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As the remarkable improvement of people’s living levels and interesting for entertainment, the theme 

park has become one of the most popular places for people to enjoy life. However, since the high 
popularity of theme parks, based on the reality circumstance of tourists, enjoying more attraction projects 
and decreasing the fatigue greatly can largely improve the satisfaction of tourists. Therefore, based on the 
network of Traveling Salesman Problem (TSP), we propose a time-dependent theme park routing problem 
where the walking time is time-dependent under the consideration of congestion and fatigue degree. The 
primary objectives are to maximize the number of visited attractions, satisfaction and minimize the 
queuing time and walking time. In this study, the general model for time-dependent theme park problem 
is formulated and two different algorithms are used to solve the model. The numerical experiments are 
conducted to verify the feasibility and effectiveness. 
Key Words : Theme Park Problem, Routing Problem, Time-Dependent, Partheno-genetic Algorithm  

 
 
１． Introduction 

With the improvement of people’s living standards and 
material level, people’s daily life is no longer solely focused on 
the pursuit of food and clothing but includes more spiritual 
pursuits. Holiday outings have become a common form of 
entertainment for modern people. Among them, theme parks 
have become the best place for short-term travel[1]. Some 
famous theme parks such as Disney World in Tokyo and 
Universal Studios in Osaka attract millions of tourists each year, 
which demonstrates that with the improvement of people’s 
living standards, people’s demands for entertainment industries 
have also surged. However, several problems with theme parks 
need to be solved. For instance, for popular attractions, visitors 
need to endure long queues that might take two or three hours. 
Furthermore, because most theme parks have extensive areas 
and a large flow of people, tourists spend a lot of time walking 
and queuing. Therefore, quickly planning the best way to enjoy 
the theme park, with limited time and energy, avoiding 
congestion, and enjoying as many attractions as possible, has 
become the most important concerns for tourists.  

Moreover, for the managers of theme parks, the degree of 
satisfaction of tourists is fundamental to the sustainable 

development of the theme park. The higher the evaluation of 
tourists, the more other tourists will be attracted to the theme 
park. In contrast, if the degree of satisfaction of tourists is very 
low, the development of the theme park will be restricted. We 
can abstract this routing problem as follows: consider an 
individual starting from a specified starting point, trying to 
maximize their score by accessing the existing vertices and 
returning to the starting point within a given time range. Each 
of these vertices has a known score, and the goal is to maximize 
the score. Through the above description, we find that this kind 
of problem can be attributed to the Traveling Salesman Problem 
(TSP)[2]. Different from the traditional traveling salesman 
problem, not all vertices can be visited in the orienteering route 
due to the maximum travel time constraint. Subsequently, this 
could be called the Selective Travelling Salesman Problem 
(STSP)[3] or traveling salesman problem with profits[4]. 

Therefore, based on the network of Traveling Salesman 
Problem (TSP), we propose a Time-Dependent Theme Park 
Routing Problem (TDTPRP), where the walking time is time-
dependent under the consideration of the degree of congestion 
and fatigue. The primary objectives are to maximize the number 
of visited attractions and satisfaction and minimize the queuing 



and walking time. 

 
２． Literature Review 

Kawamura et al. [5] defined the theme park problem in 2003, 
that is, in a theme park with multiple attractions, the visitors as 
individuals or groups visit the attractions to minimize 
congestion and maximize satisfaction. In addition, they 
developed a mass-user support-based coordination scheduling 
algorithm to solve this problem, proving that the average 
waiting time and congestion in theme parks can be reduced, and 
the average satisfaction of grouped visitors can be increased by 
guiding the visitor group and adjusting the schedule. In short, 
the problem of theme parks is to maximize the satisfaction of 
individuals or crowds under the use of the management rule and 
an arranged schedule plan. Considering the group users, 
Yasushi et al. [6] formulated networks such as small-world 
networks and scale-free networks for the theme park 
problem. The results of the simulation experiment indicated that 
congestion could be eased greatly, and satisfaction can be 
further enhanced. 

