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1 Problem Definition
Effective map generalisation involves careful examination of the interactions between all map
symbols. These interactions may give rise to obvious graphic conflicts of proximity and
overlap. They may also determine whether important messages, regarding the structure and
form of the mapped features, are effectively communicated (for example, in the alignment of
buildings, parallelism between neighbouring rivers and roads, and the clustering of woods and
lakes). Graphic conflict can be addressed by a combination of possible actions such as
elimination, displacement, amalgamation and boundary simplification, combined with
appropriate techniques for evaluating the quality of the result. However, the application of an
individual operator may have an effect on a map symbol that was not previously in conflict,
resulting in propagation of conflict within the map space. A partial solution to this problem is
for objects to be moved after scaling so that they remain distinct, visual entities. The research
presented here, which is related to previous work [1] [2], describes a procedure that makes use
of the displacement of multiple map objects in order to resolve graphic conflict.

The solution presented here is a combinatorial problem the size of which depends upon the
number of objects represented and the position of each object within an (x, y) co-ordinate space.
Given that it is undesirable to displace an object too far from its original position, it is necessary
to constrain its movement to within a short distance, which reduces the co-ordinate space
considered for each object. Here, each of n discrete polygonal objects is assigned a continuous
space of v co-ordinates (x, y pairs) into which they can possibly move. This results in vn

possible distinct map configurations; the assumption being that some of these configurations
will contain less conflict than the original. Finding an acceptable configuration by means of an
exhaustive search is, however, not practical for realistic values of n and v giving rise to the need
for a heuristic search approach.  The next section provides an introduction to the heuristic
procedure, the Genetic Algorithm, selected by the authors.

2 Genetic Algorithms
Genetic Algorithms are adaptive search methods that can be used to solve optimisation
problems. They are based on the genetic process of evolution within biological organisms.
Which is to say that, over many generations, populations have evolved according to the
principles of natural selection. By adopting this process, a GA is able to ‘evolve’ solutions to
real world problems [3].
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Solutions are evolved utilising a genome (or structure of the problem, where a single instance of
which represents a solution to the problem) and a genetic algorithm (the procedure utilised to
control how evolution takes place). The GA makes use of genome operators (associated with
the genome) and selection/replacement strategies (associated with the GA) to generate new
individuals. The GA uses an objective function to determine how fit each of these individual
genomes is for survival. So, given a choice of GA, three things that are required to solve a
problem are given below:

•  The structure of the problem must be defined and a representation for the genome
determined;

•  Given the genome, define suitable genetic operators;
•  Using the genome, define an objective function that measures the relative quality of a

solution.

In summary, when using a GA to solve an optimisation problem, a series of variables are
combined to form a single solution to the problem within a single genome. The GA creates a
population of solutions based on the genome. The GA then operates on this population to
evolve an optimum, or near optimum, solution to the problem utilising the objective function.

2.1 The Genome
This section outlines the decision making process that determines how an individual solution
(the genome) should be modelled and physically represented. When defining a representation
appropriate to the problem at hand, a data structure that is minimal but also completely
expressive should be selected. For example, if a real value and a number of integers can
represent a solution to a problem, then the genome’s data structure should be defined using
these characteristics. The representation should not include any information other than what is
required to express a solution to the problem. Although it may appear beneficial to include extra
genetic material beyond that which is required to fully express a solution, this tends to increase
the size of the search space and hinder the performance of the algorithm. In addition to defining
the structure of the genome's content, ranges of acceptable values for each constituent part of
the genome are also provided in a separate data structure. For example, each of a set of integers
may be constrained to fall within an individual, pre-specified, range. Finally, each genome will
have a ‘fitness’ score associated with it that determines its prospects for selection. This
representation is an independent component of the general GA procedure, allowing for separate
decision making processes to be made. For example, a different GA procedure might be
adopted without any need to change the structure of the genome. This is possible because the
operators necessary to evolve new solutions are associated with the genome and not the GA
itself.

2.2 The Genome Operators
Given a general GA procedure and genome it is also necessary to determine how operators
specific to the genome should behave. Three operators can be applied to the genome, these
being initialisation, mutation and crossover. These operators allow a population to be given a
particular bias and allow for mutations or crossovers specific to the problem representation.

