
Behavioral Modeling for Anomaly Detection
in Industrial Control Systems

Iñaki Garitano Garitano

Supervisors:

Roberto Uribeetxeberria Ezpeleta

and
Urko Zurutuza Ortega

A thesis submitted to Mondragon Unibertsitatea

for the degree of Doctor of Philosophy

Department of Electronics and Computer Science
Mondragon Goi Eskola Politeknikoa

Mondragon Unibertsitatea
December 2013

gurasuei ta bidelagun izan zaten danoi

Abstract

In 1990s, industry demanded the interconnection of corporate and pro-
duction networks. Thus, Industrial Control Systems (ICSs) evolved from
1970s proprietary and close hardware and software to nowadays Commer-
cial Off-The-Shelf (COTS) devices. Although this transformation carries
several advantages, such as simplicity and cost-efficiency, the use of COTS
hardware and software implies multiple Information Technology vulnerabi-
lities. Specially tailored worms like Stuxnet, Duqu, Night Dragon or Flame
showed their potential to damage and get information about ICSs. Anomaly
Detection Systems (ADSs), are considered suitable security mechanisms for
ICSs due to the repetitiveness and static architecture of industrial processes.
ADSs base their operation in behavioral models that require attack-free
training data or an extensive description of the process for their creation.

This thesis work proposes a new approach to analyze binary industrial
protocols payloads and automatically generate behavioral models synthe-
sized in rules. In the same way, through this work we develop a method to
generate realistic network traffic in laboratory conditions without the need
for a real ICS installation. This contribution establishes the basis of future
ADS as well as it could support experimentation through the recreation of
realistic traffic in simulated environments. Furthermore, a new approach
to correct delay and jitter issues is proposed. This proposal improves the
quality of time-based ADSs by reducing the false positive rate.

We experimentally validate the proposed approaches with several statis-
tical methods, ADSs quality measures and comparing the results with traffic
taken from a real installation. We show that a payload-based ADS is po-
ssible without needing to understand the payload data, that the generation
of realistic network traffic in laboratory conditions is feasible and that delay
and jitter correction improves the quality of behavioral models.

As a conclusion, the presented approaches provide both, an ADS able
to work with private industrial protocols, together with a method to create
behavioral models for open ICS protocols which does not requite training
data.

Resumen

En los años 90, la industria proclamó la interconexión de las redes cor-
porativas y los de producción. Así, los Sistemas de Control Industrial (SCI)
evolucionaron desde el hardware y software propietario de los 70 hasta los
dispositivos comunes de hoy en día. Incluso si esta adopción implicó diversas
ventajas, como el uso de hardware y software comunes, conlleva múltiples
vulnerabilidades. Gusanos especialmente desarrollados como Stuxnet, Duqu,
Night Dragon y Flame mostraron su potencial para causar daños y obtener
información. Los Sistemas de Detección de Anomalías (SDA) están consi-
derados como mecanismos de seguridad apropiados para los SCI debido a
la repetitividad y la arquitectura estática de los procesos industriales. Los
SDA basan su operación en modelos de comportamiento que requieren datos
libres de ataque o extensas descripciones de proceso para su creación.

Esta tesis propone un nuevo enfoque para el análisis de los datos de la
carga útil del tráfico de protocolos industriales binarios y la generación au-
tomática de modelos de comportamiento sintetizados en reglas. Así mismo,
mediante este trabajo se ha desarrollado un método para generar tráfico de
red realista en condiciones de laboratorio sin la necesidad de instalaciones
SCI reales. Esta contribución establece las bases de un futuro SDA así como
el respaldo a la experimentación mediante la recreación de tráfico realista
en entornos simulados. Además, se ha propuesto un nuevo enfoque para la
corrección de retraso y latencia. Esta propuesta mejora la calidad del SDA
basados en tiempo reduciendo el ratio de falsos positivos.

Mediante la experimentación se han validado los enfoques propuestos
utilizando algunos métodos estadísticos, medidas de calidad de SDA y com-
parando los resultados con tráfico obtenido a partir de instalaciones reales.
Se ha demostrado que son posibles los SDA basados en carga útil sin la
necesidad de entender el contenido de la carga, que la generación de trá-
fico realista en condiciones de laboratorio es posible y que la corrección del
retraso y la latencia mejoran la calidad de los modelos de comportamiento.

Como conclusión, las propuestas presentadas proporcionan un SDA capaz
de trabajar con protocolos privados de control industrial a la vez que un

método para la creación de modelos de comportamiento para SCI sin la
necesidad de datos de entrenamiento.

Laburpena

90. hamarkadan industriak sare korporatibo eta industrialen arteko
konexioa eskatu zuen. Horrela, Kontrol Sistema Industrialak (KSI) 70.
hamarkadako hardware eta software jabedun eta itxitik gaur eguneko gailu
estandarretara egin zuten salto. Eraldaketa honek hainbat onura ekarri ba-
ditu ere, era berean gailu estandarren erabilerak hainbat Informazio Teknolo-
gietako (IT) zaurkortasun ekarri ditu. Espezialki diseinatutako zizareek,
Stuxnet, Duque, Night Dragon eta Flame esaterako, ondorio latzak gauzatu
eta informazioa lapurtzean beraien potentzia erakutsi dute. Anomalia
Detekzio Sistemak (ADS) KSI-etako segurtasun mekanismo egoki bezala
kontsideraturik daude, azken hauen errepikakortasun eta arkitektura es-
tatikoa dela eta. ADS-ak erasorik gabeko datu garbietan ikasitako edo proze-
suen deskripzio sakona behar duten jarrera modeloetan oinarritzen dira.

Tesi honek protokolo industrial binarioak aztertu eta automatikoki ja-
rrera modeloak sortu eta erregeletan sintetizatzen dituen ikuspegia pro-
posatzen du. Era berean lan honen bidez laborategi kondizioetan sare
trafiko errealista sortzeko metodo bat aurkezten da, KSI-rik behar ez duena.
Ekarpen honek etorkizuneko ADS baten oinarriak finkatzen ditu, baita espe-
rimentazioa bultzatu ere simulazio inguruneetan sare trafiko errealista sor-
tuz. Gainera, atzerapen eta sortasun arazoak hobetzen dituen ekarpen berri
bat egiten da. Ekarpen honek denboran oinarritutako ADS-en kalitatea ho-
betzen du, positibo faltsuen ratioa jaitsiz.

Esperimentazio bidez ekarpen ezberdinak balioztatu dira, hainbat
metodo estatistiko, ADS-en kalitate neurri eta trafiko erreal eta simulatuak
alderatuz. Datu erabilgarriak ulertzeko beharrik gabeko ADS-ak posible
direla demostratu dugu, trafiko errealista laborategi kondizioetan sortzea
posible dela eta atzerapen eta sortasunaren zuzenketak jarrera modeloen
kalitatea hobetzen dutela.

Ondorio bezala, protokolo industrial pribatuekin lan egiteko ADS bat eta
jarrera modeloa sortzeko entrenamendu daturik behar ez duen eta KSI-en
protokolo irekiekin lan egiteko gai den metodoa aurkeztu dira.

Eskertza

Asko dia azken urtietan bidiakin jarraitxu eta egunerokuan animau dozten pertsonak, zuzenian
edo zeharka lagundu eta etsipen momentutan barre bat atera doztenak. Hori dala ta eskerrak
emotia gustauko jaten ondorengo pertsona eta taldiei:

Lelengo ta behin Roberto Uribeetxeberria eta Urko Zurutuzai eskertzia nahiko nuke, tesian
zuzendari lanetan jardutiaz gain, lan hau burutzeko aukeria emon, gertutasun eta laguntasun
tratu bat eskeini, falta ein izan dabenian bultzada bat emon eta hainbat irakaspen eskaintzia-
rren. Era berian Mondragon Unibertsitateko hainbat langilei eta departamentui nere esker ona
adieraztia nahiko notzieke.

I would also like to thank the people that I met during my stay at the JRC. First of all Marcelo
Masera, Marc Honandel and Christos Siaterlis; thank you for making possible the stay as well
as for your help during my visit. Thank you also to Evans Boateng, Andrés Pérez, Francesca
De Rigo Conte, Gürcan Gerçek, Bilge Yurderi, Béla Genge, Enis Karaarslan, Marco del Pra
and Marko Hribar. Your help and wisdom pushed me to improve myself.

Tesixa burutu bitxartian hainbat gela ta edifiziotan egon naiz, bertan lagun ta lankide ugari
izan ditxudalarik, zuei be eskerrik asko: Enaitz, Alex, Joseba, Kepa, Leire, Keldor, Aritz,
Iñaki2, Lorea, Judit, Dani, Alain, Joxe, Unai, Iker, Lorena, Maitane, Idoia, Aitor2, Irati, Igone,
Jon2, Oscar, Zuriñe, Raul eta Elio. Mila esker deskantso momentutan egunerokotasuna modu
erraz baten erutia lagundu doztazuenei, Maite Beamurgia, Kerman Calleja eta azkenik Mikel
Iturbe, hasieratik laguntzeko prest eta dokumentuai hainbat begirada emotiarren. Azkenik,
Lorea Belategi eta Aitor Urbieta, hainbat afaritxan koziñero moduan fitxau ta beti onduan
animuak emoteko egotiarren.

Bestalde betiko lagunei, beti hor egon zatelako ta bizitzako alde honen parte zatelako.

Familixiai, lelengo ta behin gurasuei, naizena naizelako, nigan beti sinistu dozuelako eta bide
hau jarraitzeko aukera eskaini doztazuelako. Baita gainontzeko danoi be, aitxita ta amamai,
tio, tia ta lengusuei, ta bereziki Xabiri be, astebukaera askotan animuak emon ta entretenitzen
laguntziarren. Eta nola ez Maialen Ayastuyri, azken urte hauetan nere albuan egon eta egunero
animoz betetziarren.

Azkenik, tesi hau Eusko Jaurlaritzako Hezkuntza, Hizkuntza Politika eta Kultura Sailaren
Ikertzaileak Prestatzeko eta Hobetzeko Programaren BFI 09.321 bekaren bitartez burutu da,
eskerrik asko.

xii

Contents

Contents xiii

1 Introduction 1
1.1 Motivation . 1
1.2 Research Objectives, Thesis Statements,

Contributions and Limitations . 5
1.3 Methodology . 8
1.4 Document Overview . 9

2 Related Work 11
2.1 Definitions . 11
2.2 Overview of Industrial Control Systems 12

2.2.1 Critical Infrastructures . 13
2.2.2 The evolution of Industrial Control Systems 16
2.2.3 Components and operation of Industrial Control Systems 17
2.2.4 Architecture of Industrial Control Systems 20
2.2.5 Industrial Control Systems vs. Information Technologies 24
2.2.6 Major ICS cyber attacks and incidents 27

2.3 IDS quality measures . 27
2.4 Industrial Control System Intrusion Detection Systems 30

2.4.1 Behavior-based Intrusion Detection Systems 30
2.4.2 Behavior-specification-based Intrusion Detection Systems 35
2.4.3 Knowledge-based Intrusion Detection Systems 37

3 An Anomaly Detection System for ICS network binary private proto-
cols 41
3.1 ICS network traffic repetitiveness . 42

xiii

3.2 Anomaly Detection System for ICS binary private protocol 46
3.2.1 Components of the Anomaly Detection System 46
3.2.2 Implementation . 60
3.2.3 Validation . 62

3.3 Conclusions of the chapter . 66

4 A method to construct ICS network traffic models for public protocols 67
4.1 ICS operation overview . 68
4.2 Industrial Control System Applications 71
4.3 Methodology . 73
4.4 Generating Traffic Models . 78
4.5 Validation and experimental results . 81

4.5.1 Number of packets . 84
4.5.2 Packets sizes . 84
4.5.3 Throughput . 85
4.5.4 Packet inter-arrival time . 86

4.6 Conclusions of the chapter . 88

5 A method to correct delay and jitter issues 89
5.1 Methodology . 91
5.2 Delay and Jitter of Analyzed Traffic Packets 94

5.2.1 Delay of real ICS traffic packets 98
5.3 Correcting the Time Reference . 104
5.4 Validation . 107
5.5 Conclusions of the chapter . 111

6 Conclusions, Contributions
and Future Work 113
6.1 Conclusions . 113
6.2 Contributions . 115
6.3 Future Work . 116

Bibliography 119

xiv

List of Figures

1.1 Relation between different types of ICSs. 3

2.1 Relation between different types of ICSs. 13
2.2 Example of SCADA system implementation. 21
2.3 Example of DCS implementation. 23
2.4 Example of PLC control system implementation. 25
2.5 Anomaly detection quality measures . 29

3.1 Industrial Control System where network traffic was captured. 44
3.2 Siemens S7 protocol over TCP. 44
3.3 Component diagram of the Anomaly Detection System. 47
3.4 Graphical user interface of BASE. 60
3.5 Validation network diagram. 65