Most previous studies involving the theme park problem 
focus on large-scale travel scheduling for group users. However, 
differently, in this paper, we aim to help individual users avoid 
congestion and improve the degree of satisfaction of the visitors 
in the theme park. We can call this kind of problem Theme Park 
Routing Problem (TPRP). So far, route planning for individual 
users is usually divided into two categories: 

(1) One category aims to find an efficient route among the 
chosen attractions [7].  

(2) The other is to select some attractions to visit and 
maximize the obtained total score for visited attractions during 
a limited time, where the origin and destination are appointed in 
advance [8]. 

The research in this paper belongs to the second category, 
which does not need to specify the attractions in advance. Tsai 
et al.[9] developed a route recommendation system where the 
recommended route satisfies visitor requirements using 
previous tourists’ favorite experiences. Lee et al.[10] presented 
an ontological recommendation for a multi-agent for Tainan 
City travel, including a context decision agent and a travel route 
recommendation agent. Hirotaka et al.[11] proved the tour 
recommendation problem can be solved as the integer 
programming problem using a similar formulation as used in 
TSP. Matsuda et al.[12] established a simple model of the 
optimal sightseeing routing problem and solved the model with 
the exact algorithm and heuristic algorithm, respectively. 

From the perspective of mathematical modeling, this problem 
can be described as follows. A set of points is given, along with 
associated scores and a connecting network. Under this 
assumption, a path needs to be found between the specified 

starting point and end point to maximize the total score at a 
given time. It should be noted that due to the limited time, it is 
impossible to select all points, and some points should be 
discarded. Subsequently, this problem is also called the 
Selective Traveling Salesperson Problem (STSP)[3], which is a 
generalized traveling salesman problem, in which profit is 
associated with each vertex and only some vertices can be 
visited due to time constraints[13]. The STSP is also known as 
the Orienteering Problem[14] and the Maximum Collection 
Problem[15]. As the STSP is an NP-hard problem, the exact 
algorithms are very time-consuming, so most researchers focus 
on heuristic algorithms, such as the Tabu Search (TS) heuristic 
algorithm[16][17] or the Ant Colony Optimization (ACO) 
approach[18]. 

The major weakness of the previous research is that only 
static route networks are constructed, but the change of time that 
will lead to a change in the next journey is not considered. 
Considering this problem, Bouzarth et al.[19] set the service 
time as time-dependence but did not consider that the travel 
times between two vertices are stochastic functions that depend 
on the department time from the first vertex. Moreover, the 
previous studies are all single objective functions, and there are 
few cases of solving multi-objective problems at the same time. 
The algorithm research of routing optimization is mainly carried 
out under the condition of static networks, and there is less 
research using dynamic networks. 

 
３． Time-dependent Theme Park Routing Problem 

Based on Multi-Objectives 
（１）Time-dependent Theme Park Routing Problem 
a）Problem Description 

Let 𝐺= (𝑁, 𝐴) be a connected digraph with node set 𝑁 = 
{1,2...,𝑛} and arc set 𝐴 = {(	𝑚,	𝑛) | 𝑚,	𝑛 ∈ 𝑁, 𝑚 ≠ 𝑛}, where 
node 1 is the starting point, and n is the end point. In the Time-
dependent Theme Park Routing Problem, each node represents 
an attraction in the theme park. What is associated with each 
node is a utility score and a function of dwelling time, which is 
related to arrival time, queuing time, and time at the attraction. 
When visitors enter from the designated entrance, they should 
find the most satisfactory route to the attraction, and cannot 
leave the exit after the designated time	𝑇𝐷. In this process, the 
objective of visitors is to find a route that starts from node 1 and 
ends at node n before 𝑇𝐷, such that the total utility collected by 
all visited nodes in the route is maximized and the number of 
nodes experienced is maximized but the dwelling time is 
minimized. 

