();

}

public static void main(String[] args)
{

launch(args);
}

}

16.5 Multimedia Nodes 487

The Media object that we need to create requires an absolute reference to the
source file. This is referred to as a Uniform Resource Identifier (URI). In order to
provide this we need first to create an instance of the File class which is provided
in the java.io package.

File has a method called toURI which retrieves the file’s URI and allows us
to send a String representation to the new Media object in the following way:

Now we are able to create our MediaPlayer object and hence our Media-
View object

Next we create our buttons and add them to an HBox, which will later be added
to a VBox along with the MediaView object. Having done that, we need to add
event handlers to hold the code that must be executed when the buttons are pressed.

The MediaPlayer class has a progress counter to keep track of the progress of
the video. This value is held in an object of the Duration class, which has
methods toMillis, toSeconds, toMinutes and toHours, which express
the duration in milliseconds, seconds, minutes and hours respectively. It also has
static methods called millis and minutes, each of which accepts a double
and returns a Duration object representing the specified number of milliseconds
or minutes respectively.

MediaPlayer has a method called seek which accepts a Duration object
and moves the progress counter to the specified point. It also has a pause method
and a play method, the second of which plays the video from the point indicated
by the progress counter (so it resumes after a pause).

With this information in mind we can look at the code for the “Play from Start”
button.

File file = new File("Trees.mp4");

Media media = new Media(file.toURI().toString());

MediaPlayer mp = new MediaPlayer(media);
MediaView mv = new MediaView(mp);

playFromStartButton.setOnAction(e -> {
mp.seek(Duration.millis(0));
mp.play();

}
);

488 16 Advanced JavaFX

You can see how we use the seek method to set the counter back to the
beginning, and then call the play method.

The “pause” and “resume” buttons simply invoke pause and play
respectively.

16.5.3 Embedding Web Pages

To embed a webpage we need to create a WebView object that we can add to a
container. This class incorporates a WebEngine, which is a class that is capable of
managing web pages.

In Fig. 16.10 you can see our simple application. It provides a field for the user
to type in the website address (the URL), and once the <Enter> key has been
pressed the web page is retrieved and displayed.

Fig. 16.10 Embedding a web page

16.5 Multimedia Nodes 489

Here is the code:

You can see that having created both the WebView and the TextField, we go
on to add an event handler to the TextField in order to provide the code that will
be executed when the URL is entered:

WebBrowser
import javafx.application.Application;
import javafx.geometry.Pos;
import javafx.scene.Scene;
import javafx.scene.control.TextField;
import javafx.scene.layout.VBox;
import javafx.scene.web.WebView;
import javafx.stage.Stage;

public class WebBrowser extends Application
{
@Override

 public void start(Stage stage)
 {

// create and configure a WebView node
 WebView wv = new WebView();
 wv.setMaxSize(750, 700);

// create the text field where the URL will be entered
 TextField entry = new TextField();
 entry.setMaxWidth(750);

 /* define the behaviour that occurs when the URL has been entered and
 the Enter key has been pressed */
 entry.setOnKeyTyped(e -> {
 String url;
 if(e.getCharacter().equals("\r"))
 {
 url = entry.getText();
 if(!url.startsWith("http"))
 {
 url = "http://" + url;
 }
 wv.getEngine().load(url);
 }

 });

 VBox root = new VBox(20);
 root.setAlignment(Pos.CENTER);

 root.setMaxSize(750,700);
 root.getChildren().addAll(entry, wv);

 Scene scene = new Scene(root, 800, 750);

 stage.setScene(scene);
 stage.setTitle("Browser example");
 stage.show();
 }

 public static void main(String[] args)
 {
 launch(args);
 }
}

490 16 Advanced JavaFX

After declaring a variable to hold the URL, we check to see if the <Enter> key
has been pressed (special character “\r”). We then check to see if the string entered
starts with “http”. This is because the method we are going to use to load the page
requires the full URL, which includes the protocol—normally this would be “http”
or “https”. Usually people leave this out went entering a URL, and let the browser
deal with it. That is what we have done here—if the protocol has not been included
we prefix the address with “http://”.

Next we retrieve the engine from the WebView object with the getEngine
method, and use the load method of this object to load the URL.

16.6 Cascading Style Sheets

Those of you who have had experience in website development will certainly be
familiar with cascading style sheets (CSS). These enable a webpage, written in
HTML, to be free from any formatting detail. The HTML code is on the whole
restricted to providing the basic components and functionality, whereas the
appearance of the page is placed in a separate file with the extension .css.

JavaFX provides a similar capability, although as we shall see the syntax is
slightly different, with the properties requiring the prefix -fx-.

This topic of style sheets is in fact a vast one, and all that it is possible to do here
is to whet your appetite by explaining the basic principles, which will enable you to
go on and study more detail if you are interested.

In Fig. 16.11 we have created a simple registration form (the buttons have not
been activated), but we have left out any formatting information, so the application
is simply formatted according to the JavaFX defaults.

entry.setOnKeyTyped(e -> {
 String url;
 if(e.getCharacter().equals("\r"))
 {
 url = entry.getText();
 if(!url.startsWith("http"))
 {
 url = "http://" + url;
 }
 wv.getEngine().load(url);
 }

 });

Fig. 16.11 An unformatted application

16.5 Multimedia Nodes 491

Take a look at the code:

As you can see, without the formatting information the code looks very
uncluttered and easy to read. This is not only something that is very useful when
developing and maintaining an application, but it also has other important benefits.
By placing the formatting information in a separate file it means that we can provide
a similar look and feel—a corporate look—across different applications, by using
the same style sheet. It also means that if we want to change the appearance of the
application we can simply replace one style sheet with another. We often use the
word skin to refer to a particular look that an application has—so to replace one
skin with another, we simply change the style sheet associated with the application.

So, we added a style sheet to the above code. The result is shown in Fig. 16.12.

CSSDemo
import javafx.application.Application;
import javafx.scene.Scene;
import javafx.scene.control.Button;
import javafx.scene.control.Label;
import javafx.scene.control.TextField;
import javafx.scene.layout.HBox;
import javafx.scene.layout.VBox;
import javafx.stage.Stage;

public class CSSDemo extends Application
{
@Override
public void start(final Stage stage)
{

HBox row1 = new HBox();
HBox row2 = new HBox();
HBox row3 = new HBox();

Label nameLabel = new Label("Name");
TextField nameField = new TextField();

Label addressLabel = new Label("Address");
TextField addressField = new TextField();

Button backButton = new Button("Back");
Button saveAndContinueButton = new Button("Save and continue");
Button saveAndQuitButton = new Button("Save and quit");
Button quitButton = new Button("Quit");
Button nextButton = new Button("Next");

row1.getChildren().addAll(nameLabel, nameField);
row2.getChildren().addAll(addressLabel, addressField);
row3.getChildren().addAll(backButton, saveAndContinueButton,

saveAndQuitButton, quitButton, nextButton);

VBox root = new VBox();
root.getChildren().addAll(row1, row2, row3);

Scene scene = new Scene(root);
stage.setScene(scene);
stage.setTitle("Registration Form");
stage.show();

}

public static void main(String[] args)
{

launch(args);
}

 }

492 16 Advanced JavaFX

We called this style sheet Example.css. To load it into our application it is
necessary to add the following line of code:

The file needs to be located in the same directory as the main class.
The CSS file looks like this:

Fig. 16.12 The registration
form with a style sheet

scene.getStylesheets().add("Example.css");

Example.css
.root
{
 -fx-font-size: 16pt;
 -fx-font-family: "Calibri";
 -fx-base: #add8e6; /* lightblue */
 -fx-spacing: 20px;
 -fx-padding: 20px;
}

.button
{
 -fx-text-fill: #008000; /* green */
 -fx-font-size: 12pt;
}

.label
{
 -fx-background-color: #ccccff ;
 -fx-min-width : 80px;
 -fx-min-height: 42px;
 -fx-font-weight: bold;
 -fx-padding: 4px;
}

.text-field
{
 -fx-min-width: 380px;
 -fx-text-fill: #1100cc;
 -fx-background-color: #ccffcc ;
 -fx-font-style: italic;

}

.button1
{
 -fx-text-fill: #ff00ff; /* magenta */
 -fx-background-color: #ffcc99;
}

#quit
{
 -fx-text-fill: red;
 -fx-background-color: #ffff00; /* yellow */
}

#row3
{

 -fx-spacing: 10px;
 -fx-border-color: #000000; /* black */
 -fx-border-width: 2px;
 -fx-padding: 5px;

}

16.6 Cascading Style Sheets 493

The style sheet consists of a number of styles or selectors, introduced by a
full-stop or a hash. These styles refer to particular components. Many style names
are provided by the system and are the same or similar to the node to which they
refer: for example button, label and text-field (note the hyphen—style names tend to
have hyphens when they consist of two words joined together). Styles corre-
sponding to classes are referred to as class styles. Styles have properties, which
refer to the properties of the particular node. The properties are set by rules which
are placed between braces.

Let’s take a look at the first style in our style sheet:

As you can see, class styles are introduced by a full-stop. Names of properties all
begin with -fx-.

root is a style that refers to the root node in the scene, and all descendant nodes
will have this style unless these definitions are overridden.

The first two lines set the size of the font (in points), and the font family.
The next line sets the base colour of the node. The colour here is expressed as a

hexadecimal number, which corresponds to the RGB values we explained in
Sect. 16.3. The first two digits (starting at the left) represent red, the next two green
and the final two blue. So here we have red with an intensity of 173 (AD in
hexadecimal), green with 216 (D8 in hex), and blue with 230 (E6 in hex). This
actually corresponds to the pre-defined colour lightblue, and we could have
used this constant instead. We could also have written rgb(173, 216, 230).

The last two lines set the spacing and padding, measured in pixels (px). We
could have used cm or in (centimetres or inches), or we could have used em. An
em is the size of the font that is currently in use—so here, 1 em would represent
16pt.

We go on to set the style properties for the .button class, the .label class
and the .text-field class. These properties will take precedence over any
properties set in the .root class.

After this we see the following:

.root
{
 -fx-font-size: 16pt;
 -fx-font-family: "Calibri";
 -fx-base: #add8e6; /* lightblue */
 -fx-spacing: 20px;
 -fx-padding: 20px;
}

.button1
{

-fx-text-fill: #ff00ff; /* magenta */
-fx-background-color: #ffcc99;

}

494 16 Advanced JavaFX

What we have done here is to set the properties for our own named style
button1. This can then be applied to components of our choice. We set this style
specifically for our “back” and “next” buttons. We apply this style to those com-
ponents with the following code:

Finally we see two styles introduced not with a full stop, but with a hash (#):

A hash introduces a style for a particular named component. In our code we gave
two components an id, with the setId method:

Once we have assigned an id to a node we can then set its style with the hash as
shown.

Just to summarise, the additional lines of code that we needed to include in our
program were as follows:

As you can imagine, we have only scratched the surface of what is available
when using style sheets, but we hope it will be enough for you to do some addi-
tional reading and experiments, and of course to check out the Oracle™ website for
further help and information. Those of you who are interested in JavaFX style
sheets will get an opportunity to apply them as part of an end of chapter pro-
gramming exercise in the advanced case study of Chap. 21.

backButton.getStyleClass().add("button1");
nextButton.getStyleClass().add("button1");

#quit
{

-fx-text-fill: red;
-fx-background-color: #ffff00; /* yellow */

}

#row3
{

-fx-spacing: 10px;
-fx-border-color: #000000; /* black */
-fx-border-width: 2px;
-fx-padding: 5px;

}

row3.setId("row3");
quitButton.setId("quit");

scene.getStylesheets().add("Example.css");
backButton.getStyleClass().add("button1");
nextButton.getStyleClass().add("button1");
row3.setId("row3");
quitButton.setId("quit");

16.6 Cascading Style Sheets 495

16.7 Self-test Questions

1. Distinguish between a MouseEvent and a KeyEvent.

2. The following application draws a small rectangle on a scene graphic.

Replace the comment in the program with some code that would allow the user
to change the width and height of the rectangle by dragging the mouse. You
should look at the RedCircle class to get some ideas for how to go about this.

3. Explain the term property in the context of JavaFX components.

4. Explain what is meant by binding properties, and describe how this could be
achieved in the case of a slider.

5. Describe how different types of multi-media nodes that can be incorporated into
your JavaFX applications.

6. Explain the reasons for using cascading style sheets to separate formatting
information from the rest of the application.

import javafx.application.Application;
import javafx.stage.Stage;
import javafx.scene.Scene;
import javafx.geometry.Pos;
import javafx.scene.layout.VBox;
import javafx.scene.paint.Color;
import javafx.scene.shape.Rectangle;

public class DrawRectangle extends Application
{

@Override
 public void start(Stage stage)

{
 final double WIDTH = 400;
 final double HEIGHT = 400;

 Rectangle rect = new Rectangle(10, 10);
 rect.setFill(Color.RED);

 VBox root = new VBox();
 root.getChildren().add(rect);
 root.setAlignment(Pos.TOP_LEFT);

 Scene scene = new Scene(root, WIDTH, HEIGHT);

// method goes here

 stage.setScene(scene);
 stage.setTitle("Draw Rectangle");
 stage.show();

}

 public static void main(String[] args)
{

 launch(args);
}

}

496 16 Advanced JavaFX

16.8 Programming Exercises

1. Implement a few of the programs that we have developed in this chapter, and
experiment with different settings in order to change some the features.

2. Adapt the PropertyExample application of Sect. 16.3 so that three or more
TextFields operate in unison.

3. Implement the program you adapted in question 2 of the self-test questions. Try
this with other shapes such as circle and ellipse.

4. In the RedCircle class of Sect. 16.2.1 we used convenience methods to
program responses to a MOUSE_PRESSED event, a MOUSE_RELEASED event,
a MOUSE_MOVED event and a MOUSE_DRAGGED event.
Experiment with a the MOUSE_ENTERED and MOUSE_EXITED events. One
idea might be to change the colour of a button when the cursor is moved over it.

5. Adapt the SliderDemo from Sect. 16.4 so that instead of printing an integer
value, it draws an expanding rectangle as the slider is moved. This is demon-
strated in the following diagram:

6. Adapt the SliderDemo program so that the properties of the two sliders are
bound, and when one slider moves, the other moves accordingly.

7. Design your own skin for the registration form in Sect. 16.6 by creating a new
style sheet.

16.8 Programming Exercises 497

17JavaFX: Interacting with the User

Outcomes:

By the end of this chapter you should be able to:

• create applications that utilize pull-down menus and context menus;
• create a modal dialogue by defining a secondary stage;
• write applications that offer choices via combo boxes, check boxes and radio

buttons;
• use a stack pane to create a card menu;
• enable user interaction by using the subclasses of the Dialog class.

17.1 Introduction

One of the most common ways for an application to interact with the user is to
provide a number of choices—just as we did with the text-based menus that we
introduced you to in the first semester. With graphical applications, there are a
number of ways of doing this, and in this chapter we present you with a variety of
techniques you can use—we will show you how to create drop-down menus,
pop-up menus (also called context menus), check boxes, radio buttons and combo
boxes. We will also show you how to interact with the user via popup dialogue
windows.

© Springer Nature Switzerland AG 2019
Q. Charatan and A. Kans, Java in Two Semesters, Texts in Computer Science,
https://doi.org/10.1007/978-3-319-99420-8_17

499

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99420-8_17&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99420-8_17&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99420-8_17&domain=pdf
https://doi.org/10.1007/978-3-319-99420-8_17

17.2 Drop-Down Menus

A drop-down menu, or pull-down menu, is a very common way to offer choices to
the user of a program. In Fig. 17.1. we see a very simple example. The program
displays a flag consisting of three horizontal stripes—the colour of each stripe can
be changed by means of the pull-down menus on the top bar.

As an example, Fig. 17.2 shows the choices offered by the first menu:

Fig. 17.1 An application with three pull-down menus

Fig. 17.2 The options on the “Top Colour” menu

500 17 JavaFX: Interacting with the User

The code for the Flag class is presented below:

public class Flag extends Application
{ @Override

public void start(Stage stage)
{

final double WIDTH = 400;
final double HEIGHT = 200;

// create and configure a menu bar
MenuBar bar = new MenuBar();
bar.setMinHeight(25);

// create drop-down menus
Menu topStripeMenu = new Menu("Top Colour");
Menu middleStripeMenu = new Menu("Middle Colour");
Menu bottomStripeMenu = new Menu("Bottom Colour");

// add the drop-down menus to the menu bar
bar.getMenus().addAll(topStripeMenu, middleStripeMenu, bottomStripeMenu);

// create menu items - two for each drop-down menu
Menu red = new Menu("Red");
Menu blue = new Menu("Blue");

Menu gold = new Menu("Gold");
Menu orange = new Menu("Orange");

Menu green = new Menu("Green");
Menu purple = new Menu("Purple");

// add menu items to drop-down menus
topStripeMenu.getItems().addAll(red, blue);
middleStripeMenu.getItems().addAll(gold, orange);
bottomStripeMenu.getItems().addAll(green, purple);

// create the stripes
Rectangle topStripe = new Rectangle(WIDTH, (HEIGHT-25)/3);
Rectangle middleStripe = new Rectangle(WIDTH, (HEIGHT-25)/3);
Rectangle bottomStripe = new Rectangle(WIDTH, (HEIGHT-25)/3);

// set initial colours
topStripe.setFill(Color.RED);
middleStripe.setFill(Color.GOLD);
bottomStripe.setFill(Color.GREEN);

// define the behaviour for each menu item
red.setOnAction(e -> topStripe.setFill(Color.RED));
blue.setOnAction(e -> topStripe.setFill(Color.BLUE));
gold.setOnAction(e -> middleStripe.setFill(Color.GOLD));
orange.setOnAction(e -> middleStripe.setFill(Color.ORANGE));
green.setOnAction(e -> bottomStripe.setFill(Color.GREEN));
purple.setOnAction(e -> bottomStripe.setFill(Color.PURPLE));

// create VBox to hold the menu bar and the stripes
VBox root = new VBox();
root.setAlignment(Pos.TOP_LEFT);
root.setBackground(Background.EMPTY);
root.getChildren().addAll(bar, topStripe, middleStripe, bottomStripe);

// create the scene and add the VBox
Scene scene = new Scene(root, WIDTH, HEIGHT);

// confgure the stage
stage.setScene(scene);
stage.setTitle("Dropdown Menu Example");
stage.show();

}

public static void main(String[] args)
{

launch(args);
}

}

Flag
import javafx.application.Application;
import javafx.scene.Scene;
import javafx.scene.control.Menu;
import javafx.scene.control.MenuBar;
import javafx.scene.layout.Background;
import javafx.scene.layout.VBox;
import javafx.scene.paint.Color;
import javafx.scene.shape.Rectangle;
import javafx.stage.Stage;
import javafx.geometry.Pos;

17.2 Drop-Down Menus 501

The first thing we do (after declaring constants for the width and height of the
scene) is to create a menu bar:

MenuBar bar = new MenuBar();
bar.setMinHeight(25);

Next we create the three menus that will appear on the bar:

Menu topStripeMenu = new Menu("Top Colour");
Menu middleStripeMenu = new Menu("Middle Colour");
Menu bottomStripeMenu = new Menu("Bottom Colour");

Once you have created an instance of the Menu class, this object can hold other
sub-menu items or can have an event handler attached to it which will enable it to
respond to a mouse click (an ActionEvent).

In this case we will add two menu items for each stripe. First we create these
items:

Menu red = new Menu("Red");
Menu blue = new Menu("Blue");

Menu gold = new Menu("Gold");
Menu orange = new Menu("Orange");

Menu green = new Menu("Green");
Menu purple = new Menu("Purple");

Then we add each one to the correct menu. The getItems method of the Menu
class returns a list of items—and we add our items to this list with the addAll
method.

topStripeMenu.getItems().addAll(red, blue);
middleStripeMenu.getItems().addAll(gold, orange);
bottomStripeMenu.getItems().addAll(green, purple);

The next thing is to declare and configure three rectangles for our stripes:

Rectangle topStripe = new Rectangle(WIDTH, (HEIGHT-25)/3);
Rectangle middleStripe = new Rectangle(WIDTH, (HEIGHT-25)/3);
Rectangle bottomStripe = new Rectangle(WIDTH, (HEIGHT-25)/3);

topStripe.setFill(Color.RED);
middleStripe.setFill(Color.GOLD);
bottomStripe.setFill(Color.GREEN);

We have arranged it so that the height of each stripe takes up one-third of the
total height, less the height of the menu bar.

502 17 JavaFX: Interacting with the User

Now we add the event handlers, using the convenience method setOnAction
that we have seen before:

red.setOnAction(e -> topStripe.setFill(Color.RED));
blue.setOnAction(e -> topStripe.setFill(Color.BLUE));
gold.setOnAction(e -> middleStripe.setFill(Color.GOLD));
orange.setOnAction(e -> middleStripe.setFill(Color.ORANGE));
green.setOnAction(e -> bottomStripe.setFill(Color.GREEN));
purple.setOnAction(e -> bottomStripe.setFill(Color.PURPLE));

All that remains is to create and configure a VBox to which we add the menu bar
and the three stripes; then we add this to the scene, and finally we add the scene to
the stage as usual:

VBox root = new VBox();
root.setAlignment(Pos.TOP_LEFT);
root.setBackground(Background.EMPTY);
root.getChildren().addAll(bar, topStripe, middleStripe, bottomStripe);

Scene scene = new Scene(root, WIDTH, HEIGHT);

stage.setScene(scene);
stage.setTitle("Dropdown Menu Example");
stage.show();

17.3 Context (Pop-Up) Menus

An alternative to a pull-down menu is a context menu, also referred to as a pop-up
menu. A context menu is normally not available all the time, but pops up only when
it is necessary, and then disappears. To demonstrate this we have created an
application in which the menu is used simply to change the background colour of
the graphic, and is invoked by pressing a button. This is demonstrated in Fig. 17.3.

Fig. 17.3 A context menu

17.2 Drop-Down Menus 503

Here is the code for the ContextMenuExample class:

ContextMenuExample
import javafx.application.Application;
import javafx.stage.Stage;
import javafx.scene.Scene;
import javafx.scene.paint.Color;
import javafx.geometry.Pos;
import javafx.geometry.Side;
import javafx.geometry.Insets;
import javafx.scene.control.Button;
import javafx.scene.control.ContextMenu;
import javafx.scene.control.Menu;
import javafx.scene.layout.Background;
import javafx.scene.layout.BackgroundFill;
import javafx.scene.layout.CornerRadii;
import javafx.scene.layout.FlowPane;

public class ContextMenuExample extends Application
{

BQxgttkfg
public void start(Stage stage)
{
final double WIDTH = 300;
final double HEIGHT = 300;

11"etgcvg"c"hnqy"rcpg"vq"dg"wugf"cu"vjg"tqqv"pqfg
FlowPane root = new FlowPane();
root.setAlignment(Pos.CENTER);

11"etgcvg"c"dwvvqp"cpf"cff"kv"vq"vjg"hnqy"rcpg
Button button = new Button("Select background colour");
root.getChildren().add(button);

11"etgcvg"c"eqpvgzv"ogpw"
ContextMenu popup = new ContextMenu();

11"fghkpg"vjg"ogpw"kvgou
Menu red = new Menu("Red");
Menu yellow = new Menu("Yellow");
Menu green = new Menu("Green");

11"cff"vjg"ogpw"kvgou"vq"vjg"eqpvgzv"ogpw
popup.getItems().addAll(red, yellow, green);

11"cff"vjg"gxgpv"nkuvgpgtu<"vjg"dcemitqwpf"qh"vjg"rcpg"ku"ejcpigf"cpf"vjgp"vjg"ogpw"ku"enqugf
red.setOnAction(e -> {

root.setBackground(new Background(new BackgroundFill(Color.RED,
CornerRadii.EMPTY, Insets.EMPTY)));

popup.hide();
}

);

yellow.setOnAction(e -> {
root.setBackground(new Background(new BackgroundFill(Color.YELLOW,

CornerRadii.EMPTY, Insets.EMPTY)));
popup.hide();

}
);

green.setOnAction(e -> {
root.setBackground(new Background(new BackgroundFill(Color.GREEN,

CornerRadii.EMPTY, Insets.EMPTY)));
popup.hide();

}
);

11"cff"vjg"gxgpv"nkuvgpgt"vq"vjg"dwvvqp<"vjg"ogpw"ku"ujqyp"yjgp"vjg"dwvvqp"ku"rtguugf
button.setOnAction(e -> popup.show(root, Side.RIGHT, 10, 10));

11"eqphkiwtg"vjg"uegpg"cpf"vjg"uvcig
Scene scene = new Scene(root, WIDTH, HEIGHT);
stage.setScene(scene);
stage.setTitle("Context Menu Example");
stage.show();

}

public static void main(String[] args)
{

launch(args);
}

}

504 17 JavaFX: Interacting with the User

There is nothing very new here, and the code is mostly self-explanatory. But
notice the code for the setOnAction method of the button:

button.setOnAction(e -> popup.show(root, Side.RIGHT, 10, 10));

The popup menu appears on the right side of the “anchor” node, offset by 10
pixels to the right and 10 from the top.

There is something else to notice about the menu that appears—it is
non-modal. This means that the parent window is still accessible. This might be
good for some applications, but in other applications you may want the application
to be frozen until the context menu is hidden. In this case the menu is referred to as
modal.

If we want a modal dialogue you can achieve this by creating a secondary
stage. We have done this so that the popup menu has three buttons as shown in
Fig. 17.4.

Fig. 17.4 A modal context menu

17.3 Context (Pop-Up) Menus 505

Here is the code:

import javafx.scene.layout.Background;
import javafx.scene.layout.BackgroundFill;
import javafx.scene.layout.CornerRadii;
import javafx.scene.layout.FlowPane;
import javafx.scene.layout.VBox;
import javafx.scene.paint.Color;
import javafx.stage.Modality;
import javafx.stage.Stage;

public class ModalContextMenuExample extends Application
{

BQxgttkfg
public void start(Stage primaryStage)
{

final double WIDTH = 300;
final double HEIGHT = 300;

11"etgcvg"c"hnqy"rcpg"vq"dg"wugf"cu"vjg"tqqv"pqfg
FlowPane root = new FlowPane();
root.setAlignment(Pos.CENTER);

11"etgcvg"c"dwvvqp"cpf"cff"kv"vq"vjg"hnqy"rcpg
Button button = new Button("Select background colour");
root.getChildren().add(button);

11"etgcvg"dwvvqpu"hqt"vjg"ogpw"ejqkegu
Button red = new Button(" Red ");
Button yellow = new Button("Yellow");
Button green = new Button(" Green ");

11"etgcvg"c"XDqz"vq"jqnf"vjg"dwvvqpu
VBox box = new VBox(10);
box.setAlignment(Pos.CENTER);
box.getChildren().addAll(red, yellow, green);

11"etgcvg"c"ugeqpfct{ uegpg
Scene secondaryScene = new Scene(box,200,150);

11"etgcvg"c"ugeqpfct{"uvcig
Stage secondaryStage = new Stage();

11"cff"vjg"ugeqpfct{ uegpg"vq"vjg"ugeqpfct{ct{"uvcig
secondaryStage.setScene(secondaryScene);

11"ugv"vjg"oqfcnkv{"qh"vjg"ugeqpfct{"uvcig
secondaryStage.initModality(Modality.APPLICATION_MODAL);

11"eqfg"vjg"dwvvqp"uq"vjcv"vjg"ugeqpfct{"uvcig"ku"ocfg"xkukdng
button.setOnAction(e ->
{ secondaryStage.setX(primaryStage.getX() + 250);

secondaryStage.setY(primaryStage.getY() + 100);
secondaryStage.show();

});

11"eqfg"vjg"ogpw"kvgou
red.setOnAction(e -> {

root.setBackground(new Background(new BackgroundFill(Color.RED,
CornerRadii.EMPTY, Insets.EMPTY)));

secondaryStage.hide();
}

);

yellow.setOnAction(e -> {
root.setBackground(new Background(new BackgroundFill(Color.YELLOW,

CornerRadii.EMPTY, Insets.EMPTY)));
secondaryStage.hide();
}

);

green.setOnAction(e -> {
root.setBackground(new Background(new BackgroundFill(Color.GREEN,

CornerRadii.EMPTY, Insets.EMPTY)));
secondaryStage.hide();

}
);

11"etgcvg"vjg"rtkoct{"uegpg"cpf"uvcig

ModalContextMenuExample
import javafx.application.Application;
import javafx.geometry.Insets;
import javafx.geometry.Pos;
import javafx.scene.Scene;
import javafx.scene.control.Button;

Scene primaryScene = new Scene(root, WIDTH, HEIGHT);
primaryStage.setScene(primaryScene);
primaryStage.setTitle("Modal Context Menu");
primaryStage.show();

}

public static void main(String[] args)
{

launch(args);
}

}

506 17 JavaFX: Interacting with the User

Much of this you will have seen before. The important thing here is how we
create a secondary scene (which will hold a VBox containing the buttons) and a
secondary stage:

Scene secondaryScene = new Scene(box,200,150);
Stage secondaryStage = new Stage();
secondaryStage.setScene(secondaryScene);

The Stage class has a method called initModality, which allows us to
make the stage modal with respect to the rest of the application, so that once the
stage (our menu in this case) appears the application freezes until it disappears. We
do this with the following line of code:

secondaryStage.initModality(Modality.APPLICATION_MODAL);

17.4 Combo Boxes

You will be familiar with a combo box as it is a very common way of offering
choices. Our example is shown in Fig. 17.5.

(a) Initial view (b) Menu options

(c) Option selected

Fig. 17.5 Combo box example

17.3 Context (Pop-Up) Menus 507

Here is the code:

ComboBoxExample
import javafx.application.Application;
import javafx.geometry.Insets;
import javafx.geometry.Pos;
import javafx.scene.Scene;
import javafx.scene.control.ComboBox;
import javafx.scene.control.Label;
import javafx.scene.layout.VBox;
import javafx.stage.Stage;

public class ComboBoxExample extends Application
{

@Override
public void start(Stage stage)
{

final double WIDTH = 400;
final double HEIGHT = 150;

// declare a String type combo box
ComboBox<String> box = new ComboBox<>();

// add the choices
box.getItems().addAll("Small", "Medium", "Large", "Extra large");

// set the intitial text
box.setValue("Chooose your size");

Label message = new Label();

// display the user's choice
box.setOnAction(e -> message.setText("You have chosen: " + box.getValue()));

VBox root = new VBox(10);
root.setPadding(new Insets(20, 20, 20, 20));
root.setAlignment(Pos.TOP_CENTER);

root.getChildren().addAll(box, message);

Scene scene = new Scene(root, WIDTH, HEIGHT);
stage.setScene(scene);
stage.setTitle("Combo Box Example");
stage.show();

}

public static void main(String[] args)
{

launch(args);
}

}

The only new thing here is the combo box itself. The ComboBox class is a
generic class, so that the type of items held can vary—most commonly the box will
hold strings, but we could just as easily have images for example. In our case we are
using strings, and the declaration is therefore as follows:

ComboBox<String> box = new ComboBox<>();

The menu items are added by using the getItems method:

box.getItems().addAll("Small", "Medium", "Large", "Extra large");

508 17 JavaFX: Interacting with the User

We want the box to start off displaying the instruction, so we use the setValue
method for this purpose:

box.setValue("Chooose your size");

The other point to note is the use of the getValue method to retrieve the
current item displayed—we use this to display the choice made by the user:

box.setOnAction(e -> message.setText("You have chosen: " + box.getValue()));

17.5 Check Boxes and Radio Buttons

Check boxes are a very familiar way of offering choices. Our simple example is
shown in Fig. 17.6.

You can see the code for this below. By now this should be self-explanatory—
but notice that in this case we used the method isSelected to determine whether
the box is selected or not.

Fig. 17.6 Check box example

17.4 Combo Boxes 509

CheckBoxExample
import javafx.scene.control.Button;
import javafx.application.Application;
import javafx.geometry.Insets;
import javafx.geometry.Pos;
import javafx.scene.Scene;
import javafx.scene.control.CheckBox;
import javafx.scene.control.Label;
import javafx.scene.layout.VBox;
import javafx.stage.Stage;

public class CheckBoxExample extends Application
{

@Override
public void start(Stage stage)
{

final double WIDTH = 400;
final double HEIGHT = 200;

// create four check boxes
CheckBox starter = new CheckBox("Starter");
CheckBox mainCourse = new CheckBox("Main");
CheckBox dessert = new CheckBox("Dessert");
CheckBox drink = new CheckBox("Drink");

Button submitButton = new Button("Place your order");
Label message = new Label();

// clicking the button
submitButton.setOnAction(e -> {

String yourOrder = "Your have ordered: ";

if(!starter.isSelected()&& !mainCourse.isSelected()
&& !dessert.isSelected() && !drink.isSelected())

{
yourOrder = "You did not select anything";

}
else
{

if(starter.isSelected())
{

yourOrder = yourOrder + " Starter";
}
if(mainCourse.isSelected())
{

yourOrder = yourOrder + " Main";
}
if(dessert.isSelected())
{

yourOrder = yourOrder + " Dessert";
}
if(drink.isSelected())
{

yourOrder = yourOrder + " Drink";
}

}
message.setText(yourOrder);

}
);

VBox root = new VBox(10);
root.setPadding(new Insets(20, 20, 20, 20));
root.setAlignment(Pos.CENTER_LEFT);

root.getChildren().addAll(starter, mainCourse, dessert, drink, submitButton, message);

Scene scene = new Scene(root, WIDTH, HEIGHT);

stage.setScene(scene);
stage.setTitle("Check Box Example");
stage.show();

}

public static void main(String[] args)
{

launch(args);
}

}

510 17 JavaFX: Interacting with the User

Radio buttons are very similar to check boxes, although they are round
instead of square. They can operate in exactly the same way as check boxes, but can
also be made to operate as a group, so that only one item can be selected at a time; if
a box is selected and then the user chooses another box, the first one is cleared.

Figure 17.7 shows an example of radio buttons working independently. You can
see that it is the same as our check box example, with the check boxes replaced by
radio buttons.

Fig. 17.7 Independent radio buttons

Fig. 17.8 Grouped radio buttons

17.5 Check Boxes and Radio Buttons 511

All we needed to do was to replace the declarations of the four check boxes with
the following code:

RadioButton starter = new RadioButton("Starter");
RadioButton mainCourse = new RadioButton("Main");
RadioButton dessert = new RadioButton("Dessert");
RadioButton drink = new RadioButton("Drink");

Figure 17.8 shows an example of radio buttons acting together in a group—only
one item can be selected.

Here is the code:

GroupedRadioBu onExample
import javafx.application.Application;
import javafx.geometry.Insets;
import javafx.scene.Scene;
import javafx.scene.control.Button;
import javafx.scene.control.Label;
import javafx.scene.control.RadioButton;
import javafx.scene.layout.VBox;
import javafx.stage.Stage;
import javafx.geometry.Pos;
import javafx.scene.control.ToggleGroup;

public class GroupedRadioButtonExample extends Application
{

BQxgttkfg
public void start(Stage stage)
{

final double WIDTH = 350;
final double HEIGHT = 200;

11"fgenctg"vjg"tcfkq"dwvvqpu
RadioButton adultSingle = new RadioButton("Adult single");
RadioButton childSingle = new RadioButton("Child single");
RadioButton adultReturn = new RadioButton("Adult return");
RadioButton childReturn = new RadioButton("Child return");

11"cff"vjg"tcfkq"dwvvqpu"vq"c"vqiing"itqwr
ToggleGroup group = new ToggleGroup();
group.getToggles().addAll(adultSingle, childSingle, adultReturn, childReturn);

Button submitButton = new Button("Choose your ticket");
Label message = new Label();

11"enkemkpi"vjg"dwvvqp
submitButton.setOnAction(e-> {

String yourOrder = "Your have chosen: ";
if(!adultSingle.isSelected()&& !childSingle.isSelected()
&& !adultReturn.isSelected() && !childReturn.isSelected())

{
yourOrder = "You did not chose a ticket";

}
else
{

if(adultSingle.isSelected())
{

yourOrder = yourOrder + " Adult Single";
}
else if(childSingle.isSelected())
{

yourOrder = yourOrder + " Child Single";
}
else if(adultReturn.isSelected())
{

yourOrder = yourOrder + " Adult Return";
}

512 17 JavaFX: Interacting with the User

As you can see we have declared a ToggleGroup and added our radio buttons
to it:

ToggleGroup group = new ToggleGroup();
group.getToggles().addAll(adultSingle, childSingle, adultReturn, childReturn);

The buttons now act as one unit—if a button is already selected when another
button is chosen, then the first button is cleared.

17.6 A Card Menu

A very familiar way of entering information into forms is via a serious of screens. As
we mentioned in Chap. 10, one way to achieve this is via a StackPane, which
enables us to present a series of containers as if they represented a pack of cards. The
top “cards” can be removed in order, revealing the card underneath—or we could
move in the other direction, replacing the cards in the order they were removed.

The example shown in Fig. 17.9 represents the initial screens in a made-up game
(“The Dungeons of Schpiltz”). A StackPane holds the cards, each of which is a
VBox containing buttons. We have not coded the buttons, as it is just for illus-
tration. On either side of the StackPane are a “Previous” button and a “Next”
button.

17.5 Check Boxes and Radio Buttons 513

(c) The third screen allows the user
to choose a location

(b) The second screen allows the user
to choose a character

(a) The first screen allows the user
to choose a level

Fig. 17.9 A card menu

514 17 JavaFX: Interacting with the User

Here is the complete code:

CardMenuExample
import javafx.application.Application;
import javafx.geometry.Insets;
import javafx.geometry.Pos;
import javafx.stage.Stage;
import javafx.scene.Scene;
import javafx.scene.control.Label;
import javafx.scene.control.Button;
import javafx.scene.paint.Color;
import javafx.scene.layout.HBox;
import javafx.scene.layout.VBox;
import javafx.scene.layout.StackPane;
import javafx.scene.layout.Background;
import javafx.scene.layout.BackgroundFill;
import javafx.scene.layout.CornerRadii;
import javafx.scene.text.Font;

public class CardMenuExample extends Application
{

private int currentCard = 0; // to keep track of the cards
private StackPane stack = new StackPane(); // to hold the cards
@Override
public void start(Stage stage)
{

// create a label for the first card (choosing the level)
Label levelLabel = new Label("Choose your level");
levelLabel.setFont(Font.font ("Verdana", 15));

// create an HBox containing three dummy buttons for the first card (choosing the level)
HBox levelButtons = new HBox(10);
levelButtons.getChildren().addAll(new Button("Novice"),

new Button("Regular"), new Button ("Expert"));
levelButtons.setAlignment(Pos.CENTER);

// create a VBox to act as the first card
VBox levelPanel = new VBox(10);

// add the label and buttons to the first VBox
levelPanel.getChildren().addAll(levelLabel, levelButtons);
levelPanel.setAlignment(Pos.CENTER);

// create a label for the second card (choosing the character)
Label characterLabel = new Label(" Choose your character ");
characterLabel.setFont(Font.font ("Verdana", 15));

// create an HBox containing four dummy buttons for the second card (choosing the character)
HBox characterButtons = new HBox(10);
characterButtons.getChildren().addAll(new Button("Zorrkk"), new Button("Kluggg"),

new Button ("Grrogg"), new Button("Skrankk"));
characterButtons.setAlignment(Pos.CENTER);

// create a VBox to act as the second card
VBox characterPanel = new VBox(10);
characterPanel.getChildren().addAll(characterLabel, characterButtons);
characterPanel.setAlignment(Pos.CENTER);

// create a label for the second card (choosing the location)
Label locationLabel = new Label("Choose your location");
locationLabel.setFont(Font.font ("Verdana", 15));

// create an HBox containing two dummy buttons for the third card (choosing the location)
HBox locationButtons = new HBox(10);
locationButtons.getChildren().addAll(new Button("Castle of Doom"),

new Button("Forest of Fear"));
locationButtons.setAlignment(Pos.CENTER);

// create a VBox to act as the third card
VBox locationPanel = new VBox(10);
locationPanel.getChildren().addAll(locationLabel, locationButtons);
locationPanel.setAlignment(Pos.CENTER);

// create and configure buttons for moving back and forth through the cards
Button nextButton = new Button(" Next ");
Button previousButton = new Button("Previous");

nextButton.setFont(Font.font ("Verdana", 15));
previousButton.setFont(Font.font ("Verdana", 15));

17.6 A Card Menu 515

// configure the stack pane
stack.setPadding(new Insets(10, 10, 10, 10));
stack.setBackground(new Background(new BackgroundFill(Color.GOLD,

CornerRadii.EMPTY, Insets.EMPTY)));
stack.setAlignment(Pos.CENTER);

// add the cards to the stack pane
stack.getChildren().addAll(levelPanel, characterPanel, locationPanel);

// show the first card and hide the other two
stack.getChildren().get(0).setVisible(true);
stack.getChildren().get(1).setVisible(false);
stack.getChildren().get(2).setVisible(false);

// create and configure an HBox
HBox root = new HBox(20);
root.setBackground(Background.EMPTY);
root.setAlignment(Pos.CENTER);

// add the "previous" button, the stack of cards and the "next" button
root.getChildren().addAll(previousButton, stack, nextButton);

// add event handlers to call the relevant helper methods
nextButton.setOnAction (e -> next());
previousButton.setOnAction (e -> previous());

// create and configure the scene
Scene scene = new Scene(root, 500, 200, Color.DARKBLUE);

// configure the stage
stage.setScene(scene);
stage.setTitle("The Dungeons of Schpiltz");
stage.show();

}

// define the helper method for the "next" button
private void next()
{

if(currentCard != stack.getChildren().size()- 1) // if we are not at the last card
{

currentCard++; // make the next card the current card
// move through the cards: show the current card, hide the others
for(int i = 0; i <= stack.getChildren().size()- 1; i++)
{

if(i == currentCard)
{

stack.getChildren().get(i).setVisible(true);
}
else
{

stack.getChildren().get(i).setVisible(false);
}

}
}

}

// define the helper method for the "previous" button
private void previous()
{

if(currentCard != 0) // if we are not at the first card
{

currentCard--; // make the previous card the current card
// move through the cards: show the current card, hide the others
for(int i = 0; i <= stack.getChildren().size()- 1; i++)
{

if(i == currentCard)
{

stack.getChildren().get(i).setVisible(true);
}
else
 {

stack.getChildren().get(i).setVisible(false);
}

}
}

}

public static void main(String[] args)
{

launch(args);
}

}

516 17 JavaFX: Interacting with the User

We are using helper methods for the “Previous” button and the “Next” buttons,
so we have defined a couple of attributes that can be accessed by these methods.
The first is a counter that keeps track of the current card, the second is the stack
pane that will hold the cards:

private int currentCard = 0;
private StackPane stack = new StackPane();

The start method begins by creating the first card. First we create a label
which gives the instruction to the user:

Label levelLabel = new Label("Choose your level");
levelLabel.setFont(Font.font ("Verdana", 15));

Next an HBox to hold three dummy buttons:

HBox levelButtons = new HBox(10);
levelButtons.getChildren().addAll(new Button("Novice"),

new Button("Regular"), new Button ("Expert"));
levelButtons.setAlignment(Pos.CENTER);

Finally we create a VBox to act as the first card, then add the label and the button
container to it:

VBox levelPanel = new VBox(10);
levelPanel.getChildren().addAll(levelLabel, levelButtons);
levelPanel.setAlignment(Pos.CENTER);

We do the same thing for the other two cards, then go on to configure the stack
pane and add the three cards to it.

The items held by the stack pane are indexed from zero (in the order they were
added), and they are retrieved with the get method of the list retrieved by the
getChildren method. Using the indices we set the initial state, with the first card
visible and the other two invisible:

stack.getChildren().get(0).setVisible(true);
stack.getChildren().get(1).setVisible(false);
stack.getChildren().get(2).setVisible(false);

We go on to create and configure an HBox, to which we add the “Previous”
button, the stack and the “Next” button.

17.6 A Card Menu 517

Before we finally create the scene and the stage, we add our event handlers to the
two buttons; these call the helper methods, next and previous.

nextButton.setOnAction (e -> next());
previousButton.setOnAction (e -> previous());

The code for the next method is as follows:

private void next()
{

if(currentCard != stack.getChildren().size()- 1)
{

currentCard++;
for(int i = 0; i <= stack.getChildren().size()- 1; i++)
{

if(i == currentCard)
{

stack.getChildren().get(i).setVisible(true);
}
else
{

stack.getChildren().get(i).setVisible(false);
}

}
}

}

First we have checked that we are not at the last card—for this purpose we have
used the getSize method of the list of items (although we know that the index of
the last item is 2, doing it this way would allow us to add more cards without
changing the code).

If we are not at the last card we increment the counter and then cycle through the
cards; we set the current card to be visible, the others to be invisible.

The previous method behaves in a similar way.

17.7 The Dialog Class

JavaFX provides a very useful control class called Dialog, which has subclasses
called Alert, ChoiceDialog, TextInputDialog. These provide
popup windows which allow the user to view or enter information. One of the very
useful aspects of this is that we can begin an application by showing a popup
window that gets some information from the user before showing the main
scene graphic.

518 17 JavaFX: Interacting with the User

The program below demonstrates how these classes work.

DialogDemo
import java.util.Optional;
import javafx.application.Application;
import static javafx.application.Application.launch;
import javafx.geometry.Pos;
import javafx.scene.Scene;
import javafx.scene.control.Alert;
import javafx.scene.control.Alert.AlertType;
import javafx.scene.control.Button;
import javafx.scene.control.ChoiceDialog;
import javafx.scene.control.Label;
import javafx.scene.control.TextInputDialog;
import javafx.scene.layout.VBox;
import javafx.scene.text.Font;
import javafx.stage.Stage;

public class DialogDemo extends Application
{

private String name;
private String colour;

@Override
public void start(Stage stage)
{

name = getUserName(); // get the user name by calling a text input dialog
Label label1 = new Label();
Label label2 = new Label();
Button button1 = new Button ("Alert");
Button button2 = new Button ("Choice");

button1.setOnAction(e -> showAlert()); // show an alert
// call a choice dialog
button2.setOnAction(e ->

{
colour = showChoice();
label2.setText("You chose " + colour);

}
);

VBox root = new VBox(10);
root.setAlignment(Pos.CENTER);
root.getChildren().addAll(label1, button1, button2, label2);
label1.setFont(Font.font("Ariel", 20));
label2.setFont(Font.font("Ariel", 20));
label1.setText("Hello " + name);

Scene scene = new Scene(root);
stage.setScene(scene);
stage.setTitle("Demo");
stage.setWidth(250);
stage.setHeight(250);
stage.show();

}

private String getUserName()
{

TextInputDialog dialog = new TextInputDialog();
dialog.setHeaderText("Enter your name");
dialog.setTitle("Text Input Dialog");

Optional<String> response = dialog.showAndWait();
return response.get();

}

private void showAlert()
{

Alert alert = new Alert(AlertType.INFORMATION);
alert.setHeaderText("Information Alert");
alert.setContentText(name + " is a cool name");
alert.showAndWait();

}

private String showChoice()
{

ChoiceDialog<String> choice = new ChoiceDialog<>("Red", "Yellow", "Blue");
choice.setContentText("Choose colour");
choice.setHeaderText("Choice dialog");

Optional<String> response = choice.showAndWait();
return response.get();

}

public static void main(String[] args)
{

launch(args);
}

}

17.7 The Dialog Class 519

As you can see, the first thing that happens, even before the scene is configured
and shown, is that a helper method getUserName is called. This causes the
following popup to appear as shown in Fig. 17.10.

