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A B S T R A C T

Cu/Zn Superoxide Dismutase (Sod1) is a highly conserved and abundant metalloenzyme that catalyzes the
disproportionation of superoxide radicals into hydrogen peroxide and molecular oxygen. As a consequence, Sod1
serves dual roles in oxidative stress protection and redox signaling by both scavenging cytotoxic superoxide
radicals and producing hydrogen peroxide that can be used to oxidize and regulate the activity of downstream
targets. However, the relative contributions of Sod1 to protection against oxidative stress and redox signaling are
poorly understood. Using the model unicellular eukaryote, Baker's yeast, we found that only a small fraction of
the total Sod1 pool is required for protection against superoxide toxicity and that this pool is localized to the
mitochondrial intermembrane space. On the contrary, we find that much larger amounts of extra-mitochondrial
Sod1 are critical for peroxide-mediated redox signaling. Altogether, our results force the re-evaluation of the
physiological role of bulk Sod1 in redox biology; namely, we propose that the vast majority of Sod1 in yeast is
utilized for peroxide-mediated signaling rather than superoxide scavenging.

1. Introduction

Superoxide (O2
•−) and hydrogen peroxide (H2O2) are cytotoxic re-

active oxygen species (ROS) that are also essential for the redox control
of a multitude of physiological processes. O2

•− toxicity is largely due to
its ability to oxidize and inactivate [4Fe-4S] cluster-containing en-
zymes, which releases iron (Fe) in the process [1–4]. The liberated Fe,
upon complexation by appropriate ligands, promotes deleterious redox
reactions, and in particular produces hydroxyl radicals (•OH) via the Fe-
catalyzed reduction of H2O2 i.e. Haber-Weiss and Fenton reactions
[2,5]. Once formed, •OH indiscriminately oxidizes lipids, proteins, and
nucleic acids, leading to membrane disruption, protein misfolding and
aggregation, and DNA fragmentation, respectively. While O2

•− itself is
not likely to be a signaling molecule [6], it rapidly disproportionates
into H2O2 (k ~ 105 M−1 s−1 at pH=7.0), a well-established signaling
molecule [6,7], that can lead to the reversible oxidation of cysteine
residues in a number of downstream targets [8], including phospha-
tases [9–11], kinases [12,13], metabolic enzymes [14], and

transcription factors [15,16], to regulate protein activity.
The dual roles of O2

•−/H2O2 in oxidative stress and redox signaling
necessitates that the concentration and localization of these ROS are
regulated in a manner that enables signaling but mitigates oxidative
damage. In terms of localization, a number of metabolic sources of
H2O2 and O2

•− are present throughout the cell, including O2
•−-gen-

erating NADPH oxidases (NOX) that have been found in the nucleus,
endoplasmic reticulum (ER), cell membrane, and mitochondria
[17,18], mitochondrial respiratory Complexes I and III [19–21], and
enzymes that release O2

•− and/or H2O2, e.g. xanthine oxidase (cytosol)
[22,23], monoamine oxidase (mitochondria) [24], cytochrome P450's
(ER) [25], and globins (cytosol) [26,27]. In terms of concentration,
detoxification systems have evolved to limit the levels of O2

•−, e.g.
superoxide dismutases (SODs), and H2O2, e.g. catalase (CAT), glu-
tathione (GSH) peroxidases (GPx), and peroxiredoxins (Prx) [28]. Of
these ROS scavenging systems, SODs, which catalyze the dis-
proportionation of 2O2

•− into H2O2 and O2, are unique in that they
simultaneously affect both [O2

•−] and [H2O2]. As a consequence, SODs
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Fig. 1. The vast majority of Sod1 is dispensable for protection against superoxide toxicity. (a) Titration of galactose (GAL) into cultures of sod1::LEU2 (sod1Δ) cells
expressing the GAL1 driven Sod1 expression vector (prGAL-SOD1; pAR1026) results in the expression of low (≤ .005% GAL), intermediate (0.006–0.008% GAL), and
high (≥ 0.009% GAL) expression and activity of Sod1. The immunoblots and activity gels depicted are representative of multiple trials across different batches of
media. (b) Paraquat (PQ) sensitivity of WT and sod1Δ cells compared to sod1Δ+prGAL-SOD1 cells expressing none (0% GAL), low (0.005% GAL) or high (0.5% GAL)
levels of Sod1 as measured by solution turbidity. (c) Lysine (Lys) auxotrophy, (d) aconitase (Aco1) activity, and (e) isopropylmalate isomerase (Leu1) activity of
sod1Δ +prGAL-SOD1 cells is measured as a function of Sod1 expression and compared to WT and/or sod1Δ cells. (f) DHE detectable superoxide is monitored in WT,
sod1Δ, and sod1Δ +prGAL-SOD1 cells expressing none (0% GAL), low (0.005% GAL), or high (0.5% GAL) Sod1. (g) EPR detectable labile Fe, (h and i) FM4–64
visualized vacuolar fragmentation, and (j) DNA damage using the TUNEL assay was monitored in WT, sod1Δ, or sod1Δ +prGAL-SOD1 cells expressing none (0%
GAL), low (0.005% GAL), or high (0.5% GAL) Sod1. In panels i and j, approximately ~100 cells were counted from each culture condition in triplicate and scored for
(i) having single or multiple fragmented vacuoles, as depicted in panel h, or (j) being non-fluorescent or fluorescent in the FITC channel. Error bars indicate the
average± s.d. of triplicate (b, c, f, i, j) or duplicate (d, e, g) independent cultures. The statistical significance relative to WT (b, f, g, i, j) or sod1Δ+prGAL-SOD1 cells
cultured with 0% GAL (c, d, e) is indicated by asterisks using an ordinary one-way ANOVA with Dunnett's post-hoc test. * P < 0.05, ** P < 0.01, *** P < 0.0001,
n.s. = not significant.
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play dual roles in both defending against O2
•− toxicity and regulating