Assume that the distance between the two attractions (𝑚,𝑛) 
is	𝑑 and the walking times that the visitor covers this section 
( 𝑚,𝑛 ) in two connected time periods are 		𝑇!	 and 	𝑇" 
respectively, as well as 𝑡# is the boundary time of the two time 



periods. The walking time of the visitor in the section (𝑚,𝑛) is 
different for different time periods. The arrival time at the node 
𝑚  is 𝑡$ , the queuing time at the node 𝑚  is 𝛼$ , and the 
attraction playing time at the node 𝑚 is 𝛽$, the departure time 
for the node 𝑚 is 𝑟$(𝑡$ + 𝛼$ + 𝛽$). If 𝑟$ ≤ 𝑡# − 𝑇!, the 
walking time to cover this section in the preceding period is	𝑇!; 
if 	𝑟$ ≥ 𝑡# , the whole walking process is completed in the 
following period, and the corresponding walking time is	𝑇" . 
Only when 𝑡# − 𝑇! < 𝑟$ < 𝑡# , and the walking time is 
between 𝑇! and 𝑇". Assume that the walking distances of the 
visitor in the preceding and following time periods are 𝑑! and 
𝑑"	(𝑑! + 𝑑") , the total walking time is 𝑑! 8

%!
&
9 + 𝑑" 8
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&
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Obviously, the time is 𝑡# − 𝑟$ for visitors to cover	𝑑!, and the 
time for visitors to cover	𝑑"	is: 
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Therefore, the total walking time from the node	𝑚 to the 
node 	n  is 		𝑡#−𝑟$ + (1 −

*%(+&
%!

)𝑇"	 , and the arrival time for 

node	n is: 

𝑡- =	𝑟$ + 𝑡#−𝑟$ + (1 −
𝑡# − 𝑟$
𝑇!
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As can be seen from the equation (1), the time t. arriving at 
the node 𝑛 is an increasing function of departure time r/. 

Assume that the playing time in one day is divided into 𝑃 
time periods, [𝑡#,1, 𝑡#,12! ] represents the time period 𝑝(𝑝 ∈
[1, 𝑃]). After the visitor arrives attraction 𝑚, the queuing time 
and playing time are allowed before the visitor departs from 
attraction 	m. let 𝑇$-,1 be the walking time from the node 𝑚  
to the node 𝑛 during the period 𝑝 (regardless of the period 
crossing), and 𝑢$-,1 be the time that the visitor walks from the 
nod 𝑚 to the node 𝑛. For any section (𝑚,𝑛), there are two 
possibilities: 

(1) The visitor walks from node 	𝑚  to node 	𝑛  without 
crossing the time period	𝑝(𝑝 = 1,2,… , 𝑃); 

(2) The visitor walks from node	𝑚 to node	𝑛, crossing from 
period	𝑝 to period 𝑝 + 1(𝑝 = 1,2,… , 𝑃 − 1). 

Corresponding mathematical formulations: 

𝑢$-,1 =

⎩
⎪
⎨

⎪
⎧
𝑇$-,1, 			𝑟$ < 𝑡#，12! − 𝑇$-,1	,			𝑝 = 1,2,… , 𝑃

				

K
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L 𝑡#,12!	

+	𝑇$-,12!	,									𝑡#,12! − 𝑇$-,1 ≤ 𝑟$ < 𝑡#,12!, 𝑝
= 1,2,… , 𝑃 − 1

 

b）Model 
Based on the proposed problem, the following assumptions 

are considered: 
(1) The queuing time of attractions is acquired according to 

the real queuing time of the attraction (e.g., Disney Resort and 
Universal Studios). 

