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Abstract 14 

To investigate how to accurately identify bee species using their sounds, we conducted acoustic 15 

analysis to identify three pollinating bee species (Apis mellifera, Bombus ardens, Tetralonia 16 

nipponensis) and a hornet (Vespa simillima xanthoptera) by their flight sounds. Sounds of the 17 

insects and their environment (background noises and birdsong) were recorded in the field. The 18 

use of fundamental frequency and mel-frequency cepstral coefficients to describe feature values 19 

of the sounds, and supported vector machines to classify the sounds, correctly distinguished 20 

sound samples from environmental sounds with high recalls and precision (0.96-1.00). At the 21 

species level, our approach could classify the insect species with relatively high recalls and 22 

precisions (0.7-1.0). The flight sounds of V.s. xanthoptera, in particular, were perfectly 23 
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identified (precision and recall: 1.0). Our results suggest that insect flight sounds are potentially 24 

useful for detecting bees and quantifying their activity. 25 

 26 
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1. INTRODUCTION 29 

Monitoring insect activity is useful for many purposes, such as pest control and monitoring 30 

beneficial insects. For pest control, it is important to spray pesticides at the right time, but 31 

scheduling pesticide application is difficult for farmers since the occurrence of pest species is 32 

hard to predict. For pollination in greenhouses, monitoring the activity of bees is useful in 33 

managing their activity, and knowing when to replace nest boxes (Fisher and Pomeroy 1989; 34 

Morandin et al. 2001). Detection of insects can also be used to better understand the biodiversity 35 

of pollinators and their habitat use (Miller-Struttmann et al. 2017; Hill et al. 2018). Monitoring 36 

insect activity and detecting insects are thus useful in both agricultural production and 37 

ecological research. 38 

Several methods for monitoring insects automatically have been developed to date. For 39 

example, image processing and analysis techniques are used to identify orchard insects 40 

automatically (Wen and Guyer 2012), and Zhu et al. (2017) developed a method to detect 41 

Lepidoptera species in digital images using a cascade architecture which combines deep 42 

convolutional neural networks and supported vector machines. 43 

Another way to monitor insect activity is to use acoustic or vibrational information. Such 44 

analysis can be used at night or in places where it is impractical to use digital cameras, such as 45 

underground or in dense grass. For example, Celis-Murillo et al. (2009) studied birdsong to 46 

investigate bird species and density in a range of places, and reported that acoustic analysis 47 

performed better than the human ear. In addition, acoustic analysis was used in postharvest 48 
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management for monitoring insects such as rice weevils, Sitophilus oryzae, in grain storage 49 

(Fleurat-Lessard et al. 2006; Njoroge et al. 2017). Towsey et al. (2014) demonstrated that the 50 

use of acoustic indices could identify the cicada chorus in the natural environment, and 51 

Lampson et al. (2013) developed automatic identification methods for stink bugs (Euschistus 52 

servus and Nezara viridula) using acoustic analysis of intraspecific substrate-borne vibrational 53 

signals. Recently, Gradišek et al. (2017) tried to discriminate bumblebee species using the 54 

acoustic features of their flight sounds, and found that the different species differed in their 55 

flight sounds. In this way, acoustic/vibrational based monitoring technology is becoming 56 

popular, but previous studies have focused on the Cicadae and Orthoptera (Obrist et al. 2010) 57 

or specific bee species such as bumble bees (De Luca et al. 2014, Gradišek et al. 2017, Miller-58 

Struttmann et al. 2017), and, to our knowledge, there are still few studies that focus on 59 

identifying different types of bees by their sounds. Especially, in practical sense, distinguishing 60 

predators and pollinators are important for beekeepers or ecologist so that investigating whether 61 

the acoustic analysis can identify bee species into functional group is informative.  62 

The objective of our study was to develop methods to distinguish bee species from 63 

environmental sounds recorded under natural field conditions. Here, we analyzed the flight 64 

sounds of three bee species which are popular pollinators in Japan, including western honey 65 

bees, Apis mellifera (Apidae: Apinae), Bombus ardens (Apidae: Bombus), Tetralonia 66 

nipponensis (Apidae: Eucerini), and one hornet species, the Japanese yellow hornet, Vespa 67 

simillima xanthoptera (Vespidae: Vespa), which is a predator of honeybees in Japan. We expect 68 

that technology that can identify such insects against background noise will be useful for the 69 

evaluation of pollination services, and the study of behavioral ecology. Bees produce specific 70 

flight sounds, and some insect species, such as hornets, produce particularly distinctive sounds. 71 

