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Abstract

In this paper, we concentrate on an alternative modeling strategy for positive data

that exhibit spatial or spatio-temporal dependence. Specifically, we propose to consider

stochastic processes obtained through a monotone transformation of scaled version of

χ2 random processes. The latter are well known in the specialized literature and

originates by summing independent copies of a squared Gaussian process. However,

their use as stochastic models and related inference has not been much considered.

Motivated by a spatio-temporal analysis of wind speed data from a network of meteo-

rological stations in the Netherlands, we exemplify our modeling strategy by means of a

non-stationary process with Weibull marginal distributions. For the proposed Weibull

process we study the second-order and geometrical properties and we provide analytic

expressions for the bivariate distribution. Since the likelihood is intractable, even for

a relatively small data-set, we suggest adopting the pairwise likelihood as a tool for

inference. Moreover, we tackle the prediction problem and we propose to use a linear

prediction. The effectiveness of our modeling strategy is illustrated by analyzing the

aforementioned Netherland wind speed data that we integrate with a simulation study.

The proposed method is implemented in the R package GeoModels.

Keywords: Copula; Linear Prediction; Non-Gaussian data; Pairwise likelihood; Regression

model; Wind speed data.
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1. INTRODUCTION

Climatology, Environmental Sciences and Engineering, to name some fields, show an increas-

ing interest in the statistical analysis of spatial and/or temporal data. In order to model the

inherent uncertainty of the data, Gaussian random processes play a fundamental role (see

Cressie and Wikle, 2011, for instance). Indeed, the Gaussian random processes have to offer

marginal and dependence modelling in terms of mean and covariance functions, methods of

inference well studied and scalable for large dataset (Heaton et al., 2018) and optimality in

the prediction (Stein, 1999).

However, data collected in a range of studies such as wind speeds (Pryor and Barthelmie,

2010), ocean surface currents (Galanis et al., 2012) and rainfalls (Neykov et al., 2014) take

continuous positive values and exhibit skewed sampling distributions. In this case the Gaus-

sian probability model becomes unrealistic.

Transformations of a Gaussian process, i.e. trans-Gaussian kriging (Cressie, 1993), is a

general approach to model this kind of data by applying a nonlinear transformations to the

original data. In the literature the most common transformations, the square root and the

natural logarithm, belong to the Box-Cox power transformation (see Haslett and Raftery,

1989; Allcroft and Glasbey, 2003; Bessac et al., 2015, for instance). In particular, Log-

Gaussian processes have been broadly used for the analysis of positive dependent data due

to their well known mathematical properties (De Oliveira et al., 1997; De Oliveira, 2006).

For an alternative (parametric) family of transformations of Gaussian processes, the Tukey

g-and-h transformation, see Xu and Genton (2017), Yan and Genton (2019).

Nevertheless, it can be difficult to find an adequate non linear transformation and some

appealing properties of the Gaussian process may not be inherited by the transformed process

(Wallin and Bolin, 2015).

Another possibility is to resort to Gaussian copulas. Copula theory (Joe, 2014) allows

joint distributions to be constructed from specified marginal continuous distributions for

positive data. The role of the copula is to describe the spatio-temporal dependence struc-

ture between random variables without information on the marginal distributions. Even

though which copula model to use for a given analysis is not generally known a priori, the
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copula based on the multivariate Gaussian distribution (Kazianka and Pilz, 2010; Masarotto

and Varin, 2012; Gräler, 2014) has gained a general consensus since the definition of the

multivariate dependence relies again on the specification of the pairwise dependence, i.e. on

the covariance function.

Actually the two aforementioned approach are strongly related since monotone transfor-

mations of a Gaussian process share the same copula model. As we will see in our real data

example, the kind of dependence described by the Gaussian copula could be restrictive or

unsuitable. In fact the Gaussian copula expresses a symmetrical dependence (see Section 2),

i.e. high values exhibit a spatial/temporal dependence similar to low ones. Copula-based

model using symmetrical dependence is still used in a recent paper (Tang et al., 2019) on

spatio-temporal modelling wind speed data.

Concluding this short review we mention that Wallin and Bolin (2015) proposed recently

non-Gaussian processes derived from stochastic partial differential equations. Nevertheless,

their method is restricted to the spatial Matérn covariance model and its statistical properties

are much less understood that the Gaussian process.

In this paper, we shall look at processes that are derived by Gaussian processes but

differently from the trans-Gaussian random processes and the copula models we do not

consider just one copy of the Gaussian process. We suggest to model positive continuous data

by transforming χ2 processes (Adler, 1981; Ma, 2010) i.e. a sum of squared of independent

copies of a standard Gaussian process. Even though probabilistic properties of a sum of

squared Gaussian processes have been studied several years ago, less attention has been

paid to use this for statistical modelling of dependent positive data. We are convinced

that the Gaussian processes offer an incomparable tool case for those who want to model

the dependence between observations. However, we aim to overcome some aforementioned

restrictions.

Motivated by a spatio-temporal analysis of daily wind speed data from a network of

meteorological stations in the Netherlands, we exemplify our construction by proposing a

non-stationary spatio-temporal process with asymmetric dependence and Weibull marginal

distribution even though other stochastic processes with different marginal distributions
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could be studied starting from transformations of χ2 processes. In fact, in scientific literature

a variety of probability distribution has been suggested to describe wind speed distributions

and the Weibull model constitutes one of the most widely accepted (see Carta et al., 2009,

for a review).

The proposed Weibull process is parametrized in such a way that both regression and de-

pendence analysis can be jointly performed. Additionally the process inherits the geometrical

properties of the underlying Gaussian process. This implies that mean-square continuity and

differentiability, as in the Gaussian processes, can be modeled using suitable parametric cor-

relation models such as the Matérn (Stein, 1999) or the Generalized Wendland (Bevilacqua

et al., 2019) models, in the spatial case.

It must be said that it is the difficult to evaluate the multivariate density for the proposed

model and this fact prevents the inference based on the full likelihood and the derivation of

the analytical form of the predictor that minimizes the mean square prediction error. For

this reason, we propose the use of a weighted version of the pairwise likelihood (Lindsay,

1988; Varin et al., 2011) for estimating the unknown parameters. Moreover a linear and

unbiased predictor is proposed following the approach detailed in De Oliveira (2014).

In addition, we study a specific example where both the multivariate density and the

optimal predictor have an explicit closed-form (see Section 5). For this example, we perform

a simulation study with the goal of investigating the relative efficiency of the maximum

weighted pairwise likelihood method with respect to the maximum likelihood method and

the relative efficiency of the proposed linear predictor with respect to the optimal predictor.

Simulation, estimation, and prediction of the Weibull process are implemented in a R package

GeoModels (Bevilacqua and Morales-Oñate, 2019).

The remainder of the paper is organized as follows. In Section 2 we introduce the random

processes and we describe their features. In Section 3 we concentrate on a random process

with Weibull marginal distributions. Section 4 starts with a short description of the esti-

mation method and ends with tackling the prediction problem. In Section 5 we report the

numerical results of a simulation study and in Section 6 we apply our method to the daily

wind speed data measurements from a network of meteorological stations in the Netherlands
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using the Log-Gaussian process as the benchmark. Finally some concluding remarks are

consigned to Section 7.