4.1 Components of each abstraction level. 69
4.2 Experimental network topology . 74
4.3 MMS protocol layers used by SCADA servers and PLCs from ABB . . . 75
4.4 The sequence of messages exchanged by the SCADA server and PLC . . 76
4.5 Comparison of throughput between predicted & real traffic 85
4.6 The calculated Cumulative Distribution Function (CDF) for each system

update rate. 87

5.1 Experimental network topology . 92
5.2 MMS protocol layers used by SCADA servers and PLCs from ABB . . . 92
5.3 The sequence of messages exchanged by the SCADA server and PLC . . 93
5.4 Packets, System Update Rate and Delay explanation. 95
5.5 Random delay of Packets. 97
5.6 Packets with accumulated constant delay. 98

xv

5.7 Explanation of the kind of figures used to describe the delay of each packet. 99
5.8 Delay of real packets respect to predicted traffic for 50ms system update

rate. 100
5.9 Delay of real packets respect to predicted traffic for 500ms system update

rate. 101
5.10 Delay of real packets respect to predicted traffic for 1000ms system update

rate. 101
5.11 Delay of real packets respect to predicted traffic for 3000ms system update

rate. 102
5.12 Delay of real packets respect to predicted traffic for 6000ms system update

rate. 102
5.13 Window size and number of samples variables explanation. 105
5.14 Delay of real packets with respect to corrected traffic for 50ms system

update rate. 107
5.15 Delay of real packets with respect to corrected traffic for 500ms system

update rate. 108
5.16 Delay of real packets with respect to corrected traffic for 1000ms system

update rate. 108
5.17 Delay of real packets with respect to corrected traffic for 3000ms system

update rate. 109
5.18 Delay of real packets with respect to corrected traffic for 6000ms system

update rate. 109

xvi

List of Tables

2.1 Differences between Industrial Control Systems and Information Tech-
nologies. 26

2.2 Main ICS cyber attacks and incidents. 28

3.1 Example of captured data. 43
3.2 Example of captured data manipulated by the feature extractor. 49
3.3 Example of the packet classification. 50
3.4 Example of the organization of the payloads. 51
3.5 Example of the changing bits identification. 51
3.6 Example of the group of bytes. 52
3.7 Example of the starting byte number and length of groups. 52
3.8 Example of members of the groups divided by packets source and desti-

nation. 53
3.9 Example of rules generated for the communication between the PLC and

the SCADA server. 55
3.10 Example of rules generated for the communication between the server

and PLC. 57
3.11 Example of rules with intercalated logical ANDs and ORs. 59
3.12 Example of rules with intercalated logical ANDs. 59
3.13 Example of BPF rule used by tcpdump. 61
3.14 Captured data files for system training and validation. 63
3.15 Characteristics of generated behavioral patterns. 64
3.16 Results of anomaly detection system component. 65

4.1 Description of applications used for algorithm construction 77
4.2 Experimental results comparing the predicted and real network traffic . . 83

xvii

5.1 Selected windows size, number of samples and correction factor values for
each system update rate. 110

xviii

List of Algorithms

1 Traffic model generator . 80
2 Packet delay correction . 106

xix

xx

List of abbreviations

AAKR Autoassociative Kernel Regression

ABB Asea Brown Boveri

ADS Anomaly Detection System

ANN Artificial Neural Network

BASE Basic Analysis and Security Engine

BPF Berkeley Packet Filter

CDF Cumulative Distribution Function

CI Critical Infrastructure

CIP Critical Infrastructure Protection

CIT Communications and Information Technology

COTP Connection-Oriented Transport Protocol

COTS Commercial Off-The-Shelf

CPNI Centre for the Protection of National Infrastructure

CPS Cyber-Physical System

CSV Comma Separated Values

DCS Distributed Control System

DHS Department of Homeland Security

xxi

DNP3 Distributed Network Protocol

DPI Deep Packet Inspection

EPIC Experimental Platform for Internet Contingencies

HMI Human Machine Interface

ICC Industrial Cybersecurity Centre

ICS Industrial Control System

ICS-CERT Industrial Control Systems Cyber Emergency Response Team

IDS Intrusion Detection System

IED Intelligent Electronic Device

IO Input/Output

IP Internet Protocol

IPSC Institute for the Protection and Security of the Citizen

ISA International Society of Automation

IT Information Technology

JRC Joint Research Centre

MAPE Mean Absolute Percentage Error

MATLAB MATrix LABoratory

MITM Man In The Middle

MMS Manufacturing Message Specification

MTU Master Terminal Unit

NERC North American Electric Reliability Corporation

NCS Networked Control System

NIC Network Interface Controller

xxii

NIST National Institute of Standards and Technology

NTP Network Time Protocol

OPC OLE for Process Control

PCS Process Control System

PDU Protocol Data Unit

PDV Packet Delay Variation

PING Packet InterNet Groper

PLC Programmable Logic Controller

PTP Precision time protocol

PTSL Protocol Trace Specification Language

ROC Receiver Operating Characteristic

RTU Remote Terminal Unit

SAN Sensor Actuator Network

SAN Stochastic Activity Network

SCADA Supervisory Control And Data Acquisition

SHINE SHodan INtelligence Extraction

TCP/IP Transmission Control Protocol/Internet Protocol

TPKT ISO Transport Services on top of the TCP

UDP User Datagram Protocol

UR Update Rate

US United States

VPN Virtual Private Network

WISN Wireless Industrial Sensor Network

xxiii

xxiv

Chapter 1

Introduction

This chapter describes the main motivation that inspired the author to research in the
area of Industrial Control Systems cyber security in order to provide solutions to the
observed problems. Research objectives as well as hypotheses or thesis statements are
also established, and the dissertation scope is defined. Finally, the methodology followed
to reach the presented objectives is described, and the main contributions of the work
are summarized.

1.1 Motivation

Supervisory Control And Data Acquisition (SCADA) systems provide management with
real-time data on production operations, implement more efficient control paradigms,
improve plant and personnel safety, and reduce costs of operation. These benefits, are
made possible by the use of standard hardware and software in SCADA systems, com-
bined with improved communication protocols and increased connectivity to external
networks. In 1990s, industry demanded corporate and production networks interco-
nnection [Igu06]. Thus, ICSs evolved from 1970s standalone, proprietary hardware and
software to standard operating systems, open source software, TCP/IP based commu-
nication protocols, and also connected to the Internet [Hen08; Chr07]. Although this
transformation allows the reduction of development, operational, and maintenance costs,
as well as the time needed to deploy new installations, the use of COTS hardware and
software also implies multiple Information Technology (IT) vulnerabilities [Cun10].

ICSs are widely used in energy, water supply, transport, financial services, health care
and telecommunication sectors [Hen08]. Critical Infrastructures (CIs), like nuclear power
plants, also rely on ICSs for their operation. As essential as those industries are for

1

modern society to survive, a malicious and successful attack against a CI could cause
catastrophic physical and economic losses, including adverse environmental effects to-
gether with the loss of human lifes. Thus, protecting and preserving ICSs against any
type of attack is a must.

Among different ICSs, it is a usual trend to find new and legacy devices working to-
gether. In fact, ICSs’ lifetime is really long compared with traditional IT devices, as
they can last for several decades. In addition to that, the coexistence of different vendor
devices is also common. The installation of software updates and patches in any Process
Control System (PCS) is a complex task due to the fact that many processes must be
available 24 hours 7 days per week, specially in devices that control CIs. PCSs’ patching
cycles are considerably longer and require extensive testing in order to guarantee the
reliability of the control network. Thus, software of most devices is deprecated, leaving
them unprotected against old and new vulnerabilities. Considering that devices from
different periods, brands and software versions work together with few possibility of
being upgraded, it is necessary to develop security mechanisms that are appropriate for
this kind of requirements.

Specially tailored worms like Stuxnet, Duqu, Night Dragon or Flame [Fal11; McM10;
Sym11; Sav12; Fid12] showed their potential to damage and get information about
ICSs. Even if only Stuxnet had the capacity to directly interrupt the processes, Duqu,
Night Dragon and Flame were also dangerous due to the fact that they were created
to spy and obtain substantial information, making possible the creation of specialized
worms. Stuxnet was the first one opening the way for a new era; allegedly, governments
of United States and Israel were behind its creation [San12], while Iranians’ uranium
enrichment project was their only target. In fact, they succeeded in their attack showing
how precise and advanced a cyber weapon can be. Thus, ICSs are not only individual
hackers or crackers’ targets, organizations without financial issues found a new way to
reach their objectives. This increases the necessity to protect the ICSs.

Last Industrial Control Systems Cyber Emergency Response Team (ICS-CERT) reports
[ICS12; ICS13] emphasize the increase of cyber incidents across all CI sectors. The
number of attacks increased from nine on 2009 to 198 on 2012; already during the first
six months of 2013, there were more than 200 incidents. These numbers highlight the
growth of attackers’ interest in ICSs. The energy sector has been the most attacked
one, as more than 50% of attacks have had it as a target, followed by manufacturing

2

and communications sectors. Figure 1.1 shows which are the most attacked sectors.

Public

Health

1%

Postal &

Shipping

1%

Commercial

Facilities

2%

Nuclear 3%

InfoTech 4%

Government Facilities 4%

Water 4%

Transportation 5%

Communications 5%

Critical

Manufacturing

16%

Energy

54%

Figure 1.1: Relation between different types of ICSs.

Project Basecamp [Dig13] highlights and demonstrates the fragility and insecurity level
of most ICS devices. Its goal is to hit the industry in order to push it to secure ICSs. As
a result, many unknown vulnerabilities were published at the same time that Metasploit
modules [Rap13] and Nessus plugins [Ten13] were developed. Historically, an attack was
a difficult task that required many previous steps, resources and effort. Nowadays, it is
relatively easy to perform due to the fact that automatized tools such as Metasploit do
most of the hard work. This brings the capacity to perform attacks to users without any
special skill; opening the application area to many users, compromising the integrity of
CIs.

Searching for and obtaining information about desired targets is the first step of any
kind of attack. This task requires some expertise as well as an amount of time that most
of unexpert or occasional attackers do not have. SHODAN [Mat09] search engine helps
in this duty offering an extended database of devices attached to Internet. Project
SHINE (SHodan INtelligence Extraction) [Byr13], related to SHODAN, queries the
SHODAN database with specific search terms related to SCADA and ICS products.

3

So far, over 1,000,000 unique IP addresses that appear to belong to either SCADA and
control systems devices or related software products have been collected. All this show
the actual situation as well as how easy information gathering is for attackers. This
project’s final goal is to encourage asset owners to be more proactive regarding security.

IT networks and ICSs differ from each other in different aspects. Availability, reliability
and the protocols they use are some of them. While IT systems are typically focused
first on confidentiality, then on integrity and finally on availability, ICSs emphasize avai-
lability more than integrity and confidentiality. ICSs components usually have memory
capacity limitations, preventing the accommodation of relatively large programs asso-
ciated with security monitoring activities. These differences, their focus and available
resources, make traditional IT security mechanisms like firewalls, Intrusion Detection
Systems (IDSs) and antivirus programs unsuitable for ICSs.

We can summarize the different aspects already discussed that reinforce the necessity to
research in this area and create the necessary security mechanisms in order to minimize
threats for society:

• Increasing amount of ICSs’ vulnerabilities.

• Possible consequences of successful attacks.

• Long lifetime of ICSs devices.

• Device patching difficulty.

• Worms specially designed to hit ICS devices.

• Significant change on attackers profiles.

• Release of ICS devices’ unknown vulnerabilities.

• Databases of unprotected devices connected to Internet.

• Lack of specifically created security solutions.

ICSs are well-known as repetitive and predictable systems and therefore, they are re-
latively easy to model and in consequence, IDSs make suitable candidates for security
mechanisms. This topic has received wide attention from the scientific community; most
conducted research has focused on ADSs that require attack-free training data and/or

4

a long time to create behavioral patterns. The main issues with these approaches are
the difficulty to obtain this kind of training data as well as the cost of creating new
behavioral patterns each time the process changes.

This thesis presents a new approach to create behavioral patterns of ICS processes
in an automatic way. Thus, we demonstrate that it is possible to create behavioral
patterns without any attack-free training data. The presented proposal reduces human
intervention time and does not need any attack-free training data for pattern creation.
This opens a new way for securing ICSs without the need of security minded professionals
on site.

1.2 Research Objectives, Thesis Statements,

Contributions and Limitations

Network protocols of Industrial Control Systems can be classified into two main groups:
private protocols and public ones. Hence, this project has two main parts or directions
sharing a main goal: to explore, design and develop an Anomaly Detection Sys-
tem for ICSs. While the first direction is to develop a process to generate signatures
based on data of unknown binary protocols, the second one creates behavioral patterns
avoiding the necessity of training data for public protocols. These are the hypotheses
that this thesis demonstrates:

1. The repetitiveness and stationary characteristic of an ICS can be used to auto-
matically generate robust network behavioral patterns, both in public or private
protocols, such that can feed a Network Intrusion Detection System looking for
anomalies.

2. Learning behavioral patterns from a real ICS installation requires the network be
free of attacks or anomalies. In order to avoid this issue, the network traffic can
be generated from a Programmable Logic Controller (PLC) program description.
This also solves the time and costs consuming task of setting up or recreating the
behavioral models whenever the process is changed.

3. In theory the ICSs behavioral models have to be periodical which makes the de-

5

tection of anomalies easier. In this case time is one of the parameters that cha-
racterizes the behavioral pattern. However, the different system deployments can
suffer from clock issues due to small differences in their hardware and software
characteristics as well as propagation delays in the communication network. It is
possible to correct synchronization issues before the data analysis step performed
by the time-based ADS. Solving system clock synchronization problems reduces
false positive rates in time-based Anomaly Detection Systems.

Industrial Control Systems are used to control industrial processes that in most cases
are repetitive over time, e.g. an automotive component manufacturing process. Hence,
network traffic generated by industrial processes follow similar patterns. In this context,
we claim that IDSs can be used to detect anomalies instead of intrusions, behaving in an
antagonistic way. This is achieved by generating an alert each time a network trace is
indescribable by rules instead of generating an alert each time a network trace satisfies
a rule description.

In general terms, PLCs can be considered as autonomous devices that follow program
guidelines to perform different actions based on environment conditions. Alternatively,
Human Machine Interfaces depend on PLCs due to the fact that they just show process
conditions controlled by PLCs. Therefore, communication between Human Machine
Interface or SCADA server and PLC is performed following a pull strategy, that is, the
first one asks the PLC about variable values each time they need to update their state.
Based on this idea, we claim that network traffic’s behavioral pattern can be predicted
having a PLC program description. This assumption avoids training data requirement,
therefore, we claim that public protocol’s behavioral pattern generation is not training
data dependent.

PLCs and Human Machine Interfaces (HMIs) are designed to meet specific requirements
with limited hardware resources, they must work in real-time environments where delays
are intolerable. In contrast, ADSs require computing resources not available in ICS
equipment. Therefore, ADSs cannot be installed on PLCs, demanding another node to
host them. It is very common that system clocks lose synchronization over time, this
is undesirable for systems that detect anomalies based on time. Hence, we claim that
a system able to solve system clock synchronization issues increases ADSs’ quality by
reducing false positive rates.

