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A note on simultaneous calibrated
prediction intervals for time series

Abstract
This paper deals with simultaneous prediction for time series models. In partic-

ular, it presents a simple procedure which gives well-calibrated simultaneous predic-
tion intervals with coverage probability close to the target nominal value. Although
the exact computation of the proposed intervals is usually not feasible, an approxi-
mation can be easily attained by means of a suitable bootstrap simulation procedure.
This new predictive solution is much simpler to compute than those ones already
proposed in the literature, based on asymptotic calculations. Applications of the
bootstrap calibrated procedure to AR, MA and ARCH models are presented.

Keywords: bootstrap; coverage probability; Monte Carlo simulation; prediction
region; simultaneous prediction intervals; time series

1 Introduction

In the statistical analysis of time series, a key problem concerns prediction of future values.

Although, in the literature, great attention has been received by pointwise predictive

solutions, in this paper we deal with the notion of prediction intervals, which explicitly

takes account of the uncertainty related to the forecasting procedure. In particular, we

assume a parametric statistical model and we follow the frequentist viewpoint, with the

aim of constructing prediction intervals having good coverage accuracy.

It is well-known that the estimative or plug-in solution, though simple to derive, is

usually not adequate. In fact, it does not properly take account of the sampling vari-

ability of the estimated parameters, so that the (conditional) coverage probability of the

estimative prediction intervals may substantially differ from the nominal value.

Improved prediction intervals based on complicated asymptotic corrections have been

proposed in a general framework by Barndorff-Nielsen and Cox (1996) and, for the case
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of time series models, by Giummolè and Vidoni (2010) and Vidoni (2004). A calibrating

approach has been suggested by Beran (1990) and applied, for example, by Hall et al.

(1999), using a suitable bootstrap procedure. Simulation-based prediction intervals for

autoregressive processes are considered by Kabaila and Syuhada (2007). Finally, there is

an extensive literature on non-parametric bootstrap prediction intervals for autoregressive

time series (see, for example, Clements and Kim, 2007; and references therein).

Besides the specification of prediction intervals for a single future observation of a

time series, it is certainly of interest, from both the theoretical and the applied point

of view, to define a collection of prediction intervals for a set of future observations.

In this more challenging framework, the aim is to define a joint prediction region that

contains the entire future sequence of realisations with the desired probability. Although

the specification of a multivariate prediction region may be quite general, we restrict our

attention to joint regions of rectangular form, which are usually considered for forecasting

future paths of time series observations (see Alpuim, 1997; Nolan and Ravishanker, 2009;

Ravishanker et al., 1991; Wolf and Wunderli, 2015).

In this paper we apply, in the context of time series prediction, a simple procedure

based on results in Fonseca et al. (2014), which gives well-calibrated simultaneous pre-

diction intervals with coverage probability equal or close to the target nominal value.

Although the exact computation of the proposed intervals is usually not feasible, this can

be easily approximated by means of a suitable bootstrap simulation procedure. This new

predictive solution is second-order equivalent to those ones based on asymptotic calcu-

lations, but it turns out to be much simpler to compute. Applications of the bootstrap

calibrated procedure for prediction within AR, MA and ARCH models are presented.

2 Simultaneous calibrated prediction intervals

Given a discrete-time stochastic process {Yt}t≥1, we assume that the random vector Y =

(Y1, . . . , Yn), n > 1, is observable, while Z = (Z1, . . . , Zm) = (Yn+1, . . . , Yn+m), m ≥ 1, is

a random vector corresponding to a future or not yet available m-dimensional sequence
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of observations. Y and Z are continuous random vectors and we assume that g(z|y; θ)

and G(z|y; θ), the conditional density and distribution function of Z given Y = y, are

specified up to a d-dimensional unknown parameter θ ∈ Θ ⊆ IRd. In the presence of a

transitive statistic U (see, for example, Barndorff-Nielsen and Cox, 1996), y is substituted

by the observed value u of U .

Given an observed sample y = (y1, . . . , yn), a system of simultaneous α-prediction

limits for vector Z is a set of functions cjα(y), j = 1, . . . ,m, such that, exactly or approx-

imately,

PY,Z{Zj ≤ cjα(Y ), j = 1, . . . ,m; θ} = α, (1)

for every θ ∈ Θ and for any fixed α ∈ (0, 1). In the presence of a finite dimensional

transitive statistics, we usually consider the conditional coverage probability

PY,Z|U{Zj ≤ cjα(Y ), j = 1, . . . ,m|U = u; θ} = α. (2)

Obviously, a system of prediction limits satisfying (2) also satisfies condition (1).