2. SCALED χ2 RANDOM PROCESSES

2.1 Definition

We start by considering a ‘parent’ Gaussian random process Z := {Z(s), s ∈ S}, where

s represents a location in the domain S. Spatial (S ⊆ IRd) or spatio-temporal examples

(S ⊆ IRd × IR+) will be considered indifferently. We also assume that Z is stationary

with zero mean, unit variance and correlation function ρ(h) := Cor(Z(s + h), Z(s)) where

s + h ∈ S. Let Z1, . . . , Zm be m = 1, 2, . . . independent copies of Z and define the random

process Xm := {Xm(s), s ∈ S} as

Xm(s) :=
m∑
k=1

Zk(s)
2/m. (1)

The stationary process Xm is a scaled version of a χ2 random process (Adler, 1981; Ma, 2010)

with marginal distribution Gamma(m/2,m/2) where the pairs m/2,m/2 are the shape and

rate parameters. By definition, IE(Xm(s)) = 1 and Var(Xm(s)) = 2/m for all s.

The analytical expressions of the multivariate density of a vector of n observations

Xm(s1) = x1, . . . , Xm(sn) = xn can be derived only in some special cases (Krishnamoor-

thy and Parthasarathy, 1951; Royen, 2004). An interesting example is made up for s1 <

s2 < . . . < sn locations on S = R and for a Gaussian process Z with exponential covariance

function. In this case the multivariate density can be derived as

fXm(x1, . . . , xn) =
mm/2−1+n2−m/2+1−n(x1xn)m/4−1/2

Γ (m/2)
n−1∏
i=1

{(1− ρ2i,i+1)ρ
m/2−1
i,i+1 }

× exp

[
− mx1

2(1− ρ21,2)
− mxn

2(1− ρ2n−1,n)
−

n−1∑
i=2

m(1− ρ2i−1,iρ2i,i+1)xi

2(1− ρ2i−1,i)(1− ρ2i,i+1)

]

×
n−1∏
i=1

Im/2−1

(
mρi,i+1

√
xixi+1

(1− ρ2i,i+1)

)
(2)

with ρij := exp{−|si− sj|/φ}, φ > 0 and Ia(x) the modified Bessel function of the first kind

of order a.
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The evaluation of the bivariate densities of a pair of observations Xm(s1) and Xm(s2) can

be derived irrespective of the dimension of the space S and the correlation function (Vere-

Jones, 1967). The bivariate distribution of Xm is known as the Kibble bivariate Gamma

distribution (Kibble, 1941) with density

fXm(x1, x2) =
2−mmm(x1x2)

m/2−1

Γ (m/2) (1− ρ2)m/2

(
m|ρ|√x1x2
2(1− ρ2)

)1−m/2

exp

{
−m(x1 + x2)

2(1− ρ2)

}
× Im/2−1

(
m|ρ|√x1x2

(1− ρ2)

)
, (3)

where ρ = ρ(s1 − s2).

2.2 Dependence structure

It is easy to show that the correlation function of Xm, ρXm(h), is equal to ρ2(h), the squared

of the correlation function of the ‘parent’ Gaussian random process. However, a way for

looking more deeply into the dependence structure between random variables regardless of

the marginal distributions is inspecting their copulas (Joe, 2014). For a n-variate cumulative

distribution function (cdf) F (y1, . . . , yn) := Pr(Y1 ≤ y1, . . . , Yn ≤ yn) with i-th univariate

margin Fi(yi) := Pr(Yi ≤ yi), the copula associated with F is a cdf function C : [0, 1]n →

[0, 1] with U(0, 1) margins that satisfies F (y1, . . . , yn) = C(F1(y1), . . . , Fn(yn)). If F is a

continuous cdf, with quantile functions F−1i , i = 1, . . . , n, then Sklar’s theorem (Sklar, 1959)

guarantees that the cdf on the n-hypercube C(u1, . . . , un) = F (F−11 (u1), . . . , F
−1
n (un)) is the

unique choice. The corresponding copula density, obtained by differentiation, is denoted by

c(u1, . . . , un).

Analogously, the multivariate survival function F (y1, . . . , yn) := Pr(Y1 > y1, . . . , Yn > yn)

could be expressed using the univariate survival functions F i = 1−Fi and the survival copula

F (y1, . . . , yn) = C (F 1(y1), . . . , F n(yn)). The survival copula is in this way a distribution

function on the n-hypercube C(u1, . . . , un) = F (F
−1

(u1), . . . , F
−1

(un)).

Among the copulas, the Gaussian copula is a convenient model for spatial data (Masarotto

and Varin, 2012) as it offers a parametrization in terms of a correlation function. Let Φ−1

denote the quantile function of Φ the cdf of a standard Gaussian variable. The Gaussian

copula with correlation matrix R is defined by C(u1, . . . , un) = ΦR(Φ−1(u1), . . . ,Φ
−1(un)),

where ΦR denotes the joint cumulative distribution function of an n-variate Gaussian random
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vector with zero means and correlation matrix R.

The Gaussian copula is reflection symmetric, C(u1, . . . , un) = C(u1, . . . , un), that is the

probability of having all variables less than their respective u-th quantile is equal to the

probability of having all the variables greater than the complementary marginal quantile.

Such property is a potential issue for data in which upper quantiles might exhibit a different

pairwise spatial dependence than lower quantiles.

Although copula theory uses transformations to U(0, 1) margins, it is better to consider

N (0, 1) margins (Joe, 2014, p. 9) for identifying the copula and for diagnostic purpose.

In particular, the plot of the bivariate copula density can be compared with the Gaussian

bivariate density and with the scatter-plot of pairs of observations on a normal scale, the

normal scores. The bivariate copula density with N (0, 1) margins is given by

cN(z1, z2) =
c(Φ−1(z1),Φ

−1(z2))

φ(z2)φ(z2)

where Φ(z) (resp. φ(z)) is the cdf (resp. pdf) of the standardized Gaussian distribution.

Under this transform reflection symmetry means that the bivariate density contour plot is

symmetric to the (z1, z2)→ (−z1,−z2) reflection, i.e. cN(z1, z2) = cN(−z1,−z2).

In Figure 1 we compare the contour plots of the bivariate copula density function entailed

by (3) with the elliptical contours of the bivariate Gaussian density. Note that the copula

for m = 1 is the copula introduced in Bárdossy (2006). Sharper corners (relative to ellipse)

indicate more tail dependence of Xm than the Gaussian process and we notice also reflection

asymmetries.

Dependence among extremal events can be summarized by the upper tail dependence

coefficient (Sibuya, 1960; Coles et al., 1999) that looks at the limit behavior of the conditional

probability of two random variables Y1 and Y2

τ := lim
u→1−

Pr(F1(Y1) > u, F2(Y1) > u)

Pr(F2(Y1) > u)
= lim

u→1−

1− 2u+ C(u, u)

1− u
= lim

u→1−

C(1− u, 1− u)

1− u
.

The value of the coefficient helps to distinguish between asymptotic dependence and asymp-

totic independence of the observations as the quantile increases. Under spatial asymptotic

dependence, the likelihood of a large event happening in one location is tightly related to high

values being recorded at a location nearby; the opposite is true under asymptotic indepen-
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dence, in which large events might be recorded at one location only and not in neighboring

locations (Wadsworth and Tawn, 2012).