6

This research project will contribute as follows:

• This thesis offers an automatic analysis and signature generation process for ICS
binary protocols. Generated signatures can be used by an IDS to detect anomalies
including zero-day attacks.

• This project differs from others on the process of creating behavioral patterns
of public protocols. Most behavioral pattern creation processes need attack-free
training data in order to analyse it and extract a traffic model. The presented
pattern creation process uses a PLC program description to define directly the
traffic pattern. This improves previous techniques in terms of quality and time.

– In terms of quality, generated behavioral patterns are not influenced by net-
work issues or unnecessary traffic. They are generated directly as an algo-
rithm output and therefore, they are ideal to perform the task. Network
characteristics are taken and applied to the model to become more realistic.

– In terms of time, the behavioral pattern creation process does not require any
previous traffic analysis in order to extract the pattern. The pattern creation
process is direct, extracting a behavioral model during the PLC’s program
development. There are two other benefits directly related with time saving:
cost reduction and flexibility. Training data dependent behavioral pattern
creation process require a security expert for data analysis and pattern ge-
neration, which can be directly translated as an economic cost. In the same
way, data analysis and pattern generation consumes a considerable amount
of time each time the ICS process changes. Generating patterns directly from
a PLC program’s description avoids the need for security skills, moreover, it
considerably reduces the time required to generate the pattern.

• The ADS used by ICS protocol behavioral pattern is susceptible to systems’ clock
desynchronization. This work offers an adaptive system to reduce timing errors
improving anomaly detection quality by reducing the false positive rate.

The presented behavioral patterns creation processes are focused on some ICS protocols,
specially on those that are used on PLC and SCADA servers or HMI communications.
Therefore, the following cases are left out of the scope of this work:

1. Communications between PLCs or Remote Terminal Units.

7

2. Network traffic generated by process alarms is dismissed. Process alarms do not
follow any pattern, they are generated in an unexpected way. For instance, an
operator working in the plant can push an emergency-stop button or a temperature
sensor can exceed a predefined threshold generating an alarm.

3. Network traffic of ICSs is composed of multiple networking protocols. This project
is focused on the main protocol used by PLCs, Manufacturing Message Specifica-
tion (MMS) protocol, leaving out of scope other common protocols such as, ARP,
DNS, DHCP, etc.

The first part of the thesis statement focuses on behavioral pattern creation for ICSs’s
binary private protocols. In this context private protocols are considered unknown for
the behavioral pattern creation process.

The second part of the thesis statement is centered on traffic model creation for ICSs’s
open protocols. Finally, the third part of the thesis statement focuses on the adjustment
of the delay and jitter of generated behavioral patterns.

1.3 Methodology

Research context, including available infrastructures, accessibility and proximity of ex-
perts, synergies with ongoing research projects and so forth, can completely change the
undertaken research methodology. In this sense, our methodology is based on design
and creation, experimentation and quantitative data analysis strategies.

We began updating our knowledge by reviewing recent and state-of-the-art publications
and also performing the analysis of ICS network traces. Then, at the time that we
contributed to knowledge, we designed and developed a signature extraction process
as well as a traffic model creation algorithm by widening process scope gradually in
an iterative process. Later, the generated process and algorithm were tested by con-
trolled experiments to investigate cause and effect relationships, seeking to prove thesis
statements, also known as hypothesis. Experiments were repeated many times, under
varying conditions, and the generated process and algorithm were redesigned in an itera-
tive process in order to meet defined requirements. Experimental results were analyzed
through quantitative data analysis, using statistics as well as visual aids like tables and

8

different types of charts, in the way to draw some conclusions. Finally, we disseminated
the obtained knowledge and experiences to the scientific community.

1.4 Document Overview

The document is divided into 6 chapters. The first one introduces the reader to the
field of the actual ICSs security situation and gives a description of the problems, to-
gether with the main motivations that stimulate the author to provide a solution to the
problems observed. In this chapter, the main objectives that had to be covered during
the development of the thesis work and the hypotheses that respond to the proposed
objectives are given. In the same way the main limitations of the thesis as well as the
methodology that has been followed are described.

The second chapter gives an overview of Industrial Control Systems, explaining its
evolution together with their main components that made up and their differences com-
pared to Information Technologies. In the same way, this chapter provides an extensive
overview of the previous related research work. The thesis is focused on ADSs of ICSs,
therefore it is important to know previous contributions and identify their advantages
together with their disadvantages.

Chapter 3 describes a new approach of an Anomaly Detection System for binary private
protocols of Industrial Control Systems. In the same way, it explains which are its
main components and how they work, together with an example that makes easier to
understand the design of each component. Some results are shown, validating the design
in terms of quality.

In Chapter 4, a method to generate realistic network traffic in laboratory conditions
without the need of a real ICS installation is introduced. An algorithm is also presented
together with the followed methodology for its construction. Later, the method followed
for its validation and the obtained results are presented.

Chapter 5 presents a method to correct packet delay and jitter issues. First it discusses
which kind of delay and jitter could be find in ICSs is discussed, then it presents an
algorithm to correct them and finally it shows the results obtained after the algorithm
is applied to the network traffic.

9

Finally, Chapter 6 provides the conclusions, contributions and future work.

10

Chapter 2

Related Work

The thesis work grounds on Industrial Control Systems (ICSs) as well as on Intrusion
Detection Systems (IDSs). It is therefore necessary to give a background of ICSs and
explain their evolution together with their characteristics and architecture and the main
differences between ICSs and ITs. Additionally, it is necessary to describe previous
investigations on such disciplines to place the topic of this thesis.

2.1 Definitions

In order to introduce the reader into the field of Industrial Control System (ICS) cyber-
security subject, several concept definitions are provided in this section. There are
multiple possible explanations for the following concepts, hence, this section tries to
empathize those which clearly explain their meaning.

Threat , vulnerability and attack concepts are extensively used across the document,
thus, it is important to clearly define them.

ISO 27005 [ISO11] defines threat as:

Definition 2.1. A potential cause of an unwanted incident, which may result in harm
to a system or organization.

In the same way, the National Institute of Standards and Technology (NIST) [Nat06]
defines it as:

Definition 2.2. Any circumstance or event with the potential to adversely impact or-
ganizational operations (including mission, functions, image, or reputation), organi-
zational assets, or individuals through an information system via unauthorized access,

11

destruction, disclosure, modification of information, and/or denial of service. Also,
the potential for a threat-source to successfully exploit a particular information system
vulnerability.

Vulnerability concept is defined by the ISO 27005 [ISO11] as:

Definition 2.3. A weakness of an asset or group of assets that can be exploited by one
or more threats.

Additionally, the NIST [Nat06] defines it as:

Definition 2.4. Weakness in an information system, system security procedures, inter-
nal controls, or implementation that could be exploited or triggered by a threat source.

An attack , as discussed by Fovino, Carcano, Masera and Trombetta is defined [Car09]
as:

Definition 2.5. The entire process allowing a Threat Agent to exploit a system by the
use of one or more Vulnerabilities.

And it [Fov09] occurs when:

Definition 2.6. A threat agent exploits a system by targeting one or more vulnerabilities.

2.2 Overview of Industrial Control Systems

An Industrial Control System (ICS), as defined by Hentea [Hen08], is a device or set
of devices to manage, command, direct, or regulate the behavior of other devices or
systems. Also referred as Cyber-Physical Systems (CPSs), ICSs are large-scale, geogra-
phically dispersed, federated, heterogeneous, life-critical systems that comprise sensors,
actuators and control and networking components [Mit13]. In spite of that, ICS is a ge-
neral term that involves several types of control systems, e.g. Supervisory Control And
Data Acquisition (SCADA) systems, Distributed Control Systems (DCSs), Networked
Control Systems (NCSs), Sensor Actuator Networks (SANs), Wireless Industrial Sensor
Networks (WISNs), Process Control Systems (PCSs) and Programmable Logic Con-
trollers (PLCs) [Sto13]. These devices are often found in the industrial sectors and
Critical Infrastructures (CIs), such as electrical, water and wastewater, oil and gas,

12

chemical, transportation, pharmaceutical, pulp and paper, food and beverage, discrete
manufacturing (e.g., automotive, aerospace, and durable goods) and experimental and
research facilities such as nuclear fusion laboratories [MP06].

Throughout the remainder of this document, SCADA systems, DCSs, NCSs, SANs,
WISNs, PCS and PLC systems will be referred to as ICSs unless a specific reference is
made to one (e.g., field device used in a SCADA system).

Figure 2.1 shows a schema with the relation and main characteristics of different terms
used for control systems. As it can be observed, PCSs are very closed to the process,
while DCSs are used to refer to a distributed process control system, but in a single
location. SCADA term refers to geographically extended control systems, and finally,
ICS term is used as a general name for all of them.

ICS

Controls the process

In the same site

Geographicaly dispersed

Everything

SCADA

DCS

PCS

Figure 2.1: Relation between different types of ICSs.

2.2.1 Critical Infrastructures

Critical Infrastructures (CIs) are necessary for any modern society, as they are used to
obtain energy, water, and so forth. There are two types of infrastructures, those that
could be replaced and those that are indispensable, these later ones are also referred as
CIs. As already discussed, CIs are managed by ICSs, thus, securing ICSs implies also
to secure CIs. The European Commission defines CIs [Eur04; Fid12] as:
Definition 2.7. Physical and information technology facilities, networks, services and
assets which, if disrupted or destroyed, would have a serious impact on the health, safety,
security or economic well-being of citizens or the effective functioning of governments.

13

CIs are used by different sectors, which include:

• Communications and Information Technology (e.g. telecommunications, broad-
casting systems, software, hardware and networks including the Internet).

• Energy installations and networks (e.g. electrical power, nuclear reactors, oil and
gas production, storage facilities and refineries, transmission and distribution sys-
tem).

• Banking and Finance (e.g. securities and investment).

• Health Care (e.g. hospitals, health care and blood supply facilities, laboratories
and pharmaceuticals, search and rescue, emergency services).

• Emergency Services

• Agriculture and Food (e.g. safety, production means, wholesale distribution and
food industry).

• Drinking Water and Water Treatment Systems (e.g. dams, storage, treatment and
networks).

• Transport (e.g. airports, ports, intermodal facilities, railway and mass transit
networks, traffic control systems).

• Critical Manufacturing, production, storage and transport of dangerous goods (e.g.
chemical, biological, radiological and nuclear materials).

• Chemical

• Government (e.g. critical services, facilities, information networks, assets and key
national sites and monuments).

These infrastructures are owned or operated by both the public and the private sec-
tor. For example, in the United States (US) approximately 90% of CIs are privately
owned and operated [Sto13]. CIs are ofter referred to as "system of systems", because
they are highly connected and highly interdependent. An incident in one infrastructure
can directly and indirectly affect other infrastructures through cascading and escala-
ting failures. Electric power is often thought to be one of the most prevalent sources
of disruptions of interdependent CIs. Their have become more dependent on common

14

information technologies, including the internet and space-based radio-navigation and
communication. Problems can cascade through these interdependent infrastructures,
causing unexpected and increasingly more serious failures of essential services. For
example an electric power substation failure could result in large area blackouts that
could potentially affect oil and natural gas production, refinery operations, water treat-
ment systems, wastewater collection systems, and pipeline transport systems that rely
on the grid for electric power. Interconnectedness and interdependence make these in-
frastructures more vulnerable to disruption or destruction.

CIs have several security-related requirements [Kal09], which include:

• Secure cooperation. Different organizations should cooperate securely, allowing to
share security policies and rules.

• Autonomous organizations. Each organization should be independent even if a
global security policy is needed in order to manage the communication between
partners.

• Consistency. Global and local security policies should be compatible as CIs are
highly interconnected and interdependent.

• Distributed security. Security policies administration should be decentralized.

• Heterogeneity. Several components must be allowed to work together.

• Granularity vs. scalability. Security rules must be extensible while local access
controls should be determined locally.

• Fine-grained, dynamic access control. Access control enforcement must be at a
low granularity level to be efficient.

• User-friendliness and easiness of rule administration. Several users must be allowed
and able to operate the infrastructures.

• External accesses. It is important to determine which would be the allowed exter-
nal accesses and block all the unauthorized ones.

• Compliance with specific regulations. There are some security concerning regula-
tions, being important to compliance as much as possible.

15

• Confidentiality, integrity and availability. These are the base of CI operation.

• Enforcement of permission, explicit prohibition as well as obligation rules.

• Audit and assessment. It must be defined which data must be logged, when,
where.

• Support, enforcement and real time checking of the contracts that can be establi-
shed between the different organizations.

2.2.2 The evolution of Industrial Control Systems

Industrial Control Systems have evolved from 1970s proprietary hardware and software,
to modern computers, standard operating systems, TCP/IP communications and In-
ternet connectivity. Initially, ICSs had little resemblance to traditional IT systems in
that ICSs were isolated systems running proprietary control protocols using specialized
hardware and software [Sto13]. In the 1990s, industry demanded corporate and pro-
duction networks interconnection [Igu06]. Thus, widely available Internet Protocol (IP)
devices started to replace proprietary solutions, which bring multiple benefits as well as
the possibility of cybersecurity vulnerabilities and incidents [Cun10]. This integration
supports new IT capabilities, but it provides significantly less isolation for ICSs from the
outside world than predecessor systems, creating a greater need to secure these systems.

In addition, when ICS protocols were first developed, the goal was to provide good
performance and the emphasis was placed on providing features that would ensure that
the task constraints on the network would be met. Far from being a design require-
ment, network security was hardly even a concern. Until recently, the most common
misconception regarding the security of ICS networks was that these networks were elec-
tronically isolated from all other networks and hence attackers could not access them.
In addition, the use of standard IT devices has led to the development of a number of
ICS protocols that can operate on traditional Ethernet networks and the TCP/IP stack.
These protocols are often established serial-line based protocols encapsulated through
some standard process prior to being placed in a TCP packet. Many of these protocols
abandon any strict master/slave relationships traditionally seen in ICS networks, and
devices designed for these networks often provide additional application-layer interfaces
beyond the ICS messaging protocol.