The code for getUserName is as follows:

private String getUserName()
{

TextInputDialog dialog = new TextInputDialog();
dialog.setHeaderText("Enter your name");
dialog.setTitle("Text Input Dialog");

Optional<String> response = dialog.showAndWait();
return response.get();

}

As you can see from the code, we create and configure a TextInputDialog,
then call its showAndWait method, which does exactly what it says—shows the
dialogue and waits for a value to be entered. The value entered is returned as an
Optional object (as explained in Chap. 14), in this case Optional <String>.
The String value is retrieved with the get method of Optional.

Once the dialogue is closed, the main graphic appears (Fig. 17.11).
The two buttons are provided to demonstrate the Alert and the Choice-

Dialog classes. Pressing the “Alert” button calls another helper method, sho-
wAlert, which brings up the dialogue window shown below in Fig. 17.12:

The code for showAlert is as follows:

private void showAlert()
{

Alert alert = new Alert(AlertType.INFORMATION);
alert.setHeaderText("Information Alert");
alert.setContentText("name + " is a cool name");
alert.showAndWait();

}

Fig. 17.10 A text input
dialog

520 17 JavaFX: Interacting with the User

There are a number of different types of Alert, and the particular type is
provided as a parameter to the constructor. The type that you see in Fig. 17.12 is
AlertType.INFORMATION. Other types are shown in Fig. 17.13:

There is an additional constructor of Alert that enables you to choose which
buttons you would like. It takes the following form:

Alert(Alert.AlertType alertType, String contentText,
ButtonType… buttons)

Fig. 17.12 An information alert

Fig. 17.11 Dialog demo application

17.7 The Dialog Class 521

The last of these parameters, buttons, allows you to decide upon the type or
button—or buttons—you require. So for example, the following statement:

Alert alert
= new Alert(AlertType.INFORMATION, "Alert with three buttons", ButtonType.APPLY, ButtonType.OK, ButtonType.CLOSE);

would give rise to the alert shown in Fig. 17.14.
The button types available are shown in Table 17.1.
In order to find out which of the three buttons had been pressed you would need

to examine the return type of the showAndWait method:

Optional<ButtonType> response = alert.showAndWait();

The ButtonType could then be extracted with the get method of
Optional, and a string representing the button type could then be extracted with
the getText method of ButtonType:

String buttonPressed = response.get().getText();

Fig. 17.13 Other alert types

Fig. 17.14 A choice dialog with three buttons

522 17 JavaFX: Interacting with the User

Finally, the “choice” button in Fig. 17.11 will invoke the showChoice method
which brings up a choice dialog (Fig. 17.15).

Here is the code for showChoice, which by now should be self-explanatory
(notice, however, that ChoiceDialog is a generic class and requires the type of
the items to be held):

ChoiceDialog<String> choice = new ChoiceDialog<>("Red", "Yellow", "Blue");
choice.setContentText("Choose colour");
choice.setHeaderText("Choice dialog");

Optional<String> response = choice.showAndWait();
return response.get();

Once this dialogue window is closed, the choice made is shown (Fig. 17.16).

Table 17.1 Available button types

ButtonType.APPLY

ButtonType.CLOSE

ButtonType.CANCEL

ButtonType.FINISH

ButtonType.NEXT

ButtonType.PREVIOUS

ButtonType.YES

ButtonType.NO

ButtonType.OK

Fig. 17.15 A choice dialog

17.7 The Dialog Class 523

17.8 Self-test Questions

1: (a) In the application shown below, identify the various ways that users are
given for making choices.

(b) What alternatives could have been used for selecting the age range?

2. What is the difference between a modal and a non-modal dialogue?

3. In what circumstances might a context menu be preferable to a drop-down
menu?

Fig. 17.16 Dialog demo after the choice of colour has been made

524 17 JavaFX: Interacting with the User

4. Explain how a number of radio buttons can be made to work together.

5. The diagram below shows the choices available under the “Select a country”
option of the application shown in question 1.

Referring to the above diagram, explain how you would begin a conditional
statement that would execute some code if Bulgaria had been chosen.

17.9 Programming Exercises

1. Implement a few of the programs that we have developed in this chapter, and
experiment with different settings in order to change some the features.

2. Adapt the Hostel case study of Chaps. 11 and 12 as follows:

(a) Make use of a ComboBox to enter the month.

(b) Enable the number of rooms to be entered via a Dialog, as described in
Sect. 17.7.

(c) Make use of Alerts, as described in Sect. 17.7.

3. Create a graphical user interface for the Library class that we developed in
Chap. 15. Make use of the many JavaFX features discussed in this chapter.

4. At the end of Chap. 8 you were asked to develop a time table application. You
later enhanced this application by making use of exceptions at the end of
Chap. 14. Now develop a JavaFX GUI for this application, with the timetable
displayed as a grid. The following is an example—you can choose your own
design:

17.8 Self-test Questions 525

526 17 JavaFX: Interacting with the User

18Working with Files

Outcomes:

By the end of this chapter you should be able to:

• explain the principles of input and output and identify a number of different
input and output devices;

• explain the concept of an I/O stream;
• describe the basic file-handling techniques used in the Java language;
• distinguish between text, binary and object encoding of data;
• distinguish between serial access files and random access files;
• create and access files in Java using all the above encoding and access

methods.

18.1 Introduction

When we developed our case study in Chaps. 11 and 12 it became apparent that in
reality an application such as that one wouldn’t be much use unless we had some
way of storing our data permanently—even when the program has been terminated
and the computer has been switched off. You will remember in those chapters,
because you had not yet learnt how to do this, we provided a special class called
TenantFileHandler that enabled you to keep permanent records on disk.

Now it is time to learn how to do this yourself. As you are no doubt already
aware, a named block of externally stored data is called a file.

When we are taking an object-oriented approach, as we have been doing, we
tend not to separate the data from the behaviour; however, when it comes to storing
information in files then of course it is only the data that we are interested in storing.
When referring to data alone it is customary to use the terms record and field.
A record refers to a single data instance—for example a person, a stock-item, a

© Springer Nature Switzerland AG 2019
Q. Charatan and A. Kans, Java in Two Semesters, Texts in Computer Science,
https://doi.org/10.1007/978-3-319-99420-8_18

527

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99420-8_18&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99420-8_18&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99420-8_18&domain=pdf
https://doi.org/10.1007/978-3-319-99420-8_18

student and so on; a field refers to what in the object-oriented world we would
normally call an attribute—a name, a stock number, an exam mark etc.

In this chapter we will learn how to create files, and write information to them,
and to read the information back when we need it. We start by looking at this
process in the overall context of input and output, or I/O as it is often called; you
will then go on to learn a number of different techniques for keeping permanent
copies of your data.

18.2 Input and Output

Any computer system must provide a means of allowing information to come in
from the outside world (input) and, once it has been processed, to be sent out again
(output). The whole question of input and output, particularly where files are
concerned, can sometimes seem rather complex, especially from the point of view
of the programmer.

As with all aspects of a computer system, the processes of input and output are
handled by the computer hardware working in conjunction with the system software
—that is, the operating system (Windows™, macOS™ or Linux™ for example).
The particular application program that is running at the time normally deals with
input and output by communicating with the operating system, and getting it to
perform these tasks in conjunction with the hardware.

All this involves some very real complexity and involves a lot of low-level
details that a programmer is not usually concerned with; for example, the way in
which the system writes to external media such as disks, or the way it reconciles the
differences between the speed of the processor with the speed of the disk-drive.

18.3 Input and Output Devices

The most common way of getting data input from the outside world is via the
keyboard; and the most common way of displaying output data is on the screen.
Therefore, most systems are normally set up so that the standard input and output
devices are the keyboard and the screen respectively. However, there are many
other devices that are concerned with input and output: magnetic, solid state and
optical disks for permanent storage of data (both local and remote); flash drives;
network interface cards and modems for communicating with other computers; and
printers for producing hard copies.

We should bear in mind that the process, in one sense, is always the same, no
matter what the input or output device. All the data that is processed by the
computer’s central processing unit in response to program instructions is stored in
the computer’s main memory or RAM (Random Access Memory). Input is the
transfer of data from some external device to main memory whereas output is the

528 18 Working with Files

transfer of data from main memory to an external device. In order for input or
output to take place, it is necessary for a channel of communication to be estab-
lished between the device and the computer’s memory. Such a channel is referred to
as a stream. The operating system will have established a standard input stream
and a standard output stream, which will normally be the keyboard and screen
respectively. In addition to this, there is usually a standard error stream where
error messages can be displayed; this is normally also set to the screen. All of these
default settings for the standard streams can be changed either via the operating
system or from within the program itself.

In previous chapters you have seen that the System class has two attributes
called in and out. In addition to this, it has an additional attribute called err;
these objects are already set up to provide access to the standard input, output and
error streams. The attribute in is an object of a class called InputStream. This
class provides some low-level methods to deal with basic input—they are low-level
because they deal with sequences of bytes, rather than characters. A higher-level
class, InputStreamReader can be wrapped around this class to deal with
character input; InputStreamReader objects can subsequently be wrapped by
another class, BufferedReader, which handles input in the form of strings.

This rather complex way of reading from the keyboard is how things were done
before Java 5.0 provided the Scanner class. The following program illustrates
how you would get keyboard input in this manner.

KeyboardInput
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;

public class KeyboardInput
{

public static void main(String[] args)
 {

InputStreamReader input = new InputStreamReader(System.in); // to handle low-level details
BufferedReader reader = new BufferedReader(input); // to handle high-level details
try

 {
System.out.print("Enter a string: ");
String test = reader.readLine(); // gets a string of characters from the keyboard
System.out.println("You entered: " + test);

 }

catch(IOException e)
 {

e.printStackTrace();
 }
 }
}

You can see that the readLine method of BufferedReader is used to get a
string of characters from the keyboard; as you would expect, the method reads
characters from the keyboard until the user presses the enter key. It throws an
IOException if an error (such as a keyboard lock) occurs during the process, and
this has to be handled.

In this chapter, instead of dealing with input and output to the standard streams,
we are going to be dealing with the input and output of data to external disk drives
in the form of files—but, as you will see, the principles are the same.

18.3 Input and Output Devices 529

18.4 File-Handling

The output process, which consists of transferring data from memory to a file, is
usually referred to as writing; the input process, which consists of transferring data
from a file to memory, is referred to as reading. Both of these involve some
low-level detail to do with the way in which data is stored physically on the disk.
As programmers we do not want to have to worry more than is necessary about this
process—which, of course, will differ from one machine to the next and from one
operating system to the next. Fortunately, Java makes it quite easy for us to deal
with these processes. As we shall see, Java provides low-level classes which create
file streams—input or output streams that handle communication between main
memory and a named file on a disk. It also provides higher-level classes which we
can “wrap around” the low-level objects, enabling us to use methods that relate
more closely to our logical way of thinking about data. In this way we are shielded
from having to know too much detail about the way our particular system stores and
retrieves data to or from a file.

As we shall see, this whole process enables us to read and write data in terms of
units that we understand—for example, in the form of strings, lines of text, or basic
types such integers or characters; Java even allows us to store and retrieve whole
objects.

18.4.1 Encoding

Java supports three different ways of encoding data—that is, representing data on a
disk. These are text, binary and object.

Text encoding means that the data on the disk is stored as characters in the form
used by the external system (often ASCII). Java, as we know, uses the Unicode
character set, so, depending on the form used by the external system, some con-
version might take place in the process, but fortunately the programmer does not
have to worry about that. As an example, consider saving the number 107 to a text
file—it will be saved as the character ‘1’ in ASCII code (or whatever is used by the
system) followed by the character ‘0’, followed by the character ‘7’. A text file is
therefore readable by a text editor (such as Windows™ Notepad).

Binary encoding, on the other hand, means that the data is stored in the same
format as the internal representation of the data used by the program to store data in
memory. So the number 107 would be saved as the binary number 1101011.
A binary file could not be read properly by a text editor as we shall see in Sect. 18.6.

Finally, there is object-encoding which is a powerful mechanism provided by
Java whereby a whole object can be input or output with a single command.

You are probably asking yourself which is the best method to use when you start
to write applications that read and write to files. Well, if your files are going to be
read and written by the same application, then it really makes very little difference
how they are encoded. Just use the method that seems the easiest for the type of
data you are storing. However, do bear in mind that if you wanted your files to be
read by a text editor then you must, of course, use the text encoding method.

530 18 Working with Files

18.4.2 Access

The final thing that you need to consider before we show you how to write files in
Java is the way in which files are accessed. There are two ways in which this can
take place—serial access and random access. In the first (and more common)
method, each item of data is read (or written) in turn. The operating system provides
what is known as a file pointer, which is really just a location in memory that keeps
track of where we have got to in the process of reading or writing to a file.

Another way to access data in a file is to go directly to the record you want—this
is known as random access, and is a bit like going straight to the clip you want on a
DVD; whereas serial access is like using an old fashioned video tape, where you
have to work your way through the entire tape to get to the bit you want. Java
provides a class (RandomAccessFile) that we can use for random access. We
will start, however, with serial access.

18.5 Reading and Writing to Text Files

In this and the following section we are going to use as an example a very simple
class called Car; the code for this class is given below:

The Car class
public class Car
{

private String registration;
private String make;
private double price;

public Car(String registrationIn, String makeIn, double priceIn)
 {

registration = registrationIn;
make = makeIn;
price = priceIn;

 }

public String getRegistration()
 {

return registration;
 }

public String getMake()
 {

return make;
 }

public double getPrice()
 {

return price;
 }
}

The program below, TextFileTester, is a very simple menu-driven pro-
gram that manipulates a list of cars, held in memory as a List; it provides the
facility to add new cars to the list, to remove cars from the list and to display the
details of all the cars in the list. As it is a demonstration program only, we have not
bothered with such things as input validation, or checking if the list is empty before
we try to remove an item.

The difference between this and other similar programs that we have discussed
before, is that the list is kept as a permanent record—as wementioned before, we did a
similar thing in our case study in Chap. 12, but there the process was hidden from you.

18.4 File-Handling 531

The program is designed so that reading and writing to the file takes place as
follows: when the quit option is selected, the list is written as a permanent text file
called Cars.txt; each time the program is run, this file is read into memory.

The program is presented below; notice that we have provided two helper
methods, writeList and readList for the purpose of accessing the file; as we
shall explain, the writeList method also deals with creating the file for the first
time. Notice also that, for convenience, we are making use of the EasyScanner
class that we developed in Chap. 8.

import java.io.IOException;
import java.io.PrintWriter;
import java.util.ArrayList;
import java.util.List;

public class TextFileTester
{

public static void main(String[] args)
{

char choice;

11"etgcvg"cp"gorv{"nkuv"vq"jqnf"Ectu
List<Car> carList = new ArrayList<>();

11"tgcf"vjg"nkuv"htqo"hkng"yjgp"vjg"rtqitco"uvctvu
readList(carList);

11"ogpw"qrvkqpu
do
{

System.out.println("\nText File Tester");
System.out.println("1. Add a car");
System.out.println("2. Remove a car");
System.out.println("3. List all cars");
System.out.println("4. Quit\n");
choice = EasyScanner.nextChar();
System.out.println(); switch(choice)
{

case '1' :addCar(carList);
break;

case '2' :removeCar(carList);
break;

case '3' :listAll(carList);
break;

case '4' :writeList(carList); 11"ytkvg"vq"vjg"hkng
break;

default : System.out.print("\nPlease choose a number from 1 - 4 only\n ");
}

}while(choice != '4');
}

11"ogvjqf"hqt"cffkpi"c"pgy"ect"vq"vjg"nkuv
static void addCar(List<Car> carListIn)
{

String tempReg;
String tempMake;
double tempPrice;

System.out.print("Please enter the registration number: ");
tempReg = EasyScanner.nextString();
System.out.print("Please enter the make: ");
tempMake = EasyScanner.nextString();
System.out.print("Please enter the price: ");
tempPrice = EasyScanner.nextDouble();
carListIn.add(new Car(tempReg, tempMake, tempPrice));

}

1,"ogvjqf"hqt"tgoqxkpi"c"ect"htqo"vjg"nkuv / kp"c"tgcn"crrnkecvkqp"vjku"yqwnf"pggf"vq"kpenwfg
uqog"xcnkfcvkqp",1

static void removeCar(List<Car> carListIn)
{

int pos;
System.out.print("Enter the position of the car to be removed: ");
pos = EasyScanner.nextInt();
carListIn.remove(pos - 1);

}

11"ogvjqf"hqt"nkuvkpi"fgvcknu"qh"cnn"ectu"kp"vjg"nkuv
static void listAll(List<Car> carListIn)

TextFileTester
import java.io.BufferedReader;
import java.io.FileNotFoundException;
import java.io.FileReader;
import java.io.FileWriter;

532 18 Working with Files

}

}

11"ogvjqf"hqt"ytkvkpi"vjg"hkng
static void writeList(List<Car> carListIn)
{

11"wug"vt{/ykvj/tguqwtegu"vq"gpuwtg"hkng"ku"enqugf"uchgn{
try(

1,"etgcvg"c"HkngYtkvgt"qdlgev."ectHkng."vjcv"jcpfngu"vjg"nqy/ngxgn"fgvcknu"qh"ytkvkpi
vjg"nkuv"vq"c"hkng"yjkej"yg"jcxg"ecnngf"$Ectu0vzv$",1
FileWriter carFile = new FileWriter("Cars.txt");
1,"pqy"etgcvg"c"RtkpvYtkvgt"qdlgev"vq"ytcr"ctqwpf"ectHkng="vjku"cnnqyu"wu"vq"wugt
jkij/ngxgn"hwpevkqpu"uwej"cu"rtkpvnp",1
PrintWriter carWriter = new PrintWriter(carFile);

)
{

11"ytkvg"gcej"gngogpv"qh"vjg"nkuv"vq"vjg"hkng
for(Car item : carListIn)
{

carWriter.println(item.getRegistration());
carWriter.println(item.getMake());
carWriter.println(item.getPrice()); 11"rtkpvnp"ecp"ceegrv"c"fqwdng."cpf"ytkvg"kv"cu"c"uvtkpi

}
}
11"jcpfng"vjg"gzegrvkqp"vjtqyp"d{"vjg"HkngYtkvgt"ogvjqfu
catch(IOException e)
{

System.out.println("There was a problem writing the file");
}

}

11"ogvjqf"hqt"tgcfkpi"vjg"hkng
static void readList(List<Car> carListIn)
{

String tempReg;
String tempMake;
String tempStringPrice;
double tempDoublePrice;

11"wug"vt{/ykvj/tguqwtegu"vq"gpuwtg"hkng"ku"enqugf"uchgn{
try(

1,"etgcvg"c"HkngTgcfgt"qdlgev."ectHkng."vjcv"jcpfngu"vjg"nqyngxgn"fgvcknu"qh"tgcfkpi
vjg"nkuv"htqo"vjg"$Ectu0vzv$"hkng",1
FileReader carFile = new FileReader("Cars.txt");
1,"pqy"etgcvg"c"DwhhgtgfTgcfgt"qdlgev"vq"ytcr"ctqwpf"ectHkng="vjku"cnnqyu"wu"vq"wugt
jkij/ngxgn"hwpevkqpu"uwej"cu"tgcfNkpg",1
BufferedReader carStream = new BufferedReader(carFile);

)
{

11"tgcf"vjg"hktuv"nkpg"qh"vjg"hkng
tempReg = carStream.readLine();
1,"tgcf"vjg"tguv"qh"vjg"hktuv"tgeqtf."vjgp"cnn"vjg"tguv"qh vjg"tgeqtfu"wpvkn"vjg"gpf"qh

vjg"hkng"ku"tgcejgf",1
while(tempReg != null) 11"c"pwnn"uvtkpi"kpfkecvgu"gpf"qh"hkng
{

tempMake = carStream.readLine();
tempStringPrice = carStream.readLine();
11"cu"vjku"ku"c"vgzv"hkng"yg"jcxg"vq"eqpxgtv"vjg"rtkeg"vq"fqwdng
tempDoublePrice = Double.parseDouble(tempStringPrice);
carListIn.add(new Car(tempReg, tempMake, tempDoublePrice));
tempReg = carStream.readLine();

}
}

11"jcpfng"vjg"gzegrvkqp"vjcv"ku"vjtqyp"d{"vjg"HkngTgcfgt"eqpuvtwevqt"kh"vjg"hkng"ku"pqv"hqwpf
catch(FileNotFoundException e)
{

System.out.println("\nNo file was read");
}

11"jcpfng"vjg"gzegrvkqp"vjtqyp"d{"vjg"HkngTgcfgt"ogvjqfu
catch(IOException e)
{

System.out.println("\nThere was a problem reading the file");
}

}
}

{
for(Car item : carListIn)
{

System.out.println(item.getRegistration()
+ " "
+ item.getMake()
+ " "
+ item.getPrice());

It is only the writeList and readList methods that we need to analyse
here—none of the other methods involves anything new. Let’s start with
writeList:

18.5 Reading and Writing to Text Files 533

// method for writing the file
static void writeList(List<Car> carListIn)

 {
// use try-with-resources to ensure file is closed safely
try(

/* create a FileWriter object, carFile, that handles the low-level details of writing
the list to a file which we have called "Cars.txt" */
FileWriter carFile = new FileWriter("Cars.txt");
/* now create a PrintWriter object to wrap around carFile; this allows us to user
high-level functions such as println */
PrintWriter carWriter = new PrintWriter(carFile);

)
 {

// write each element of the list to the file
for(Car item : carListIn)

 {
carWriter.println(item.getRegistration());
carWriter.println(item.getMake());
carWriter.println(item.getPrice()); // println can accept a double, and write it as a string

}
 }

// handle the exception thrown by the FileWriter methods
catch(IOException e)

 {
System.out.println("There was a problem writing the file");

 }
 }

The first thing to notice is that we have enclosed everything in a try block. Here
we are creating our files using the try-with-resourcesmechanism that was introduced
to you in Chap. 14. We use this because the file has to be closed after we finish using
it. Closing the file achieves two things. First, it ensures that a special character, the
end-of-file marker,1 is written at the end of the file. This enables us to detect when the
end of the file has been reached when we are reading it—more about this when we
explore the readList method. Second, closing the file means that it is no longer
accessible by the program, and is therefore not susceptible to being written to in error.

Using try-with-resources ensures that the file is always closed, no matter what
other errors or exceptions may have occurred—before the advent of try-with-re-
sources we would have had to specifically close the file by calling the close
method of PrintWriter (this would have been done in a finally clause). As
you can see, the instructions for opening the file have been placed in the brackets
after the try keyword. We will use try-with-resources to create and open files
throughout this chapter.

The file is opened by using a class called FileWriter; this is one of the
classes we talked about earlier that provide the low-level communication between
the program and the file. By opening a file we establish a stream through which we
can output data to the file. We create a FileWriter object, carFile, giving it
the name of the file to which we want to write the data:

FileWriter carFile = new FileWriter("Cars.txt");

In this case we have called the file Cars.txt.2 Creating the new File-
Writer object causes the file to be opened in output mode—meaning that it is
ready to receive data; if no file of this name exists then one will be created. Opening
the file in this way (in output mode) means that any data that we write to the file will

1Most systems use Unicode character 26 as the end-of-file marker.
2As we have not supplied an absolute pathname, the file will be saved in the current directory.

534 18 Working with Files

wipe out what was previously there. That is what we need for this particular
application, because we are simply going to write the entire list when the program
terminates. Sometimes, however, it is necessary to open a file in append mode; in
this mode any data written to the file would be written after the existing data. To do
this we would simply have used another constructor, which takes an additional
(boolean) parameter indicating whether or not we require append mode:

FileWriter carFile = new FileWriter("Cars.txt", true);

The next thing we do is create an object, carWriter, of the PrintWriter
class, sending it the carFile object as a parameter.

PrintWriter carWriter = new PrintWriter(carFile);

This object can now communicate with our file via the carFile object;
PrintWriter objects have higher level methods than FileWriter objects (for
example print and println) that enable us to write whole strings like we do
when we output to the screen.

Now we are ready to write each Car in the list to our file—we can use a for
loop for this:

for(Car item : carListIn)
{

carWriter.println(item.getRegistration());
 carWriter.println(item.getMake());

carWriter.println(item.getPrice());
}

On each iteration we use the println method of our PrintWriter object,
carWriter, to write the registration number, the make and the price of the car to
the file; println converts the price to a String before writing it. Notice also
that the println method inserts a newline character at the end of the string that it
prints; if we did not want the newline character to be inserted, we would use the
print method instead.

Finally we have to handle any IOExceptions that may be thrown by the
FileWriter methods:

catch(IOException e)
{

System.out.println("There was a problem writing the file");
}

In a moment we will explore the code for reading the file. But bear in mind that
if we were to run our program and add a few records, and then quit the program we
would have saved the data to a text-file called Cars.txt, so we should be able to
read this file with a text editor. When we did this, we created three cars, and then
looked inside the file using Windows™ Notepad. Figure 18.1 shows the result.

18.5 Reading and Writing to Text Files 535

As we have written each field using the println statement, each one, as you
can see, starts on a new line. If our aim were to view the file with a text editor as we
have just done, then this might not be the most suitable format—we might, for
example, have wanted to have one record per line; we could also have printed some
headings if we had wished. However, it is actually our intention to make our
program read the entire file into our list when the program starts—and as we shall
now see, one field per line makes reading the text file nice and easy. So let’s take a
look at our readList method:

// method for reading the file
static void readList(List<Car> carListIn)

 {
String tempReg;
String tempMake;
String tempStringPrice;
double tempDoublePrice;

// use try-with-resources to ensure file is closed safely
try(

/* create a FileReader object, carFile, that handles the lowlevel details of reading
the list from the "Cars.txt" file */
FileReader carFile = new FileReader("Cars.txt");
/* now create a BufferedReader object to wrap around carFile; this allows us to user
high-level functions such as readLine */
BufferedReader carStream = new BufferedReader(carFile);

)
 {

// read the first line of the file
tempReg = carStream.readLine();
/* read the rest of the first record, then all the rest of the records until the end of

the file is reached */
while(tempReg != null) // a null string indicates end of file

 {
tempMake = carStream.readLine();
tempStringPrice = carStream.readLine();
// as this is a text file we have to convert the price to double
tempDoublePrice = Double.parseDouble(tempStringPrice);
carListIn.add(new Car(tempReg, tempMake, tempDoublePrice));
tempReg = carStream.readLine();

 }
 }

// handle the exception that is thrown by the FileReader constructor if the file is not found
catch(FileNotFoundException e)

 {
System.out.println("\nNo file was read");

 }

// handle the exception thrown by the FileReader methods
catch(IOException e)

 {
System.out.println("\nThere was a problem reading the file");

 }
 }

Fig. 18.1 Viewing a text file with windows notepad

536 18 Working with Files

First, we have declared some variables to hold the value of each field as we
progressively read through the file. Remembering that this is a text file we have
declared three Strings:

String tempReg;
String tempMake;
String tempStringPrice;

The last of these will have to be converted to a double before we store it in the
list so we also need a variable to hold this value once it is converted:

double tempDoublePrice;

Now, as before, we put everything into a try block, as we are going to have to
deal with the exceptions that may be thrown by the various methods we will be
using. Again we are using try-with-resources, so the process of opening the file is
place in the brackets after the try. As you can see from the code, we start by
creating an object—carFile—of the class FileReader which deals with the
low-level details involved in the process of reading a file. The name of the file,
Cars.txt, that we wish to read is sent in as a parameter to the constructor; this
file is then opened in read mode.

FileReader carFile = new FileReader("Cars.txt");

Now, in order that we can use some higher-level read methods, we wrap up our
carFile object in an object of a class called BufferedReader. We have called
this new object carStream.

BufferedReader carStream = new BufferedReader(carFile);

Now we are going to read each field of each record in turn, so we will need some
sort of loop. The only problem is to know when to stop—this is because the number
of records in the file can be different each time we run the program. There are
different ways in which to approach this problem. One very good way (although not
the one we have used here), if the same program is responsible for both reading and
writing the file, is simply to write the total number of records as the first item when
the file is written. Then, when reading the file, this item is the first thing to be read
—and once this number is known a for loop can be used to read the records.

However, it may well be the case that the file was written by another program
(such as a text editor). In this case it is necessary to check for the end-of-file marker
that we spoke about earlier. In order to help you understand this process we are
using this method here, even though we could have used the first (and perhaps
simpler) method.

18.5 Reading and Writing to Text Files 537

This is what we have to do: we have to read the first field of each record, then
check whether that field began with the end-of-file marker. If it did, we must stop
reading the file, but if it didn’t we have to carry on and read the remaining fields of
that record. Then we start the process again for the next record.

Some pseudocode should make the process clear; we have made this pseudocode
specific to our particular example:

BEGIN
READ the registration number field of the first record
LOOP while the field just read does not contain the end-of-file marker
BEGIN

READ the make field of the next record
READ the price field of the next record
CONVERT the price to a double
CREATE a new car with details just read and add it to the list
READ the registration number field of the next record

END
END

The code for this is shown below:

tempReg = carStream.readLine();
while(tempReg != null) // a null string indicates end of file
{

tempMake = carStream.readLine();
tempStringPrice = carStream.readLine();
tempDoublePrice = Double.parseDouble(tempStringPrice);
carListIn.add (new Car(tempReg, tempMake, tempDoublePrice));
tempReg = carStream.readLine();

}

Notice that we are using the readLine method of BufferedReader to read
each record. This method reads a line of text from the file; a line is considered
anything that is terminated by the newline character. The method returns that line as
a String (which does not include the newline character). However, if the line read
consists of the end-of-file marker, then readLine returns a null, making it very
easy for us to check if the end of the file has been reached. In Sect. 18.7 you will be
able to contrast this method of BufferedReader with the read method, which
reads a single character only.

Finally, we must handle any exceptions that may be thrown by the methods of
FileReader; first, the constructor throws a FileNotFoundException if the
file is not found:

catch(FileNotFoundException e)
{

System.out.println("\nNo file was read");
}

All the other methods may throw IOExceptions:

catch(IOException e)
{

System.out.println("\nThere was a problem reading the file");
}

538 18 Working with Files

18.6 Reading and Writing to Binary Files

In many ways, it makes little difference whether we store our data in text format or
binary format; but it is, of course, important to know the sort of file that we are
dealing with when we are reading it. For example, in the previous section you saw
that we needed to convert a String to a double when it came to handling the
price of a car. However, it is important for you to be familiar with the ways of
handling both types of file, so now we will show you how to read and write data to a
binary file using exactly the same example as before.

The only difference in our program will be the writeList and readList
methods. First let’s look at the code for the new writeList method:

static void writeList(List<Car> carListIn)
{

// use try-with-resources to ensure file is closed safely
try(

FileOutputStream carFile = new FileOutputStream("Cars.bin");
DataOutputStream carWriter = new DataOutputStream(carFile);

)
 {

for(Car item : carListIn)
 {

carWriter.writeUTF(item.getRegistration());
carWriter.writeUTF(item.getMake());
carWriter.writeDouble(item.getPrice());

 }

 }

catch(IOException e)
 {

System.out.println("There was a problem writing the file");
 }

You can see that the process is similar to the one we used to write a text file, but
here the two classes that we are using are FileOutputStream and
DataOutputStream which deal with the low-level and high-level processes
respectively. The DataOutputStream class provides methods such as
writeDouble, writeInt and writeChar for writing all the basic scalar
types, as well a method called writeUTF for writing strings. UTF stands for
Unicode Transformation Format, and the method is so-called because, when it
writes the string to a file, it converts the Unicode characters (which are used in Java)
to the machine-specific format.

Before moving on to the readList method it is worth reminding ourselves
that a file written in this way—that is, a binary file—cannot be read by a text editor.
And to prove the point, Fig. 18.2 shows the result of trying to read such a file in
Windows™ Notepad.

18.6 Reading and Writing to Binary Files 539

So now we can look at the readList method:

static void readList(List<Car> carListIn)
 {

String tempReg;
String tempMake;
double tempPrice;
boolean endOfFile = false;

// use try-with-resources to ensure file is closed safely
try(

FileInputStream carFile = new FileInputStream("Cars.bin");
DataInputStream carStream = new DataInputStream(carFile);

)
 {

while(endOfFile == false)
 {

try
 {

tempReg = carStream.readUTF();
tempMake = carStream.readUTF();
tempPrice = carStream.readDouble();
carListIn.add(new Car(tempReg, tempMake, tempPrice));

 }
catch(EOFException e)

 {
endOfFile = true;

 }
 }

 }
catch(FileNotFoundException e)

 {
System.out.println("\nThere are currently no records");

 }

catch(IOException e)
 {

System.out.println("There was a problem reading the file");
 }

}

You can see that the two classes we use for reading binary files are
FileInputStream for low-level access and DataInputStream for the
higher-level functions; they have equivalent methods to those we saw previously
when writing to files.

The most important thing to observe in this method is the way we test whether
we have reached the end of the file. In the case of a binary file we can do this by
making use of the fact that the DataInputStream methods throw
EOFExceptions when an end of file marker has been detected during a read
operation. So all we have to do is declare a boolean variable, endOfFile,
which we initially set to false, and we use this as the termination condition in the
while loop. Then we enclose our read operations in a try block, and, when an
exception is thrown, endOfFile is set to true within the catch block, causing
the while loop to terminate.

Fig. 18.2 Trying to read a binary file with a text editor

540 18 Working with Files

18.7 Reading a Text File Character by Character

As you will have realized by now, there are many ways in which we can deal with
handling files, and the methods we choose will depend largely on what it is we want
to achieve.

In this section we will show you how to read a text file character by character—
this is a useful technique if we do not know anything about the structure of the file.

We have written a JavaFX application which reads a text file, Poem.txt,
character by character, and builds a string by appending each character as it is read.
The process continues until the end of the file is reached, or until a stipulated
number of characters have been read. We put this last condition in as a safeguard in
case the user should try to display a very large file by mistake.

Once the reading process has finished, the string is displayed by adding it to a
label, as shown in Fig. 18.3.

Here is the code for the application:

CharacterByCharacter
import java.io.BufferedReader;
import java.io.FileReader;
import java.io.IOException;
import javafx.application.Application;
import javafx.geometry.Pos;
import javafx.scene.Scene;
import javafx.scene.control.Label;
import javafx.scene.layout.VBox;
import javafx.stage.Stage;

public class CharacterByCharacter extends Application
{

private Label viewArea = new Label();

BQxgttkfg
public void start(Stage stage)
{

VBox root = new VBox();
root.setAlignment(Pos.CENTER);
root.getChildren().add(viewArea);
Scene scene = new Scene(root, 400, 100);
stage.setScene(scene);
stage.setTitle("Character By Character");
stage.show();

readAndWrite();
}
private void readAndWrite()

Fig. 18.3 Reading a file character by character

18.7 Reading a Text File Character by Character 541

{
11"wug"vt{/ykvj/tguqwtegu"vq"gpuwtg"hkng"ku"enqugf"uchgn{
try(

FileReader testFile = new FileReader("Poem.txt");
BufferedReader textStream = new BufferedReader(testFile);

)
{

String str = new String();
final int MAX = 1000;

int ch; 11"vq"jqnf"vjg"kpvgigt"*Wpkeqfg+"xcnwg"qh"vjg"ejctcevgt
char c; 11"vq"jqnf"vjg"ejctcevgt"yjgp"v{rg"ecuv"htqo"kpvgigt
int counter = 0; 11"vq"eqwpv"vjg"pwodgt"qh"ejctcevgtu"tgcf"uq"hct
ch = textStream.read(); 11"tgcf"vjg"hktuv"ejctcevgt"htqo"vjg"hkng
c = (char) ch; 11"v{rg"ecuv"htqo"kpvgigt"vq"ejctcevgt
1,"eqpvkpwg"vjtqwij"vjg"hkng"wpvkn"gkvjgt"vjg"gpf"qh"vjg"hkng"ku

tgcejgf"*kp"yjkej"ecug /3"ku"tgvwtpgf+"qt"vjg"oczkowo"pwodgt"qh
ejctcevgtu"uvkrwncvgf"jcxg"dggp"tgcf",1

while(ch != -1 && counter <= MAX)
{

counter++; 11"kpetgogpv"vjg"eqwpvgt
str = str + c;
ch = textStream.read(); 11"tgcf"vjg"pgzv"ejctcevgt
c = (char) ch;

}

str = str + "\n";
viewArea.setText(str);

}

catch(IOException ioe)
{

viewArea.setText("There was a problem reading the file\n");
}

}

public static void main(String[] args)
{

launch(args);
}

}

As you can see, we have placed the functionality in a helper method, read-
AndWrite. The main thing to notice here is that we are using the read method of
BufferedReader; this method reads a single character from the file and returns
an integer, the Unicode value of the character read. If the character read was the
end-of-file marker then it returns −1, making it an easy matter for us to check
whether the end of the file has been reached. In the above example, as explained
earlier, we stop reading the file if we have reached the end or if more than the
maximum number of characters allowed has been read; here we have set that
maximum to 1000. You can see that in the above method, after each read operation,
we type cast the integer to a character, which we then append to the string.

18.8 Object Serialization

If you are going to be dealing with files that will be accessed only within a Java
program, then one of the easiest ways to do this is to make use of two classes called
ObjectInputStream and ObjectOutputStream. These classes have
methods called, respectively, readObject and writeObject that enable us to
read and write whole objects from and to files. The process of converting an object
into a stream of data suitable for storage on a disk is called serialization.

Any class whose objects are to be read and written using the above methods
must implement the interface Serializable. This is a type of interface that we
have not actually come across before—it is known as a marker and in fact contains

542 18 Working with Files

no methods. Its purpose is simply to make an “announcement” to anyone using the
class; namely that objects of this class can be read and written as whole objects. In
designing a class we can, then, choose not to make our class Serializable—we
might want to do this for security reasons (for example, to stop whole objects being
transportable over the Internet) or to avoid errors in a distributed environment
where the code for the class was not present on every machine.

In the case of our Car class, we therefore need to declare it in the following way
before we could use it in a program that handles whole objects:

public class Car implements Serializable

The Serializable interface resides within the java.io package.
Now we can re-write the writeList and readList methods of TextFi-

leTester so that we manipulate whole objects. First the writeList method:

static void writeList(List<Car> carListIn)
{

// use try-with-resources to ensure file is closed safely
try(

FileOutputStream carFile = new FileOutputStream("Cars.dat");
ObjectOutputStream carStream = new ObjectOutputStream(carFile);

)
{

for(Car item : carListIn)
{

carStream.writeObject(item);
}

}
catch(IOException e)
{

System.out.println("There was a problem writing the file");
}

}

You can see how easy this is—you just need one line to save a whole object to a
file by using the writeObject method of ObjectOutputStream.

Now the readList method:

static void readList(List<Car> carListIn)
{

boolean endOfFile = false;
Car tempCar;

11"wug"vt{/ykvj/tguqwtegu"vq"gpuwtg"hkng"ku"enqugf"uchgn{
try(

11"etgcvg"c"HkngKprwvUvtgco"qdlgev."ectHkng
FileInputStream carFile = new FileInputStream("Cars.dat");
11"etgcvg"cp"QdlgevKprwvUvtgco"qdlgev"vq"ytcr"ctqwpf"ectHkng
ObjectInputStream carStream = new ObjectInputStream(carFile);

)
{

11"tgcf"vjg"hktuv"*yjqng+"qdlgev"ykvj"vjg"tgcfQdlgev"ogvjqf
tempCar = (Car) carStream.readObject();
while(endOfFile != true)
{

try
{

carListIn.add(tempCar);
// read the next (whole) object
tempCar = (Car) carStream.readObject();

}

1,"wug"vjg"hcev"vjcv"tgcfQdlgev"vjtqyu"cp"GQHGzegrvkqp"vq
ejgem"yjgvjgt"vjg"gpf"qh"vjg"hkng"jcu"dggp"tgcejgf",1

18.8 Object Serialization 543

catch(FileNotFoundException e)
{

System.out.println("\nNo file was read");
}

catch(ClassNotFoundException e) 11"vjtqyp"d{"tgcfQdlgev
{

System.out.println("\nTrying to read an object of an unknown class");
}

catch(StreamCorruptedException e) 11"vjtqyp"d{"vjg"eqpuvtwevqt
{

System.out.println("\nUnreadable file format");
}

catch(IOException e)
{

System.out.println("There was a problem reading the file");
}

catch(EOFException e)
{

endOfFile = true;
}

}

}

Again you can see how easy this is—a whole object is read with the read-
Object method.

We should draw your attention to a few of the exception handling routines we
have used here—first notice that we have once again made use of the fact that
readObject throws an EOFException to check for the end of the file. Second,
notice that readObject also throws a ClassNotFoundException, which
indicates that the object just read does not correspond to any class known to the
program. Finally, the constructor throws a StreamCorruptedException,
which indicates that the input stream given to it was not produced by an
ObjectOutputStream object—underlining the fact that reading and writing
whole objects are complementary techniques that are specific to Java programs.

One final thing to note—if an attribute of a Serializable class is itself an
object of another class, then that class too must be Serializable in order for us
to be able to read and write whole objects as we have just done. You will probably
have noticed that in the case of the Car class, one of its attributes is a String—
fortunately the String class does indeed implement the Serializable inter-
face, which is why we had no problem using it in this way in our example.

Before moving on, it is worth noting that all the Java collection classes such as
HashMap and ArrayList are themselves Serializable.

18.9 Random Access Files

All the programs that we have looked at so far in this chapter have made use of
serial access. For small applications this will probably be all you need—however, if
you were writing applications that handled very large data files it would be
desirable to use random access methods. Fortunately Java provides us with this
facility.

544 18 Working with Files

Table 18.1 Size of the primitive types

byte 1 byte

short 2 bytes

char 2 bytes

int 4 bytes

long 8 bytes

float 4 bytes

double 8 bytes

boolean 1 bit3

The class that we need is called RandomAccessFile. This enables us to open
a file for random access. Random access files can be opened in either read–write
mode or read-only mode; the constructor therefore takes, in addition to the name of
the file, an additional String parameter which can be either “rw” or “r”, indi-
cating the mode in which the file is to be opened.

In addition to methods similar to those of the DataOutputStream class (such
as writeUTF, readDouble and so on), RandomAccessFile has a method
called seek. This takes one attribute, of type long, which indicates how many
bytes to move the file-pointer before starting a read or write operation.

So now we have the question of how far to move the pointer—we need to be
able to calculate the size of each record. If we are dealing only with primitive types,
this is an easy matter. These types all take up a fixed amount of storage space, as
shown in Table 18.1 overleaf.

The difficulty comes when a record contains Strings, as is commonly the case.
The size of a String object varies according to how many characters it contains.
What we have to do is to restrict the length of each string to a given amount; let’s take
the Car class as an example. The data elements of any Car object consist of two
Strings and a double. We will make the decision that the two String attributes
—registration number and make—will be restricted to 10 characters only. Now, any
String variable will always take up one byte for each character, plus two extra bytes
(at the beginning) to hold an integer representing the length of the String. So now
we can calculate the maximum amount of storage space we need for a car as follows:

registration (String) 12 bytes

make (String) 12 bytes

price (double) 8 bytes

Total 32 bytes

This still leaves us with one problem—what if the length of one of the String
attributes entered is actually less than 10? The best way to deal with this is to pad
the string out with spaces so that it always contains exactly 10 characters. This

3Allow for 1 byte when calculating storage space.

18.9 Random Access Files 545

means that the size of every Car object will always be exactly 32 bytes—you will
see how we have done this when you study program below, Ran-
domFileTester. This program uses a rather different approach to the one we
have used so far in this chapter. Two options (as well as a Quit option) are provided.
The first, the option to add a car, simply adds the car to the end of the file. The
second, to display the details of a car, asks the user for the position of the car in the
file then reads this record directly from the file. You can see that there is now no
need for a List in which to store the cars.

Study the program carefully—then we will discuss it. Note that we have made
use of our EasyScanner class here.

RandomFileTester
import java.io.FileNotFoundException;
import java.io.IOException;
import java.io.RandomAccessFile;

public class RandomFileTester
{

static final int CAR_SIZE = 32; 11"gcej"tgeqtf"yknn"dg"54"d{vgu

public static void main(String[] args)
 {

char choice;
do

 {
System.out.println("\nRandom File Tester");
System.out.println("1. Add a car");
System.out.println("2. Display a car");
System.out.println("3. Quit\n");
choice = EasyScanner.nextChar();
System.out.println();
switch(choice)

 {
case '1' :addCar();

break;
case '2' :displayCar();

break;
case '3' :break;
default : System.out.print("\nChoose 1 - 3 only please\n ");

 }
}while(choice != '3');

 }

static void addCar()
 {

String tempReg;
String tempMake;
double tempPrice;
System.out.print("Please enter the registration number: ");
tempReg = EasyScanner.nextString();

if(tempReg.length() > 10) 11nkokv"vjg tgikuvtcvkqp"pwodgt"vq"32"ejctcevgtu
 {

System.out.print("Ten characters only - please re-enter: ");
tempReg = EasyScanner.nextString();

 }
11"rcf"vjg"uvtkpi"ykvj"urcegu"vq"ocmg"kv"gzcevn{"32"ejctcevgtu"nqpi"
for(int i = tempReg.length() + 1 ; i <= 10 ; i++)

 {
tempReg = tempReg.concat(" ");

 }

11"igv"vjg"ocmg"qh"vjg"ect"htqo"vjg"wugt
System.out.print("Please enter the make: ");
tempMake = EasyScanner.nextString();

11"nkokv"vjg"ocmg"pwodgt"vq"32"ejctcevgtu
if(tempMake.length() > 10)

 {
System.out.print("Ten characters only - please re-enter: ");
tempMake = EasyScanner.nextString();

 }
11"rcf"vjg"uvtkpi"ykvj"urcegu"vq"ocmg"kv"gzcevn{"32"ejctcevgtu"nqpi
for(int i = tempMake.length() + 1; i <= 10; i++)

 {
tempMake = tempMake.concat(" ");

 }

546 18 Working with Files

11"igv"vjg"rtkeg"qh"vjg"ect"htqo"vjg"wugt"
System.out.print("Please enter the price: ");
tempPrice = EasyScanner.nextDouble();

11"ytkvg"vjg"tgeqtf"vq"vjg"hkng
writeRecord(new Car(tempReg, tempMake, tempPrice));

 }

static void displayCar()
 {

int pos;
11"igv"vjg"rqukvkqp"qh"vjg"kvgo"vq"dg"tgcf"htqo"vjg"wugt
System.out.print("Enter the car's position in the list: ");
pos = EasyScanner.nextInt(); 11"tgcf"vjg"tgeqtf"tgswguvgf"htqo"hkng
Car tempCar = readRecord(pos);
if(tempCar != null)

 {
System.out.println(tempCar.getRegistration().trim()
+ " "
+ tempCar.getMake().trim()
+ " "
+ tempCar.getPrice());

 }
else

 {
System.out.println("Invalid postion") ;

 }
 }

static void writeRecord(Car tempCar)
 {

11"wug"vt{/ykvj/tguqwtegu"vq"gpuwtg"hkng"ku"enqugf"uchgn{
try(

11"qrgp"c"TcpfqoCeeguuHkng"kp"tgcf/ytkvg"oqfg
RandomAccessFile carFile = new RandomAccessFile("Cars.rand", "rw");

)
 {

11 oqxg"vjg"rqkpvgt"vq"vjg"gpf"qh"vjg"hkng
carFile.seek(carFile.length());
11"ytkvg"vjg"vjtgg"hkgnfu"qh"vjg"tgeqtf"vq"vjg"hkng
carFile.writeUTF(tempCar.getRegistration());
carFile.writeUTF(tempCar.getMake());
carFile.writeDouble(tempCar.getPrice());

 }
catch(IOException e)

 {
System.out.println("There was a problem writing the file");

 }
 }

static Car readRecord(int pos)
 {

String tempReg;
String tempMake;
double tempPrice;
Car tempCar = null; 11"c"pwnn"xcnwg"ku"tgvwtpgf"kh"vjgtg"ku"c"rtqdngo"tgcfkpi"vjg"tgeqtf

11"wug"vt{/ykvj/tguqwtegu"vq"gpuwtg"hkng"ku"enqugf"uchgn{
try(

11"qrgp"c"TcpfqoCeeguuHkng"kp"tgcf/qpn{"oqfg
RandomAccessFile carFile = new RandomAccessFile("Cars.rand","r");

)
 {

11"oqxg"vjg"rqkpvgt"vq"vjg"uvctv"qh"vjg"tgswktgf"tgeqtf
carFile.seek((pos-1) * CAR_SIZE);
11"tgcf"vjg"vjtgg"hkgnfu"qh"vjg"tgeqtf"htqo"vjg"hkng
tempReg = carFile.readUTF();
tempMake = carFile.readUTF();
tempPrice = carFile.readDouble();
11"wug"vjg"fcvc"lwuv"tgcf"vq"etgcvg"c"pgy"Ect"qdlgev
tempCar = new Car(tempReg, tempMake, tempPrice);

 }
catch(FileNotFoundException e)

 {
System.out.println("\nNo file was read");

 }

catch(IOException e)
 {

System.out.println("There was a problem reading the file");
 }

11"tgvwtp"vjg"tgeqtf"vjcv"ycu"tgcf
return tempCar;

 }
}

18.9 Random Access Files 547

You can see that in the addCar method we have called writeRecord with a
Car object as a parameter. Let’s take a closer look at the writeRecord method.
First the line to open the file in read-write mode:

RandomAccessFile carFile = new RandomAccessFile("Cars.rand", "rw");

Now the instruction to move the file pointer:

carFile.seek(carFile.length());

You can see how we use the seek method to move the pointer a specific
number of bytes; here the correct number of bytes is the size of the file (as we want
to write the new record at the end of the file), so we use the length method of
RandomAccessFile to determine this number.

