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ARTICLE

Ultra-strong long-chain polyamide elastomers with
programmable supramolecular interactions and
oriented crystalline microstructures
Lingzhi Song1, Tianyu Zhu2, Liang Yuan2, Jiangjun Zhou1, Yaqiong Zhang1, Zhongkai Wang 1 &

Chuanbing Tang2

Polyamides are one of the most important polymers. Long-chain aliphatic polyamides could

bridge the gap between traditional polyamides and polyethylenes. Here we report an

approach to preparing sustainable ultra-strong elastomers from biomass-derived long-chain

polyamides by thiol-ene addition copolymerization with diamide diene monomers. The

pendant polar hydroxyl and non-polar butyrate groups between amides allow controlled

programming of supramolecular hydrogen bonding and facile tuning of crystallization of

polymer chains. The presence of thioether groups on the main chain can further induce

metal–ligand coordination (cuprous-thioether). Unidirectional step-cycle tensile deformation

has been applied to these polyamides and significantly enhances tensile strength to over 210

MPa while maintaining elasticity. Uniaxial deformation leads to a rearrangement and align-

ment of crystalline microstructures, which is responsible for the mechanical enhancement.

These chromophore-free polyamides are observed with strong luminescence ascribed to the

effect of aggregation-induced emission (AIE), originating from the formation of amide clus-

ters with restricted molecular motions.
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Long-chain aliphatic polyesters and polyamides possess some
of unique compositions and properties, given that they
bridge the gap between conventional polyethylene and

short-chain condensation polymers (or polycondensates)1–4.
While the long aliphatic chain promotes crystallization via van
der Waals interactions, the presence of functional groups (e.g.,
esters and amides) powers this class of polymers for applications
that polyethylene cannot enable such as degradability and
compostability5,6. Coupling with possible feedstocks from
renewable natural resources, these type of polymers would hold
enormous potential in pursuing sustainability toward green bio-
plastics7–17. Thus, there is an indigenous incentive to design
viable routes to access long-chain monomers and their corre-
sponding polymers. One of the primary approaches is to prepare
linear α, ω-difunctional monomers, including selective terminal
functionalization of fatty acids, which are corroborated by recent
advances in catalytic conversions of plant oils18–20. However,
many of these polymers require tedious synthetic processes and
exhibit inferior physiochemical properties compared with either
polyethylene or traditional condensation polymers. Most of them
are reported as thermoplastics with just a few on elastomers with
mediocre mechanical properties.

As shown in Fig. 1, we conceptualized castor oil-derived amide
diene monomers. The key advantage of our design is the intro-
duction of hydroxyl groups in the main chain that could be
further used to install functional groups as side chains, which has
been rarely reported with other polyamide systems. Two mono-
mers with hydroxyl or butyrate pendant groups were first syn-
thesized. Functional polyamides were then prepared via thiol-ene
addition polymerization. Copolymerization of these monomers
would allow precise tuning of crystallization properties of

resultant polyamides. The existence of butyrate pendant groups
may restrain the formation of a highly crystalline structure, but
facilitate an elastic amorphous matrix. Nanocrystals from the
packing of linear alkyl chains and supramolecular hydrogen
bonding from amide/hydroxyl side groups contribute to high
mechanical strength. Moreover, it is worth noting that the
ultrahigh mechanical strength could be achieved via the forma-
tion of oriented microstructures21–23. Unidirectional step-cycle
tensile deformation was therefore performed on these functional
polyamides to induce alignment of microstructures. Ultra-strong
elastomers (uEs) with oriented nanocrystals dispersed in the
amorphous matrix were obtained.

On a different perspective, a variety of small molecules and
macromolecules exhibit enhanced luminescence rather than
quenching at the solid state, a phenomenon coined as
aggregation-induced emission (AIE) by Tang et al.24–26. Very
interestingly, many chromophore-free synthetic polymers (e.g.,
anhydride, amide-rich polymers)27–29 and natural biopolymers
(e.g., cellulose, starch, peptide)27 also show unusual emission at
the aggregation state. Given the rich content of amide groups, we
hypothesize that our polyamides could have similar amide
cluster-induced luminescence, which could bring additional
benefits of this class of materials.