16

It is important to mention that it is a usual trend to find new and legacy devices working
together, even if those legacy devices have widely known vulnerabilities [MP06]. In
fact, ICSs’ lifetime is long compared with traditional IT devices, as they can last for
several decades [Oma07]. Besides, the coexistence of different vendor devices is common
[Cun10].

While security solutions have been designed to deal with these security issues in typical
IT systems, special precautions must be taken when introducing these same solutions
to ICS environments. In some cases, new ICS tailored security solutions are needed.

2.2.3 Components and operation of Industrial Control Systems

Industrial Control System components can be divided into two different groups. The
first group includes all ICS operation control related components, while the second
one consists of networking associated components. Some of the described elements are
generally used by SCADA systems, DCSs and PLCs, while others are specific to each
one [Düs10; MP06; Sto13; Fov09; Hen08; McG09].

ICS operation control related group is composed of the following components:

• Operator. A human operator monitors the ICS and performs supervisory control
functions over plant operations.

• Control Server. It is responsible for the control software of DCSs and PLCs that
communicates with subordinate devices over an ICS network.

• SCADA Server or Master Terminal Unit (MTU). Both components act as
Masters in ICSs. They contain the high-level control logic for the system and they
are the responsible of the control of RTU and PLC devices.

• Remote Terminal Unit (RTU). Also referred as Remote Telemetry Unit, it
is a special purpose field device, designed to support remote stations. It acts as
a slave in the master/slave architecture. It sends control signals to the device
under control, acquires data from devices, receives commands from the MTU and
transmits the data gathered to the MTU. RTUs provide the same control as PLCs
but are designed for specific control applications.

17

• Programmable Logic Controller (PLC). Small industrial computers with
the capability of controlling complex processes. Initially, they were designed to
perform the logic functions executed by electrical hardware. Nowadays PLCs are
substantially used by DCSs and SCADA systems, especially as they are more
economical, versatile, flexible, and configurable than special-purpose RTUs.

• Intelligent Electronic Device (IED). Used to acquire data, communicate
to other devices, and perform local processing and control, an IED allows for
automatic control at the local level in SCADA systems and DCSs.

• Human Machine Interface (HMI). Referred to the software and/or hardware
that allows ICS operators to monitor the process state, modify control settings
and respond with manual actions to emergency events. It displays process status
information, historical information, reports, and other information to operators,
administrators, managers, business partners, and other authorized users.

• Data Historian. It is a centralized database for logging all process information
within an ICS. Information stored in this database can be accessed to support
various analyses, from statistical process control to enterprise level planning.

• Input/Output (IO) Server. It is a control component responsible for collecting,
buffering and providing access to process information from control sub-components
such as PLCs, RTUs and IEDs. An IO server can reside on the control server or on
a separate computer platform. IO servers are also used for interfacing third-party
control components, such as an HMI and a control server.

Avoiding the network topologies in use, these are the major components of ICS networks:

• Fieldbus Network. This network links field components such as actuators and
sensors to process controllers. In this way, they avoid the need for point-to-point
wiring between each field device and the controller. Multiple communications
protocols can be used, while all of them ensure that each field device is uniquely
identified.

• Control Network. This network supports almost all ICS devices such as, con-
trol servers, MTUs, SCADA servers, RTUs, PLCs and so on. It connects the
supervisory control level to lower-level control modules.

18

• Communications Routers. A router is a communications device that transfers
messages between networks. In ICSs it is used to connect MTUs and RTUs to a
long-distance network medium for SCADA communication.

• Firewall. A firewall protects devices on a network by monitoring and controlling
communication packets using predefined filtering policies. Firewalls are also useful
in managing ICS network segregation strategies.

• Modems. They are often used in SCADA systems to enable long-distance serial
communications between MTUs and remote field devices. They are also used for
gaining remote access for operational and maintenance functions.

• Remote Access Points. Remote access points are distinct devices, areas and lo-
cations of a control network for remotely configuring control systems and accessing
process data.

The operation of an ICS is performed by different components, such as Control Loop,
HMI and Remote Diagnostics and Maintenance Utilities. Control Loops con-
sist of sensors, controllers, actuators and variables communication. Thus, the sensors
measure the variable values and they transmit them to the controllers, which based on
set points, interpret the signals. Finally, the controllers transmit to the actuators the
actions they should perform. After those actions are performed, as a consequence the
process suffer changes which result in new sensor signals that would be transmitted to
the controller. Sometimes the Control Loops are nested or cascading, where the set
point of a loop is based on the process variable of another loop. Supervisory-level and
lower-level loops operate continuously over the duration of a process with cycle times
ranging on the order of milliseconds to minutes.

The HMIs, are used by operators and engineers to monitor and configure set points,
control algorithms, and to adjust and establish parameters in the controller. In addition
they display information about process status and historical changes.

The Remote Diagnostics and Maintenance Utilities are used to prevent, identify and
recover from abnormal operation or failures.

19

2.2.4 Architecture of Industrial Control Systems

Industrial Control System is a general term that involves several types of control systems,
such as SCADA systems, DCSs, PLCs [Sto13; Gal13; Bay12; Yan12] and so forth. Even
if we referred to all of them as ICS, it is important to clarify which are their main
characteristics and differences.

SCADA systems

Supervisory Control And Data Acquisition systems are highly distributed systems which
are used to control geographically dispersed assets. While the operation control and data
acquisition is performed from a centralized station, these kinds of systems are often
spread over thousands of square kilometers. These systems integrate data acquisition
systems with data transmission systems and HMI software to provide a centralized
monitoring and control system for numerous process inputs and outputs. Thus, the
used communication networks are long in distance and usually with a low throughput
and big delay. SCADA systems are usually designed to be fault-tolerant systems with
significant redundancy built into the system architecture. Field devices are used to
control local operations such as opening and closing valves and breakers, collecting data
from sensor systems, and monitoring the local environment for alarm conditions. Those
field devices communicate with the central station in order to send information and
receive supervisory commands.

SCADA systems are usually used in distribution systems such as water distribution and
wastewater collection systems, oil and natural gas pipelines, electrical power grids, and
railway transportation systems.

SCADA systems consist of both hardware and software. Typical hardware includes
a SCADA Server placed at a control center, communications equipment and one or
more geographically distributed field sites consisting of either an RTU or a PLC, which
controls actuators and/or monitors sensors. Additionally, an IED, that provides a direct
interface to control and monitor equipment and sensors, may communicate directly to
the SCADA Server, or a local RTU may poll the IEDs to collect the data and pass it to
the SCADA Server.

20

HMI

Engineering

Workstation

Direct

connection

Field site two

Fieldbus network

PLCRouter

SCADA server

Data historian

Direct

connection

Field site one

Fieldbus network

PLC
Modem

Control Center

Modem Router

Figure 2.2: Example of SCADA system implementation.

21

Figure 2.2 shows an example of typical SCADA system implementation. As it can be
observed, the installation is composed of two remote field sites and a centralized control
center. The connection between field sites and the control center is done by using modem
to modem communication or using Internet and several routers. In both field sites PLCs
have been used as process controllers.

Distributed Control Systems

Distributed Control Systems consist of a supervisory level of control overseeing multiple,
integrated sub-systems that are responsible for controlling the details of a localized
process. DCSs are used extensively in process-based and within the same geographic
location industries such as electric power generation, oil refineries, water and wastewater
treatment, and chemical, food, and automotive production. The control of a process is
usually done by feed back control loops, maintaining the process around an established
set of points. PLCs are used to control the details of localized processes. As well as
in SCADA systems, field devices are used to control local operations such as opening
and closing valves and breakers, collecting data from sensor systems, and monitoring
the local environment for alarm conditions.

Figure 2.3 shows an example of a typical DCS implementation. As it can be observed,
the installation is composed of two PLCs and a common control server. One of the PLCs
has been used to control a servo drive that is directly connected to a motor. The other
is the responsible of a pressure tank, it has to control the pressure, the temperature
and open and close a pair of valves. Similarly, the control network is connected to the
Internet through a security firewall and a router. Thus, a remote maintenance could be
done by connecting through a Virtual Private Network (VPN) to the control server.

Programmable Logic Controllers

Programmable Logic Controllers are used extensively in almost all industrial processes,
including SCADA systems and DCSs, which use them to control local processes. Addi-
tionally, in the case of SCADA systems, PLCs provide the same functionality of RTUs.
The DCSs use them as local controllers within a supervisory control scheme. When con-
trolled systems are small configurations, PLCs are used to provide operational control

22

Control network

HMI

Maintenance server

Internet

Servo

driveMotor

P
h
y
s
i
c
a
l

l
a
y
e
r

C
y
b
e
r

l
a
y
e
r

PLC

Control Server

Data historian

Direct

connection
Fieldbus network

PLC

Figure 2.3: Example of DCS implementation.

23

of discrete processes. In order to provide the program or the control loop they should
execute, PLCs are accessible via a programming interface located on an engineering
workstation, and data is stored in a data historian. Therefore, PLCs have a user-
programmable memory for storing instructions for the purpose of implementing specific
functions such as I/O control, logic, timing, counting, three mode proportional-integral-
derivative (PID) control, communication, arithmetic, and data and file processing.

As shown in Figure 2.4, the PLC control system implementation is composed of a PLC,
some field devices, an Engineering Workstation, a Data historian and an HMI. In this
kind of implementation, there is no MTU, SCADA server or control server, the process
control is performed by the PLC. The installation can be divided into two different
layers: the cyber layer and the physical layer. In modern PLC architectures, one can
identify two different control layers: the physical layer composed of all the actuators,
sensors, and generally speaking hardware devices that physically perform the actions on
the system (e.g. open a valve, measure the voltage in a cable); the cyber layer composed
of all the IT devices and software which acquire the data, elaborate low-level process
strategies and deliver the commands to the physical layer.

2.2.5 Industrial Control Systems vs. Information Technologies

Information security is usually measured by three different concepts, confidentiality,
integrity and availability [Yan12]. Due to the fact that ICSs and ITs are compared,
among others, in terms of these three concepts, it is important to define them.

Bishop defines confidentiality [Bis02] as:

Definition 2.8. Confidentiality is the guarantee that the information will only be shared
among authorized personnel. Confidentiality presupposes the previous classification of
users and of the information to be protected, and also requires adoption of reliable tools
for identifying and authenticating users.

In the same way, Wang et al. [Wan13] define it as:

Definition 2.9. Preserving authorized restrictions on information access and disclosure
is mainly to protect personal privacy and proprietary information. This is in particular
necessary to prevent unauthorized disclosure of information that is not open to the public

24

Control network

HMI

Direct

connection
Fieldbus network

PLC

P
h
y
s
i
c
a
l

l
a
y
e
r

C
y
b
e
r

l
a
y
e
r

Engineering

Workstation

Data historian

Figure 2.4: Example of PLC control system implementation.

and individuals.

In the same way, Bishop defines integrity [Bis02] as:

Definition 2.10. Integrity is the guarantee that the information is authentic and com-
plete. The available information can not suffer any kind of modification, accidental or
malicious. This context includes the guarantee that the information was generated by a
trustworthy source.

25

In addition, Wang et al. [Wan13] define it as:

Definition 2.11. Guarding against improper information modification or destruction
is to ensure information non-repudiation and authenticity. A loss of integrity is the
unauthorized modification or destruction of information and can further induce incorrect
decision regarding power management.

Moreover, Bishop defines availability[Bis02] as:

Definition 2.12. Availability, is the guarantee that the information is accessible whene-
ver it is necessary.

Furthermore, Wang et al. [Wan13] define it as:

Definition 2.13. Ensuring timely and reliable access to and use of information is of
the most importance in the Smart Grid. This is because a loss of availability is the
disruption of access to or use of information, which may further undermine the power
delivery.

Table 2.1: Differences between Industrial Control Systems and Information Technologies.

Category Industrial Control Systems Information Technologies
Lifetime 10-20 years 3-5 years
Standards No international standards International standards, ISO

Performance

Real-time Not real-time
No high throughput High throughput

No high delay High delay
No high jitter High jitter

Availability 60% 20%
Integrity 35% 30%
Confidentiality 5% 50%
Operating Systems Legacy systems Usually new O.S.
Architecture No standard Standard
Resources Limited Support security software
Networking Proprietary and standard Standard
Software updates Not frequent Patched systems

As already discussed in Section 2.2.2, ICSs have evolved from proprietary and isolated
hardware and software into open and widely available IT solutions. Nowadays ICSs
are adopting IT solutions in order to decrease costs as well as to connect to corporate
networks, even to the Internet. Therefore, this integration supports new IT capabilities,

26

but it decreases ICSs isolation, exposing them to typical IT security issues.

Even if the usage of IT solutions is increasing in ICSs, many characteristics differ from
traditional IT systems. These differences make necessary new security solutions spe-
cially tailored to the ICS environment. Therefore, it is important to discuss the main
differences between these two worlds in order to elaborate the most adjusted security
solutions for ICSs.

Table 2.1 summarizes the main differences between ICS and IT environments, divided
in several characteristics [Kru05; Sto13; Sou13a; Wan13].

2.2.6 Major ICS cyber attacks and incidents

ICSs are widely used in energy, water supply, transport, financial services, health care
and telecommunication sectors [Hen08]. CIs, like nuclear power plants, also rely on
ICSs for their operation. As essential as those industries are for modern society to
survive, a malicious and successful attack against a CI could cause catastrophic physical
and economic losses, including adverse environmental effects together with the loss of
human lifes.