Now we can move on to look at the readRecord method. You can see that
this is called from within the displayCar method, with an integer parameter,
representing the position of the required record in the file.

The file is opened in read-only mode:

RandomAccessFile carFile = new RandomAccessFile("Cars.rand","r");

Then the seek method of RandomAccessFile is invoked as follows:

carFile.seek((pos-1) * CAR_SIZE);

You can see that the number of bytes through which to move the pointer has
been calculated by multiplying the size of the record by one less than the position.
This is because in order to read the first record we don’t move the pointer at all; in
order to read the second record we must move it 1 � 32 bytes; for the third record 2
� 32 bytes; and so on.

The final thing to note about the program is that in the displayCar method
we have used the trim method of String to get rid of the extra spaces that we
used to pad out the first two fields of the record.

Here is a test run from the program (starting off with an empty file):

548 18 Working with Files

Random File Tester
1. Add a car
2. View a car
3. Quit

1

Please enter the registration number: R54 HJK
Please enter the make: Vauxhall
Please enter the price: 7000

Random File Tester
1. Add a car
2. View a car
3. Quit

1

Please enter the registration number: T87 EFU
Please enter the make: Nissan
Please enter the price: 9000

Random File Tester
1. Add a car
2. View a car
3. Quit

2

Enter the car’s position in the list: 2
T87 EFU Nissan 9000.0

18.10 Self-test Questions

1. Explain the principles of input and output and identify different input and output
devices.

2. What is meant by the term input/output stream?

3. Distinguish between text, binary and object encoding of data.

4. Explain why we have used the try-with-resources construct throughout this
chapter to create and open files.

5. The TextFileTester of Sect. 18.5 is to be adapted so that the user is simply
asked to enter a number of cars, which, when that process is finished, saves
those cars to a text file. The program then terminates. The file does not have to
be read from within the program, but should be able to be read by a text editor
such as Windows™ Notepad. The format should be as follows:

18.9 Random Access Files 549

Adapt the writeList method accordingly.

Hint: remember that a blank line is obtained by calling println with no
parameters.

6. What is the difference between serial access files and random access files?

7. Explain the purpose of the Serializable interface.

8. Calculate the number of bytes required to store an object of a class, the attributes
of which are declared as follows:

private int x;
private char c;
private String s;

You can assume that the String attribute will always consists of exactly 20
characters.

18.11 Programming Exercises

You will need to have access to the Car class, the source code for which is
available on the website. Or you can simply copy it from this chapter. The source
code for the programs in the chapter is also on the website.

1. Run the TextFileTester from Sect. 18.5 then adapt it so that it handles
binary files, as described in Sect. 18.6.

550 18 Working with Files

2. Adapt the TextFileTester so that it behaves in the way described in
question 5 of the self-test questions.

3. Implement the CharacterByCharacter program from Sect. 18.7, using a
text file that you have created.

4. Adapt the TextFileTester so that it uses object encoding, as explained in
Sect. 18.8 (don’t forget that the Car class must implement the Serializ-
able interface).

5. Adapt the Bank application of Chap. 8 so that it keeps permanent records using
text encoding.

6. In Chap. 12 the case study made use of a file called TenantFileHandler
that we wrote for you. This is available on the website. Study this class care-
fully, so that you are sure you understand it, then modify it so that it uses:

(a) text encoding;

(b) object encoding.

7. Adapt the Library application of Chap. 15 so that it keeps permanent records
using object encoding.

18.11 Programming Exercises 551

19Packages

Outcomes:

By the end of this chapter you should be able to:

• identify the role of packages in organizing classes;
• create and deploy their own packages in Java;
• access classes residing in their own packages;
• run Java applications from the command line;
• deploy Java applications as JAR files;
• access libraries that are not part of the standard Java framework to access data

on a remote database using the Java Database Connectivity (JDBC) and
Hibernate ORM technologies.

19.1 Introduction

From as early as Chap. 2 of this book you have been familiar with the idea of a
package, and have been using packages in order to access classes residing in
external folders. In this chapter we will take a more in-depth look at Java’s package
concept and see how you can deploy your own applications.

19.2 Understanding Packages

A package, in Java, is a named collection of related classes. You have already been
using packages to access pre-written classes. For example, to store objects in an
ordered collection you made use of the ArrayList class, which resides in the
util package. To read and write to files you used classes in the io package. To
organise the layout of your JavaFX applications you used classes such as Scene

© Springer Nature Switzerland AG 2019
Q. Charatan and A. Kans, Java in Two Semesters, Texts in Computer Science,
https://doi.org/10.1007/978-3-319-99420-8_19

553

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99420-8_19&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99420-8_19&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99420-8_19&domain=pdf
https://doi.org/10.1007/978-3-319-99420-8_19

and Group from the scene package. Giving meaningful names to a set of related
classes in this way makes it easy for programmers to locate these classes when
required. Packages can themselves contain other packages. For example, as well as
containing classes for organising the layout of your JavaFX applications, the scene

Fig. 19.1 A sample of the java package hierarchy

554 19 Packages

package also contains the control package, which contains JavaFX control
classes such as Button and Label, since this group of classes is still logically
related to JavaFX’s collection of scene related files.

The package name actually corresponds to the name of the directory (or folder as
some operating systems call it) in which all the given classes reside. All the core
Java packages themselves reside in a global Java directory, named simply java.
This directory is not itself a package but a store for other packages. Since Java was
launched a few additional global directories have been developed. In particular, the
javafx directory contains all the packages and classes required for JavaFX
development. Figure 19.1 illustrates part of this hierarchy of packages.

As you can see from Fig. 19.1, packages contain class files (that is the compiled
Java byte code), not source files (the original Java instructions). This means the
location of the original Java source files is unimportant here. They may be in the
same directory as the class files, in another directory or, as in the case of the
predefined Java packages, they may even no longer be available.

19.3 Accessing Classes in Packages

Suppose you are writing the code for a new class. You will recall how you can give
it access to a class contained within a package. Just referencing the class won’t
work. For example, let’s assume a class you are writing needs a DecimalFormat
object. The following will not compile:

public class SomeClass
{

private DecimalFormat someFormatObject; // a problem here
}

This won’t compile because the compiler won’t be able to find a class called
DecimalFormat. One way to tell the compiler where this class file resides is, as
you already know, to add an import statement above the class. This class is in the
text package so the following would be appropriate:

import java.text.DecimalFormat; // allows compiler to find the DecimalFormat.class file
public class SomeClass
{

private DecimalFormat someFormatObject; // now this will compile
}

Can you see how the import statement matches the directory structure we
illustrated in Fig. 19.1? Effectively the compiler is being told to look for the
DecimalFormat class in the text directory (package), which in turn is in the java
directory (whose location is already known to the Java run-time system). The

19.2 Understanding Packages 555

location of a file is often referred to as the path to that file. In the Windows
operating systems this path would be expressed as follows:

java\text\

In other operating systems forward slashes may be used instead of backward
slashes. The Java import statement simply expresses this path but uses dots
instead of backward or forward slashes.

The asterisk notation, that we also met in Chap. 2, allows you to have access to
all class files in the given package. Note that there can only ever be one ‘.*’ in an
import statement and the ‘.*’ must follow a package name. However, as you have
already seen in previous chapters, you can have as many import statements as
you require. Here are some examples of valid and invalid import statements:

import java.*.*; // illegal as contains more than one '.*'
import java.*; // illegal as 'java' is not a package
import java.text.*; // fine, allows access to all classes in text package
import javafx.scene.control.Button; // fine, allows access to the Button class in control package

Although there is no overhead in allowing access to all files in a package via the
asterisk notation, we have used the convention of explicitly listing every class
imported individually in this book for the sake of clarity.

It is actually possible to access classes from within packages without the need for
an import statement. To do this, references to any such classes must be appended
onto the package name itself. Returning to the DecimalFormat example, we
could have removed the import statement and referred to the package directly in
the class as follows:

public class SomeClass
{

/* appending the class name onto the package name avoids the need to import
the given package */

private java.text.DecimalFormat someFormatObject;
}

The package plus class name is in fact the proper name for this class. An
import statement just provides us with a convenient shorthand so that we do not
always have to include the package name with the class name. As you can imagine,
having to append the class name onto the package name every time we use a class
from a package would be very cumbersome, so the import statement is prefer-
able. There are times, however, when the long name is necessary.

The long class name can be useful when the class name on its own clashes with
the name of another class. For example, let us assume we have developed our own
class called Scanner—perhaps as part of a warehouse application. Giving this
name to the class is not a great idea as there already is a Scanner class in the
util package, but it is possible to choose this name if we wish. Now, let us

556 19 Packages

assume that the constructor for this class takes a double value that represents the
price of a product. The ScannerApp1 program below requires both this newly
developed Scanner class and Java’s Scanner class in the util package.

This ScannerApp1 program will not compile
import java.util.Scanner;// Java’s Scanner class
// this program will not compile!
public class ScannerApp1
{

public static void main(String[] args)
{

Scanner keyboard = new Scanner(System.in); // Java’s Scanner class
System.out.println("Enter price: ");
double price = keyboard.nextDouble();
// the next line will cause a compiler error
Scanner product = new Scanner (price); // our own Scanner class
// more code here

}
}

As you can see, we are referencing two Scanner classes here: Java’s
Scanner class and our newly developed Scanner class. Not surprisingly, this
will result in a compiler error! In the case of the ScannerApp program, the
compiler will assume the correct Scanner file is the Scanner that has been
imported and used to create a keyboard object:

Scanner keyboard = new Scanner(System.in); // this will compile ok

The second use of Scanner, to create an object called product from our own
class, will then be the one that will cause the compiler error, as the compiler is
expecting this Scanner class to be the Scanner class from the util package,
which has no such constructor for receiving a double:

Scanner product = new Scanner (price);// this will cause a compiler error

To resolve this name clash, we can use the extended package name in the code to
differentiate between the two classes. Let’s see how to do this in the Scan-
nerApp2 program below:

This ScannerApp2 program will compile
// note we do not import Scanner from util
public class ScannerApp2
{

public static void main(String[] args)
{

// use full path name to Scanner file in util
java.util.Scanner keyboard = new java.util.Scanner(System.in);
System.out.println("Enter price: ");
double price = keyboard.nextDouble();
// the next line will not now cause a compiler error
Scanner product = new Scanner (price); // our own Scanner class
// more code here

}
}

19.3 Accessing Classes in Packages 557

You can see the full path name has been used for Java’s Scanner class in the
code itself

java.util.Scanner keyboard = new java.util.Scanner(System.in);

Now we no longer have a name clash with our class and the complier can
process references to both classes.

19.4 Developing Your Own Packages

You might be surprised to know that all the classes that you have developed so far
already reside in a single package. This may seem strange as you didn’t instruct the
compiler to add your classes to any package. In fact, what actually happens is that if
you don’t specifically ask your classes to be put in a package, then they all get
added to some large unnamed package.

In order to locate and deploy your class files easily, and avoid any name clashes
in the future, it would be a good idea to use named packages to organize your
classes.

As an example, let’s go back to our Hostel application from Chaps. 11 and 12
and create a unique package in which to put our class files—we will call this
package hostelApp.1 To instruct the compiler that you wish to add the classes
that make up this application into a package called hostelApp, simply add the
following package command at the top of each of the original source files:

package hostelApp;

This line instructs the compiler that the class file created from this source file
must be put in a package called hostelApp. Here, for example, is the Payment
class with this package line added:

package hostelApp; // add this line to the top of the source file
public class Payment
{

// as before
}

11 We will stick to the standard Java convention of beginning package names with a lower-case
letter.

558 19 Packages

When you compile this class you will find a directory called hostelApp will
have been created and the resulting Payment.class file will be placed into this
directory.2

All the classes that make up this Hostel application (such as Tenant, Hostel
and so on) will need to be amended in a similar way:

1. Add the following line to the top of each source file

package hostelApp;

2. Ensure that the compiled class files are placed in the hostelApp directory.

TestPackage
import hostelApp.Payment; // import a class from the hostelApp
public class TestPackage
{

public static void main(String[] args)
{

Payment p = new Payment ("January", 725); // access the Payment class
System.out.println(p);// calls Payment’s toString method

}
}

Now, if we were developing applications in the future that wish to make use of
any of the classes in our hostelApp package we could import them like classes
from any other package. For example, the TestPackage program below imports
the Payment class from the hostelApp package and then creates a Payment
object before printing it on the screen:

19.5 Package Scope

Up until now we have declared all our classes to be public. This has meant they
have been visible to all other classes. When we come to adding our classes into our
own packages, this becomes particularly important. This is because classes can be
made visible outside of their package only if they are declared as public. Unless
they are declared as public, classes by default have what is known as package
scope. This means that they are visible only to other classes within the same
package.

2If you are developing a class from scratch that you wish to add into a package, your Java IDE can
be used so that the package line is inserted into your code for you and the required directory
structure created. If you are using your Java IDE to revisit classes previously written outside of a
package (as in this example), you may need to ensure that the resulting directory structure is
reflected in the project you are working in. Refer to your IDE’s documentation for details about
how to do this.

19.4 Developing Your Own Packages 559

Not all classes in the package need be declared as public. Some classes may
be part of the implementation only and the developer may not wish them to be made
available to the client. These classes can have package scope instead of public
scope. In this way, packages provide an extra layer of security for your classes.

In the case of our Hostel application, we might choose to make the Hostel
class public, and keep all the other files required in this application hidden within
the package by giving them package scope. To give a class package scope, just
remove the public modifier from in front of the class declaration. For example,
returning to the Payment class, we can give this package scope as follows:

package hostelApp; // this class is added into the package
class Payment // this class has package scope
{

// as before
}

Now, when the hostelApp package is imported into another class, this other
class has access only to the Hostel class; not to classes like Payment which are
hidden in the package with package scope. This is demonstrated in the code
fragment below:

import hostelApp.*; // this imports only the public classes in the package
public class SomeOtherClass
{

// the next line will not compile as Payment is hidden in the hostelApp package
Payment p = new Payment("January", 725);

}

19.6 Running Applications from the Command Line

Way back in Chap. 1 we discussed the process of compiling and running Java
programs. If you remember, we said that if you are working within a Java IDE you
will have simple icons to click in order to carry out these procedures. If, however,
you are working from a command line, like a DOS prompt for example, you would
use the javac command (followed by the name of the source file) to compile a
source file and java (followed by the name of a class) to run an application.3 As a
simple example, here is the very first program we showed you back in Chap. 1:

3When installing Java an environment variable called PATH should automatically have been set
so the operating system can locate the necessary Java tools to compile, run and deploy Java
programs. If this has not been done refer to your operating system’s instructions for setting this
variable The PATH variable should point to the bin folder in your JDK folder, for example C:
\ProgramFiles\Java\jdk1.8.0_121\bin.

560 19 Packages

HelloWorld
public class HelloWorld
{

public static void main(String[] args)
{

System.out.println ("Hello world");
}

}

Notice this program was not placed in a package. Assuming you are in the
directory containing this source code file, you can compile this class using the
javac.exe tool as follows:

javac HelloWorld.java

This will produce a Java class file (HelloWorld.class). Assuming you are
now in the directory that contains this class file you can then run this program with
the java.exe tool as follows:

java HelloWorld

As noted in Chap. 1, when running a class file you do not include the .class
extension.

When you run a class that resides in a package you must amend this slightly. As
an example, let’s once again consider the Hostel application. When you run an
application you must run the class that contains the main method. The appropriate
class in our application is the JavaFX Hostel class. Remember, we have now
added this class to a hostelApp package:

package hostelApp; // Hostel class part of the hostelApp package
// import statements here
public class Hostel extends Application
{

// as before
}

If we were in the hostelApp folder that contained this class we could try running
the Hostel class from the command line as follows:

java Hostel

Unfortunately, this won’t work as the system won’t be able to find a class of the
given name. In order to run a class that is contained within a package you must
append the class name onto the name of the package (with a ‘.’ symbol). You will
now need to be in the directory above the package directory. So in this case you will
need to be in the directory above the hostelApp directory. You can then run the
Hostel class by using the following command:

19.6 Running Applications from the Command Line 561

java hostelApp.Hostel`

If you do not wish to run the Java commands from the directories containing the
relevant files you can set an environment variable called the CLASSPATH so that
it points to the relevant directory (or directories) and then run these commands from
any directory. See your operating system’s documentation for how to do this.

Before we move on, let’s just stop and have a look at the parameter that we
always give to main methods:

public static void main(String[] args)

As you know, this means that main is given an array of String objects as a
parameter. How are these String objects passed on to main? Up until now we
have not discussed them at all. Well, values for these strings can be passed to main
when you run the given class from the command line. Often, as in our previous
program, there is no need to pass any such strings and this array of strings is
effectively empty. Sometimes, however, it is useful to send in such parameters.
They are sent to main from the command line by listing the strings, one after the
other after the name of the class as follows:

java ClassName firstString secondString otherStrings

As you can see, the strings are separated by spaces. Any number of strings can
be sent in this way. For example, if a program were called ProcessNames, two
names could be sent to it as follows:

java ProcessNames Aaron Quentin

Notice that, were the strings to contain spaces, they must be enclosed in quotes:

java ProcessNames “Aaron Kans” “Quentin Charatan”

These strings will be placed into main’s array parameter (args), with the first
string being at args[0], the second at args[1] and so on. The number of strings
sent to main is variable. The main method can always determine the number of
strings sent by checking the length of the array (args.length). The Pro-
cessNames class takes the array of strings and displays them on the screen.

ProcessNames
public class ProcessNames
{

public static void main(String[] args)
{

if (args.length != 0)// check some arguments have been sent
 {

// loop through all elements in the 'args' array
for (int i=0; i<args.length; i++)
{

// access individual strings in array
System.out.println("hello " + args[i]);

}
 }

}
}

562 19 Packages

Notice, to keep things simple we have not added this class to a package. We can
run this program from the command line as follows:

java ProcessNames “Batman and Robin” Superman

Notice “Batman and Robin” needed to be surrounded by quotes as it has
spaces in it, whereas Superman does not. Running this program would produce
the obvious result:

hello Batman and Robin
hello Superman

19.7 Deploying Your Packages

A very common way of making your packages available to clients is to convert
them to JAR files. A JAR file (short for Java Archive) has the extension .jar and is
simply a compressed file. Most IDEs provide a means of creating JAR files but JAR
files can also be created from the command prompt with the jar.exe tool. This
tool is provided with the JDK and also with most standard IDEs. Assuming that we
are in the directory above the hostelApp package then the correct statement to
create a suitable JAR file is:

jar cvf hostel.jar hostelApp

As you can see there are various switches that are used with the jar program.
The ones used above have the following effect:

c: create a new JAR file;
v: provide full (verbose) output to report on progress;
f: provide a name for the JAR file.

After these switches comes the name of the output file—hostel.jar in our
case. Finally,we must list the files we wish to be included. In the above example we
require only the package directory, hostelApp, but you may have additional files
here such as sound and image files that are not part of the package.

If you are working in a graphics environment, and there is a JVM installed on
your computer, then it is possible to create a JAR file that will run the program by
double-clicking on its icon. We call such a JAR file an executable JAR file.

While it is possible to use Java tools from the command line to create such
executable JAR files, as you could see when we showed you how to create a
standard JAR file from the command line, this can be quite verbose and prone to
error. So, these days, IDEs will provide very simple tools to both create a JAR file
and to make this JAR file executable if you choose. We provide instructions on the
accompanying web-site on how to do this for a popular Java IDE.

19.6 Running Applications from the Command Line 563

19.8 Adding External Libraries

Sometimes it is necessary to use libraries that are not part of the standard Java
framework. One of the most common examples of this is in the development of
applications that require the use of data held on a database which is stored either
locally or on another machine on the network. In this section we will briefly explore
two technologies—Java Database Connectivity (JDBC) and Hibernate ORM
(Object/Relational Mapping), often referred to simply as Hibernate.

It is not our intention here to give a detailed explanation of how these tech-
nologies are used, but rather to give a concrete example of how it is possible to use
libraries that are not part of the Java framework. This should, however, also serve to
whet the appetites of those of you who wish to learn how to access a database via a
Java application.

19.8.1 Accessing Databases Using JDBC

Database manufacturers provide JDBC drivers by means of which Java programs
can access their databases. A driver is a piece of software that enables communi-
cation between two programs, or between a software program and a piece of
hardware, by translating the output of one program into a form understood by the
other one.

In order to use a particular driver we would download it from the manufacturer’s
website in the form of a .jar file. We would then need to ensure that the
CLASSPATH points to the location of this file; this is most easily done by adding
the .jar file to the run-time or compile-time configurations within an IDE such as
NetBeans™ or Eclipse™. Instructions for doing this will be found within the
documentation for the particular IDE.

In this chapter we are going to be referring to a MySQL™ database. The driver,
which is called Driver.class, is contained within the .jar file. At the time of
writing the current version is:

mysql-connector-java-5.1.45-bin.jar

In today’s version of Java, all we have to do to make the driver accessible is to
add it to the CLASSPATH as described above. In previous versions we would have
needed to include the following code (which, as you see, refers to the driver by its
full path name):

try
{

Class.forName("com.mysql.jdbc.Driver");
}

catch(ClassNotFoundException e)
{
}

564 19 Packages

Java provides a package known as java.sql. This package provides the
means by which our Java programs can contain commands written in standard SQL
(Structured Query Language), which is the well-established means of writing
database instructions. In this chapter we are not going to teach you SQL, but will
assume you are familiar with some basic commands.

For our example we have set up a little database called ElectricalStore that
contains a table called products. This table is described below (Table 19.1); it is
assumed that you are familiar with relational databases and the data types available.

We have populated this database, and, in order to query it, we have developed a
class called ProductQuery. This class, once an instance of it is created, executes
just one SQL statement:

select * from products;

Those of you who are familiar with SQL will know that this query retrieves all
the fields from all the records in the products table. The information obtained is
then displayed in a text area as you can see from Fig. 19.2.

Table 19.1 The products
table

Field Data type Length

serialNumber (key field) char (25)

make char (10)

description char (25)

price decimal (10, 2)

Fig. 19.2 Displaying the
information from the
ElectricalStore database

19.8 Adding External Libraries 565

Take a look at the ProductQuery application below, and then we will go
through it with you.

ProductQuery
import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.ResultSet;
import java.sql.SQLException;
import java.sql.Statement;
import javafx.application.Application;
import javafx.geometry.Insets;
import javafx.scene.Scene;
import javafx.scene.layout.HBox;
import javafx.scene.layout.VBox;
import javafx.scene.text.Text;
import javafx.stage.Stage;

public class ProductQuery extends Application

{
public static final String URL = "jdbc:mysql://localHost/ElectricalStore?useSSL=true";
public static final String USERNAME = "Kub";
public static final String PASSWORD = "SydneyPaper";

@Override
public void start(Stage stage)
{

// create VBoxes to act as display columns
VBox data1 = new VBox();
VBox data2 = new VBox();
VBox data3 = new VBox();
VBox data4 = new VBox();

data1.getChildren().add(new Text("Serial Number\n"));
data2.getChildren().add(new Text("Make\n"));
data3.getChildren().add(new Text("Description\n"));
data4.getChildren().add(new Text("Price\n"));

// configure the visual components
HBox root = new HBox(10);
root.setPadding(new Insets(10));
root.getChildren().addAll(data1, data2, data3, data4);
Scene scene = new Scene(root, 300, 150);
stage.setTitle("Electrical Store");
stage.setScene(scene);
stage.show();

Connection con;
Statement st;
ResultSet result;

try
{

// connect to the database
con = DriverManager.getConnection(URL, USERNAME, PASSWORD);

// create an SQL statement
st = con.createStatement();

// execute an SQL query
result = st.executeQuery("select * from products");

while(result.next()) // move to next record
{

// retrieve and display first field
data1.getChildren().add(new Text (result.getString(1)));
// retrieve and display second field
data2.getChildren().add(new Text(result.getString(2)));
// retrieve and display third field
data3.getChildren().add(new Text(result.getString(3)));
// retrieve and display fourth field
data4.getChildren().add(new Text("£" + result.getString(4)));

}

}

catch(SQLException e) // handle the SQLException
{

}

}

public static void main(String[] args)
{

launch(args);
}

}

566 19 Packages

You can see that we have declared some String constants as attributes—these
will be explained shortly, when they are used.

In the start method we have created four VBoxes, one for each field of the
data records—these will be lined up horizontally in an HBox. We have then
declared a Connection object, a Statement object and a ResultSet object,
none of which you have previously encountered. These are part of the java.sql
package; their use will become clear in a moment.

We now declare a try… catch block because all of the methods we are going
to use to communicate with the database throw SQLExceptions. The first thing
we need to do within this block is to establish a connection with the database:

con = DriverManager.getConnection(URL, USERNAME, PASSWORD);

The getConnection method of DriverManager establishes a connection
with the database referred to by the parameter URL, which was defined in the
attribute declarations as:

public static final String URL = "jdbc:mysql://localHost/ElectricalStore?useSSL=true";

This is the correct format for the MySQL database called ElectricalStore which
resides on the local machine and which uses the SSL security protocol. Other
databases will require a slightly different format, the details of which can be found
in the documentation for that product. Note that localhost is the way in which
operating systems refer to the local machine—it is in fact an alias for IP (Internet
Protocol) address 127.0.0.1, the normal loopback IP. If the database were located
on another machine on the network, then this would be replaced by its name or IP
address.4 If the port number is required, this is placed after the name of the database
separated by a colon—for example Electrical Store:3306. As you can see,
the getConnection method receives, in addition to the URL (uniform resource
locator), the user name and password; if this is not required, there is a version of
getConnection that accepts the URL only (some databases allow the username
and password to be embedded in the URL).

The method returns a Connection object, which we have assigned to the
attribute con. A Connection object created in this way has a number of methods
that allow communication with the database. One of these methods is called
createStatement, and it is the next one we use:

st = con.createStatement();

4The system administrator will, of course, have had to set up the correct permissions for the
database.

19.8 Adding External Libraries 567

As you saw, we previously declared a Statement object, st, and this is now
assigned the return value of the createStatement method. A Statement
object is used for executing SQL statements and returning their results; in the next
line we use its executeQuery method:

result = st.executeQuery("select * from products");

The data returned by executing the query is assigned to a ResultSet object,
result. A ResultSet object holds a tabular representation of the data, and a
pointer is maintained to allow us to navigate through the records. The next method
moves the pointer to the next record, returning false if there are no more records.
The individual fields are returned with methods such as getString, getDou-
ble and getInt. You can see how we have used these methods in the Pro-
ductQuery class:

while(result.next()) // move to next record
{

data1.getChildren().add(new Text(result.getString(1)));
data2.getChildren().add(new Text(result.getString(2)));
data3.getChildren().add(new Text(result.getString(3)));
data4.getChildren().add(new Text("£" + result.getString(4)));

}

You can see that, as we are using VBoxes to display our data, we have created a
Text object for each string and added this to the correct VBox.

The version of getString that we have used here takes an integer repre-
senting the position of the field—in our example 1 is the serialNumber, 2 is make
and so on. There is also a version of getString that accepts the name of the field.
So, for example, we could have used, for the second field:

data2.getChildren().add(new Text(result.getString(make)));

Since all we are doing is displaying the data we used getString for the last
field, even though it holds numeric data—this saved us the trouble of doing any
formatting on it. If we had wished to do any processing with this data, we could
have used the getDouble method to retrieve it as a double rather than a
String.

19.8.2 Accessing Databases Using Hibernate

Hibernate is a more recent technology than JDBC; it allows us to store and retrieve
whole objects from a database.

568 19 Packages

If you create your Hibernate project within Netbeans™ you will find that the
necessary libraries will be added to the project. Otherwise you will need to
download the files from the Hibernate website. Normally this will be in the form of
a .zip file which contains a folder called required. In this folder you will find the
.jar files that you will need to add to the CLASSPATH. As with the JDBC
example in the previous section, you will need to add the relevant driver to the
run-time configuration. We will use the same MySQL™ database as before, so you
will need the same driver as in the previous section.

The first thing you will need to do is create a Java class for the objects that we
will be dealing with—in our case we will need a Product class:

Product
public class Product
{

private String stockNumber;
private String manufacturer;
private String item;
private double unitPrice;

public Product(String stockNumberIn, String manufacturerIn, String itemIn, double unitPriceIn)
{

stockNumber = stockNumberIn;
manufacturer = manufacturerIn;
item = itemIn;
unitPrice = unitPriceIn;

}

public Product()
{

}

public String getStockNumber()
{

return stockNumber;
}

public void setStockNumber(String stockNumberIn)
{

stockNumber = stockNumberIn;
}

public String getManufacturer()
{

return manufacturer;
}

public void setManufacturer(String manufacturerIn)
{

manufacturer = manufacturerIn;
}

public String getItem()
{

return item;
}

public void setItem(String itemIn)
{

item = itemIn;
}

public double getUnitPrice()
{

return unitPrice;
}

public void setUnitPrice(double unitPriceIn)
{

unitPrice = unitPriceIn;
}

}

19.8 Adding External Libraries 569

As you can see, the attributes of this class correspond to the fields in the database
that you saw in the last section. Hibernate expects there to be set- and get-
methods for these attributes, and also expects there to be an empty constructor.

You might be asking how the application will know which attribute in the Java
class corresponds to which field of the database. The answer is that this information
needs to be supplied in an XML mapping file, usually named hibernate.hbm.
xml. Our file looks like this:

hibernate.hbm.xml

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE hibernate-mapping PUBLIC "-//Hibernate/Hibernate Mapping DTD 3.0//EN"

"http://www.hibernate.org/dtd/hibernate-mapping-3.0.dtd">

<hibernate-mapping>
<class name = "Product" table = "products">

<id name = "stockNumber" column = "serialNumber"/>
<property name = "manufacturer" column = "make"/>
<property name = "item" column = "description"/>
<property name = "unitPrice" type = "double" column = "price"/>

</class>
</hibernate-mapping>

If you are using an IDE wizard to create your Hibernate application, you will
find that the first two lines are added into your file automatically—otherwise you
can do it manually.

It is assumed here that you know a little about XML—but even if you don’t, it is
not hard to see how the attributes are mapped onto field names. Notice that the id
tag specifies which attribute corresponds to the key field, while the property tag
deals with the other attributes.

There is one more thing we need to do before writing our Hibernate application,
which is to write a configuration file (normally called hibernate.cfg.xml)
that will provide the information needed about the database. Here is ours for the
MySQL database we described in the previous section:

hibernate.cfg.xml

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE hibernate-configuration PUBLIC "-//Hibernate/Hibernate Configuration DTD 3.0//EN"

"http://www.hibernate.org/dtd/hibernate-configuration-3.0.dtd">

<hibernate-configuration>
<session-factory>
<property name="hibernate.connection.url">jdbc:mysql://localhost/ElectricalStore?useSSL=true</property>
<property name="hibernate.connection.username">Kub</property>
<property name="hibernate.connection.password">SydneyPaper</property>

</session-factory>
</hibernate-configuration>

As before, using a wizard will cause the first two lines to be inserted for you. The
wizard will then allow you to add the rest of the information via a design dialogue
screen, or you can do it manually.

The example above is self explanatory. We have needed to add only three
properties, the URL that points to the database together with the name and pass-
word. Other properties might be necessary to add, depending on the system; for

570 19 Packages

example if the specific driver name were required, that could be added (for a
MySQL database) as follows:

<property name="hibernate.connection.driver_class">com.mysql.jdbc.Driver</property>

Now we come to the application itself. Our little program, which we have called
ProductQuery2, will do only as much as the one in the previous section, namely
to display all the information about the current items held.

Once you have taken a look at it, we will explain what it is all about.

ProductQuery2

// accessing a database using Hibernate

import javafx.application.Application;
import javafx.geometry.Insets;
import javafx.scene.Scene;
import javafx.scene.layout.HBox;
import javafx.scene.layout.VBox;
import javafx.scene.text.Text;
import javafx.stage.Stage;
import org.hibernate.Session;
import org.hibernate.SessionFactory;
import java.util.ArrayList;
import org.hibernate.query.Query;
import org.hibernate.boot.registry.StandardServiceRegistryBuilder;
import org.hibernate.cfg.Configuration;
import org.hibernate.service.ServiceRegistry;

public class ProductQuery2 extends Application
{

@Override
public void start(Stage stage)
{

// create VBoxes to act as display columns
VBox data1 = new VBox();
VBox data2 = new VBox();
VBox data3 = new VBox();
VBox data4 = new VBox();

data1.getChildren().add(new Text("Serial Number\n"));
data2.getChildren().add(new Text("Make\n"));
data3.getChildren().add(new Text("Description\n"));
data4.getChildren().add(new Text("Price\n"));

HBox root = new HBox(10);
root.setPadding(new Insets(10));
root.getChildren().addAll(data1, data2, data3, data4);

// configure the stage
Scene scene = new Scene(root, 300, 150);
stage.setTitle("Electrical Store");
stage.setScene(scene);
stage.show();

// create a Configuration object
Configuration cfg = new Configuration();

// link the configuration object to the database properties
cfg.configure("hibernate.cfg.xml");

// specify the mapping file
cfg.addResource("hibernate.hbm.xml");

// create a Session object to act as an interface between the Java application and Hibernate
ServiceRegistry serviceRegistry

= new StandardServiceRegistryBuilder().applySettings(cfg.getProperties()).build();
SessionFactory sessionFactory = cfg.buildSessionFactory(serviceRegistry);
Session session = sessionFactory.openSession();

// query the database
Query query = session.createQuery("from Product");

// create a list of products from the query
ArrayList<Product> list = (ArrayList) query.list();

// display the product details for each product in the list
for(Product pr : list)
{

data1.getChildren().add(new Text(pr.getStockNumber()));
data2.getChildren().add(new Text(pr.getManufacturer()));
data3.getChildren().add(new Text(pr.getItem()));

19.8 Adding External Libraries 571

data4.getChildren().add(new Text("£" + pr.getUnitPrice()));
}

// close the session
session.close();
sessionFactory.close();
StandardServiceRegistryBuilder.destroy(serviceRegistry);

}

public static void main(String[] args)
{

launch(args);
}

}

You can see from the code that after creating and configuring the visual
components, the first thing we have done is to create a Configuration object
which read the information from the XML files we created:

Configuration cfg = new Configuration();
cfg.configure("hibernate.cfg.xml");
cfg.addResource("hibernate.hbm.xml");

We now use this object to create a Session object, which is the interface
between the Java application and the database. It is the equivalent of a JDBC
Connection object. To do this you follow the rather verbose steps below:

ServiceRegistry serviceRegistry
= new StandardServiceRegistryBuilder().applySettings(cfg.getProperties()).build();

SessionFactory sessionFactory = cfg.buildSessionFactory(serviceRegistry);
Session session = sessionFactory.openSession();

The Session class has a number of methods, one of which is createQuery,
which returns a Hibernate query. Hibernate has its own query language, Hibernate
Query Language (HQL) which is similar to SQL; HQL queries are translated into
SQL in order to query the database. The only one of these we will show you here is
the “From” clause which will retrieve entire objects. You can see how it is used in
our application:

Query query = session.createQuery("from Product");

The Hibernate Query class has a method called list; this returns a List
object which we have stored as an ArrayList of Products:

ArrayList<Product> list = (ArrayList) query.list();

572 19 Packages

It is now a simple matter of scrolling through the list of products, displaying all
the fields as we do so:

for(Product pr : list)
{

data1.getChildren().add(new Text(pr.getStockNumber()));
data2.getChildren().add(new Text(pr.getManufacturer()));
data3.getChildren().add(new Text(pr.getItem()));
data4.getChildren().add(new Text("£" + pr.getUnitPrice()));

}

Before the program terminates, we need to close it down properly. This involves
three steps:

session.close();
sessionFactory.close();
StandardServiceRegistryBuilder.destroy(serviceRegistry);

We mentioned earlier that it is also possible to store whole objects as well as to
retrieve them. If you have created a Product object, say pr, then you could store
it with the following lines of code, which should come after the routine for opening
a session.

Transaction tx = session.beginTransaction();

try
{

session.save(pr);
tx.commit();

}

catch(Exception e)
{

if(tx!=null) tx.rollback();
}

finally
{

session.close();
sessionFactory.close();
StandardServiceRegistryBuilder.destroy(serviceRegistry);

}

For a write operation such as this we need to start a transaction, which we do
with the beginTransaction method of Session. We then store our object
with the save method of Session (this has to be in try. … catch block).
Hibernate does not automatically commit the save to the database, so we need to do
this by calling the commit method of Transaction. Should there be any
problem we have rolled back the change within the catch block. We have con-
veniently placed our close routines in the finally clause.

You might be wondering which technology to use, JDBC or Hibernate. There is
no rule about this, and opinions differ. However, as a general rule of thumb, if all
you want to do is to query an existing database with SQL then JDBC might be
simpler. However, if your main aim to write a Java program that stores its data in a
database then Hibernate might be the best solution.

19.8 Adding External Libraries 573

19.9 Self-test Questions

1. What role do packages have in the development of classes?

2. Identify valid and invalid import statements amongst the following list:

import java.*;

import javafx.scene.*;

import java.util.Scanner;

import javax.scene.control.Button;

import java.application.Application;

import java.text.*.*;

3. Consider the following outline of a class, used in a computer game, that makes
reference to JavaFX’s Button class:

public class GameController
{

private Button myButton;
// more code here

}

At the moment the line referencing the Button class will not compile. Identify
three different techniques to allow this class with a Button attribute to
compile.

4. What is the purpose of the CLASSPATH environment variable?

5. You were asked to develop a time table application in programming exercise 8
of Chap. 8. Later, in programming exercise 3 of Chap. 14 you were asked to
enhance this application with exceptions. Finally you were asked to develop a
JavaFX interface for this application in programming exercise 6 of Chap. 17.

(a) How would you place the classes that make up the time table application
into a package called timetableApp?

(b) What is meant by package scope and how would you give the Booking
and TimeTable classes package scope?

(c) How would you run this application from the command line?

(d) What is the purpose of a JAR file and how would you create a JAR file for
the timetableApp package form the command line?

6. Explain the fundamental differences between the JDBC and the Hibernate
technologies in terms of their approach to accessing databases.

574 19 Packages

19.10 Programming Exercises

1. Make the changes discussed in this chapter so that the Hostel application is now
part of a package called hostelApp.

2. Run the Hostel application from the command line.

3. Use your IDE to create an executable JAR file for your Hostel application then
run your Hostel application by clicking this executable JAR file.

4. Make the changes to the time table application, discussed in self-test question 5
above, so that the application can be run from the command line and by clicking
an executable JAR file.

5. Write a program that accepts a list of names from the command line and then
sorts and displays these names on the screen. Run this program from the
command line with a variety of names.

6. There are several Java packages that we have not yet explored. Browse your
Java documentation to find out about what kind of classes these packages offer.
For example, the lang package contains a class called Math, which has a
static method called random designed to generate random numbers. There is
also a random number class, Random, in the util package. Read your Java
documentation to find out more about these random number generation tech-
niques. Then write a program that generates five lottery numbers from 1 to 50
using:

(a) the static random method of the Math class in the lang package;

(b) the random number class, Random, in the util package.

7. In the previous chapter we developed several programs—for example Text-
FileTester—that stored and accessed data by creating files within the
application. See if you can convert one of these programs so that the data is
stored in a database to which you have access. In order to do this you will need
to either have an account on a database system within your organisation, or to be
running a database server (such as a MySQL server) locally.

19.10 Programming Exercises 575

20Multi-threaded Programs

Outcomes:

By the end of this chapter you should be able to:

• explain how concurrency is achieved by means of time-slicing;
• distinguish between threads and processes;
• implement threads in Java;
• explain the difference between asynchronous and synchronized thread

execution;
• explain the terms critical section and mutual exclusion, and describe how Java

programs can be made to implement these concepts;
• explain how busy waiting can be avoided in Java programs;
• provide a state transition diagram to illustrate the thread life-cycle;
• describe how the javafx.concurrent package is used to produce multi-

threaded JavaFX applications;
• use the Task class and the Service class from the above package in JavaFX

applications;
• use the above classes to create animated applications in JavaFX.

20.1 Introduction

In this chapter you are going to learn how to make a program effectively perform
more than one task at the same time—this is known as multi-tasking, and Java
provides mechanisms for achieving this within a single program.

© Springer Nature Switzerland AG 2019
Q. Charatan and A. Kans, Java in Two Semesters, Texts in Computer Science,
https://doi.org/10.1007/978-3-319-99420-8_20

577

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99420-8_20&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99420-8_20&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99420-8_20&domain=pdf
https://doi.org/10.1007/978-3-319-99420-8_20

20.2 Concurrent Processes

If you have been using computers for no more than a couple of decades then you
will probably think nothing of the fact that your computer can appear to be doing a
number of things at the same time. For example, a large file could be downloading
from the web, while you are listening to music and typing a letter into your word
processor. However, those of us who were using desktop computers in the 1980s
don’t take this for granted! We can remember the days of having to wait for our
document to be printed before we could get on with anything else—the idea of even
having two applications like a spreadsheet and a database loaded at the same time
on a personal computer would have been pretty exciting.

In recent years dual core and quad core computers have become available on a
wide scale—such computers have more than one processor, so it does not seem
quite so extraordinary that they can perform more than one task at a time. However,
with a quad core computer for example it is certainly possible to perform more than
four tasks at once, and indeed multi-tasking has been possible for many years on
machines with a single processor—and at first sight this does seem rather
extraordinary. The way this is achieved is by some form of time-slicing; in other
words the processor does a little bit of one task, then a little bit of the next and so on
—and it does this so quickly it appears that it is all happening at the same time.

A running program is usually referred to as a process; two or more processes that
run at the same time are called concurrent processes. Normally, when processes run
concurrently each has its own area in memory where its program code and data are
kept, and each process’s memory space is protected from any other process. All this is
dealt with by the operating system; modern operating systems such as Windows™
and Unix™ have a process management component whose job it is to handle all this.

20.3 Threads

We have just introduced the idea of a number of programs—or processes—oper-
ating concurrently. There are, however, times when we want a single program to
perform two or more tasks at the same time. Whereas two concurrent programs are
known as processes, each separate task performed by a single program is known as
a thread. A thread is often referred to as a lightweight process, because it takes
less of the system’s resources to manage threads than it does to manage processes.
The reason for this is that threads do not have completely separate areas of memory;
they can share code and data areas. Managing threads, which also work on a
time-slicing principle, is the job of the Java runtime environment working in
conjunction with the operating system.

Let’s illustrate this by developing a very simple program, which continuously
displays the numbers from 0 to 9 in a console window as shown in Fig. 20.1.

The program will provide a simple graphical interface to start and stop the
numbers being displayed, as shown in Fig. 20.2.

578 20 Multi-threaded Programs

Fig. 20.1 Output from the simple number display application

Fig. 20.2 Interface for the simple number display application

20.3 Threads 579

Intuitively you might think that the way to achieve the desired result would be to
have a loop that keeps displaying the numbers, and which is controlled by some
boolean variable, so that the loop continues while the variable is set to true, and
stops when it is set to false.

So, with a boolean variable called go, you might expect the code for the Start
button to look like this:

And the code for the stop button to look like this:

If you were to run such a program, you would find that pressing the Start button
would indeed start the numbers displaying—but pressing the Stop button, or
clicking the cross hairs to try and stop the program wouldn’t work—what would
happen is that the application would eventually become unresponsive.

Can you see what’s wrong here? If the mouse is clicked on the Start button then,
as we have seen, the loop is started. But now the application is tied up executing the
loop, so nothing else can happen. It doesn’t matter how often you click on the Stop
button, the program will never get the chance to process this event, because it is
busy executing the loop.

What we need is to set up a separate thread that can busy itself with the loop,
while another thread carries on with the rest of the program. Luckily Java provides
us with a Thread class that allows us to do exactly that.

20.4 The Thread Class

The Thread class provides a number of different methods that allow us to create
and handle threads in our Java programs. The Thread class implements an
interface called Runnable which has just one method, run. The code for this
method determines the action that takes place when the thread is started.

The DisplayNumbers program below shows how we can write our appli-
cation with a separate thread that deals with the loop.

startButton.setOnAction(e -> {
 go = true;
 int count = 0;
 while(go)
 {
 System.out.print(count);
 count++;
 if(count > 9) // reset the counter if it has reached 9
 {
 count = 0;
 System.out.println(); // start a new line
 }
 }
 }
);

stopButton.setOnAction(e -> go = false);

580 20 Multi-threaded Programs

Let’s take a closer look at the code for the setOnAction method of the Start
button:

DisplayNumbers
import javafx.application.Application;
import javafx.geometry.Pos;
import javafx.scene.Scene;
import javafx.scene.control.Button;
import javafx.scene.layout.HBox;
import javafx.stage.Stage;

public class DisplayNumbers extends Application
{
 private boolean go;

@Override
 public void start(final Stage stage)
 {
 Button startButton = new Button("Start");
 Button stopButton = new Button("Stop");

 startButton.setOnAction(e ->
 {
 go = true;

// create a separate thread
 Thread thread1 = new Thread(()->
 {
 int count = 0;
 while(go)
 {
 System.out.print(count);
 count++;
 if(count > 9)
 {

// reset the counter and start a new line
 count = 0;
 System.out.println();
 }
 }
 });
 thread1.start();
 });

 stopButton.setOnAction(e -> go = false);

 HBox root = new HBox(10);
 root.setAlignment(Pos.CENTER);
 root.getChildren().addAll(startButton, stopButton);
 Scene scene = new Scene(root, 250, 100);
 stage.setScene(scene);
 stage.setTitle("Numbers");
 stage.show();
 }

 public static void main(String[] args)
 {
 launch(args);
 }
}

startButton.setOnAction(e -> {
 go = true;
 Thread thread1 = new Thread(()->
 {
 int count = 0;
 while(go)
 {
 System.out.print(count);
 count++;
 if(count > 9)
 {
 count = 0;
 System.out.println();
 }
 }
 });
 thread1.start();
 });

20.4 The Thread Class 581

After setting go to true (which we are able to do within the lambda expression
because go is an attribute of the class) we create a new thread. Since the Thread
class implements Runnable we need to code its run method, and since Run-
nable is a functional interface, we can code its run method by using a lambda
expression that provides the instructions for displaying the numbers. So it is now
the responsibility of this new thread to display the numbers according to the
instructions in its run method.