We say that Y1 and Y2 are asymptotically dependent if τ > 0 is positive. The case τ = 0

characterizes asymptotic independence. Simply adapting Theorem 2.1 in Hashorva et al.

(2014) we can prove that the Xm is asymptotically independent for all m, i.e. τ = 0.

[Figure 1 about here.]

3. A RANDOM PROCESS WITH WEIBULL MARGINAL DISTRIBUTION

We focus our attention on stochastic modeling of wind speed data. In scientific literature,

a variety of probability distribution has been suggested to describe wind speed frequency

distributions (see Carta et al., 2009, for a review). Among them, the Weibull distribution

constitutes one of the most widely accepted distribution for wind speed and it can be derived

from a physical argument.

Suppose that the two orthogonal wind components (Z1, Z2) are assumed to be individ-

ually Gaussian with zero mean and independent, isotropic fluctuations. The distribution

of the speed V =
√
Z2

1 + Z2
2 is the Rayleigh distribution i.e. the distribution V 2 is the

exponential distribution (Johnson et al., 1995, pag. 417). The Weibull distribution can be

obtained from the Rayleigh distribution through the power law transformation of V that

has been shown to fit better wind speed samples due to its flexible form induced by the

additional shape parameter.

Following this idea, let X2 a special case of the rescaled χ2 random process defined

in Equation (1), with standard exponential marginal distribution. To obtain a stationary

positive random process W = {W (s), s ∈ S} with marginal Weibull distribution we consider

the power transformation

W (s) := ν(κ)X2(s)
1/κ, (4)

where ν(κ) = Γ−1(1 + 1/κ) and κ > 0 is a shape parameter. Note that under this specific

parametrizationW (s) ∼Weibull(κ, ν(κ)), IE(W (s)) = 1 and Var(W (s)) = (Γ (1 + 2/κ) ν2(κ)−

1). In addition, the density of a pair of observations W (s1) = w1 and W (s2) = w2 is easily
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obtained from (3) and (4), namely

fW (w1, w2) =
κ2(w1w2)

κ−1

ν2κ(κ)(1− ρ2)
exp

[
− wκ1 + wκ2
νκ(κ)(1− ρ2)

]
I0

(
2|ρ|(w1w2)

κ/2

νκ(κ)(1− ρ2)

)
. (5)

Using Proposition 1 in Appendix we can also obtain the correlation function of W , namely

ρW (h) =
ν−2(κ)

[Γ (1 + 2/κ)− ν−2(κ)]

[
2F1

(
−1/κ,−1/κ; 1; ρ2(h)

)
− 1
]
, (6)

where the function

pFq(a1, a2, . . . , ap; b1, b2, . . . , bq;x) :=
∞∑
k=0

(a1)k, (a2)k, . . . , (ap)k
(b1)k, (b2)k, . . . , (bq)k

xk

k!
for p, q = 0, 1, 2, . . .

is the generalized hypergeometric function (Gradshteyn and Ryzhik, 2007) and (a)k := Γ(a+

k)/Γ(a), for k ∈ IN ∪ {0}, is the Pochhammer symbol. Note that ρ(h) = 0 implies pairwise

independence, as in the Gaussian case since (5) can be factorized in the product of two

Weibull densities. Additionally, since 2F1 (·, ·, ·; 0) = 1, ρ(h) = 0 implies ρW (h) = 0 that is if

a compactly supported correlation function (Bevilacqua et al., 2019) is used as underlying

correlation model, then also the correlation of the Weibull process is compactly supported.

This feature is particularly appealing from the computational point of view since algorithms

for sparse matrices can be used to handle the correlation matrix associated with ρW (see

Section 4.2).

More important, it can be shown that some nice properties such as stationarity, mean-

square continuity, degrees of mean-square differentiability and long-range dependence can

be inherited from the ‘parent’ Gaussian process Z. In particular, using the results in Stein

(1999, Section 2.4) linking the behavior of the correlation at the origin and the geometrical

properties of the associated process, we can prove that W is mean square continuous if

Z is mean square continuous and it is k-times mean-square differentiable if Z is k-times

mean-square differentiable. Finally, it is trivial to see that the sample path continuity and

differentiability are inherited from the ‘parent’ Gaussian process. As a consequence, mean-

square continuity and differentiability of the sample paths of the Weibull process can be

modeled using suitable flexible parametric correlation functions as in the case of the Gaussian

processes.
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As an illustrative example, Figure 2 collects three simulations of W on a fine grid of

S = [0, 1]2 with Matérn correlation function ρ(h) = 21−ψΓ(ν)−1 (‖h‖/φ)ν Kν (‖h‖/φ) , where

φ, ν > 0 and Ka is a modified Bessel function of the second kind of order a > 0.

We have considered three different parametrization for the smoothness parameter ν =

0.5, 1.5, 2.5. Under this setting, the paths of the ’parent’ Gaussian process is 0, 1, 2−times

mean square differentiable, respectively. The values, φ = 0.067, 0.042, 0.034, of the range

parameter have been chosen in order to obtain a practical range, i.e. the distance at which the

correlation ρ(h), equal to 0.05 equal to 0.2. Additionally we have fixed the shape parameter

of the Weibull distribution as κ = 10, 3, 1. The corresponding correlation functions ρW (h)

are plotted (from left to right) in the top panel of Figure 2 and the bottom panel reports

the histograms of the observations.

It is apparent that the correlation ρW (h) inherits the change of the differentiability at

the origin from ρ(h) when increasing ν. This changes have consequences on the geometrical

properties of the associated random processes. In fact the smoothness of the realizations

(central panel of Figure 2) increase with ν. Note also the flexibility of the Weibull model

when modeling positive data in the bottom panel of Figure 2 since both positive and negative

skewness can be achieved with different values of κ.

[Figure 2 about here.]

Finally, a non-stationary version of W can be easily obtained trough a multiplicative model:

Y (s) := µ(s)W (s), (7)

where µ(s) > 0 is a non random function that specify the mean of Y i.e. IE(Y (s)) = µ(s)

and affects its variance Var(Y (s)) = µ(s)2(Γ (1 + 2/κ) ν2(κ)− 1).

A useful parametric specification for µ(s) is given through log-linear link function

log(µ(s)) = β0 + β1v1(s) + · · ·+ βpvp(s)

where vi(s), i = 1, . . . , p, are covariates and β = (β0, . . . , βp)
> is a vector of regression

parameters but other types of parametric or nonparametric functions can be considered.
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Finally, note that given the observations y(s1), . . . , y(sn) and an estimation of the mean

function µ̂(si), the estimated residuals ŵ(si) = y(si)/µ̂(si) can be treated as a realization of

the stationary Weibull process W with marginal distribution Weibull(κ, ν(κ)) and correlation

ρW (h). This can be used to check the agreement between the distribution of the residuals

and the estimated theoretical marginal distribution or to check the agreement between the

theoretical estimated semi-variogram model obtained from (6) and its empirical counterpart

(see Section 6).