During the last few decades, several attacks have interrupt ICSs causing diverse conse-
quences. Some of those attacks have directly impacted while other did it indirectly. Due
to the lack of evidence available in a number of the examples, it is difficult to determine
with certainty if the problem was due to general IT network vulnerabilities or due to
ICS related vulnerabilities. The following Table 2.2 some of the incidents occurred over
the last decades in ICSs [Mil12; Tur05; Nic12; McA11; Fal11; Sym11; Sav12]:

2.3 IDS quality measures

A behavioral model describes the expected behavior of a system. Behavioral models are
used by ADSs in order to detect unusual actions or patterns, in fact, ADSs use behavioral
models to compare actual situation with them. Hence, the quality of an ADS depends
or is closely related with the quality of the behavioral model it uses [Sve09a].

27

Table 2.2: Main ICS cyber attacks and incidents.

Year Incident Modus operandi Consequences

1982 Siberian pipeline Trojan Economical losses
sabotage System data modification

1992 Chevron Emergency Fired employee Permissions manipulationAlert System resource compromise

1994 The Salt River Trojan Economical losses
Project Hack Back door Information disclosure

1997 Worcester airport Telephone switch Economical losses
telephone service cyber attack Service disruption

1999 Gazprom gas pipeline Trojan Service disruption
1999 Bellingham gas pipeline Overload of resources Three human lives

2000 Maroochy Shire Fired employee Economical lossesWater resource compromise

2001 California Independent Remote access Information disclosureSystem Operator

2003 Davis-Besse Worm Service disruptionNuclear Power Plant
2003 CSX Corporation Virus Service disruption

2007 Tehama Colusa Fired employee UnknownCanal Authority resource compromise
2010 Iranian nuclear facility Worm (Stuxnet) Service disruption

2011
Global energy Trojan

Information disclosurecyberattacks code-name: Exploits
Night Dragon Social engineering

2011
Targeted attacks on

Virus (Duqu) Information disclosureIranian and
Sudanese objects

2012
Targeted attacks on

Worm (Flame) Information disclosureIran, Lebanon, Syria,
and Sudan

Sample sets of analyzed systems are used to create behavioral models, even though not
all kinds of behavioral models are created in this way. The quality, therefore, the validity
of a behavioral model depends on the quality of the used sample set, it must be real,
attack-free and diverse enough —all possibilities must be included.

ICSs are known to be repetitive and predictable systems [Gon07], hence, they are easy to
be modeled. However, obtaining real and diverse enough data is a difficult task, which
results in restrictive behavioral models. Attackers can benefit from a weak training

28

corpus to bypass an ADS.

The quality of ADSs is closely related with their usage. While a high quality ADS will
be highly trusted, a poor one will be ignored and therefore never used. Thus, it is really
important to define some common quality measures in order to compare different ADSs
in the same terms.

The quality of an ADS is measured by three quality indicators: detection rate, false
positive rate and false negative rate. While detection rate, also known as true positives,
indicates the number of detected anomalies compared with the total number of anoma-
lies, false positive rate, error type I, is used to show the amount of incorrectly flagged
samples —samples flagged as anomalies when they are actually not. False negative rate,
error type II, is also used as a quality measure, in fact, it is the opposite of detection
rate; it indicates the number of undetected anomalies compared with the total num-
ber of them. Figure 2.5 shows all possible events including the normal ones, and the
relationship between them.

False positives

(α)

Error type I

Usual or normal

events/actions/patterns

False negatives

(β)

Error type II

Detection ratio

(1−β)

True positives

Anomalies

Figure 2.5: Anomaly detection quality measures

In the same way, in the literature Receiver Operating Characteristic (ROC) curves
[Mit13] have been used as IDS quality measure. ROC curves describe the relationship
between false negative probability and false positive probability obtained as a result of
applying IDS techniques.

29

2.4 Industrial Control System Intrusion Detection

Systems

According to [Deb00] Intrusion Detection Systems classification or taxonomy is carried
out based on different functional characteristics:

• Detection method

• Behavior on detection

• Audit source

• Detection paradigm

• Usage frequency

In Industrial Control Systems there are two classification characteristics that have been
used extensively, the detection method and the audit information source. The first
characteristic defines which physical component misbehavior the IDS looks for to detect
intrusions. The audit information source instead, defines the source of the information,
that in the case of ICSs, could be network or host. In the literature multiple IDS
solutions have been described for ICSs. In the following section, some of the works are
described, classified by the detection method that they use together with the source of
the information that they audit.

2.4.1 Behavior-based Intrusion Detection Systems

We begin by describing the work of Coutinho et al. [Cou09; Cou08] which uses network
packets as the audit information source. The presented work extracts a reduced set
of rules from an electrical data base knowledge using the Rough Sets Classification
Algorithm described in [Cou07]. The extracted rules describe the traffic flows between
the control center and the RTUs. Thus, the presented work is only able to detect the
anomalies of the network traffic that affect the control center. Even if the authors
emphasize the simplicity and the favorable performance of implementation, the need for
a huge amount of attack-free collected data and the possibility to extract the rules just

30

in offline mode highlights its complexity.

D’Antonio et al. [DAn06] presented an IDS that relies on users’ behavior extracted
from network traffic flows. As well as the IDS, the authors describe a data mining
process which is in charge of extracting a behavioral model from traffic flows. Later, the
behavioral model is translated into a set of rules which is used by the IDS. In order to
capture the traffic flows, the system uses a flow monitor component. This component
classifies the traffic by source and destination IP addresses and source and destination
port numbers. Even if the work emphasizes its capability, the proposed approach needs
an extensive set up process as well as attack-free training data to create the behavioral
model.

Shosha et al. [Sho11], described a distributed IDS. The presented work describes two
different ADSs, the first one used to detect anomalies on usual IT traffic, while the
second one has been designed to control specific ICS protocols. Both ADSs rely on
Feed-Forward Artificial Neural Networks classifiers during the training process. Addi-
tionally, the authors propose an event correlation engine that carries out the process of
coordinating between the different anomaly detection engines and correlating events of
normal/ suspicious traffic from different sources with different protocols. The correlated
values correspond to the protocol, service, source and destination port, event payload,
and event timestamps. Even if the authors emphasize the capacity of the presented
solution to detect well-known and zero-day attacks at both the control center and subs-
tation levels, the system is attack-free training data dependent, which as for the other
presented solutions, slow down its implementation.

Gao et al. [Gao10] described a neural network based IDS. The presented solution
motorizes the traffic between a MTU and a RTU and analyzes the protocol, in this
case Modbus, in order to extract the water level value of a water tank. The behavioral
model of this physical property is created by using neural networks. Then, the values
obtained from network traffic packets are checked against the neural network in order
to determine if there is an intrusion. Although the authors expose that neural networks
are a promising mechanism to detect attacks, a malicious agent could slowly train the
system and change the behavioral pattern in order to perform an attack.

Tsang and Kwong [Tsa05] describe a multi-agent IDS based on a network traffic cluste-
ring model. Even if they suggest their work as industrial network IDS, the traffic they

31

analyze is a compound of traditional IT protocols such as http, ftp, etc. The authors
emphasize that their solution significantly improves the overall performance of existing
ant-based clustering algorithms. The described work, as well as the others, requires a
initial attack-free training data as well as a significant amount of resources to cluster
the usual network traffic.

The extensive work of Mahamood et al. [Mah10] analyzed different traffic measurement
methods and proposed different solutions to apply network traffic monitoring techniques
to SCADA systems security. This work focused on the analysis of protocol headers and
traffic flows, it grouped them in clusters and extracted useful information using data
mining algorithms. Continuing with model-based techniques, Roosta et al. [Roo08]
presented a design of model-based IDSs for sensor networks used for PCSs. This work
defined models at different layers of the network stack, such as the physical, link and net-
work layer. In this way, they identified the following communications patterns: Master
to slave, Network manager to field devices, HMI to masters, and Node-to-node commu-
nications. Even though the previous approaches do not need to inspect the payload
of packets in order to create the models, their two main disadvantages are the need of
attack-free training data and the fact that they are unable to predict the size of the
packets or the network capacity. These parameters can play an important role in the
detection of attacks that are able to change packets, e.g. changing additional registers,
without affecting the traffic flow.

Cheung et al. [Che06] described three anomaly detection techniques based on three
different models. The first one, based on protocol-level models, specified Modbus/TCP
protocols’ single independent fields, dependent fields (cross-field relationships) and the
relationship between multiple requests and responses in order to extract Snort rules. The
second technique, called communication-pattern, generated Snort rules by describing
communication models used to detect attacks that violate specific patterns. The third
and last one, server/service availability technique, created a model of available server
and services and detected changes that could indicate a malicious reconfiguration of
a Modbus device. In the same way, Düssel et al. [Düs10] proposed a payload based
real-time anomaly detection system. Their system was protocol independent and it was
able to detect unknown attacks. This method took into account the similarity of the
communication layer messages from a SCADA network. Although the solution presented
by Cheung et al. and Düssel et al. inspects packets’ payload, they are similar to the

32

work of Mahamood et al. in the sense that they need attack-free training data.

Next, we mention the work of Valdes et al. [Val09a] that focused on generating commu-
nication patterns and proposed an anomaly detection system for PCSs. Patterns that
were taken into account included source/destination IP addresses as well as source/des-
tination ports. The system classifies traffic as anomalous if a new pattern shows a lower
probability than a specified threshold. In contrast to the previous methods, the approach
of Valdes et al. does not need attack-free training data, similarly to the approach pro-
posed in this paper. However, it is not able to create the required models without real
data and it is not able to predict the size of the packets and the network capacity either.

Premarathne et al. [Pre10] present an ADS for Wireless Industrial Sensor Networks.
The novelty of the described approach is the way they obtain training data; they use
honeypots to obtain real attack traces to use them to launch simulated attacks against
their installation, and thus, obtain the training data. The work underlines that the
security of attacked hosts is compromised under controlled conditions based upon known
attack methods. Later, the captured data during the simulated attacks is classified into
different clusters using k-means and c-means clustering methods. The created clusters
are used as a behavioral model by the ADS. Even though the authors highlight the
increase of its performance compared to statistical outliers detectors, this approach is
not able to detect zero-day attacks. In addition, the amount of required resources to
perform all types of attacks and cluster their results make it significantly tedious to
apply as a real solution.

All the methods that need attack-free training data also require time to obtain it. Every
time the process changes, the pattern has to be re-created, which consumes a lot of
resources with the impact that it has in the economical costs.

Continuing with behavioral-based IDSs, we describe some works that uses host files as
the audit information.

The work presented by Dayu et al. [Yan06] applies the Autoassociative Kernel Regre-
ssion (AAKR) methodology to intrusion detection. As the work explains, the AAKR
is a nonparametric, empirical modeling technique that uses historical, exemplar obser-
vations to make predictions (corrections) for new observations. As the input data, the
system uses traffic characteristics as well as system resource utilization statistics, such as
link utilization, CPU usage, and login failure. This data is later classified into different

33

time periods such as day, weekends, holidays. Obviously, in order to create a correct
pattern, this methodology needs attack-free training data, including an amount of time
to obtain it.

Xue and Yan [Xue07] presented a model-based anomaly detection method for locomo-
tive subsystems. Their system combines offline and online operational modes. Offline
modes are used to train the neural network model of the system, while in an online
reasoning mode the system calculates deviations between measured outputs and model
outputs using three different decision reasoners: Mahalanobis distance, Gaussian mix-
ture mode, and support vector machine. Even if the authors highlight that the approach
can successfully detect four out of the five faulty cases while maintaining close to zero
false positive based on 43 normal cases, an attack-free training data and the necessary
resources to construct the behavioral model make its usage difficult.

Reeves et al. [Ree12] present a host-based IDS approach that operates within the opera-
ting system kernel. The described solution, which they call Autoscopy Jr., watches for
a specific type of control-flow alteration commonly associated with malicious programs.
The control flow of a program is defined as the sequence of code instructions that are
executed by the host system when the program is executed. Thus, it looks for a certain
type of pointer hijacking, where a malicious function interposes itself between a function
pointer and the original function to which it pointed. The hijacking causes the pointer
to point to the malicious function, which then calls the original target function of the
pointer at some point within itself. Autoscopy Jr. operation is divided into learning and
detection phases. During the learning phase, the system scans the kernel for function
pointers to protect and collects information about "normal" behavior on the system.
Later on, the created pattern is used to check the veracity of all system calls. Although
the authors highlight the power of the presented approach to reduce the overhead of
the host as benefit, this solution is attack-free training data dependent. Additionally,
as well as the other presented solutions, it imposes a high initialization overhead every
time the analyzed process is changed.

Next, Hadžiosmanović et al. [Had10] present MEDUSA system, a host-based IDS which
is focused on the detection of process-related threats. MEDUSA automatically analyzes
system logs, detects and alerts users about situations in which the system behaves in-
consistently with past behavior. The process is divided into two steps: learning phase
and detection phase. During the learning steps, first of all, it uses algorithms for mi-

34

ning outliers to detect individual actions and events that are significantly different from
previous entries. Then, it analyzes sequences of events and actions in the logs to pro-
vide a better view on the situation context. During the detection phase, they use the
created model to analyze the situation in real-time. The presented approach is based
on historical attack-free training data to construct the behavioral model. In addition,
every time the process is changed the behavioral model has to be reconstructed which
requires time to create historical data.

Finally, Rabatel et al. [Rab10] presented an ADS that monitors field sensors state in
order to detect process anomalies. In fact, the authors do not present an IDS itself,
but their solutions could be used for that purpose. They focus their work on system
maintenance, and the cost saving originated from an efficient sensor maintenance. Their
contribution is divided into three different parts. First of all, they propose an adequate
representation of data in order to extract knowledge based on sensor data describing the
past normal behavior of systems. The behavioral pattern is created based on historical
data saved in logs. Second, they study the possibility of extracting sequential patterns in
historical data thus improve understanding of systems for experts, but also to provide a
knowledge database for use in the development of an anomaly detection method. Finally,
they propose an approach to compare new journeys with sequential patterns describing
normal behavior. The proposed solution trusts on the historical data in order to create
a behavioral pattern. Thus, it is attack-free training data dependent.

2.4.2 Behavior-specification-based Intrusion Detection Systems

We continue describing some IDSs that use behavior-specification-based detection
method and use network packets as audit information.

