
Computers and Chemical Engineering 139 (2020) 106841 

Contents lists available at ScienceDirect 

Computers and Chemical Engineering 

journal homepage: www.elsevier.com/locate/compchemeng 

Understanding chemical production processes by using PLS path 

model parameters as soft sensors 

Geert H. van Kollenburg 

a , b , ∗, Jacoline van Es a , Jan Gerretzen 

c , Heleen Lanters a , b , 
Roel Bouman 

a , b , Willem Koelewijn 

c , Anthony N. Davies c , d , Lutgarde M.C. Buydens a , 
Henk-Jan van Manen 

a , c , Jeroen J. Jansen 

a 

a Radboud University, Department of Analytical Chemistry/ Chemometrics, Institute for Molecules and Materials (IMM), Heyendaalseweg 135, 

6525 AJ Nijmegen, The Netherlands 
b TI-COAST, science park 904, 1098 XH Amsterdam, The Netherlands 
c Nouryon Chemicals B.V., Supply Chain, Research & Development, Expert Capability Group Measurement & Analytical Science, Zutphenseweg 10, 

7418 AJ Deventer, the Netherlands 
d University of South Wales, Faculty of Computing, Engineering and Science, CF37 1DL Pontypridd 

a r t i c l e i n f o 

Article history: 

Received 26 November 2019 

Revised 20 February 2020 

Accepted 29 March 2020 

Available online 1 May 2020 

Keywords: 

PAT 

Soft sensors 

PLS-PM 

Predictive modelling 

Process analytics 

Chemometrics 

a b s t r a c t 

To make industrial processes lean, inclusion of technical process information is required into statistical 

modelling. Understanding how parts of a process are related to other parts and to output quality is key to 

understanding and controlling processes. In this work, we show how PLS path modelling can be used to 

incorporate process knowledge into predictive chemical process analysis. The result is a wealth of infor- 

mation which is not obtained by standard data analytic techniques commonly used by analytical chemists 

or process engineers. By comparing model parameters across multiple data sets from different batches of 

the same process, model parameters could be used as soft sensors. Some variables which would normally 

be discarded as uninformative were highly predictive of production costs. The methodology reported here 

improves chemical process understanding through the analysis of complementary historical process data, 

which may serve as the basis for development of improved process conditions and control. 

© 2020 The Authors. Published by Elsevier Ltd. 

This is an open access article under the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

There is a consistent societal and political push for industrial

rocesses to reduce resource consumption. This reduction needs to

e attained within economically viable settings for the producers.

ne of the main principles of the current transition to Industry 4.0

s to make processes lean, meaning reduced waste and consistent

nd-product quality ( Hermann et al., 2016 ). Understanding the ef-

ects of the raw material variations, the production settings and

rocess conditions on the quality of end product is key to compre-

ensive process understanding and control ( Qin, 2012 ). Any infor-

ation source that may contribute to smart process operation is

herefore highly valuable. 

Partial Least Squares (PLS) Regression ( Geladi and Kowal-

ki, 1986 ; Wold et al., 1983 ; Wold et al., 1984 ; Wold et al., 2001 )
∗ Corresponding author at: Radboud University, Department of Analytical Chem- 

stry/ Chemometrics, Institute for Molecules and Materials (IMM), Heyendaalseweg 

35, 6525 AJ Nijmegen, The Netherlands. 
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s one of the standard tools in the arsenal of analytical chemists

o make predictions based on the large amounts of data that are

ollected during production processes. The PLS method can ex-

ract information from a wide variety of variables (e.g., spectral

nd/or high dimensional data). Its flexibility and implementation in

any standard software packages have made this method the stan-

ard for predictions in multivariate analytical data. By extracting

he most predictive, correlative information out of a large number

f variables, PLS regression is powerful in monitoring and predic-

ion contexts. However, the downside is that the model treats all

easurements without hierarchy or conditionality. The PLS model

herefore provides limited understanding about the process that

enerates the variability in the measured data and about the ef-

ects that each variable has on the process ( Wold et al., 1983 ).

 wealth of knowledge therefore remains untouched because the

nformation on technical aspects of processes is not incorporated

nto the predictive modelling. 