We report herein the design of a class of biobased long-chain
aliphatic polyamides that combine van der Waals interactions
and supramolecular hydrogen bonding. The macromolecular
compositions facilitate the formation of crystalline nanostructures
dispersed in an amorphous matrix. With the controlled pro-
gramming of supramolecular interactions, it would allow the
facile tuning of mechanical strength. Further unidirectional
stretching of these polyamide films induces the orientation of
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Fig. 1 Design of monomers and functional polyamides. a Synthesis of amide diene monomers from a castor oil derivative; b synthesis of polyamides by
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ordered crystalline domains and thus results in ultra-strong
elastic materials with an increase of tensile strength by nearly one
order of magnitude. This kind of biobased polyamides is the
strongest elastomers reported among long-chain aliphatic
polycondensates.

Results
Synthesis of long-chain polyamides. Recently, several approa-
ches have been developed to prepare polyamides with functional
side groups30–33. However, the synthesis of monomers was
mostly involved with tedious work-up and relatively low yields.
In this work, we developed efficient synthesis of diene monomers
that bear two secondary amide bonds in the main chain
attached with pendant side groups. As shown in Fig. 1a, an α, ω-
diene amide monomer with hydroxyl side group (N,N'-
(2-hydroxypropane-1,3-diyl)bis(undec-10-enamide), UDA) was
first prepared via amidation of methyl 10-undecenoate with 1,3-
diamino-2-propanol34–36. The reaction conversion into UDA
monomer during this step is quantitative (~100%). The hydroxyl
group in UDA was then reacted with butyric anhydride
to introduce a larger pendant group that could later inhibit
crystallization of its polymer. The resultant monomer 1,3-di
(undec-10-enamido)propan-2-yl butyrate is labeled as BUDA.
The successful synthesis of UDA and BUDA was confirmed by
Fourier-transform infrared spectroscopy (FT-IR), proton nuclear
magnetic resonance (1H NMR), and carbon-13 nuclear magnetic
resonance spectroscopy (Supplementary Fig. 1). Thiol-ene
addition polymerization of both diene monomers was per-
formed to afford polyamides (Fig. 1b, labeled as PUDA and
PBUDA, respectively). The existence of hydrogen bonded amide
groups along with linear alkyl chains would result in highly
crystalline polymers for PUDA. Indeed, PUDA homopolymer
(P7) is a highly crystalline and brittle material (Supplementary
Fig. 2a). On the other hand, the presence of pendant groups
could interrupt the formation of crystalline domains in PBUDA
(P0, transparent in Fig. 1c). Thus, we predict that a copolymer of
both monomers (P(UDA-co-PBUDA) (opaque in Fig. 1c) could
have the existence of a two-phase morphology with nanocrys-
talline domains dispersed in an amorphous matrix. The precise
control of feed ratios of co-monomers would allow the facile
tuning of crystallinity with the aid of programmable supramo-
lecular hydrogen bonding.

To understand the effect of monomeric compositions on
microstructures and thermomechanical properties of functional
polyamides, we prepared a series of P(UDA-co-BUDA) copoly-
mers with the fraction of UDA varying from 10 to 80 mol%
(polyamides P1–P6 in Supplementary Table 1). The formation of
these polyamide copolymers was confirmed by 1H NMR
(Supplementary Fig. 3), gel permeation chromatography (Sup-
plementary Fig. 4), and thermogravimetric analysis (Supplemen-
tary Fig. 5). All these polyamides have relatively high molecular
weight (>20,000 g mol−1) and good thermal stability.

Differential scanning calorimetry (DSC) was performed to
estimate the microstructure of polymers. Figure 2a shows heat
flow curves of DSC for P0–P7. All copolymers exhibited glass
transition temperature (Tg) far below room temperature (−29.4
to −21.6 °C). Moreover, DSC curves show distinct melting and
crystallization processes for both PUDA homopolymer (P7) and
copolymers (P1–P6). The melting temperature (Tm) of P1–P7
increased with the increase of UDA content. PUDA homo-
polymer (P7) has the highest Tm at ~122.3 °C and an enthalpy of
fusion (ΔHm) of 595.5 J g−1, while PBUDA homopolymer (P0)
was not observed with a melting point. The DSC heating curves
for polymers with high UDA content (P5–P7) show two distinct
melting peaks, which can be interpreted by a coexistence of the

γ-phase and α′-phase crystals at elevated temperature37,38. These
results suggest the incorporation of UDA with the hydroxyl side
group facilitates the formation of crystalline domains: the higher
the UDA content, the higher melting temperature.