4. ESTIMATION AND PREDICTION

4.1 Pairwise likelihood inference

Suppose that we have observed y1, . . . , yn at the locations s1, . . . , sn and let θ be the vector

of unknown parameters for the Weibull random process (7). The evaluation of the full

likelihood for θ is impracticable since, as outlined in Section 2, the multivariate density can

be derived only in some special cases. A possible alternative (Lindsay, 1988; Varin et al.,

2011) combines the bivariate distributions of all possible distinct pairs of observations (yi, yj).

The weighted pairwise likelihood (WPL) function is given by

pl(θ) :=
n∑
i=1

n∑
j>i

log f(yi, yj; θ)cij (8)

where f(yi, yj; θ) is the bivariate densities of (7) and cij are non-negative weights. The choice

of cut-off weights, namely cij = 1 if ‖si − sj‖ ≤ ∆, and 0 otherwise, for a positive value of

∆, can be motivated by its simplicity and by observing that that dependence between obser-

vations which are distant is weak. Therefore, the use of all pairs may skew the information

confined in pairs of near observations (Davis and Yau, 2011; Bevilacqua and Gaetan, 2015).

Under the increasing domain asymptotics framework (Cressie, 1993) and arguing as in

Bevilacqua and Gaetan (2015), it can be shown that the maximum weighted pairwise like-

lihood (MWPL) estimator θ̂ := argmaxθ pl(θ) is consistent and asymptotically Gaussian.

The asymptotic covariance matrix of the estimator is given by the inverse of the Godambe

information

Gn(θ) := Hn(θ)>Jn(θ)−1Hn(θ),

where Hn(θ) := IE[−∇2 pl(θ)] and Jn(θ) := Var[∇ pl(θ)].
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The matrix Hn(θ) can be estimated by Ĥ = −∇2 pl(θ̂) and the estimate Ĵ of Jn(θ) can

be calculated with a sub-sampling technique (Heagerty and Lele, 1998; Bevilacqua et al.,

2012). Additionally, model selection can be performed by considering the pairwise likelihood

information criterion (PLIC) (Varin and Vidoni, 2005)

PLIC := −2 pl(θ̂) + 2tr(Ĵ Ĥ−1)

which is the composite likelihood version of the Akaike information criterion (AIC).

4.2 Linear prediction

The lack of workable multivariate densities forestalls the use of the conditional distributions

for the prediction. Therefore we choose a sub optimal solution, i.e. a linear predictor for

the random variable Y (s0) at some unobserved location s0 based on the data at locations

s1, . . . , sn , following a suggestion in Bellier et al. (2010) and De Oliveira (2014).

The predictor for the non-stationary Weibull process is given by

Ŷ (s0) := µ(s0)

{
1 +

n∑
i=1

λi(W (si)− 1)

}
, (9)

where W (si) = Y (si)/µ(si). It is a linear predictor and unbiased predictor of Y (s0) for

any vector of weights λ = (λ1, . . . , λn)′. The vector of weights λ = (λ1, . . . , λn)′ is set by

minimizing the mean square error IE[Y (s0) − Ŷ (s0)]
2 with respect to λ. Note that this is

a classical geostatistical approach applied to a multiplicative model instead of the classical

additive model. It turns out that the solution for the predictor is given by the equations of

the simple kriging, (Cressie, 1993, Chapter 3) i.e. λ = C−1W cW (s0) and the associated mean

square prediction error is given by

Var(Ŷ (s0)) := µ2(s0)σ
2
W

{
1− cW (s0)

′C−1W cW (s0)
}
,

where σ2
W := (Γ (1 + 2/κ) ν2(κ) − 1), cW (s0) = (ρW (s0 − si), · · · , ρW (s0 − sn))′ and CW is

the n× n correlation matrix whose (i, j)th element is ρW (si − sj) with ρW (h) given in (6).

In practice the predictor cannot be evaluated since µ(s) and ρW (h) are unknown. For this

reason we suggest to use a plug-in estimate for µ(s) and ρW (h) using the pairwise likelihood

estimates.
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5. SIMULATION RESULTS

In this section we investigate, through some numerical experiments, the relative efficiency

of the MWPL estimator with respect to the maximum likelihood (ML) estimator and the

relative efficiency of the linear predictor (9) with respect to the optimal predictor, under

a specific setting of simulation where the comparisons can be explicitly performed. This

specific setting is when the process is defined on IR and the underlying correlation function

is exponential. Even though this setting may seem artificial, the simulation study gives

an idea of the relative efficiency of the MWPL estimation method and the proposed linear

predictor under more general settings.

We have considered a non-stationary Weibull model (7) observed at 150 locations of a

regular grid 0 = s1 < s2 < · · · < s150 = 1 where the ‘parent’ Gaussian random process has

exponential correlation function ρi,j := ρ(si − sj) = exp(−|si − sj|/φ).

In this case, the multivariate density function associated with the Weibull process is

easily obtained from (2), namely

fY (y1, . . . , yn) =

{
κ

ν(κ)κ

}n
fX2(x1, . . . xn)

n∏
i=1

yi
µi

(10)

where xi := {yi/(ν(κ)µi)}κ, µi := µ(si) and fX2 can be obtained from (2). Therefore this

setup allows a comparison of the MWPL and ML estimation methods.

We set µ(s) = exp{β0+β1v1(s)} where v1(s) is a value from the (0, 1)-uniform distribution

and β0 = 0.25 and β1 = −0.15. Three choices of the shape parameter κ = 1, 3, 10 are coupled

with three values of the range parameter φ = a/3, a = 0.1, 0.2, 0.3.

We simulate 1, 000 realizations from each model setting and for each realization, we

calculate θak, k = 1, . . . , 1000, a = ML,MWPL, estimates of θ = (β0, β1, φ, κ)′. We set ∆

equal to the minimum distance among the points in (8) and we use the true value of the

parameters as starting value for the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm

implemented in the optim function of R software (R Core Team, 2019).

Table 1 reports the relative efficiency of the MWPL estimates with respect to the ML

estimates for each parameter in terms of mean squared error. Additionally, as an overall
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measure of relative efficiency for the multi-parameter case we have considered

RE =

(
det[FMWPL]

det[FML]

)1/p

,

where p = 4 is the number of unknown parameters in θ and the matrix F a is the sample mean

squared error matrix F a = 1000−1
∑1000

k=1

(
θ̂ak − θ

)(
θ̂ak − θ

)′
. In this experiment, using the

WPL instead of the likelihood function, we loose about 13% of the overall efficiency in the

worst case which is an encouraging result. It is interesting to note that the relative efficiency

of each parameter is different, but only the relative efficiency of the shape parameter κ is

affected when we consider different strengths of the spatial dependence, i.e. different values

of φ.

[Table 1 about here.]

We modify slightly our example to illustrate the quality of the linear predictor (9) in terms

of the mean squared prediction error (MSPE). Suppose that we have observed Y (s1) =

y1, . . . , Y (sn) = yn and we want to predict Y (sn+1) with sn+1 > sn. In such case the

conditional expectation of Y (sn+1), i.e. the predictor the minimizes the MSPE, can be

derived in closed form (see Appendix), namely

Y ∗(sn+1) :=Γ

(
1

κ
+ 1

)
(1− ρ2n,n+1)

1/κµn+1ν(κ)

× exp

{
− [yn/(µnν(κ))]κ

(1− ρ2n−1,n)

[
(1− ρ2n−1,nρ2n,n+1)

(1− ρ2n,n+1)
− 1

]}
× 1F1

(
1

κ
+ 1; 1;

[yn/(µnν(κ))]κ

(1− ρ2n,n+1)
ρ2n,n+1

)
.