(2) The time spent at each attraction is given in advance. 
(3) Routes exist between any two attractions.  
(4) The preference of visitors for each attraction is pregiven. 
The model of the time-dependent theme park routing problem 

contains the following parameters: 
𝑁: Set of attractions 
𝑚: Index of attraction 𝑚, 𝑚 ∈ 𝑁 
𝑇𝐸: Entrance time 
𝑇𝐷: Departure time 
𝑃: The number of time periods in one day 
𝑝: Index of the time period, 𝑝 ∈ N1，𝑃O 
𝑐!, 𝑐", 𝑐3∶	Weights of the functions 𝑍!, 𝑍", 𝑍3, in which the 

sum of three weights is equal to 1 
𝑋$ : If attraction 𝑚 is selected, 𝑋$=1; otherwise, 𝑋$=0, 

which is a decision variable 
𝑌$-,1 : The route from node 	𝑚	 to node 	𝑛	with the visitor 

departs from node 𝑚  in period 	𝑝  is selected, it takes 1; 0 
otherwise  
𝛼$: Queuing time for attraction	𝑚 
𝛽$: Playing time spent at attraction	𝑚 
𝑢$-,1 : Walking time of visitor departing node 	𝑚	 in time 

period	𝑝 to node	𝑛 
𝑇$-,1 : Time for visitor walking from node	𝑚	to node	𝑛	in 

period	𝑝	(regardless of the time period crossing) 
𝑟$: Departure time for attraction	𝑚 
𝑡$: Arrival time for attraction	𝑚 
𝑒$: Utility that the customer obtained from node	𝑚 
λ!, λ", λ3: The conversion factors of utility in term of cost  

There are three objectives involved: maximize the number of 
attractions, maximize the satisfaction of the visitors, and 
minimize walking time and queuing time. 

(1) Most visitors hope to enjoy as many attractions as possible 
in limited time at the theme park. Therefore, we considered the 
maximum number of attractions visited in one day, which is 
formulated as follows: 

𝑍! = 𝑐! ∑ 𝑋$$∈6   
(2) Most visitors hope to get as much satisfaction as possible 

during their limited time at the theme park. Therefore, we 
considered the maximum the satisfaction of visitors in one day, 
which is formulated as follows: 

𝑍" = 𝑐"∑ 𝑒$𝑋$$∈6   
(3) For most visitors, they hope to spend as much time as 

possible at each attraction, rather than moving on and queuing 
for other attractions. Therefore, we considered the minimum 
walking time and queuing time among the attractions in one day, 
which is formulated as follows: 

𝑍3 = −𝑐3W∑ 𝛼$$∈6 𝑋$ +∑ ∑ 𝑢$-,1𝑌$-,17
18!$,-∈6 X  

Finally, the overall mathematical model is established as 
follows: 
Max									𝜆!	𝑍! + 𝜆"	𝑍" + 𝜆3𝑍3	                   （3-1） 



s.t. 

																𝑇𝐸 + ∑ 𝛼$$∈6 𝑋$ +∑ ∑ 𝑢$-,1		𝑌$-,17
18!$,-∈6 +

																∑ 𝛽$	$∈6 𝑋$	 ≤ 𝑇𝐷				                   （3-2） 

																∑ ∑ 𝑌$-,17
18!$∈6

$9-
= 1,			𝑛 ∈ 𝑁				           （3-3） 

																∑ ∑ 𝑌$-,1	7
18!-∈6

-9$
= 1, 𝑚 ∈ 𝑁			           （3-4） 

																∑ ∑ 𝑌$-,17
18!$,-∈6

$9-
≤ |𝑆| − 1, ∀𝑆 ∈ 𝑁, 2 ≤ |𝑆| ≤

																|𝑁| − 1					                              （3-5） 

																𝑋$		 ∈ {0,1}, 𝑚 ∈ 𝑁					                  （3-6） 

																𝑌$-,1	 ∈ {0,1},			𝑚, 𝑛 ∈ 𝑁, 𝑝 ∈ [1, 𝑃]		       （3-7） 

The objective function (3-1) maximizes the number of 
attractions and utility values (Degree of Satisfaction) and 
minimizes the queuing time and walking time. Constraint (3-2) 
ensures that the departure time from the theme park must not 
exceed the preset departure time. Constraints (3-3)-(3-5) are the 
general constraints of TSP, in which the former two constraints 
restrict that each attraction must be visited exactly once, and the 
last constraint is the subtour elimination constraint. Constraints 
(3-6)-(3-7) are the domain of the variables.   
（２）Algorithm 
a）Partheno-genetic Algorithm (PGA) 