H2O2-mediated redox signaling [4,28].
Most eukaryotes express two intracellular SODs, a Mn-containing

Sod2 that is exclusively localized to the mitochondrial matrix [29], and
a highly abundant Cu/Zn Sod1 that is present virtually everywhere else
[30], including the mitochondrial intermembrane space (IMS) [31,32],
nucleus [33], endoplasmic reticulum (ER) [34], and peroxisomes [35].
Sod1-deficient organisms, from yeast to mice, are oxidatively stressed
and have reduced life spans. For example, SOD1-/- mice have a higher
incidence of liver cancer, neuronal damage, and loss of muscle mass
[36–41]. Drosophila mutants of SOD1 are infertile and have dramati-
cally reduced life spans [42]. In Saccharomyces cerevisiae (Baker's yeast),
sod1Δ cells have defects in a number of metabolic pathways due to
oxidative damage of critical [4Fe-4S] cluster containing enzymes
[5,43–45], as well as membrane and DNA fragmentation [33,45,46]
due to increases in “free” or labile iron [47,48], which promote hy-
droxyl radical formation [5]. In total, cell biological and biochemical
studies across multiple organisms indicate Sod1 protects Fe-S cluster
enzymes from O2

•− damage and further oxidative stress due to Fe and
•OH toxicity.

From the perspective of redox signaling, Sod1-derived H2O2 was
found to regulate the oxidation of protein tyrosine phosphatases [11]
and the tyrosine kinase growth factor receptor [49]. In addition, Sod1
was also found to provide a source of H2O2 that stabilizes a pair of
plasma membrane casein kinases, Yck1 and Yck2, that control nutrient
sensing and energy metabolism [50].

Sod1 is a highly abundant protein in various organisms [51,52], and
in yeast is present at concentrations of ~ 10–20 μM [53,54], accounting
for ~ 80–90% of total cellular Sod activity [55]. Given that Sod1 dis-
proportionates O2

•− at diffusion-limited rates (k ~ 109 M−1 s−1) [56],
the rationale for producing such large quantities of Sod1 has been en-
igmatic. Moreover, the relative contributions of Sod1 towards protec-
tion against O2

•− toxicity and H2O2-mediated redox signaling are not
well understood [4]. Herein, using Baker's yeast as a eukaryotic model,
we find that only a small fraction of total Sod1 is required for protection
against O2

•− toxicity and that this pool is localized to the mitochondrial
intermembrane space (IMS). Instead, we find that much larger amounts
of extra-mitochondrial Sod1 are critical for peroxide-mediated redox
control of Yck1 signaling. Given that an exceedingly small fraction of
Sod1 is required for protection against O2

•− and much larger quantities
are seemingly required for peroxide-mediated redox signaling, our re-
sults challenge us to re-evaluate the physiological role of bulk Sod1. We
propose that yeast, and possibly other eukaryotic cells, express high
levels of Sod1 to maintain appropriate peroxide fluxes to facilitate
redox signaling, whereas superoxide detoxification can be handled by a
relatively miniscule amount of Sod1.

2. Results

2.1. The vast majority of Sod1 is dispensable for protection against
superoxide toxicity

In atmospheric oxygen (21% O2), sod1Δ cells exhibit a number of
markers of O2

•− toxicity. This includes elevated [O2
•−] [57], O2

•−-
mediated inactivation of a number of [4Fe-4S] enzymes [5,45,58], in-
cluding aconitase (Aco1), isopropylmalate isomerase (Leu1), and
homoaconitase (Lys4), increased labile Fe due to its release from oxi-
dized Fe-S clusters [45,47,48], and vacuolar [46] and DNA [33] frag-
mentation due to deleterious Fe-mediated redox reactions. Collectively,
these defects lead to reduced aerobic growth [55], decreased lifespan
[59], and a number of metabolic defects, including perturbations to
redox homeostasis [44], energy metabolism [50,60] and a number of
amino acid auxotrophies [5,43–45], e.g. defects in the biosynthesis of
leucine (due to inhibition of Leu1), lysine (due to inhibition of Lys4),
and methionine (due to reduced pentose phosphate pathway activity
and NADPH). Using the galactose-inducible GAL1 promoter to drive

SOD1 expression in the background of sod1Δ cells, we sought to de-
termine the amount of Sod1 required to rescue various cell-wide mar-
kers of oxidative stress. As shown in Fig. 1a, titration of galactose (GAL)
resulted in undetectable (0.000–0.005% w/v GAL), intermediate
(0.006% –0.008% w/v GAL), and high (> .01% w/v GAL) levels of
Sod1 expression and activity. High concentrations of GAL (> 0.01%)
consistently resulted in near WT-levels of Sod1 expression and activity.
Most interestingly, only 0.005% GAL, a concentration that results in the
induction of an undetectable amount of Sod1 activity and polypeptide
(Fig. 1a), rescues major hallmarks of O2