Microstructures and supramolecular hydrogen bonding. Wide-
angle X-ray diffraction (WAXD) was further used to probe crys-
tallization behaviors of homopolymers of UDA and BUDA, as well
as their copolymers (Fig. 2b). Except PBUDA homopolymers, all
other polymers were observed with a broad baseline and sharp
peaks with varied intensity, indicating the coexistence of both
crystalline and amorphous microstructures. The crystalline and
amorphous peaks were deconvoluted via peak fitting (Supplemen-
tary Fig. 6). The crystalline peak at 2θ around 21.2° corresponds to
the γ-crystalline form as reported for polyamides39. The degree of
crystallinity (Xc) was calculated based on the fraction of areas under
crystalline peaks over the total areas under both crystalline and
amorphous regions. Supplementary Table 2 summarizes the peak
positions and Xc for P0–P740. Xc increases with the increase of
UDA content in the copolymers, in good agreement with the DSC
data. The size of crystalline domains (t) can be estimated from the
Scherrer’s formula: t= λ/B cos θ, where λ is the wavelength of
X-ray, B is the full width at half-maximum of diffraction peaks, and
θ is the diffraction angle. As a result, the size of crystalline domains
is only ca. 6.7–8.5 nm for the copolymers. Although well-aligned
UDA segments induce the growth of crystallites, the pendant
butyrate groups hinder the alignment polyethylene-like chains at
the backbone and further depress the overall strength of inter-
molecular van der Waals interactions. Supplementary Figure 7
shows a polarized optical micrograph (POM) of a representative
copolymer P4, the nearly dark image also indicated that the crystals
are too small to be visualized by POM.

It was conceptualized that supramolecular hydrogen bonding
should play a critical role in the crystallization of polyamides. As
hydrogen bonding is temperature-sensitive, these copolymers
were characterized by variable temperature FT-IR spectroscopy.
When C=O groups of amides form hydrogen bonds, their
infrared absorption peak may shift. Figure 2c shows FT-IR
spectra of P0–P7 in the 1500–1700 cm−1 region. The peaks near
1620–1680 cm−1 are assigned to the stretching of carbonyl
groups. This region of carbonyl stretching contains three distinct
contributions: free carbonyl groups at 1678 cm−1, disordered
hydrogen bonded carbonyl groups at 1646 cm−1, and ordered
hydrogen bonded carbonyl groups at 1626 cm−1, the latter two of
which indicate the formation of hydrogen bonding in poly-
amides41. Figure 2d shows the changes of peak intensities of free/
disordered hydrogen bonded/ordered hydrogen bonded carbonyl
groups as a function of UDA content for polymers P0–P7 at room
temperature. It can be seen that the peak intensity of ordered
hydrogen bonded groups greatly increased with the increase of
UDA content, demonstrating that the presence of more UDA
facilitated the formation of hydrogen bonding. Figure 2e shows
variable temperature FT-IR spectra of a representative copolymer
P6 in the 1500–1700 cm−1 region, which indicates association/
dissociation of hydrogen bonds under different temperature.
With the increase of temperature, the absorption peaks at 1646
and 1626 cm−1 decreased, and a broad peak near 1678 cm−1

gradually increased, indicating the weakening and dissociation of
hydrogen bonds. Figure 2f shows the changes of peak intensity of
free/disordered hydrogen bonded/ordered hydrogen bonded
C=O for P6 as a function of temperature. There is a transition
occurred from 80 °C to 120 °C, which is in excellent agreement
with the melting results by DSC. This suggested that the ordered
hydrogen bonds exist mostly within the crystalline region. Based
on these observations, molecular models for crystalline and