As such, we expected that flight sounds of some bees could be identified automatically using 72 

acoustic features. Monitoring predator-prey relationships is particularly important in ecological 73 
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surveys, and we expect that the methods developed in this study will contribute to the 74 

monitoring of hornet and bee activities in an ecological context.  75 

 76 

2. MATERIALS AND METHODS 77 

Sounds were sampled using a microphone (AT9905, Audio-Technica, Tokyo, Japan) connected 78 

to a portable linear PCM recorder (R-05 WAVE/MP3 Recorder, Roland, Shizuoka, Japan). The 79 

microphone was connected with the edge of a metal stick, and we gently approached the flying 80 

bee and hornet species with the microphone. The sounds were sampled at 44.1 kHz with a 81 

resolution of 16 bits. The raw sound data were processed in Adobe Audition CC sound analysis 82 

software (Adobe Systems Incorporated, CA, USA). 83 

The experiments were conducted in rural areas or remote forests in Fukuyama and Kyoto, 84 

western Japan. We collected the flying sounds of A. mellifera, B. ardens, T. nipponensis, and 85 

V. simillima xanthoptera. We chose these species since they are commonly observed in the 86 

countryside in Japan (especially B. ardens, A. mellifera, and V. simillima xanthoptera). In terms 87 

of the body size, V. simillima xanthoptera was largest among four species, and B. ardens was 88 

slightly larger than other two pollinator species (unpubl. data). The bees were all female and 89 

their sounds were recorded when they approached flowering herbs. The flight sounds of V. s. 90 

xanthoptera were recorded when they hovered close to honey bee nest boxes. In Adobe 91 

Audition CC, we extracted 200 samples of A. mellifera and B. ardens sounds, 160 samples of 92 

T. nipponensis sounds, and 120 samples of V. s. xanthoptera sounds in .wav file format. Most 93 

recordings were 0.3 to 1.0 s long. We also collected 200 recordings of background sounds and 94 

unspecified birdsong (mostly from sparrows). Most of the background sounds we heard were 95 

wind sounds, and sounds made by leaves swaying in the wind. To understand the sound features 96 

of the four insect species, we investigated the fundamental frequency of each species by 97 

inspection of spectrums of their flight sounds using Adobe Audition CC.  98 
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We used machine learning techniques to classify sound recordings as the sounds made by 99 

the three bee species, the hornet species, birdsong, and background sounds. We split the sample 100 

data into training data (80% of total samples) for calibration of the classification model, and 101 

test data (20% of total samples) for evaluation of the model. There were clear differences in the 102 

frequency spectra and the harmonic components between the their flight sounds and the 103 

background sounds (Fig. 1). Therefore, we used mel-frequency cepstral coefficients (MFCC) 104 

to describe the acoustic characteristic feature values of the different types of sounds, because 105 

MFCC was one of the most frequently used feature values in identifying sounds from different 106 

insects in previous studies, such as Orthoptera (Chaves et al., 2012; Zhang et al., 2012), Cicadae 107 

(Zilli et al., 2014), and some bumble bees (Gradišek et al., 2017). Basically, MFCC describes 108 

the timbre of sounds, and is calculated using the following steps 1) slicing the original sound 109 

into frames, 2) applying a window function to each frame, 3) applying Fourier transformation 110 

to each frame and obtaining the power spectrum of each frame, 4) applying mel-scale filter 111 

banks to the frames, 5) applying a discrete cosine transformation (DCT). MFCC was originally 112 

used for human voice identification, and it is more capable of discriminating sounds at lower 113 

frequencies, and less capable of discriminating sounds at higher frequencies. In our study, 12 114 

kHz low pass filter was applied to eliminate unspecified high frequency sounds such as 115 

machinery and sliced the original sounds with length of 1024 sample points. Hamming window 116 

was applied to each frame and applied fast Fourier transformation (FFT) before applying mel-117 

scale filter banks to the frames. Furthermore, we also used fundamental frequency sounds of 118 

each sample as one of the feature values used to describe the pitch of the sound. Since the 119 

background sounds and birdsong had no harmonic structure, we extracted the fundamental 120 

frequency of those sounds using the ‘fund’ function in package ‘seewave’ (Sueur et al. 2008) 121 

in R v. 3.2.4.    122 

For classification, we used a support vector machine (SVM), since previous studies 123 
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reported that SVM performed as well as other classification techniques, such as decision tree 124 

or linear discriminant analysis, in classifying bird or amphibian species (Acevedo et al. 2009). 125 