The Partheno-genetic Algorithm (PGA) is an improved GA 
which has been put forward by Li and Tong in 1999 [20]. 
Different from the classic GA, the PGA implements its 
operations based on a chromosome other than two 
chromosomes, and it does not include the crossover operator. 
Owing to its specialties, the PGA can solve specific problems 
successfully. While the PGA can overcome the “premature” 
problems of conventional GA, it is more suitable for handling 
chromosomes of different lengths. 

This algorithm adopts new genetic operators, namely, the 
permutation operator, shift operator, and inversion operator, and 
they are characterized by a simple genetic operation, decreasing 
the requirement of the diversity of the initial population, and 
avoiding “premature convergence.” Therefore, it is very 
suitable for solving optimization problems. 

In PGA, each solution is represented by a chromosome, and 
each chromosome includes multiple variants, namely, genes. 
Here, each gene indicates a theme park attraction. Different 
permutations for attractions require different solutions. 

(1) Permutation Operator. In this study, the permutation 
operator incorporates two modes: the first is a single-point 
transposition where the position of two genes on the same 
chromosome can be swapped, and the second is a multi-point 
transposition that swaps multiple genes on a chromosome. The 
above two modes for permutation operators are able to generate 
new chromosomes according to the permutation probability. An 
example of the single-point transposition and multi-point 

transposition is listed as follows. Note that, B and B’ are 
generated by the single-point and multi-point transposition for 
chromosome A, respectively. 

A = (𝑐!, 𝑐", 𝑐#, … , 	𝑐$%!, 𝑐$ , 𝑐$&!, … , 𝑐'%!, 𝑐' , 𝑐'&!, … , 𝑐() 
 

B = (𝑐!, 𝑐", 𝑐#, … , 	𝑐$%!, 𝑐' , 𝑐$&!, … , 𝑐'%!, 𝑐$ , 𝑐'&!, … , 𝑐() 
B’= (𝑐!, 𝑐", 𝑐#, … , 	𝑐$%!, 𝑐' , 𝑐$&!, … , 𝑐(, 𝑐$ , 𝑐'&!, … , 𝑐'%!) 

(2) Shift Operator. The shift operator means that a substring 
is randomly selected in a chromosome according to the shifting 
probability, the genes of the substring are moved one bit back, 
and the last gene is placed in the first position of the substring. 
Similarly, the shift operator includes two shift modes: a single-
point shift and a multi-point shift operation. In the following 
example, H is a chromosome including multiple genes 
𝑘:(𝑖 ∈ {1, 2,…𝑛}). I and I’ are the chromosomes obtained by 
implementing single-point shift and multi-point shift operations 
for H, respectively. 

H =(𝑘!, 𝑘", 𝑘#, 𝑘), 𝑘*, … , 𝑘$%", 	𝑘$%!, 𝑘$ , 𝑘$&!, 𝑘$&", … , 𝑘() 
 

I = (𝑘), 𝑘!, 𝑘", 𝑘#, 𝑘*, … , 𝑘$%", 	𝑘$%!, 𝑘$ , 𝑘$&!, 𝑘$&", … , 𝑘() 
I’ = (𝑘), 𝑘!, 𝑘", 𝑘#, 𝑘*, … , 𝑘$%", 𝑘$&", 𝑘$%!, 𝑘$ , 𝑘$&!, … , 𝑘() 

 (3) Inversion Operator. The inversion Operator refers to the 
process of inverting genes at the head and end successively in a 
substring of a chromosome according to the inversion 
probability, in which the selected substring and its length are 
selected randomly. Inversion operators can also be divided into 
single-point inversion and multi-point inversion. For example, 
assume M is a chromosome including multiple genes 
𝑙:(𝑖 ∈ {1, 2,…𝑛}). Based on the operations of single-point and 
multi-point inversions for chromosome M, we can obtain the 
chromosomes N and N’. The above procedures can be seen as 
follows. 