Having collected n = 21 observations at locations s1 = 0, s2 = 0.05, . . . , sn = 1, we

predict the random variable Y (sn+1) at sn+1 = 1.05 by means of the optimal predictor

Y ∗(sn+1), and the linear predictor Ŷ (sn+1) as in (9).

We simulate 1, 000 realizations from the stationary Weibull model, i.e. µ(si) = 1, with

the same dependence structure as before. Then we compute the average of the squared

prediction errors [Y (s21) − Y ∗(s21)]2 and [Y (s21) − Ŷ (s21)]
2 and their ratio. Table 2 shows

the ratio between the linear and the optimal predictor. This ratio deteriorates when the

strength of the dependence increases as expected, but the loss of the relative efficiency does

not exceed thirty-two percent.
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[Table 2 about here.]

6. WIND SPEED DATA EXAMPLE

Our motivating example is a dataset of daily average wind speeds from a network of mete-

orological stations in the Netherlands. The dataset is stored on the website of the KNMI

Data Centre (https://data.knmi.nl/about) and its access is provided under the OpenData

policy of the Dutch government.

Among the fifty stations in the dataset, we extracted thirty stations (Figure 3-a) that do

not contain missing data in the period from 01/01/2000 to 31/12/2008 .

Figures 3-(b,c,d) show the time series plots of daily mean wind speeds at four different

locations (Cabauw, Nieuw Beerta, Hoek Van Holland and Rotterdam) in 2000-2004. The

seasonal trend is clearly recognizable and the heteroscedasticity seems related to this trend.

Furthermore if we consider the wind speed box-plots for each station (Figure 4-a), it is clear

that the distribution also depends on the location. To avoid a complicated spatial trend

specification, we transform Y (s, t), the observation of location s and time t, to Ỹ (s, t) =

Y (s, t)/a(s) where a(s) is the average of the observations at site s. The transformation

seems to have an effect of reducing the differences in distribution, see (Figure 4-b).

We specify a multiplicative model for the transformed data, namely

Ỹ (s, t) = µ(t)E(s, t), (11)

in which we conveys the seasonal pattern in the deterministic positive function µ(t) and

E = {E(s, t)} is a stationary positive process with unit mean. In particular we specify a

harmonic model for the temporal trend, i.e.

log µ(t) = β0 +

q∑
k=1

{
β1,k cos

(
2πkt

P

)
+ β2,k sin

(
2πkt

P

)}
(12)

where we set P = 365.25 days to handle leap years.

In the sequel we want to compare two specifications of E, namely the proposed Weibull

model E(s, t) = W (s, t) and a log-Gaussian model E(s, t) = exp(σZ(s, t) − σ2/2), σ > 0

where Z is a standard space-time Gaussian process.
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We first get a preliminary estimate of the seasonal effect µ(t) assuming space-time inde-

pendence and by using least squares and regressing q = 4 annual harmonics on the logarithm

of the observations

log Ỹ (s, t) = β0 +
4∑

k=1

{
β1,k cos

(
2πkt

P

)
+ β2,k sin

(
2πkt

P

)}
+ ε(s, t) (13)

with IE(ε(s, t)) = 0 and Var(ε(s, t)) = σ2
ε < ∞. Under the Weibull marginal distribution

for E(s, t) we identify β0 with β0 + log(ν(κ))− γ/κ since − logW (s, t) is a Gumbel random

variable with mean − log ν(κ) + γ/κ and γ ≈ 0.5772 is the Euler–Mascheroni constant.

Instead, under the log-Gaussian marginal distribution for E(s, t) we identify β0 with β0 −

σ2/2.

We have used the values e(s, t) = exp(ε̂(s, t)), where ε̂(s, t) are the estimated resid-

uals of the fitted regression model (13), for getting more insight about soundness of the

model specification (11) for the wind speed data. Since parameter µ(t) controls at the same

time the expectation and the variance of Ỹ (s, t), it is expected that the residuals e(s, t)

are homoschedastic. This is confirmed by grouping e(s, t) by month and looking at the

corresponding boxplots (Figure 5-(a)). Moreover comparing the overall qq-plots of e(s, t)

(Figure 5-(b)) there is convincing evidence that a Weibull distribution is more appropriate

with respect to the log-Gaussian one.

In addition, if we transform the residuals of each location to the normal scores by means

of the empirical transform, the scatter-plots of the normal scores of Rotterdam station versus

the normal scores of three other stations (Figure 6) point out that there is more dependence

in the upper corner, i.e. the lack of symmetry. This implies that the Weibull model seems

more appropriate for modeling the pairwise dependence with respect to a log-Gaussian model

since its copula is reflection symmetric.

Finally, the spatial and temporal marginal empirical semi-variograms of the residuals

exhibit a strong and long decay dependence for the spatial margin and a weak dependence

for the temporal margin. This suggests the use of the following space-time correlation (Porcu

et al., 2019):

ρ(h, u) =
1

(1 + ‖h‖/φS)2.5

(
1− |u|

φT (1 + ‖h‖/φS)−φST

)3.5

+

, (14)
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with φS > 0, φT > 0, 0 ≤ φST ≤ 1. When the space-time interaction parameter φST is

zero, then the space-time correlation is simply the product of a spatial Cauchy correlation

function and a temporal Wendland correlation function (Bevilacqua et al., 2019), i.e. a

separable model for the underlying spatio temporal Gaussian process. However, from (6) it

is apparent that separability is not inherited for the Weibull and Log-Gaussian models. In

this application, we have considered three different degree of space-time interaction by fixing

φST = 0, 0.5, 1.

[Figure 3 about here.]

[Figure 4 about here.]

[Figure 5 about here.]

[Figure 6 about here.]

[Figure 7 about here.]

Using the preliminary estimates of the regression parameters as starting values in the

BFGS (Fletcher, 1987) optimization algorithm we have fitted the Weibull and Log-Gaussian

models with WPL using seven years (2000-2007). The last year has been used for the

evaluation of the prediction performance using time-forward predictions. Note that the

sample size (87630 observations) prevents the use of a full likelihood approach even for the

Log-Gaussian model.

The estimation of regression and dependence parameters for the six models is based on

WPL, with a cut-off weight cij equal to one if |ti−tj| ≤ 1 and zero otherwise. Table 3 collects

the results of the estimation stage including the standard error estimates obtained with a

sub-sampling technique as in Bevilacqua et al. (2012). As one could expect, there is no

big difference in trend estimates among different models and correlation functions. However

considering the PLIC criterion, our preference goes to the Weibull model with φST = 0.