Once we have done this, we start the thread by calling its start method; we
don’t call the run method directly—the start method does this for us.

Once started, the thread executes and, via time-slicing, the application thread is
also executed, so that it is possible to listen for events such as the Stop button being
pressed. As you can see, when this happens go is set to false, and when the
execution returns to our new thread the loop terminates.

The next section provides some more detail about how all this is achieved.

20.5 Thread Execution and Scheduling

As we explained earlier, concurrency, with a single processor, is achieved by some
form of time-slicing. Each process or thread is given a little bit of time—referred to
as a quantum—on the CPU, then the next process or thread takes its turn and
so on.

Now, as you can imagine, there are some very complex issues to consider here.
For example, what happens if a process that currently has the CPU cannot continue
because it is waiting for some input, or perhaps is waiting for an external device like
a printer to become available? When new processes come into existence, when do
they get their turn? Should all processes get an equal amount of time on the CPU or
should there be some way of prioritizing?

The answers to these questions are not within the domain of this book. However,
it is important to understand that the responsibility for organizing all this lies with
the operating system; in the case of multi-threaded Java programs this takes place in
conjunction with the JVM. Different systems use different scheduling algorithms
for deciding the order in which concurrent threads or processes are allowed CPU
time. This is hidden from the user, and from the programmer. In the case of an
application such as our counter program, all we can be sure about is the fact that one
thread has to complete a quantum on the CPU before another thread gets its turn—
we cannot, however, predict the amount of time that will be allocated to each
thread.

There is quite a simple way to illustrate this. Let’s add the following code to the
instructions for the setOnAction method of the start button:

582 20 Multi-threaded Programs

So now we have created two threads which will run concurrently: thread1 will
display the numbers from 0 to 9 as before, while thread2 will print the characters
from “A” to “J” (you can see how we have achieved this by type casting from int
to char—“A” has the Unicode value of 65).

 Thread thread2 = new Thread(()-> {
 int count = 0;
 while(go)
 {
 // print characters A to J
 System.out.print((char) (65 + count));
 count++;
 if(count > 9)
 {
 count = 0;
 System.out.println();
 }
 }
 });

 thread2.start()

Fig. 20.3 Two threads running concurrently

20.5 Thread Execution and Scheduling 583

A typical output fragment from this program is shown in Fig. 20.3. This gives a
very good illustration of how the execution switches randomly between threads,
with the output switching unpredictably between numbers and letters.

20.6 Synchronizing Threads

In Sect. 20.5 we explained that under normal circumstances the behaviour of two
or more threads executing concurrently is not co-ordinated, and we are not able to
predict which threads will be allocated CPU time at any given moment.
Unco-ordinated behaviour like this is referred to as asynchronous behaviour.

It is, however, often the case that we require two or more concurrently executing
threads or processes to be co-ordinated—and if they were not, we could find we had
some serious problems. There are many examples of this. One of the most common
is that of a producer–consumer relationship, whereby one process is continually
producing information that is required by another process. A very simple example
of this is a program that copies a file from one place to another. One process is
responsible for reading the data, another for writing the data. Since the two pro-
cesses are likely to be operating at different speeds, this would normally be
implemented by providing a buffer, that is a space in memory where the data that
has been read is queued while it waits for the write process to access it and then
remove it from the queue.

It should be fairly obvious that it could be pretty disastrous if the read process
and the write process tried to access the buffer at the same time—both the data and
the indices could easily be corrupted. In a situation like this we would need to treat
the parts of the program that access the buffer as critical sections—that is, sections
that can be accessed only by one process at a time.

Implementing critical sections is known as mutual exclusion, and Java provides
a mechanism for the implementation of mutual exclusion in multi-threaded pro-
grams. In this book we are not going to go into any detail about how this is
implemented, because the whole subject of concurrent programming is a vast one,
and is best left to texts that deal with that topic. What we intend to do here is simply
to explain the mechanisms that are available in Java for co-ordinating the behaviour
of threads.

Java provides for the creation of a monitor, that is a mechanism by which a
method can be accessed by only one thread at a time. This entails the use of the
modifier synchronized in the method header. For instance, a Buffer class in
the above example might have a read method declared as:

public synchronized Object read()
{

}

584 20 Multi-threaded Programs

Because it is synchronized, as soon as some object invokes this method a lock is
placed on it; this means that no other object can access it until it has finished
executing. This can, however, cause a problem known as busy waiting. This means
that the method that is being executed by a particular thread has to go round in a
loop until some condition is met, and as a consequence the CPU time is used just to
keep the thread going round and round in this loop until it times out—not very
efficient! As an example of this, consider the read and write methods that we
talked about in the example above. The read method would not be able to place
any data in the buffer if the buffer were full—it would have to loop until some data
was removed by the write method; conversely, the write method would not be
able to obtain any data if the buffer were empty—it would have to wait for the
read method to place some data there.

Java provides methods to help us avoid busy waiting situations. The Object
class has a method called wait, which suspends the execution of a thread (taking it
away from the CPU) until it receives a message from another thread telling it to
wake up. The object methods notify and notifyAll are used for the purpose
of waking up other threads. Sensible use of these methods allow programmers to
avoid busy waiting situations.

20.7 Thread States

A very useful way to summarize what you have learnt about threads is by means of
a state transition diagram. Such a diagram shows the various states that an object
can be in, and the allowed means of getting from one state to another—the tran-
sitions. The state transition diagram for a thread is shown in Fig. 20.4.

As we have said, much of the thread’s life-cycle is under the control of the
operating system and the JVM; however some transitions are also under the control
of the programmer. In Fig. 20.4 the transitions that are controlled by the operating
system and the JVM are italicized; those that the programmer can control are in
plain font.

As you have seen, a thread is brought into existence by invoking its start
method. At this point it goes into the ready state. This means it is waiting
to be allocated time on the CPU; this decision is the responsibility of the
operating system and JVM. Once it is dispatched (that is given CPU time), it is
said to be in the running state. Once a thread is running, a number of things can
happen to it:

• It can simply timeout and go back to the ready state.
• The programmer can arrange for the sleep method to be called, causing the

thread to go into the sleeping state for a given period of time. When this time
period has elapsed the thread wakes up and goes back to the ready state.

20.6 Synchronizing Threads 585

• The programmer can use the wait method to force the thread to go into the
waiting state until a certain condition is met. Once the condition is met, the
thread will be informed of this fact by a notify or notifyAll method, and
will return to the ready state.

• A thread can become blocked; this is normally because it is waiting for some
input, or waiting for an output device to become available. The thread will
return to the ready state when either the normal timeout period has elapsed or
the input/output operation is completed.

• When the run method finishes the thread is terminated.

Let’s look at how the programmer can influence the behaviour of a thread by
calling the sleep method. This is a static method, and calling it with the class
name will cause the currently executing thread to sleep for a specified number of
milliseconds.

If we wanted our number display program to leave an interval of one second
between each number being displayed we could adapt the method for the Start
button as follows—the additional code is emboldened:

TERMINATED

SLEEPING

READY

RUNNING

WAITING

BLOCKED

dispatch

start

meout

block

meout or
unblock

wait

sleep

notify
notifyAll

wakeup

Fig. 20.4 The state transition diagram for a thread

586 20 Multi-threaded Programs

The sleep method throws an InterruptedException, which is a
checked exception and so needs to be placed in a try … catch block as shown.

20.8 Multithreading and JavaFX

When we launch a JavaFX application the init method is called in the main
thread (or launcher thread), and then, when the start method is called, the
application itself runs in a separate thread called the application thread, which is
also where the stop method runs.

If we want to write multi-threaded JavaFX applications, a special package—
javafx.concurrent—is provided for this purpose. The package contains an
interface called Worker that creates background tasks that can communicate with
the user interface. Two classes implement this interface, Task and Service.

20.8.1 The Task Class

In our previous application we created a simple thread that only used the console for
output, and we were able to get away with not using the special classes. But now we
will adapt that program so that the display occurs in a TextArea as shown in
Fig. 20.5.

We are going to use the Task class to implement this. Task is an abstract class,
so we need either to use an anonymous class, or create a custom class that extends
Task, which is what we have done below:

startButton.setOnAction(e ->
 {
 go = true;

 Thread thread1 = new Thread(()->
 {
 int count = 0;
 while(go)
 {
 System.out.print(count);

try
 {
 Thread.sleep(1000);
 }
 catch(InterruptedException ex)
 {
 }
 count++;
 if(count > 9)
 {
 // reset the counter and start a new line
 count = 0;
 System.out.println();
 }
 }
 });
 thread1.start();
 });

20.7 Thread States 587

Task is a generic class; its type is the return type of its abstract method,
call. In our case there is no return value, so the type will be Void, as explained in
Chap. 13.

An application that uses our NumbersTask class will need to inform it where
to display the output. Therefore, a reference to a TextArea is sent into the class as

Fig. 20.5 The simple
number display application
outputting to a text area

NumbersTask
import javafx.scene.control.TextArea;
import javafx.concurrent.Task;

public class NumbersTask extends Task<Void>
{
 private boolean go;
 private TextArea display;

 public NumbersTask(TextArea displayIn)
 {
 display = displayIn;
 }

@Override
 protected Void call()
 {
 go = true;
 int count = 0;

 while(go)
 {
 display.appendText("" + count);
 try
 {
 Thread.sleep(100); //force the thread to sleep for 100 milliseconds
 }
 catch(InterruptedException e)
 {
 }

 count++;
 if(count > 9) // reset the counter if it has gone over 9
 {
 count = 0;
 display.appendText("\n"); // start a new line
 }
 }
 return null;
 }

 public void finish()
 {
 go = false;
 }
}

588 20 Multi-threaded Programs

an argument, and is assigned to a variable display, which has been declared as an
attribute of the class. We have declared another attribute, go, which is the boo-
lean variable that will control the loop.

The call method, which has to be overridden, will contain the instructions for
the task. You can see that it is very similar to the previous console version, except
that the output is now directed to the text area. Notice that we need a return
statement, and as it is of type Void, the return value is null.

Finally we have defined another method, finish, which simply sets go to
false.

The program below uses our NumbersTask class.

As you can see, we create a new instance of our NumbersTask class, and then,
in the code for the start button, we create a new thread with a form of the con-
structor that accepts a Task object whose call method provides the code for its
run method. We then start the thread as before.

The code for the stop button simply calls the finish method that we defined in
the NumbersTask class.

Now, when you implement this program there is something that you will notice.
Pressing the Start button starts the display and pressing the stop button ends it as
expected. But then if you press the start button again, nothing happens. This is

DisplayNumbersInTextArea
import javafx.application.Application;
import javafx.geometry.Pos;
import javafx.scene.Scene;
import javafx.scene.control.Button;
import javafx.scene.control.TextArea;
import javafx.scene.layout.HBox;
import javafx.stage.Stage;

public class DisplayNumbersInTextArea extends Application
{
@Override

 public void start(final Stage stage)
 {
 Button startButton = new Button("Start");
 Button stopButton = new Button("Stop");
 TextArea displayArea = new TextArea();
 displayArea.setMaxSize(100, 100);
 displayArea.setEditable(false);

 NumbersTask task = new NumbersTask(displayArea);

 startButton.setOnAction(e -> {
 Thread thread1 = new Thread(task);
 thread1.start();
 });

 stopButton.setOnAction(e -> task.finish());

 HBox root = new HBox(10);
 root.setAlignment(Pos.CENTER);
 root.getChildren().addAll(startButton, stopButton, displayArea);

 Scene scene = new Scene(root, 300, 150);
 stage.setScene(scene);
 stage.setTitle("Numbers");
 stage.show();
 }

 public static void main(String[] args)
 {
 launch(args);
 }
}

20.8 Multithreading and JavaFX 589

because a Task object is designed to run only once. Once it has completed its job,
it doesn’t run again—for that you need to create a Service.

20.8.2 The Service Class

The Service class creates a Task object via its createTask method. When a
new thread is created it calls this method to generate a task; hence a task can
effectively run an infinite amount of times.

Our NumbersService class is shown below:

In the case of a Service, the method that has to be implemented is cre-
ateTask. This returns a Task object, which is specified here by overriding its

NumbersService
import javafx.scene.control.TextArea;
import javafx.concurrent.Task;
import javafx.concurrent.Service;

public class NumbersService extends Service<Void>
{
 private TextArea display;
 private boolean go;

 public NumbersService (TextArea displayIn)
 {
 display = displayIn;
 }

@Override
 protected Task<Void> createTask()
 {
 return new Task<Void> ()
 {

@Override
 protected Void call() throws Exception
 {
 go = true;
 int count = 0;

 while(go)
 {
 display.appendText("" + count);

 try
 {
 Thread.sleep(100); //force the thread to sleep
 }
 catch(InterruptedException e)
 {
 }

 count++;
 if(count > 9) // reset the counter
 {
 count = 0;
 display.appendText("\n");
 }
 }
 return null;
 };
 };
 }

 public void finish()
 {
 display.appendText("\n");
 go = false;
 }
}

590 20 Multi-threaded Programs

call method as before. In this case we have achieved this by means of an
anonymous class. The code for the call method is the same as before.

The only other thing to mention here is that we have tidied up the output by
adding a newline statement in the finish method, so that the display starts on a
new line after having been stopped.

Our previous program is adapted below to make use of the NumbersService
class:

If you implement this program you will see that the display can be started and
stopped as many times as you want.

20.8.3 Automating the ChangingFace Application

JavaFX provides some advanced and sophisticated routines for producing anima-
tions, which we have not had room to cover in this text. However, because ani-
mations—from the simple to the complex—consist of continuously performing a
task, then some degree of threading will be required.

DisplayNumbersInTextAreaUsingService
import javafx.application.Application;
import javafx.geometry.Pos;
import javafx.scene.Scene;
import javafx.scene.control.Button;
import javafx.scene.control.TextArea;
import javafx.scene.layout.HBox;
import javafx.stage.Stage;

public class DisplayNumbersInTextAreaUsingService extends Application
{

@Override
 public void start(final Stage stage)
 {
 Button startButton = new Button("Start");
 Button stopButton = new Button("Stop");
 TextArea displayArea = new TextArea();
 displayArea.setMaxSize(100, 100);
 displayArea.setEditable(false);

 NumbersService service = new NumbersService(displayArea);

 startButton.setOnAction(e ->
 {
 Thread thread1 = new Thread(service.createTask());
 thread1.start();
 }
);

 stopButton.setOnAction(e -> service.finish());

 HBox root = new HBox(10);
 root.setAlignment(Pos.CENTER);
 root.getChildren().addAll(startButton, stopButton, displayArea);

 Scene scene = new Scene(root, 300, 150);
 stage.setScene(scene);
 stage.show();
 }

 public static void main(String[] args)
 {
 launch(args);
 }

}

20.8 Multithreading and JavaFX 591

Let’s apply this principle to our ChangingFace application from Chap. 10,
and “automate” the task of changing from the smiling face to the frowning face so
that it every second it changes from one to the other as shown in Fig. 20.6.

Once again we have created a custom class as shown below:

Fig. 20.6 Automating the ChangingFace application

FaceTask
import javafx.concurrent.Task;
import javafx.scene.shape.Arc;
import javafx.stage.Stage;

public class FaceTask extends Task<Void>
{

private Arc arc;
private Stage stage;

public FaceTask(Arc arcIn, Stage stageIn)
{

arc = arcIn;
stage = stageIn;

}

@Override
protected Void call()
{

while(stage.isShowing())
{

arc.setLength(-180); // smiling mouth
try
{

Thread.sleep(1000); //force the thread to sleep for 1 second
}
catch(InterruptedException e)
{
}

arc.setLength(180); // frowning mouth

try
{

Thread.sleep(1000); //force the thread to sleep for 1 second
}
catch(InterruptedException e)
{
}

}
return null;

}
}

592 20 Multi-threaded Programs

If you recall from Chap. 10, the mouth is formed from an object of type Arc,
and therefore our class requires a reference to the mouth to be sent in from the main
application, in order that it can make the periodic change to it. It also needs a
reference to the stage on which the scene graphic is placed—we will explain why it
needs this in a moment. An Arc object and a Stage object are therefore declared
as attributes of the class and these are given a value via the constructor

The call method is self-explanatory—the arc is re-drawn every second, first
clockwise and then anticlockwise so that mouth smiles and frowns repeatedly.

Because we have not provided a means to stop the thread, we want this to
happen when the stage is closed (that is, the cross-hairs have been pressed by the
user), so that the application terminates normally. To do this we have arranged for
the loop to check on each iteration that the stage is still showing—hence the need
for a reference to the stage. For this purpose we have used the isShowing method
of Stage

The following program uses our FaceTask to create the animation.

AnimatedFace
import javafx.application.Application;
import javafx.stage.Stage;
import javafx.scene.text.Text;
import javafx.scene.Scene;
import javafx.scene.paint.Color;
import javafx.scene.shape.Circle;
import javafx.scene.Group;
import javafx.scene.shape.Arc;
import javafx.scene.shape.ArcType;
import javafx.scene.text.Font;

public class AnimatedFace extends Application
{

@Override
 public void start(final Stage stage)
 {
 Circle face = new Circle(118, 125, 80);
 face.setFill(Color.YELLOW);
 face.setStroke(Color.RED);

 Circle rightEye = new Circle(80, 100, 10);
 rightEye.setFill(Color.YELLOW);
 rightEye.setStroke(Color.BLUE);

 Circle leftEye = new Circle(156, 100, 10);
 leftEye.setFill(Color.YELLOW);
 leftEye.setStroke(Color.BLUE);

 Arc mouth = new Arc(118, 150, 45, 35, 0, -180);
 mouth.setFill(Color.YELLOW);
 mouth.setStroke(Color.BLUE);
 mouth.setType(ArcType.OPEN);

 Text caption = new Text(60, 240, "Animated Face");
 caption.setFont(Font.font ("Verdana", 15));
 caption.setFill(Color.BLUE);

 Group root = new Group(face, rightEye, leftEye, mouth, caption);

 Scene scene = new Scene(root, Color.YELLOW);

 stage.setScene(scene);
 stage.setHeight(300);
 stage.setWidth(250);
 stage.setTitle("Animated Face");
 stage.show();

 Thread thread1 = new Thread(new FaceTask(mouth, stage));
 thread1.start();
 }

 public static void main(String[] args)
 {
 launch(args);
 }

}

20.8 Multithreading and JavaFX 593

20.8.4 Running a Task in the Background

Whenever we want a task to run in the background we need to place it in a separate
thread. To illustrate this we will keep it simple and use two applications that we
have already developed—our PushMe application from Chap. 10 and the Ani-
matedFace that we just developed, which will continuously run in the back-
ground. This is shown in Fig. 20.7.

The following program achieves this result:

Fig. 20.7 The animated face running in the background

BackgroundTaskExample
import javafx.application.Application;
import javafx.stage.Stage;
import javafx.scene.text.Text;
import javafx.scene.text.Font;
import javafx.scene.Scene;
import javafx.geometry.Pos;
import javafx.scene.Group;
import javafx.scene.control.Button;
import javafx.scene.control.Label;
import javafx.scene.control.TextField;
import javafx.scene.layout.VBox;
import javafx.scene.paint.Color;
import javafx.scene.shape.Arc;
import javafx.scene.shape.ArcType;
import javafx.scene.shape.Circle;

public class BackgroundTaskExample extends Application
{

BQxgttkfg"
 public void start(final Stage primaryStage)
 {

11"etgcvg"cpf"eqphkiwtg"c"vgzv"hkgnf"hqt"wugt"gpvt{"
 TextField pushMeTextField = new TextField();
 pushMeTextField.setMaxWidth(250);

11"etgcvg"cpf"eqphkiwtg"c"ncdgn"vq"fkurnc{"vjg"qwvrwv"
 Label pushMeLabel= new Label();
 pushMeLabel.setTextFill(Color.RED);
 pushMeLabel.setFont(Font.font("Ariel", 14));

11"etgcvg"cpf"eqphkiwtg"c"ncdgn"yjkej"yknn"ecwug"vjg"vgzv"vq"dg"fkurnc{gf"
 Button pushMeButton = new Button();
 pushMeButton.setText("Type something in the box then push me");
 pushMeButton.setOnAction(e -> pushMeLabel.setText("You entered: " + pushMeTextField.getText()));

11"etgcvg"cpf"eqphkiwtg"c"XDqz"vq"jqnf"qwt"eqorqpgpvu""""""""
 VBox root = new VBox();
 root.setSpacing(10);
 root.setAlignment(Pos.CENTER);

594 20 Multi-threaded Programs

It should be quite easy to see what we have done here. After creating the scene
for the PushMe class and adding it to the primary stage, we have called a helper
method, createBackgroundTask, which creates a secondary stage on which
the face will appear. The new thread is then created, using our custom FaceTask
class. The secondary stage is positioned relative to the primary stage, hence the
need for a reference to the primary stage to be sent to createBackgroundTask
as an argument.

 Scene scene = new Scene(root, Color.YELLOW);

11"etgcvg"cpf"eqphkiwtg"c"ugeqpfct{"uvcig"
 Stage secondaryStage = new Stage();
 secondaryStage.setScene(scene);
 secondaryStage.setHeight(300);
 secondaryStage.setWidth(250);
 secondaryStage.setTitle("Animated Face");

""""""""11"rqukvkqp"vjg"ugeqpfct{"uvcig"tgncvkxg"vq"vjg"rtkoct{"uvcig"
 secondaryStage.setX(stageIn.getX() + 400);
 secondaryStage.setY(stageIn.getY());

 secondaryStage.show();

""""""""11"etgcvg"c"pgy"vjtgcf"
 Thread thread1 = new Thread(new FaceTask(mouth, secondaryStage));
 thread1.start();
 }

 public static void main(String[] args)
 {
 launch(args);
 }
}

""""""""11cff"vjg"eqorqpgpvu"vq"vjg"XDqz"
 root.getChildren().addAll(pushMeTextField, pushMeButton, pushMeLabel);

""""""""11"etgcvg"c"pgy"uegpg"
 Scene scene = new Scene(root, 350, 150);
 primaryStage.setScene(scene);

 primaryStage.setTitle("Background Task Example");
 primaryStage.show();
 createBackgroundTask(primaryStage);
 }

 private void createBackgroundTask(Stage stageIn)
 {

11"etgcvg"cpf"eqphkiwtg"vjg"ockp"ekteng"hqt"vjg"hceg"
 Circle face = new Circle(118, 125, 80); // face
 face.setFill(Color.YELLOW);
 face.setStroke(Color.RED);

"11"etgcvg"cpf"eqphkiwtg"vjg"ekteng"hqt"vjg"tkijv"g{g"
 Circle rightEye = new Circle(80, 100, 10);
 rightEye.setFill(Color.YELLOW);
 rightEye.setStroke(Color.BLUE);

""""""""11"etgcvg"cpf"eqphkiwtg"vjg"ekteng"hqt"vjg"nghv"g{g"
 Circle leftEye = new Circle(156, 100, 10);
 leftEye.setFill(Color.YELLOW);
 leftEye.setStroke(Color.BLUE);

11"etgcvg"cpf"eqphkiwtg"c"uoknkpi"oqwvj"
 Arc mouth = new Arc(118, 150, 45, 35, 0, -180);
 mouth.setFill(Color.YELLOW);
 mouth.setStroke(Color.BLUE);
 mouth.setType(ArcType.OPEN);

11"etgcvg"cpf"eqphkiwtg"vjg"vgzv"
 Text caption = new Text(60, 240, "Animated Face");
 caption.setFont(Font.font ("Verdana", 15));
 caption.setFill(Color.BLUE);

 Group root = new Group(face, rightEye, leftEye, mouth, caption);

20.8 Multithreading and JavaFX 595

20.8.5 Animation Using a Series of Images

Prior to the advent of digital technology, the traditional way of producing anima-
tions in film was to display a continuous series of images, which, to the eye, gave
the impression of movement.

record1.jpg

record8.jpgrecord7.jpgrecord6.jpgrecord5.jpg

record4.jpgrecord3.jpgrecord2.jpg

Fig. 20.8 The images used for the record animation

Fig. 20.9 The Record application

596 20 Multi-threaded Programs

So to end this chapter, let’s have some fun and replicate that technique by
depicting an old-style vinyl record going round on a turn-table. There are eight
images involved in our animation, as shown in Fig. 20.8.

Figure 20.9 shows a snapshot of the application in action.
The code for the application is presented below. You will see that we have taken

a slightly different approach here; we have not created a custom class, but instead
have written an anonymous class to define our Task.

Record
import javafx.application.Application;
import javafx.geometry.Pos;
import javafx.stage.Stage;
import javafx.scene.control.Label;
import javafx.scene.Scene;
import javafx.scene.image.Image;
import javafx.scene.image.ImageView;
import javafx.scene.layout.Background;
import javafx.scene.layout.VBox;
import javafx.concurrent.Task;

public class Record extends Application
{

// declare some constants
private static final int NUMBER_OF_IMAGES = 8;
private static final int SLEEP_TIME = 100;

private Label label = new Label();

@Override
public void start (Stage stage)
{

VBox root = new VBox();
root.setBackground(Background.EMPTY);
root.setAlignment(Pos.CENTER);
root.getChildren().add(label);

Scene scene = new Scene(root, 300, 300);
stage.setScene(scene);
stage.setTitle("Record");

stage.show();
begin(stage);

}

private void begin(Stage stageIn) // helper method
{

// create an image from a file and add it to a label
ImageView imageView = new ImageView();
label.setGraphic(imageView);

Thread thread1 = new Thread(new Task<Void>() // anonymous class
{

String imageFileName;
int currentImage = 1;
Image image;

@Override
protected Void call()
{

while(stageIn.isShowing())
{

// create the name of the next image to be used
imageFileName = "record" + currentImage + ".jpg";

image = new Image(imageFileName);
imageView.setImage(image);

try
{

Thread.sleep(SLEEP_TIME);
}
catch(InterruptedException e)
{
}

currentImage++; // next image
if(currentImage == NUMBER_OF_IMAGES + 1)
{

currentImage = 1;
}

}
return null;

}
});

20.8 Multithreading and JavaFX 597

To make the code easier to read we have placed everything to do with the
creation and operation of the thread in a helper method called begin:

The method begins by creating an empty ImageView and adding it to a label.
Then a new Thread is created with a Task object as its argument; in this case the
Task is created and specified as an anonymous class.

The code for the call method of the Task should not be too difficult to
understand. We have incremented a counter (currentImage) on each iteration of
the loop, and each time the name of the image file is reset accordingly. The file
name therefore changes from record1.jpg to record2.jpg and so on, until
the final image is reached and the counter is reset to 1. On each iteration the Image
and ImageView are set to the correct image using this file name.

The speed of the rotation is set by causing the thread to sleep for a given number
of milliseconds (SLEEP_TIME). We have chosen 100 ms, but of course you can
experiment with different values.

thread1.start();
}

public static void main(String[] args)
{

launch(args);
}

}

private void begin(Stage stageIn)
{

// create an image from a file and add it to a label
 ImageView imageView = new ImageView();
 label.setGraphic(imageView);

 Thread thread1 = new Thread(new Task<Void>() // anonymous class
{

 String imageFileName;
 int currentImage = 1;
 Image image;

@Override
 protected Void call()

{
 while(stageIn.isShowing())
 {

// create the name of the next image to be used
 imageFileName = "record" + currentImage + ".jpg";

 image = new Image(imageFileName);
 imageView.setImage(image);

 try
{

 Thread.sleep(SLEEP_TIME);
}

 catch(InterruptedException e)
{
}

 currentImage++; // next image
 if(currentImage == NUMBER_OF_IMAGES + 1)

{
 currentImage = 1;

}
 }
 return null;

}
 });
 thread1.start();
}

598 20 Multi-threaded Programs

Once again we have used the isShowing method of Stage to terminate the
thread when the application is closed.

20.9 Self-test Questions

1 Explain how concurrency is achieved by means of time-slicing.

2 Distinguish between threads and processes.

3 What is the difference between asynchronous and synchronized thread execution?

4 What is meant by the terms critical section and mutual exclusion? How are Java
programs made to implement these concepts?

5 Explain how busy waiting can be avoided in Java programs.

6 Which two classes exist in the javafx.concurrent package to support
multithreading in JavaFX applications? What is the main difference between
these classes?

7 The application below has had its call method replaced by a comment.

import javafx.application.Application;
import javafx.concurrent.Task;
import javafx.geometry.Pos;
import javafx.stage.Stage;
import javafx.scene.text.Text;
import javafx.scene.Scene;
import javafx.scene.paint.Color;
import javafx.scene.layout.Background;
import javafx.scene.layout.VBox;
import javafx.scene.text.Font;

public class HelloGoodbye extends Application
{
 private Text text = new Text(60, 240, "Hello");

 public void start (Stage stage)
 {
 text.setFont(Font.font ("Verdana", 25));
 text.setFill(Color.BLUE);
 VBox root = new VBox();
 root.setBackground(Background.EMPTY);
 root.setAlignment(Pos.CENTER);
 root.getChildren().add(text);
 Scene scene = new Scene(root, 200, 200);
 stage.setScene(scene);
 stage.setTitle("Hello-Goodbye");
 stage.show();
 begin(stage);
 }

 private void begin(Stage stageIn)
 {
 Thread thread1 = new Thread(new Task<Void>()
 {
 protected Void call()
 {

11eqfg"iqgu"jgtg"
 }
 });
 thread1.start();
 }

 public static void main(String[] args)
 {
 launch(args);
 }
}

20.8 Multithreading and JavaFX 599

Replace the comment with code so that the application continuously displays the
words “Hello” and “Goodbye” as shown below, changing once a second.

20.10 Programming Exercises

1. Implement some of the programs from this chapter. The images that you need
for the Record class can be downloaded from the website. Try to design some
animations of your own.

2. Implement the application that you completed in question 7 of the self-test
questions.

3. Try making some modifications to the applications developed in Sects. 20.8.1
and 20.8.2 which continuously display number sequences.

One possible modification would be to alter the NumbersTask or Num-
bersService class to allow the sleep interval to be passed as a parameter
when an object is instantiated.

Another might be to continuously display single digits in a text field (rather than
a text area), and perhaps have two more threads operating at the same time, with
different sleep intervals. An example is shown below:

4. Make some alterations to the animated face application that we developed in
Sect. 20.8.3. Here are some suggestions:

(a) The sleep interval could be sent into the FaceTask as a parameter.

(b) The mouth could change colour each time it changes expression.

600 20 Multi-threaded Programs

(c) Instead of the mouth changing, one eye could wink as shown below:

You would need to modify both the FaceTask class and the Ani-
matedFace class so that one eye was no longer a circle, but an arc drawn
through 360°. Setting the y radius to zero will produce a straight line.

(d) See if you can create a face in which both the eye winks and the mouth
changes expression, but at different intervals. For this purpose you would
need two versions of the FaceTask class.

20.10 Programming Exercises 601

21Advanced Case Study

Outcomes:

By the end of this chapter you should be able to:

• specify system requirements by developing a use case model;
• annotate a composition association on a UML diagram;
• specify enumerated types in UML and implement them in Java;
• develop test cases from behaviour specifications found in the use case model;
• use the TabPane class to create an attractive user interface;
• add tool tips to JavaFX components.

21.1 Introduction

You have covered quite a few advanced topics now in this second semester. In this
chapter we are going to take stock of what you have learnt by developing an
application that draws upon all these topics. We will make use of Java’s package
notation for bundling together related classes; we will implement interfaces; we will
catch and throw exceptions; we will make use of the collection classes in the
java.util package and we will store objects to file. We will also make use of
many JavaFX components to develop an attractive graphical interface.

As with the case study we presented to you in the first semester, we will discuss
the development of this application from the initial stage of requirements analysis,
through to final implementation and testing stages. Along the way we will look at a
few new concepts.

© Springer Nature Switzerland AG 2019
Q. Charatan and A. Kans, Java in Two Semesters, Texts in Computer Science,
https://doi.org/10.1007/978-3-319-99420-8_21

603

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99420-8_21&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99420-8_21&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99420-8_21&domain=pdf
https://doi.org/10.1007/978-3-319-99420-8_21

21.2 System Overview

The application that we will develop will keep track of planes using a particular
airport. So as not to overcomplicate things, we will make a few assumptions:

• there will be no concept of gates for arrival and departure—passengers will be
met at a runway on arrival and be sent to a runway on departure;

• planes entering airport airspace and requesting to land are either called into land
on a free runway, or are told to join a queue of circling planes until a runway
becomes available;

• once a plane departs from the airport it is removed from the system.

21.3 Requirements Analysis and Specification

Many techniques are used to determine system requirements. Among others, these
include interviewing the client, sending out questionnaires to the client, reviewing
any documentation if a current system already exists and observing people carrying
out their work. A common way to document these requirements in UML is to
develop a use case model. A use case model consists of use case diagrams and
behaviour specifications.

A use case diagram is a simple way of recording the roles of different users
within a system and the services that they require the system to deliver. The users
(people or other systems) of a system are referred to as actors in use case diagrams
and are drawn as simple stick characters. The roles these actors play in the system
are used to annotate the stick character. The services they require are the so-called
use cases. For example, in an ATM application an actor may be a customer and one
of the use cases (services) required would be to withdraw cash. A very simple use
case diagram for our application is given in Fig. 21.1.

Figure 21.1 depicts the actors in this application (air traffic controllers and
information officers) and the services these actors require (registering a flight,
listing arrivals and so on). Once a list of use cases has been identified, behaviour
specifications are used to record their required functionality. A simple way of
recording behaviour specifications is to give a simple textual description for
each use case. Table 21.1 contains behaviour specifications for each use case given
in Fig. 21.1. Note that the descriptions are always given from the users’ point
of view.

As the system develops, the use case descriptions may be modified as detailed
requirements become uncovered. These descriptions will also be useful when
testing the final application, as we will see later.

604 21 Advanced Case Study

Fig. 21.1 A use case diagram for the airport application

Table 21.1 Behaviour specifications for the airport application

Register flight with
airport

An air traffic controller registers an incoming flight with the airport by
submitting its unique flight number, and its city of origin. If the flight
number is already registered by the airport, the software will signal an
error to the air traffic controller

Record flight’s
request to land

An air traffic controller records an incoming flight entering airport
airspace, and requesting to land, by submitting its flight number. As
long as the plane has previously registered with the airport, the air
traffic controller is given an unoccupied runway number on which the
plane will have permission to land. If all runways are occupied
however, this permission is denied and the air traffic controller is
informed to instruct the plane to circle the airport. If the plane has not
previously registered with the airport, the software will signal an error
to the air traffic controller

Record flight landing An air traffic controller records a flight landing on a runway at the
airport by submitting its flight number and the runway number. If the
plane was not given permission to land on that runway, the software
will signal an error to the air traffic controller

(continued)

21.3 Requirements Analysis and Specification 605

21.4 Design

The detailed design for this application is now presented in Fig. 21.2. It introduces
some new UML notation. Have a look at it and then we will discuss it.

As you can see from Fig. 21.2, an Airport class has been introduced to
represent the functionality of the system as a whole. The public methods of the
Airport class correspond closely to the use cases identified during requirements
analysis and specification. Notice we have provided two constructors. One that will
allow us to create an empty Airport object and another that allows us to provide
a filename (as a String) and load data stored in the given file. The private
methods of the Airport class are there simply to help implement the functionality
of the class.

The requirements made clear that there would be many planes to process in this
system. Since the airport exists regardless of the number of planes at the airport, the
relationship between the Airport and Plane class is one of containment, as
indicated with a hollow diamond. It makes sense to consider the collection classes
in the java.util package at this point. As we record planes in the system, and
process these planes, we will always be using a plane’s flight number as a way of
identifying an individual plane. A Map is the obvious collection to choose here,
with flight numbers the keys of the Map and the planes associated with these flight
numbers as values of the Map.

The one drawback with a Map, however, is that it is not ordered on input. When
considering which plane in a circling queue of planes to land, ordering is important,
as the first to join the queue should be the first to land. So we have also introduced a
List to hold the flight numbers of circling planes. Notice that the contained
Plane type requires equals and hashCode methods to work effectively with
these collection classes.

Table 21.1 (continued)

Allow Passengers to
board

An air traffic controller allows passengers to board a plane currently
occupying a runway by submitting its flight number, and its
destination city. If the given plane has not yet recorded landing at the
airport, the software will signal an error to the air traffic controller

Record flight take off An air traffic controller records a flight taking off from the airport by
submitting its flight number. If there are planes circling the airport,
the first plane to have joined the circling queue is then given
permission to land on that runway. If the given plane was not at the
airport, the software will signal an error to the air traffic controller

List arrivals The airport information officer is given a list of planes whose status is
either due-to-land, waiting-to-land, or landed

List departures The airport information officer is given a list of planes whose status is
currently waiting-to-depart (taking on passengers)

606 21 Advanced Case Study

The airport will also consist of a number of runways. In fact the airport cannot
exist without this collection of runways. The airport is said to be composed of a
number of runways as opposed to containing a number of planes. Notice that the
UML notation for composition is the same as that for containment, except that the
diamond is filled rather than hollow. We use an array to hold this collection of
Runway objects.

Turning to the contained classes, the Runway class provides methods to allow
for the runway number to be retrieved, and for a runway to be booked and vacated.
The Plane class also has access to a Runway object, to allow a plane to be able to
book and vacate runways. You can see that as well as each plane being associated
with a runway, the plane also has a flight number, a city and a status associated with
it. The arrows from the Plane class to the PlaneStatus and Runway classes
indicate the direction of the association. In this case a Plane object can send
messages to a Runway and PlaneStatus object, but not vice versa.

Fig. 21.2 Detailed design for the airport application

21.4 Design 607

The status of a plane is described in the PlaneStatus diagram. This diagram
is the UML notation for an enumerated type, which is a type we have not met
before.

21.5 Enumerated Types in UML

A type that consists of a few possible values, each with a meaningful name, is
referred to as an enumerated type. The status of a plane is one example of an
enumerated type. This status changes depending upon the plane’s progress to and
from the airport:

• when a plane registers with the airport, it is due to land;
• when a plane arrives in the airport’s airspace, it is waiting to land (this plane

may be told to come in and land, or it may have to circle the airport until a
runway becomes available);

• when a plane touches down at the airport, it has landed;
• when a plane starts boarding new passengers, it is departing the airport.

You can see from the design of the system that such a type is captured in UML
by marking this type with <<enumeration>> as follows (Fig. 21.3).

We need to mark this UML diagram with <<enumeration>> so that it is not
confused with a normal UML class diagram. With a normal UML class diagram,
attributes and methods are listed in the lower portion. With an enumerated type
diagram, the possible values of this type are given in the lower portion of the
diagram, with each value being given a meaningful name. An attribute that is
allocated a PlaneStatus type, such as status in the Plane class, can have
any one of these values.

This completes our design analysis, so now let’s turn our attention to the Java
implementation.

Fig. 21.3 The UML design
of the enumerated
PlaneStatus type

608 21 Advanced Case Study

21.6 Implementation

Since we are developing an application involving several classes, it makes sense to
bundle these classes together into a single package. We will call this package
airportSys. This means that all our classes will begin with the following
package statement:

package airportSys;

It is a good idea to hide implementation level exceptions (such as Num-
berFormatException) from users of the application and, instead, always
throw some general application exception. In order to be able to do this, we define
our own general AirportException class.

AirportExcep on
package airportSys; // add to package

/**
* Application Specific Exception
*
* @author Charatan and Kans
* @version 1st August 2018
*/

public class AirportException extends RuntimeException
{
/**
* Default Constructor
*/

public AirportException ()
{

super("Error: Airport System Violation");
}

/**
* Constructor that accepts an error message
*/

public AirportException (String msg)
{

super(msg);
}

}

Notice that, as with all the classes we shall develop here, we have added
Javadoc comments into the class definition. Now let’s consider the remaining
classes. First of all, we will look at the implementation of the enumerated
PlaneStatus type.

21.6.1 Implementing Enumerated Types in Java

In order to define an enumerated type such as PlaneStatus, the enum keyword
is used. The PlaneStatus type can now be implemented simply as follows:

// this is how to definine an enumerated type in Java
public enum PlaneStatus
{
 DUE, WAITING, LANDED, DEPARTING
}

21.6 Implementation 609

You can see how easy it is to define an enumerated type. When defining such a
type, do not use the class keyword, use the enum keyword instead. The different
values for this type are then given within the braces, separated by commas.

These values create class constants, with the given names, as before. The type of
each class constant is PlaneStatus and variables can now be declared of this
type. For example, here we declare a variable of the PlaneStatus type and
assign it one of these class constant values:

PlaneStatus status; // declare PlaneStatus variable
status = PlaneStatus.DEPARTING; // assign variable a class constant

The variable status can take no other values, apart from those defined in the
enumerated PlaneStatus type. Each enumerated type you define will also have
an appropriate toString method generated for it, so values can be displayed on
the screen:

System.out.println("Value = " + status);

Assuming we created this variable as above, this would display the following:

Value = DEPARTING

As well as a toString method, a few other methods are generated for you as
well, and the switch statement can be used in conjunction with enumerated type
variables. We will see examples of these features when we look at the code for the
other classes in this application.

Of course, we must remember to add this PlaneStatus type into our
airportSys package:

The PlaneStatus type
package airportSys; // add to package

/**
* Enumerated plane status type.
*
* @author Charatan and Kans
* @version 1st August 2018
*/

public enum PlaneStatus
{

DUE, WAITING, LANDED, DEPARTING
}

610 21 Advanced Case Study

21.6.2 The Runway Class

Here is the code for the Runway class, take a look at it and then we will discuss it.

Runway
package airportSys; // add class to package
import java.io.Serializable;

/**
* This class is used to store details of a single runway.
*
* @author Charatan and Kans
* @version 1st August 2018
*/

public class Runway implements Serializable
{
// attributes
private int number;
private boolean allocated;

/**
 * Constructor sets the runway number
 * @param numberIn Used to set the runway number
 * @throws AirportException When the runway number is less than 1
 */
public Runway (int numberIn)
{

if (numberIn <1)
 {

 throw new AirportException ("invalid runway number "+numberIn);
 }

number = numberIn;
allocated = false; // runway vacant initially

}

/**
* Returns the runway number
*/

public int getNumber()
{

return number;
}

/**
* Checks if the runway has been allocated
* @return Returns true if the runway has been allocated and false otherwise
*/

public boolean isAllocated()
{

return allocated;
}

/**
* Records the runway as being booked
*/

public void book()
{
 allocated = true;
}

/**
 * Records the runway as being vacant
 */
public void vacate()
{

allocated = false;
}

}

There is not much that needs to be said about this class. As we may wish to save
and load objects from our system, we have to remember to indicate that this class is
Serializable.

public class Runway implements Serializable

21.6 Implementation 611

Notice that we have defined this as a public class so that it is accessible
outside of the package. We did this as a runway is a generally useful concept in
many applications; declaring this class public allows it to be re-used outside of
the airportSys package. In fact, we have declared most of our classes public
for this reason.

21.6.3 The Plane Class

Here is the code for the Plane class. Have a close look at it and then we will
discuss it.

Plane
package airportSys;

import java.io.Serializable;

/**
* This class stores the details of a single plane
*
* @author Charatan and Kans
* @version 2nd August 2018
*/
public class Plane implements Serializable
{

// attributes
private String flightNumber;
private String city;
private PlaneStatus status;
private Runway theRunway; // to implement Runway association

// methods

/**
* Constructor sets initial flight details of the plane requesting registration
*
* @param flightIn The flight number of the plane to register
* @param cityOfOrigin The city of origin of the plane to register
*/
public Plane(String flightIn, String cityOfOrigin)
{
flightNumber = flightIn;
city = cityOfOrigin;
status = PlaneStatus.DUE; // initial plane status set to DUE
theRunway = null; // indicates no runway allocated

}

/**
* Returns the plane's flight number
*/
public String getFlightNumber()
{
return flightNumber;

}

/**
* Returns the city associated with the flight
*/
public String getCity()
{
return city;

}

/**
* Returns the current status of the plane
*/
public PlaneStatus getStatus()
{
return status;

}

/**
* Returns the runway allocated to this plane or null if no runway allocated
*/
public Runway getRunway()

612 21 Advanced Case Study

{
return theRunway;

}

/**
* Returns the runway number allocated to this plane
* @throws AirportException if no runway allocated
*/
public int getRunwayNumber()
{
if (theRunway == null)
{
throw new AirportException ("flight "+flightNumber+" has not been allocated a runway");

}
return theRunway.getNumber();

}

/**
* Checks if the plane is allocated a runway
* @return Returns true if the plane has been allocated a runway
* and false otherwise
*/
public boolean isAllocatedARunway()
{
return theRunway!=null;

}

/**
* Allocates the given runway to the plane
*
* @throws AirportException if runway parameter is null or runway already allocated
*/
public void allocateRunway(Runway runwayIn)throws AirportException
{
if (runwayIn == null) // check runway has been sent
{
throw new AirportException ("no runway to allocate");

}
if (runwayIn.isAllocated())
{

throw new AirportException ("runway already allocate");
}
theRunway = runwayIn;
theRunway.book();

 }

/**
* De-allocates the current runway
*
* @throws AirportException if no runway allocated
*/
public void vacateRunway()
{
if (theRunway==null)
{

throw new AirportException ("no runway allocated");
}
theRunway.vacate();

}

/**
* Returns the String representation of the plane's status
*/
public String getStatusName()
{

return status.toString();
}

/**
* Upgrades the status of the plane.
*/
public void upgradeStatus()
{
switch(status)
{

case DUE: status =PlaneStatus.WAITING; break;
case WAITING: status =PlaneStatus.LANDED; break;
case LANDED: status =PlaneStatus.DEPARTING; break;
case DEPARTING: throw new AirportException("Cannot upgrade DEPARTING status");

}
}

/**
* Changes the city associated with the plane
*/
public void changeCity (String destination)

21.6 Implementation 613

{
city = destination;

}

/**
* Returns a string representation of a plane
*/
@Override
public String toString()
{
String out = "number: "+flightNumber+ "\tcity: "+city+ "\tstatus: "+status;
if (theRunway!=null)

out = out +"\trunway: "+theRunway;
{

}
return out;

}

/**
* Checks whether the plane is equal to the given object
*/
@Override
public boolean equals(Object objIn)
{
if (objIn!=null)

Plane p = (Plane)objIn;
return p.flightNumber.equals(flightNumber);

else

return false;

{

}

{

}
}

/**
* Returns a hashcode value
*/
@Override
public int hashCode()
{
return flightNumber.hashCode();

}
}

Again, most of the points we raised with the Runway class are relevant to this
Plane class. It needs to be Serializable and it is declared public.

Since Plane objects will be used in collection classes we have provided this
class with an equals and a hashCode method. You can see that both of these
methods make use of the plane’s flight number.