SVM is a supervised machine learning algorithm and is based on finding a hyperplane which 126 

divides a certain dataset into different classes. The essence of SVM is that it maximizes margins 127 

that separate datasets, and it can transform a non-linear problem into linear one by using kernel 128 

functions (Chapelle et al. 2002). All analyses were conducted in Python v. 3.6 and R v. 3.2.4 129 

software. For calculation of MFCC, we used the ‘python_speech_features’ library, and for 130 

SVM, we used the ‘ksvm’ function of R v.3.2.4 in the ‘kernlab’ package (Karatzoglou et al. 131 

2004). We evaluated the performance of the model using ‘recall’ and ‘precision’ in each species. 132 

Precision is the ratio of the number of true positives to the total number of predicted positives 133 

(Raghavan et al. 1989). Recall is the ratio of the number of true positives to the total number of 134 

actual positives (Raghavan et al. 1989). Precision and recall were calculated following 135 

equations (1) and (2). 136 

 137 

 
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =

𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑜𝑡𝑎𝑙 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒
 (1) 

 138 

 
𝑅𝑒𝑐𝑎𝑙𝑙 =

𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑜𝑡𝑎𝑙 𝑎𝑐𝑡𝑢𝑎𝑙 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒
 (2) 

 139 

3. RESULTS 140 

The mean fundamental frequency of the sounds was 251.19 Hz ± 45.04 Hz (mean ± SD, N = 141 

200) for A. mellifera, 203.06 ± 51.79 Hz (N = 200) for B. ardens, 224.08 ± 49.22 Hz (N = 160) 142 

for T. nipponensis, and 107.13 ± 15.91 Hz (N = 120) for V. s. xanthoptera. The classifier 143 

produced by SVM correctly distinguished 136 out of 136 samples of flight sounds from 144 
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environmental sounds (Table I).  On the other hand, 77 out of 80 samples of environmental 145 

sounds were correctly classified (Table I). Precisions and recalls of both types of sounds were 146 

above 0.95.  147 

The model correctly classified 34 out of 40 samples of A. mellifera, 37 out of 40 samples 148 

of B. ardens, 21 out of 32 samples of T. nipponensis, and 24 out of 24 samples of V. s. 149 

xanthoptera (Table II). Both precision (1.00) and recall (1.00) in classifying V. s. xanthoptera 150 

were higher than for any other species. The results indicate that T. nipponensis had the lowest 151 

recall (0.66) among the bee and hornet species, while B. ardens had the lowest precision (0.73). 152 

The samples of B. ardens and T. nipponensis were mutually misclassified (Table II). The 153 

samples of A. mellifera were more often misclassified as B. ardens than vice versa (Table II). 154 

Among environmental sounds, 38 out of 40 samples of background sounds, and 34 out of 40 155 

samples of birdsong were correctly classified. Three samples of birdsong were misclassified as 156 

the sounds of A. mellifera (Table II). 157 

 158 

4. DISCUSSION 159 

Our results suggest that it is possible to discriminate insect flight sounds from environmental 160 

sounds at a high accuracy (≥ 0.95 in precision and recall), which indicates that this method can 161 

be used to discriminate insect sounds from background sounds. However, in terms of species 162 

identification, bee species were classified with relatively low accuracy (0.7-0.9 in precision and 163 

recall), although the hornet species (V. s. xanthoptera) could be accurately classified (1.00 in 164 

precision and recall). Regarding bee species discrimination, Gradišek et al. (2017) tried to 165 

identify 12 species of bumblebees using acoustic analysis, and found that the accuracy of 166 

identification varied between species (0.0-1.00 in precision and recall) (Caliculated from Table 167 