An α-level joint prediction region of rectangular form is readily obtained by specifying

two suitable systems of lower and upper simultaneous prediction limits. As we can see,

for instance, in Alpuim (1997), Nolan and Ravishanker (2009), Ravishanker et al. (1991)

and Wolf and Wunderli (2015), rectangular prediction regions are usually defined, in a

time series context, using simultaneous prediction limits for Z defined as

zj,α = zj,α(Y ; θ) = Pj + hα(θ) sej(θ), j = 1, . . . ,m, (3)

evaluated at θ = θ̂, where θ̂ = θ̂(Y ) is the maximum likelihood estimator for θ or an

asymptotically equivalent alternative. Here Pj = Pj(Y ; θ) is a suitable unbiased point

predictor for Zj, such that EZj |Y (Zj −Pj|Y = y; θ) = 0, with conditional prediction stan-

dard error sej(θ) =
√
VZj |Y (Zj − Pj|Y = y; θ). Moreover, hα(θ) is a quantity satisfying

PZ|Y {Ej ≤ hα(θ), j = 1, . . . ,m|Y = y; θ} = F{hα(θ), . . . , hα(θ)|y; θ} = α,

with Ej = (Zj − Pj)/sej(θ), j = 1, . . . ,m, the standardised forecast errors, with joint

distribution function F (e1, . . . , em|y; θ), conditional on Y = y.

3
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For stationary linear models, we usually consider the optimal predictors given by

Pj = EZj |Y (Zj|Y ; θ), j = 1, . . . ,m. Indeed, with this choice for the point forecasts,

provided that we have a linear or a Gaussian process, the vector of the standardized

forecasts errors (E1, . . . , Em) is independent of Y .

Alternative systems of simultaneous α-prediction limits involve the specification of a

sequence of marginal prediction limits for each future component Zj, j = 1, . . . ,m, or

a projection on the axes of IRm of a suitable multivariate prediction region for Z, such

as the Scheffé joint prediction region (see, for example, Kim, 1999; Wolf and Wunderli,

2015). However, both solutions present a coverage probability which may substantially

differ from the target nominal value α. For this reason, it is better to define systems

of simultaneous prediction limits which are designed to be of rectangular form to begin

with and which account for the dependencies among the components of vector Z. Wolf

and Wunderli (2015) introduce a system of simultaneous prediction limits similar to (3),

having a coverage probability asymptotically equal to α. Anyway, their method applies to

large samples, when the coverage error associated to estimative simultaneous prediction

limits ẑj,α = zj,α(Y ; θ̂), j = 1, . . . ,m, can be disregarded. Our aim here is to calibrate the

estimative solution, thus providing simultaneous prediction limits with coverage proba-

bility closer to the nominal value, even for a small or moderate sample size.

In order to compute the prediction limits specified in (3), we need a vector of unbiased

point predictors P = (P1, . . . , Pm), the associated vector of prediction standard errors

se(θ) = {se1(θ), . . . , sem(θ)} and the quantity hα(θ) = ϕ−1(α|y; θ), where ϕ−1(·|y; θ) is

the inverse of function ϕ(x|y; θ) = F (x, . . . , x|y; θ), which corresponds to the conditional

distribution function F (e1, . . . , em|y; θ) constrained to {(e1, . . . , em) ∈ IRm|e1 = · · · =

em = x}. It can be useful noticing that ϕ(x|y; θ) is the distribution function of the

maximum of the standardised forecast errors, conditioned on Y = y. As suggested in

Wolf and Wunderli (2015), we can consider the generalised family-wise error rate, k-

FWE, instead of (1) for specifying the coverage of simultaneous prediction limits. In that

case, α is the probability that at most k future observations lay above the corresponding
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prediction limit. Then the multiplier hα(θ) in (3) must be substituted with the α-quantile

of the k + 1 largest standardised forecast error, that corresponds to the (m− k)-th order

statistic, E(m−k). In this paper, we consider the coverage probability defined in (1), which

is the limit case of k-FWE obtained for k = 0.