•− toxicity, including sensitivity
to paraquat, a O2

•−-generating agent (Fig. 1b), lysine auxotrophy
(Fig. 1c), the activity of mitochondrial and cytosolic [4Fe-4S] cluster
containing enzymes, Aco1 (Fig. 1d) and Leu1 (Fig. 1e), respectively,
cellular [O2

•−] as measured by dihydroethidium (DHE) fluorescence
(Fig. 1f), electron paramagnetic resonance (EPR)-detectable labile Fe
pools (Fig. 1g), vacuolar fragmentation as imaged by FM4–64 (Fig. 1h
and i), and DNA damage as assessed by terminal deoxynucleotidyl
transferase (TdT)-mediated dUTP nick end labeling (TUNEL) (Fig. 1j).
Parenthetically, it is important to note that at the excitation and
emission wavelengths chosen to measure DHE fluorescence, there are
contributions from both superoxide specific, e.g. 2-hydroxyethidium,
and non-specific, e.g. ethidium or ethidium/ethidine dimers, DHE oxi-
dation products [61]. Thus, while our DHE fluorescence measurements
are not specific for superoxide per se, the differences in DHE fluores-
cence we observe reflect Sod1-dependent DHE oxidation products. Al-
together, these results indicate that the vast majority of Sod1 is dis-
pensable for protection against superoxide toxicity.

2.2. IMS-targeted Sod1 is sufficient to protect against cell-wide markers of
O2

− toxicity

We next sought to determine if the localization of Sod1 is important
for protection against cell-wide markers of superoxide toxicity.
Mitochondria are a major source of ROS and O2

− due to electron
leakage during cellular respiration, and in particular from Complex III,
which can release O2

•− into the mitochondrial matrix and IMS [19].
Deletion of Sod1, which is in-part localized to the mitochondrial IMS
[31,32], but not Sod2, which exclusively resides in the mitochondrial
matrix, results in lysine auxotrophy due to the O2

•−-dependent in-
hibition of matrix-localized homoaconitase (Lys4). This suggests that
O2

•− leakage into the IMS occurs to a greater extent than into the
matrix and the ultimate source of matrix O2

•− is from the IMS. In order
to determine the extent to which IMS-localized Sod1 protects against
oxidative stress, including in the mitochondrial matrix, an allele of
Sod1 that is exclusively targeted to the IMS, SOD1-IMS, due to fusion of
the Sco2 IMS localization sequence [50,62] was expressed in sod1Δ cells
(Fig. 2a). Interestingly, we found that SOD1-IMS rescues cell-wide
markers of O2

•−-toxicity, including paraquat sensitivity (Fig. 2b), lysine
auxotrophy (Fig. 2c), the activity of mitochondrial and cytosolic [4Fe-
4S] cluster containing enzymes, Aco1 (Fig. 2d) and Leu1 (Fig. 2e), re-
spectively, cellular [O2

•−] as measured by dihydroethidium (DHE)
fluorescence (Fig. 2f), Phen Green-detectable labile Fe (Fig. 2g), va-
cuolar fragmentation as imaged by FM4–64 (Fig. 2h), and DNA damage
as assessed by terminal deoxynucleotidyl transferase (TdT)-mediated
dUTP nick end labeling (TUNEL) (Fig. 2i). The effects of SOD1-IMS on
defending against O2

•− toxicity are distinct from mitochondrial matrix
localized Sod2. Unlike sod1Δ cells, sod2Δ mutants do not exhibit lysine,
leucine, or methionine auxotrophies, stunted aerobic growth, or growth
defects on respiratory carbon sources, e.g. 3% glycerol (Fig. 2j). No-
tably, SOD1-IMS expression is sufficient to rescue growth of sod1Δ cells
on glycerol (Fig. 2j). Altogether, these results indicate that IMS-loca-
lized Sod1 alone can protect against cell-wide superoxide toxicity and
that the source of matrix and extra-mitochondrial O2

•− is from the IMS.
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2.3. High concentrations of Sod1 are required for Yck1 signaling

Given that the vast majority of extra-mitochondrial Sod1 in yeast is
apparently dispensable for protection against superoxide toxicity, we
next sought to determine the relative contribution of Sod1 towards
H2O2-mediated redox signaling. In Saccharomyces cerevisiae, the only

known case of Sod1-mediated redox signaling to date involves a
pathway in which Sod1 derived H2O2 regulates the stability of a pair of
plasma membrane tethered casein kinases, Yck1 and Yck2, that in-
tegrate nutrient sensing with energy metabolism [50]. Sod1, which
physically associates with the C-terminus of Yck1, produces a local flux
of H2O2 that prevents the degradation of Yck1. In the absence of Sod1,