2 in Gradišek et al. 2017). In their study, a few species (such as brown-banded carder bee, B. 168 

humilis, queens or early bumble bee, B. pratorum, workers) were more accurately identified 169 
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(precision and recall both > 0.9), and most of the species were identified with precision and 170 

recall between 0.50-0.85 in their validation of the model using the training dataset (Caliculated 171 

from Table 2 in Gradišek et al. 2017). In other insect species, Ganchev et al. (2007) could 172 

correctly classify more than 95% of the sounds of crickets, cicadas, and grasshoppers to the 173 

family level, and 86% to the species level. The results of our study could not be directly 174 

compared with this previous study, but these results support the use of acoustic analysis for 175 

family or species classification.  176 

In this study, the sounds of V. s. xanthoptera were correctly classified more often than that 177 

of the three bee species. The former had a relatively lower fundamental frequency (around 100 178 

Hz) than the latter (more than 200 Hz for each bee species), which can be advantageous in 179 

distinguishing sounds. The sounds of B. ardens and T. nipponensis were mutually misclassified. 180 

These results indicate that the sound features of these species are relatively similar (Fig. 2), and 181 

the fundamental frequency of the sounds of these two-species (B. ardens: 203.06 ±51.79, and 182 

T. nipponensis: 224.08 ± 49.22) further supports this. The sounds of T. nipponensis were most 183 

often misclassified as other bee species (eight samples were misclassified as B. ardens, and 184 

three samples were misclassified as A. mellifera). The fundamental frequency of the sounds of 185 

T. nipponensis was slightly higher than that of B. ardens, and lower than that of A. mellifera, 186 

which may result in relatively rates of high misclassification.  187 

Regarding the reason why there are distinct differences in the accuracy with which the 188 

hornet species and the three bee species were identified, this may be due to differences in 189 

morphological features such as body shape or wing size of the species, as this can determine 190 

their flight sounds. Byrne et al. (1988) showed that the smaller size of homopterous insects has 191 

higher wingbeat frequency, and Burkart et al. (2011) demonstrated that the frequency of wing 192 

beat of bees was in a certain range which was anatomically determined and correlated to the 193 

size of the bees. Miller-Struttmann et al. (2017) investigated the relationship between the sound 194 
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characteristics of flight sounds and wing length of bumble bees, and found a negative 195 

relationship between wing length and the fundamental frequency of flight sounds of bumble 196 

bees. The wing length of V. simillima xanthoptera and A. mellifera are 31.76 mm (Byun et al. 197 

2009) and 9.3 mm (Ruttner 1988), respectively. Our results indicate that the fundamental 198 

frequency of V. s. xanthoptera sounds is lower than that of A. mellifera, which supports the idea 199 

that wing length correlates flight sounds in bees and hornets. In general, the body and wing size 200 

of hornets, which are the main predators of pollinator bees, are larger than those of pollinator 201 

bees. For example, Byun et al. (2009) reported that the wing length of Vespa dybowskii and red 202 

wasps, Vespula rufa schrenckii, were 18.66 mm and 47.00 mm, respectively, while Ruttner 203 

(1988) reported that the wing length of other honeybees were comparatively smaller (dwarf 204 

honey bee, A. florea: 6.8 mm, giant honey bee, A. dorsata: 14.2 mm). Bumble bees also have 205 

relatively small wing lengths (B. diversus diversus: 13.36 mm, B. ignites: 15.01 mm, (Tsuyuki 206 

and Sudo 2004), buff-tailed bumble bee, B. terrestris: 9.0 to 13.0 mm (Free 1955)). In the case 207 

of B. ardens, we were not able to find data on the wing length of this species in the literature, 208 

but its body size/wing length is likely smaller than that of B. terrestris, considering the 209 

comparative morphological research conducted by Nagamitsu et al. (2007). In terms of 210 

fundamental frequency, Gradišek et al. (2017) investigated the fundamental frequency of 211 

different bumblebee species (garden bumble bee, B. hortorum: 153 ± 16 Hz, B. humilis 193 ± 212 

13 Hz, tree bumble bee, B. hypnorum: 186 ± 5.6 Hz, heath bumble bee, B. jonellus: 206 ± 4 Hz, 213 

red-tailed bumble bee, B. lapidarius: 160 ± 11 Hz, white-tailed bumble bee, B. lucorum: 161 ± 214 