In addition you should look at the way in which we dealt with the status
attribute. During class design we declared this attribute to be of the enumerated
PlaneStatus type, so it has been implemented as follows:

private PlaneStatus status;

We can then assign this attribute values from the enumerated PlaneStatus
type. For example, in the constructor, we initialize the status of a plane to DUE:

public Plane(String flightNumberIn, String cityOfOrigin)
{
 flightNumber = flightNumberIn;
 city = cityOfOrigin;
 status = PlaneStatus.DUE;
 theRunway = null;
}

The getStatus method returns the value of the status attribute, so the
appropriate return type is PlaneStatus:

614 21 Advanced Case Study

public PlaneStatus getStatus()
{
 return status;
}

The upgradeStatus method is interesting as it demonstrates how the
switch statement can be used with enumerated type variables such as status:

public void upgradeStatus()
{
 switch(status) // this is an enumerated type variable
 {
 // 'case' statements can check the different enumerated values
 case DUE: status = PlaneStatus.WAITING; break;
 case WAITING: status = PlaneStatus.LANDED; break;
 case LANDED: status = PlaneStatus.DEPARTING; break;
 case DEPARTING: throw new AirportException("Cannot upgrade DEPARTING status");
 }
}

Here we are upgrading the status of a plane as it makes its way to, and eventually
from, the airport. Notice that the value of the status attribute is checked in the
case statements, but this value is not appended onto the PlaneStatus class
name. For example:

// just use a status name in ‘case’ test
case DUE: status = PlaneStatus.WAITING; break;

However, in all other circumstances, such as assigning to the status attribute,
the enumerated value does have to be appended onto the PlaneStatus class
name:

// use class + status name in all other circumstances
case DUE: status = PlaneStatus.WAITING; break;

You can see that we should not be upgrading the status of a plane if its current
status is DEPARTING, so an exception is thrown in this case:

case DEPARTING: throw new AirportException ("Cannot upgrade DEPARTING status");

Before we leave this class, also notice that by adding a runway attribute,
theRunway, into the Plane class we can send messages to (access methods of) a
Runway object, for example:

public void allocateRunway(Runway runwayIn)
{
 // some code here
 theRunway.book(); // 'book' is a 'Runway' method
}

21.6 Implementation 615

21.6.4 The Airport Class

The Airport class encapsulates the functionality of the system. It does not
include the interface to the application. As we have done throughout this book, the
interface of an application is kept separate from its functionality. That way, we can
modify the way we choose to implement the functionality without needing to
modify the interface, and vice versa. Examine it closely, being sure to read the
comments, and then we will discuss it.

Airport
package airportSys;

import java.util.Map;
import java.util.HashMap;
import java.util.List;
import java.util.ArrayList;
import java.util.Set;
import java.util.HashSet;
import java.io.IOException;
import java.io.FileOutputStream;
import java.io.ObjectOutputStream;
import java.io.FileInputStream;
import java.io.ObjectInputStream;

1,,
","Encuu"vq"rtqxkfg"vjg"hwpevkqpcnkv{"qh"vjg"cktrqtv"u{uvgo"
",
","Bcwvjqt"Ejctcvcp"cpf"Mcpu"
","Bxgtukqp"6vj"Cwiwuv"423:"
",1"
public class Airport
{

11"cvvtkdwvgu"
 private Map<String, Plane> planes; 11"tgikuvgtgf"rncpgu
 private List<String> circlingQ; 11hnkijv"pwodgtu"qh"ektenkpi"rncpgu
 private Runway []runway; 11"twpyc{u"cnnqecvgf"vq"vjg"cktrqtv

11"ogvjqfu"

1,,"
""","Vjku"Eqpuvtwevqt"cnnqyu"cktrqtv"fcvc"vq"dg"nqcfgf"htqo"c"hkng"
""","
""","Brctco" hkngpcogKp"Vjg"pcog"qh"vjg"hkng"
""","Bvjtqyu""KQGzegrvkqp"kh"rtqdngou"ykvj"qrgpkpi"cpf"nqcfkpi"ikxgp"hkng"
""","Bvjtqyu""EncuuPqvHqwpfGzegrvkqp"kh"qdlgevu"kp"hkng"pqv"qh"vjg"tkijv"v{rg"
""",1"
 public Airport(String filenameIn)throws IOException, ClassNotFoundException
 {

 load(filenameIn);
 }

1,,"
""","Vjku"Eqpuvtwevqt"etgcvgu"cp"gorv{"eqnngevkqp"qh"rncpgu.""
""","cpf"cnnqecvgu"twpyc{u"vq"vjg"cktrqtv"
""","
""","Brctco" pwoKp"Vjg"pwodgt"qh"twpyc{u"
""","Bvjtqyu""CktrqtvGzegrvkqp"kh"pgicvkxg"twpyc{"pwodgt"wugf"
""",1"
 public Airport (int numIn)

 {
 try
 {

11"kpvkcnkug"twpyc{u"
 runway = new Runway [numIn];
 for (int i = 0; i<numIn; i++)
 {
 runway[i] = new Runway (i+1);
 }

11"kpkvkcnn{"pq"rncpgu"cnnqecvgf"vq"cktrqtv"
 planes = new HashMap<>();
 circlingQ = new ArrayList<>();
 }
 catch (Exception e)
 {

11"pqvkeg"vjtqykpi"cp"gzergvkqp"htqo"c"ecvej"encwug"""
 throw new AirportException("Invalid Runway Number set, application closing");
 }
 }

1,,"""
""","Tgikuvgtu"c"rncpg"ykvj"vjg"cktrqtv"
""","
""","Brctco"" hnkijvKp"Vjg"rncpg)u"hnkijv"pwodgt""

616 21 Advanced Case Study

""","Brctco" ekv{QhQtkikp"Vjg"rncpg)u"ekv{"qh"qtkikp"
""","Bvjtqyu" CktrqtvGzegrvkqp"kh"hnkijv"pwodgt"cntgcf{"tgikuvgtgf0""
""",1"
 public void registerFlight (String flightIn, String cityOfOrigin)
 {
 if (planes.containsKey(flightIn))
 {
 throw new AirportException ("flight "+flightIn+" already registered");
 }
 Plane newPlane = new Plane (flightIn, cityOfOrigin);
 planes.put(flightIn, newPlane);
 }

1,,"""
""","Tgeqtfu"c"rncpg"cttkxkpi"cv"vjg"cktrqtv"
""","
""","Brctco"" hnkijvKp"Vjg"rncpg)u"hnkijv"pwodgt"
""","Bvjtqyu" CktrqtvGzegrvkqp"kh"rncpg"pqv"rtgxkqwun{"tgikuvgtgf""
""",""""""""""""qt"kh"rncpg"cntgcf{"cttkxgf"cv"cktrqtv"
""",1"
 public int arriveAtAirport (String flightIn)
 {
 Runway vacantRunway = nextFreeRunway(); 11"igv"pgzv"htgg"twpyc{
 if (vacantRunway != null) 11"ejgem"kh"twpyc{"cxckncdng
 {
 descend(flightIn, vacantRunway); 11"cnnqy"rncpg"vq"fguegpf"qp"vjku"twpyc{
 return vacantRunway.getNumber(); 11"tgvwtp"dqqmgf"twpyc{"pwodgt
 }
 else 11"pq"twpyc{"cxckncdng
 {
 circle(flightIn); 11"rncpg"owuv"lqkp"ektenkpi"swgwg
 return 0; 11"kpfkecvgu"pq"twpyc{"cxckncdng"vq"ncpf
 }
 }

1,,""
""","Tgeqtfu"c"rncpg"ncpfkpi"qp"c"twpyc{"
""","
""","Brctco"" hnkijvKp"Vjg"rncpg)u"hnkijv"pwodgt"
""","Brctco" twpyc{PwodgtKp"Vjg"twpyc{"pwodgt"vjg"rncpg"ku"ncpfkpi"qp"""
""","Bvjtqyu""CktrqtvGzegrvkqp"kh"rncpg"pqv"rtgxkqwun{"tgikuvgtgf""
"""," " " " " " " " qt"kh"vjg"twpyc{"ku"pqv"cnnqecvgf"vq"vjku"rncpg"
""","""" " " " " " qt"kh"rncpg"jcu"pqv"{gv"ukipcnngf"kvu"cttkxcn"cv"vjg"ckrqtv"
"""," " " " " " " " qt"kh"rncpg"ku"cntgcf{"tgeqtfgf"cu"jcxkpi"ncpfgf0"
""",1"
 public void landAtAirport (String flightIn, int runwayNumberIn)
 {
 Plane thisPlane = getPlane(flightIn); 11"vjtqyu"CktrqtvGzegrvkqp"kh"pqv"tgikuvgtgf
 if (thisPlane.getRunwayNumber()!= runwayNumberIn)
 {
 throw new AirportException ("flight "+flightIn+" should not be on this runway");
 }
 if (thisPlane.getStatus()== PlaneStatus.DUE)
 {
 throw new AirportException ("flight "+flightIn+" not signalled its arrival");
 }
 if (thisPlane.getStatus().compareTo(PlaneStatus.WAITING)>0)
 {
 throw new AirportException ("flight "+flightIn+" already landed");
 }

 thisPlane.upgradeStatus(); 11"writcfg"uvcvwu"htqo"YCKVKPI"vq"NCPFGF
 }

1,,""
""","Tgeqtfu"c"rncpg"dqctfkpi"hqt"vcmg"qhh"
""","
""","Brctco"" hnkijvKp"Vjg"rncpg)u"hnkijv"pwodgt"
""","Brctco" fguvkpcvkqp"Vjg"ekv{"qh"fguvkpcvkqp"" "
""","Bvjtqyu""CktrqtvGzegrvkqp"""kh"rncpg"pqv"rtgxkqwun{"tgikuvgtgf""
""",""""""""""""""""""""""""""""qt"kh"rncpg"pqv"{gv"tgeqtfgf"cu"ncpfgf""
""",""""""""""""""""""""""""""""qt"kh"rncpg"cntgcf{"tgeqtfgf"cu"tgcf{"hqt"vcmg"qhh"
""",1"
 public void readyForBoarding(String flightIn, String destination)
 {
 Plane thisPlane = getPlane(flightIn);11"vjtqyu"CktrqtvGzegrvkqp"kh"pqv"tgikuvgtgf
 if (thisPlane.getStatus().compareTo(PlaneStatus.LANDED)<0)
 {
 throw new AirportException ("flight "+flightIn+" not landed");
 }
 if (thisPlane.getStatus()== PlaneStatus.DEPARTING)
 {
 throw new AirportException ("flight "+flightIn+" already registered to depart");

21.6 Implementation 617

 }
 thisPlane.upgradeStatus(); 11"writcfg"uvcvwu"htqo"NCPFGF"vq"FGRCTVKPI
 thisPlane.changeCity(destination); 11"ejcpig"ekv{"qh"qtkikp"vq"ekv{"qh"fguvkpcvkqp
 }

1,,""
""","Tgeqtfu"c"rncpg"vcmkpi"qhh"htqo"vjg"ckrtqtv"
""","
""","Brctco"" hnkijvKp"Vjg"rncpg)u"hnkijv"pwodgt"
""","Bvjtqyu""CktrqtvGzegrvkqp"""""kh"rncpg"pqv"rtgxkqwun{"tgikuvgtgf""
""","""""""""""""""""""""""""""""""qt"kh"rncpg"pqv"{gv"tgeqtfgf"cu"ncpfgf""
""","""""""""""""""""""""""""""""""qt"kh"vjg"rncpg"pqv"rtgxkqwun{"tgeqtfgf"cu"vcmgp"qhh"
""",1"
 public Plane takeOff (String flightIn)
 {
 leave(flightIn); 11"tgoqxg"htqo"rncpg"tgikuvgt
 Plane nextFlight = nextToLand(); 11"tgvwtp"pgzv"ektenkpi"rncpg"vq"ncpf
 if (nextFlight != null) 11"ejgem"ektenkpi"hnkijv"gzkuvu
 {
 Runway vacantRunway = nextFreeRunway();
 descend(nextFlight.getFlightNumber(), vacantRunway); 11"cnnqecvg"twpyc{"vq"ektenkpi"rncpg
 return nextFlight; 11"ugpf"dcem"fgvcknu"qh"pgzv"rncpg"vq"ncpf
 }
 else 11"pq"ektenkpi"rncpgu
 {
 return null;
 }
 }

1,,"
""","Tgvwtpu"vjg"ugv"qh"rncpgu"fwg"hqt"cttkxcn"
""",1"
 public Set<Plane> getArrivals()
 {
 Set<Plane> planesOut = new HashSet<>();
 Set<String> items = planes.keySet();
 for(String thisFlight: items)
 {
 Plane thisPlane = planes.get(thisFlight);
 if (thisPlane.getStatus() != PlaneStatus.DEPARTING)
 {
 planesOut.add(thisPlane); 11cff"vq"ugv
 }
 }
 return planesOut;
 }

1,,"
""","Tgvwtpu"vjg"ugv"qh"rncpgu"fwg"hqt"fgrctvwtg"
""",1"
 public Set<Plane> getDepartures()
 {
 Set<Plane> planesOut = new HashSet<>();
 Set<String> items = planes.keySet();
 for(String thisFlight: items)
 {
 Plane thisPlane = planes.get(thisFlight);
 if (thisPlane.getStatus()==PlaneStatus.DEPARTING)
 {
 planesOut.add(thisPlane); 11"cff"vq"ugv
 }
 }
 return planesOut;
 }

 1,,"
""","Tgvwtpu"vjg"pwodgt"qh"twpyc{u"
""",1"
 public int getNumberOfRunways()
 {
 return runway.length;
 }

 1,,""
""","Ucxgu"cktrqtv"qdlgev"vq"hkng"
""","
""","Brctco"" hkngKp"Vjg"pcog"qh"vjg"hkng "
""","Bvjtqyu""KQGzegrvkqp"kh"rtqdngou"ykvj"qrgpkpi"cpf"ucxkpi"vq"ikxgp"hkng "
""",1"
 public void save(String fileIn)throws IOException
 {
 11"pqvkeg"vt{/ykvj/tguqwtegu"vq"gpuwtg"hkng"enqugu"uchgn{"
 try (FileOutputStream fileOut = new FileOutputStream(fileIn);
 ObjectOutputStream objOut = new ObjectOutputStream (fileOut))
 {
 objOut.writeObject(planes);

618 21 Advanced Case Study

 objOut.writeObject(circlingQ);
 objOut.writeObject(runway);
 }
 }

 1,,""
""","Nqcfu"cktrqtv"qdlgev"htqo"hkng"
""","
""","Brctco"" hkngPcog"Vjg"pcog"qh"vjg"hkng"
""","Bvjtqyu""KQGzegrvkqp"kh"rtqdngou"ykvj"qrgpkpi"cpf"nqcfkpi"ikxgp"hkng "
""","Bvjtqyu""EncuuPqvHqwpfGzegrvkqp"kh"qdlgevu"kp"hkng"pqv"qh"vjg"tkijv"v{rg "
""",1"
 public void load (String fileName) throws IOException, ClassNotFoundException
 {
 11"pqvkeg"vt{/ykvj/tguqwtegu"vq"gpuwtg"hkng"enqugu"uchgn{"
 try (FileInputStream fileInput = new FileInputStream(fileName);
 ObjectInputStream objInput = new ObjectInputStream (fileInput))
 {
 planes = (Map<String, Plane>) objInput.readObject();
 circlingQ = (List<String>) objInput.readObject();
 runway = (Runway[])objInput.readObject();
 }
 }

 11"jgnrgt"ogvjqf"vq"hkpf"pgzv"htgg"twpyc{"
 private Runway nextFreeRunway()
 {
 for (Runway nextRunway : runway)
 {
 if (!nextRunway.isAllocated())
 {
 return nextRunway;
 }
 }
 return null;
 }

 1,,"""
""","Tgvwtpu"vjg"tgikuvgtgf"rncpg"ykvj"vjg"ikxgp"hnkijv"pwodgt"
""","
""","Bvjtqyu" CktrqtvGzegrvkqp"kh"hnkijv"pwodgt"pqv"{gv"tgikuvgtgf0" "
""",1"
 private Plane getPlane(String flightIn)
 {
 if (!planes.containsKey(flightIn))
 {
 throw new AirportException ("flight "+flightIn+" has not yet registered");
 }
 return planes.get(flightIn);
 }

 1,,""
""","Tgeqtfu"c"rncpg"fguegpfkpi"qp"c"twpyc{"
""","
""","Brctco"" hnkijvKp"Vjg"rncpg)u"hnkijv"pwodgt "
""","Brctco" twpyc{Kp"Vjg"twpyc{"vjg"rncpg"yknn"dg"ncpfkpi"qp" " "
""","Bvjtqyu""CktrqtvGzegrvkqp""""kh"rncpg"pqv"rtgxkqwun{"tgikuvgtgf" "
""",""""""""""""""""""""""""""""""qt"kh"rncpg"cntgcf{"cttkxgf"cv"cktrqtv"
""",""""""""""""""""""""""""""""""qt"kh"rncpg"cntgcf{"cnnqecvgf"c"twpyc{""
""",1"
 private void descend (String flightIn, Runway runwayIn)
 {
 Plane thisPlane = getPlane(flightIn);// throws AirportException if not registered

if (thisPlane.getStatus().compareTo(PlaneStatus.WAITING)>0)

{
throw new AirportException

("flight "+flightIn+" already at airport has status of "+thisPlane.getStatusName());
}
if (thisPlane.isAllocatedARunway())
{

throw new AirportException
("flight "+flightIn+" has already been allocated runway "+thisPlane.getRunwayNumber());

}
thisPlane.allocateRunway(runwayIn);
if (thisPlane.getStatus()==PlaneStatus.DUE) 11"wrftcigf"uvcvwu"htqo"FWG"vq"YCKVKPI
{

thisPlane.upgradeStatus();
}

}

1,,""
,"Tgeqtfu"c"rncpg"lqkpkpi"vjg"rncpgu"ektenkpi"vjg"cktrqtv
,
,"Brctco" hnkijvKp"Vjg"rncpg)u"hnkijv"pwodgt
,"Bvjtqyu CktrqtvGzegrvkqp"kh"rncpg"pqv"rtgxkqwun{"tgikuvgtgf"

21.6 Implementation 619

, qt"kh"rncpg"cntgcf{"cttkxgf
,1

private void circle (String flightIn)
{

Plane thisPlane = getPlane(flightIn); 11"vjtqyu"CktrqtvGzegrvkqp"kh"pqv"tgikuvgtgf
if (thisPlane.getStatus()!= PlaneStatus.DUE)
{

throw new AirportException ("flight "+flightIn+" already at airport");
}
thisPlane.upgradeStatus(); 11"wrftcigf"uvcvwu"htqo"FWG"vq"YCKVKPI
circlingQ.add(flightIn);

}

1,,"
,"Tgeqtfu"c"rncpg"vcmkpi"qhh"htqo"vjg"ckrtqtv
,
,"Brctco" hnkijvKp"Vjg"rncpg)u"hnkijv"pwodgt
,"Bvjtqyu CktrqtvGzegrvkqp"kh"rncpg"pqv"rncpg"pqv"pqv"rtgxkqwun{"tgikuvgtgf
,"""""""""""" qt"kh"rncpg pqv"{gv"tgeqtfgf"cu"ncpfgf"
, qt"kh"vjg"rncpg"jcu"pqv"rtgxkqwun{"dggp"tgeqtfgf"cu"tgcf{"hqt"vcmg"qhh
,1

private void leave (String flightIn)
{

11"igv"rncpg"cuuqekcvgf"ykvj"ikxgp"hnkijv"pwodgt
Plane thisPlane = getPlane(flightIn);11 vjtqyu"CktrqtvGzegrvkqp"kh"pqv"tgikuvgtgf
// throw exceptions if plane is not ready to leave airport
if (thisPlane.getStatus().compareTo(PlaneStatus.LANDED)<0)
{

throw new AirportException ("flight "+flightIn+" not yet landed");
}
if (thisPlane.getStatus()==PlaneStatus.LANDED)
{

throw new AirportException ("flight "+flightIn+" must register to board");
}
11"rtqeguu"rncpg"ngcxkpi"cktrqtv
thisPlane.vacateRunway(); 11"twpyc{"pqy"htgg
planes.remove(flightIn); 11"tgoqxg"rncpg"htqo"nkuv

}

1,,
,"Nqecvgu"pgzv"ektenkpi"rncpg"vq"ncpf
,
,"Btgvwtp"""" Tgvwtpu"vjg"pgzv"ektenkpi"rncpg"vq"ncpf"
, qt"pwnn"kh"pq"rncpgu
,1

private Plane nextToLand()
{

if (!circlingQ.isEmpty()) 11"ejgem"ektenkpi"rncpg"gzkuvu
{

String flight = circlingQ.get(0);
circlingQ.remove(flight);
return getPlane(flight); 11"eqwnf"vjtqy"gzegrvkqp"qh"pqv"kp"nkuv

}
else // no circling plane
{

return null;
}

}

}

There is not a lot that is new here, but we draw your attention to a few
implementation issues.

First, notice we have provided two constructors, as specified in Fig. 21.2. The
first receives the name of a file and loads data from this given file (using the
private load method to be found later in this Airport class); the associated
exceptions are passed on if an error occurs during this process:

public Airport(String filenameIn)throws IOException, ClassNotFoundException
{
 load(filenameIn); // call private method to load airport data
}

The second constructor receives the number of runways associated with this
airport and initialises all data to be empty.

620 21 Advanced Case Study

 public Airport (int numIn)
 {
 try
 {

// intialise runways
 runway = new Runway [numIn];
 for (int i = 0; i<numIn; i++)
 {
 runway[i] = new Runway (i+1);
 }

// initially no planes allocated to airport
 planes = new HashMap<>();
 circlingQ = new ArrayList<>();
 }
 catch (Exception e)
 {

// notice we have thrown our user-defined exception from this catch clause
 throw new AirportException("Invalid Runway Number set, application closing");
 }
 }

Within this constructor you can see that we catch a general exception, in case
something goes wrong when allocating the array, and throw our application-specific
exception when this occurs. This can be useful if we wish to suppress the name of
Java specific expectations and stick to the names of our own user-defined
exceptions.

Most of the other public methods simply check for a list of exceptions, and
then upgrade the plane’s status as it makes its way to and eventually from the airport.

Here, for example, is the method that records a plane that has previously landed
at the airport, being ready to board new passengers for a new destination:

/**
 * Records a plane boarding for take off
 *
 * @param flightIn The plane's flight number
 * @param destination The city of destination
 * @throws AirportException if plane not previously registered
 * or if plane not yet recorded as landed
 * or if plane already recorded as ready for take off
 */
 public void readyForBoarding(String flightIn, String destination)
 {
 Plane thisPlane = getPlane(flightIn);// throws AirportException if not registered
 if (thisPlane.getStatus().compareTo(PlaneStatus.LANDED)<0)
 {
 throw new AirportException ("flight "+flightIn+" not landed");
 }
 if (thisPlane.getStatus()== PlaneStatus.DEPARTING)
 {
 throw new AirportException ("flight "+flightIn+" already registered to depart");
 }
 thisPlane.upgradeStatus(); // upgrade status from LANDED to DEPARTING
 thisPlane.changeCity(destination); // change city of origin to city of destination
 }

The first thing we need to do in this method is to check whether or not an
AirportException needs to be thrown. The Javadoc comments make clear
that there are three situations in which we need to throw such an exception.

First, an exception needs to be thrown if the given flight number has not been
registered with the airport. At some point we also need to retrieve the Plane object
from this flight number. Calling the helper method getPlane will do both of these
things for us, as it throws an AirportException if the flight is not registered.

// retrieves plane or throws AirportException if flight is not registered
Plane thisPlane = getPlane(flightIn);

21.6 Implementation 621

To check for the remaining exceptions we need to check that the plane currently
has the appropriate status to start taking on passengers. The getStatus method
of a plane returns the status of a plane for us. We know from the previous section
that this method returns a value of the enumerated type PlaneStatus.

As well as having a toString method generated for you when you declare an
enumerated type such as PlaneStatus, a compareTo method (to allow for
comparison of two enumerated values) is also generated. This method works in
exactly the same way as the compareTo method you met when looking at
String methods. That is, it returns 0 when the two values are equal, a number less
than 0 when the first value is less than the second value and a number greater than 0
when the first value is greater than the second value. One enumerated type value is
considered less than another if it is listed before that value in the original type
definition. So, in our example, DUE is less than WAITING, which is less than
LANDED and so on. If a plane has a status that is less than LANDED it has not yet
landed, so cannot be ready to board passengers—an AirportException is
thrown:

// use 'compareTo' method to compare two status values
if (thisPlane.getStatus().compareTo(PlaneStatus.LANDED)<0)
{
 throw new AirportException ("flight "+flightIn+" not yet landed");
}

We also need to throw an AirportException if the plane already has a
status of BOARDING. Although the compareTo method can be used to check for
equality as well, with most classes it is common to use an equals method to do
this. An equals method is generated for any enumerated type, such as
PlaneStatus, that you define. However, because of the way enumerated types
are implemented in Java, the simple equality operator (==) can also be used to
check for equality:

// equality operator can be used to check if 2 enumerated values are equal
if (thisPlane.getStatus()== PlaneStatus.DEPARTING)
{
 throw new AirportException ("flight "+flightIn+" already registered to depart");
}

Having checked for exceptions, we can now indicate that this plane is ready for
boarding by upgrading its status (from LANDED to DEPARTING), and by recording
the flights new destination city:

// we have cleared all the exceptions so we can update flight details now
thisPlane.upgradeStatus(); // upgrades status from LANDED to DEPARTING
thisPlane.changeCity(destination); // changes city to destination city

The inequality operator (!=) can be used with enumerated types, to check for
inequality of two enumerated type values. An example of this can be seen in the
implementation of the arrivals method:

622 21 Advanced Case Study

/**
 * Returns the set of planes due for arrival
 */
 public Set<Plane> getArrivals()
 {
 Set<Plane> planesOut = new HashSet<Plane>(); // create empty set
 Set<String> items = planes.keySet(); // get all flight numbers
 for(String thisFlight: items) // check status of all
 {
 Plane thisPlane = planes.get(thisFlight);
 if (thisPlane.getStatus() != PlaneStatus.DEPARTING)
 {
 planesOut.add(thisPlane); // add to set
 }
 }
 return planesOut;
 }

Here we create an empty set of planes. We then add planes into this set if they do
not have a status of DEPARTING:

// use inequality operator to check if status does not equal some value
if (thisPlane.getStatus() != PlaneStatus.DEPARTING)
{
 planesOut.add(thisPlane);
}

We have used an enhanced for loop in this method, but you might consider
using a forEach loop. We leave this as end of chapter exercises for you.

Before we leave this section, let us take a look at the save and load methods
that allow us to save and load the attributes in our application. We have three
attributes here, planes (the Map of registered planes), circlingQ (the List of
flight numbers of the planes circling the airport) and runway (the array of
runways).

Since we have declared our Plane and Runway classes to be Serializ-
able, and because enumerated types such as PlaneStatus and collection
classes such as Map and List are already Serializable, it is a simple matter
to write these objects to a file, and read them from a file. Here is the save method:

/**
 * Saves airport object to file
 *
 * @param fileIn The name of the file
 * @throws IOException if problems with opening and saving to given file
 */
 public void save(String fileIn)throws IOException
 {

// notice try-with-resources to ensure file closes safely
 try (FileOutputStream fileOut = new FileOutputStream(fileIn);
 ObjectOutputStream objOut = new ObjectOutputStream (fileOut))
 {
 objOut.writeObject(planes);
 objOut.writeObject(circlingQ);
 objOut.writeObject(runway);
 }
 }

You can see we have used a try-with-resources construct here to ensure the file is
closed once the method terminates.

21.6 Implementation 623

Here is the load method:

 /**
 * Loads airport object from file
 *
 * @param fileName The name of the file
 * @throws IOException if problems with opening and loading given file
 * @throws ClassNotFoundException if objects in file not of the right type
 */
 public void load (String fileName) throws IOException, ClassNotFoundException
 {

// notice try-with-resources to ensure file closes safely
 try (FileInputStream fileInput = new FileInputStream(fileName);
 ObjectInputStream objInput = new ObjectInputStream (fileInput))
 {
 planes = (Map<String, Plane>) objInput.readObject();
 circlingQ = (List<String>) objInput.readObject();
 runway = (Runway[])objInput.readObject();
 }
 }

Again, we have used a try-with-resources construct to ensure our file is closed
upon termination. Notice that when we load the attributes from file, we must
indicate their type. The collection class types need to be marked using the generics
mechanism:

// indicate the type of each collection using generics mechanism
planes = (Map<String, Plane>) objInput.readObject();
circlingQ = (List<String>) objInput.readObject();
runway = (Runway[])objInput.readObject();

There is nothing particularly new in the remaining methods. Take a look at the
comments provided to follow their implementation.

21.7 Testing

In Chaps. 11 and 12 we looked at the concepts of unit testing and integration
testing. We have left unit testing to you as a practical task, but we will spend a little
time here considering integration testing. A useful technique to devise test cases
during integration testing is to review the behaviour specifications of use cases,
derived during requirements analysis.

Remember, a use case describes some useful service that the system performs.
The behaviour specifications capture this service from the point of view of the user.
When testing the system you take the place of the user, and you should ensure that
the behaviour specification is observed.

Often, there are several routes through a single use case. For example, when
registering a plane, either the plane could be successfully registered, or an error is
indicated. Different routes through a single use case are known as different

624 21 Advanced Case Study

scenarios. During integration you should take the place of the user and make sure
that you test each scenario for each use case. Not surprisingly, this is often known
as scenario testing. As an example, reconsider the “Record flight’s request to land”
use case:

An air traffic controller records an incoming flight entering airport airspace,
and requesting to land at the airport, by submitting its flight number. As long as the
plane has previously registered with the airport, the air traffic controller is given an
unoccupied runway number on which the plane will have permission to land. If all
runways are occupied however, this permission is denied and the air traffic con-
troller is informed to instruct the plane to circle the airport. If the plane has not
previously registered with the airport an error is signalled.

From this description three scenarios can be identified:

Scenario 1
An air traffic controller records an incoming plane entering airport airspace and
requesting to land at the airport, by submitting its flight number, and is given an
unoccupied runway number on which the plane will have permission to land.

Scenario 2
An air traffic controller records an incoming plane entering airport airspace and
requesting to land at the airport, by submitting its flight number. The air traffic
controller is informed to instruct the plane to circle the airport as all runways are
occupied.

Scenario 3
An air traffic controller records an incoming plane entering airport airspace and
requesting to land at the airport, by submitting its flight number. An error is
signalled as the plane has not previously registered with the airport.

Similar scenarios can be extracted for each use case. During testing we should
walk through each scenario, checking whether the outcomes are as expected.

21.8 Design of the JavaFX Interface

Figure 21.4 illustrates the interface design we have chosen for the Airport appli-
cation. A few new JavaFX features have been highlighted.

Apart from the features highlighted in Fig. 21.4, the remaining JavaFX com-
ponents will be familiar to you. The three new JavaFX features are: a layout
component known as a tabbed pane; some text that appears when you keep your
cursor over a component—known as that component’s tool tip and a Stage with

21.7 Testing 625

no icons for minimising/maximising/closing—known as an undecorated stage. We
will return to look at tool tips and undecorated stages later in the chapter but we will
look at a tabbed pane now—it is implemented in JavaFX using a TabPane class.

21.9 The TabPane Class

The TabPane class provides a very useful JavaFX component for organizing the
user interface. You can think of a TabPane component as a collection of over-
lapping tabbed “cards”, on which you place other user interface components.
A particular card is revealed by clicking on its tab. This allows certain parts of the
interface to be kept hidden until required, thus reducing screen clutter.

Fig. 21.4 Some new JavaFX features in the Airport JavaFX interface

at the moment the first
tab is selected

components associated with the other two tabs are kept
hidden until the tabs are clicked

the first
tabbed
component
is a VBox

these
components
are added to
the VBox

Fig. 21.5 A TabPane allows parts of the interface to be revealed selectively

626 21 Advanced Case Study

A TabPane component can consist of any number of tabbed cards. Each card is
actually a single component of your choice. If you use a container component such
as a VBox, you can effectively associate many components with a single tab (see
Fig. 21.5).

We can construct a TabPane component by calling the empty constructor as
follows:

TabPane tabbedPane = new TabPane();

A TabPane can be associated with any number of individual tabbed cards. To
do this we use the Tab class for each individual tabbed card. We need three tabbed
cards, one for the main screen shown in Fig. 21.5, one for the arrivals information
and one for the departures information:

Tab tab1 = new Tab("Flight Control"); // main flight control tab
Tab tab2 = new Tab("Flight Arrivals"); // arrivals tab
Tab tab3 = new Tab("Flight Departures"); // departures tab

The strings provided to the constructors are the titles displayed on each tab.
We can now add tabbed components to the TabPane. When adding a tabbed

component to a TabPane, you call the getTabs method to access the link to the
collection of tabbed cards and then the tabs themselves can be set using the
addAll method:

tabbedPane.getTabs().addAll(tab1, tab2, tab3);

The order in which the tabs are given to the addAll method is the order in
which they will appear on the screen.1 As we mentioned, each tabbed card is
associated with a single component. So to add multiple components to a tab we can
use a container such as a VBox or a HBox. For example, to create the main tab
shown in Fig. 21.5, we have 3 components highlighted—a cloud image (named
imageView in the code), a label (named label in the code) and a collection of
buttons (stored in a HBox named controls in the code). We add all three of these
to a VBox (named box in the code):

// add cloud image, label and button collection to VBox
box.getChildren().addAll(imageView,label, controls);

1By default, the tabs you add will appear at the top left of the TabPane (as in Fig. 21.4).
A setSide method can be used to choose an alternative side (the top right, the bottom, the left or
the right).

21.9 The TabPane Class 627

We then use the setContent method of a tabbed card to add this VBox
component to a given tab:

// add VBox to tab1
tab1.setContent(box);

The “Flight Arrivals” and “Flight Departures” each contain a HBoxes (each of
which contains a series of VBox columns) to display arrivals and departure
information respectively. Figure 21.6 shows the airport GUI after selecting the
“Flight Arrivals” tab.

21.10 The AirportFrame Class

We now present the complete code for the JavaFX class. Take a look at it and then
we will point out a few features:

AirportFrame
package airportSys; // add class to package

import java.util.Set;

import javafx.application.Application;
import static javafx.application.Application.launch;
import javafx.application.Platform;
import javafx.geometry.Insets;

Flight
informa on
contained
in a HBox

Fig. 21.6 Both “Flight Arrivals” and “Flight Departures” tabs consist of flight information in a
HBox

628 21 Advanced Case Study

import javafx.geometry.Pos;
import javafx.scene.Scene;i
mport javafx.scene.control.Alert;

import javafx.scene.control.Alert.AlertType;
import javafx.scene.control.Button;
import javafx.scene.control.ButtonType;
import javafx.scene.control.Label;
import javafx.scene.control.Menu;
import javafx.scene.control.MenuBar;
import javafx.scene.control.Tab;
import javafx.scene.control.TabPane;
import javafx.scene.control.TextInputDialog;
import javafx.scene.image.Image;
import javafx.scene.image.ImageView;
import javafx.scene.layout.HBox;
import javafx.stage.Stage;
import javafx.scene.layout.VBox;
import javafx.scene.text.Text;
import javafx.scene.control.Tooltip;
import javafx.scene.layout.Border;
import javafx.scene.layout.BorderStroke;
import javafx.scene.layout.BorderStrokeStyle;
import javafx.scene.layout.BorderWidths;
import javafx.scene.layout.CornerRadii;
import javafx.scene.paint.Color;
import javafx.stage.StageStyle;

/**
* Class to provide the JavaFX interface of the airport system
*
* @author Charatan and Kans
* @version 6th August 2018
*/

public class AirportFrame extends Application
{

// declare Airport object
private Airport myAirport;
// additional data required for the airport system
private int numberOfRunways ;
private final String FILENAME = "airport.dat";

// create arrival and departure visual components that need global access

// arrivals information displayed in a HBox
private HBox arrivals = new HBox(50);
// include columns for arrivals information
private VBox arrivalsColumn1 = new VBox();
private VBox arrivalsColumn2 = new VBox();
private VBox arrivalsColumn3 = new VBox();
private VBox arrivalsColumn4 = new VBox();
// departures information displayed in a HBox
private HBox departures = new HBox(60);
// include columns for departures information
private VBox departuresColumn1 = new VBox();
private VBox departuresColumn2 = new VBox();
private VBox departuresColumn3 = new VBox();

// methods

/**
* The start method to initialise the screen and the airport data
*
* @param stage The Stage object
*/

@Override
public void start(Stage stage)
{

// check if data is to be loaded from file
Alert alert = new Alert(AlertType.INFORMATION, "Do you want to restore your data?",

ButtonType.YES, ButtonType.NO);
String response = alert.showAndWait().get().getText();
if (response.equals("Yes")) // load data from file
{

try
{

myAirport = new Airport(FILENAME); // call file loading constructor
listArrivals(); // update arrivals tab
listDepartures(); // update departures tab
showInfo("Planes loaded");

}
catch (Exception e) // file loading errors
{

showError("File Opening error");
System.exit(1); // indicates exit with error

}

21.10 The AirportFrame Class 629

 }
 else // initialise an empty airport
 {
 numberOfRunways = getNumberOfRunways(); // request number of runways
 try
 {
 myAirport = new Airport (numberOfRunways); // create an empty Airport object
 }
 catch (AirportException ae) // error initialising Airport object
 {
 showError(ae.getMessage());
 System.exit(1); // indicates exit with error
 }
 catch (Exception e) // in case of any unforseen error
 {
 showError(e.getMessage());
 System.exit(1); // indicates exit with error
 }
 }
 // set up three Tab objects in a TabPane
 TabPane tabbedPane = new TabPane();
 Tab tab1 = new Tab("Flight Control"); // main flight control tabs
 Tab tab2 = new Tab("Flight Arrivals"); // arrivals tab
 Tab tab3 = new Tab("Flight Departures"); // departures tab
 tabbedPane.getTabs().addAll(tab1, tab2, tab3);
 // ensure tabs remain open
 tab1.setClosable(false);
 tab2.setClosable(false);
 tab2.setClosable(false);

 // creat a VBox to hold all scene components
 VBox root = new VBox();

 // set up menu bar and items
 MenuBar bar = new MenuBar();
 bar.setMinHeight(25);
 Menu item = new Menu("File");
 Menu saveAndContinueOption = new Menu("Back-up and continue");
 Menu saveAndExitOption = new Menu("Back-up and exit");
 Menu exitWithoutSavingOption = new Menu("Exit without backing-up");
 item.getItems().addAll(saveAndContinueOption, saveAndExitOption, exitWithoutSavingOption);
 bar.getMenus().add(item);

 // create and customise a VBox to organise flight control screen
 VBox box = new VBox();
 box.setPadding(new Insets(10));
 box.setMinHeight(215);
 // add Vbox to tab1
 tab1.setContent(box);
 box.setAlignment(Pos.BOTTOM_LEFT);
 // create a cloud image
 Image image = new Image("clouds.png");
 ImageView imageView = new ImageView(image);
 // create an instructional label
 Label label = new Label("Enter an option");
 // create a HBox to hold main flight control buttons
 HBox controls = new HBox(10);
 // create flight control buttons and add tooltips
 Button button1 = new Button("Register");
 button1.setTooltip(new Tooltip("Register a flight with the airport"));
 Button button2 = new Button("Request to land");
 button2.setTooltip(new Tooltip("Record a flight requesting to land at the airport"));
 Button button3 = new Button("Land");
 button3.setTooltip(new Tooltip("Record a flight landing at the airport"));
 Button button4 = new Button("Board");
 button4.setTooltip(new Tooltip("Record a landed flight ready for boarding new passengers"));
 Button button5 = new Button("Take off");
 button5.setTooltip(new Tooltip("Record a flight leaving the airport"));
 // add buttons to HBox
 controls.getChildren().addAll(button1, button2, button3, button4, button5);
 // add cloud image, label and button collection to VBox
 box.getChildren().addAll(imageView,label, controls);
 try
 {
 // code button responses by calling private methods
 button1.setOnAction(e -> register());
 button2.setOnAction(e -> requestToLand());
 button3.setOnAction(e -> land());
 button4.setOnAction(e -> board());
 button5.setOnAction(e -> takeOff());
 // code menu responses
 saveAndContinueOption.setOnAction(e -> save(FILENAME));
 saveAndExitOption.setOnAction(e ->{
 save(FILENAME);
 Platform.exit();
 });
 exitWithoutSavingOption.setOnAction(e -> exitWithoutSaving());

630 21 Advanced Case Study

}
catch(Exception e) // for any unforseen errors
{

showError("Invalid Operation");
}

// customise look of arrivals tab
arrivals.setPadding(new Insets(10));
arrivals.getChildren().addAll(arrivalsColumn1, arrivalsColumn2, arrivalsColumn3,

arrivalsColumn4);
tab2.setContent(arrivals);
// customise look of departures tab
departures.setPadding(new Insets(10));
departures.getChildren().addAll(departuresColumn1, departuresColumn2, departuresColumn3);
tab3.setContent(departures);
// customise root object and add menu and tabbed pane
root.setBorder(new Border(new BorderStroke(Color.BLACK, BorderStrokeStyle.SOLID,

new CornerRadii(0), new BorderWidths(2))));
root.getChildren().addAll(bar, tabbedPane);
// customise frame
Scene scene = new Scene(root,450, 275);
stage.setScene(scene);
stage.setTitle("Airport System");
stage.initStyle(StageStyle.UNDECORATED); // for undecorated frame

stage.show();
}

/**
* Private method to request and return the number of runways
*/

private int getNumberOfRunways()
{

TextInputDialog dialog = new TextInputDialog();
dialog.setHeaderText("Enter number of runways");
dialog.setTitle("Runway Information Request");

String response = dialog.showAndWait().get();

if (!response.equals("")) // check for empty string
{

return Integer.parseInt(response);
}
else
{

return -1; // to indicate no runway set
}

}

/**
* Private method to register new flight with the airport
*/

private void register()
{

String flightNo, city;
try
{

TextInputDialog dialog = new TextInputDialog();
dialog.setHeaderText("Enter flight number");
dialog.setTitle("Registration form");
flightNo = dialog.showAndWait().get();

// throws AirportException if no flight entered
checkIfEmpty(flightNo, "No flight number entered");

dialog = new TextInputDialog();
dialog.setHeaderText("Enter city of origin");
dialog.setTitle("Registration form");
city = dialog.showAndWait().get();

// throws AirportException if no city entered
checkIfEmpty(city, "No city entered");

// register flight
myAirport.registerFlight(flightNo, city);
showInfo("confirmed:\nflight "+flightNo +" registered from "+city);

}
catch(AirportException ae) // catch airport exceptions
{

showError(ae.getMessage());
}
listArrivals(); // update arrivals tab

}

/**

21.10 The AirportFrame Class 631

* Private method to record a flight's request to land
*/

private void requestToLand()
{

String flightNo, message;

try
{

TextInputDialog dialog = new TextInputDialog();
dialog.setHeaderText("Enter flight number");
dialog.setTitle("Request to land form");
flightNo = dialog.showAndWait().get();

// throws AirportException if no flight entered
checkIfEmpty(flightNo, "No flight number entered");

// record flight's request to land and get runway number
int runway = myAirport.arriveAtAirport(flightNo);
// check runway number
if (runway == 0)
{

message = "no runway available, circle the airport";
}
else
{

message = " land on runway "+runway;
}
showInfo("confirmed:\nflight "+flightNo + message);

}
catch(AirportException ae) // catch airport exceptions
{

showError(ae.getMessage());
}
listArrivals(); // update arrivals tab

}

/**
* Private method to record a flight landing at the airport
*/

private void land()
{

String flightNo, runwayIn;
int runway;

try
{

TextInputDialog dialog = new TextInputDialog();
dialog.setHeaderText("Enter flight number");
dialog.setTitle("Landing form");
flightNo = dialog.showAndWait().get();

// throws AirportException if no flight entered
checkIfEmpty(flightNo, "No flight number entered");

dialog = new TextInputDialog();
dialog.setHeaderText("Enter runway number");
dialog.setTitle("Landing form");
runwayIn = dialog.showAndWait().get();

// throws AirportException if no runway enetered
checkIfEmpty(flightNo, "No flight number entered");

// convert runway to an integer
runway = Integer.parseInt(runwayIn);
// record flight landing
myAirport.landAtAirport(flightNo, runway);
showInfo("confirmed:\nflight "+flightNo +" landed on runway "+runway);

}
catch (AirportException ae) // catch airport exceptions
{

showError(ae.getMessage());
}
listArrivals(); // update arrivals tab

}

/**
* Private method to register a flight boarding passengers at the airport
*/

private void board ()
{

String flightNo, city;

try
{

TextInputDialog dialog = new TextInputDialog();
dialog.setHeaderText("Fight number");
dialog.setTitle("Boarding form");

632 21 Advanced Case Study

flightNo = dialog.showAndWait().get();

// throws AirportException if no flight entered
checkIfEmpty(flightNo, "No flight number entered");

dialog = new TextInputDialog();
dialog.setHeaderText("Enter destination city");
dialog.setTitle("Boarding form");
city = dialog.showAndWait().get();

// throws AirportException if no city entered
checkIfEmpty(city, "No city entered");

// record flight boarding
myAirport.readyForBoarding(flightNo, city);
showInfo("confirmation:\nflight "+flightNo+" boarding to "+city);

}
catch (AirportException ae) // catch airport exceptions
{

showError(ae.getMessage());
}
listArrivals(); // update arrivals tab
listDepartures(); // update departures tab

}

/**
* Private method to register a flight leaving the airport
*/

private void takeOff ()
{

String flightNo;

try
{

TextInputDialog dialog = new TextInputDialog();
dialog.setHeaderText("Fight number");
dialog.setTitle("Take off form");
flightNo = dialog.showAndWait().get();

// throws AirportException if no flight entered
checkIfEmpty(flightNo, "No flight number entered");

// record flight taking off
myAirport.takeOff(flightNo);
showInfo("confirmation:\nflight "+flightNo+" Removed from system");

}
catch (AirportException ae) // catch airport exceptions
{

showError(ae.getMessage());
}
listDepartures(); // update departures tab

}

/**
* Private method to update arrivals tab information
*/

private void listArrivals()
{

// get arrivals information
Set<Plane> arrivalsList = myAirport.getArrivals();
// clear current arrivals information
arrivalsColumn1.getChildren().clear();
arrivalsColumn2.getChildren().clear();
arrivalsColumn3.getChildren().clear();
arrivalsColumn4.getChildren().clear();
arrivalsColumn1.getChildren().add(new Text("FLIGHT"));
arrivalsColumn2.getChildren().add(new Text("FROM"));
arrivalsColumn3.getChildren().add(new Text("STATUS"));
arrivalsColumn4.getChildren().add(new Text("RUNWAY"));
// re-populate arrivals information
for (Plane thisPlane: arrivalsList)
{

arrivalsColumn1.getChildren().add(new Text(thisPlane.getFlightNumber()));
arrivalsColumn2.getChildren().add(new Text(thisPlane.getCity()));

arrivalsColumn3.getChildren().add(new Text(thisPlane.getStatusName()));
try
{

// throws exception if no runway set
arrivalsColumn4.getChildren().add(

new Text(Integer.toString(thisPlane.getRunwayNumber())));
}
catch(Exception e) // catch exception and leave runway column blank
{

arrivalsColumn4.getChildren().add(new Text(""));
}

}

21.10 The AirportFrame Class 633

}

/**
* Private method to update departures tab information
*/

private void listDepartures()
{

// get departures information
Set<Plane> departuresList = myAirport.getDepartures();
// clear current departures information
departuresColumn1.getChildren().clear();
departuresColumn2.getChildren().clear();
departuresColumn3.getChildren().clear();
departuresColumn1.getChildren().add(new Text("FLIGHT"));
departuresColumn2.getChildren().add(new Text("TO"));
departuresColumn3.getChildren().add(new Text("RUNWAY"));
// re-populate departures information
for (Plane thisPlane: departuresList)
{

departuresColumn1.getChildren().add(new Text(thisPlane.getFlightNumber()));
departuresColumn2.getChildren().add(new Text(thisPlane.getCity()));

try
{

// throws exception if no runway set
departuresColumn3.getChildren().add(

new Text(Integer.toString(thisPlane.getRunwayNumber())));
}
catch(Exception e) // catch exception and leave runway column blank
{

departuresColumn3.getChildren().add(new Text(""));
}

}
}

/**
* Private method to exit application without saving data
*/

private void exitWithoutSaving()
{

Alert alert = new Alert(AlertType.WARNING, "Are you sure? Your work could be lost.",
ButtonType.YES, ButtonType.CANCEL);

alert.setTitle("Confirmation reqired");
String response = alert.showAndWait().get().getText();

if(response.equals("Yes"))
{

Platform.exit();
}

}

/**
* Private method to load airport data from a file
* @param fileName The name of the file to open
*/

private void open(String fileName)
{

try
{

myAirport.load(fileName); // may throw an exception
listArrivals(); // update arrivals tab
listDepartures(); // update departures tab
showInfo("Planes Loaded");

}
catch (Exception e) // catch file related exceptions
{

showError("File Opening error");
System.exit(1); // indicates exit with error

}
}

/**
* Private method to save airport data to a file
* @param fileName The name of the file to save
*/

private void save(String fileName)
{

try
{

myAirport.save(fileName); // may throw exception
showInfo("Planes saved");

}
catch (Exception e) // catch file related exceptions
{

showError("Error saving data");
}

634 21 Advanced Case Study

}

/**
* Private method to show an error message
* @param msg The error message
*/

private void showError(String msg)
{

Alert alert = new Alert(AlertType.ERROR);
alert.setHeaderText("Airport Error Alert");
alert.setContentText(msg);
alert.showAndWait();

}

/**
* Private method to show an information message
* @param msg The information message
*/

private void showInfo(String msg)
{

Alert alert = new Alert(AlertType.INFORMATION);
alert.setHeaderText("Airport Information Alert");
alert.setContentText(msg);
alert.showAndWait();

}

/**
* Private method to check if a string is empty
* @param s The string to check
* @param errorMessage The error message to include in an exception
* @throws AirportException if string is empty
*/

private void checkIfEmpty(String s, String errorMsg)
{

if (s.equals(""))
{

throw new AirportException (errorMsg);
}

}

public static void main(String[] args)
{

launch(args);
}

}

As you can see, although this class has more code than those we have met
before, it follows a familiar pattern. Most of the code will therefore be familiar to
you and the Javadoc comments and additional supplementary comments should
be sufficient to follow what we have done here. We will just draw your attention to
one or two JavaFX features that we have decided to incorporate into our imple-
mentation that will be new to you and that we mentioned in the introduction.