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-09218-6 ARTICLE

NATURE COMMUNICATIONS |         (2019) 10:1315 | https://doi.org/10.1038/s41467-019-09218-6 |www.nature.com/naturecommunications 3

www.nature.com/naturecommunications
www.nature.com/naturecommunications


amorphous phases were proposed in Fig. 2g. The large butyrate
side groups of BUDA disrupt chain regularity and prefer to stay
in the amorphous region, while hydroxyl groups facilitate
crystallization. Overall, it can be concluded that in addition to
intermolecular van der Waals interactions from linear alkyl
chains, the formation of semicrystalline microstructures was
largely facilitated by inter/intra-molecular hydrogen bonding.

The dispersion of crystalline microstructures in an amorphous
matrix is crucial to possess outstanding mechanical properties for
many of polyamide systems42–44. For the copolymers of UDA
and BUDA, an amorphous matrix envelopes nanocrystalline
domains, where there are rich inter/intra-molecular hydrogen
bonds. The mechanical properties of copolymers with various
UDA contents were measured via monotonic tensile deformation
(Fig. 3a, Supplementary Fig. 8, and Supplementary Table 3).
Compared to the non-crystalline homopolymer PBUDA, copo-
lymer P4 has tensile strength and Young’s modulus at 18.4 ± 2.1
and 149.6 ± 3.1 MPa, an increase of 429.6% and 521.4%,
respectively. Moreover, with the increase of UDA content, the
toughness increased from 5.2 (P0) to 65.0 MJ m−3 (P4), an
increase over 12.5-folds, demonstrating that the existence of
nanocrystalline domains greatly enhances toughness. Copolymers
P1–P3 were also observed with similar trends at different levels of

increase in mechanical properties (Fig. 3a). Copolymers P5–P6
with higher contents of UDA (60% and 80% respectively) were
not subject to such comparisons, as they are quite brittle.

Preparation of uEs. It is expected that the as-prepared film
samples of copolymers by solution casting do not possess highly
oriented crystalline microstructures. Consecutive cyclic tensile
deformation was applied to copolymers P1–P4 to induce the
alignment of microstructures45,46. After deformation, these
samples were labeled as uE1–uE4 (Fig. 3 and Supplementary
Figs. 9–11). The stress–strain curves during the first and second
step-cycle tensile deformation of P4 are shown in Fig. 3b and c.
The large hysteresis during each cycle is in agreement with the
Mullin effect47. After the step-cycle tensile deformation, these
copolymers were transformed into ultra-strong elastomers
(uE1–uE4). For example, the stress at break of uE4 is 126.3 MPa,
more than seven times of as-prepared P4 (Fig. 3e). Though the
elongation at break of uE4 reduced to 30%, its elastic recovery is
strikingly high at 94.5% (Fig. 3d). Similarly, the high elastic
recovery was also observed for uE1, uE2, and uE3 at 96.9%,
96.7%, and 95% respectively (Supplementary Fig. 12). Together,
these elastomers combined ultrahigh tensile strength and
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excellent elasticity. The mechanical properties of uE1–uE4 are
summarized in Supplementary Table 4. The mechanical proper-
ties of uEs can be precisely tuned by controlling the content of
UDA. Supplementary Figure 13 shows that a uE4 fiber with a
diameter of ~135 μm can easily hold a weight of 200 g, implying
the exceptional toughness.

To demonstrate that there is much room for further improving
mechanical strength of these polyamides, we carried out a
preliminary study by introducing metal–ligand coordination.
Cuprous–thioether coordination has been widely observed in
biological systems and recently used in synthetic polymers48–51.
Our polyamides contain a reasonable fraction of thioether groups
along the backbone. Thus, CuBr was used to induce
cuprous–thioether coordination to strengthen the mechanical
properties (Supplementary Fig. 22). After similar tensile deforma-
tion processing, as shown in Fig. 3f and Supplementary Figs. 14–
15, polyamides with 14.4 mol% cuprous ions (to the sulfur atoms,
labeled as uE4-Cu) exhibit stress at break at 211.2MPa, more than
65% increase over uE4, while maintaining similar elongation at
break (27.9%). This substantial enhancement is a strong indication
of the robustness of current structures of polyamide systems.