The initialisation operator determines how each genome is initialised. Here, the genome is
‘filled’ with the genetic material from which all new solutions will evolve. Next, the mutation
operator defines the procedure for mutating the genome. Mutation, when applied to a child,
randomly alters a gene with a small probability. It provides a small amount of random search
that facilitates convergence at the global optimum. Finally, the crossover operator defines the
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procedure for generating a child from two parent genomes. The crossover operator produces
new individuals as ‘offspring’, which share some features taken from each ‘parent’.

These operators are independent functions in themselves, specific to the structure of the
genome, which may be altered in isolation to the other components described in these sections.
For example, the crossover operator might be changed from a single point  to a two-point
implementation without any need to adjust the other components.

2.3 Objective Functions and Fitness Scaling
Genetic algorithms are often more attractive than gradient search methods because they do not
require complicated differential equations or a smooth search space. The genetic algorithm
needs only a single measure of how good an individual is compared with the other individuals.
The objective function provides this, needing only a genome, or solution, and genome specific
instructions for assigning and returning a measure of the solution's quality. The objective score
is the raw value returned by the objective function. The fitness score is the possibly transformed
objective score used by the genetic algorithm to determine the fitness of individuals for mating.
Typically, the fitness score is obtained by a linear scaling of the raw objective scores. Given
this, the objective function can be altered in isolation from the GA procedure and genome
operators, and, once a representation for the problem has been decided upon, without any need
to change the structure of the genome.

2.4 The Genetic Algorithm
Here, we present an overview of a general GA procedure, explaining how each phase fits into
the evolutionary process. The GA procedure (illustrated in Figure 1) determines when the
population is initialised, which individuals should survive, which should reproduce, and which
should die. At each generation certain, highly fit, individuals are allowed to reproduce (through
selection) by ‘breeding’ with other individuals within the population.  Offspring may then
undergo mutation, which is to say that a small part of their genetic material is altered. Offspring
are then inserted into the population, in general replacing the worst members of the existing
population although other strategies exist (e.g. random). Typically, evolution stops after a given
number of generations, but fitness of best solution, population convergence, or any other
problem specific criterion can be used.

2.5 Steady-state GA
Of the variations of GA available, the work presented in this paper utilised the Steady State GA
(SSGA), similar to that outlined by [4]. The SSGA uses overlapping populations with a pre-
specified amount of overlap (expressed here as a percentage), these being the initial and next
generation populations. The SSGA first creates a population of individuals by cloning the initial
genome. Then, at each generation during evolution, the SSGA creates a temporary population
of individuals, adds these to the previous population and then removes the worst individuals in
order that the current population is returned to its original size. This strategy means that the
newly generated offspring may or may not remain within the new population, dependant upon
how they measure up against the existing members of the population.  The following sections
examine each component of our SSGA implementation.

3 Problem decomposition and modelling
In this section, considerations relating to the map generalisation model are described, and an
overview of the model’s underlying representation and physical implementation is provided,
along with a detailed discussion about the objective function and its mathematical formulation.
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Fig. 1. Genetic Algorithm Evolution Procedure.

Fig. 2. Genome and Phenotype. Each offset has been allocated 4 bits and can range between -2
and +2.

Fig. 3. A population of genomes.
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3.1 Underlying structure
Here we examine the structure of a map display and introduce the concept of a Displacement
Vector Template (DVT), within which an object can be moved. A map display is made up of
fixed, linear objects and modifiable, detached polygonal objects.  Each linear or polygonal
object, n, is represented by a collection of vertices, γ ∈  {γn1… γni} (stored as x, y co-ordinates)
and edges (arcs between vertices). In order that conflict is removed polygonal objects are
displaced to a new position where conflict is minimised. The nominally available search space
is the whole x, y co-ordinate space but this is unrealistic, and unnecessary as we will show, so a
continuous neighbourhood, of radius d, of accessible co-ordinates is associated with each
polygonal object.

The final position an object can occupy can not extend beyond the area delineated by the DVT.
Therefore, each modifiable object has a continuous space of v (x, y pairs) possible states,
providing a total of vn possible configurations for a given map display.  For each solution, an
object exists in one of its displaced positions at any given time. An object's initial map position
within its DVT is stored separately from its associated displacement value, with the two
combining to give its current location in geometric space.