Our proposal consists of calibrating the multiplier hα(θ) in (3) using the following

simple procedure, borrowed from Fonseca et al. (2014).

The (unconditional) coverage probability of the estimative simultaneous prediction

limits ẑj,α = zj,α(Y ; θ̂), j = 1, . . . ,m, corresponds to

PY,Z{Zj ≤ ẑj,α, j = 1, . . . ,m; θ} = EY {PZ|Y (Zj ≤ ẑj,α, j = 1, . . . ,m|Y ; θ); θ}

= EY [PZ|Y {Ej ≤ (ẑj,α − Pj)/sej(θ), j = 1, . . . ,m|Y ; θ}; θ]

= EY [F{a1 + hα(θ̂)b1, . . . , am + hα(θ̂)bm|Y ; θ}; θ] = D(α, θ),

where aj = aj(Y, θ) = (P̂j − Pj)/sej(θ), with P̂j = Pj(Y ; θ̂), and bj = bj(Y, θ) =

sej(θ̂)/sej(θ), j = 1, . . . ,m. Unfortunately, as already mentioned, the quantity D(α, θ)

may differ from the target value α by a term of order O(n−1), which can be substantial

for a small sample size n.

Following the calibrating procedure proposed in Fonseca et al. (2014) for univariate

prediction limits, we may consider function

ϕc(x|y; θ̂, θ) = D{F (x, . . . , x|y; θ̂), θ} = D{ϕ(x|y; θ̂), θ} (4)

instead of ϕ(x|y; θ̂), in order to specify the quantity

hcα(θ̂, θ) = ϕ−1c (α|y; θ̂, θ) = ϕ−1{D−1(α, θ)|y; θ̂} = hD−1(α,θ)(θ̂), (5)

with ϕ−1c (·|y; θ̂, θ) and D−1(·, θ) the inverse functions of ϕc(·|y; θ̂, θ) and D(·, θ), respec-

tively. It is easy to show that the calibrated simultaneous prediction limits thus obtained,

namely

zcj,α(Y ; θ̂, θ) = P̂j + hcα(θ̂, θ) sej(θ̂), j = 1, . . . ,m,

5
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present a coverage probability equal to the target nominal value α. Indeed the specification

of quantities hcα(θ̂, θ) from (5) determines simultaneous prediction limits satisfying relation

(1) exactly for all α ∈ (0, 1).

As mentioned before, function (4) depends on the unknown θ and it is in fact not

useful. Provided that the coverage probability D(α, θ) may be calculated, at least to order

O(n−1), a useful surrogate for (4) is the corresponding plug-in estimator ϕc(x|y; θ̂, θ̂). The

associated α-level quantile hcα(θ̂, θ̂) enables the specification of calibrated simultaneous

prediction limits with a coverage error term reduced to order o(n−1).

Whenever a closed form (approximate) expression for D(α, θ) is not available, we

may consider a suitable parametric bootstrap estimator for function ϕc(x|y; θ̂, θ). Let yb,

b = 1, . . . , B, be parametric bootstrap samples generated from the estimative distribution

of the data and let θ̂b, b = 1, . . . , B, be the corresponding maximum likelihood estimates.

Since D(α, θ) is an expectation, we define the following bootstrap estimator for (4):

ϕbc(x|y; θ̂) =
1

B

B∑
b=1

F{âb1 + hα(θ̂b)b̂b1, . . . , â
b
m + hα(θ̂b)b̂bm|y; θ̂}|α=ϕ(x|y;θ̂),

where âbj = (P̂ b
j − P̂j)/sej(θ̂), with P̂ b

j = Pj(Y ; θ̂b), and b̂bj = sej(θ̂
b)/sej(θ̂), j = 1, . . . ,m.

In this case, the associated α-level quantile permits the definition of a system of simul-

taneous prediction limits with coverage probability equal to α, apart from an error term

depending on the efficiency of the bootstrap procedure.

In the presence of a transitive statistic U , we may define a similar calibrating proce-

dure improving the conditional coverage probability (2). In this case, whenever a closed

form (approximate) expression for the conditional coverage probability of the estimative

solution is not available, we have to consider parametric bootstrap samples generated

from the estimative distribution of the data given U = u.