9 Hz, common carder bee, B. pascuorum: 180 ± 20 Hz, B. paratorum: 211 ± 17 Hz, red-shanked 215 

carder bee, B. ruderarius: 180 ± 5 Hz, shrill carder bee, B. sylvarum: 252 ± 16 Hz).  Regarding 216 

hornets or wasps, the fundamental frequency of median wasps, Dolichovespula media, was 217 

around 150 Hz (Tautz and Markl 1978), and Ishay (1975) also reported that Oriental hornets, 218 

Vespa orientalis, produce sounds with peaks between 80 and 125 Hz. Considering our results, 219 
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and the abovementioned previous studies, it is possible that acoustical analysis of the flight 220 

sound of bees can be used to differentiate pollinators from predators.  221 

Our results indicate that MFCC and fundamental frequency were useful for differentiating 222 

the sounds of the three bee species and the hornet species. MFCC are used to extract features 223 

of human voices, and have proved useful for obtaining feature values of the sounds made by 224 

insects. In our study, some samples of three bee species except for the hornet were mutually 225 

misclassified, but we expect that the accuracy could be improved by using additional feature 226 

values or new classification methods. In particular, owing to the development of information 227 

technology, classification of sounds using deep-learning techniques is becoming widely used 228 

in several areas. Although the deep-learning based classification usually requires a large dataset, 229 

it can discriminate between objects without preparing hand-calculated feature values such as 230 

MFCC or fundamental frequency, and can differentiate between more subtle differences of the 231 

sound data, so that it can be used for discriminating flight sounds with high precision. For 232 

example, Kiskin et al. (2017) found that the use of a convolutional neural network to analyze 233 

and detect the buzz sounds of mosquitos performed better than SVM or random forest methods.  234 

Sound or vibrational information offers a useful tool for quantitatively monitoring insect 235 

activities. Image-processing-based analysis is already widely used, and sound- or vibration-236 

based analysis also has potential. Sound information can complement image-based information, 237 

which is influenced by weather and light. So far, acoustic/vibrational analysis has not been 238 

extensively used to detect insects, but our results point to various applications. For example, 239 

acoustic/vibrational analysis could be used to replicate the studies of Miller-Struttmann et al. 240 

(2017), who analyzed the buzzing of bumble bees visiting two alpine forbs to evaluate 241 

pollination services, and of Potamitis et al. (2015), who analyzed wing beats of insect pests to 242 

predict the arrival of the pests. We used only a single microphone, but placing multiple 243 

microphones in a wide range of places would enable us to study animal movements in the field, 244 
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and evaluate how they use their habitat over a wide range of areas and time periods (Blumstein 245 

et al. 2011). For example, microphone arrays can be used to locate birds in the air, and to 246 

understand signal interactions among the calls of many animals (Mennill et al. 2006; Mennill 247 

and Vehrencamp 2008). 248 

The higher sampling frequency is one of the improvements of our method, but it must be 249 

noted that the sounds of insects are not loud, and there are limits to the ability to detect and 250 

analyze these sounds. As described above, the acoustic feature of the flight sounds is thought 251 

to be dependent upon the morphological features of insects (especially wing shape), and, as 252 

such, using sound would be limited to discrimination of relatively distant taxa, and would not 253 

be suitable for discrimination of species in relatively closely related taxa. As such, it is likely 254 

that our method can be used to classify bees into some functional groups, such as pollinator and 255 

predator, rather than to accurately identify species. Furthermore, some insects, such as 256 

butterflies, make very little sound when they fly, and should be monitored using images rather 257 

than sound. We expect that combining multiple techniques and choosing optimal monitoring 258 

instruments is important for monitoring insect activity, and our study suggests that acoustic 259 

analysis of insect flight sounds could be a potential tool to help understand the occurrence 260 

patterns of several bee species. 261 
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Figure captions 380 

Figure 1. Example of a frequency spectrum of flight sounds of Apis mellifera, Vespa simillima 381 

xanthoptera, and background sounds. 382 

 383 

Figure 2. Example of a frequency spectrum of flight sounds of Bombus ardens and Tetralonia 384 

nipponensis. 385 

 386 

Table captions 387 

Table I. Classification of the flight sounds of insects and environmental sounds. 388 

 389 

Table II. Classification of the flight sounds of three species of bees and one species of hornet, 390 

background sounds, and birdsong. 391 
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