Production processes that comprise multiple process units may

nable separation of the process variables into unit-specific blocks.

ulti-block ( MacGregor et al., 1994 ; Westerhuis et al., 1998 ) and
nder the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 
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orthogonalised PLS methods ( Menichelli et al., 2014 ; Næs et al.,

2011 ; Romano et al., 2019 ) exist that can be used to evaluate the

effects of each block on the output. These methods impose a hier-

archy on the blocks, such that specific blocks are always used first

in the predictions. The most prominent drawback of these methods

in process analysis is that the predictor blocks are, by definition,

independent. The various units of a production process are often

highly interrelated (e.g., temperatures of subsequent blocks will be

highly related) and therefore the statistical modelling should take

those relationships into account. 

To accommodate the interrelated predictor blocks of a chem-

ical production process, application of PLS-Path Modelling (PLS-

PM) ( Wold, 1982 ) for the statistical analysis of such production

processes is proposed here. PLS-PM is a general soft-modelling

approach which originated in the social sciences and is perfectly

suited for modelling multi-block processes where the direction-

ality of associations is clear. Therefore, path models are power-

ful tools in understanding the effects of multi-block processes

( Kowalski et al., 1982 ; Tenenhaus & Hanafi, 2010 ). While other

multi-block PLS models have been proposed repeatedly to analyse

chemical processes ( Næs et al., 2011 ; Qin, 2012 ; Qin et al., 2001 ;

Wangen and Kowalski, 1989 ; Westerhuis et al., 1998 ), PLS-PM itself

has seen little to no use in understanding in detail the relation-

ships within a process. As will be shown, PLS-PM can benefit our

understanding of the inner workings of a chemical production pro-

cess by incorporating process knowledge into the predictive mod-

elling. PLS-PM may be used as an addition to graph-based mod-

els, such as signed directed graphs ( Chiang et al., 20 0 0 ; Kramer &

Palowitch Jr, 1987 ) and may help in developing models for fault

diagnosis ( Lucke et al., 2020 ; Russell et al., 20 0 0 ). 

This paper considers the analysis of a semi-batch chemical pro-

duction process at Nouryon (previously AkzoNobel Specialty Chem-

icals). The process comprises a number of interconnected units,

like heaters, coolers, and reaction vessels. The production process

runs until the catalytic efficiency is below a certain threshold. The

process is then stopped, a new batch of catalyst is introduced and

the production resumes. The yield per batch of catalyst, and ac-

cordingly the production cost, is highly variable. 

The question that strongly drove this research was whether

model parameters could be found which were related to resource

consumption. In other words, is it possible to use the model pa-

rameters themselves as an indication that the costs will be high or

low? Fitting the same PLS-PM model to process data from multiple

batches enabled us to increase our understanding of how the units

in the production process are interrelated, improving the possibil-

ities for process control, and at the same time model parameters

could be related to variations in production costs. In this sense,

this research provided a method to use model parameters (rather

than process variables) as soft sensors, something which to our

knowledge has not been reported before. 

The power of using combination of variables as soft sensors

in production processes is thoroughly established. Using model

parameters as soft-sensors may provide much more information

about the actions to take when something goes wrong. Since the

model provides information about the relations of one part of the

process to the other parts, this will enable process operators to

better substantiate decisions about how to control the process. 

2. The PLS path model 

The first step of analysing a process with PLS-PM is to parti-

tion the manifest (i.e. measured) variables (MVs) into Q blocks.