3 Examples and simulations

In this section we present some examples of application of the proposed method to au-

toregressive, moving average and autoregressive conditional heteroschedastic Gaussian

6
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processes. Assuming the normal distribution for the innovations implies that the dis-

tribution of the standardised forecast errors, F (e1, . . . , em|y; θ), is Gaussian. As already

pointed out, ϕ(x|y; θ) is the distribution function of the maximum of the standardised

forecast errors and it is in general not explicitly available. However, in the case of Gaus-

sian processes, suitable functions for calculating the values of ϕ(x|y; θ) and its quantiles

are available in most of the commonly used statistical packages. Moreover, for m = 2, it

is a known result that the distribution of the maximum of a bivariate normal vector has a

skew normal distribution, see Arellano-Valle and Genton (2008) and Nadarajah and Kotz

(2008). These considerations may help fastening the simulations.

3.1 Autoregressive models

Let {Yt}t≥1 be a first-order Gaussian autoregressive process with

Yt = µ+ ρ(Yt−1 − µ) + εt, t ≥ 1,

where µ and ρ are unknown parameters and {εt}t≥1 is a sequence of independent Gaussian

random variables with zero mean and unknown variance σ2. We assume |ρ| < 1 so that

the process is stationary and Y0 = y0 known.

The observable random vector is Y = (Y1, . . . , Yn) and the next m realisations of

the process are Z = (Yn+1, . . . , Yn+m). The conditional distribution of Z given Y = y

is m-dimensional Gaussian with mean vector µZ|Y = (µn+1, . . . , µn+m)T , where µn+1 =

(1 − ρ)µ + ρyn and µn+j = (1 − ρ)µ + ρµn+j−1, j = 2, . . . ,m, and variance-covariance

matrix ΣZ|Y = (σij), where σij = σ2ρ|i−j|, i 6= j, and σii = σ2
∑i

k=1 ρ
k−1, i, j = 1, . . . ,m.

We take the conditional expectations as point predictors, Pj = µn+j, j = 1, . . . ,m.

Thus, the standardised forecast errors are independent of Y with a m-dimensional Gaus-

sian distribution with zero mean vector and variance-covariance matrix equal to the cor-

relation matrix of Z.

Then, ϕ(x|y; θ) is the distribution function of the maximum of a m-dimensional normal

vector. The corresponding quantiles are provided by suitable functions through numerical

7
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approximation. For m = 2, ϕ(x|y; θ) is the distribution function of a skew normal random

variable with skewness parameter
√

1 + ρ2 − ρ and its quantiles are readily available.

A simulation study shows the performance of the proposed solution in comparison

with the estimative one. Here, U = Yn is a transitive statistic and we evaluate prediction

limits by means of their coverage probability conditioned on the observed value yn of

Yn. For computing the conditional coverage probabilities we use the simulation technique

presented in Kabaila (1999), keeping the last observed value yn fixed and y0 = 0. The

parameter µ is assumed to be known and equal to 0 and the sample size is n = 20. The

results are collected in Table 1 for m = 2 and different values of yn = −1, 0, 1 and in

Table 2 for m = 1, 2, 5 and yn = 1.

TABLE 1 AND 2 HERE

It can be seen that the bootstrap calibrated simultaneous prediction limits have cov-

erage probability that closely approximates the target value and remarkably improves on

the estimative one. The results do not seem to depend much on the value of the transitive

statistic yn. Instead, they depend on the value of the autoregressive coefficient ρ: both

the estimative and the calibrated limits work worse when ρ is closer to the frontier of

stationarity. Moreover, it can be noticed that, as m increases, the improvement on the

estimative is less evident, in particular for higher target coverage. This is probably due to

the particular form of the considered intervals and to the fact that we calibrate a single

multiplier for all the components of the future sample.

Figure 1 represents a trajectory of a AR(1) process with ρ = 0.5 and σ2 = 1, together

with the point predictions, the estimative and the bootstrap calibrated prediction bands

of level α = 0.9, for m = 5 future observations. Prediction is based on n = 20 past

observations with 500 bootstrap replications. It is important noticing that the resulting

prediction intervals are not centered on the point prediction, being the distribution of the

maximum of the standardised forecast errors strongly skewed. Of course, this becomes

more evident as the number of future observations increases. To partially overcome this

8
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problem, we have used quantiles of level 0.01 and 0.91 for calculating the lower and the

upper limits, respectively. It can be seen that the lower bootstrap calibrated prediction

limit is very close to the estimative one. Instead the correction becomes substantial in

the upper limit.