For the Weibull case with φST = 0, using the MWPL estimates of the regression param-

eters we first compute the estimated residuals and then we compute the empirical spatio-

temporal semi-variogram of the residuals. We compare it with the estimated theoretical
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semi-variogram obtained plugging the MWPL estimates into the theoretical spatio-temporal

semi-variogram i.e. γW (h, u) = σ2
W (1− ρW (h, u)) with ρW given by:

ρW (h, u) =
ν−2(κ)

[Γ (1 + 2/κ)− ν−2(κ)]

[
2F1

(
−1/κ,−1/κ; 1; ρ2(h, u)

)
− 1
]
. (15)

Figure 7 shows the good agreement of the estimated theoretical spatial and temporal marginal

semi-variograms (i.e. the estimation of γW (h, 0) and γW (0, u) respectively) with the empirical

counterparts.

[Table 3 about here.]

We want to further evaluate the predictive performances of the proposed model by con-

sidering one-day ahead predictions for the wind speed at the thirty meteorological stations

but we have limited the number of predictor variables due to the computational load. Specif-

ically, the predictor variables are the 150 wind speeds observed during the past five days at

the stations.

For the Weibull models, we used the simple kriging predictor (9). For the Log-Gaussian

models, we have chosen the conditional expectation given the past observations (De Oliveira,

2006, formula 2). In both cases, the predictions are obtained by plugging in the estimated

parameters in the formulas. As benchmark, we have also considered the näıve predictor

Ŷ (si, t) = y(si, t − 1), that uses the observation recorded the day before at the station.

The prediction performances are compared looking to the root-mean-square prediction error

(RMSE) and the mean absolute prediction error (MAE).

In addition, we considered the sample mean of the continuous ranked probability score

(CRPS) to evaluate the marginal predictive distribution performance (Gneiting and Raftery,

2007). For a single predictive cumulative distribution function F and a verifying observation

y, the score is defined as

CRPS(F,y) =

∞∫
−∞

(F (t)− 1[y,∞](t))
2dt.

For a Weibull distribution, we have derived an analytical expression of the corresponding

score (see the Appendix) which turns out to be, under our parametrization:

CRPSW (Fκ,µν(κ), y) = y {2 (1− exp{−(y/µν(κ))κ} − 1}+2µ

[
2−1/k − ν(κ)γ

(
1 +

1

κ
,

yκ

(µν(κ))κ

)]
,
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where γ(s, z) =
∫ z
0
ts−1 e−t dt is the lower Gamma incomplete function.

Baran and Lerch (2015) derived the corresponding one for a Log-Gaussian random vari-

able Y = exp(α+βZ) with cdf Fα,β, where Z is standard Gaussian random variable. Under

our parametrization:

CRPSLG(Fµ−σ2/2,σ, y) = y [2Φ(l(y)− 1)] + 2eµ
[
1− Φ

(
σ/
√

2
)
− Φ (l(y)− σ)

]
,

where Φ(·) is the CDF of the standard Gaussian distribution and l(y) = [log(y) − (µ −

σ2/2)]/σ.

As a general consideration the prediction based on a model (Weibull or Log-Gaussian)

outclasses always the näıve prediction (see Table 4). Moreover, even though the simple

kriging predictor is a suboptimal solution, the Weibull model outperforms the Log-Gaussian

model in terms of RMSE, MAE. Finally also the CRPS of the Weibull model outperform

the Log-Gaussian model. Note that CRPS values do not dependent on φST . This is not

surprising since the estimated marginal parameters for both models are very similar for

φST = 0, 0.5, 1.

Among the fitted covariance models, we give again a preference to the correlation function

with φST = 0.

[Table 4 about here.]

7. CONCLUDING REMARKS

Motivated by a spatio-temporal analysis of daily wind speed data from a network of meteo-

rological stations in the Netherlands, we proposed a non-stationary stochastic process with

Weibull marginal distributions for regression and dependence analysis when dealing with

positive continuous data. In contrast to a Gaussian copula or, more generally, to monotonic

transformations of a Gaussian process, our model offers a workable solution in the presence

of different dependence in the lower and upper distribution tails, i.e. reflection asymmetry.

Additionally, we have shown that nice properties such as stationarity, mean-square con-

tinuity and degrees of mean-square differentiability are inherited from the ‘parent’ Gaussian
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random process. However, discontinuity of the paths can be easily induced by choosing a

discontinuous correlation function for the ’parent’ Gaussian process.

We also remark that even though we have limited ourselves to continuous Euclidean

space, our models can be extended to a spherical domain (Gneiting, 2013; Porcu et al.,

2016) or to a network space. In this respect the Xm random process should represent a

generalization of the model in Warren (1992).

A common drawback for the proposed model is the lack of an amenable expression of the

density outside of the bivariate case that prevents an inference approach based on likelihood

methods and the derivation of an optimal predictor that minimizes the mean square predic-

tion error. We have shown with some numerical experiments that an inferential approach

based on the pairwise likelihood is an effective solution for estimating the unknown param-

eter. On the other hand probabilities of multivariate events could be evaluated by Monte

Carlo method since the random processes can be quickly simulated. However, our solution

to the conditional prediction, based on a linear predictor, is limited and deserves further

consideration even if, in our simulations and real data example, it has been performed well.
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of Statistics (1933-1960) 5, 137–150.

Krishnamoorthy, A. S. and Parthasarathy, M. (1951). A multivariate Gamma-type distribu-

tion. The Annals of Mathematical Statistics 22, 549–557.

Lindsay, B. (1988). Composite likelihood methods. Contemporary Mathematics 80, 221–239.

24



Ma, C. (2010). χ2 random fields in space and time. IEEE Transactions on Signal Processing

43, 378–383.

Masarotto, G. and Varin, C. (2012). Gaussian copula marginal regression. Electronic Journal

of Statistics 6, 1517–1549.

Neykov, N. M., Neytchev, P. N., and Zucchini, W. (2014). Stochastic daily precipitation

model with a heavy-tailed component. Natural Hazards and Earth System Sciences 14,

2321–2335.

Porcu, E., Bevilacqua, M., and Genton, M. (2016). Spatio-temporal covariance and cross

covariance functions of the great circle distance on a sphere. Journal of the American

Statistical Association 111, 888–898.

Porcu, E., Bevilacqua, M., and Genton, M. G. (2019). Nonseparable space-time covariance

functions with dynamical compact supports. Statistica Sinica to appear.

Pryor, S. C. and Barthelmie, R. J. (2010). Climate change impacts on wind energy: a review.

Renewable and Sustainability Energy Reviews 14, 430–437.

R Core Team (2019). R: A Language and Environment for Statistical Computing. R Foun-

dation for Statistical Computing, Vienna, Austria.

Royen, T. (2004). Multivariate Gamma distributions II. In Encyclopedia of Statistical Sci-

ences, pages 419–425. New York: John Wiley & Sons.

Sibuya, M. (1960). Bivariate extreme statistics. Annals of the Institute of Statistical Math-

ematics 11, 195–210.
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APPENDIX

In the sequel we will exploit the identity for the hypergeometric function 0F1,

0F1(; b;x) = Γ(b)x(1−b)/2Ib−1(2
√
x).

where Ia(x) is the modified Bessel function of the first kind of order a.