This partitioning of variables is called the measurement model (or

outer model). Each block of MVs is summarized by a single latent

variable (LV), ξ q . The blocks (and thus the LVs) are connected to

other blocks through the structural (inner) model in terms of re-
ression equations. Some blocks are only used as predictors (the

xogenous blocks) and some blocks are used as responses (the en-

ogenous blocks). The structural model is estimated as a series of

rdinary linear regression models, one for each endogenous block.

or the regression of an endogenous block summarized by the LV

q the LVs belonging to its predictors are collected in the matrix
∗
q . The prediction of ξ q can be written as 

ˆ 
q = �∗

q b q 

here the vector of regression effects, b g , is found through ordi-

ary least squares as 

 g = 

(
�∗T 

q �q 

)−1 
�q 

∗T 

ξq . 

In PLS-PM, LVs are estimated through an iterative PLS pro-

edure which optimally reproduces the covariance between all

anifest variables. In contrast to the often used sequential-and-

rthogonalised(SO) - PLS methodology, there is no hierarchical or-

ering in the importance of each block. The PLS-PM algorithm as

escribed here is implemented in the “plspm” package by Sanchez

2013) and Sanchez et al. (2017) for version 3.5.1 of the R program-

ing language ( R Core Team, 2018 ). This software is able to na-

ively handle missing values and non-normal variables, which are

mnipresent in process analytical data. 

There are a number of options to choose from when estimat-

ng a PLS-PM. In the current application, the measurement model

sed the reflective mode ( Vinzi et al., 2010 ). For the structural

odel the centroid scheme was used to estimate latent variable

s it does not overestimate effects, has good convergence and per-

orms well for large sample sizes ( Wilson and Henseler, 2007 ). For

ore technical details on the estimation algorithm and model op-

ions the interested reader is referred to other works ( Tenenhaus

nd Vinzi, 2005 ; Vinzi et al., 2010 ). 

. Implementation of PLS-PM into predictive modelling 

.1. Data 

The data under analysis originates from a semi-batch pro-

uction process at Nouryon. More than 21,0 0 0 hourly measure-

ents of process variables (e.g. temperatures, flow rates, pressures)

ere collected at each of the units in the production process.

his data is complementary to the catalyst performance and were

riginally collected for other purposes. Additionally, data on end-

roduct quality was also available. These data were not measured

ourly, but measured with a variable frequency (details follow in

ection 3.3 ). 

The steps of the process (cooling, heating and catalysed reac-

ion), take place in physically different parts of the factory. The

hemical mixture is transported from one part to the next through

 series of pipes. The reaction involves a heterogeneous catalyst

hich degrades over time. Currently, catalyst performance is mon-

tored according to a particular pressure drop. If this pressure drop

s outside predefined limit values, the process is stopped, the cata-

yst is replaced with a new catalyst batch and production resumes.

he lifetime of this catalyst is related to production cost and expe-

ience shows that this lifetime is highly variable between batches.

he dataset was separated according to the corresponding batch of

atalyst. The term ‘batch’ is therefore also used for a subset of data

elated to a batch of catalyst. 

A total of eleven batches were analysed. For the current ap-

lication, production costs are defined as how much product can

e made with one batch of catalyst. The production costs of the

atches varied from 37 to 208 (in arbitrary units); lower values

eaning lower costs (see Table 1 ). Note that if the catalyst can be

sed a long time before having to be replaced, the costs are lower
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Table 1 

Number of hourly measurements per batch. 

Batch no. Production cost Sample size 

1 (‘Best’) 37 3402 

2 38 3610 

3 39 3349 

4 45 3087 

5 57 2100 

6 64 1750 

7 100 1278 

8 133 1064 

9 138 873 

10 182 580 

11 (‘Worst’) 208 581 
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nd at the same time there will be more hourly measurements

or that batch. This inverse relationship between cost and number

f hourly measurements is not exact because the production rate

s not always constant and because the number of measurements

hat had to be removed in the preprocessing steps varied per batch

see Section 3.2 ). 

.2. Data preprocessing 

In order to effectively compare the PLS-PM results between

atches, process variables were removed if they had zero variance

n one or more batches, or when they had such low variance that

he resulting models could not be statistically validated. A total of

7 process variables were considered in the final analyses. Hourly

easurements that were collected while the plant was not in op-

ration were also removed. Sample size numbers for the batches

ere determined by batch length, and ranged from 580 to 3610

ourly measurements (see Table 1 ). 