First, we have added tool tips to our buttons. A tool tip is an informative
description of the purpose of a GUI component. This informative description is
revealed when the user places the cursor over the component. Figure 21.7 shows
the tool tip that is revealed when the cursor is placed over the “Land” button.

Adding a tool tip to a JavaFX component is easy; just use the setTool-
TipText method and provide a tool tip message as a parameter to the ToolTip
class:

Fig. 21.7 A tool tip is revealed when the mouse is placed over the “Land” button

21.10 The AirportFrame Class 635

// create a Land button
Button button3 = new Button("Land");
// add a tool tip to the Land button using the setToolTip method
button3.setTooltip(new Tooltip("Record a flight landing at the airport"));

We also mentioned that we have made our frame an undecorated frame. An
undecorated frame has no icons to minimise or maximise (or close) the frame. This
ensures the frame remains the same size and this cannot be altered. To do this we
use the initStyle method of our stage object and pass an enumerated type
constant StageStyle.UNDECORATED as a parameter:

stage.initStyle(StageStyle.UNDECORATED);

Finally we draw your attention to a few things related to the functionality of this
class.

When the application opens the user is given the option to load data from a file
via an Alert dialog (see Fig. 21.8).

If the user chooses to load data from a file, the airport interface (as given in
Fig. 21.5) is activated once the data is loaded. If the user chooses not to load data
from a file, the system needs to be initialised by asking the user for the number of
runways associated with this airport. A TextInputDialog is used for this
purpose (see Fig. 21.9).

Fig. 21.8 An Alert dialog
to allow users to load data
from a file

Fig. 21.9 A
TextInputDialog to
allow users to specify the
number of runways

636 21 Advanced Case Study

Again, the airport interface (as given in Fig. 21.5) is activated once the user has
entered the number of runways. The user can then use the buttons on the flight
control tab to register, request to land, land, board and take off flights at the airport
—with arrivals and departures information being always available in the arrivals
and departures tabs.

We have created two private methods, listArrivals and
listDepartures. These methods update the information in the arrivals and
departures tabs respectively. Whenever the airport data is modified (i.e. when a
button is pressed in the main control tab) these methods need to be called to update
the arrivals and departures tabs so when these tabs are revealed they always show
the current state of flights in the system.

For example, when a flight registers at the airport the arrivals tab only needs to
be updated before we exit the method. Here is the outline of the code for processing
the register button response:

/**
 * Private method to register new flight with the airport
 */
 private void register()
 {

// code to register flight at airport here

 listArrivals(); // update arrivals tab
 }

However, when a flight is ready for boarding, it needs to be removed from the
arrivals tab and added to the departures tab, so both listArrivals and
listDepartures need to be called.

/**
 * Private method to register a flight boarding passengers at the airport
 */
 private void board()
 {

// code to record flight as ready for boarding

 listArrivals(); // update arrivals tab
listDepartures(); // update departures tab

 }

When a flight takes off from the airport, it only needs to be removed from the
departures tab:

/**
* Private method to record a flight leaving the airport
*/
private void takeOff()
{

// code to record flight leaving the airport

 listDepartures(); // update departures tab only
 }

Finally, the user can use the file menu to back-up the data to a file and continue
with the application, to back-up data to a file and exit the application or simply exit
the application without backing up the data (see Fig. 21.10).

21.10 The AirportFrame Class 637

21.11 Self-test Questions

1. In Sect. 21.6 we developed scenarios for the use case “Register flight arrival”.
Develop scenarios for all the other use cases in Table 21.1.

2. What is the difference between containment and composition in UML?

3. Consider an enumerated type, Light. This type can have one of three values:
RED, AMBER and GREEN. It will be used to display a message to students,
indicating whether or not a lecturer is available to be seen.

(a) Specify this type in UML.
(b) Implement this type in Java.
(c) Declare a Light variable, doorLight;
(d) Write a switch statement that checks doorLight and displays “I am

away” when doorLight is RED, “I am busy” when doorLight is
AMBER and “I am free” when doorLight is GREEN.

4. Identify the benefits offered by the TabPane component.

5. How can the tool tip “This button stops the game” be added to a Button called
stop?

6. Develop test plans for the Runway, Plane, Airport and AirportFrame
classes.

Fig. 21.10 Menu options to allow users to back-up data and exit the application as required

638 21 Advanced Case Study

21.12 Programming Exercises

Copy, from the accompanying web-site, the classes that make up the airport
application and then tackle the following exercises:

1. Develop toString methods for the Runway, Plane and Airport classes
and then develop testers for these classes.

2. Run and test the classes in the airport application by making use of your testing
programs of programming exercise 1 above and following your test plans you
devised in self-test question 6.

3. Make any further enhancements that you wish to the airport application. For
example, you may wish to consider

(a) adding a fourth “Help” tab that displays text describing how to use the
airport application;

(b) rather than use an enhanced for loop in the getArrivals and
getDepartures methods of the Airport class make use of forEach
loops;

(c) instead of a TextInputDialog to enter the runway number in the land
method of the AirportFrame class, use a ChoiceDialog with a list of
runways pre-populated in a drop-down box;

(d) identify methods, such as nextFreeRunway and nextToLand in the
Airport class, that could return null values and then modify the code in
the airport application to make use of the Optional type to avoid
returning these null values;

(e) design your own skin for the AirportFrame by creating a cascading
style sheet.

4. Create an executable JAR file to run the airport application.

21.12 Programming Exercises 639

22The Stream API

Outcomes:

By the end of this chapter you should be able to:

• explain the term stream in the context of the java stream API;
• identify the advantages of stream processing over iteration;
• describe the three stages involved in processing a stream;
• explain what is meant by lazy evaluation;
• create streams from scratch, from collections and from files;
• use a variety of intermediate methods to process streams;
• use appropriate methods to terminate streams;
• explain the difference between stateless and stateful operations;
• explain how streams can be created in parallel mode;
• identify the possible pitfalls with parallel stream processing and explain how to

avoid them.

22.1 Introduction

In Chap. 15 you studied collections, and learnt how to process collections by
iterating through the list in order to sort, select and retrieve items. Now, there is
nothing wrong with that way of doing things. However, when it comes to pro-
cessing large volumes of data, iterating through all the items can be rather a slow
process, and is not necessarily the most efficient way of doing things.

For this reason, Java 8 came packaged with a new API, the stream API, to be
found in java.util. This API provides classes—in particular the Stream
class—that enable us to process collections by making use of the multi-tasking
abilities of modern machines. Methods of the Stream class allow this processing
to take place behind the scenes, without having to trouble the programmer.

© Springer Nature Switzerland AG 2019
Q. Charatan and A. Kans, Java in Two Semesters, Texts in Computer Science,
https://doi.org/10.1007/978-3-319-99420-8_22

641

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99420-8_22&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99420-8_22&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99420-8_22&domain=pdf
https://doi.org/10.1007/978-3-319-99420-8_22

In Java, a stream (not to be confused with the input-output streams discussed in
Chap. 18) is a collection of items that is created in memory, and which ceases to
exist once the processing is completed.

There are three stages to processing a stream—these are described below:

Stage 1
We create a stream either from scratch, or from an existing collection.

Stage 2
We specify intermediate operations. These operations transform the initial stream
into other streams. This is done in one or more steps.

Stage 3
We apply a terminal operation, which produces a result. The terminal operation
forces the execution of the preceding operations—once the terminal operation has
been applied the stream can no longer be used. Attempting to do so will cause an
exception at runtime.

One important aspect of stream processing that we should point out is that the
intermediate operations are not executed until the terminal operation is invoked.
Each intermediate operation creates a new stream and this stream is stored along
with the function provided. These streams accumulate as the pipeline is traversed,
and once the terminal operation is called each function is performed one by one.
This is referred to as lazy evaluation.

Before taking a look at some concrete examples, there is one other important
aspect of streams that we should mention at this juncture. Programming streams is
all about what is to be done rather than how it is to be done. Do you remember in
Chap. 19 that we showed you how to communicate with a remote database via a
java program? We showed you there how to embed SQL (Structured Query
Language) code into our java applications. In SQL we have statements that look
like this:

select serialNumber from Products where make = ‘Acme’;

This would display all the serial numbers of products in a table which are
manufactured by “Acme”.

Now, even if you know nothing about SQL, it should be apparent that this
instruction simply states what we want to achieve, and says nothing about how it is
to be achieved—a similar statement in Java, working for example on an
ArrayList, would require us to write a loop for iterating through all the ele-
ments. SQL is a fourth generation language—also called a declarative language—
which means that we are able simply to state the result we require, rather than tell
the computer how to do it.

Streams in Java do the same thing. They remove from the programmer the
burden of writing the code for iteration and selection and concentrate instead on
what the code is required to achieve.

So now let’s look at some examples.

642 22 The Stream API

22.2 Streams Versus Iterations: Example Program

To understand how all this works we will study a simple example of two programs
which analyse a collection of objects—the first one uses the methods of the collection
classes that we are familiar with, and the second one uses streams. Our collection will
consist of objects from the Product class that we developed in Chap. 19. This class
is reproduced below—you will notice that in this version we have overridden the
toStringmethod in order to make it easy to display the full details of each product.

Product
public class Product
{
 private String stockNumber;
 private String manufacturer;
 private String item;
 private double unitPrice;

 public Product(String stockNumberIn, String manufacturerIn, String itemIn, double unitPriceIn)
 {
 stockNumber = stockNumberIn;
 manufacturer = manufacturerIn;
 item = itemIn;
 unitPrice = unitPriceIn;
 }

 public Product()
 {

 }

 public String getStockNumber()
 {
 return stockNumber;
 }

 public void setStockNumber(String stockNumberIn)
 {
 stockNumber = stockNumberIn;
 }

 public String getManufacturer()
 {
 return manufacturer;
 }

 public void setManufacturer(String manufacturerIn)
 {
 manufacturer = manufacturerIn;
 }

 public String getItem()
 {
 return item;
 }

 public void setItem(String itemIn)
 {
 item = itemIn;
 }

 public double getUnitPrice()
 {
 return unitPrice;
 }

 public void setUnitPrice(double unitPriceIn)
 {
 unitPrice = unitPriceIn;
 }

""""BQxgttkfg"
 public String toString()
 {
 return stockNumber + " " + manufacturer + " " + item + " " + unitPrice;
 }
}

22.2 Streams Versus Iterations: Example Program 643

So our first program will add a few products to a list, then—in the way we are
used to—iterate through the list to display all the products; it will then repeat this
process, but this time filter the products to exclude the more expensive items (those
costing 170 or more). Finally it will display the number of items that remain.

QueryWithoutUsingStreams
import java.util.ArrayList;
import java.util.List;

public class QueryWithoutUsingStreams
{

public static void main(String[] args)
{

List<Product> productList = new ArrayList<>(); // create a list of products
int count = 0;

// add four products to the list
productList.add(new Product("1076543", "Acme", "Vacuum Cleaner", 180.11));
productList.add(new Product("3756354", "Nadir", "Washing Machine", 178.97));
productList.add(new Product("1234567", "Zenith", "Fridge", 151.98));
productList.add(new Product("7876161", "Zenith", "Tumble Drier", 159.99));

System.out.println("ALL ITEMS");

// display all items
for(Product pr : productList)
{

System.out.println(pr);
}

System.out.println();

System.out.println("ITEMS COSTING LESS THAN 170");

// display items costing less than 170
for(Product pr : productList)
{

if(pr.getUnitPrice() < 170)
{

System.out.println(pr);
count++;

}
}

System.out.println();
System.out.println("There are " + count + " items costing less then 170");

}
}

The output from this program is, as expected:

ALL ITEMS
Acme Vacuum Cleaner 180.11
Nadir Washing Machine 178.97
Zenith Fridge 151.98
Zenith Tumble Drier 159.99

ITEMS COSTING LESS THAN 170
Zenith Fridge 151.98
Zenith Tumble Drier 159.99

There are 2 items costing less then 170

644 22 The Stream API

Now let’s see how we do exactly the same thing using streams:

QueryUsingStreams
import java.util.ArrayList;
import java.util.List;

public class QueryUsingStreams
{
 public static void main(String[] args)
 {
 List<Product> productList = new ArrayList<>(); // create a list of products
 // add four products to the list
 productList.add(new Product("1076543", "Acme", "Vacuum Cleaner", 180.11));
 productList.add(new Product("3756354", "Nadir", "Washing Machine", 178.97));
 productList.add(new Product("1234567", "Zenith", "Fridge", 151.98));
 productList.add(new Product("7876161", "Zenith", "Tumble Drier", 159.99));

 // display all items
 System.out.println("ALL ITEMS");
 productList.stream().forEach(pr -> System.out.println(pr));

 System.out.println();

// filter the list and display items costing less than 170
 System.out.println("ITEMS UNDER 170");
 productList.stream().filter(pr -> pr.getUnitPrice() < 170).forEach(pr -> System.out.println(pr));

 // count items costing less than 170
 long count = productList.stream().filter(pr -> pr.getUnitPrice() < 170).count();

 System.out.println();
 System.out.println("There are " + count + " items costing less then 170");
 }
}

Let’s start by looking at the line of code that displays all the items:

productList.stream().forEach(pr -> System.out.println(pr));

This starts to give you an idea of how we pipeline the stream operations. Here
we have begun the process (stage 1) by creating a steam with the stream method
which is provided as part of the Collection interface implemented by
ArrayList (as explained in Chap. 15). In this case, all we want to do is display
the entire list, so there are no intermediate operations (stage 2) and we proceed
directly to termination (stage 3). The termination operation we use here is
forEach, which performs the required action for each item in the list. You were
introduced to the forEach method in Chap. 15 when it was used directly with the
Java collection types, but it is also available to Java streams—more detail about
forEach in the sections that follow.

We should point out here that the above line of code could have utilized the
double colon notation that we introduced in Chap. 13. So we could have written:

productList.stream().forEach(System.out::println);

In the programs that follow we will use this notation where possible.

22.2 Streams Versus Iterations: Example Program 645

Now let’s look at the way we have filtered our results to display only items
costing under 170:

productList.stream().filter(pr -> pr.getUnitPrice() < 170).forEach(pr -> System.out.println(pr));

Here you see the use of an intermediate operation which uses the filter
method. You can see how we send in the criteria on which to filter the items as a
lambda expression—again, more about this in the following sections. You should
note that any intermediate method, such as filter, returns another stream; this
stream is again terminated with the forEach method.

Finally we have used the following line of code to count the filtered stream:

long count = productList.stream().filter(pr -> pr.getUnitPrice() < 170).count();

The count method, which is again a termination method, returns a long,
which we use to display the number of items in the resulting stream, which in this
case will consist of items costing under 170.

22.3 Creating Streams

In the previous section we created our stream from an existing ArrayList, using
the stream method. It is also possible to create a stream from scratch as in the
following example:

StreamFromValues
import java.util.stream.Stream;

public class StreamFromValues
{
 public static void main(String[] args)
 {
 // create stream from values
 Stream<String> colours = Stream.of("Purple", "Blue", "Red", "Yellow", "Green");

// filter the list and display strings of length 5 or more
 colours.filter(c -> c.length() >= 5).forEach(System.out::println);
 }
}

Here we have created a named Stream object (holding Strings) and used the
static Stream method called of to create the stream from a list of values.

646 22 The Stream API

We have filtered the stream to contain only strings consisting of five characters
or more, se we get the following output:

Purple
Yellow
Green

It is also possible to create a stream from an array, by using the static stream
method of the Arrays class that resides in java.util:

StreamFromArray

import java.util.Arrays;
import java.util.stream.Stream;

public class StreamFromArray
{
 public static void main(String[] args)
 {

// create an array of Products
 Product[] productList = {
 new Product("1076543", "Acme", "Vacuum Cleaner", 180.11),
 new Product("3756354", "Nadir", "Washing Machine", 178.97),
 new Product("1234567", "Zenith", "Fridge", 151.98)
 };

 // create a stream from the array
 Stream<Product> products = Arrays.stream(productList);

 products.forEach(System.out::println);
 }
}

If you want to create an empty stream (of Strings, for example), you can do so
as follows:

Stream<String> s = Stream.empty();

A stream can also be created from a file, with the help of the Files class which
resides in java.nio.files. We will demonstrate this with the file Poem.txt,
which we used in Chap. 17, and which contains the following text:

The moving finger writes and having writ
Moves on; nor all thy piety nor wit
Shall lure it back to cancel half a line,
Nor all thy tears wash out a word of it.

22.3 Creating Streams 647

In the program below, the static lines method of Files is used to convert the
text to a stream of Strings, each one being a line of text in the file.

StreamFromFile
import java.io.IOException;
import java.nio.file.Files;
import java.nio.file.Paths;
import java.util.stream.Stream;

class StreamFromFile
{
 public static void main(String[] args)
 {
 Stream<String> fileStream = Stream.empty(); // create empty stream
 try
 {
 fileStream = Files.lines(Paths.get("Poem.txt")); // file in current directory
 }

 catch (IOException ex)
 {
 }

 fileStream.forEach(System.out::println);
 }
}

Notice that lines requires an object of type Path. To create this object, we
have used the get method of Paths (also found in java.nio.file)—this
method creates a Path object by joining together the strings that are sent in as
parameters.1 We have sent in only the file name, so the program will look in the
current directory.

The output is as follows:

The moving finger writes and having writ
Moves on; nor all thy piety nor wit
Shall lure it back to cancel half a line,
Nor all thy tears wash out a word of it.

22.4 Intermediate Operations

Intermediate operations transform one stream to another stream. So far the only
intermediate method we have encountered is filter, which selects which items
will be included in the new stream, based on the criteria sent into the method.
Intermediate methods make use of a couple of the “out of the box” interfaces that
we encountered in Chap. 13. We remind you of these below in Table 22.1

Table 22.1 Reminder of the Predicate and Function interfaces

Functional Interface Abstract method name Parameter types Return type

Predicate <T> test T boolean

Function <T, R> apply T R

1More detail about the Paths class and Path interface can be found on the Oracle™ website.

648 22 The Stream API

The filter method requires a Predicate—its abstract method, test, will
expect to receive an object of the type of item held (Product or String in our
previous examples) and return a boolean, so we send in the appropriate lambda
expression as we have done in the examples you have seen:
 filter(pr -> pr.getUnitPrice() < 170

and

filter(c -> c.length() >= 5)

Next we introduce three other intermediate methods: distinct, sorted, and
map. The program below creates a stream, then pipelines these three methods as
well as the filter method before terminating the stream with the forEach
method.

IntermediateExamples
import java.util.stream.Stream;

public class IntermediateExamples
{
 public static void main(String[] args)
 {
 Stream<String> colours
 = Stream.of("Purple", "Blue", "Red", "Yellow", "Green", "Yellow", "Purple", "Orange", "Black");

 colours.filter(c -> c.length() > 4).distinct().sorted().map(c -> c.substring(0, 2))
 .forEach(System.out::println);

 }
}

You can see that we have, in this case, created a stream containing duplicates. The
distinct method, which does not require any parameters, simply transforms the
stream into a new stream with the duplicates removed. The sorted method, also
requiring no parameters, as its name suggests, produces a stream sorted on “natural”
order (for example numerical or alphabetical order). The map method expects an
item of type Function, and transforms each element to another element according
to the lambda expression sent into its apply method. In our example, each string is
converted to a string containing only the first two characters of the original.

The output from this program is:

Bl
Gr
Or
Pu
Ye

Next we will look at the flatMap method. This method again accepts a
function, but will produce a stream with the original contents broken down
according to the criteria we specify in the lambda expression. We will demonstrate
this by making use of the stream that we created from a file in our

22.4 Intermediate Operations 649

StreamFromFile program above. The resulting stream contained four lines of
text. In the program that follows we will break this down to a stream consisting of
the individual words (that is, the elements that are separated by a space).

FlatMapExample
import java.io.IOException;
import java.nio.file.Files;
import java.nio.file.Paths;
import java.util.Arrays;
import java.util.stream.Stream;

public class FlatMapExample
{
 public static void main(String[] args)
 {
 Stream<String> fileStream = Stream.empty(); // create empty stream
 try
 {
 fileStream = Files.lines(Paths.get("Poem.txt")); // file in current directory
 }

 catch (IOException ex)
 {
 }

// create a stream of individual words
 fileStream.flatMap(s -> Arrays.stream(s.split(" "))).forEach(System.out::println);
 }
}

Like map, flatMap receives a function, but in this case the type received by
the function’s apply method is restricted to a Stream type by the use of an upper
bound (as explained in Chap. 13). In our example the split method of String is
employed to transform the original stream to another stream broken into the indi-
vidual words contained in each line. The output from this program is:

The
moving
finger
writes
and
having
writ
Moves
on;
nor
all
thy
piety
nor
wit
Shall
lure
it
back
to

650 22 The Stream API

cancel
half
a
line,
Nor
all
thy
tears
wash
out
a
word
of
it.

Finally we can look at three more operations, the limit operation, the skip
operation and the peek operation. The limit method takes an integer—n for
example—and transforms the original stream into a stream containing only the first
n items. So, for example, in our IntermediateExamples program above we
could add a limit operation into the pipeline as follows:

colours.filter(c -> c.length() > 4).distinct().sorted()
 .map(c -> c.substring(0, 2)).limit(2).forEach(System.out::println);

In this case the final output would be:

Bl
Gr

Theskip operation does the opposite of limit, and discards the first n elements.
So replacing limit(2) with skip(2) in the pipeline above would gives us:

Or
Pu
Ye

The peek method is very useful for debugging—it enables us to look into the
stream at a given point, but unlike forEach it does not terminate the stream.

For example, in the following line of theQueryUsingStreams example above:

long count = productList.stream().filter(pr - > pr.getUnit-
Price() < 170).count();

we could have added a peek method as follows:

long count = productList.stream(). peek(s -> System.out.println(s)).
 filter(pr -> pr.getUnitPrice() < 170).count();

This would print all the items in the stream so far.

22.4 Intermediate Operations 651

22.5 Operations for Terminating Streams

So far we have encountered two terminal operations, count and forEach.
As we have seen, the count method does not require any arguments and simply

returns a long, representing the number of elements in the stream.
The forEach method receives a Consumer type as its argument (reminder in

Table 22.2). The accept method of Consumer receives an item of the type held
by the stream—the lambda expression then defines how that item will be processed.
All that the lambda expressions in the above examples have done is to display each
item on the screen.

22.5.1 More Examples

Now we can explore some other terminal methods. The following program
demonstrates a few of these:

TerminalExamples
import java.util.Comparator;
import java.util.Optional;
import java.util.stream.Stream;

public class TerminalExamples
{
 public static void main(String[] args)
 {

// find the maximum of a stream of integers
 Optional<Integer> maximumInt = Stream.of(1, 2, 3, 11, 7, 8, 10).max(Comparator.naturalOrder());
 System.out.println("The maximum integer is " + maximumInt.get());

// find the "minimum" of a stream of strings
 Optional<String> minimumString =
 Stream.of("banana", "apple", "apple", "orange").min(Comparator.naturalOrder());
 System.out.println("The first string alphabetically is " + minimumString.get());

// find cheapest product from a stream of products
 Optional<Product> cheapestProduct =
 Stream.of(
 new Product("1076543", "Acme", "Vacuum Cleaner", 180.11),
 new Product("3756354", "Nadir", "Washing Machine", 178.97),
 new Product("1234567", "Zenith", "Fridge", 151.98),
 new Product("7643210", "Wizz", "Dish Washer", 219.99)
).min(Comparator.comparingDouble(Product::getUnitPrice));
 System.out.println("The cheapest product is " + cheapestProduct.get());

 // find the first in the list in a stream of doubles
 Optional<Double> firstDouble = Stream.of(1.6, 2.7, 6.8).findFirst();
 System.out.println("The first double in the list is " + firstDouble.get());

 // find the sum of a stream of integers
 Optional<Integer> sumOfIntegers = Stream.of(1, 2, 3, 4, 5).reduce((x, y) -> x + y);
 System.out.println("The sum of the integers is " + sumOfIntegers.get());

// find if a specific item is in the stream
 boolean appleExists = Stream.of("banana", "pear", "apple", "orange").anyMatch(s -> s.equals("apple"));
 if(appleExists)
 {
 System.out.println("apple is in the list");
 }

 }
}

Table 22.2 Reminder of the consumer interface

Functional Interface Abstract method name Parameter types Return type

Consumer<T> accept T void

652 22 The Stream API

The first three examples in this program use the max and min functions, which
do as their names suggest. They both return items of type Optional, and the
native type is extracted with the get method. They both require a Comparator
object as an argument (Comparators were introduced in Chap. 15). The first two
streams in our example contain Integers and Strings respectively, and the
method can therefore receive a Comparator.naturalOrder() argument, as
in the first example:

Optional<Integer> maximumInt = Stream.of(1, 2, 3, 11, 7, 8, 10).max(Comparator.naturalOrder());

In the third example the stream holds items of our own Product class, and we
want to know the cheapest. We therefore have to consider the unitPrice attri-
bute, which is of type double, so we use the comparingDouble method of
Comparator with the correct lambda expression:

Optional<Product> cheapestProduct = Stream.of(
 new Product("1076543", "Acme", "Vacuum Cleaner", 180.11),
 new Product("3756354", "Nadir", "Washing Machine", 178.97),
 new Product("1234567", "Zenith", "Fridge", 151.98),
 new Product("7643210", "Wizz", "Dish Washer", 219.99)
).min(Comparator.comparingDouble(Product::getUnitPrice));

The next example in our program demonstrates the findFirst method, which,
as you might expect, finds the first item in the stream:

Optional<Double> firstDouble = Stream.of(1.6, 2.7, 6.8).findFirst();

In addition to findFirst there is also a findAny method, which returns a
random item in the stream.

The next example makes use of the reduce method.

Optional<Integer> sumOfIntegers = Stream.of(1, 2, 3, 4, 5).reduce((x, y) -> x + y);

The reduce method performs operations on the elements according to the
pattern defined in the lambda expression. In this example, the method returns the
sum of the elements. It returns an item of type Optional, because there is no
valid result if the stream is empty.

If you want to avoid using Optional, there is another version of reduce that
you can use. In our case it would look like this:

int sumOfIntegers = Stream.of(1, 2, 3, 4, 5).reduce(0, (x, y) -> x + y);

22.5 Operations for Terminating Streams 653

The first parameter is referred to as an identity. It is defined like this:

identity + x = x

In the case of integer addition, the appropriate identity is zero. This is added to
the total—the result is unaffected by adding zero, but if the stream is empty, there is
nonetheless a valid result.

If, for example, we were concatenating a stream of strings, we would use “” as
our identity.

The final method that we demonstrate in our program is anyMatch:

boolean appleExists = Stream.of("banana", "pear", "apple", "orange").anyMatch(s -> s.equals("apple"));

It determines if any item in the stream matches the value defined by the lambda
expression—in this case it checks to see it the word “apple” is in the stream.
anyMatch returns a boolean value.

There are two operations similar to anyMatch. allMatch determines if all
the elements are of a particular value, while noneMatch does the opposite to
anyMatch.

The output from our program is:

The maximum integer is 11
The first string alphabetically is apple
The cheapest product is 1234567 Zenith Fridge 151.98
The first double in the list is 1.6
The sum of the integers is 15
apple is in the list

22.5.2 Collecting Results

As you have already found out, once we terminate a stream, the stream is no longer
available. But it is very likely that we might want to save the results of processing a
stream for later use and for this purpose a special terminal method, collect, is
available.

In the program that follows we have created a stream of country names from an
ArrayList, then we have sorted the stream, and collected the results into a new
List.

654 22 The Stream API

CollectionExample
import java.util.ArrayList;
import java.util.List;
import java.util.stream.Collectors;
import java.util.stream.Stream;

public class CollectionExample
{
 public static void main(String[] args)
 {
 // create an ArrayList of strings
 List<String> countryList = new ArrayList<>();

 countryList.add("Germany");
 countryList.add("France");
 countryList.add("Nigeria");
 countryList.add("Canada");
 countryList.add("India");

// create a stream from the ArrayList
 Stream<String> countryStream = countryList.stream();

// sort the stream data and save the result in a new ArrayList
 List<String> sortedList = countryStream.sorted().collect(Collectors.toList());

 // display the sorted list
 for(String item : sortedList)
 {
 System.out.println(item);
 }
 }
}

The line of code that we are interested in is this one:

List<String> sortedList = countryStream.sorted().collect(Collectors.toList());

We are using the collect method of Stream to collect our items and place
them into a list. The version of collect that we are using here requires an object
of type Collector. Java provides a Collectors class that has static methods
that generate Collector objects. Here we are using the toList object to create
a list.

If we had wanted a set then we would have used toSet as follows:

Set<String> sortedList = countryStream.sorted().collect(Collectors.toSet());

It is also possible to collect the data into a map, using the toMap method. This
method requires two functions (sent in as lambda expressions) which define the key
and the value of the map. In our example, if we required each element of the map to
comprise the initial letter and name of each country, we would do the following:

Map<Character, String> map = countryStream.sorted().collect(Collectors.toMap(s -> s.charAt(0), s -> s));

22.5 Operations for Terminating Streams 655

22.6 Concatenating Streams

Combining two streams of the same type is easy. The Stream class has a static
method called concat, so to join, for example, two streams of Strings—
stream1 and stream2—we simply do the following:

Stream<String> combined = Stream.concat(stream1, stream2);

22.7 Infinite Streams

The idea of creating an infinite object might seem rather an alien concept to a
programmer—but it is quite possible to create an infinite stream of items and
truncate the stream to, say, the first one hundred elements. This is possible because,
as we explained in Sect. 22.1, the stream operations don’t come into effect until the
terminal operation is encountered, so the stream is created only with the finite
number of elements that are required.

Some examples will make this clear. The program below shows three examples
which we will discuss once you have had a look at it.

InfiniteStreams
import java.util.stream.Stream;

public class InfiniteStreams
{
 public static void main(String[] args)
 {
 // an infinite stream of strings
 Stream<String> echo = Stream.generate(() -> "Hello world");
 echo.limit(10).forEach(s -> System.out.println(s));

 // an infinite stream of random numbers
 Stream<Double> randomNumbers = Stream.generate(() -> Math.random());
 randomNumbers.limit(10).forEach(System.out::println);

 // an infinite sequence of integers
 Stream<Integer> sequence = Stream.iterate(1, n -> n+2);
 sequence.limit(5).forEach(System.out::println);
 }
}

There are two static methods of Stream which we can use to create infinite
streams: generate and iterate. They make use, respectively, of the Sup-
plier and UnaryOperator generic interfaces that you learnt about in Chap. 13,
and which are reproduced for you here in Table 22.3 as a reminder.

Table 22.3 Reminder of the Supplier and unaryoperator interfaces

Functional Interface Abstract method name Parameter types Return type

Supplier<T> get none T

UnaryOperator<T> apply T T

656 22 The Stream API

The first two examples in the program above make use of the generate
method. As it requires a Supplier as argument, the lambda expression requires
no input, and simply outputs what is to be repeated in the stream. The first example
creates a stream of Strings (“Hello world”), which is then limited to the first 10
items; so the final result is that “Hello world” is displayed ten times:

Stream<String> echo = Stream.generate(() -> "Hello world");
echo.limit(10).forEach(System.out::println);

The second example is similar, but makes use of the random method of the
Math class so that 10 random numbers are displayed.

Stream<Double> randomNumbers = Stream.generate(() -> Math.random());
randomNumbers.limit(10).forEach(System.out::println);

The final example uses the iterate method:

Stream<Integer> sequence = Stream.iterate(1, n -> n+2);
sequence.limit(5).forEach(System.out::println);

The iterate method receives two arguments. The first, which is of the same
type as the stream items, is referred to as a seed; the second is a UnaryOperator.
The lambda expression for the UnaryOperator defines the operation that is to
take place on the seed and then on each subsequent item. In our example we start
off with 1 (the seed), then continuously add 2. In this case we have limited the
final stream to the first 5 items, with the result that the numbers 1, 3, 5, 7, 9 are
displayed.

22.8 Stateless and Stateful Operations

Certain stream operations, when executed, examine individual items in the stream
and perform an action on the item without having to worry about any of the other
members of the stream. Take for example the filter operation. When making the
decision about whether to include a particular item in the new stream, it is not
necessary to think about the other items—for example, if the filter method has to
include only strings that have more than five characters, the string “yellow” is
always going to be included, irrespective of what else is in the stream.

22.7 Infinite Streams 657

Compare this to a method like sorted. In this case the position of an item
depends upon the other items in the stream, so that the method has got to in some
way remember the items that have already been processed.

Operations like filter that do not have to remember what has gone before are
called stateless operations; in contrast, methods like sorted are referred to as
stateful. The following intermediate operations are stateful:

distinct
sorted
limit
skip

The others are all stateless.

22.9 Parallelism

As we explained in the introduction, stream processing makes use of the
multi-tasking and multi-processing capabilities of the system as a whole, and that
this goes on behind the scenes. It is important to emphasise here that multi-tasking
applies to the internal execution of the individual operations; the operations in the
pipeline are, under normal circumstances, executed in sequence. This is important,
because without careful thought, allowing operations to be carried out in random
order could lead to very different results from the ones intended. Consider, for
example, a stream of strings consisting of the words foot, feet, feet, folder, foot,
feeling. Now imagine carrying out two operations on these—a distinct oper-
ation, and a map operation that reduces each item to its first two characters. It
should be easy to see that carrying out these operations in different orders will
produce two different results.

It is nonetheless possible to have streams in which the intermediate operations
are parallelized. This is done either by creating a parallel stream with the par-
allelStream operation of Collection:

Stream<Product> para = productList.parallelStream();

or by converting an existing sequential stream to parallel mode with the parallel
method of Stream:

Stream<Product> para = sequentialStream.parallel();

658 22 The Stream API

It should, however, be evident from the above discussion that extreme care
should be exercised when using parallel streams. Firstly all the operations should be
stateless. Secondly they must be able to be executed in arbitrary order.

22.10 Self-test Questions

1. What are the advantages of using streams to process collections, compared to
iteration?

2. Describe the three stages involved in processing a stream.

3. Explain what is meant by lazy evaluation.

4. What is the difference between stateless and stateful operations? Give examples
of both.

5. Why is it necessary to exercise caution when it comes to processing streams in
parallel mode? What steps should be taken to avoid problems?

6. Explain why the following lines in a program would create a problem at
runtime:

Stream<String> colours = Stream.of("Purple", "Blue", "Red", "Yellow", "Green", "Yellow", "Purple", "Black");

colours.filter(c -> c.length() > 4).distinct().sorted().forEach(System.out::println);
colours.filter(c -> c.length() > 4).distinct().sorted().count();

22.11 Programming Exercises

1. Implement some of the programs from this chapter, and experiment with using
different stream methods.

2. Write a short program the uses the skip method and the limit method to
extract a substream from a stream, from a start position to an end position.

3. Use the iterate method of Stream to display the first 5 square numbers.

4. In Sect. 8.8.1 of Chap. 8 we developed a Bank class. Take a look at the
following methods and see if you can rewrite them so that they use stream
processing instead of iteration:

22.9 Parallelism 659

(a) The getItem method

You will need to filter the stream so that it contains one item, and collect the new
stream into a list. As a BankAccount has to be returned, you will have to
return the first (and only) item in the list. Also, bear in mind that a null value
needs to be returned if the requested account does not exist.

(b) The removeAccount method

In this case, you need to filter out the item in question. As you have to save the
resulting stream to the original list, which is an ArrayList, and the toList
method simply returns a List, you will need to type cast. Again you will have
to figure out a way of reporting on whether or not the particular account number
exists.

5. Look at the case study from the previous chapter. Try rewriting some or all of
the methods in that case study that made use of iteration so that they make use of
stream processing instead.

660 22 The Stream API

23Working with Sockets

Outcomes:

By the end of this chapter you should be able to:

• explain the terms client, server, host and port;
• describe the client–server model;
• explain the function of a socket;
• distinguish between the Java Socket and ServerSocket classes and

explain their function;
• write a simple client–server application using sockets;
• write a server application that supports multiple clients;
• write multi-threaded client–server applications;
• create client and server applications that utilise a JavaFX interface.

23.1 Introduction

In this chapter we are going to explore the way in which Java can be used to write
programs that communicate over a network. We should say from the outset that
here we are dealing only with communication over a local area network (LAN).
Communication over wide networks, and in particular the Internet, involve issues
that are beyond the scope of this text. In particular, communication over the Internet
is now fraught with security issues, and we are not able to address such concerns
here. In previous editions of this book, we covered applets, which are java programs
that run in a browser. We are no longer going to deal with applets as browsers have
by and large stopped supporting them because of the enormous security questions
that they can pose.

© Springer Nature Switzerland AG 2019
Q. Charatan and A. Kans, Java in Two Semesters, Texts in Computer Science,
https://doi.org/10.1007/978-3-319-99420-8_23

661

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99420-8_23&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99420-8_23&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99420-8_23&domain=pdf
https://doi.org/10.1007/978-3-319-99420-8_23

Network programs rely very much on the concept of a client and a server.
A server program provides some sort of service for other programs—clients—
normally located on a different machine. The service it provides could be one of
many things—it could send some files to the client; it could send web pages to the
client; it could read some data from the local machine and send that across, maybe
having done some processing first; it could perform a complex calculation; it could
print some material on a local printer. The possibilities are endless.

It should be noted that the distinction between a client and server can become
blurred: a program acting as a client in one situation could also act as a server in
another, and vice versa. It is also important to note that it is often the case that a
machine, rather than a program, is referred to as a server. This usually happens
when a machine is dedicated to running a particular server program—typically a file
server—and does very little else. Strictly speaking we should refer to the machine
on which a server runs as the host.

In general, communication between a client and a server could be over a local
area network, a wide area network, or over the Internet. Server programs that offer a
service via the Internet have to obey a particular set of rules or protocols to ensure
that the client and server are “speaking the same language”. Common examples are
File Transfer Protocol (FTP) for servers that send files, and Hypertext Transfer
Protocol (HTTP) for services that send web pages to a client.

However, as we have stated above, here we will be dealing here only with local
area networks which communicate by implementing sockets—special programs
that allow data to pass between two applications running on different computers.

23.2 Sockets

In Chap. 18 you were introduced to the idea of a stream—a channel of commu-
nication between the computer’s main memory and some external device such as a
disk (not to be confused with streams for processing collections, that we covered in
Chap. 22). In that chapter you were shown how Java provides high-level classes
that hide the programmer from the low-level details of how data is stored on a disk
or other device. Just as the external storage of data is a complicated business, so too
is the transmission of data across a network.

A socket is a software mechanism that is able to hide the programmer from the
detail of how data is actually transmitted, in a not dissimilar way to that in which
the high-level file handling classes protect the programmer from the details of
external storage. Sockets were originally developed for the Unix™ operating sys-
tem and they enabled the programmer to treat a network connection as just another
stream to which data can be written, and from which it can be read. Sockets have
since been developed for other operating systems such as Windows™, and fortu-
nately for Java.

662 23 Working with Sockets

In order to understand sockets it is also necessary to understand the concept of a
port. A machine on a network is referred to by its IP (Internet Protocol) address.
However, any particular host can perform a number of different functions, and
therefore needs to be able to distinguish between different types of request, such as
email requests, file transfer requests, requests for web pages and so on. This is
accomplished by assigning each type of request a special number known as a port.
Many port numbers are now internationally recognized, and so all computers will
agree on their meaning. For example, a request on port 80 will always be expected
to be an HTTP request; port 21 is for FTP (File Transfer Protocol) requests. A client
program can therefore assume that server programs will be using these ports for
those particular services.

All sockets must be capable of doing the following:

• connect to a remote machine;
• send data;
• receive data;
• close a connection.

A socket which is to be used for a server must additionally be able to:

• bind to a port (that is to associate the server with a port number);
• listen for incoming data;
• accept connections from a remote server on the bound port.

The Java Socket class has methods that correspond to the first four of the
above; the ServerSocket class provides methods for the last three.

23.3 A Simple Server Application

The server we are going to build is going to offer a very simple service to a client; it
will wait to receive two integers, and then it will send back the sum of those two
integers. Clearly this would not in reality be a very useful server—a real-world
server would be offering a far more complex service—perhaps performing some
very complicated processing, or retrieving data from a database running on the same
machine, or maybe printing on a printer local to the server. However, our simple
addition server demonstrates the principles of a client–server protocol very nicely.

A program such as this would typically be launched from a command line, or
perhaps launched as a service on startup—many services run in the background,
and it is often the case that the user has little awareness of their existence. In order
to monitor the behaviour of our server we have organised it so that it reports its
behaviour to a console.

The AdditionServer class is presented below—have a look at it and then
we’ll take you through it.

23.2 Sockets 663

Addi onServer
import java.io.DataInputStream;
import java.io.DataOutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.OutputStream;
import java.net.ServerSocket;
import java.net.Socket;

public class AdditionServer
{

public static void main(String[] args)
{

final int port = 8901;

// declare a "general" socket and a server socket
Socket connection;
ServerSocket listenSocket;

// declare low level and high level objects for input
InputStream inStream;
DataInputStream inDataStream;

// declare low level and high level objects for output
OutputStream outStream;
DataOutputStream outDataStream;

// declare other variables
String client;
int first, second, sum;
boolean connected;
while(true)
{

try
{

// create a server socket
listenSocket = new ServerSocket(port);
System.out.println("Listening on port " + port);

// listen for a connection from the client
connection = listenSocket.accept();
connected = true;
System.out.println("Connection established");

// create an input stream from the client
inStream = connection.getInputStream();
inDataStream = new DataInputStream(inStream);

// create an output stream to the client
outStream = connection.getOutputStream ();
outDataStream = new DataOutputStream(outStream);

// wait for a string from the client
client = inDataStream.readUTF();
System.out.println("Address of client: " + client);
while(connected)
{

// read an integer from the client
first = inDataStream.readInt();
System.out.println("First number received: " + first);

// read an integer from the client
second = inDataStream.readInt();
System.out.println("Second number received: " + second);

sum = first + second;
System.out.println("Sum returned: " + sum);

// send the sum to the client
outDataStream.writeInt(sum);

}
}

catch (IOException e)
{

connected = false;
}

}
}

}

664 23 Working with Sockets

For convenience we have hard-coded the port number (8901) into the program
and have declared a constant for this purpose; the client will need to be made aware
of this port number.

Having declared this constant, we have gone on to declare a number of variables:

The first two variables are, respectively, a Socket and a ServerSocket. As
this is a server application it requires both the general functionality of the Socket
class and the specialist functionality of the ServerSocket class.

Next we declare the objects that we will need to establish an input stream with
the client. We have come across the classes InputStream and DataInput-
Stream before, in Chap. 18. The former allows communication at a low level in
the form of bytes; the latter allows the high-level communication in the form of
strings, integers, characters and so on with which we are familiar.

After this we declare objects of OutputStream and DataOutputStream
that we will need to establish the output stream. Finally we make some other
declarations that we will need later on.

Now we start an infinite loop. The idea is that the server will accept a connection
request from a client, and when that client is finished making requests it will be
ready to receive connections from other clients; this will continue until the server is
terminated. If the server was called from the command line, then closing the
console window will terminate it—if you are working in an IDE, you will have to
terminate the process via the IDE interface when you no longer require it.

From now everything is placed in a try block because the constructor of the
ServerSocket class, and its accept method both throw IOExceptions.

The first instruction in the try block looks like this:

We are creating a new ServerSocket object and binding it to a particular
port.

In order to get the server to listen for a client requesting a connection on that
port, we call the accept method of the ServerSocket class; we also place a
message in the console to tell us that the server is listening for a request:

Socket connection;
ServerSocket listenSocket;

InputStream inStream;
DataInputStream inDataStream;

OutputStream outStream;
DataOutputStream outDataStream;

String client;
int first, second, sum;
boolean connected;

listenSocket = new ServerSocket(port);

23.3 A Simple Server Application 665

The accept method returns an object of the Socket class, which we assign to
the connection variable that we declared earlier.

Once the connection is established we set the boolean variable, connected,
to true and display a message:

The next thing we do is call the getInputStream method of the Socket
object, connection. This returns an object of the InputStream class, thus
providing a stream from client to server. We then wrap this low-level Input-
Stream object with a high-level DataInputStream object, in the same way
as we did when handling files in Chap. 18:

We then create an output stream in the same way:

As you will see shortly, we have designed our client to send its IP address to the
server once it is connected. So our next instructions to the server are to wait to
receive a string on the input stream, and then to display a message on the console.

Once a connection has been established we want the server to perform the
addition calculation for the client as many times as the client requires. Thus we
provide a while loop that continues until the connection is lost:

System.out.println("Listening on port " + port);
connection = listenSocket.accept();

connected = true;
System.out.println("Connection established");

inStream = connection.getInputStream();
inDataStream = new DataInputStream(inStream);

OutputStream outStream;
DataOutputStream outDataStream;

client = inDataStream.readUTF();
System.out.println("Address of client: " + client);

666 23 Working with Sockets

You can see that we read two integers from the input stream, displaying them
each time on the console. We then calculate and display the sum, which we send
back to the client on the output stream.

The accept method of ServerSocket throws an IOException when the
connection is lost. Therefore we have coded the catch block so that the connected
variable that controls the inner while loop is set to false, so that when the client
closes the connection the server will no longer expect to receive integers, but will
return to the top of the outer while loop, and wait for another connection request:

In a moment we will show you how to create a client program that requests a

service from our server. But before we do that, take a look at Fig. 23.1, which
shows the result of a typical session from the point of view of the server, running in

while(connected)
{

// read an integer from the client
first = inDataStream.readInt();
System.out.println("First number received: " + first);

// read an integer from the client
second = inDataStream.readInt();
System.out.println("Second number received: " + second);

sum = first + second;
System.out.println("Sum returned: " + sum);

// send the sum to the client
outDataStream.writeInt(sum);

}

catch (IOException e)
{

connected = false;
}

Fig. 23.1 A typical session for the addition server

23.3 A Simple Server Application 667

a console. The server listens on port 8901; a client connects, requests two calcu-
lations and ends the session; the server waits for another connection; another client
connects, requests one calculation and then ends the session, and the server once
again waits for another client to connect.