Proposition 1. The (a, b)−th product moment of any pairs W1 := W (s1) and W2 := W (s2)

is given by

IE(W a
1 W

b
2 ) =

Γ (1 + a/κ) Γ (1 + b/κ)

Γ (1 + 1/κ)a+b
2F1

(
−a/κ,−b/κ; 1; ρ2

)
(A.1)

where ρ = ρ(s1 − s2)

Proof. Using the series expansion of hypergeometric function 0F1, we have:

IE(W a
1 W

b
2 ) =

κ2Γ (1 + 1/κ)2κ

1− ρ2

∞∫
0

∞∫
0

uκ+a−1vκ+b−1 exp

{
−Γ (1 + 1/κ)κ

(1− ρ2)
(uκ + vκ)

}

× 0F1

(
1;
ρ2(uv)κΓ (1 + 1/κ)2κ

(1− ρ2)2

)
dudv

=
κ2Γ (1 + 1/κ)2κ

1− ρ2
∞∑
m=0

1

(m!)2

(
ρ2Γ (1 + 1/κ)2κ

(1− ρ2)2

)m

×
∞∫
0

∞∫
0

exp

{
−Γ (1 + 1/κ)κ

(1− ρ2)
(uκ + vκ)

}
dudv

=
κ2Γ (1 + 1/κ)2κ

1− ρ2
∞∑
m=0

I(m)

(m!)2

(
ρ2Γ (1 + 1/κ)2κ

(1− ρ2)2

)m

(A.2)

Using Fubini’s Theorem and (3.381.4) in Gradshteyn and Ryzhik (2007), we obtain

I(m) =

∞∫
0

uκ+a+mκ−1 exp

{
−Γ (1 + 1/κ)κ

(1− ρ2)
uκ
}
du

×
∞∫
0

vκ+b+mκ−1 exp

{
−Γ (1 + 1/κ)κ

(1− ρ2)
vκ
}
dv

= κ−2Γ (1 + a/κ+m) Γ (1 + b/κ+m)

×
(

1− ρ2

Γ (1 + 1/κ)κ

)1+a/κ+m(
1− ρ2

Γ (1 + 1/κ)κ

)1+b/κ+m

(A.3)
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Combining equations (A.2) and (A.3), we obtain

IE(W a
1 W

b
2 ) =

(1− ρ2)1+(a+b)/κΓ (1 + a/κ) Γ (1 + b/κ)

Γ (1 + 1/κ)a+b

× 2F1

(
1 + a/κ, 1 + b/κ; 1; ρ2

)

Finally, using Euler transformation, we obtain (A.1).

Proposition 2. Let s1 < s2 < · · · < sn < sn+1, with si ∈ IR. For the Weibull process Y with

underlying exponential correlation function, the conditional expectation of Y a(sn+1), a > 0,

given Y (s1) = y1, . . . , Y (sn) = yn) is

IE(Y a(sn+1)|Y (s1) = y1, . . . , Y (sn) = yn) = Γ
(a
κ

+ 1
)

(1− ρ2n,n+1)
a/κ[ν(κ)µn+1]

a

× exp

{
− yκn

(1− ρ2n−1,n)[ν(κ)µn]κ

[
(1− ρ2n−1,nρ2n,n+1)

(1− ρ2n,n+1)
− 1

]}
× 1F1

(
a

κ
+ 1; 1;

ρ2n,n+1y
κ
n

[ν(κ)µn]κ(1− ρ2n,n+1)

)
Proof. First, note that using (10), the density of the random variable Y (sn+1)|(Y (s1) =

y1, . . . , Y (sn) = yn) is easily obtained as:

f(yn+1|y1, . . . , yn) =
κyκ−1n+1

νκ(κ)µκn+1(1− ρ2n,n+1)
exp

{
− 1

(1− ρ2n,n+1)

[
yn+1

ν(κ)µn+1

]κ}
× exp

{
− yκn

(1− ρ2n−1,n)[ν(κ)µn]κ

[
(1− ρ2n−1,nρ2n,n+1)

(1− ρ2n,n+1)
− 1

]}
× I0

(
2|ρn,n+1|(ynyn+1)

κ/2

νκ(κ)(µnµn+1)κ/2(1− ρ2n,n+1)

)
.
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Using the series expansion of hypergeometric function 0F1, we obtain:

IE(Y a(sn+1)|Y (s1) = y1, . . . , Y (sn) = yn) =
κ

νκ(κ)µκn+1(1− ρ2n,n+1)

× exp

{
−ν−κ(κ)

[
(1− ρ2n−1,nρ2n,n+1)y

κ
n

µκn(1− ρ2n−1,n)(1− ρ2n,n+1)
− yκn
µκn(1− ρ2n−1,n)

]}

×
∞∫
0

yκ+a−1n+1 e
− 1

(1−ρ2n,n+1)

[
yn+1

ν(κ)µn+1

]κ
0F1

(
; 1;

ρ2n,n+1(ynyn+1)
κ

ν2κ(κ)(µnµn+1)κ(1− ρ2n,n+1)
2

)
dyn+1

=
κ

νκ(κ)µκn+1(1− ρ2n,n+1)

× exp

{
−ν−κ(κ)

[
(1− ρ2n−1,nρ2n,n+1)y

κ
n

µκn(1− ρ2n−1,n)(1− ρ2n,n+1)
− yκn
µκn(1− ρ2n−1,n)

]}
×
∞∑
m=0

I(m)

(m!)2

(
ρ2n,n+1y

κ
n

ν2κ(κ)(µnµn+1)κ(1− ρ2n,n+1)
2

)m
(A.4)

where

I(m) =

∞∫
0

yκ+a+κm−1n+1 exp

{
− 1

(1− ρ2n,n+1)

[
yn+1

ν(κ)µn+1

]κ}
dyn+1

= κ−1[(1− ρ2n,n+1)ν
κ(κ)µκn+1]

a/κ+m+1Γ
(a
κ

+m+ 1
)

(A.5)

Combining equations (A.4) and (A.5), we obtain the conditional expectation in proposition

2.

Proposition 3. The CRPS associated with the Weibull(α, β) distribution is given by

CRPS(Fα,β, y) = y[2Fα,β(y)− 1]− 2βγ

(
1 +

1

α
,
yα

βα

)
+ 2−1/αβΓ

(
1 +

1

α

)
(A.6)

where Fα,β(y) = 1 − exp−(y/β)
α

and γ(s, z) =

∫ z

0

ts−1 e−t dt, s > 0 is the lower incomplete

gamma function.