FIGURE 1 HERE

3.2 Moving average models

Let {Yt}t≥1 be a first-order Gaussian moving average process where

Yt = µ+ εt + ρεt−1, t ≥ 1,

with εt ∼ N(0, σ2), t ≥ 0, independent Gaussian random variables. We want to predict

Z = (Yn+1, . . . , Yn+m) on the basis of an observed sample y = (y1, . . . , yn) from Y =

(Y1, . . . , Yn). We assume |ρ| < 1 to ensure invertibility. The conditional distribution

of Z given Y is Z|Y ∼ N(µZ|Y ,ΣZ|Y ), where µZ|Y = (µn+1, . . . , µn+m)T , with µn+1 =

µ +
∑n

i=1(−1)i+1ρi(Yn+1−i − µ), and µn+j = µ, j = 2, . . . ,m, and ΣZ|Y = (σij), with

σ11 = σ2, σjj = σ2(1 + ρ2), j = 2, . . . ,m, and σij = σ2ρ, if |i − j| = 1, and σij = 0

otherwise.

A simulation study shows the performance of the bootstrap calibrated predictive so-

lution in comparison with the estimative solution. Coverage probabilities for estimative

and bootstrap calibrated prediction limits of levels α = 0.9, 0.95 are calculated, assuming

the parameter µ to be known and equal 0 and the sample size n = 20. The results are

collected in Table 3 and confirm the superiority of the bootstrap calibrated prediction

limits over the estimative ones.

TABLE 3 HERE

Figure 2 represents a trajectory of a MA(1) process with ρ = 0.5 and σ2 = 1, together

with the point predictions, the estimative and the bootstrap calibrated prediction bands

of level α = 0.9, for m = 5 future observations. Prediction is based on n = 20 past

9
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observations with 500 bootstrap replications. As already observed in the AR(1) example,

the resulting prediction intervals are not centered on the point prediction, being the

distribution of the maximum of the standardised forecast errors strongly skewed. This is

why we have used quantiles of level 0.01 and 0.91 for calculating the lower and the upper

limits, respectively.

FIGURE 2 HERE

3.3 ARCH models

Finally, we present an example of non-linear model. Let {Yt}t≥1 be a first-order autore-

gressive conditional heteroschedastic Gaussian process with

Yt =
√
β + γ Y 2

t−1εt, t ≥ 1,

where β and γ are unknown parameters and {εt}t≥1 is a sequence of independent standard

Gaussian random variables. We assume β > 0 and γ ∈ [0, 3.56] to ensure strict station-

arity. The unknown parameter is θ = (β, γ) and likelihood inference is conditioned on

Y0 = y0, with y0 known. The observable random vector is Y = (Y1, . . . , Yn) and the next

m realizations of the process are Z = (Yn+1, . . . , Yn+m). The conditional distribution of

Z given Y = y is m-dimensional Gaussian with zero mean vector and diagonal variance-

covariance matrix ΣZ|Y = diag(σjj), σjj = β
∑j

k=1 γ
k−1 + γjy2n, j = 1, . . . ,m. Indeed,

Yn is a transitive statistic and we evaluate prediction limits by means of their coverage

probability conditioned on the observed value yn of Yn.

We take Pj = E[Yn+j|Yn] = 0 as a point predictor for Zj, j = 1, . . . ,m. The standard-

ized forecast errors, Ej = Zj/sej(θ), are independent of Yn, with sej(θ)
2 = E(Z2

j |Yn =

yn; θ) = σjj, j = 1, . . . ,m. Thus, the conditional distribution of the standardised forecast

errors is standard normal, i.e. F (e1, . . . , em|y; θ) =
∏m

j=1 Φ(ej), where Φ(·) denotes the

univariate standard normal distribution function. It is important noticing that F does

not depend on the observed value of the transitive statistic yn, nor on the unknown pa-

rameter θ. Furthermore, the quantity hα(θ) is nothing but the quantile of level α1/m of a
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standard normal distribution, since F (hα(θ), . . . , hα(θ)|y; θ) = Φ(hα(θ))m = α.