Svendsen et al. [Sve09a] presented a statistical ADS for SCADA systems. The described
system is focused on statistical variations of a liquefied natural gas system measurements.
The system compares the actual system measurements against fixed limits, historical
observations, correlation between two or more metrics, and created Markov models,
which give the probability of moving from one state to another. Thus, every time
a measurement is out of the predefined limits an alarm is raised indicating that an
anomaly has occurred. Although the authors underline that the presented approach is
well suited to detect anomalies, the system requires a lot of initial resources to create

35

the behavioral model. Additionally, attack-free training data is necessary during the
pattern creation process.

Valdes et al. [Val03; Val09a; Val09b] present a work to demonstrate that anomaly detec-
tion, and specifically methods based on adaptive learning, can provide a useful intrusion
detection capability in process control network. They describe two anomaly detection
techniques, pattern based anomaly detection and flow-based anomaly detection. In pa-
ttern based anomaly detection they use patterns formed from source and destination
IP addresses and destination port. They evaluate patterns against a pattern library in
order to find the more similar one. The most important feature of this technique is that
it does not need attack-free training data. In the case of flow-based anomaly detection,
they define a flow in terms of its source and destination IP address and destination port.
Also, they have established that flows are unidirectional. They maintain a database of
active and historical flow records and these records are evaluated against learned histo-
rical norms. In order to test the two approaches, they have used a test environment that
is based on DCS from Invensys Process Systems. The obtained results indicate that the
flow-based anomaly detection technique is able to detect anomalous flows effectively.
The experiments have been conducted in a simulated SCADA system composed of seve-
ral SUN servers and workstations on a local network. As a conclusion, the experiments
have demonstrated that this methodology can quickly detect anomalous behavior. The
main disadvantage of this solution is than an attacker could slowly train the system
in order to include attack patterns as common ones. This would bypass the anomaly
detection engine.

In the same way, there are some works that use host files as audit information source.

Bigham et al. [Big03] described two different ADSs. The first one is based on the n-
gram technique described by Damashek et al. [Dam95] while the second ADS is based on
invariant induction technique. Both techniques were tested in an electricity management
network. The invariant induction technique builds up a normal model of the data by
looking for relationships between the real and reactive power flow measurements for a six
bus network. In the same way, the n-gram technique with up to four characters has been
used to create the model by applying it to real and reactive power flow measurements
for a six bus network. The presented results remark that while the performance of
the n-gram technique is better with small numbers of changes of measurements, the
invariant induction technique has better overall performance on the identification of

36

errors. The main disadvantage of both techniques is that they are attack-free training
data dependent. They also require a lot of initial resources to set up the system.

Continuing with invariant induction technique, McEvoy et al. [McE10] exposed an
ADS that uses as input the ICS sensor readings. In fact, they define relationships
between sensor readings using non-linear structural equations to build a causal model.
Later on, this causal model is used to detect anomalies of sensor readings as well as
manipulated computational states, actuator settings and data values. As the authors
expose, although the presented approach have a good anomaly detection performance,
it needs extensive modeling for design and implementation process.

Finally, Oman and Phillips [Oma07] presented an IDS monitoring system that permits
the process engineers to identify malicious and anomalous device configurations. The
system is capable to automatically obtain the configuration of devices and compare them
with other configurations which is useful for SCADA operators. The presented IDS is
able to automatically generate rules based on devices configuration expressed in XML
format. As the authors expose the current prototype automates intrusion detection and
settings retrieval only for RTUs.

2.4.3 Knowledge-based Intrusion Detection Systems

We start by describing those works that use network packets as audit information
source.

Verba and Milvich [Ver08] presented an hybrid IDS for ICS networks. Their approach
use traditional signature matching together with the analysis of data and command
flows to detect potential exploitation vectors, unauthorized commands and Man In The
Middle (MITM) attacks. They emphasize the strength of the combination of multiple
approaches in order to create a unique solution that could detect multiple attack sources.
Additionally their work uses DPI techniques in order to extract protocol state informa-
tion. Their work is only able to detect anomalous connections and malformed packets
together with MITM attacks that can compromise the control server. However, in order
to detect anomalous connections and malformed packets, the IDS have to be able to
understand the used ICS protocols and the matching rules have to be deployed for each
installation. Furthermore, the detection of MITM attacks also makes it necessary to

37

specify all the connections that the control server can support. These handicaps make
the real implementation of the solution slow and lazy.

The extensive work of Mitchell and Chen [Mit13], describes an IDS based on behavioral
rules. The presented approach uses several IDS modules that run in every device. Before
the IDS starts working, it is necessary to define a set of rules describing the system
behavior. Those rules describe different system states as well as each devices network
traffic characteristics. Within network characteristics, the number of received and sent
packets as well as the networking conditions are included. Although the presented
solution is able to detect zero-day attacks, it forces to define with rules all the system
state possibilities in order to not dismiss any possible attack trace. The definition of
those rules demands a vast initial work together with the amount of resources needed
each time the process changes to redefine the rules.

Next, Carcano et al. [Car10; Car11; Fov10] exposed an IDS based on process specifi-
cation. The presented approach is able to detect the process state of the system and
use it in order to identify Modbus and DNP3 protocols commands that could produce
a critical situation. The presented solution is composed of five elements: a Modbus and
DNP3 protocols sensor, a rule data base, a virtual image of the system, a system state
analyzer and another data base with critical rules. The authors also present a rule lan-
guage specifically designed in order to describe Modbus and DNP3 signatures and field
device states. The system operates by following the real system state by the analysis of
the captured network traffic and the update of the virtual system state. This traffic is
also analyzed in order to determine if the actual commands could push the real system
into a critical state based on the state of the virtual system. Although the presented re-
sults validate the approach, its main disadvantage is the amount of work that is required
to create a virtual system together with all the necessary rules. Additionally, each time
the process is changed, the rules as well as the virtual system have to be updated. As
a positive point, the presented approach does not need attack-free training data.

Gonzalez et al. [Gon07] described a Modbus protocol passive scanner which provides
valuable information about the state of Modbus networks. The presented scanner ana-
lyzes Modbus protocol function codes, transaction states, memory access and memory
contents in order to detect anomalous activity. The passive scanner is composed of
three different components: a network scanner, a Modbus transaction checker, and an
incremental network mapper. The first component is used to capture network traffic.

38

The Modbus transaction checker, pairs matching sets of messages while the incremental
network mapper uses the collected information to populate dynamic data structures that
store network topology and status information. The passive network scanner requires
an initial set up where all the Modbus protocol possible transactions have to be defined.
Although this system is able to detect protocol-based intrusions, the required amount
of work for each installation make its implementation difficult.

Rrushi and Campbell [Rru09] presented a rule-based IDS able to detect attacks on
nuclear power plants. They follow a process in which Stochastic Activity Networks
(SANs) are used to model and analyze the operation of a boiling water reactor. Later,
those SAN models are derived into intrusion detection rules that describe the values of
Modbus protocol data items and Protocol Data Unit (PDU) fields to determine whether
incoming PDUs are legitimate or malicious. Therefore, even if they do not emphasize,
their work uses Deep Packet Inspection, and as well as for Modbus protocol, it could be
extended to use other ICS protocols. The main disadvantage of the proposed approach is
the vast amount of work that supposes the creation of the operational model specification
of the boiling water reactor.

And finally, there are some works which analyze host files to detect intrusions.

The work presented by Svendsen and Wolthusen [Sve09b] describes an ADS based on a
physical system model. The exposed work uses a non-linear model of a real hydroelectric
power plant to detect the anomalies originated by some attack vectors used to test the
system. Particularly, deviations in the expected correlations between variables in the
model are used to detect direct manipulations of sensors. Even if the presented approach
is able to detect different types of attacks, it needs extensive resources to design and
implement the non-linear model.

Gaspary, et al. [Gas05] present and SNMP protocol based intrusion detection system.
They also present the protocol trace specification language Protocol Trace Specification
Language (PTSL), a language for the representation of protocol traces based on the
concept of finite-state machines (FSMs). Thus, they represent attack signatures using
PTSL language. They rely on a distributed architecture of several intrusion sensors
and they explored, through a case study, the platform to validate its applicability. The
main issues of this approach are that they rely on the protocol traces of the SNMP
protocol that they generate in order to detect attacks. Thus, in order to apply it in an

39

ICS they should analyze and create all the communication patterns of SNMP protocol
of an installation, which highly slows down its applicability. In addition, not all the
ICS installations have SNMP protocol enabled and even if they have it, the presented
approach could not detect all the attack events because it is just focused on one protocol.

Zhang, Yu and Hardy [Zha11] present a distributed network sensor-based intrusion
detection framework that monitors network traffic and hosts. They correlate events
from both information sources, host based IDS and network traffic, in order to efficiently
detect attack traces. Also, they generated a prototype to demonstrate its efficiency.
Even if they use Deep Packet Inspection (DPI) [Byr12] to efficiently process network
traffic, they do not analyze industrial protocols. In addition, they focus just on packets
headers. The presented work is not able to detect unknown attacks, or zero day attacks.

40

Chapter 3

An Anomaly Detection System for ICS
network binary private protocols

The objective of this thesis work is to explore, design and develop an Anomaly Detection
System (ADS) for Industrial Control Systems (ICSs). There is a huge variety of ICSs
around the world. They can be classified according to the geographical area they cover,
the types of network protocols and devices they use, etc. The existing variety of ICSs
requires different types of ADSs. This diversifies the research areas as well as demands
a greater effort to construct robust security mechanisms.

Currently, approximately ten network protocols dominate the industrial marketplace;
MODBUS, DNP3, EtherNET/IP , PROFIBUS and Foundation Fieldbus are the most
used ones among them [Byr04]. ICS network protocols can be divided into two main
groups: public and private ones. Private protocols, also called unknown protocols, are
those whose details/specifications are only known by its creators, thereby, unknown for
the rest, e.g. Siemens S7 protocol. In contrast, public protocols have open specifications,
providing the possibility to be implemented by each vendor and thus, being widely used
by different manufacturers, e.g. Modbus, DNP3. Even if most of these industrial mar-
ketplace dominating protocols are public, there also are private ones, requiring research
and security solutions.

In this chapter, a new approach for an Anomaly Detection System for binary private
protocols of Industrial Control Systems is presented. The introduced ADS is divided
into six components, thus, a detailed description of each one is given. In addition, its
implementation and followed steps for its validation are presented. Due to the fact that
presented ADS is based on the assumption that network traffic is repetitive for ICS, in
the first section a real network traffic capture is analyzed.

41

3.1 ICS network traffic repetitiveness

In the following section a real ICS network traffic capture is explored. By focusing
on some features such as where each packet is originated, which is its destination and
payload content, a clear repetition of packets can be observed. The stationary and
repetitiveness characteristics of ICS network traffic establishes the bases for the ADS
presented in this chapter.

Table 3.1 shows an example of features extracted from a network traffic capture file. Note
that different colors and symbols have been used in order to highlight the small variations
within the repetitive patterns. The captured file was obtained in a real manufacturing
plant, where the ICS network is composed of a Siemens S7 PLC, a Siemens switch and
a SCADA server that also has capturing software in it. During the traffic capture,
no anomalies have been observed, keeping the captured data free from attacks. The
following Figure 3.1 shows the network architecture used for the traffic capture. It is
clear that in a switched network each device will only obtain traffic originated from it or
traffic that has its address as destination, including broadcast traffic. Even if this hides
what is going on in the rest of the network, the intention of this traffic capture is to
show how repetitive and, therefore, predictable an ICS traffic is. Problems originated by
switching environments could easily be solved by most switches’ port mirroring feature.
This characteristics allows to obtain all the traffic that goes through the switch.

The network traffic capture file includes all kind of packets, including common network
protocols (ARP, ICMP), as well as industrial protocols, in this case Siemens S7 protocol.
Table 3.1 shows some selected features of Siemens S7 protocol packets, while, the rest
of protocols are filtered out. The presented features include:

1. Captured packet number

2. Timestamp

3. IP address of the source device

4. IP address of the destination device

5. Payload length

6. Payload

42

Table 3.1: Example of captured data.

Packet Timestamp Source Destination Payload Payloadnumber (seconds) IP IP length (bytes)

1 1311687257 192.168.1.240 192.168.1.2 84 32010007 5̌ 68004A00000406120A10020020012C840005C012 ...

2 1311687257 192.168.1.240 192.168.1.2 96 32010007 6̇ 68005600000407120A1002000A012C84000BC012 ...

3 1311687257 192.168.1.2 192.168.1.240 222 320300007 5̄ 68000200D000000406FF0401000000000000000 ...

4 1311687257 192.168.1.2 192.168.1.240 158 320300007 6̈ 680002009000000407FF0400500000000000042 ...
5 1311687257 192.168.1.2 192.168.1.240 236 320700000000000C00D6000112081202011100000000FF0900 ...
6 1311687257 192.168.1.2 192.168.1.240 85 320700000000000C003F000112081202010D00000000FF0900 ...

7 1311687257 192.168.1.240 192.168.1.2 84 32010007 7̌ 68004A00000406120A10020020012C840005C012 ...

8 1311687257 192.168.1.240 192.168.1.2 96 32010007 8̇ 68005600000407120A1002000A012C84000BC012 ...

9 1311687257 192.168.1.2 192.168.1.240 222 320300007 7̄ 68000200D000000406FF0401000000000000000 ...

10 1311687257 192.168.1.2 192.168.1.240 158 320300007 8̈ 680002009000000407FF0400500000000000042 ...
11 1311687257 192.168.1.2 192.168.1.240 236 320700000000000C00D6000112081202011100000000FF0900 ...
12 1311687258 192.168.1.240 192.168.1.2 144 3201000796800860000040B120A10020004012C8400004012 ...
13 1311687258 192.168.1.240 192.168.1.2 48 32010007A68002600000403120A1002001E012C84002A8012 ...
14 1311687258 192.168.1.2 192.168.1.240 224 320300007968000200D20000040BFF040020C21311852892244 ...
15 1311687258 192.168.1.2 192.168.1.240 90 320300007A680002004C00000403FF0400F044218082220A0A ...