.3. Pathway determination 

The production process that was analysed comprises six pro-

uction units such as heaters, coolers and tanks. Additionally, a

ow control unit exists which regulates the process. At each of

hese seven blocks a number of process variables are continuously

easured (see below). In addition to these seven process blocks,

he first block in the model comprised a set of variables related
Fig. 1. Full PLS-PM used in this research. Squares represent the m
o the characteristics of the input material—these are also contin-

ously monitored and available as hourly data. As the last block

n the model, the set of variables related to the product quality

as incorporated. Fig. 1 shows the fully specified model with man-

fest variables attached to each block. The actual process names of

he variables cannot be disclosed, so in the results section we will

umber them V1 to V37 in the order they appear in this model,

tarting with the variables related to ‘Input’ and ending with the

roduct quality variables at block ‘Quality’. 

To avoid confusion, note that the variables at block ‘Reaction’

re not variables from which catalyst performance was calculated.

hese variables are the process measurements which were con-

tantly measured at the unit in which the catalysed reaction takes

lace (i.e., pressure, temperature, flowrates). In the same light, the

ariables at the ‘Quality’ block are quality measurements like pu-

ity of the product, and do not include the production costs (the

Cost’ variable only has a single value per batch and will be used

ater to relate model parameters to). 

In Fig. 1 , the inner model contains many arrows which indicate

irect effects of one block on another. We formulated this inner

odel by taking into account three criteria (see Fig. 2 ). Firstly, the

irect effects were specified that were associated to the physical

rchitecture of the process (i.e., the piping). Secondly, theoretical

onsiderations and expert knowledge from the process engineers

ere used to define additional paths between the blocks. Thirdly,

aths were included to predict the direct effects of every process

lock on the end-product quality. 

A note on the Quality block is required here as the variables of

he Quality block were not measured hourly, but on a less frequent

asis. In practice, the last measured values of the quality variables

re used as a best guess for their current value, until the values are

pdated by making new measurements. As we are using historical

ata, we were able to incorporate this practice into the modelling

rocedure as follows. Since the process variables are related to the

uality of the product by design, we used the hourly measure-

ents to predict what the values of the Quality variables would

e at the each next update. Because the measurement frequency

s not the same for the hourly process variables and the Quality

ariables, the actual regression relates the medians of each pro-

ess variables between updates to the current values of the Qual-

ty variables. While this may provide a robust prediction from the
anifest process variables; ellipses represent latent variables. 
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Fig. 2. Three criteria for inclusion of effects in the inner model of the PLS-PM. The arrows indicate direct regression effects. 
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process measurements, the standard errors for the regression coef-

ficients will be underestimated and RMSE scores will also not be

valid. These drawbacks only apply to the regression of the quality

parameters. 

3.4. Validation of the structural model 

The model described in Section 3.3 was estimated for each of

eleven batches separately. Due to the strong variation in produc-

tion costs it was expected to find large differences in estimated

model parameters, i.e. , in the estimated relationships between the

blocks of the process. Of course, many other model specifications

may be made with other considerations and those models could

be compared to see what model fits best to the data. However, the

current application was confirmative in nature, meaning that inter-

est was not in finding new connections, but to evaluate whether

the current theoretical considerations are in agreement with the

data. 

Unfortunately, there is no straightforward method to test model

fit in PLS-PM ( Henseler and Sarstedt, 2013 ). The paths in the struc-

tural model were therefore evaluated by checking whether they

could explain significant variance in their corresponding endoge-

nous block. Since multiple batches of data were analysed, paths

that do not contribute to explained variance in any batch only lead

to unnecessary model complexity. None of the pre-defined paths

shown in Fig. 2 were non-significant in all the batches so they

were all kept in the model. 