A simulation study shows the performance of the bootstrap calibrated predictive so-

lution in comparison with the estimative solution. The bootstrap samples are generated

keeping the observed value of the transitive statistic fixed to yn. Conditional coverage

probabilities for estimative and bootstrap calibrated prediction limits of different levels

are calculated by means of the simulation technique presented in Kabaila (1999). In this

case the sample size is taken to be n = 50 for more stable estimates of the parameters in

the Monte Carlo replications. As a consequence, the improvement on the estimative solu-

tion is less evident. Anyway, the results collected in Table 4 still confirm the superiority

of the bootstrap calibrated prediction limits over the estimative ones.

TABLE 4 HERE

Figure 3 represents a trajectory of a ARCH(1) process with β = 0.5, γ = 1, together

with the point predictions, the estimative and the bootstrap calibrated prediction bands

of level α = 0.9, for m = 5 future observations. Prediction is based on n = 50 past

observations with 500 bootstrap replications. Again, we have used quantiles of level 0.01

and 0.91 for calculating the lower and the upper limits, respectively. In fact, with this

choice the resulting prediction intervals include the point prediction, that is constantly

equal to 0. It is important noticing that for this model the standardised forecast errors

have independent standard normal distributions. Thus, for instance, the quantile of level

0.05 of their maximum is positive, giving rise to positive lower prediction bounds. The

effect is milder when the standardised forecast errors are dependent, as in AR and MA

models. This is, of course, a drawback of this kind of prediction regions, and it is even

more evident when the number of future observations increases.

FIGURE 3 HERE
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4 Final remarks

In this paper we have proposed a method for obtaining rectangular prediction regions with

a fixed joint coverage probability. The proposed method has been applied to autoregres-

sive, moving average and autoregressive conditional heteroschedastic Gaussian processes,

showing the improvement with respect to the usual estimative approach.

For non-Gaussian processes (see for instance Alpuim, 1997; Nolan and Ravishanker,

2009), whenever function F (e1, . . . , em|y; θ) is not known, a suitable bootstrap estimate

has to be considered. Similarly, it is possible to approximate ϕ(x|y; θ) and its quantiles.

This, together with the calibration, implies a double bootstrap procedure that can be

easily carried out in the applications. Nonetheless, when many bootstrap replications are

required, the computations can be time demanding.

The proposed method calibrates the estimative quantiles of the function ϕ(x|y; θ) and

it is particularly effective when the size of the observed sample is small. In the presence of

a large sample size, the effect of the calibration is less evident and the coverage associated

to the estimative quantiles is already very precise. Indeed, Wolf and Wunderli (2015)

obtain good results without need of calibration, using sample sizes n = 100, 400.

As already mentioned, the notion of coverage probability can be extended by consider-

ing the generalised family-wise error rate, k-FWE, see Wolf and Wunderli (2015). In that

case, α is the probability that at most k future observations lay above the correspond-

ing prediction limit. Our proposal can be easily extended to this more general setting

by simply substituting ϕ(x|y; θ) and its quantiles with the distribution function and the

quantiles of the (m − k)-th order statistic for the standardized forecast errors, E(m−k).

Anyway, we have not considered this extension here because with a small sample size the

number m of future observations is also small and the notion of k-FWE is not sensible

anymore. Moreover, as we have seen in the examples, when the number of future obser-

vations increases the distribution ϕ(x|y; θ) becomes more skewed and the simultaneous

prediction intervals are not centred on the point predictors. To overcome this drawback,

we suggest choosing non symmetric levels for lower and upper quantiles. Using k-FWE

12
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is, of course, another way for obtaining lower and upper prediction limits that are more

symmetric with respect to the point predictor, being the distribution of the (m − k)-th

order statistic less skewed than that of the maximum. Finally, it is possible to obtain

prediction bands that are centred on the point predictor by considering marginal predic-

tion intervals for each future component, conditioned on the observed values. Anyway,

the coverage of the resulting multivariate prediction region can not be easily controlled

without increasing the coverage and thus the length of each marginal interval.
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α yn ρ Estimative Bootstrap