16 1311687258 192.168.1.240 192.168.1.2 84 32010007 B̌ 68004A00000406120A10020020012C840005C012 ...

17 1311687258 192.168.1.240 192.168.1.2 96 32010007 Ċ 68005600000407120A1002000A012C84000BC012 ...

18 1311687258 192.168.1.2 192.168.1.240 222 320300007 B̄ 68000200D000000406FF0401000000000000000 ...

19 1311687258 192.168.1.2 192.168.1.240 158 320300007 C̈ 680002009000000407FF0400500000000000042 ...
20 1311687258 192.168.1.2 192.168.1.240 236 320700000000000C00D6000112081202011100000000FF0900 ...
21 1311687258 192.168.1.2 192.168.1.240 85 320700000000000C003F000112081202010D00000000FF0900 ...

22 1311687258 192.168.1.240 192.168.1.2 84 32010007 Ď 68004A00000406120A10020020012C840005C012 ...

23 1311687258 192.168.1.240 192.168.1.2 96 32010007 Ė 68005600000407120A1002000A012C84000BC012 ...

24 1311687258 192.168.1.2 192.168.1.240 222 320300007 D̄ 68000200D000000406FF0401000000000000000 ...

25 1311687258 192.168.1.2 192.168.1.240 158 320300007 Ë 680002009000000407FF0400500000000000042 ...
26 1311687258 192.168.1.2 192.168.1.240 236 320700000000000C00D6000112081202011100000000FF0900 ...

group of repeated packets repeated packet individual packets

43

Siemens S7 PLC

IP address: 192.168.1.2

01010011100101001011

0111011010111010101000101

1110101100100100100001011

0010111001000101100010110

0010101110101011111010101

1101010001010010010100010

1001001001100100001

Captured data

Siemens SCALANCE

switch

SCADA server

&

Capture host

IP address: 192.168.1.240

Figure 3.1: Industrial Control System where network traffic was captured.

Just a small section of the payload is shown as we consider it is enough to explain
the main ideas that concern this traffic capture. The following figure 3.2 shows the
protocol stack of Siemens S7 protocol as well as the layers from where illustrated features,
excluding packet number and packet’s timestamp, are extracted.

IP

TCP

ISO Transport Services On
Top Of The TCP (TPKT)

Connection-Oriented
Transport Protocol (COTP)

S7 Protocol

Ethernet

Source IP

Destination IP

Payload Length (bytes)

Payload

Figure 3.2: Siemens S7 protocol over TCP.

44

Looking at the extracted features, it can be observed that the 26 captured packets were
cached in a time interval of two seconds. In addition, all the packets correspond to a co-
mmunication between just two devices, the PLC and the SCADA server. Those packets
whose source IP address is 192.168.1.2 were originated by the PLC, while 192.168.1.240
source IP address corresponds to packets originated by the SCADA server. The PLC
sent 16 out of the total 26 packets, which represents the 62% of the traffic. Further,
we can observe that packets originated by the PLC are bigger in size (236, 224, 222,
158, 90, 85 bytes) than those sent by the SCADA server (144, 96, 84, 48 bytes). This is
mainly because the PLC sends process value updates to the SCADA server.

Focusing on the size of packet payloads and their content, we can observe that there are
several packets of the same payload length. In fact, packets with a payload length of
236, 84, 96, 222, 158 bytes are repeated four times during the capture. Other packets,
like those with 85 bytes’ payload length are repeated twice and the rest of the packets
(144, 48, 224, 90 bytes) are unique. Considering just repeated packets, and focusing on
their payload, packets can be classified into two different groups; those whose payload
change over repetitions and those that are always the same. 236 and 85 bytes payload
length packets are those whose payload does not change over the time. The rest of
the repeated packets change the content of their payload, but as shown in Table 3.1,
differences between the same length packets are minimal, changing only one byte in the
shown section of the payload.

The traffic of ICS networks, as discussed in Chapter 2, is considered repetitive and quite
static. The example of captured data showed in table 3.1 is a clear illustration of how
repetitive is an ICS traffic. These are the main features that support this idea:

1. Static payload packets are repeated over time.

2. Some packet are repeated in an established order.

3. Even if payload of different packets is not the same the differences are small.

45

3.2 Anomaly Detection System for ICS binary private

protocol

In this section, an Anomaly Detection System for ICS binary private protocols is des-
cribed. One of the positive aspects of the designed ADS is that due to the fact that it
does not try to understand the content of the packets, it is able to work with different
binary protocols.

Most Anomaly Detection Systems require learning normal traffic patterns as a reference
to make a comparison with the monitoring traffic, hence looking for differences that will
show behavioral anomalies. Hence, the behavioral model has to be constructed before
an ADS starts to work. The presented ADS has two ways of operation, offline and
online. Offline mode is made up of elements that permit the creation of the behavioral
model and synthesize it on rules, it is used each time the monitored process changes and
a new behavioral model has to be created. In addition, the online mode is composed of
elements that compare the actual situation with the behavioral model created in offline
mode and generates alerts in case an anomaly has been detected.

Figure 3.3 summarizes the two ways of operation as well as the six components that
compose the ADS. The offline mode is composed of the network traffic capturer, the
feature extractor, the data assembler and the rule generator. In the other hand, the
online mode is made up of two components, the anomaly detection system and the
notification center.

3.2.1 Components of the Anomaly Detection System

This section presents a detailed description of each ADS module or component. In order
to make it easier to understand the design of each component, an example is used to
clarify what the purpose of the component is.

46

Feature

extractor

Group

description

Network

tra c

capturer

01010011100101001011

0111011010111010101000101

1110101100100100100001011

0010111001000101100010110

0010101110101011111010101

1101010001010010010100010

1001001001100100001

Captured

data

n length data

Packet description

Rule

generator

Data

assembler

Process network

Anomaly

Detection

System

Notification

centre

Generated

rules Offline

OnlineNetwork

traffic

Network

traffic

Figure 3.3: Component diagram of the Anomaly Detection System.

Network traffic capturer

The network traffic capturer component, part of the offline mode, is responsible for cap-
turing network traffic, filtering out and saving all the data in a capture file. Depending
on the network section where the network traffic capturer is located, the behavioral
model will be different. Therefore, it is really important to select the network section
from which the anomaly detection system module will monitor the traffic.

In addition, the network traffic capturer filters all the captured packets and discards
those that do not satisfy the established conditions. In this case, due to the fact that
we are interested just in Siemens S7 protocol, it filters out all common network traffic,

47

including ARP and DNS packets. To do so, and because Siemens S7 protocol uses 102
port number, it leaves just those packets that have the 102 port as source or destination
port.

Finally, the network traffic capturer stores all the packets in a binary file that can be
used by other components to read captured data in offline mode.

Feature extractor

The feature extractor component takes as its input the capture file, created by the
network traffic capturer component, and extracts all the features needed to analyze the
traffic and generate the behavioral model. To do so, it reads the packets one by one and
extracts the following features.

• Packet number

• Timestamp

• Source IP address

• Destination IP address

• Payload length

• Payload

As shown in Table 3.2, the feature extractor assigns sequentially a packet number to
each captured packet. The timestamp is the time the packet is read by the capture,
represented in Unix time, the number of seconds that have elapsed since 00:00:00 Coor-
dinated Universal Time (UTC), Thursday, 1 January 1970, not counting leap seconds.
Source IP address refers to the IP address of the device where the packet was created.
In the same way, Destination IP address refers to the IP address of the device which
packets were to. The payload length refers to the length of the portion of the packet
that corresponds to Siemens S7 protocol. Payload length is calculated taking the entire
packet length and subtracting the header sizes of the rest of the protocols.

Finally, the feature extractor component saves all the extracted features, so the assem-
bler module can use them.

48

Table 3.2: Example of captured data manipulated by the feature extractor.

Packet Timestamp Source Destination Payload Payloadnumber (seconds) IP IP length (bytes)
1 1311687257 192.168.1.240 192.168.1.2 84 32010007568004A00000406120A10020020012C840005C01 ...
2 1311687257 192.168.1.240 192.168.1.2 96 32010007668005600000407120A1002000A012C84000BC01 ...
3 1311687257 192.168.1.2 192.168.1.240 222 320300007568000200D000000406FF040100000000000000 ...
4 1311687257 192.168.1.2 192.168.1.240 158 3203000076680002009000000407FF040050000000000004 ...
5 1311687257 192.168.1.2 192.168.1.240 236 320700000000000C00D6000112081202011100000000FF09 ...
6 1311687257 192.168.1.2 192.168.1.240 85 320700000000000C003F000112081202010D00000000FF09 ...
7 1311687257 192.168.1.240 192.168.1.2 84 32010007768004A00000406120A10020020012C840005C01 ...
8 1311687257 192.168.1.240 192.168.1.2 96 32010007868005600000407120A1002000A012C84000BC01 ...
9 1311687257 192.168.1.2 192.168.1.240 222 320300007768000200D000000406FF040100000000000000 ...
10 1311687257 192.168.1.2 192.168.1.240 158 3203000078680002009000000407FF040050000000000004 ...
11 1311687257 192.168.1.2 192.168.1.240 236 320700000000000C00D6000112081202011100000000FF09 ...
12 1311687258 192.168.1.240 192.168.1.2 144 3201000796800860000040B120A10020004012C840000401 ...
13 1311687258 192.168.1.240 192.168.1.2 48 32010007A68002600000403120A1002001E012C84002A801 ...
14 1311687258 192.168.1.2 192.168.1.240 224 320300007968000200D20000040BFF040020C21311852892 ...
15 1311687258 192.168.1.2 192.168.1.240 90 320300007A680002004C00000403FF0400F044218082220A ...
16 1311687258 192.168.1.240 192.168.1.2 84 32010007B68004A00000406120A10020020012C840005C01 ...
17 1311687258 192.168.1.240 192.168.1.2 96 32010007C68005600000407120A1002000A012C84000BC01 ...
18 1311687258 192.168.1.2 192.168.1.240 222 320300007B68000200D000000406FF040100000000000000 ...
19 1311687258 192.168.1.2 192.168.1.240 158 320300007C680002009000000407FF040050000000000004 ...
20 1311687258 192.168.1.2 192.168.1.240 236 320700000000000C00D6000112081202011100000000FF09 ...

49

Data assembler

The data assembler component is responsible for analyzing the captured data, extracting
the useful information and generating groups of bytes that will be used by the next
component, the rule generator.

The data assembler component focuses on the payload of packets extracted by the feature
extractor and it analyses all the packet payloads at the same time. Following are the
steps to analyze data and create the groups; including an example.

1. Divide packets by their source and destination IP addresses and select those which
have common source and destination IP addresses. An example is shown in Table
3.3.

Table 3.3: Example of the packet classification.

Packet Payloadnumber
1 32010007568004A00000406120A10020020012C840005C01 ...
2 32010007668005600000407120A1002000A012C84000BC01 ...
7 32010007768004A00000406120A10020020012C840005C01 ...
Packets with 192.168.1.240 as source IP address and 192.168.1.2 as destination IP address.

Packet Payloadnumber
3 320300007568000200D000000406FF040100000000000000 ...
4 3203000076680002009000000407FF040050000000000004 ...
5 320700000000000C00D6000112081202011100000000FF09 ...
Packets with 192.168.1.2 as source IP address and 192.168.1.240 as destination IP address.

2. Organize all packet payloads in rows and columns. Each row will contain individual
packet payload. Each column will correspond to one byte of the payload. An
example is shown in Table 3.4.

50

Table 3.4: Example of the organization of the payloads.

Packet Payload (Bytes)
number 1 2 3 4 5 6 7 8 9 10 11 12 13 14
1 32 01 00 07 56 80 04 A0 00 00 40 61 20 ...
2 32 01 00 07 66 80 05 60 00 00 40 71 20 ...
7 32 01 00 07 76 80 04 A0 00 00 40 61 20 ...
Packets with 192.168.1.240 as source IP address address and 192.168.1.2 as destination IP address.

Packet Payload (Bytes)
number 1 2 3 4 5 6 7 8 9 10 11 12 13 14
3 32 03 00 00 75 68 00 02 00 D0 00 00 04 ...
4 32 03 00 00 76 68 00 02 00 90 00 00 04 ...
5 32 07 00 00 00 00 00 0C 00 D6 00 01 12 ...

Packets with 192.168.1.2 as source IP address and 192.168.1.240 as destination IP address.

3. Starting from the first byte until the last one, indicate those bytes that change
their value across different packets. An example is shown in Table 3.5.

Table 3.5: Example of the changing bits identification.

Packet Payload (Bytes)
number 1 2 3 4 5 6 7 8 9 10 11 12 13 14
1 32 01 00 07 56 80 04 A0 00 00 40 61 20 ...
2 32 01 00 07 66 80 05 60 00 00 40 71 20 ...
7 32 01 00 07 76 80 04 A0 00 00 40 61 20 ...
Packets with 192.168.1.240 as source IP address and 192.168.1.2 as destination IP address.

Packet Payload (Bytes)
number 1 2 3 4 5 6 7 8 9 10 11 12 13 14
3 32 03 00 00 75 68 00 02 00 D0 00 00 04 ...
4 32 03 00 00 76 68 00 02 00 90 00 00 04 ...
5 32 07 00 00 00 00 00 0C 00 D6 00 01 12 ...
Packets with 192.168.1.2 as source IP address and 192.168.1.240 as destination IP address.

4. Group consecutive changing bytes. Table 3.6 shows two groups of consecutive
bytes.

51

Table 3.6: Example of the group of bytes.

Packet Payload (Bytes)
number 1 2 3 4 5 6 7 8 9 10 11 12 13 14
1 32 01 00 07 56 80 04 A0 00 00 40 61 20 ...
2 32 01 00 07 66 80 05 60 00 00 40 71 20 ...
7 32 01 00 07 76 80 04 A0 00 00 40 61 20 ...
Packets with 192.168.1.240 as source IP address and 192.168.1.2 as destination IP address.