M = (𝑙!, 𝑙", 𝑙#, 𝑙), 𝑙*, … , 	𝑙$%!, 𝑙$ , 𝑙$&!, … , 𝑙'%!, 𝑙' , 𝑙'&!, … , 𝑙() 
 

N = (𝑙), 𝑙#, 𝑙", 𝑙!, 𝑙*, … , 	𝑙$%!, 𝑙$ , 𝑙$&!, … , 𝑙'%!, 𝑙' , 𝑙'&!, … , 𝑙() 
N’= (𝑙), 𝑙#, 𝑙", 𝑙!, 𝑙*, … , 	𝑙$%!, 𝑙' , 𝑙'%!, … , 𝑙$&!, 𝑙$ , 𝑙'&!, … , 𝑐() 

The procedures of the partheno-genetic algorithm are 
summarized as follows:  

Step 1: Encoding. A serial number encoding is adopted in the 
parthenogenetic genetic. Algorithm. 

Step 2: Initialization. Generate feasible solutions as the initial 
population randomly. 

Step 3: Fitness function. Fitness function is the evaluation 
criterion of the path scheme, which represents the survivability 
of genetic individuals. Here, we set the objective function as the 
fitness function. 

Step 4: Selection. The generated population is equally 
divided into several groups. In. this study, every four individuals 
are composed as a group. The best individuals in each group are 
directly retained as the next generation of the population. 

Step 5: Partheno-genetic. Implement the permutation, shift, 
and inversion operations. on the remaining individuals where 
the gene and gene strings are selected using a random approach. 



After that, the newly generated three individuals for each group 
are inherited to the next generation. 

Step 6: Calculate the fitness of the newly generated 
population. 

Step 7: Determine whether the termination conditions are met. 
When the maximum. iteration is reached, go to Step 8. 
Otherwise, go to Step 4. 

Step 8: Return the optimal solutions and stop the algorithm. 

b）Annealing Partheno-genetic Algorithm(APGA) 
The global optimization ability of Genetic Algorithm is 

strong , but the local optimization ability is insufficient. The 
Simulated Annealing Algorithm is strong in local optimization 
but weak in global optimization ability. Therefore, the evolution 
mechanism of simulated annealing algorithm can be integrated 
into genetic algorithm to enhance its local optimization 
ability[21]. 

The basic idea of Simulated Annealing Algorithm was 
originated from the physical annealing process in real life. The 
optimal solution is acquired by abstracting the process of 
cooling and heating isothermals from the real physical 
annealing process. The local optimization ability of the 
algorithm is ensured using a greedy strategy and its special 
Metropolis Criterion[22]. 

Both the Simulated Annealing Algorithm and the hill-
climbing method use a greedy strategy. Different from the hill-
climbing method, the Simulated Annealing method has a fault-
tolerant ability and is able to accept inferior solutions with a 
certain probability. The probability is called the probability of 
the acceptance of the new solution, and its degree is influenced 
by the current temperature and fitness difference of new and old 
solutions[23]. The general trend is that the lower the 
temperature, the lower the probability of acceptance; the larger 
the difference, the lower the probability of acceptance. The 
above can be represented by a mathematical formula, as shown 
in Formula (3-8): 

   𝑃 = )
1																																																							𝐸(𝑥(+,) < 𝐸(𝑥-./)

exp 3− 0(2!"#)%0(2$%&)
4

5 													𝐸(𝑥(+,) ≥ 𝐸(𝑥-./)
   (3-8) 

𝐸(𝑥-;<)	refers to the fitness of the new chromosome, and 
𝐸(𝑥=>&) refers to the fitness of the individual parent 
chromosome. T is the current temperature, and an initial 
temperature and cooling coefficient are set at the beginning of 
the genetic operation. As the iteration proceeds, the initial 
temperature decreases continuously. At the end of the iteration, 
because the temperature is already very low, the probability of 
accepting the new solution is almost zero. A random number 
between 0 and 1 is generated after acquiring the probability of 
acceptance. A new solution is not accepted if the number is 
greater than the probability of acceptance 𝑃 but accepted if it 
is smaller than 	P. The selection method of the probability of 
acceptance is also called the Metropolis Criterion. 