3.5. Variable importance 

Additionally, relationships between individual manifest vari-

ables and the quality variables were tested. Note again that the

quality variables do not represent production costs or catalyst per-

formance, but rather the chemical quality such as purity of the

product. There are many indirect pathways going from one mani-

fest variable to another. From a path model, it is possible to cal-

culate the (reproduced) association between individual variables

using standard rules for combining indirect effects ( Keith, 2014 ).
gain, these associations can be used to pinpoint process faults on

 detailed level, but it is beyond the scope of the presented re-

earch to provide details on what specific variables indicate. 

.6. Comparison to PLS(2) regression 

The method of using model parameters as soft-sensors can be

pplied to virtually any statistical model. For comparison purposes,

he data was analysed by PLS regression analysis ( Wold et al.,

001 ). The same 37 process variables were used in the predic-

or block, and the four product quality parameters were used in

he response block (hence, PLS2 was used). The variables were au-

oscaled before analysis. The maximum number of LVs for the pre-

ictors was set to 7 (i.e., equal to the number of blocks and LVs

n PLS-PM). Since there is no information in PLS regression which

ompares well to the inner model coefficients of PLS-PM, we opted

or a measure of variable importance, which could be related to the

ariable importance described in Section 3.5 . 

Assessment of influential variables is common practice in PLS

egression. We used the Variable Importance in Projection (VIP)

core ( Eriksson et al., 2013 ), which is calculated for each variable

 j as: 

 I P j = 

√ √ √ √ 

J ∑ M 

m =1 R 

2 
Y. z m 

×
( 

M ∑ 

m =1 

w 

2 
jm 

× R 

2 
Y. z m 

) 

, 

here J is the number of variables, R 2 Y. z m 
is the amount of Y vari-

nce explained by the m -th latent variable, and w 

2 
jm 

is the squared

eight (importance) of variable j on the m -th latent variable. If a

rocess variable is related to high production costs, one would ex-

ect a positive correlation between a VIP score and cost. 

.7. Explained variance in product quality 

An important aspect of a PLS model (and other regression mod-

ls) is to evaluate how well the predictor variables can explain the

esponse variable. Next to the individual effects of the predictors
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Table 2 

Average regression effects across batches and the correlation between the effects and cost. 

Response block Predictor block 

Mean (sd) of regression 

coefficient 

Correlation between 

coefficient and cost. 

Cooler1 Input 0.01 (0.26) 0.50 

FlowControl 0.30 (0.68) 0.42 

Tank1 Input 0.13 (0.25) −0.40 

Cooler1 −0.21 (0.64) 0.55 

Heater Cooler1 −0.49 (0.59) −0.56 

Tank1 0.03 (0.35) −0.39 

Reaction FlowControl 0.12 (0.29) −0.18 

Tank1 −0.22 (0.29) −0.11 

Heater −0.07 (0.59) 0.07 

Tank2 Input −0.01 (0.20) −0.22 

Tank1 −0.05 (0.46) 0.08 

Heater −0.07 (0.39) 0.83 

Reaction 0.21 (0.24) 0.42 

Heater2 Tank2 −0.68 (0.53) −0.15 

Quality Input 0.10 (0.09) 0.28 

FlowControl 0.19(0.15) 0.18 

Cooler1 0.39 (0.29) 0.21 

Tank1 0.18 (0.12) 0.06 

Heater 0.33 (0.19) 0.70 

Raction 0.22 (0.19) 0.06 

Tank2 0.39 (0.26) 0.05 

Heater2 0.27 (0.28) 0.18 
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Table 3 

Notable relations between importance of manifest variables in PLS-PM and produc- 

tion costs. 