23.4 A Simple Client Application

The client application will utilize a JavaFX interface as shown in Fig. 23.2.
Figure 23.2 should give you an idea of how the operation of the client will work.

Once the address and port number of the remote host are known, the connection is
established. Then the user is free to enter numbers and press the button to send these
numbers to the server and display the result. The middle text box is used to display
messages regarding the connection.

Fig. 23.2 The addition client

668 23 Working with Sockets

Here is the code for the AdditionClient:

Addi onClient
import java.io.InputStream;
import java.io.DataInputStream;
import java.io.OutputStream;
import java.io.DataOutputStream;
import java.io.IOException;
import java.net.Socket;
import java.net.UnknownHostException;
import java.util.Optional;
import javafx.application.Application;
import javafx.geometry.Pos;
import javafx.scene.Scene;
import javafx.scene.control.Button;
import javafx.scene.control.Label;
import javafx.scene.control.TextField;
import javafx.scene.control.TextInputDialog;
import javafx.scene.layout.HBox;
import javafx.scene.layout.VBox;
import javafx.stage.Stage;

public class AdditionClient extends Application
{

private String remoteHost;
private int port;

// declare low level and high level objects for input
private InputStream inStream;
private DataInputStream inDataStream;

// declare low level and high level objects for output
private OutputStream outStream ;
private DataOutputStream outDataStream;

// declare a socket
private Socket connection;

@Override
public void start(Stage stage)
{

getInfo(); // call the method that gets the information about the server

// declare visual components
TextField msg = new TextField();

TextField firstNumber = new TextField();
Label plus = new Label("+");
TextField secondNumber = new TextField();

Label equals = new Label("=");
Label sum = new Label();

Button calculateButton = new Button("Press to see the sum of the two numbers");

// configure the scene
msg.setMaxWidth(150);
firstNumber.setMaxWidth(30);
secondNumber.setMaxWidth(30);

HBox hBox = new HBox(10);
hBox.setAlignment(Pos.CENTER);
hBox.getChildren().addAll(firstNumber, plus, secondNumber, equals, sum);
VBox root = new VBox(10);

root.setAlignment(Pos.CENTER);
root.getChildren().addAll(hBox, msg, calculateButton);

Scene scene = new Scene(root, 400, 300);
stage.setScene(scene);
stage.setTitle("Addition Client");

// show the stage
stage.show();

try
{

23.4 A Simple Client Application 669

We have declared a number of attributes, the first of which will hold values for
the address of the remote host and the port number, and the remaining attributes are
concerned with input and output streams, and the socket:

// attempt to create a connection to the server
connection = new Socket(remoteHost, port);
msg.setText("Connection established");

// create an input stream from the server
inStream = connection.getInputStream();
inDataStream = new DataInputStream(inStream);

// create an output stream to the server
outStream = connection.getOutputStream();
outDataStream = new DataOutputStream(outStream);

// send the host IP to the server
outDataStream.writeUTF(connection.getLocalAddress().getHostAddress());

}

catch (UnknownHostException e)
{

msg.setText("Unknown host");
}

catch (IOException ie)
{

msg.setText("Network Exception");
}

// specifiy the behaviour of the calculate button
calculateButton.setOnAction(e ->

{
try
{

// send the two integers to the server
outDataStream.writeInt(Integer.parseInt(firstNumber.getText()));
outDataStream.writeInt(Integer.parseInt(secondNumber.getText()));

// read and display the result sent back from the server
int result = inDataStream.readInt();
sum.setText("" + result);

}
catch(IOException ie)
{
}

 }
);

}

private void getInfo()
{

Optional<String> response;

// use the TextInputDialog class to allow the user to enter the host address
TextInputDialog addressDialog = new TextInputDialog();
addressDialog.setHeaderText("Enter remote host");
addressDialog.setTitle("Addition Client");

response = addressDialog.showAndWait();
remoteHost = response.get();

// use the TextInputDialog class to allow the user to enter port number
TextInputDialog portDialog = new TextInputDialog();
portDialog.setHeaderText("Enter port number");
portDialog.setTitle("Addition Client");

response = portDialog.showAndWait();
port = Integer.valueOf(response.get());

}

public static void main(String[] args)
{

launch(args);
}

}

670 23 Working with Sockets

The first thing that we do inside the start method is to call a helper method
getInfo. This will prompt the user to enter the address of the host machine on
which the server is running, and the port number; the user of course must be aware
of this information in order for the client to make the connection. So let’s begin by
briefly looking at the getInfo method:

Here we are using the TextInput Dialog class that we introduced in
Chap. 17 to get the host address and then to get the port number, as shown in
Fig. 23.3.

private String remoteHost;
private int port;

private InputStream inStream;
private DataInputStream inDataStream;

private OutputStream outStream ;
private DataOutputStream outDataStream;

private Socket connection;

private void getInfo()
{

Optional<String> response;

// use the TextInputDialog class to allow the user to enter the host address
TextInputDialog addressDialog = new TextInputDialog();
addressDialog.setHeaderText("Enter remote host");
addressDialog.setTitle("Addition Client");

response = addressDialog.showAndWait();
remoteHost = response.get();

// use the TextInputDialog class to allow the user to enter port number
TextInputDialog portDialog = new TextInputDialog();
portDialog.setHeaderText("Enter port number");
portDialog.setTitle("Addition Client");

response = portDialog.showAndWait();
port = Integer.valueOf(response.get());

}

Fig. 23.3 Getting the remote host and port number from the user

23.4 A Simple Client Application 671

Having called getInfo we go on to declare and configure the visual elements.
Once we have shown the stage, we attempt to make the connection:

The code must be placed within a try block. This is necessary because the
constructor of the Socket class potentially throws two exceptions. As you can see
it is called with two arguments, the name or IP address of the host machine (a
String) and the port number (an int).

Creating a new Socket in this way transmits a message requesting a response
from the remote machine specified, listening on the port in question. If the con-
nection is established, and no exception is therefore thrown, the constructor goes on
to display the message “Connection established” in the message area, and then to
initialize the input and output streams. It finishes with this instruction:

You will recall that we programmed the server so that the first thing it did after
the connection was established was to wait for a string from the client. Here you can
see how the client sends its address to the server on the output stream. It calls the
getLocalAddress method of the Socket class. This returns an object of the
InetAddress class. The InetAddress class holds a representation of an IP
address and enables us to obtain the host name, or the IP address (as a String),
with the methods getHostName and getHostAddress respectively.

try
{

// attempt to create a connection to the server
connection = new Socket(remoteHost, port);
msg.setText("Connection established");

// create an input stream from the server
inStream = connection.getInputStream();
inDataStream = new DataInputStream(inStream);

// create an output stream to the server
outStream = connection.getOutputStream();
outDataStream = new DataOutputStream(outStream);

// send the host IP to the server
outDataStream.writeUTF(connection.getLocalAddress().getHostAddress());

}

catch(UnknownHostException e)
{

msg.setText("Unknown host");
}

catch(IOException ie)
{

msg.setText("Network Exception");
}

outDataStream.writeUTF(connection.getLocalAddress().getHostAddress());

672 23 Working with Sockets

Now we have to catch the exceptions that can be thrown by the constructor. As
you can see there are two catch blocks. The first handles an
UnknownHostException which will be thrown if the host we are trying to
connect to is unknown. As you can see from the code, an appropriate message is
placed in the message area.

If there is another network error (perhaps no server is running on the specified
host), then an IOException is thrown and the message “Network Exception” is
displayed.

Finally we need to provide the code that determines what happens when we
press the button that gets the server to perform the addition for us:

This is pretty straightforward: we send the two numbers to the server and read
the response. We enclose everything in a try…catch block so that the excep-
tions thrown by the readInt and writeInt methods are handled.

The socket example here is clearly rather elementary. Java provides a very wide
range of possibilities for communication via sockets, for example secure sockets
and sockets for multicasting. This is beyond the scope of this book, but it is hoped
that we have given you a flavour for what is available so that those of you who want
to develop your skills in this area are able to move forward. To help you do that we
are going to provide two more examples. Firstly we will show you how to extend
our addition server so that it accepts multiple clients at the same time. Secondly we
are going to develop a rather more complex example, namely a chat application.

23.5 Connections from Multiple Clients

In our previous example the server could accept connections from only one client at
a time; it wasn’t able to listen for other connections until the first connection had
disconnected. If we want the server to accept multiple connections at the same time,
then each connection has to run in its own thread.

calculateButton.setOnAction(e ->
{

try
{

// send the two integers to the server
outDataStream.writeInt(Integer.parseInt(firstNumber.getText()));
outDataStream.writeInt(Integer.parseInt(secondNumber.getText()));

// read and display the result sent back from the server
int result = inDataStream.readInt();
sum.setText("" + result);

}
catch(IOException ie)
{
}

}
);

23.4 A Simple Client Application 673

We are going to create a class that extends Thread which we will call
AdditionServerThread. But in order to understand the logic, let’s first look
at the new version of the addition server (AdditionServerMultiple) which
is going to use this class:

The logic is quite straightforward. Once the new ServerSocket is created we
enter an infinite loop that continuously listens for connections. Once a connection is
made, a new thread is created and started; a reference to the socket is sent as an
argument. In this way, the server is able to support multiple connections on the
same port.

Now we can think about the AdditionServerThread class. All the func-
tionality that we previously saw in the AdditionServer will be placed in the
run method of this class. There will also be one extra feature: each client that
connects will generate its own id, an integer based on the number of connections
that have been made so far. The server will be able to report in the console which
client is making a particular request for an addition calculation. To illustrate this, a
sample session is shown in Fig. 23.4.

Addi onServerMul ple
import java.io.IOException;
import java.net.ServerSocket;
import java.net.Socket;

public class AdditionServerMultiple
{

public static void main(String[] args)
{

final int port = 8901;
AdditionServerThread thread;
Socket socket;

System.out.println("Listening for connections on port: " + port);
try
{

ServerSocket listenSocket = new ServerSocket(port);

while(true) // continuously listen for connections
{

socket = listenSocket.accept();
thread = new AdditionServerThread(socket);
thread.start();

}
}

catch(IOException e)
{
}

}
}

674 23 Working with Sockets

So let’s take a look at the AdditionServerThread class:

Fig. 23.4 The addition server making connections with multiple clients and responding to
requests

Addi onServerThread
import java.io.DataInputStream;
import java.io.DataOutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.OutputStream;
import java.net.Socket;

public class AdditionServerThread extends Thread
{

private int id;
private static int totalConnections;
private final int port = 8901;

// declare a "general" socket
private final Socket connection;

// declare low level and high level objects for input
private InputStream inStream;
private DataInputStream inDataStream;

// declare low level and high level objects for output
private OutputStream outStream;
DataOutputStream outDataStream;

// declare other variables
private String client;
private int first, second, sum;
private boolean connected;

public AdditionServerThread(Socket socketIn)
{

connection = socketIn;
}

@Override
public void run()
{

try
{

connected = true;
System.out.println("Connection established");

23.5 Connections from Multiple Clients 675

As we have said, the functionality now resides in the run method. There is
nothing very new here, except for the fact that an id is assigned to the new con-
nection, and this value is reported whenever this thread requests a calculation. You
will see that a static attribute, totalConnections, has been declared, and
within the run method this attribute is incremented each time a new connection is
made. The current value is then assigned to the id of this connection.

You should also note that the socket on which the client is connected is received
as a parameter and assigned in the constructor.

23.6 A Client–Server Chat Application

The final application that we are going to develop is a chat application. Figure 23.5
shows the sort of thing we are talking about.

The first thing to point out is that the only difference between the client and the
server is the fact that initially the server waits for the client to initiate a connection
—once the connection is established the behaviour is the same.

totalConnections++; // increase the total number of connections
id = totalConnections; // assign an id

// create an input stream from the client
inStream = connection.getInputStream();
inDataStream = new DataInputStream(inStream);

// create an output stream to the client
outStream = connection.getOutputStream ();
outDataStream = new DataOutputStream(outStream);

// wait for a string from the client
client = inDataStream.readUTF();
System.out.println("Address of client: " + client);

while(connected)
{

// read an integer from the client
first = inDataStream.readInt();
System.out.println("First number received from connection " + id + ": " + first);

// read an integer from the client
second = inDataStream.readInt();
System.out.println("Second number received from connection " + id + ": " + second);

sum = first + second;
System.out.println("Sum returned to connection " + id + ": " + sum);

// send the sum to the client
outDataStream.writeInt(sum);

}
}

catch(IOException e)
{

connected = false;
}

}
}

676 23 Working with Sockets

Both the client and the server have to be able to listen for connections, and at the
same time be capable of sending messages entered by the user. They will therefore
need to be multi-threaded. The main thread will allow the user to enter messages
which it will send to the remote program. The other thread will listen for messages
from the remote application and display them in the text area.

When the thread is created it will need to receive a reference to the text area
where the messages are to be displayed, and a reference to the socket connection. It
will need to create an input stream which must be associated with this connection.
We will be building JavaFX applications, so the threads will require the creation of
Tasks. The call method of each task will be written so that the thread contin-
uously waits for messages on the input stream and then displays them in the text
area. Both the client and the server classes will need to create an object of this
thread and start the thread running.

We have designed our application so that rather than having a button that has to
be pressed, the message is sent and echoed in the text area when the <Enter> key is
pressed. As you will see in a moment, in order to achieve this the class must provide
code for the setOnKeyReleased method of TextField. This method will
check whether the <Enter> key was pressed.

We’ll begin by looking at the code for the server:

Fig. 23.5 A client–server chat application

ChatServer
import java.io.DataOutputStream;
import java.io.IOException;
import java.io.OutputStream;

23.6 A Client–Server Chat Application 677

import java.net.ServerSocket;
import java.net.Socket;
import java.util.Optional;
import javafx.application.Application;
import javafx.geometry.Pos;
import javafx.scene.Scene;
import javafx.scene.control.Alert;
import javafx.scene.control.Alert.AlertType;
import javafx.scene.control.TextArea;
import javafx.scene.control.TextField;
import javafx.scene.control.TextInputDialog;
import javafx.scene.layout.VBox;
import javafx.stage.Stage;

public class ChatServer extends Application
{

// declare and initialise the text display area
private TextArea textWindow = new TextArea();

private OutputStream outStream; // for low level output
private DataOutputStream outDataStream; // for high level output

private ListenerTask listener; // required for the server thread

private final int port = 8901;
private String name;

@Override
public void start(Stage stage)
{

getInfo(); // call method that gets user name
startServerThread(); // start the sever thread

TextField inputWindow = new TextField();

// configure the behaviour of the input window
inputWindow.setOnKeyReleased(e ->

{
String text;

if(e.getCode().getName().equals("Enter")) // if the <Enter> key was pressed
{

text = "<" + name + "> " + inputWindow.getText() + "\n";
textWindow.appendText(text); // echo the text
inputWindow.setText(""); // clear the input window

try
{

outDataStream.writeUTF(text); // transmit the text
}

catch(IOException ie)
{
}

}
}

);

// configure the visual components
textWindow.setEditable(false);
textWindow.setWrapText(true);
VBox root = new VBox();
root.setAlignment(Pos.CENTER);
root.getChildren().addAll(textWindow, inputWindow);
Scene scene = new Scene(root, 500, 300);
stage.setScene(scene);
stage.setTitle(name);
stage.show();

}

private void startServerThread()
{

Socket connection; // declare a "general" socket
ServerSocket listenSocket; // declare a server socket

try

678 23 Working with Sockets

We start by declaring the attributes:

{
// create a server socket
listenSocket = new ServerSocket(port);

// listen for a connection from the client
connection = listenSocket.accept();

// create an output stream to the connection
outStream = connection.getOutputStream ();
outDataStream = new DataOutputStream(outStream);

// create a thread to listen for messages
listener = new ListenerTask(textWindow, connection);

Thread thread = new Thread(listener);
thread.start(); // start the thread

}
catch (IOException e)
 {

textWindow.setText("An error has occured");
}

 }

// method to get information from user
private void getInfo()
{

Optional<String> response;

// get user name
TextInputDialog textDialog = new TextInputDialog();
textDialog.setHeaderText("Enter user name");
textDialog.setTitle("Chat Server");
response = textDialog.showAndWait();
name = response.get();

// provide information to the user before starting the server thread
Alert alert = new Alert(AlertType.INFORMATION);
alert.setTitle("Chat Server");
alert.setHeaderText

("Press OK to start server. The dialogue window will appear when a client connects.");
alert.showAndWait();

}

@Override
public void stop()

 {
System.exit(0); // terminate application when the window is closed

 }

public static void main(String[] args)
 {

launch(args);
 }

}

private TextArea textWindow = new TextArea();

private OutputStream outStream;
private DataOutputStream outDataStream;

private ListenerTask listener;

private final int port = 8901;
private String name;

23.6 A Client–Server Chat Application 679

We have declared and initialised a TextArea object, which is where the
messages will be displayed. This needs to be an attribute of the class because it will
later be passed to the task that listens for and displays the client messages.

Next we have declared a variable of type ListenerTask. This is the task that
is required for the thread that listens for messages from the remote application, in
this case the client; as you will see later the client will also make use of this class in
order that it can receive messages from the server. You will see the code for the
ListenerTask in a moment.

Next we declare a constant for the port number, which, for convenience, we have
hard-coded, and finally we have declared a variable to hold the user name.

Now for the start method. We begin by calling a helper method, getInfo,
which will prompt the user to enter a chat name; this uses the TextInputDialog
class in the same way as you saw in the addition server example. Once the name is
entered, we go on to create an information alert, in the way that we explained in
Chap. 17:

This causes the following dialogue to appear (Fig. 23.6).
Once the user has acknowledged the message by pressing the OK button, a

helper method, startServerThead is called. As we shall see in a moment, this
method begins by waiting for a connection, and for this reason it is important that
we call this method before showing the scene graphic. In a JavaFX application,
once the stage is shown, any routine that effectively runs in the background should
be placed in a separate thread. To avoid having to create an additional thread for
this purpose we have waited for the connection to be established before creating and
showing the scene graphic.

Alert alert = new Alert(AlertType.INFORMATION);
alert.setTitle("Chat Server");
alert.setHeaderText
 ("Press OK to start server. The dialogue window will appear when a client connects.");

Fig. 23.6 An information alert for the chat server

680 23 Working with Sockets

So let’s now take a closer look at the startServerThread method.
There is nothing here that is particularly new—you have already seen how we

create a server socket and listen for a connection; and you have seen how we
associate a data stream with that connection. Notice, however, the last three lines of
the try block. Here we create an instance of ListenerTask, which we need in
order to create the thread that will listen for remote messages. Notice that we send a
reference to the text window and a reference to the connection. We then go on to
create and start the thread.

Once the client has connected, the application goes on to deal with declaring and
configuring the visual components before finally showing the scene graphic. We
should draw your attention to the code for specifying the behaviour of the input
window when the user types a message:

Each time a key is pressed and then released we check whether the key released
was the <Enter> key by invoking the getCode method of KeyEvent. This
returns a KeyCode object; the name of the key is then retrieved using the

private void startServerThread()
{

Socket connection;
ServerSocket listenSocket;

try
{

listenSocket = new ServerSocket(port);
connection = listenSocket.accept();

outStream = connection.getOutputStream ();
outDataStream = new DataOutputStream(outStream);

listener = new ListenerTask(textWindow, connection);

Thread thread = new Thread(listener);
thread.start();

}

catch (IOException e)
{

textWindow.setText("An error has occured");
}

}

inputWindow.setOnKeyReleased(e ->
{

String text;

if(e.getCode().getName().equals("Enter"))
{

text = "<" + name + "> " + inputWindow.getText() + "\n";
textWindow.appendText(text);
inputWindow.setText("");

try
{

outDataStream.writeUTF(text);
}

catch(IOException ie)
{
}

}
 }

);

23.6 A Client–Server Chat Application 681

getName method of KeyCode. If the key pressed was the <Enter> key then a
string is created from the user name (in angle brackets) plus the text entered,
followed by a newline character (‘\n’). This string is then appended to the text area,
and the input window is blanked, ready for more input. As well as echoing the
user’s message on the server screen it must, of course be transmitted to the client
via the output stream.

We want the program to terminate when the window is closed, and in this case
we have done this by implementing the stop method of the JavaFX application:

The instruction System.exit(0) will terminate the system normally.
Now let’s look at the code for the ListenerTask class, which forms the basis

of the thread that handles messages from the remote user:

public void stop()
{

System.exit(0);
}

ListenerTask
import java.io.DataInputStream;
import java.io.IOException;
import java.io.InputStream;
import java.net.Socket;
import javafx.concurrent.Task;
import javafx.scene.control.TextArea;

public class ListenerTask extends Task
{

private InputStream inputStream; // for low level input
private DataInputStream dataInputStream; // for high level input
private TextArea window; // a reference to the text area where the message will be displayed
private Socket connection; // a reference to the connection

// constructor receives references to the text area and the connection
public ListenerTask(TextArea windowIn, Socket connectionIn)
{

window = windowIn;
connection = connectionIn;

try
{

// create an input stream from the remote machine
inputStream = connection.getInputStream();
dataInputStream = new DataInputStream(inputStream);

}

catch(IOException e)
{
}

}

@Override
protected Void call()
{

String msg;
while(true)
{

try
{

msg = dataInputStream.readUTF(); // read the incoming message
window.appendText(msg); // display the message

}

catch(IOException e)
{
}

}
}

}

682 23 Working with Sockets

As you can see, the attribute declarations include references to the objects that
will be needed for the input stream, as well as a reference to a TextArea and a
Socket. The constructor receives a TextArea object and a Socket object, and
these are assigned to the relevant attributes. A ListenerTask object will
therefore have access to the text window and the connection associated with the
parent object. The constructor then goes on to establish the input stream:

Now the call method:

You can see that once the corresponding thread is started, an infinite loop is
implemented so that it continuously reads messages from the data stream, and then
displays the message in the text area associated with the server or client program
that created the thread.

public ListenerTask(TextArea windowIn, Socket connectionIn)
{

window = windowIn;
connection = connectionIn;

try
{

inputStream = connection.getInputStream();
dataInputStream = new DataInputStream(inputStream);

}

catch(IOException e)
{
}

}

protected Void call()
{

String msg;
while(true)
{

try
{

msg = dataInputStream.readUTF();
window.appendText(msg);

}

catch(IOException e)
{
}

}
}

23.6 A Client–Server Chat Application 683

Now we can look at the client application:

ChatClient

import java.io.DataOutputStream;
import java.io.IOException;
import java.io.OutputStream;
import java.net.Socket;
import java.net.UnknownHostException;
import java.util.Optional;
import javafx.application.Application;
import javafx.geometry.Pos;
import javafx.scene.Scene;
import javafx.scene.control.TextField;
import javafx.scene.control.TextArea;
import javafx.scene.control.TextInputDialog;
import javafx.scene.layout.VBox;
import javafx.stage.Stage;

public class ChatClient extends Application
{

// declare and initialize the text display area
private TextArea textWindow = new TextArea();

private OutputStream outStream; // for low level output
private DataOutputStream outDataStream; // for high level output

private ListenerTask listener; // required for the cleint thread

private int port; // to hold the port number of the server
private String remoteMachine; // to hold the name chosen by the user

private String name;

@Override
public void start(Stage stage)
{

getInfo(); // call method that gets user name and server details
startClientThread(); // start the client thread

TextField inputWindow = new TextField();

// configure the behaviour of the input window
inputWindow.setOnKeyReleased(e ->

{
String text;

if(e.getCode().getName().equals("Enter")) // if the <Enter> key was pressed
{

text = "<" + name + "> " + inputWindow.getText() + "\n";
textWindow.appendText(text); // echo the text
inputWindow.setText(""); // clear the input window

try
{

outDataStream.writeUTF(text); // transmit the text
}
catch(IOException ie)
{
}

}
}

);

// configure the visual components
textWindow.setWrapText(true);
textWindow.setEditable(false);
VBox root = new VBox();
root.setAlignment(Pos.CENTER);
root.getChildren().addAll(textWindow, inputWindow);
Scene scene = new Scene(root, 500, 300);
stage.setScene(scene);
stage.setTitle(name);
stage.show();

684 23 Working with Sockets

As you can see there is not a great deal of difference between the client and the
server. The only significant differences are:

• The client needs to know the address of the host that is running the server, so
there is an additional attribute, a string, to hold this address; the port attribute
is not assigned a value when it is declared, but instead is given a value by the

}

private void startClientThread()
{

Socket connection; // declare a "general" socket

try
{

// create a connection to the server
connection = new Socket(remoteMachine, port);

// create output stream to the connection
outStream = connection.getOutputStream();
outDataStream = new DataOutputStream (outStream);

// create a thread to listen for messages
listener = new ListenerTask(textWindow, connection);
Thread thread = new Thread(listener);
thread.start(); // start the thread

}

catch(UnknownHostException e)
{

textWindow.setText("Unknown host");
}

catch (IOException e)
{

textWindow.setText("An error has occured");
}

}

// method to get information from user
private void getInfo()
{

Optional<String> response;

// get address of host
TextInputDialog textDialog1 = new TextInputDialog();
textDialog1.setHeaderText("Enter remote host");
textDialog1.setTitle("Chat Client");
response = textDialog1.showAndWait();
remoteMachine = response.get();

// get port number
TextInputDialog textDialog2 = new TextInputDialog();
textDialog2.setHeaderText("Enter port number");
textDialog2.setTitle("Chat Client");
response = textDialog2.showAndWait();
port = Integer.valueOf(response.get());

// get user name
TextInputDialog textDialog3 = new TextInputDialog();
textDialog3.setHeaderText("Enter user name");
textDialog3.setTitle("Chat Client");
response = textDialog3.showAndWait();
name = response.get();

}

@Override
public void stop()
 {

System.exit(0); // terminate application when the window is closed
 }

public static void main(String[] args)
{

launch(args);
}

}

23.6 A Client–Server Chat Application 685

user. Thus, in addition to asking the user to choose a name, the getInfo
method now also requests information about the host machine and the port
number on which the server is listening.

• In the startClientThread method there is no need for a Server-
Socket; instead the socket is created by establishing the connection with the
remote machine:

You are now in a position to test out our chat application—you will need to know
the name or local IP address of the machine running the server. If you don’t have
access to two machines, then you can run both programs on the same machine—
although this rather takes away the point! In the end of chapter exercises you are
given some help with how to do this.

23.7 Self-test Questions

1. Explain what is meant by each of the following terms:

(a) client;
(b) server;
(c) host;
(d) port;
(e) socket.

2. Explain the principles of client–server architecture, and describe how this is
implemented in Java.

3. Which functions are provided by the Java Socket class?

4. Which additional functions are provided by the Java ServerSocket class?

23.8 Programming Exercises

1. Implement the AdditionServer and AdditionClient programs from
this chapter. If you have more than one computer running on the same network
you can run these programs on different machines. The client will need to be
supplied with either the name or the local IP address of the host machine.

connection = new Socket(remoteMachine, port);

686 23 Working with Sockets

If both client and server are running on the same machine, you can use “lo-
calhost” as the name, or you can use the IP address 127.0.0.1, which references
the local machine.

2. Implement the version of the addition server that accepts multiple clients, and
test this out by connecting a number of clients. These can be on the same
machine as the server, on remote machines, or a combination.

3. Implement and test out the chat application from this chapter. Again you can run
both client and server on the same machine, but it is, of course, more fun to run
them from different computers. Just a note, that if you are running them on the
same machine, the applications will appear on top of one another, so you will
need to move one out of the way to see the other one.

4. Write a server application that tells jokes to the client, and lets the client
respond. A good example would be a classic “Knock Knock” joke. The client
would receive the message “Knock Knock” from the server, and would be
expected to reply “Who’s there?” and so on.
You might be able to think of variations to this program. You could adapt it, for
example, so that the a different joke is told each time a client connects (that is, if
you actually know that many “Knock Knock” jokes!). Or perhaps a series of
jokes could be told. You might also want to try allowing multiple clients to
connect.

5 Try to devise a two- (or even more) player game that could be played across a
network. An example might be noughts-and-crosses. The best approach would
be to create a server that can deal with multiple connections—take a look at
Sect. 23.5 to help with ideas for implementation.

23.8 Programming Exercises 687

24Java in Context

Objectives:

By the end of this chapter you should be able to:

• provide a brief history of the development of the Java language;
• identify the potential problems with pointers, multiple inheritance and aliases;
• develop clone methods and copy constructors to avoid the problem of aliases;
• identify immutable objects;
• explain the benefits of Java’s garbage collector.

24.1 Introduction

Originally named Oak, Java was developed in 1991 by Sun Microsystems. The Java
technology was later acquired by OracleTM. Originally, the intention was to use
Java to program consumer devices such as video recorders, mobile phones and
televisions. The expectation was that these devices would soon need to commu-
nicate with each other. As it turned out, however, this concept didn’t take off until
later. Instead, it was the growth of the Internet through the World Wide Web that
was to be the real launch pad for the language.

The Java technology was acquired by OracleTM in 2010, but the original
motivation behind its development explains many of its characteristics. In partic-
ular, the size and reliability of the language became very important.

© Springer Nature Switzerland AG 2019
Q. Charatan and A. Kans, Java in Two Semesters, Texts in Computer Science,
https://doi.org/10.1007/978-3-319-99420-8_24

689

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99420-8_24&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99420-8_24&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99420-8_24&domain=pdf
https://doi.org/10.1007/978-3-319-99420-8_24

24.2 Language Size

Generally, the processor power of a system controlling a consumer device is very
small compared with that of a PC; so the language used to develop such systems
should be fairly compact. Consequently, the Java language is relatively small and
compact when compared with other traditional languages. At the time Java was
being developed, C++ was a very popular programming language. For this reason
the developers of Java decided to stick to conventional C++ syntax as much as
possible. Consequently Java syntax is very similar to C++ syntax.

Just because the Java language is relatively small, however, does not mean that it
is not as powerful as some other languages. Instead, the Java developers were
careful to remove certain language features that they felt led to common program
errors. These include the ability for a programmer to create pointers and the ability
for a programmer to develop multiple inheritance hierarchies.

24.2.1 Pointers

A pointer, in programming terms, is a variable containing an address in memory. Of
course Java programmers can do something very similar to this—they can create
references. Figure 24.1 repeats an example we showed you in Chap. 7.

In Fig. 24.1, the variable myOblong contains a reference (address in memory)
of an Oblong object. The difference between a reference and a pointer is that the
programmer does not have control over which address in memory is used—the
system takes care of this. Of course, internally, the system creates a pointer and
controls its location. In a language like C++ the programmer can directly

Oblong myOblong;

myOblong = new Oblong(7.5, 12.5);

Computer Memory Java Instructions

myOblong
(location of

object is
stored here)

This is the space
for the new

Oblong object

Fig. 24.1 An object variable in Java contains a reference to the object data

690 24 Java in Context

manipulate this pointer (move it along and back in memory). This was seen as
giving the programmer greater control. However, if this ability is abused, critical
areas of memory can easily be corrupted. For this reason the Java language
developers did not allow users to manipulate pointers directly.

24.2.2 Multiple Inheritance

Inheritance is an important feature of object-oriented languages. Many
object-oriented languages, such as C++ and Eiffel, allow an extended form of
inheritance known as multiple inheritance. When programming in Java, a class
can only ever inherit from at most one superclass. Multiple inheritance allows a
class to inherit from more than one superclass (see Figs. 24.2 and 24.3).

Fig. 24.2 Single
inheritance

Fig. 24.3 Multiple
inheritance

24.2 Language Size 691

As discussed in Chap. 13, multiple inheritance can lead to a variety of problems.
The Java developers decided not to allow multiple inheritance for two reasons:

• it is very rarely required;
• it can lead to very complicated inheritance trees, which in turn lead to pro-

gramming errors.

As an example of multiple inheritance, consider a football club with various
employees. Figure 24.4 illustrates an inheritance structure that might be arrived at.

Here, a PlayerManager inherits from both Player and Manager, both of
which in turn inherit from Employee! As you can see this is starting to get a little
messy. Things become even more complicated when we consider method over-
riding. If both Player and Manager have a method called payBonus, which
method should be called for PlayerManager—or should it be overridden? This
is sometimes referred to as the diamond problem given the diamond like shape of
the problematic design (as illustrated in Fig. 24.4).

Although Java disallows multiple inheritance it does offer a type of multiple
inheritance—interfaces. As we have seen in previous chapters, a class can inherit
from only one base class in Java but can implement many interfaces. Up to Java 8
this meant that the diamond problem could not arise as interfaces could contain
abstract methods only.

Fig. 24.4 A combination
of single and multiple
inheritance

692 24 Java in Context

Since Java 8, however, interfaces can contain default methods. As discussed
in Chap. 13, default methods are regular methods that contain an implemen-
tation and reside in interfaces. These methods are automatically inherited by classes
that implement these interfaces.

You might think that this could potentially lead to the diamond problem once
again if we implement two or more interfaces that contain default methods with
the same name. For example, let us look at the outline of a PlayerInterface
that contains a default payBonus method:

You can see how we add a default method into an interface. We use the
keyword default and provide an implementation. In our implementation we have
given a player a bonus of 1000. It is assumed all default methods are public,
so we do not need to add this scope. Now consider a ManagerInterface that
also contains a default payBonus method:

You can see a manager has been given a bonus of 2000. Now, consider the
following PlayerManager class that attempts to implement both of these
interfaces:

If all we include in this PlayerManager class are implementations for the
abstract methods contained in both the given interfaces this class will not
compile. The reason for this is to avoid the diamond problem, as it would not be
clear which version of payBonus to inherit. To resolve this Java insists that we
override the payBonus method with an implementation of our own. Here is one
possible solution:

public interface PlayerInterface
{

// other regular abstract methods can be included here
// a default method has an implementation
default double payBonus()
{

return 1000;
}

}

public interface ManagerInterface
{

// other regular abstract methods can be included here
// this default method has the same name as the default method in the PlayerInterface
default double payBonus()
{

return 2000;
}

}

public class PlayerManager implements PlayerInterface, ManagerInterface
{

// implement abstract methods of PlayerInterface and ManagerInterface
}

24.2 Language Size 693

In this case we have given a player manager a bonus of 3000. Note when
overriding the payBonus method we must mark this as a public (unlike de-
fault methods in interfaces which are always assumed to be public but not
necessarily marked as public).

Now we have overridden the payBonus method there is no conflict to resolve
and the given class will compile. We can use either (or both) of the inherited
payBonus implementations when overriding these methods. We do so by making
using the super keyword along with the interface name. For example, we might
generate a player manager bonus by adding together the player bonus and the
manager bonus as follows:

24.3 Language Reliability

The Java language developers placed a lot of emphasis on ensuring that programs
developed in Java would be reliable. One way in which they did this was to provide
the extensive exception handling techniques that we covered in Chap. 14. Another
way reliability was improved was to remove the ability for programmers to directly
manipulate pointers as we discussed earlier in this chapter. Errors arising from
pointer manipulation in other languages are very common. A related problem,
however, is still prevalent in Java but can be avoided to a large extent. This is the
problem of aliasing.

public class PlayerManager implements PlayerInterface, ManagerInterface
{

// implement abstract methods of PlayerInterface and ManagerInterface
@Override
public double payBonus()
{

return 3000;
}

}

public class PlayerManager implements PlayerInterface, ManagerInterface
{

// implement abstract methods of PlayerInterface and ManagerInterface
@Override
public double payBonus()
{

// we can access the inherited payBonus methods when overriding these methods
return PlayerInterface.super.payBonus()+ ManagerInterface.super.payBonus();

}
}

694 24 Java in Context

24.3.1 Aliasing

Aliasing occurs when the same memory location is accessed by variables with
different names. As an example, we could create an object, obj1, of the Oblong
class as follows:

We could then declare a new variable, obj2, which could reference the same
object:

Here obj2 is simply a different name for obj1—in other words an alias. The
effect of creating an alias is illustrated in Fig. 24.5.

In practice a programmer would normally create an alias only with good reason.
For example, let us assume we have an array of BankAccount objects called
accountList and we wish to overwrite one BankAccount in the list with the
adjacent BankAccount. We are able to make good use of aliasing by assigning an
object reference to a different object with a statement like:

accountList[i] = accountList[i+1];

After this instruction, accountList[i] is pointing to the same object as
accountList[i+1]. In this case that was the intention. However, a potential
problem with a language that allows aliasing is that it could lead to errors arising
inadvertently. Consider for example a Customer class that keeps track of just two
bank accounts. Here is the outline of that class:

Oblong obj1 = new Oblong (10, 20);

Oblong obj2 = obj1;

obj1 attributes of object
stored here

obj2

Oblong obj1 = new Oblong(10, 20);

Oblong obj2 = obj1;

Computer Memory Java Instructions

Fig. 24.5 Copying an object reference creates an alias

24.3 Language Reliability 695

Consider the methods getFirstAccount and getSecondAccount. In
each case we have sent back a reference to a private attribute, which is itself an
object. We did this to allow users of this class to interrogate details about the two
bank accounts, with statements such as:

Let us assume that this produced the following output:

balance of first account = 250.0

This is fine, but the tempAccount object, that we have just created, is now an
alias for the private BankAccount object in the Customer class. It can be
used to manipulate this private BankAccount object without going through
any Customer methods. To demonstrate this let us withdraw money from the
alias:

Now let us go back and examine the bank account in the Customer class:

In this case we have retrieved the first bank account, and its balance in one
instruction. We then display this balance, giving the following output:

balance of first account = 150.0

public class Customer
{

// two private attributes to hold bank account details
private BankAccount account1;
private BankAccount account2;

// more code here
// two access methods
public BankAccount getFirstAccount()

 {
return account1;

 }

public BankAccount getSecondAccount()
 {

return account2;
 }
}

BankAccount tempAccount = someCustomer.getFirstAccount();
System.out.println("balance of first account = "+tempAccount.getBalance());

tempAccount.withdraw(100); // withdraw 100 from alias

double balance = someCustomer.getFirstAccount().getBalance();
System.out.println("balance of first account = " + balance);

696 24 Java in Context

The balance of this internal account has been reduced by 100 without the
Customer class having any control over this! From this example you can see how
dangerous aliases can be.

There are a few examples in this book where we have returned references to
private objects, but we have been careful not to take advantage of this by
manipulating private attributes in this way. However, the important point is that
they could be manipulated in that way. In order to make classes extra secure (for
example, in the development of critical systems), aliasing should be avoided.

The problem of aliases arises when a copy of an object’s data is required but
instead a copy of the object’s reference is returned. These two types of copies are
sometime referred to as deep copy (for a copy of an object’s data) and shallow copy
(for a copy of an object’s reference). By sending back a shallow copy, the original
object can be manipulated, whereas a deep copy would not cause any harm to the
original object.

In order to provide such a deep copy, a class should define a method that returns
an exact copy of the object data. Such a method exists in the Object class, but this
should be overridden in any user-defined class. The method is called clone. We
want to send back copies of BankAccount objects, so we need to include a
clone method in the original BankAccount class.

24.3.2 Overriding the clone Method

You have seen examples of overriding Object methods before. In Chap. 15, for
instance, we overrode the toString and hashCode methods in the Object
class. There is one important difference, however, between the clone method and
other Object methods such as hashCode and toString. The clone method
is declared as protected in the Object class, whereas methods such as
hashCode and toString are declared as public.

Methods which are protected can only be called from within the same
package (Object is in the java.lang package), or within subclasses. Methods
which are protected are not part of the external interface of a class.

So if we wish to provide a clone method for any class, we are forced to
override the clone method from Object. When we override this method we
must make it public and not protected. When overriding methods you are
able to give them wider access modifiers but not less—so a protected method
can be overridden to be public, but not vice versa. The return type of the clone
method is always Object:

@Override
// clone methods you write must have this interface
public Object clone() // must be a public method
{

// code goes here
}

24.3 Language Reliability 697

There were sound security reasons for the Java developers forcing you to
override the clone method if you wish objects of your classes to be cloned, rather
than allow objects of all classes to use the clone method in the Object class;
because you might be developing a class in which you did not want objects of that
class to be cloned.

However, we do want to provide the original BankAccount class with a
clone method. Such a method would allow the Customer class to send back
clones of BankAccount objects, rather than aliases as it is currently doing. Here
is the outline of the BankAccount class with one possible implementation of such
a method:

Notice that in order to set the balance of the copied bank account we have
directly accessed the private balance attribute of the copy:

This is perfectly legal as we are in a BankAccount class, so all Bank-
Account objects created within this class can access their private attributes.
Now, whenever we need to copy a BankAccount object we just call the clone
method. For example:

The clone method sends back an exact copy of the original account, not a copy
of the reference (see Fig. 24.6).

Now, whatever we do to the copied object will leave the original object unaf-
fected, and vice versa.

public class BankAccount
{

// private attributes as before
private String accountNumber;
private String accountName;
private double balance;

// previous methods go here
// now provide a clone method
public Object clone()
{

// call contsructor to create a new object identical to this object
BankAccount copyOfThisAccount = new BankAccount (accountNumber, accountName);
/* after this the balance of the two bank accounts might not be the same,

so copy the balance as well */
copyOfThisAccount.balance = balance;
// finally, send back this copy
return copyOfThisAccount;

 }
}

copyOfThisAccount.balance = balance;

// create the original object
BankAccount ourAccount = new BankAccount ("98765432", "Charatan and Kans");
// now make a copy using the clone method, notice a type cast is required
BankAccount tempAccount = (BankAccount) ourAccount.clone();
// other instructions here

698 24 Java in Context

In a similar way, we can ensure that classes that contain BankAccount objects
do not inadvertently send back references (and hence aliases) to these objects:

Now, referrring to our earlier example, the problem is removed because of the
use of the clone method in the Customer class, as illustrated in the fragment
below:

ourAccount
attributes of object
stored here

tempAccount
attributes of object
stored here

 BankAccount ourAccount =

 new BankAccount

 (“98765432”, “Charatan and Kans”);

 BankAccount tempAccount =
 (BankAccount) ourAccount.clone();

Computer Memory Java Instructions

Fig. 24.6 The clone method creates a copy of an object

public class Customer
{

// as before here
// next two methods now send back clones, not aliases
public BankAccount getFirstAccount()
{

return (BankAccount)account1.clone();
}

public BankAccount getSecondAccount()
{

return (BankAccount)account2.clone();
}

}

Customer someCustomer = new Customer();

// some code to update someCutomer here

/* now a temporary variable is created to read details of first account but this is not an alias
it is a clone */
BankAccount tempAccount = someCustomer.getFirstaccount();
System.out.println("balance of first account = " + tempAccount.getBalance();
// assume the balance is displayed as 500
temp.withdraw(100); /* because temp is a clone the private BankAccount attribute

account1 is unaffected */
System.out.println("balance of first account = " + someCustomer.getFirstAccount().getBalance());
// the balance of the customer's first account will be still be 500

24.3 Language Reliability 699

24.3.3 Immutable Objects

We said that methods that return references to objects actually create aliases and
that this can be dangerous. However, these aliases are not always dangerous.
Consider the following features of the original BankAccount class:

In this case the getAccountNumber method returns a reference to a pri-
vate String object (accountNumber). This is an alias for the private
String attribute. However, this alias causes no harm as there are no String
methods that allow a String object to be altered. So, this alias cannot be used to
alter the private String object.

Objects which have no methods to alter their state are known as immutable
objects. String objects are immutable objects. Objects of classes that you
develop may also be immutable depending on the methods you have provided. If
such objects are immutable, you do not have to worry about creating aliases of these
objects and do not need to provide them with clone methods. For example, let’s
go back to the Library application (consisting of a collection of Book objects)
that we developed in Chap. 15. Rather than showing you the code, Fig. 24.7 shows
you the UML design for the Library and Book classes.

As you can see, the Library class contains a collection of Book objects.
These Book objects are part of the private books attribute in the Library
class. However the getBook method returns a reference to one of these Book
objects and so sends back an alias. This is not a problem, however, because if you
look at the design of the Book class the only methods provided are get methods.

public class BankAccount
{

private String accountNumber;

// other attributes and methods here
public String getAccountNumber()
{

return accountNumber;
}

}

Book

-isbn : String
-author : String
- tle : String

+Book(String, String, String)
+getISBN() : String
+getAuthor() : String
+getTitle() : String

Library
-books : Map<String, Book>

+Library ()
+addBook (Book) : boolean
+removeBook (String) : boolean
+getTotalNumberOfBooks() : int
+getBook (String) : Book
+getAllBooks() : Set<Book>

*

Fig. 24.7 Design for the Library application

700 24 Java in Context

In other words, there are no Book methods that can alter the attributes of the Book
object once the Book object has been created. A Book object is an immutable
object.

24.3.4 Using the clone Method of the Object Class

Although the clone method in the Object class is not made available as part of
your class’s external interface, it can be used within classes that you develop. In
particular, you might wish to use it within a clone method that you write yourself,
as it does carry out the task of copying an object for you—albeit with some
restrictions.

The clone method from the Object class copies the memory contents allo-
cated to the object attributes. This is sometimes referred to as a bit-wise copy. This
means that it makes exact copies of attributes that are of primitive type, and it
makes copies of references for attributes that are objects. Of course, a copy of a
reference gives you an alias—but if the object in question is immutable, this is not a
problem. This means that:

• if a class’s attributes are all of primitive type, then make your clone method
just call the clone method of Object;

• if a class’s attributes include objects, and these objects are all immutable, then
again make your clone method just call the clone method of Object;

• if a class’s attributes include any objects which are not immutable, then you
cannot rely upon the clone method of Object to make a sensible copy and so
you must write your own instructions for providing a clone.

Bearing these points in mind, let us revisit the clone method for our Bank-
Account class.

To make a copy of a BankAccount object we need a new bank account with
an identical account number, name and balance. The balance attribute is of type
double, so a bit-wise copy would be fine here. The account name and number are
both String objects; since strings are immutable a bit-wise copy is fine here also.
This means the entire object can be safely copied using the clone method of

public class BankAccount
{

// attributes
private String accountNumber;
private String accountName;
private double balance;

public Object clone()
{

// code goes here
}

// other code here
}

24.3 Language Reliability 701

Object. Here is a first attempt at using this method within our own clone
method—it will not compile!:

This will not compile at the moment because the clone method of Object
checks whether developers of this class really want to allow cloning to go ahead.

To indicate that developers do want cloning to go ahead, they have to mark their
class as implementing the Cloneable interface. This interface, much like
Serializable, contains no methods. It is just used to mark a class with some
extra information. So, in order to call the clone method of Object, we need to
mark the BankAccount class as follows:

There is one last thing we need to do in order to use the clone method of the
Object class. This method throws a checked CloneNotSupportedExcep-
tion if the calling class does not implement the Cloneable interface. Of course
we know our class does implement this interface, but as this is a checked exception,
we still need to provide a try…catch around the call to super.clone() to
keep the compiler happy. Here is the modified BankAccount class:

Whether or not you use super.clone() in your implementation of the
clone method, it is always a good idea to mark your class Cloneable, so it is
clear that objects from your class can be cloned.

// this attempt to clone a BankAccount will not compile
public Object clone()
{

// call 'clone' method of superclass Object
return super.clone();

}

// marking this class Cloneable allows us to call clone method of Object
public class BankAccount implements Cloneable
{

// code here can use 'super.clone()'
}

// mark that objects of this class can be cloned
public class BankAccount implements Cloneable
{

// attributes as before
private String accountNumber;
private String accountName;
private double balance;

// this method allows BankAccount objects to be cloned
public Object clone()

 {
try

 {
return super.clone(); // call 'clone' from Object

 }
catch (CloneNotSupportedException e) // will never be thrown!