Fig. 2. IMS-targeted Sod1 is sufficient to protect against cell-wide markers of superoxide toxicity. (a) Immunoblots of whole cell extracts (T), cytosolic (C), or
mitochondrial (M) fractions from sod1::kanMX4 (sod1Δ) cells expressing empty vector (EV; pRS415), WT SOD1 (SOD1; pRS415-SOD1), or mitochondrial IMS targeted
SCO2-SOD1 (SOD1-IMS; pRS415-SCO2-SOD1). The purity of subcellular fractions was assessed by probing for cytosolic or mitochondrial marker proteins, Pgk1 and
Porin, respectively. (b) Paraquat (PQ) sensitivity, (c) lysine (Lys) auxotrophy, (d) aconitase (Aco1) activity, (e) isopropylmalate isomerase (Leu1) activity, (f) DHE-
detectable superoxide, (g) Phen-Green detectable labile Fe, (h) vacuolar fragmentation, and (i) TUNEL-detected DNA fragmentation in sod1Δ cells expressing EV,
SOD1, or SOD1-IMS. (j) Respiratory (3% glycerol) versus fermentative (2% glucose) growth of WT, sod1::kanMX4, sod2::kanMX4, sod1::kanMX4+pRS415,
sod1::kanMX4+pRS415-SOD1, sod1::kanMX4+pRS415-SCO2-SOD1 was tested by spotting 104, 103, and 102 cells on YP media plates containing 2% glucose or 3%
glycerol for 3 days. In panels h and i, approximately ~100 cells were counted from each culture condition in triplicate and scored for (h) having single or multiple
fragmented vacuoles, as depicted in Fig. 1h, or (i) being non-fluorescent or fluorescent in the FITC channel. Error bars indicate the average± s.d. of triplicate
independent cultures. The statistical significance relative to EV cells is indicated by asterisks using an ordinary one-way ANOVA with Dunnett's post-hoc test or a
Bonferroni test for the indicated pairwise comparisons in panel c. * P < 0.05, ** P < 0.01, *** P < 0.0001, n.s. = not significant.
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its substrate, O2
•−, or a O2

•−-generating NADPH oxidase, Yno1 [63],
Yck1 is degraded through a mechanism that is currently unknown [50].
The loss of Yck1 shifts energy metabolism from fermentation to re-
spiration. Notably, IMS-localized Sod1 does not contribute towards the
regulation of Yck1 stability [50]. Most interestingly, unlike numerous
hallmarks of superoxide-toxicity, Yck1 stability is very sensitive to Sod1
expression. Titration of Sod1 using the GAL-inducible SOD1 expression
system results in a positive correlation between Sod1 activity and Yck1
expression at Sod1 levels that exceed the minimal threshold required to
protect against superoxide toxicity (Fig. 3a). Similarly, inhibiting Sod1
activity using the copper chelator BCS results in a dose-dependent de-
crease in Yck1 expression (Fig. 3b). Altogether, we find that redox
signaling via the Sod1/H2O2/Yck1 signaling axis is far more sensitive to
fluctuations in bulk Sod1 activity than protection against cell-wide
markers of superoxide toxicity, which only requires a vanishingly low
amount of Sod1 activity.

3. Discussion

Since the seminal discovery of Sod1 in 1969 [30], there was great
controversy surrounding its proposed physiological function in O2

•−

scavenging due to the low reactivity of O2
•− with various biomolecules,

e.g. nucleic acids, proteins, and lipids, and the short lifetime of O2
•− due

to its rapid un-catalyzed disproportionation, k ~ 105 M−1 s−1 at pH 7.0
[64,65]. In fact, it was proposed that Sod1 had other unknown func-
tions in biology and that it coincidentally catalyzed O2

•− dis-
proportionation [65]. This controversy was largely put to rest with the
realization that [4Fe-4S] cluster containing enzymes are primary tar-
gets of O2

•−, which can oxidize and destroy Fe-S clusters with rate
constants up to 107 M−1 s−1 [1–4]. In fact, most of the pathological
hallmarks of Sod1 deletion and O2

•− toxicity are due to the diminished
activity of certain Fe-S cluster enzymes and inhibition of the corre-
sponding metabolic pathways they operate in, increased labile Fe due to
the destruction of Fe-S clusters, and Fe-mediated oxidative stress that
results in the damage of lipids, proteins, and nucleic acids. However,
given that Sod1 is amongst the most abundant proteins, constituting as
much as 0.5% of total yeast protein [66], and disproportionates O2

•− at
diffusion-limited rates (k ~ 109 M−1 s−1), the rationale for producing
large quantities of Sod1 has been a mystery. Indeed, herein, using the
model unicellular eukaryote, Saccharomyces cerevisiae (Baker's yeast),
we find that the vast majority of Sod1 is dispensable for protection
against numerous cell-wide markers of O2

•− toxicity, including cellular
[O2

•−], loss of Fe-S cluster enzyme activity, increased labile Fe, and
vacuolar and DNA damage (Fig. 1).