Metropolis Criterion based on a Simulated Annealing 
Algorithm certainly accepts inferior solutions while accepting 
elegant solutions so as to ensure population diversity and further 
avoid the possibility that the algorithm is stuck in the optimal 
local solution. 

As for the mathematical model proposed in this paper, we 
used this idea to propose the Annealing Partheno-Genetic 
Algorithm, the basic operations of which include: 

Step 1: Encoding. A serial number encoding is adopted in the 
parthenogenetic genetic. algorithm. 

Step 2: Initialization. Generate feasible solutions as the initial 
population randomly. 

Step 3: Fitness function. Fitness function is the evaluation 
criterion of the path scheme, which represents the survivability 
of genetic individuals. Here, we set the objective function as the 
fitness function. 

Step 4: Selection. The generated population is equally 
divided into several groups. In. this study, every four individuals 
are composed as a group. The best individuals in each group are 
directly retained as the next generation of the population. 

Step 5: Partheno-genetic. Implement the permutation, shift, 
and inversion operations. on the remaining individuals where 
the gene and gene strings are selected using a random approach. 
Then the newly generated three individuals for each group are 
inherited to the next generation. 

Step 6: Calculate the fitness of the newly generated 
population. 

Step 7: Mix the new and original populations. First, reserve 
the best individuals in the. two populations and calculate the 
average fitness. Then select one among the mixed population 
(except for the optimal individual) at random. If the individual 
is better than the average value, reserve it; otherwise, remove it 
until the population of the quantity, which is the same as the 
original individuals, is reserved. 

Step 8: Determine whether termination conditions are met. 
When the maximum. iteration is reached, go to Step 8. 
Otherwise, go to Step 4. 

Step 9: Return the optimal solutions and stop the algorithm. 
 
４． Computation Results 

In the experiment, we use two kinds of theme parks with 
different scales as examples. First, we use the Tokyo Disney Sea 
with 28 attractions as a real-world problem to prove the 
effectiveness of the model and algorithm. Second, to prove the 
stability of the model and algorithm, we expand the scale of the 
experiment and randomly generate an example of a theme park 
with 60 attractions. 
（１）Real World Problem Instances 

First, the Tokyo Disney Sea with 28 attractions, was selected 
as the test object to verify the correctness and effectiveness of 



the proposed model and algorithms. The evolution result of the 
Partheno-Genetic Algorithm (PGA) is shown in the Figure 4.1. 
where the best solution in the experiment can be found when the 
iteration is 109, and the value of the fitness function is 36.0801. 
The obtained satisfaction route is 0-2-27-22-24-21-20-26-23-
16-19-18-17-13-11-6-0.  

 
 
 
 
 
 
 
 
 
 
 

 
Then, the evolution results of the improved Annealing 

Partheno-Genetic Algorithm (APGA) are illustrated in Figure 
4.2. Here, we set the initial temperature to 90 and the cooling 
coefficient to 0.99. The best solution in the experiment can be 
found when the iteration is 156, and the value of fitness function 
is 36.0801. The result is the same as that of PGA, and the 
obtained satisfaction route is 0-2-27-22-24-21-20-26-23-16-19-
18-17-13-11-6-0.  

 
 
 
 
 
 
 
 
 
 
 
 
By comparing the two results above, when there are 28 

attractions, the best solution of the two different algorithms can 
be found in a short time. In addition, we tested the two 
algorithms 15 times. Table 4.1 illustrates the comparison results 
of the two different algorithms. The presented results are the 
best solution (Best), worst solution (Worst), average solution 
(Average), and the standard deviation (Std). 