Proof. We first note that the CRPS can also be written as

CRPS(F, y) = IEF |Y − y| −
1

2
IEF |Y − Y ′|

where Y and Y ′ are independent random variables with cumulative distribution function F

and finite first moment. The first term can be integrated out using the properties of the
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Weibull density, yielding

IEF |Y − y| =

y∫
−∞

(y − t)fα,β(t)dt−
∞∫
y

(y − t)fα,β(t)dt

= yFα,β(y)−
y∫

−∞

α

βα
tα exp

[
−
(
t

β

)α]
dt− y[1− Fα,β(y)]

+

∞∫
y

α

βα
tα exp

[
−
(
t

β

)α]
dt

= y[2Fα,β(y)− 1]− βγ
(

1 +
1

α
,
yα

βα

)
+ βΓ

(
1 +

1

α
,
yα

βα

)

where γ(s, z) =

∫ z

0

ts−1 e−t dt, s > 0 is the lower incomplete gamma function and

Γ(s, z) = Γ(s)− γ(s, z) is the upper incomplete gamma function. We have:

IEF |X − y| = y[2Fα,β(y)− 1]− β
[
2γ

(
1 +

1

α
,
yα

βα

)
− Γ

(
1 +

1

α

)]
The second term can be calculated using its relation to the Gini concentration ratio G:

IEF |Y − Y ′| =
∫
IR2

+

|y − y′|fα,β(y)fα,β(y′)dy dy′ = 2IE(Y )G = 2βΓ

(
1 +

1

α

)
(1− 2−1/α)

Putting both terms together, we obtain

CRPS(Fα,β, y) = y[2Fα,β(y)− 1]− 2βγ

(
1 +

1

α
,
yα

βα

)
+ 2−1/kβΓ

(
1 +

1

α

)
.
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Figure 1: Xm process: bivariate density contour plots for different values of m and ρ after
transforms to N (0, 1) margins with m = 1, 2, 10 from top to bottom and ρ = 0.6, 0.95 from
left to right. The background image is a grid of colored pixels with colors corresponding to
the values of the standard bivariate Gaussian density with correlation ρ.
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Figure 2: Top: comparison between ρ(h), the correlation function of the ‘parent’ Gaussian
process (a Matérn correlation function with smoothness parameter ν = 0.5, 1.5, 2.5 and
practical range approximately equal to 0.2), with the associated correlation of the Weibull
model ρW (h) (dashed line) with shape parameter κ for (κ, ν) = (10, 0.5), (3, 1.5), (1, 2.5),
from left to right. Center: three realizations of the Weibull model W under the setting
(a),(b), and (c). Bottom: histograms of the realizations in (d),(e), and (f).

33



50.5°N

51°N

51.5°N

52°N

52.5°N

53°N

53.5°N

4°E 5°E 6°E 7°E

longitude

la
tit

u
d
e

0

50

100

150

2000 2001 2002 2003 2004

Date

0
.1

 m
m

/s
e
c

Nieuw Beerta and Rotterdam

(a) (b)

0

50

100

2000 2001 2002 2003 2004

Date

0
.1

 m
m

/s
e
c

Cabauw and Rotterdam

0

50

100

150

2000 2001 2002 2003 2004

Date

0
.1

 m
m

/s
e
c

Hoek Van Holland and Rotterdam

(c) (d)

Figure 3: Wind speed data of Netherlands. (a) Map of the meteorological stations selected for
our case study. Symbols N, �, �,  correspond to Cabauw, Hoek Van Holland, Nieuw Beerta
and Rotterdam stations; (b-c-d) Time series plots (black lines¡) of the daily wind speed data
(01/01/2000-31/12/2004) at Cabauw, Hoek Van Holland and Nieuw Beerta stations versus
Rotterdam stations (red line).
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Figure 4: (a) boxplots of the daily wind speed data for each meteorological stations over the
period 2000-2008; (b) boxplots of the daily wind speed data rescaled by the average over the
considered period.
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Figure 7: From left to right: Empirical spatial and temporal marginal semi-variograms of
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κ φ = 0.1/3 φ = 0.2/3 φ = 0.3/3

1

β0 0.964 0.967 0.956
β1 0.862 0.860 0.874
φ 1.045 1.037 1.034
κ 0.885 0.703 0.550

RE 0.954 0.913 0.884

3

β0 0.953 0.947 0.930
β1 0.862 0.860 0.874
φ 1.045 1.036 1.034
κ 0.885 0.703 0.550

RE 0.955 0.914 0.886

10

β0 0.947 0.933 0.911
β1 0.862 0.860 0.874
φ 1.044 1.036 1.034
κ 0.885 0.703 0.550

RE 0.955 0.914 0.886

Table 1: Mean squared error relative efficiency for each parameter and overall relative effi-
ciency (RE) of MWPL vs ML.
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φ = 0.1/3 φ = 0.2/3 φ = 0.3/3
κ = 1 0.953 0.805 0.687
κ = 3 0.960 0.825 0.721
κ = 10 0.967 0.851 0.764

Table 2: Relative efficiency of the linear predictor versus the optimal predictor for a
stationary Weibull model defined on S = [0, 1] with underlying exponential correlation
ρ(h) = exp{−|h|/φ}.
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φST = 0 φST = 0.5 φST = 1
Weibull Log-Gaussian Weibull Log-Gaussian Weibull Log-Gaussian

β0 −0.0222 0.0166 −0.0222 0.0168 −0.0221 0.0170
(0.0026) (0.0015) (0.0026) (0.0015) (0.0026) (0.0016)

β1,1 0.0747 0.0787 0.0747 0.0787 0.0747 0.0787
(0.0025) (0.0024) (0.0025) (0.0026) (0.0025) (0.0029)

β2,1 0.1822 0.1995 0.1822 0.1996 0.1822 0.1996
(0.0030) (0.0028) (0.0029) (0.0028) (0.0029) (0.0030)

β1,2 −0.0087 −0.0270 −0.0087 −0.0270 −0.0087 −0.0270
(0.0567) (0.0192) (0.0566) (0.0190) (0.0566) (0.0200)

β2,2 0.0138 0.0107 0.0138 0.0107 0.0137 0.0107
(0.0306) (0.0489) (0.0306) (0.0484) (0.0306) (0.0509)

β1,3 0.0274 0.0237 0.0274 0.0237 0.0274 0.0237
(0.0192) (0.0229) (0.0192) (0.0224) (0.0192) (0.0234)

β2,3 −0.0339 −0.0519 −0.0338 −0.0519 −0.0338 −0.0519
(0.0101) (0.0110) (0.0100) (0.0110) (0.0100) (0.0116)

β1,4 0.0093 0.0273 0.0093 0.0273 0.0093 0.0273
(0.0548) (0.0215) (0.0548) (0.0213) (0.0548) (0.0224)

β2,4 0.0042 0.0110 0.0042 0.0110 0.0042 0.0110
(0.1238) (0.0526) (0.1238) (0.0522) (0.1238) (0.0549)

κ 2.0265 2.0264 2.0263
(0.0264) (0.0257) (0.0255)

σ2 0.3855 0.3858 0.3862
(0.0009) (0.0009) (0.0011)

φS
4067.21 1066.277 4071.738 1072.0239 4076.578 1078.6964

(89.2924) (3.4777) (61.9349) (3.4782) (50.1251) (3.3496)

φT
12.2794 4.9687 12.4249 5.1731 12.5715 5.3820
(0.4035) (0.0480) (0.4057) (0.0529) (0.4080) (0.0532)

PLIC 8864239 10392021 8864463 10392832 8864821 10405428

Table 3: MWPL estimates for Weibull and Log-Gaussian models for the correlation model
(14). The standard error of the estimates are reported between the parentheses.
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φST = 0 φST = 0.5 φST = 1
RMSE MAE CRPS RMSE MAE CRPS RMSE MAE CRPS

W 0.4461 0.3486 0.3057 0.4469 0.3491 0.3057 0.4502 0.3503 0.3057
LG 0.4517 0.3555 0.3068 0.4555 0.3585 0.3068 0.4611 0.3629 0.3068

Näıve MAE= 0.5137, RMSE= 0.4021

Table 4: Preditiction performances for the Weibull and Log-Gaussian models for different
space time interaction.
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