To place our work in context, we have collected a variety of long-
chain polyamides and polyesters reported in literature and
compared their tensile strength (Supplementary Table 5). It is
quite evident that the polyamides we prepared possess the highest
tensile strength, even much higher than long-chain nylons (Nylon
12). While it may not be fair to compare, our polymers also have
better tensile strength than short-chain nylons (e.g., polyamide 6.6).

To understand the substantial difference of mechanical
properties between as-prepared P1–P4 and tensile-deformed
uE1–uE4, WAXD measurement was used to reveal how the
microstructures could be rearranged by the cyclic tensile
deformation. As shown in Fig. 4a, 2D WAXD pattern of P4 is
nearly isotropic. After cyclic tensile processing, an anisotropic 2D
WAXD pattern is clearly formed for uE4, the arrow represents

the stretching direction (Fig. 4b). The scattering intensity was
found to converge on the meridian, which indicates that
crystalline domains are oriented along the tensile direction. The
orientation of crystal phase is also verified by the azimuthal angle
at 2θ= 21° (Fig. 4c). According to the WAXD analysis
(Supplementary Figs. 16–18), we proposed a model on micro-
structure rearrangement of P(UDA-co-BUDA) copolymers dur-
ing cyclic tensile deformation (Fig. 4d).

AIE of polyamides. Surprisingly, both as-prepared and uni-
directionally stretched polyamides exhibited strong luminescence.
As shown in Fig. 5a and b, as-prepared P4 emits strong blue
photoluminescence. The corresponding fluorescent spectrum
shows an emission peak at ~418 nm, while the UV–vis absorption
peak is at 210 nm (Fig. 5c and Supplementary Fig. 19).
Figure 5d–f show fluorescence images of stretched uE4 fibers
observed under microscope with a diode laser, which was excited
with 340–380, 460–495, and 530–550 nm, respectively. Moreover,
Fig. 5g indicates that the emission color of P4 film did not show
obvious difference during stretching, which was further corro-
borated by fluorescent spectra of P1–P4 and uE1–uE4 (Supple-
mentary Fig. 20). Traditional chromophore-containing
fluorescent polymers do not emit strong fluorescence in con-
centrated solutions or solid states due to the aggregation-caused
quenching24,52. In the current case, the as-prepared polyamides
without any conventional chromophores exhibit strong emission
at the solid state. We believe that these polyamides have the
properties of AIE (Supplementary Fig. 21), which was first dis-
covered with chromophore-containing molecules by Tang
and coworkers in 200125. Recently, synthetic and natural
chromophore-free polymers have been reported with AIE char-
acteristics, as a result of the formation of polar group clusters due
to restriction of molecular motions27,53. A few research groups
have reported polyamides with photoluminescence29,54–56. It is
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generally believed that the strong hydrogen bonding induces the
formation of local clusters of amides that facilitate fluorescence.
We hypothesized that our polymers with rich amide and hydroxyl
groups enable through-space conjugation via n–π* or π–π*
transitions52. Thus, the as-prepared polyamides and elastomers
could generate strong fluorescence in the solid state (Fig. 5h),
which could be beneficial for the extension of these elastomers
from bioplastics to other areas such as biomedical applications
that are worthy for exploration in the future.

In summary, biobased α, ω-diene amide monomers were
designed with pendant polar hydroxyl or non-polar butyrate
groups. Compared with traditional polyamides, these long-chain
polyamides prepared by thiol-ene addition polymerization have
controlled programmable supramolecular hydrogen bonding and
tunable crystallinity with mechanical properties facilely adjusted
by changing co-monomer compositions. By unidirectional step-
cycle tensile deformation, ultra-strong elastomers were obtained
without the addition of any fillers. It is the formation of highly
aligned crystalline microstructures responsible for the unique
mechanical properties of elastomers. Moreover, the clustered
amide groups with molecular motions restricted in the aggregate
state enable these polyamides with luminescence, a phenomenon
of AIE. This study provides an approach to pursuing biobased
polymers derived from renewable natural products, which
combine ultrahigh mechanical strength, excellent elasticity, and
strong photoluminescence.