As SODs are the only enzymes that simultaneously affect both

Fig. 3. Yck1 expression is more sensitive to fluctuations in Sod1 expression and
activity than various markers of superoxide toxicity. (a) Titration of galactose
(GAL) into cultures of sod1::LEU2 (sod1Δ) cells co-expressing the GAL1 driven
Sod1 expression vector (prGAL-SOD1; pAR1026) and the TEF1 driven GFP-Yck1
expression vector (pAR113) results in a positive correlation between Sod1 ac-
tivity and Yck1 expression. (b) Titration of the copper chelator, BCS, into cul-
tures of sod1::LEU2 cells expressing the TEF1 driven GFP-Yck1 expression
vector (pAR113) results in a positive correlation between Sod1 activity and
Yck1 expression. In the correlation plots, relative GFP-Yck1 expression is
measured as the ratio of GFP-Yck1 to GAPDH signal intensities as determined
from densitometry of the immunoblots. The ratios are normalized to the max-
imal ratio observed with 0.5% GAL. Sod1 activity is expressed as the ratio of
BCS sensitive Sod1 activity to BCS-insensitive Sod2 activity as determined from
densitometry of the activity gels. The ratios are normalized to the maximal ratio
observed in each experimental set, i.e. 0.5% GAL in GAL titrations or 0mM BCS
in BCS titrations. In panel a, the Pearson's correlation coefficients (r) for Trial 1
(red circles) and Trial 2 (black circles) are r= 0.935 (p < .01) and r=0.906
(p < .001), respectively. In panel b, the Pearson's correlation coefficients (r)
for Trial 1 (red circles) and Trial 2 (black circles) are r= 0.955 (p < .05) and
r=0.888 (p < .001), respectively. Immunoblots and Sod activity gels are
shown for Trial 1, which are representative of all trials.
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[O2
•−] and [H2O2], they play dual roles in defending against O2

•−

toxicity and regulating H2O2-mediated redox signaling. While the bulk
of Sod1 is dispensable for protection against O2

•− toxicity in yeast, we
find that Sod1-mediated peroxide regulation of Yck1 and Yck2 is far
more sensitive to fluctuations in Sod1 expression and activity (Fig. 3).
However, if anything, logic dictates that Sod1 would have more influ-
ence on superoxide scavenging than peroxide-mediated signaling given
that it facilitates the production of 1 H2O2 molecule per 2 O2

•− mole-
cules. This paradox can be resolved by considering that the biological
targets of O2

•− toxicity are limited in scope, primarily Fe-S proteins,
necessitating that very little Sod1 is required to protect against O2

•−

damage. In contrast, peroxide-mediated signaling may require large
amounts of Sod1 in order to ensure that a sufficient concentration is
present in locations proximal to sites of O2

•− generation, e.g. NADPH
oxidases, so as to provide an adequate flux of H2O2 for the redox control
of downstream targets. Directly testing this hypothesis is not trivial due
to the technical challenges associated with measuring localized pools of
H2O2. Moreover, given that sod1Δ cells exhibit profound metabolic
changes, including increased rates of respiration, it is difficult to parse
apart contributions arising from the production of H2O2 directly from
Sod1 versus various metabolic sources that are affected by Sod1 ex-
pression, e.g. electron transport chain.

In light of the fact that vanishingly little Sod1 is required for defense
against O2

•− toxicity, the primary physiological role of Sod1 as a O2
•−

scavenger may need to be re-considered in yeast, and potentially other
cell types and organisms; its role in redox signaling [11,50], or non-
redox related functions, e.g. Cu buffering [66–68] or as a transcription
factor [33], may account for the function of most Sod1 in cells. An
alternative rationale that may account for cells maintaining a high level
of Sod1 is that it is required to protect against pathological conditions
that transiently increase O2

•− burdens. Indeed, Sod1 over-expression
can protect against the oxidative stress associated with post-ischemic
injury in mouse models [69]. In this context, our results from yeast
suggest that in the absence of redox stress and O2

•− toxicity, the ma-
jority of Sod1 is more vital for functions unrelated to its role in su-
peroxide scavenging. However, when cells are oxidatively stressed,
larger amounts of Sod1 that are otherwise utilized for redox signaling or
non-redox functions can “moonlight” as a O2

•− scavenger.
Another interesting outcome of our study is that Sod1 localized to

the IMS is sufficient to protect against cell-wide markers of O2
•− toxi-

city in yeast. This result suggests that different pools of Sod1 may have
very different physiological functions. For instance, IMS-localized Sod1
may be critical for protection against O2

•− toxicity whereas extra-mi-
tochondrial Sod1 may be more important for non-O2

•− scavenging re-
lated functions, such as mediating H2O2-based redox signaling or acting
as a transcription factor. The dual roles of Sod1 in redox signaling and
protecting against O2

•− toxicity in different locales may necessitate the
existence of mechanisms to dynamically regulate the localization and/
or activity/function of Sod1. Indeed, in human cell lines, it was recently
found that acetylation of Sod1 at K122, which is in-part regulated by
SIRT5, regulates the partitioning of Sod1 between the cytosol and mi-
tochondrial IMS, which in-turn affects respiratory vs. fermentative en-
ergy metabolism [70]. In yeast and human cell lines, it was found that
in response to H2O2, the cell cycle checkpoint regulating Mec1/ATM
effector Dun1/Cds1 kinase phosphorylates Sod1 at S60 and S99 to
trigger its nuclear import to regulate gene transcription [33]. In addi-
tion, it was recently demonstrated that Sod1 is reversibly phosphory-
lated at S39 in yeast or T40 in human cell lines by the nutrient sensing
mTORC1 to regulate redox homeostasis and adaptation to changes in
nutrient availability [71].