Variable 

Mean(sd) 

loading 

Correlation between 

loading and cost 

V7 0.26 (0.24) 0.52 

V10 0.86 (0.19) −0.46 

V12 0.88 (0.20) −0.46 

V14 0.45 (0.26) 0.57 

V24 0.57 (0.28) 0.47 

V25 0.71 (0.30) 0.43 

V26 0.71 (0.25) −0.49 

V27 0.68 (0.25) 0.43 

V29 0.16 (0.14) 0.78 

V31 0.87 (0.07) −0.49 

V35 0.70 (0.15) 0.43 

V37 0.64 (0.20) 0.48 

a  

v  

t

 

t  

a  

t  

b

4

 

f  

r  

2  

i  

t  

i  

t  

v  

V  

V

 

a  
n each outcome variable, it was evaluated how well the quality

ariables could be predicted from the process variables. In PLS2 re-

ression, all variables were combined together to explain the vari-

nce in the quality block. In PLS-PM the variables were first com-

ined according to the block structure, and the quality block was

egressed on the LVs of all the other blocks (cf. Fig. 2 , Prediction).

oth PLS2 regression and PLS-PM provided explained variance as

tandard analysis output. 

. Results 

.1. Structural model 

Table 2 shows the results of relating the inner model coeffi-

ients of PLS-PM to production cost. To understand the table better,

et us review how PLS-PM works. Each block of MVs is summarised

n a single LV. The structural model is created by regressing the LV

f a response block (Column 1 in the Table 2 ) on the LVs of the cor-

esponding predictor blocks (Column 2). Column 3 of Table 2 indi-

ates the average regression coefficient over the 11 batches. Many

egression coefficients had substantial variation across the batches.

he standard deviation of the regression is reported in parentheses

n Column 3. The variation in the regression coefficient across the

atches were related to the variation in production costs of the

atches. The correlation between the regression coefficients and

he production costs (there was a single cost value per batch) is

ound in Column 4. 

The use of p-values is hardly meaningful here. This research is

ased on the available historical data and there are a limited num-

er of 11 batches. The use of significance levels (and cut-offs) may

ead to incorrect inclusion or exclusion of associations for possible

ollow-up research. Therefore, in line with the view of the Ameri-

an Statistical Association, p-values are not reported for these cor-

elations ( Wasserstein and Lazar, 2016 ). 

Table 2 shows that the strongest correlations with production

osts were found in the effects of Heater on Tank2 and on Quality.

he effect of Heater on Tank2 in the different batches was on av-

rage close to zero, but an increase in this effect related to higher

roduction costs. Heater had on average a moderate effect on the

uality. When this effect increased, this was related to higher costs

s well. Vice versa, in batches with a lower cost, the effects were
lso lower. These effects are very important from a process control

iewpoint, since the heating is such a crucial part of the produc-

ion process. 

It is interesting to note that relations with Cooler1, which is at

he beginning of the process, is strongly correlated with the cat-

lytic efficiency, and thereby with production costs. This indicates

hat monitoring and control of the first parts of the process may

e extremely important in keeping the catalyst working optimally. 

.2. Measurement model 

In the measurement model, a loading (or, weight) is calculated

or each MV which indicates how important the MV is for the cor-

esponding LV. In Table 3 we show the average loadings (Column

) for a number of variables (Column 1). Like before, the load-

ngs varied across the 11 batches (see parentheses in column 2 for

he standard deviation). For some variables, the variation in load-

ngs was correlated with the costs (Column 3). Table 3 provides

he variables for which this correlation was greater than 0.4. Some

ariables related to costs have consistently high loadings (i.e., V10,

12 and V31), while others have much more variable loadings (i.e.,

14, V24 and V22). 

Importantly, from a soft-sensor point of view, variables like V7

nd V29 are of tremendous interest. On average these variables
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Table 4 

Notable relations between VIPs and production costs. 

Variable Mean(sd) of VIP Correlation VIP and Cost 

V1 1.03 (0.27) −0.52 

V3 0.90 (0.26) −0.50 

V25 1.09 (0.25) −0.51 

V31 0.97 (0.18) 0.57 

V32 1.03 (0.47) 0.55 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. Cost versus explained variance in PLS2. 