Methods
Synthesis of UDA. We revised a procedure reported earlier11. UDA was prepared
via amidation using 1,3-diamino-propanol (Fig. 1a). A typical procedure is given as
follows: 1,3-diamino-propanol (10 mmol, 0.93 g) and methyl 10-undecenoate
(20 mmol, 4.13 g) were charged into a 25 mL round-bottom flask. After purging
nitrogen at 100 °C for 30 min, the reaction mixture was cooled to 65 °C, and 0.1 mL
of sodium methoxide (0.5 mmol, 27 mg in 30wt% methanol) and 3 mL of anhy-
drous tetrahydrofuran (THF) were added. The reaction ran for 12 h. Pure and
white UDA powder (3.0 g, 63% yield) was obtained via recrystallization from
methanol twice and dried under vacuum.

Synthesis of BUDA. Monomer (BUDA) was prepared by esterification between UDA
with butyric anhydride (Fig. 1a). A typical procedure is described as follows: UDA
(8.0mmol, 3.38 g), butyric anhydride (8.4mmol, 1.33 g), 4-dimethylaminopyridine

(0.24mmol, 30.0mg), and THF (4mL) were added into a 25mL round-bottom flask.
After reacting at 60 °C for 24 h, deionized water (1mL) and THF (4mL) were injected
to the mixture to quench the unreacted anhydride. The reaction solution was then
poured into dichloromethane and washed with aqueous solutions of NaHCO3 and
NaCl. White BUDA solid (2.7 g, 69% yield) was obtained by drying the organic phase
and evaporating the solvent.

Preparation of polyamides. Polyamides were prepared via thiol-ene addition
polymerization of UDA and BUDA with dithiol. Azobisisobutyronitrile (AIBN)
was used as a radical initiator. A typical procedure is described as follows (using
BUDA as an example): BUDA (2.0 mmol, 0.99 g), 3,6-dioxa-1,8-octanedithiol
(2.0 mmol, 0.38 g), AIBN (0.06 mmol, 10 mg), and THF (2 mL) were charged into a
10 mL flask, purged with nitrogen for 10 min, and reacted at 70 °C for 12 h. The
reaction mixture was diluted with THF and precipitated in methanol for several
times. The precipitates were dried under vacuum at 40 °C to obtain homopolymer
of PBUDA (P0) (64% yield). All other polyamides were prepared in a similar
procedure.

Preparation of polyamide films. P0–P4 films were prepared by solution casting. A
typical procedure is described as follows: polyamides (1.0 g) were dissolved in THF
(7 mL) and poured into a Teflon mold. Films were dried at room temperature for
2 days, and then under vacuum at 40 °C for 24 h. Fibers of uE4 were prepared via a
wire-drawing process. Typically, P4 (1.0 g) was introduced into a flask and heated
to 120 °C. After melting, fibers were drawn from the melt using a tweezer.

Preparation of metal–ligand coordination polyamide films. A typical procedure
was described as follows: P4 (700 mg), CuBr (6 wt%, 43.2 mg), and dimethylfor-
mamide (6 mL) were added into a 25 mL round-bottom flask. The mixture was
purged with nitrogen for 15 min and heated at 65 °C for 8 h, followed by rotary
evaporation and vacuum dry at 80 °C for 72 h. Films were obtained by hot press at
120 °C.

Preparation of uEs. Polymers P0–P4 were performed on a SUNS UTM2502
instrument with a 100 N load cell. The crosshead speed was set at 10 mmmin−1.
The maximum strain was stretched to 100%, 200%, 300%, up to 600% during the
first step-cycle tensile deformation. The maximum strain during the second step-
cycle tensile deformation was gradually increased from 5 to 40%. The elastic
recovery of uEs was calculated using the equation: Elastic recovery= (εmax− ε0)/
εmax, where εmax and ε0, respectively, represent the maximum strain and the strain
at 0MPa in each cycle. The preparation of metal–ligand coordination-based ultra-
strong elastomers (uE-Cu) was carried out using the similar procedure to the
above.

Data availability
All the data supporting the findings of this study are available within the article and its
Supplementary Information file or from the corresponding authors upon request.
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