Why can IMS-localized Sod1 protect against cell-wide markers of
O2

•−-toxicity? First, our data suggests that the source of matrix and
extra-mitochondrial O2

•− originates in the IMS. How then can O2
•− in

the IMS damage biomolecules in other compartments, including the
mitochondrial matrix cytosol, vacuole, and nucleus? One possibility is
that O2

•− or HO2
• in the IMS diffuses into the matrix and cytosol,

possibly through membrane channels [72], damaging Fe-S enzymes
that reside in these locations [58]. The liberated labile Fe can then be
bound and trafficked in a manner that enables it to catalyze deleterious
redox reactions throughout the cell. Our results support prior ob-
servations that ROS derived from Complex III exerts its influence on
extra-mitochondrial targets [73,74].

Sod1 catalyzed O2
•− disproportionation is paramount to its biolo-

gical function. However, herein we propose that the majority of Sod1 in
yeast, and possibly other cell types, is more vital as a source of H2O2 for
redox signaling, and potentially other non-redox functions, than for
scavenging O2

•−. The concentration and spatio-temporal distribution of
O2

•− encountered in various cells and organisms in vivo are still not well
understood and will further define the relative roles of Sod1 in redox
signaling and oxidative stress protection. Moreover, the identification
of proteome-wide redox-targets of Sod1-derived H2O2 will be a new
frontier in the cell biology of Sod1. Our results will have implications
for understanding the basic redox biology of Sod1 and better inform the
treatment of diseases in which Sod1 or redox homeostasis can be tar-
geted, including certain cancers [11,75], neurodegenerative disorders,
e.g. amyotrophic lateral sclerosis (ALS) [76,77], and aging [78,79].

4. Methods

4.1. Chemicals, media components, and immunological reagents

Dihydroethidium (Cat. # 50-850-563), FM-4-64 (Cat # T-3166),
and Phen Green SK diacetate (Cat. # P-14313) was purchased from
Thermo Fisher Scientific. Paraquat dichloride (Cat # 856177-1G) was
purchased from Sigma-Aldrich. Yeast nitrogen base and SC dropout
mixtures were purchased from Sunrise Science Products. The Yeast
Mitochondria Isolation kit was purchased from Bio Vision (Cat. # K259-
50). Rabbit polyclonal antibodies against GAPDH (Cat. # 89348-232)
and GFP (Cat. # 89362-978) were purchased from VWR. Rabbit poly-
clonal antibody against PGK1 (Cat. #PA528612) and mouse mono-
clonal antibody against Porin (Cat. #459500) were purchased from
Thermo Fisher and Invitrogen, respectively. A previously described
rabbit polyclonal antibody against Sod1 was obtained from the la-
boratory of Valeria Culotta (Johns Hopkins University) [50].

4.2. Yeast strains, plasmids, and growth

S. cerevisiae strains used in this study were derived from BY4741
(MATa, his3Δ1, leu2Δ0, met15Δ0, ura3Δ0). sod1::LEU2 and
sod1::kanMX4 strains were generated by knocking out SOD1 using the
previously described deletion plasmids, pKS1 [67] and pJAB002 [80].

The GAL1 driven SOD1 expression plasmid (pAR1026) was con-
structed by PCR amplification of the SOD1 open reading frame from
BY4741 genomic DNA with primers that introduced flanking 5′ and 3′
SpeI and BamHI sites, respectively. The SOD1 amplicon was sub-cloned
into the SpeI and BamHI sites of pRS316-GAL1 [81] to generate
pAR1026. The TEF1-driven GFP-Yck1 expression construct (pAR113)
was previously reported [50]. Expression constructs for wild type SOD1
(pRS415-SOD1) and IMS localized SCO2-SOD1 (pRS415-SCO2-SOD1),
which are both driven by the native SOD1 promoter, were previously
described and were provided by the laboratory of Professor Dennis
Thiele (Duke University) [62].

Yeast transformations were performed by the lithium acetate pro-
cedure [82]. Strains were maintained at 30 °C on either enriched yeast
extract-peptone based medium supplemented with 2% glucose (YPD),
or synthetic complete medium (SC) supplemented with 2% glucose and
the appropriate drop-out mixture to maintain selection. For all experi-
ments, cells were streaked from − 80 °C glycerol stocks onto solid agar
media plates and pre-cultured in an anaerobic chamber (Coy labora-
tories) maintained with an atmosphere of 95% N2 and 5% H2. Anae-
robically grown cells required supplementing YPD or SC media with
15mg/L of ergosterol and 0.5% Tween-80 (YPDE or SCE, respectively)
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[83].
For experiments involving the titration of SOD1 using the GAL1

driven SOD1 expression plasmid, pAR1026, cells were cultured aero-
bically in SC-URA, with 2% raffinose and the indicated galactose con-
centrations. For typical experiments involving the IMS-targeted SCO2-
SOD1 expression plasmid, cells were cultured aerobically in SC-LEU,
with 2% raffinose. In all cases, cells were seeded at an OD600 nm ~ .01
and cultured for 14–17 h to a density of OD600nm ~ 1.0 at 30 °C in a
shaking incubator (220 RPM). Following growth, cells were processed
as described below for immunoblotting, enzyme assays, EPR spectro-
scopy, or measurements of labile Fe, superoxide, DNA damage, or va-
cuolar fragmentation. For all experiments, Sod1 activity and/or ex-
pression was assessed as described below. All experiments were
conducted using biological replicates arising from duplicate or tripli-
cate independent cultures of multiple clones. While the data reported in
the figures reflect biological replicates from single experimental trials,
all of the data has been re-produced on multiple occasions in in-
dependent experimental trials.