0.90 -1 0.5 0.884 0.901
0.8 0.890 0.900

0 0.5 0.873 0.901
0.8 0.868 0.898

1 0.5 0.871 0.899
0.8 0.848 0.891

0.95 -1 0.5 0.932 0.945
0.8 0.936 0.922

0 0.5 0.923 0.948
0.8 0.921 0.948

1 0.5 0.924 0.948
0.8 0.908 0.944

Table 1: AR(1) Gaussian model. Conditional coverage probabilities for estimative and
bootstrap calibrated prediction limits of level α = 0.9, 0.95, conditioned on yn = −1, 0, 1;
µ = 0 known, ρ = 0.5, 0.8, σ2 = 1, y0 = 0, n = 20 and m = 2. Estimation is based on
1,000 Monte Carlo replications. Bootstrap procedure is based on 500 bootstrap samples.
Estimated standard errors are always smaller than 0.01.
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m α ρ Estimative Bootstrap

1 0.90 0.5 0.875 0.894
0.8 0.862 0.864

0.95 0.5 0.925 0.947
0.8 0.924 0.948

2 0.90 0.5 0.871 0.899
0.8 0.848 0.891

0.95 0.5 0.924 0.948
0.8 0.908 0.944

5 0.90 0.5 0.862 0.897
0.8 0.809 0.861

0.95 0.5 0.915 0.922
0.8 0.877 0.915

Table 2: AR(1) Gaussian model. Conditional coverage probabilities for estimative and
bootstrap calibrated prediction limits of level α = 0.9, 0.95, conditioned on yn = 1; µ = 0
known, ρ = 0.5, 0.8, σ2 = 1, y0 = 0, n = 20 and m = 1, 2, 5. Estimation is based on
1,000 Monte Carlo replications. Bootstrap procedure is based on 500 bootstrap samples.
Estimated standard errors are always smaller than 0.01.
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m α ρ Estimative Bootstrap

1 0.9 0.5 0.871 0.893
0.8 0.861 0.873

0.95 0.5 0.924 0.944
0.8 0.917 0.925

2 0.9 0.5 0.862 0.895
0.8 0.861 0.892

0.95 0.5 0.918 0.939
0.8 0.918 0.933

5 0.9 0.5 0.854 0.901
0.8 0.851 0.898

0.95 0.5 0.912 0.933
0.8 0.904 0.923

Table 3: MA(1) Gaussian model. Coverage probabilities for estimative and bootstrap
calibrated prediction limits of level α = 0.9, 0.95; µ = 0 known, ρ = 0.5, 0.8, σ2 = 1,
y0 = 0, n = 20 and m = 1, 2, 5. Estimation is based on 1,000 Monte Carlo replications.
Bootstrap procedure is based on 500 bootstrap samples. Estimated standard errors are
always smaller than 0.01.
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m α β γ Estimative Bootstrap

1 0.9 0.5 1 0.893 0.899
0.2 0.9 0.886 0.894
1 2 0.899 0.894

0.95 0.5 1 0.942 0.949
0.2 0.9 0.939 0.947
1 2 0.948 0.941

2 0.9 0.5 1 0.877 0.894
0.2 0.9 0.874 0.891
1 2 0.881 0.887

0.95 0.5 1 0.928 0.933
0.2 0.9 0.922 0.934
1 2 0.930 0.937

5 0.9 0.5 1 0.828 0.864
0.2 0.9 0.822 0.840
1 2 0.780 0.856

0.95 0.5 1 0.885 0.909
0.2 0.9 0.875 0.887
1 2 0.849 0.901

Table 4: ARCH(1) Gaussian model. Conditional coverage probabilities for estimative
and bootstrap calibrated prediction limits of level α = 0.9, 0.95, conditioned on yn = 1;
β = 0.5, 0.2, 1, γ = 1, 0.9, 2, y0 = 0, n = 50 and m = 1, 2, 5. Estimation is based on
1,000 Monte Carlo replications. Bootstrap procedure is based on 500 bootstrap samples.
Estimated standard errors are always smaller than 0.01.
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Figure 1: AR(1) Gaussian model. Plot of a trajectory of the process with point predictors,
estimative and bootstrap calibrated prediction bands of level α = 0.9, for m = 5 future
observations.
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Figure 2: MA(1) Gaussian model. Plot of a trajectory of the process with point predictors,
estimative and bootstrap calibrated prediction bands of level α = 0.9, for m = 5 future
observations.
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Figure 3: ARCH(1) Gaussian model. Plot of a trajectory of the process with point
predictors, estimative and bootstrap calibrated prediction bands of level α = 0.9, for
m = 5 future observations.
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