Fig. 4. Cost versus explained variance in PLS2 with two batches discarded. 
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contribute very little to the model (i.e., their loading is generally

low). Standard methodology would likely regard these variables

as uninformative. But when we relate the loadings to production

costs, we see that these variables are strongly related to those

costs. A straightforward explanation is that in costly batches these

variables show greater variance than in low cost batches. So in-

stead of disregarding these variables because their contribution to

the model is limited, we should instead focus extra on controlling

these variables. 

4.3. PLS2 regression 

The parameters from the PLS2 regression, which excludes block

information and uses all process measurements as a single input

matrix, were also used as soft-sensors. The contribution of each

variable to the model was calculated by the VIP and this contri-

bution was then related to production costs. Five variables were

found for which this correlation was greater than 0.4 (see Table 4 ).

The spread of the VIPs was rather large and none of the variables

had a consistently strong contribution (a VIP larger than one indi-

cates important contribution). Variables 25 and 31 show up in both

methodologies (cf. Tables 3 and 4 ) as being related to production

costs, yet with opposite signs. We have yet to understand whether

this connection can be explained in terms of the algorithms of the

modelling procedures. 

4.4. Explained variance 

PLS-PM combines multiple regression models, while PLS regres-

sion only regresses a single Quality block onto all process variables

simultaneously. The only direct comparison between the two is

therefore the variance in the Quality block that can be explained

by the model. That is, how well can the process variables pre-

dict new product quality measurements? Table 5 shows how much

variance of the quality block each model could explain in the var-

ious batches. In eight out of the eleven batches, PLS-PM was able

to explain more variance of the quality block. 

It was also checked whether the explained variance of the Qual-

ity block was related to production cost. For PLS PM there was no
Table 5 

Explained variance of the product by PL S-PM and PL S re- 

gression. Batches are ordered from low to high cost. 

R 2 
quality 

Batch no. Cost PLS PM PLS2 

1 37 0.24 0.21 

2 38 0.10 0.20 

3 39 0.50 0.37 

4 45 0.18 0.10 

5 57 0.46 0.12 

6 64 0.68 0.42 

7 100 0.16 0.28 

8 133 0.47 0.24 

9 138 0.75 0.25 

10 182 0.54 0.42 

11 208 0.23 0.38 

Correlation R 2 and cost 0.221 0.499 

5

 

v  
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a  

a  

r  

i  

t  
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t  

t  

m  

P  

d  
pparent relation between explained variance and cost. For PLS2

egression there was a correlation of approximately 0.5 between

xplained variance and costs ( Fig. 3 ). Two clear deviations from

he linear relationship for could be seen for Batch 3 and 6. When

hese batches are not considered, the correlation between cost and

xplained variance by the PLS2 model becomes very strong (i.e.,

.862, See Fig. 4 ). Investigations are underway to evaluate Batches

 and 6 in detail. 

. Discussion 

One of the key aspects of PLS-PM is that only a single latent

ariable is considered per block. Though this method inherently

rotects us from overfitting (i.e., the total number of latent vari-

bles is always equal to the number of specified blocks), it can be

n issue when the variables within a block are not, or hardly cor-

elated or when variables of different blocks are correlated (lead-

ng to high cross-loadings). We expect that the performance of

he model to accurately describe the important factors in the pro-

uction factory will improve when we incorporate multiple la-

ent variables per block. Future applications of path modelling ap-

roaches for process analytics should focus on both the interrela-

ions between blocks (as PLS-PM does) as well as the possibility

o obtain multiple LVs per block (as in most other multi-block PLS

ethods). Work is being done by the current authors to develop

rocess PLS, a PLS-based path model which is suited for multi-

imensional blocks, flexible model specifications, and exploratory
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nd confirmatory applications ( van Kollenburg et al., In prepara-

ion ). 