4.3. Cell fractionation

Mitochondria were isolated using the Yeast Mitochondria Isolation
Kit (Bio Vision) according to the manufacturer's specifications. For this
purpose, sod1Δ cells expressing an empty vector (pRS415), SOD1
(pRS415-SOD1) or IMS localized SCO2-SOD1 (pRS415-SCO2-SOD1)
were grown in 20mL, SC-2% glucose cultures to a density of OD600 nm

= 1.0. 4×108 cells of each strain were harvested and washed in ice-
cold ultra pure water prior to fractionation. After fractionation, vo-
lumes corresponding to 2.5% of the whole cell extract and cytosolic
fractions, and 10% of the mitochondrial fraction were assessed for
Pgk1, Sod1, and Porin expression by SDS-PAGE and immunoblotting.
Pgk1 and Sod1 were probed with anti-PGK1 (1:1000) and anti-SOD1
(1:5000) polyclonal antibodies and detected using a goat anti-rabbit
secondary antibody conjugated to a 680 nm emitting fluorophore
(Biotium). Porin was probed with an anti-Porin (1:5000) monoclonal
antibody and detected using a goat anti-mouse secondary antibody
conjugated to a 797 nm emitting fluorophore (Thermo Fisher).

4.4. Immunoblotting

~2×108 cells were harvested, washed in ice-cold Milli-Q water,
and lysed in two pellet volumes of lysis buffer (10mM sodium phos-
phate, 50mM sodium chloride, 5 mM EDTA, 1.0% Triton X-100, 1mM
PMSF and a protease inhibitor cocktail (GBiosciences) as described
previously [84]. Lysis was achieved at 4 °C using one pellet volume of
zirconium oxide beads and a bead beater (Bullet Blender, Next Ad-
vance) on a setting of 8 for 3min [84]. Lysate protein concentrations
were determined by the Bradford method (Bio-rad) and 14% tris-gly-
cine gels (Invitrogen) were employed for SDS-PAGE [84]. Anti-GFP
(1:4000), anti-GAPDH (1:4000), or anti-Sod1 (1:5000) polyclonal an-
tibodies and a goat anti-rabbit secondary antibody conjugated to a
680 nm emitting fluorophore (Biotium) were used to probe for GFP-
Yck1, GAPDH, or Sod1, respectively. All gels were imaged on a LiCOR
Odyssey Infrared imager [50,55,84].

4.5. Enzyme assays

SOD activity analysis was carried out by native PAGE and nitroblue
tetrazolium staining as described previously [50,85,86] on exponential
phase cultures grown to a final OD600 nm =1.0 in SC, 2% raffinose
media containing the indicated concentration of galactose. Yeast cells
were washed with ultra pure H2O, resuspended in lysis buffer and lysed
as described in the section on immunblotting. Protein samples
(~ 10–30 μg) were separated in 14% native PAGE gels. Sod1 activity
was visualized by staining gels with 2.43mM nitro blue tetrazolium
chloride (Sigma), 0.14M riboflavin-50-phosphate (Sigma) and 28mM

TEMED (Bio-Rad) for 60min at room temperature in darkness. To vi-
sualize Sod1 activity, gels were rinsed with water twice and exposed to
light.

For aconitase (Aco1p) and isopropylmalate isomerase (Leu1p) ac-
tivity assays, cells were subjected to ZrO bead lysis in 50mM MES,
100mM KCl, 0.1% Triton X-100, pH 7.0 under a nitrogen atmosphere in
a COY chamber. Aco1p and Leu1p activity was determined spectro-
photometrically as described previously [55,58] using a Biotek Synergy
Mx multi-modal plate. The assay mixture contained 50–300 μg of lysate
protein in 200 μL of a buffer containing 50mM tris(hydroxymethyl)
aminomethane (Tris)-HCl, pH 7.4, and 100mM NaCl and supplemented
with either 0.5 mM cis-aconitate (Aco1 activity) or 0.5mM citraconitate
(Leu1 activity). Activities were determined by monitoring the dis-
appearance of cis-aconitate (Aco1p) or citraconitate (Leu1p) at 240 or
235 nm, respectively, over the course of 5min.

4.6. Superoxide measurements

Superoxide levels were measured by monitoring the fluorescence of
DHE stained cells (λex = 485 nm, λem = 620 nm) similarly to what was
described previously [50,57]. Briefly, 1×107 cells were harvested
from duplicate or triplicate cultures, resuspended and incubated in
500 μL of fresh media containing 50 μM DHE for 20min in the dark,
washed twice with PBS solution, and fluorescence recorded in a Biotek
Synergy Mx multi-modal plate reader.