 

（２）Real World Problem Instances 
The results above demonstrate that both the PGA and APGA 

mentioned in this paper can be used to find the best solution 
within a short time when resolving the small and medium-sized 
theme park routing problem. Then, we expanded the test scale 
in the second test. We generated a theme park with one entrance 
and 60 attractions at random within a 2,000*2,000 test 
environment. 

The evolution results of the PGA are illustrated in Figure 4.3, 
where the best solution in the experiment can be found when the 
iteration is 185, and the best value of fitness function is 34.0835. 
The obtained satisfaction route is 0-6-18-26-7-10-30-9-44-8-
21-0. 

 
 
 
 
 
 
 
 
 
 
 
The evolution result of the improved APGA is illustrated in 

Figure 4.4, where the best solution in the experiment can be 
found when the iteration is 160, and the best value of fitness 
function is 34.1492. The obtained satisfaction route is 0-6-18-
26-24-7-10-30-9-44-8-0.  

 
 
 
 
 
 
 
 
 
 
 
 
If there are 28 attraction projects, the two different algorithms 

can be used to find the relative best solution within a short time 
successfully. However, when we increased the attractions to 60, 
the computation time of the PGA was longer, and it was inferior 
to the APGA in terms of optimizing ability. Similarly, we ran 
the two algorithms 15 times in the test. Table 4.2 illustrates the 
comparison of the two algorithms. 

Table 4.1:  Comparison of Different Methods for Solving TDTPRP 
(28 Attractions)  

Method Best Worst Average Std 
PGA 36.0801 34.9208 35.645 0.31 

APGA 36.0801 35.611 35.931 0.12 
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Figure 4.1. Evolution results of PGA with 28 attraction 
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Figure 4.2. Evolution Results of APGA with 28 Attractions 
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Figure 4.3. Evolution Results of PGA with 60 Attractions 
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Figure 4.4. Evolution Results of APGA with 60 Attractions 



 
５． Conclusion 

To solve the problem of the congestion and queuing problem 
in large scale theme parks, improve the satisfaction of visitors, 
and decrease congestion, a Time-Dependent Theme Park 
Routing Problem (TDTPRP) was proposed to maximize the 
utility of the visitors and minimize the queuing and walking 
time for selecting the optimal attractions under the framework 
of the Traveling Salesman Problem (TSP), where walking time 
was treated as time-dependent and changed according to 
different time periods. The model can provide more precise 
scheduling and plan for individual decisions. To solve the 
proposed model and verify the feasibility and effectiveness of 
the model, we proposed a Partheno-Genetic Algorithm and an 
Annealing Partheno-Genetic Algorithm. In the experimental 
stage, we conducted two experiments; the experimental data 
were divided into real-world problems and randomly generated 
problems. First, we used the Tokyo Disney Sea with 28 
attractions as the real-world problem to prove the effectiveness 
of the model and algorithm. Second, to prove the stability of the 
model and algorithm, we expanded the scale of the experiment 
and randomly generated an example of a theme park with 60 
attractions within a 2, 000*2, 000 test environment. The results 
demonstrate that when the experiment scale is small, the general 
Partheno-Genetic Algorithm and Annealing Partheno-Genetic 
Algorithm have the same excellent optimization ability, but the 
Annealing Partheno-Genetic Algorithm has better optimization 
ability than the general Partheno-Genetic Algorithm when the 
data scale was expanded. 

For future research, there is space for further improvements. 
For example, the walking time is dynamic, but to make it 
comparable to a realistic problem, the queuing time should also 
be constantly changing. Moreover, at present, some theme parks 
offer tickets to skip queues, some of which are free and some of 
which involve a fee. These factors could be considered in future 
research to continue to develop the model, and with the 
improvement of the model, the design of the algorithm should 
also continue to improve. 
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