3.2 Map display evaluation
The success of any discrete optimisation problem rests upon its objective function, the purpose
of which is to provide a measure for any given solution that represents its relative quality. The
objective function used here works by calculating and summing the penalties associated with
the collection of objects within our state representation. The objective score associated with a
given configuration is an abstraction of the penalties associated with the relationships between
each conflicting polygonal and linear object and, to a lesser extent, the distance each object has
been displaced. A spatial index together with a search procedure [5] is used to quickly identify
conflicting objects. The extent to which an object is in conflict determines its individual
associated penalty. In full, we consider two categories of spatial conflict and an additional
measure of quality within our objective function, namely:

•  Conflict between a pair of polygonal objects, where their proximity renders them
indistinguishable from each other). This conflict occurs when the minimum separating
distance (in viewing co-ordinates) between two objects is less than some predefined
threshold.

•  Conflict between a polygonal object and a linear object, where their proximity renders
them indistinguishable or they overlap. This conflict occurs when the minimum
separating distance (in viewing co-ordinates) between a polygonal and linear object is
less than some predefined threshold.

•  Distance each object is displaced (in viewing co-ordinates) from its starting position.
This measure helps minimise the amount of disruption within the generalised map
display relative to its source.

3.2.1 Underlying model and definitions.
The object function used to evaluate solutions to the map generalisation problem requires a
number of definitions that model the problem’s underlying structure, specifically:

•  O: {o1,…,on} is the set of all polygonal objects;
•  L: {l1,…, lr} is the set of all linear objects;
•  n is the number of polygonal objects;
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•  r is the number of linear objects;
•  domin is the minimum distance threshold between polygonal objects;
•  dlmin is the minimum distance threshold between linear and polygonal objects;
•  DOij = 1 if oI is within domin of oj  else 0;
•  DLij = 1 if oI is within dlmin of oj else 0;
•  dxI = the normalised (-0.75 to +0.75) distance an object has been displaced in the X axis;
•  dyI = the normalised (-0.75 to +0.75) distance an object has been displaced in the Y axis.

3.2.2 The object relationship fitness function
The objective function used to evaluate solutions to the map generalisation problem examines
the weighted relationship between linear and polygonal objects. The general expression of the
objective function is:

f = ((f1*w1) + (f2*w2) + (f3*w3)) (1)

Where fi and wi represent, respectively, the number of conflicting objects and the weight of that
particular measure, with a low value of f indicating a good solution.

The first term of the objective function, f1, counts the number of polygonal objects that conflict
with each other. Minimising the number of polygonal objects in conflict with each other
produces a more attractive map display.

                   n     n

f1 = ∑∑=DOij (2)
                i=1   j=1

The second term of the objective function, f2, counts the number of polygonal objects that
conflict with each linear object. Again, minimising the number of polygonal objects in conflict
with each linear object produces a more attractive display.

                   r     n

f2 = ∑∑=DLij (3)
                                i=1   j=1

Finally, the third term of the objective function, f3, sums the normalised, absolute, distance each
object has been displaced from its starting position. Normalising this displacement value
minimises its impact upon generalisation relative to the two conflict resolution operators
described above.

                 n

f3 = ∑=(dxi
2 + dyi

2) ½ (4)
               i=1

4 Implementation
In this section, we present our implementation of the GA algorithm for solving the map-
generalisation problem.  Special consideration is given to the sub-ordinate heuristics used to
direct the procedure through the search space.
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Fig. 4. Single point crossover.

Fig. 5. Random mutation.

4.1 Configuration, search space and cost function
Given a map display comprised of n modifiable polygonal and r fixed linear objects, a
configuration s corresponds to an individual arrangement of these objects. The search space S is
therefore composed of all such configurations. According to equation (1), for each solution s ∈
S, f(s) corresponds to a combination of the total number of polygonal and linear objects in
conflict, and a measure of how much objects have been moved from their starting position.