4.7. Detection of labile Fe using EPR spectroscopy

EPR detection of labile Fe in yeast was accomplished as described
previously [45,48,87], but with the following modifications. 50mL
cultures of sod1Δ cells expressing prGAL-SOD1 seeded at a density of
OD600 nm = .01 were grown in 250mL Erlenmeyer flasks containing SC,
2% raffinose media with the indicated galactose concentration. Cul-
tures were grown for 16 h to an OD600 nm ~ 1. Cells were washed 2x
with 10mL of cold ultrapure H2O and 1x with 10mL cold 20mM Tris-
Cl, pH 7.4 on ice. Finally, the cells were resuspended in 500 μL of cold
20mM Tris-Cl, pH 7.4, containing 10% glycerol and transferred into an
EPR tube. The sample was flash frozen in liquid N2 and stored at
− 80 °C until EPR measurements were performed. Spectra were re-
corded with a Bruker EMX X-band spectrometer equipped with an
ESR900 continuous flow cryostat (Oxford Instruments, Concord, MA) at
70 K. The parameters for EPR were as follows: center field, 1560G;
sweep width, 500 G; frequency 9.45 GHz; microwave power, 31mW;
attenuation, 10 dB; modulation amplitude, 20 G; modulation frequency,
100 kHz; receiver gain, 2·105; sweep time, 20.97 s; time constant,
81.92ms; resolution, 2048 points; number of scans, 16. Fe(III) desfer-
rioxamine (DFO) standards were prepared over a range of concentra-
tions in 20mM Tris HCl, 1 mM DFO, 10% glycerol, pH 7.4. The Fe(III)
signal at g =4.3 was analyzed with the Xenon software (Bruker) and
used for quantitation of EPR-detectable iron levels. Calculation of cel-
lular EPR-detectable Fe(III) was performed as described previously
[87].

4.8. Detection of labile Fe with Phen Green SK

Labile Fe was detected as described previously using Phen Green SK
(λex = 488 nm, λem = 530 nm), a fluorescent probe for divalent metals
that is quenched upon Fe2+ binding [88–90]. 5× 107 cells were re-
suspended in 300 μL of phosphate buffered saline (PBS). The cell sus-
pension was incubated with 3 μL of a 2mM Phen Green SK DMSO stock
solution at 30 °C for 15min in the dark. Cells were then washed with
PBS, and split into 3×100 μL aliquots, and were treated with 1 μL of
H2O, 1 μL of a 200mM aqueous stock solution of 1,10-phenantroline, a
ferrous iron chelator, or treated with 1 μL of a 10mM aqueous stock
solution of ferrous ammonium sulfate, and incubated in the dark for
10min, prior to recording fluorescence. Phen Green fluorescence was
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recorded in a Biotek Synergy Mx multi-modal plate reader. After sub-
tracting the background fluorescence of unlabeled cells, the percentage
of Phen Green bound to Fe2+ (% Bound) was calculated using the
following formula:

− −% Bound: (F F /F F ) * 100min max min

where, F is Phen Green fluorescence intensity in the test sample, Fmin is
the Phen Green fluorescence intensity when it is not bound to Fe, and
Fmax is the Phen Green fluorescence intensity when it is saturated with
Fe. Fmin is determined by recording Phen Green fluorescence in cells
incubated with the iron chelator, 1,10-phenantroline. Fmax is de-
termined by recording Phen Green fluorescence in cells incubated with
ferrous ammonium sulfate.

4.9. Vacuolar fragmentation

Vacuolar fragmentation was assessed as previously described [45].
Briefly, 2×107 cells were resuspended in 50 μL of fresh growth media,
typically SC media with 2% raffinose and appropriate galactose con-
centration. The cell suspension was incubated with 1 μL of a 2mM
DMSO stock solution of FM4–64 at 30 °C for 20min in the dark. The
cells were then pelleted, washed with fresh media, and resuspended in
5mL of fresh SC media with 2% raffinose and appropriate galactose
concentration. The cells were cultured for an additional 1.5 h at 30 °C,
shaking at 220 RPM in the dark. The cells were then washed with PBS
and resuspended in PBS to a density of 2×108 cells mL−1. 3 μL of the
cell suspension were placed on a glass slide and imaged using a Zeiss
LSM 700 microscope equipped with a 63×, 1.4 numerical aperture oil
objective, using the using the Texas Red channel. Approximately ~ 100
cells were counted from each culture condition in triplicate and scored
for having either single vacuoles or multiple fragmented vacuoles as
indicated in Fig. 1j.

4.10. TUNEL assays

TUNEL assays were conducted as previously described [33]. Yeast
cells were fixed in 4% p-formaldehyde at room temperature for 30min.
The cells were then washed three times with PBS. The cell pellet was
then re-suspended in PBS and digested with 300 μg/mL of Zymolyase
100 T at 37 °C for 60min. After 60min, 10 μL of the cell suspension was
applied to a clean glass slide and dried at 37 °C for 30min. The slides
were rinsed with PBS and incubated in a permeabilization solution
(0.1% Triton X-100% and 0.1% sodium citrate) on ice for 2min. The
slides were then rinsed twice with PBS. The TUNEL reaction mixture
(50 μL of enzyme solution and 450 μL of Label solution; In Situ Cell
Death Detection Kit, Roche Diagnostics) was applied to the slides and
incubated in the dark for 60min. The cells labeled with fluorescein-
dUTP were imaged using a Zeiss LSM 700 microscope equipped with a
63×, 1.4 numerical aperture oil objective. Approximately ~ 100 cells
were counted from each culture condition in triplicate and scored for
being either non-fluorescent or fluorescent using the FITC channel.
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