 {
return null;

 }
 }

// other code here
}

702 24 Java in Context

24.3.5 Copy Constructors

The previous sections demonstrated how clone methods can be used to avoid
aliases by providing exact (deep copies) of an object. But, as you could see,
implementing clone methods can be a little tricky and using clone methods
requires type-casting. A popular alternative to this approach is to provide copy
constructors instead. Copy constructors provide a way of creating an exact copy of
an object from an object sent as a parameter to a constructor. Languages like C++
automatically provide copy constructors, but in Java we have to implement them
ourselves. Doing so is fairly straightforward. Let’s return to the original Bank-
Account class and assume we have not included a clone method. Instead we
will provide an additional copy constructor that receives a BankAccount object
as a parameter and copies this parameter’s attributes to make a new exact copy.
Here is the outline of the class:

You can see that, as well as the original constructor, we have provided a copy
constructor that receives a BankAccount object and makes an exact copy by
copying across every attribute value of the parameter object:

The CopyConstructorDemo program below demonstrates how easy to is to
use a copy constructor to create copies of objects. Note we are assuming a
toString method has been included in the BankAccount class for ease of
testing:

{
11"qtkikpcn"cvvtkdwvgu"jgtg

11"vjg"qtkikpcn"eqpuvtwevqt
public BankAccount(String numberIn, String nameIn)
{

accountNumber = numberIn;
accountName = nameIn;
balance = 0;

}

11"vjg"eqr{"eqpuvtwevqt
rwdnke"DcpmCeeqwpv*DcpmCeeqwpv"ceeKp+
}"

ceeqwpvPwodgt"?"ceeKp0ceeqwpvPwodgt=
ceeqwpvPcog"?"ceeKp0ceeqwpvPcog=
dcncpeg"?"ceeKp0dcncpeg=

Ä"

11"qtkikpcn"ogvjqfu"jgtg"rnwu"c"vqUvtkpi"ogvjqf

}

public class BankAccount

// the copy constructor
public BankAccount(BankAccount accIn)
{

accountNumber = accIn.accountNumber; // copy account number
accountName = accIn.accountName; // copy account name
balance = accIn.balance; // copy account balance

}

24.3 Language Reliability 703

We have created a BankAccount object, b1, and deposited some funds into
this object via the deposit method before displaying it (using its toString
method). The next line is the key instruction where we use the copy constructor to
create a new BankAccount object, b2, that is an exact copy of the first object:

You can see how simple this is. There is no need to type-cast as with a clone
method. We then display the copy, before withdrawing money from the first object
and displaying both objects again. Here is the program output:

first object (001, Justin Thyme, 100.0)
second object (001, Justin Thyme, 100.0)
first object (001, Justin Thyme, 50.0)
second object (001, Justin Thyme, 100.0)

As expected, the second object is an exact copy of the first object. Once the copy
has been created we can modify the first object without modifying the copy.

Which technique you use for creating object copies (clone methods or copy
constructors) is really up to you. You might find using the Object clone method
simpler if the object in question has many attributes whereas a copy constructor
may be easier for objects that have fewer attributes or attributes that are not able to
be cloned simply (such as non-immutable objects).

24.3.6 Garbage Collection

When an object is created using the new operator, a request is being made to grab
an area of free computer memory to store the object’s attributes. Because this
memory is requested during the running of a program, not during compilation, the
compiler cannot guarantee that enough memory exists to meet this request. Memory
could become exhausted for two related reasons:

CopyConstructorDemo
public class CopyConstructorDemo
{

public static void main(String[] args)
{

BankAccount b1 = new BankAccount ("001", "Justin Thyme"); // balance zero
b1.deposit(100); // balance 100
System.out.println("first object "+b1);
BankAccount b2 = new BankAccount(b1); // create copy via copy constructor
System.out.println("second object "+b2);// display copy
b1.withdraw(50);// modify original object
System.out.println("first object "+b1);
System.out.println("second object "+b2);// second object untouched

}
}

BankAccount b2 = new BankAccount(b1); // create copy via copy constructor

704 24 Java in Context

• continual requests to grab memory are made when no more free memory exists;
• memory that is no longer needed is not released back to the system.

These problems are common to all programming languages and the danger of
memory exhaustion is a real one for large programs, or programs running in a small
memory space. Java allows both of the reasons listed above to be dealt with
effectively and thus ensures that programs do not crash unexpectedly.

First, exception-handling techniques can be used to monitor for memory
exhaustion and code can be written to ensure the program terminates gracefully.
More importantly, Java has a built-in garbage collection facility to release unused
memory. This is a facility that regularly trawls through memory looking for loca-
tions used by the program, freeing any locations that are no longer in use.

For example consider the program below.

Here, a new object is created each time we go around the loop. The memory
used for the previous object is no longer required. In a language like C++ the
memory occupied by old objects would not be destroyed unless the programmer
added instructions to do so. So if the programmer forgot to do this, and this
happened on a large scale in your C++ program, the available memory space could
easily be exhausted. The Java system, however, regularly checks for such unused
objects in memory and destroys them.

Although automatic garbage collection does make extra demands on the system
(slowing it down while it takes place), this extra demand is considered by many to
be worthwhile by removing a heavy burden on programmers. Nowadays many
programming languages, such as C# and Python, also include a garbage collection
facility.

Tester
import java.util.Scanner;

public class Tester
{

public static void main(String[] args)
 {

char ans;
Scanner keyboard = new Scanner (System.in);
Oblong object; // reference to object created here
do

 {
System.out.print("Enter length: ");
double length = keyboard.nextDouble();
System.out.print("Enter height: ");
double height = keyboard.nextDouble();
// new object created each time we go around the loop
object = new Oblong(length, height);
System.out.println("area = "+ object.calculateArea());
System.out.println("perimeter = "+ object.calculatePerimeter());
System.out.print("Do you want another go? ");
ans = keyboard.next().charAt(0);

} while (ans == 'y' || ans == 'Y');
 }
}

24.3 Language Reliability 705

24.4 The Role of Java

While Java began life as a language aimed primarily at programming consumer
devices, it has evolved into a sophisticated application programming language;
competing with languages such as C++, Python and C#, to develop a wide range of
applications. The security and reliability offered by the language has allowed the
use of Java to be spread from desktop applications to network systems, web-based
applications, set-top boxes, smart cards, computer games, smart phones and many
more. To see an example of the enormous range of applications powered by Java
visit the OracleTM site at: http://go.java.

Table 24.1 gives the TIOBE programming community index of the ten most
popular programming languages for August 2018.1

You can see that Java is at the top of this table, as it was last year. In fact it has
been top of this index for many years.

24.5 What Next?

This chapter marks the end of our Java coverage for your second semester in
programming. Although you have covered a lot of material, there is still more that
you can explore. For example, we looked at how packages can be used to organise
and distribute our Java applications in Chap. 19. The Java Programming Module
System (JPMS) was introduced with the release of Java 9 and provides an even
higher level of organisation to group together a collection of packages. We looked
at Java applications that run over a local network in Chap. 23, but Java is also used

Table 24.1 TIOBE programming community index

Position Aug 2018 Position Aug 2017 Programming language

1 1 Java

2 2 C

3 3 C++

4 5 Python

5 6 Visual Basic.NET

6 4 C#

7 7 PHP

8 8 JavaScript

9 – SQL

10 14 Assembly Language

1The TIOBE index is a respected measure of the popularity of a programming language. For
details of the table itself and of how it was compiled go to https://www.tiobe.com/tiobe-index/.

706 24 Java in Context

http://go.java
https://www.tiobe.com/tiobe-index/

for the development of large distributed enterprise systems over wide area networks
as well as cloud-based systems. We have also had a thorough look at JavaFX
throughout this text but there is still much more you can find out about, including
FXML—a Java FX tailored XML language developed by OracleTM. The good
news is that you are now well placed to explore all these areas as well as many
more. In the meantime, don’t forget you can get further information on the Java
language at the OracleTM website https://www.oracle.com/java/.

Now that you have completed two semesters of programming we are pretty
certain that you will have come to realize what an exciting and rewarding an
activity it can be. So whether you are going on to a career in software engineering,
or some other field in computing—or even if you are just going to enjoy pro-
gramming for its own sake, we wish you the very best of luck for the future.

24.6 Self-test Questions

1. Distinguish between a pointer and a reference.

2. What does the term multiple inheritance mean and why does Java disallow it?

3. How do you implement a class that inherits two interfaces, both with a
default method with the same name?

4. Consider the following class:

(a) Explain why Critical objects are not immutable.

(b) Write fragments of code to create Critical objects and demonstrate the
problem of aliases.

(c) Develop a clone method in the Critical class (make use of the clone
method of Object here).

(d) Write fragments of code to demonstrate the use of this clone method.

(e) What is the purpose of a copy constructor?
(f) Develop a copy constructor for the Critical class.

(g) Write fragments of code to demonstrate the use of this copy constructor.

public class Critical
{

private int value;

public Critical (int valueIn)
 {

value = valueIn;
 }

public void setValue(int valueIn)
 {

value = valueIn;
 }

public int getValue ()
 {

return value;
 }
}

24.5 What Next? 707

https://www.oracle.com/java/

5. Look back at the classes from the two case studies of Chaps. 11, 12 and 21.

(a) Which methods in these classes return aliases?

(b) Which aliases could be dangerous?

(c) How can these aliases be avoided?

6. What are the advantages and disadvantages of a garbage collection facility in a
programming language?

24.7 Programming Exercises

1. Implement the Critical class of self-test question 4 and then write a tester
program to demonstrate the problem of aliases.

2. Amend the Critical class by adding a clone method as discussed in
self-test question 4(c) and then amend the tester program you developed in the
previous programming exercise to demonstrate the use of this clone method.

3. Amend the Critical class further by adding the copy constructor discussed
in self-test question 4(e) and then amend the tester program you developed in
the previous programming exercise to demonstrate the use of this copy
constructor.

4. Implement the changes you identified in self-test question 5, in order to remove
the aliases that might have been present in the classes from the two case studies.

5. Review all the classes that you have developed so far and identify any problems
with aliases. Use the techniques discussed in this chapter to avoid these aliases.

708 24 Java in Context

Index

0–9
2D shapes, 281

A
abstract

class, 250, 254, 255, 261, 359, 587
method, 253, 254, 268, 359, 360, 361, 369,

370, 371, 374, 378, 383, 385, 412, 413,
436, 447, 458, 460, 482, 588, 649, 652,
656, 692, 693, 694

Abstract Windows Toolkit (AWT), 266
actors - use case model, 604
actual parameters, 95, 101, 110, 116
aggregation, 211, 310
airport case study, see case study, airport
Alert class, 518, 520
algorithms

scheduling, 582
aliasing, 694, 695, 697
animations, 591, 593, 596, 597, 600
anonymous class, 357, 364–368, 378, 391,

587, 591, 597, 598
API, see Application Programming Interface
append mode - files, 535
Application Programming Interface (API), 369,

453, 641
applications

deploying, 563
JavaFX, 267–269, 302, 310, 336, 337,

413–415, 496, 541, 553, 554, 577, 587,
599, 677, 680, 682

running from command line, 268, 415, 553,
560, 561, 575

application software, 3, 4, 16
arithmetic operators, 25, 26
array(s)

accessing elements, 119, 124, 126, 187, 394
creating, 120, 148, 149, 186

elements, 120–122, 124–126, 137, 139,
142, 185, 210, 232

index, 125–127, 137, 139, 143, 150, 154,
186, 395

length attribute, 151, 156, 198, 200–202
maximum, 122, 139, 140
of objects, 163, 185, 186, 191
returning from a method, 134
membership, 141
passing as parameters, 101, 129, 131
ragged, 119, 155, 156, 160, 162
search, 142, 143, 451
sort, 457, 458, 463
summation, 141
two-dimensional, 119, 148–151, 153, 155,

156, 160, 232
varargs, 131–134, 138, 159, 161

ArrayIndexOutOfBoundsException,
394, 395, 405, 422

ArrayList class, 188, 193, 211, 315, 317,
553, 376, 427–430, 450, 465

Arrays class, 456, 465, 647
assignment, 23–28, 34, 46, 103, 124–126, 200
asynchronous threads, 577, 599
attributes

class, 109, 165, 224, 227, 236, 237, 328,
376, 477, 570, 608, 701

length, 151, 156, 198, 199, 201, 202, 241
private, 195, 262, 697, 698
protected, 238, 262
public, 195, 238, 262, 315
static, 206, 676

autoboxing, 259
AWT, see Abstract Windows Toolkit

B
base class, 237, 394, 692
behaviour specifications, 603–605, 624

© Springer Nature Switzerland AG 2019
Q. Charatan and A. Kans, Java in Two Semesters, Texts in Computer Science,
https://doi.org/10.1007/978-3-319-99420-8

709

https://doi.org/10.<HypSlash>1007/�978-�3-�319-�99420-�8</HypSlash>

BiConsumer interface, 447
BiFunction interface, 378
binary encoding, 530
binary files – reading and writing, 539, 540
BinaryOperator interface, 378
BiPredicate interface, 378
boolean type, 20, 122
BorderPane class, 292, 293, 303
BorderStroke class, 289, 294, 344, 346,

629, 631
BorderStrokeStyle class, 289, 294,

344, 346, 629, 631
BorderWidths class, 289, 294, 344, 346,

629, 631
bounded type parameters, 379
break statement, 56–59, 61, 65, 84–86
BufferedReader class, 529, 537, 538, 542
bugs, see errors
busy waiting, 577, 585, 599
byte type, 20

C
C ++, 4, 164, 208, 690, 691, 703, 705, 706
C# (C Sharp), 705, 706
calling method, 100, 105, 191, 312, 401, 413
card menu, 499, 513
Cascading Style Sheets (CSS), 469, 491, 496,

639
case statement, 55–58, 113, 115, 615
case study

airport, 605
student hostel, 308, 334–336, 350, 354

catch, 393, 401–406, 408, 421, 423, 540,
573, 667, 673

catching an exception, 401, 422
char type, 22, 23
Character class, 362
check boxes, 267, 282, 499, 509, 511, 512
checked exceptions, 395, 422
ChoiceDialog class, 518, 520, 523, 639
claiming an exception, 397, 398, 422
class(es)

anonymous, 357, 364–368, 378, 391, 587,
591, 597, 598

attributes, 109, 165, 200, 203, 236–238,
312, 339, 469, 529, 550, 570, 593, 701

abstract, 235, 250, 251, 254, 255, 261, 359
collection, see collection classes
final, 257
inheritance extending with, 236, 246, 251,

260, 357, 359, 691
inner, 364, 391

methods, 116, 117, 170, 205, 208, 229,
238, 374, 396, 399, 402, 411, 412, 456,
457

class method, 205, 208, 229, 238, 396, 411,
412, 456, 457

classpath, 562, 564, 569, 574
client-server model, 661, 676
clone method, 689, 697–704, 707, 708
Cloneable interface, 702
code layout, 319
collection classes

generic, 188, 378, 383
Collection interface, 428, 435, 436, 645
combo boxes, 499, 507
context menu, 499, 503–506, 524
Color class, 272, 296
colours

creating, 646
command line running applications from, 268,

415, 553, 560–563, 574, 575
comments

Javadoc, 14, 307, 310, 313, 317, 318, 330,
332, 334, 421, 424, 609, 621, 635

Comparable interface, 458–460, 463, 465,
466

Comparator interface, 460, 461, 463, 465
comparison operators, 46, 446
compiling programs, 4
composition, 211, 603, 607, 638
compound containers, 301
concatenation operator, 15, 30
concatenating streams, 656
concurrent processes, 578
constants, creating, 25
constructor

copy, 689, 703, 704, 707, 708
default, 200, 201
user defined, 200, 237

containment, 606, 607, 638
context menus, 499, 503, 505, 524
continue (key word), 86, 401
convenience method, 279, 384, 470, 472, 475,

476, 482, 497, 503
Consumer interface, 413, 435, 436, 442, 652
CornerRadii class, 344, 515, 516, 635
creating streams, 646
critical sections, 584
CSS, see Cascading Stye Sheets

D
data types, 19–21, 163, 223, 565
database, 353, 553, 564, 565, 567–575, 578,

642, 663

710 Index

DataInputStream class, 540, 664–666,
669, 676, 682

DataOutputStream class, 539, 545, 664,
677, 685

DecimalFormat class, 297, 301, 344, 555
declaring variables, 21, 35
decrement operator, 29
default methods, 360, 361, 693, 694
deploying applications, 563
derived class, 237
design

case study airport, 607, 625, 639
case study student hostel, 309, 310, 335,

336
program, 35

Dialog class, 348, 499, 518, 520, 523, 671,
680

diamond problem, 692, 693
Driver class, 564
DriverManager class, 567
double colon operator, 374
documentation, 317, 318, 330, 425, 453, 482,

562, 564, 567, 575, 604
dot operator, 169, 172, 186
double type, 21, 23, 24, 179
Double class, 287
do…while loop, 79–84, 90
driver(s)

JDBC, 564
drop-down menus, 499, 500

E
embedding

images, 483
videos, 486
webpages, 469

embedded software, 4, 5, 16
encapsulation, 169, 195–197, 224, 238
encoding files, 527, 530
enum, 609, 610
enumerated types

implementing in Java, 603, 609, 622
using with switch statements, 610, 615

enhanced for loop, 119, 138, 139, 141, 143,
158, 187, 190, 316, 331, 427, 434–436,
438–440, 446, 447, 464, 623, 639

environment variable, 562, 574
equals method

defining, 450
String class, 433, 445
Object class, 450

errors
compile-time errors, 564
runtime errors, 564, 569

event-handling
key events, 477
mouse events, 470

exception(s)
catching, 401, 403, 422
checked, 393, 395, 398, 422, 587, 622, 702
claiming, 397, 398, 422
documenting, 421, 422
exception classes creating, 419
exception class hierarchy, 395
in JavaFX applications, 415
handling, 393, 395, 414, 544, 694, 705
IOException, 394
NullPointerException, 408, 445
RuntimeException, 398, 400, 417–419
throwing, 394, 401, 417, 422, 424
unchecked, 393, 395, 422–424

executable JAR files, 563
expressions, 26, 27, 29, 30, 105, 106, 279, 280,

341, 357, 358, 368–371, 374, 387, 652,
655

extending classes with inheritance, 236, 357

F
fields data, 570
files

access, 527, 545, 550
append mode, 535
binary, 530, 539, 540, 550
closing, 403, 534
encoding, 530, 549
executable JAR, 563, 575, 639
file-handling, 527, 530
file pointers, 531, 545, 548
object serialization, 542
random access, 527, 531, 544, 550
serial access, 527, 531, 550
streams, 530
text, 7, 530–532, 535, 536, 539, 541, 549,

551
final

class, 257
method, 257, 654
variable, 25

final operations-streams, 656, 657
finally, 403–408, 423, 534, 573
File class, 488
file pointers, 531, 545, 548
File Transfer Protocol (FTP), 662, 663
FileInputStream class, 540
FileReader class, 537
FileWriter class, 534
float type, 21
Float class, 380, 389

Index 711

FlowPane class, 292, 303, 485
fonts

creating, 274, 295
for loop

enhanced, 119, 137–139, 141, 143, 158,
187, 190, 316, 331, 427, 434–436, 438,
439, 446, 447, 464, 623, 639

forEach loop/method, 427, 435, 436,
438–440, 446, 447, 455, 464, 465, 623,
639, 645, 646, 649, 652

formatting
numbers, 297

Function interface, 648
functional interfaces, 383, 387
FXML, 707

G
garbage collection, 704, 705, 708
generics

out of the box interfaces, 378
upper bound, 357, 379, 389
wild card, 357, 382, 389, 482

generic collection classes, 428
Graphical User Interfaces (GUIs)

design, 304, 334, 336
exceptions, 525

GridPane class, 290, 291, 303
GUIs, see Graphical User Interfaces

H
hashCode method, 450–453, 464, 606, 614,

697
HashMap class, 427, 443, 446, 451, 452
HashSet class, 427, 436, 437
Hbox class, 267, 278, 279, 288, 289, 292, 303
heavyweight components - user interface, 266
host - network programming, 353
hostel case study, see case study student hostel
HTML, see Hypertext Markup Language
Hypertext Markup Language (HTML), 317,

318, 491
Hypertext Transfer Protocol (HTTP), 662

I
IDE, see integrated development environment
if statement, 41, 43–45, 47–49, 51, 55, 59, 60,

68, 72, 73, 87, 126, 140, 176, 216, 248,
393, 410, 441

if…else statement
nested, 41, 53, 55

Image class, 484
ImageView class, 484
immutable objects, 689, 700, 701, 704

import statement, 32, 411, 429, 430, 555,
556, 574

increment operator, 29
indentation, 319
infinite streams, 656
InetAddress class, 672
information hiding, 196
inheritance

defining, 236
extending classes with, 236, 357
implementing, 237, 361, 363

init method, 587
initializing

attributes, 208
variables, 24, 103, 208

inner class, 357, 364, 391
input

devices, 527, 528
from keyboard, 32, 33
stream, 527, 529, 544, 664–667, 669, 676,

677, 682, 683
validation, 65, 77–79, 92, 154, 287, 350,

531
input events

key events, 469, 473, 477
mouse events, 469, 470

InputStream class, 396, 666
InputStreamReader class, 529
instantiation, 167
int type, 20, 21, 23, 24
Integer class, 259, 288, 344, 397
integrated development environment (IDE), 6,

16
integration testing, 307, 308, 320, 354, 624
io package, 399, 553
interface

abstract methods, 359–361, 692
default methods, 360, 361, 693, 694
functional, 369, 371, 374, 378, 383, 384,

387, 436, 458, 460, 582, 649, 652, 656
out of the box, 378, 648
static methods, 360, 378, 461

intermediate operations - streams, 642, 648,
658

Internet Protocol (IP) address, 567, 663
is-a-kind-of relationship, 237, 257
iteration

do...while loop, 65, 66, 79–84, 90, 92
enhanced for loop, 119, 138, 139, 141,

143, 158, 187, 190, 316, 331, 427,
434–436, 438–440, 446, 447, 464, 623,
639

712 Index

for loop, 65–73, 76, 77, 80, 84, 85, 90–92,
119, 120, 126–128, 137, 138, 141, 143,
150, 155, 158, 435, 537

forEach loop, 427, 435, 436, 438, 440,
446, 447, 455, 464, 465, 623, 639, 646,
649, 652

vs streams, 643
while loop, 65, 66, 77–80, 83, 84, 90, 92,

115, 154, 192, 441, 540, 666, 667
Iterator interface, 440
Iterator objects, 427, 440, 441

J
Java Archive (JAR) files

executable, 563, 575, 639
Java API, see Application Programming

Interface
Java byte code, 5, 8, 16, 555
Java Collections Framework (JCF), 428, 463
Java Database Connectivity (JDBC), 553, 564
Java Development Kit (JDK), 6, 165, 317
Javadoc

@author tag, 317, 318
@param tag, 318, 330
@return tag, 318
@throws tag, 421, 422, 611, 614, 620,

635, 639
@version tag, 317, 318, 344, 609–611,

614, 620, 635
JavaFX

containers, 265
init method, 587
Scene class, 274
Stage class, 271, 507
start method, 268, 271, 274, 301,

336–340, 517, 567, 582, 585, 587, 671,
680

stop method, 268, 587, 682
Java Runtime Environment (JRE), 6, 578
Java Virtual Machine (JVM), 5, 16
JVM, see Java Virtual Machine

L
lambda expressions, 265, 279, 280, 284, 287,

341, 358, 368–371, 373–375, 378, 379,
384, 387, 389, 391, 412, 413, 435, 436,
442, 443, 461, 473, 475, 477, 482, 582,
646, 649, 652–655, 657

layout policies
BorderLayout, 292
FlowLayout, 292

lazy evaluation, 641, 642, 659
length attribute–arrays, 151, 156, 198,

200–202

lightweight components, 266
lightweight process, 578
List interface, 383, 428–431, 456, 460
logical operators, 51, 52
loops

do…while loop, 65, 66, 79–84, 90, 92
enhanced for loop, 119, 138, 139, 141,

143, 158, 187, 190, 316, 331, 427,
434–436, 438–440, 446, 447, 464, 623,
639

for loop, 65–73, 76, 77, 80, 84, 85, 90–92,
119, 120, 126–128, 137, 138, 141, 143,
150, 155, 158, 435, 439, 446, 535

picking the right loop, 83
while loop, 65, 66, 77–80, 83, 84, 90, 92,

115, 154, 192, 441, 540, 666, 667

M
main method, 12, 29, 35, 36, 41, 95, 97–99,

103, 107, 112, 116, 117, 129, 133, 136,
161, 162, 165, 172, 185, 197, 207, 208,
215, 253, 268–270, 274, 311, 337, 374,
399, 402, 561, 562

Map interface, 383, 428, 443
math package, 380, 575
MediaPlayer class, 488
menu-driven programs, 112, 117, 219, 258,

264, 531
menus

popup, 505
pull-down, 499, 500, 503

method
abstract, 253, 254, 268, 359–361, 369–371,

374, 378, 383–385, 412, 413, 482, 588,
649, 692, 693

actual parameters, 95, 101, 110, 116
calling, 95, 98, 100, 105, 132, 165, 191,

227, 278, 312, 401, 413, 416, 621, 680
class, 205, 208, 229, 238, 396, 411, 412,

456, 457
constructor, 167
declaring and defining, 96
formal parameters, 95, 100, 101, 103, 107,

108, 202
header, 13, 97, 134, 224, 371, 397, 398,

400, 402, 403, 430, 584
helper, 212, 268, 348, 382, 383, 517, 518,

520, 532, 542, 595, 598, 621, 671, 680
overloading, 109, 110, 116, 235, 245, 249,

261, 385, 390
overriding, 235, 245, 246, 248, 249, 261,

385, 390, 692, 694, 697
return value, 102, 103, 129, 186, 318

method references, 374, 461, 462

Index 713

modal dialogues, 499, 505
modifier, 205, 235, 257, 261, 263, 560, 584,

697
modulus operator, 26, 27, 72, 105
multiple inheritance

diamond problem, 692, 693
multitasking, 577, 578, 641, 658
mutual exclusion threads, 584
MySQL™ database, 564, 569

N
Nested statements, 53, 55
Netbeans™, 7, 8, 564, 569
network programming

client-server architecture, 686
remote databases, 642

non-modal dialogues, 524
null value, 171, 213, 216, 232, 316, 379,

408–410, 412, 413, 416, 445, 446, 660
number formatting, 297

O
object encoding, 527, 549, 551
Object class, 235, 257, 258, 262, 449–451,

585, 697, 698, 701, 702
ObjectInputStream class, 542
object-orientation

benefits of, 223, 235
object-oriented programming languages, 236,

358
ObjectOutputStream class, 542–544
object serialization, 542
operators

arithmetic, 25
concatenation, 3, 15, 30
increment/decrement, 29
logical, 51, 52
overloading, 385, 390

Optional class, 393, 410–413, 423
OracleTM, 707
out of the box interfaces, see generics
output

devices, 527, 528, 549
stream, 529, 530, 549, 642, 665–667, 670,

672, 682
to file, 337, 534, 563
to screen, 9, 14, 15, 528, 535

overloading method, 109, 110, 116, 235, 245,
249, 261, 385, 390

overriding method, 697

P
package(s)

accessing, 555

Java API, 369
deploying, 563
developing, 558, 559, 609
hierarchy, 554, 555
scope, 559, 560, 574

parallelism - streams, 658
parameters

actual, 95, 101, 110, 116
arrays, 129, 134, 189
formal, 95, 100–103, 107, 108, 110, 116,

202
objects, 195, 209, 482, 562
varargs, 131–134, 138

parameterized types, 376
platform independence, 5
pointers, 293, 531, 545, 548, 689–691, 694
polymorphic types, 357, 385
polymorphism, 95, 110, 116, 245, 246, 357,

385, 386, 390
popup menus, 505
Predicate interface, 378, 648
PrintWriter class, 535
primitive types, 19–21, 30, 176, 185, 190, 191,

259, 376, 452, 545
private, 195, 197, 200, 204, 205, 212, 215,

238, 239, 246, 247, 262, 337, 338, 341,
606, 620, 637, 696–698, 700

processes concurrent, 578, 582
producer–consumer relationship, 584
program design, 35, 311
programming languages, 3–5, 20, 110, 163,

223, 236, 358, 705, 706
protected, 238, 239, 246, 262, 697
pseudocode, 19, 35, 37, 38, 43, 78, 95, 104,

140, 141, 143, 308, 316, 331, 335,
341–344, 354, 538

public, 11–13, 195, 197, 200, 201, 205, 238,
262, 315, 328, 559, 560, 606, 612, 614,
621, 693, 694, 697

pull-down menus, 499, 500

Q
quantum, 582

R
radio buttons, 499, 509, 511–513, 525
random access files, 527, 544, 545, 550
record data, 567
reference, 121, 122, 130, 138, 167, 168, 171,

185–187, 205, 210, 211, 255, 256, 336,
374, 375, 379, 408, 430, 488, 556, 558,
574, 588, 593, 595, 674, 677, 681, 683,
687, 690, 695–701, 707

repetition, see iteration

714 Index

ResultSet class, 567, 568
Runnable interface, 383, 580, 582
run-time error, 564

S
scalar types, see primitive types
Scanner class, 19, 31, 32, 165, 168, 169,

175, 179, 209, 395, 396, 424, 529,
556–558

scenario testing, 625
scheduling algorithms, 582
scheduling thread, 582
scope, see variable scope
ScrollPane class, 485
selection, 41–43, 49, 54, 59, 65, 67, 106, 338,

642
sequence, 12, 41, 42, 50, 59, 65, 173, 269, 428,

529, 600, 658
serial access files, 527, 531, 550
Serializable interface, 543, 544, 550, 551
serialization object, 542
ServerSocket class, 661, 663, 665
Service class, 577, 590
Set interface, 428, 436–438
short type, 20
sleep method, 585–587
sliders, 479, 481, 482, 497
sockets, 661–663, 673
Socket class, 663, 665, 666, 672, 686
software

application software, 3, 4, 16
embedded software, 4, 16
systems software, 3, 4, 16, 528

sort methods
in the Arrays class, 456
in the Collections class, 456

source code, 3–5, 7, 16, 230, 550, 561
specification, 227, 307, 349, 603, 604, 606,

624
SQL, see Structured Query Language
sql package, 567
StackPane, 291, 303, 513
standard error stream, 529
standard input stream, 529
standard output stream, 529
stateful operations - streams, 641, 657, 659
stateless operations - streams, 658
state transition diagram threads, 577, 585
static attribute, 206, 207, 676
static, 11, 13, 97, 100, 195, 205–209, 269,

328, 336, 360, 361, 378, 461, 463, 488,
575, 586, 656, 676

static method, 360, 461

streams
collecting results, 654
concatenating, 654, 656
creating, 645, 646
infinite, 656
intermediate operations, 642, 645, 648, 658
parallelism, 658
terminating operations, 652
vs iteration, 643

Stream API, 641
stream - files, 530
string(s)

comparing, 176, 445
methods, 163, 174, 176
using with switch statements, 610

String class, 163, 172–174, 176, 177, 385,
433, 445, 458, 544

Structured Query Language (SQL), 565, 568,
572, 573, 642, 706

student hostel case study, see case study
subclass, 237–240, 246, 249, 254, 256, 257,

359, 361, 385, 386, 395, 398, 400
SunTM, 6
super, 239, 244, 694
supplier interface, 378
superclass, 237–239, 244, 248, 249, 251, 254,

257, 359, 380, 386, 420, 449, 691
system software, 3, 4, 16, 528
Swing, 266, 292
switch statement

with enumerated types, 610, 615, 622
with strings, 174

synchronizing threads, 584
syntax, 5, 17, 32, 35, 77, 79, 131, 132, 161,

274, 357, 369, 372, 401, 403, 412, 417,
491, 690

T
TabPane class, 603, 626
Task class, 577, 587
termination operations - streams, 645
testing, 217, 223, 253, 258, 308, 310–312, 317,

320, 321, 328, 330, 335, 350, 354, 357,
421, 449, 603, 604, 624, 625, 639

test log, 307, 321, 323, 324, 328, 334, 350, 354
text encoding, 530, 551
text files, 531
text formatting, 539
TextInputDialog class, 348, 669, 671,

680
this, 135, 136, 170
Thread class, 580, 582
threads

Index 715

asynchronous, 577, 599
execution, 577, 582, 584, 585, 599
lightweight process, 578
mutual exclusion, 577, 584
scheduling, 582
states, 585
state transition diagram, 577, 585
synchronizing, 584

throwing exceptions, 401, 417, 424
throw command, 393, 417
throws clause, 393, 398
time-slicing, 577, 578, 582, 599
tool tips GUI, 635
toString method, 258, 311–313, 316, 317,

321, 324, 328, 334, 403, 431, 446, 447,
449, 453, 457, 464, 465, 610, 622, 643,
703, 704

try…catch block, 401, 567
try-with-resources construct, 393, 423, 549,

623, 624
two-dimensional arrays

creating, 148
initializing, 149
ragged, 155

txt package, 297, 344, 555
type casting, 242, 244, 583
type inference, 189, 370, 377, 429, 482

U
UML, see Unified Modeling Language
Unaryoperator interface, 656
unboxing, 259, 463
unchecked exceptions, 395, 422
Unicode, 20, 122, 178, 208, 396, 452, 477,

530, 539, 542, 583
Unified Modeling Language (UML), 195–197,

199–202, 206, 211, 212, 223, 224, 228,

230, 231, 235, 237, 239, 246, 247, 260,
261, 307, 308, 310, 328, 330, 331, 334,
336, 357, 360, 386, 448, 454, 455, 464,
466, 467, 603, 604, 606–608, 638, 700

unit testing, 307, 308, 311, 320, 624
upper bound, see generics
use-case model, 603, 604
user-defined constructor, 237
user interface, 9, 285, 304, 335, 353, 525, 587,

603, 626
util package, 31, 47, 429, 430, 456, 553,

556, 557, 575, 606

V
validation

input, 65, 77, 78, 92, 153, 154, 287, 350,
531

varargs, 131–134, 138, 159, 161
variable(s)

declaring, 21, 23, 33, 35, 100, 119, 167,
205

environment, 562, 574
local, 107, 108, 114, 200, 208, 244, 364,

371
scope, 107

Vbox class, 267, 278, 279, 284, 288, 289, 292,
295, 299, 340, 503, 513, 568, 627, 628

W
WebView class, 482, 489–491
wild card, see generics
while loop, 79–83, 90
wrapper classes, 190, 259, 287, 376, 389, 463

X
XML, 570, 572, 707

716 Index

	Preface
	Contents
	Semester One
	1 The First Step
	1.1 Introduction
	1.2 Software
	1.3 Compiling Programs
	1.4 Programming in Java
	1.5 Integrated Development Environments (IDEs)
	1.6 Java Applications
	1.7 Your First Program
	1.7.1 Analysis of the “Hello World” Program
	1.7.2 Adding Comments to a Program

	1.8 Output in Java
	1.9 Self-test Questions
	1.10 Programming Exercises

	2 Building Blocks
	2.1 Introduction
	2.2 Simple Data Types in Java
	2.3 Declaring Variables in Java
	2.4 Assignments in Java
	2.5 Creating Constants
	2.6 Arithmetic Operators
	2.7 Expressions in Java
	2.8 More About Output
	2.9 Input in Java: The Scanner Class
	2.10 Program Design
	2.11 Self-test Questions
	2.12 Programming Exercises

	3 Selection
	3.1 Introduction
	3.2 Making Choices
	3.3 The ‘if’ Statement
	3.3.1 Comparison Operators
	3.3.2 Multiple Instructions Within an ‘if’ Statement

	3.4 The ‘if…else’ Statement
	3.5 Logical Operators
	3.6 Nested ‘if…else’ Statements
	3.7 The ‘switch’ Statement
	3.7.1 Grouping Case Statements
	3.7.2 Removing Break Statements

	3.8 Self-test Questions
	3.9 Programming Exercises

	4 Iteration
	4.1 Introduction
	4.2 The ‘for’ Loop
	4.2.1 Varying the Loop Counter
	4.2.2 The Body of the Loop
	4.2.3 Revisiting the Loop Counter

	4.3 The ‘while’ Loop
	4.4 The ‘do…while’ Loop
	4.5 Picking the Right Loop
	4.6 The ‘break’ Statement
	4.7 The ‘continue’ Statement
	4.8 Self-test Questions
	4.9 Programming Exercises

	5 Methods
	5.1 Introduction
	5.2 Declaring and Defining Methods
	5.3 Calling a Method
	5.4 Method Input and Output
	5.5 More Examples of Methods
	5.6 Variable Scope
	5.7 Method Overloading
	5.8 Using Methods in Menu-Driven Programs
	5.9 Self-test Questions
	5.10 Programming Exercises

	6 Arrays
	6.1 Introduction
	6.2 Creating an Array
	6.3 Accessing Array Elements
	6.4 Passing Arrays as Parameters
	6.5 Varargs
	6.6 Returning an Array from a Method
	6.7 The Enhanced ‘for’ Loop
	6.8 Some Useful Array Methods
	6.8.1 Array Maximum
	6.8.2 Array Summation
	6.8.3 Array Membership
	6.8.4 Array Search
	6.8.5 The Final Program

	6.9 Multi-dimensional Arrays
	6.9.1 Creating a Two-Dimensional Array
	6.9.2 Initializing Two-Dimensional Arrays
	6.9.3 Processing Two-Dimensional Arrays
	6.9.4 The MonthlyTemperatures Program

	6.10 Ragged Arrays
	6.11 Self-test Questions
	6.12 Programming Exercises

	7 Classes and Objects
	7.1 Introduction
	7.2 Classes as Data Types
	7.3 Objects
	7.4 The Oblong Class
	7.5 The OblongTester Program
	7.6 Strings
	7.6.1 Obtaining Strings from the Keyboard
	7.6.2 The Methods of the String Class
	7.6.3 Comparing Strings
	7.6.4 Entering Strings Containing Spaces

	7.7 Our Own Scanner Class for Keyboard Input
	7.8 The Console Class
	7.9 The BankAccount Class
	7.10 Arrays of Objects
	7.11 The ArrayList Class
	7.12 Self-test Questions
	7.13 Programming Exercises

	8 Implementing Classes
	8.1 Introduction
	8.2 Designing Classes in UML Notation
	8.3 Implementing Classes in Java
	8.3.1 The Oblong Class
	8.3.2 The BankAccount Class

	8.4 The static Keyword
	8.5 Initializing Attributes
	8.6 The EasyScanner Class
	8.7 Passing Objects as Parameters
	8.8 Collection Classes
	8.8.1 The Bank Class
	8.8.2 Testing the Bank Class

	8.9 The Benefits of Object-Oriented Programming
	8.10 Self-test Questions
	8.11 Programming Exercises

	9 Inheritance
	9.1 Introduction
	9.2 Defining Inheritance
	9.3 Implementing Inheritance in Java
	9.4 Extending the Oblong Class
	9.5 Method Overriding
	9.6 Abstract Classes
	9.7 Abstract Methods
	9.8 The final Modifier
	9.9 The Object Class
	9.10 The toString Method
	9.11 Wrapper Classes and Autoboxing
	9.12 Self-test Questions
	9.13 Programming Exercises

	10 Introducing JavaFX
	10.1 Introduction
	10.2 A Brief History of Java Graphics
	10.3 JavaFX: An Overview
	10.4 2D Graphics: The SmileyFace Class
	10.5 Event-Handling in JavaFX: The ChangingFace Class
	10.6 Some More 2D Shapes
	10.7 An Interactive Graphics Class
	10.8 A Graphical User Interface (GUI) for the Oblong Class
	10.9 Containers and Layouts
	10.9.1 More About HBox and VBox
	10.9.2 GridPane
	10.9.3 StackPane
	10.9.4 FlowPane and BorderPane

	10.10 Borders, Fonts and Colours
	10.10.1 Borders
	10.10.2 Fonts
	10.10.3 Colours

	10.11 Number Formatting
	10.12 A Metric Converter
	10.13 Self-test Questions
	10.14 Programming Exercises

	11 Case Study—Part 1
	11.1 Introduction
	11.2 The Requirements Specification
	11.3 The Design
	11.4 Implementing the Payment Class
	11.5 The PaymentList Class
	11.5.1 Javadoc
	11.5.2 Code Layout

	11.6 Testing the PaymentList Class
	11.7 Implementing the Tenant Class
	11.8 Implementing the TenantList Class
	11.9 Self-test Questions
	11.10 Programming Exercises

	12 Case Study—Part 2
	12.1 Introduction
	12.2 Keeping Permanent Records
	12.3 Design of the Hostel Class
	12.4 Design of the GUI
	12.5 Designing the Event-Handlers
	12.6 Implementing the Hostel Class
	12.7 Testing the System
	12.8 What Next?
	12.9 Self-test Questions
	12.10 Programming Exercises

	Semester Two
	13 Interfaces and Lambda Expressions
	13.1 Introduction
	13.2 An Example
	13.3 Interfaces
	13.4 Inner Classes
	13.5 Anonymous Classes
	13.6 Lambda Expressions
	13.6.1 The Syntax of Lambda Expressions
	13.6.2 Variable Scope
	13.6.3 Example Programs
	13.6.4 Method References—The Double Colon Operator

	13.7 Generics
	13.7.1 Bounded Type Parameters
	13.7.2 Wildcards

	13.8 Other Interfaces Provided with the Java Libraries
	13.9 Polymorphism and Polymorphic Types
	13.9.1 Operator Overloading
	13.9.2 Method Overloading
	13.9.3 Method Overriding
	13.9.4 Type Polymorphism

	13.10 Self-test Questions
	13.11 Programming Exercises

	14 Exceptions
	14.1 Introduction
	14.2 Pre-defined Exception Classes in Java
	14.3 Handling Exceptions
	14.3.1 Claiming an Exception
	14.3.2 Catching an Exception

	14.4 The ‘finally’ Clause
	14.5 The ‘Try-with-Resources’ Construct
	14.6 Null-Pointer Exceptions
	14.7 The Optional Class
	14.8 Exceptions in GUI Applications
	14.9 Using Exceptions in Your Own Classes
	14.9.1 Throwing Exceptions
	14.9.2 Creating Your Own Exception Classes

	14.10 Documenting Exceptions
	14.11 Self-test Questions
	14.12 Programming Exercises

	15 The Java Collections Framework
	15.1 Introduction
	15.2 The List Interface and the ArrayList Class
	15.2.1 Creating an ArrayList Collection Object
	15.2.2 The Interface Type Versus the Implementation Type
	15.2.3 List Methods

	15.3 The Enhanced for Loop and Java Collections
	15.4 The forEach Loop
	15.5 The Set Interface and the HashSet Class
	15.5.1 Set Methods
	15.5.2 Iterating Through the Elements of a Set
	15.5.3 Iterator Objects

	15.6 The Map Interface and the HashMap Class
	15.6.1 Map Methods
	15.6.2 Iterating Through the Elements of a Map

	15.7 Using Your Own Classes with Java’s Collection Classes
	15.7.1 The Book Class
	15.7.2 Defining an equals Method
	15.7.3 Defining a hashCode Method
	15.7.4 The Updated Book Class

	15.8 Developing a Collection Class for Book Objects
	15.9 Sorting Objects in a Collection
	15.9.1 The Collections.sort and Arrays.sort Methods
	15.9.2 The Comparable lessthan T greaterthan  Interface
	15.9.3 The Comparator lessthan T greaterthan  Interface

	15.10 Self-test Questions
	15.11 Programming Exercises

	16 Advanced JavaFX
	16.1 Introduction
	16.2 Input Events
	16.2.1 Mouse Events
	16.2.2  Key Events

	16.3  Binding Properties
	16.4 The Slider Class
	16.5  Multimedia Nodes
	16.5.1 Embedding Images
	16.5.2 Embedding Videos
	16.5.3 Embedding Web Pages

	16.6  Cascading Style Sheets
	16.7 Self-test Questions
	16.8 Programming Exercises

	17 JavaFX: Interacting with the User
	17.1 Introduction
	17.2 Drop-Down Menus
	17.3 Context (Pop-Up) Menus
	17.4 Combo Boxes
	17.5 Check Boxes and Radio Buttons
	17.6 A Card Menu
	17.7 The Dialog Class
	17.8 Self-test Questions
	17.9 Programming Exercises

	18 Working with Files
	18.1 Introduction
	18.2 Input and Output
	18.3 Input and Output Devices
	18.4 File-Handling
	18.4.1 Encoding
	18.4.2 Access

	18.5 Reading and Writing to Text Files
	18.6 Reading and Writing to Binary Files
	18.7 Reading a Text File Character by Character
	18.8 Object Serialization
	18.9 Random Access Files
	18.10 Self-test Questions
	18.11 Programming Exercises

	19 Packages
	19.1 Introduction
	19.2 Understanding Packages
	19.3 Accessing Classes in Packages
	19.4 Developing Your Own Packages
	19.5 Package Scope
	19.6 Running Applications from the Command Line
	19.7 Deploying Your Packages
	19.8 Adding External Libraries
	19.8.1 Accessing Databases Using JDBC
	19.8.2 Accessing Databases Using Hibernate

	19.9 Self-test Questions
	19.10 Programming Exercises

	20 Multi-threaded Programs
	20.1 Introduction
	20.2 Concurrent Processes
	20.3 Threads
	20.4 The Thread Class
	20.5 Thread Execution and Scheduling
	20.6 Synchronizing Threads
	20.7 Thread States
	20.8 Multithreading and JavaFX
	20.8.1 The Task Class
	20.8.2 The Service Class
	20.8.3 Automating the ChangingFace Application
	20.8.4 Running a Task in the Background
	20.8.5 Animation Using a Series of Images

	20.9 Self-test Questions
	20.10 Programming Exercises

	21 Advanced Case Study
	21.1 Introduction
	21.2 System Overview
	21.3 Requirements Analysis and Specification
	21.4 Design
	21.5 Enumerated Types in UML
	21.6 Implementation
	21.6.1 Implementing Enumerated Types in Java
	21.6.2 The Runway Class
	21.6.3 The Plane Class
	21.6.4 The Airport Class

	21.7 Testing
	21.8 Design of the JavaFX Interface
	21.9 The TabPane Class
	21.10 The AirportFrame Class
	21.11 Self-test Questions
	21.12 Programming Exercises

	22 The Stream API
	22.1 Introduction
	22.2 Streams Versus Iterations: Example Program
	22.3 Creating Streams
	22.4 Intermediate Operations
	22.5 Operations for Terminating Streams
	22.5.1 More Examples
	22.5.2 Collecting Results

	22.6 Concatenating Streams
	22.7 Infinite Streams
	22.8 Stateless and Stateful Operations
	22.9 Parallelism
	22.10 Self-test Questions
	22.11 Programming Exercises

	23 Working with Sockets
	23.1 Introduction
	23.2 Sockets
	23.3 A Simple Server Application
	23.4 A Simple Client Application
	23.5 Connections from Multiple Clients
	23.6 A Client–Server Chat Application
	23.7 Self-test Questions
	23.8 Programming Exercises

	24 Java in Context
	24.1 Introduction
	24.2 Language Size
	24.2.1 Pointers
	24.2.2 Multiple Inheritance

	24.3 Language Reliability
	24.3.1 Aliasing
	24.3.2 Overriding the clone Method
	24.3.3 Immutable Objects
	24.3.4 Using the clone Method of the Object Class
	24.3.5 Copy Constructors
	24.3.6 Garbage Collection

	24.4 The Role of Java
	24.5 What Next?
	24.6 Self-test Questions
	24.7 Programming Exercises

	Index