4.2 State representation
Our state representation, the genome, is physically stored as an array of real numbers, with each
pair of real numbers corresponding to the x, y displacement value associated with that object.
Another data structure, called a genome phenotype, is used to both physically constrain the
range of each real number within the genome and determine how many binary bits will be used
to represent this value. This allows a physical implementation for an individual solution within
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the state space of all possible states to be stored in real co-ordinates that map to a binary string
during evolution. Genome and phenotype are illustrated in Figure 2.

4.3 Population size and maximum generations
The complexity of each sub-problem is, in part, a function of the different number of objects
within each map segment and the range of initial conflict after scaling. Therefore, for any given
map segment (m), the population size (pm) and maximum number of generations (gm) are set
using experimentally determined heuristics, namely:

pm = 4C(sm) (5)
gm = 15sm (6)

These heuristic values were determined experimentally and allow solutions to be generated that
have optimal, or near optimal, measures of conflict. A sample population is illustrated in Figure
3.

4.4 Neighbourhood examination
Given that each object can only be displaced into its immediate area, only the edges of objects
that could feasibly come into conflict with the edge of given object need be checked. Therefore,
a list of edges that can theoretically come into conflict with a given a edge are stored in a list
associated with that object. This data structure is parsed to determine if, indeed, any of these
edges have come into contact with a given edge when generating the objective score for a
particular configuration. Adopting this strategy significantly decreased the number of edges
checked for conflict during evaluation resulting in much reduced computation times.

4.5 Crossover, replacement and mutation
The probability of crossover (reproduction) determines how often crossover will occur at each
generation. The single point crossover strategy (illustrated in Figure 4) was adopted for all
experiments.  If the probability of crossover is set to zero (asexual reproduction), then each
offspring would be at this stage an exact copy of its parents (although the mutation operator
may result in offspring that are different to their parents).

Conversely, if the crossover probability is set to 100%, then all offspring are made by crossing
part of each parent with the other. Each time crossover occurs, an offspring is created using
material from each of its parents. The results for all experiments presented in this paper were
generated using a crossover percentage of 50%, which is to say that at each generation 50% of
the new population were generated by splicing two parts of each genomes' parents together to
make another genome.

The probability of mutation determines how much of an each genome's genetic material is
altered, or mutated. If mutation is performed, part of chromosome is changed. For example, if
the mutation probability was 100%, then each element within the genome would be changed,
but if it was 0%, nothing would be changed. Mutation is introduced to facilitate movement
away from local optimality to a place closer to global optimality. However, mutation should not
occur too often as this would be detrimental to the search exercise. Consequently, the results
presented here were generated using a 2% mutation probability, which was determined
experimentally, utilising a single bit flip mutation operator (illustrated in Figure 5).



ICA Map Generalization Workshop PARIS 2003

9

5 Initial Results
The algorithm has been implemented in VC++ 6.0, utilsing Wall's Galib library [6]. The
implementation has been tested using building polygon data extracted from OS MasterMap data
and road centre lines taken from OS Oscar data. An example of initial results is illustrated in
Figure 6. It can be seen that the the algorithm has resolved a large proporation of the graphic
conflict that resulted from road symbolisation.

Fig. 6. Sample output, object displacement only.
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6 Scaling Operator
In some instances conflict has not been resolved; this is not so much to do with limitations of
the algorithm, but rather a limitation of the displacement operator in general. It is clear that
additional operators are required. A relatively straighforward improvement can be made by
introducing a feature scaling operator that acts to reduce the size of features in situations where
displacement alone does not succeed. This can be achieved by modifying the genome
representation such that each object is assigned additional bits that correspond to a scaling
factor (Figure 7); the cost function is also updated to take size reduction into account. An
example of results obtained is illustrated in Figure 8.

Fig. 7. Scaling factor added to genome.

Fig. 8. Sample output, object displacement and scaling.

7 Conclusion
Given these promising, initial, experiences with the application of a GA, it is the authors’
intention to expand upon the work presented. The displacement method presented here works
well where there is plenty of free map space into which objects may move. In situations where
displacement is either impractical because of space constraints or too expensive in terms of
overall disruption to the map display, further additional operators (e.g. deletion, amalgamation,
and simplification) will be used in combination. Future work will concentrate on introducing
these operators. The cost function will be expanded to take account of each new operator, with
appropriate penalties consistent with the map disruption included.
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