An additional value of a path modelling approach within pro-

ess analysis is that such analyses provide information on indirect

ffects. With PLS PM (and with other graph-based methods) these

ndirect effects can be used to predict how fluctuations early in

he process may affect the rest of the process. Additionally, the

odel predictions and the information resulting from using model

arameters as soft-sensors could be tested in pilot plants (this

olds for applications of virtually any model estimated on multiple

atches). Such experiments may provide insight in causal pathways

hat were not considered from a theoretical point of view before.

uture developments may also consider applications for streaming

ata (where data points come in on-the-fly). By continuously up-

ating and monitoring model parameters, the applicability of pro-

ess analytical models will be increased even more. 

We also evaluated whether PLS2 regression VIP scores could be

sed as soft-sensors, but there were no strong relationships be-

ween the VIP scores and costs. The relative difficulty to find the

mportant variables with PLS2 regression shows how much can be

ained in process analysis when researchers include process infor-

ation to separate variables and estimate a PLS PM, rather than

ombining all variables and interpreting PLS2 regression results as

s done in standard practice. 

Some of the presented results showed that explained vari-

nce of product quality was related to the costs associated to the

atches. This can to a certain extend be explained by the fact that

he goal of a production process is generally to produce a product

f constant quality. In a (theoretical) perfect manufacturing pro-

ess, fluctuations in process variable only exist to ensure that prod-

ct quality is constant. If in such cased, quality does not have any

ariance to explain and any correlation between process variables

nd product quality will be undefined (or 0, depending on the defi-

ition used). Any effect of process variables on the product quality

ill move away from the no-correlation situation. We saw simi-

ar trends in our results. If we directly predicted product quality

rom all the process variables (using PLS2), more variance can be

xplained in worse batches, meaning that some (combinations of)

rocess variables affect the product quality. This trend is less clear

n the path modelling approach, because product quality in PLS

M was only one of the dependent blocks that needed to be ex-

lained. Additionally, the relationships between the other process

locks are specifically not independent, since all process variables

ork together to obtain the desired product quality. 

On a final note, the regression part of the path modelling ap-

roach was justified in part by the assumption that causality in

he production process goes one way. However, variables at a later

tage of the process may let a process controller decide to change

ettings from an earlier part of the process. For example, a pres-

ure which becomes too high in the middle of the process may

nfluence what setting is chosen at the flow control. Such indirect

ffects caused by manual adaptations are difficult to incorporate

nto the statistical model even if each decision would have been

ell-documented. Process engineers are not required to document

ach decision in their daily routine, which makes reconstruction of

hese feedback loops challenging. Experience has shown that dif-

erent process operators tend to have different techniques to con-

rol the process. A suggestion for future research is to incorpo-

ate these feedback loops by using, for instance, a mixture of non-

ecursive regression models. 

. Conclusions 

In this paper PLS-PM was used to model an industrial chem-

cal production process of Nouryon. PLS-PM enables researchers

o separate blocks of variables according to where in a produc-
ion process they were measured. In this way one can obtain de-

ailed information on the interrelationships between the various

arts of the process. By analysing eleven batches of data and using

he model parameters as soft-sensors, it was shown that specific

ariables and connections between production units were highly

elated to production costs. 

PLS-PM was chosen over other PLS regression techniques be-

ause the former can provide detailed insights into the relation-

hips between parts of a production process. Additionally, we were

ble to evaluate differences in these relationships across different

roduction batches. These differences could then be related to the

roduction costs associated with each batch, leading to a more de-

ailed level of process understanding. 

PLS-PM was able to show which relationships between partic-

lar blocks should be controlled very firmly, as they are related

trongly to the production cost. We also showed that by relating

ariable contributions to production costs (or other external vari-

bles) can identify important variables which otherwise would be

eemed uninformative. 

We showed that PLS-PM was, overall, better able to explain the

ariation in product quality (as evaluated through explained vari-

nce) than PLS regression. Taking into account the wealth of ad-

itional information that can be obtained in PLS-PM that cannot

e obtained from PLS regression (i.e., everything related to the in-

er model of PLS-PM), we are confident that incorporating process

nowledge into the PLS framework may lead to better process un-

erstanding and more powerful statistical models in the future. 
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