Packet Payload (Bytes)
number 1 2 3 4 5 6 7 8 9 10 11 12 13 14
3 32 03 00 00 75 68 00 02 00 D0 00 00 04 ...
4 32 03 00 00 76 68 00 02 00 90 00 00 04 ...
5 32 07 00 00 00 00 00 0C 00 D6 00 01 12 ...
Packets with 192.168.1.2 as source IP address and 192.168.1.240 as destination IP address.

Group 1 Group 2 Group 3 Group 4 Group 5

5. Make note of each group starting byte number and its length in bytes. Table 3.7
shows the starting byte number and the length in bytes of each group.

Table 3.7: Example of the starting byte number and length of groups.

Group Starting Length
number bit number (bits)
1 5 1
2 7 2
3 12 1

Packets with 192.168.1.240 as source IP address and 192.168.1.2 as destination IP address.

Group Starting Length
number bit number (bits)
1 2 1
2 5 2
3 8 1
4 10 1
5 12 2

Packets with 192.168.1.2 as source IP address and 192.168.1.240 as destination IP address.

6. Note down the possible members of each group and the number of repetitions of
group members. Table 3.8 shows an example of each group members and their
cardinality.

52

Table 3.8: Example of members of the groups divided by packets source and destination.

Members of three groups of the packets which
source IP address is 192.168.1.2 and 192.168.1.240 their destination IP.

Group Member
member cardinality

56 1
66 1
76 1

Group 1

Group Member
member cardinality

04 A0 2
05 60 1

Group 2

Group Member
member cardinality

61 2
71 1

Group 3

Members of three groups of the packets which
source IP address is 192.168.1.240 and 192.168.1.2 their destination IP.

Group Member
member cardinality

03 2
07 1

Group 1

Group Member
member cardinality

75 68 1
76 68 1
00 00 1

Group 2

Group Member
member cardinality

02 2
0C 1

Group 3

Group Member
member cardinality

D0 1
90 1
D6 1

Group 4

Group Member
member cardinality

00 04 2
01 12 1

Group 5

Once all groups are created, their information is transferred to the next module, the
rule generator.

Rule generator

The rule generator component is responsible for generating a set of rules that describes
the possible groups and their features. It creates a behavioral pattern of the ICS network
traffic. Note that each set of rules will describe the ICS network traffic of an individual
industrial process, being necessary to create a new set of rules each time the process
changes.

The language used to describe the rules is the Snort’s rules description language [Roe13].
Simple, lightweight, flexible and powerful, the rules description language of Snort per-
mits the use of Snort to check the content of the payload, enabling the possibility to
check if the behavioral pattern is satisfied.

53

Snort rules are divided into two logical sections, the rule header and the rule options.
The rule header is formed by the following features:

• Rule action: what to do in the event that a packet with all the attributes indicated
in the rule would show up.

• Protocol: protocol that the rule looks for.

• Source IP address: source IP address of the packet. It can be any.

• Source netmask address: source netmask address of the packet.

• Source port number: source port number of the packet. It can be any.

• The direction operator: indicates the orientation, or direction, of the traffic that
the rule applies to.

• Destination IP address: destination IP address of the packet. It can be any.

• Destination netmask destination: source netmask address of the packet.

• Destination port number: destination port number of the packet. It can be any.

On the other hand, the rule option section, enclosed in parenthesis, contains alert me-
ssages and information on which parts of the packet should be inspected to determine if
the rule action should be taken. The words before the colons in the rule options section
are called option keywords. All of the elements within must be true for the indicated
rule action to be taken. When specified in conjunction, the elements can be considered
to form a logical AND statement. At the same time, the various rules in a Snort rules
library file can be considered to form a large logical OR statement. In this context, even
if there are 89 possible keywords, the rule generator module uses the following ones:

• Message: tells the logging and alerting engine the message to print along with a
packet dump or to an alert.

• Packet payload size: used to test the packet payload size.

• Payload content: allows the user to set rules that search for specific content in the
packet payload and trigger a response based on that data.

54

• Pattern starting byte: specifies where to start searching for a pattern within a
packet.

• Pattern length: specifies how far within a packet Snort should search for the
specified pattern.

• TCP flags: used to check if specific TCP flag bits are present.

• Rule identification number: used to uniquely identify Snort rules.

• Rule version number: used to uniquely identify revisions of Snort rules.

The rule generator takes as input the description of the groups and as output it generates
a set of rules that describe the network traffic of an ICS. Therefore, following the
example explained above, Table 3.9 and Table 3.10 show the set of rules generated for
the description of the groups presented respectively by Table 3.7 and Table 3.8.

Table 3.9: Example of rules generated for the communication between the PLC and the
SCADA server.

alert tcp 192.168.1.2 102 −> 192.168.1.240 any (msg:"plc_group1"; dsize:>8; \
content:!"|56|"; \
content:!"|66|"; \
content:!"|76|"; \
offset:8; depth:1; flags:PA; sid:1000001; rev:1;)

alert tcp 192.168.1.2 102 −> 192.168.1.240 any (msg:"plc_group2"; dsize:>10; \
content:!"|04A0|"; \
content:!"|0560|"; \
offset:10; depth:2; flags:PA; sid:1000002; rev:1;)

alert tcp 192.168.1.2 102 −> 192.168.1.240 any (msg:"plc_group3"; dsize:>15; \
content:!"|61|"; \
content:!"|71|"; \
offset:15; depth:1; flags:PA; sid:1000003; rev:1;)

As shown in Table 3.9, the communication between the PLC and SCADA server is
composed of three rules, each one corresponding to an individual group. The first rule
sets to be applied is to check if there is a packet that satisfies the following requirements:

• Protocol: TCP

55

• Source IP address: 192.168.1.2 (the PLC)

• Source port number: 102

• Destination IP address: 192.168.1.240 (the SCADA Server)

• Destination port number: any

• Payload size: bigger than eight bytes

• TCP flags: PUSH and ACK set

• Eighth byte’s content does not correspond to 0x56, 0x66 or 0x76 values.

In the case that an alert is raised, it sets the alert message to plc_group1, providing
an easy way to identify the alerting rule. The second and third rules are quite similar
to the first one except for the values; the minimum payload size and the position of
inspected bytes. Thus, the second rule looks for the tenth to twelfth bytes positions to
check if the payload content matches to 0x04A0 or 0x0560 values. Otherwise an alert
with plc_group2 message is raised. For the third rule, the changes are the message,
inspected content, its minimum size and its position. Note that the three rules have a
different sid or rule identification number. This is due to the fact that it is not possible
to have different rules with the same rule identification number.

Table 3.10 shows the set of rules that correspond to the communication between the
SCADA server and the PLC. In this case, each rule inspects the packets that have the
IP address of the SCADA server as source and the IP address of the PLC as destination
together with 102 as destination port number. The following keywords change their
value among each rule:

1. Message

2. Content

3. Position or offset

4. Number of inspected bytes or depth

5. Payload’s minimum size or dsize

6. Rule identification number

56

Table 3.10: Example of rules generated for the communication between the server and PLC.

alert tcp 192.168.1.240 any −> 192.168.1.2 102 (msg:"server_group1"; dsize:>5; \
content:!"|03|"; \
content:!"|07|"; \
offset:5; depth:1; flags:PA; sid:1000004; rev:1;)

alert tcp 192.168.1.240 any −> 192.168.1.2 102 (msg:"server_group2"; dsize:>8; \
content:!"|7568|"; \
content:!"|7668|"; \
content:!"|0000|"; \
offset:8; depth:2; flags:PA; sid:1000005; rev:1;)

alert tcp 192.168.1.240 any −> 192.168.1.2 102 (msg:"server_group3"; dsize:>11; \
content:!"|02|"; \
content:!"|0C|"; \
offset:11; depth:1; flags:PA; sid:1000006; rev:1;)

alert tcp 192.168.1.240 any −> 192.168.1.2 102 (msg:"server_group4"; dsize:>13; \
content:!"|D0|"; \
content:!"|90|"; \
content:!"|D6|"; \
offset:13; depth:1; flags:PA; sid:1000007; rev:1;)

alert tcp 192.168.1.240 any −> 192.168.1.2 102 (msg:"server_group5"; dsize:>15; \
content:!"|0004|"; \
content:!"|0112|"; \
offset:15; depth:2; flags:PA; sid:1000008; rev:1;)

The rule set generated by the rule generator component is stored in an individual file
which will be the input of the next module, the ADS.

Anomaly Detection System

The goal of an Anomaly Detection System is to compare the current behavior patterns
with a behavioral model of normality, classifying as anomaly every situation that is out
of the usual behavior. A misuse based Intrusion Detection System instead, based on
rules that describe intrusion patterns, tries to search for uncommon situations, which
are classified as intrusions. Therefore, a misuse based IDS searches for patterns that
match those of an attack, while an ADS looks for traffic behavior that stands out from

57

common traffic.

The presented module uses a modified version of Snort [Sou13b], a well known IDS.
Snort, based on libpcap [Tcp13a], is a lightweight and open source IDS, composed of
three modules: a packet decoder, a detection engine and an alert and register subsystem.
Although Snort comes with a default set of rules, the modified version of Snort is loaded
with the set of rules generated by the previous component, the rule generator component.

Snort has some limitations that prevents us from using it as an ADS. First, a limitation
on the maximum number of rules, and second, the impossibility to use the Content
keyword (see below) to analyze the same position are the main limitations.

Snort, at the initialization process, reads the configuration and rule files and loads all the
rules generating the necessary rule in memory. Rule chains are the binary translation
of the rules, loaded in memory and used in real time for pattern matching. In order to
avoid getting blocked while reading and translating malformed rules or keeping without
memory due to endless rules, Snort defines a maximum rule length. However, some
of the rules generated by the rule generator component are longer than the predefined
maximum rule length. Therefore, in order to use Snort as an ADS, it has been modified
by removing the maximum rule length limitation. This modification enables Snort to
load in memory the set of rules for normal behavior generated by the corresponding
module.

The rule description language of Snort defines a set of keywords such as content. Some
of the keywords can be used more than once in each rule, enabling to write complex rules
and in the same way preventing the usage of multiple rules when they can be described
using one. All the rules shown in Tables 3.9 and 3.10 have a keyword in common, the
content keyword. Looking at each rule it can be observed that all the content keywords
are focused on the same byte or group of bytes of the payload. In the proposed model,
there are multiple options of the content of the same byte or group of bytes. By default,
Snort does not check the same byte multiple times, even if the content keyword can be
used more than once. Therefore, Snort has been modified by enabling to check the same
byte or group of bytes.

58

Table 3.11: Example of rules with intercalated logical ANDs and ORs.

alert tcp 192.168.1.2 102 −> 192.168.1.240 any (msg:"plc_group1"; AND dsize:>8; \
AND content:"|56|"; \
AND content:"|66|"; \
AND content:"|76|"; \
AND offset:8; AND depth:1; AND flags:PA; AND sid:1000001; AND rev:1;)

OR

alert tcp 192.168.1.2 102 −> 192.168.1.240 any (msg:"plc_group2"; AND dsize:>10; \
AND content:"|04A0|"; \
AND content:"|0560|"; \
AND offset:10; AND depth:2; AND flags:PA; AND sid:1000002; AND rev:1;)

As shown in Table 3.11, the rule option section, enclosed in parenthesis, contains the
alert message as well as the information about which parts of the packet should be
inspected to determine if the rule action should be taken. By default, all the elements
of the rule option section can be considered to form a logical AND statement. In the
same way, consecutive Snort rules can be considered to form a logical OR statement.
The problem comes when the intention is to use Snort to check if a predetermined
payload position contains an specific value from multiple options. Obviously, if none of
the possible options is satisfied, the global answer of the rule will be false, generating a
false negative.

Table 3.12: Example of rules with intercalated logical ANDs.

alert tcp 192.168.1.2 102 −> 192.168.1.240 any (msg:"plc_group1"; AND dsize:>8; \
AND content:!"|56|"; \
AND content:!"|66|"; \
AND content:!"|76|"; \
AND offset:8; AND depth:1; AND flags:PA; AND sid:1000001; AND rev:1;)

The solution for the previous problem comes from negating all the content possibilities.
As shown in Table 3.12, by converting all the content options in negative, Snort must
set all the options to true in order to raise an alert. Hence, all the rules generated by
the rule generator module have the content option negate. In consequence, first normal
behavior of the ICS network is translated to Snort rules. The rule generator transforms

59

those into an unlimited set of concatenated, multi-content and opposite-meaning rules in
order to raise an alert when the traffic does not contain such normal behavior patterns.

Notification centre

The notificatoin center module is a graphical user interface which notifies system users
about the anomalies encountered by Snort. This system uses Basic Analysis and Security
Engine (BASE) [Flo10] as a notification engine. In order to analyse the alarms raised
by Snort, the module offers a simple and intuitive web interface.

Figure 3.4: Graphical user interface of BASE.

Figure 3.4 shows the graphical user interface of BASE. As shown, BASE classifies the
traffic based on protocol, source and destination IP addresses and it shows some statistics
related with raised alerts by Snort. It organizes different kinds of alerts offering the user
an easy and intuitive way to access the information.

3.2.2 Implementation

The Anomaly Detection System for ICS binary private protocols is composed of six
modules: the network traffic capturer, the feature extractor, the data assembler, the

60

rule generator, the anomaly detection system and finally, the notification centre. Some
of the modules or components are modified versions of well known open source software,
such as tcpdump [Tcp13b], Snort [Sou13b] or BASE [Flo10].

The network traffic capturer module is based on the tcpdump open source software.
Tcpdump, as well as Snort, works together with libpcap library [Tcp13a]. In fact,
tcpdump and libpcap have been developed by the same team. Libpcap, is a portable
library written in C/C++ for network traffic capturing, while tcpdump is a powerful
command-line packet analyzer. The network traffic capturer component uses both of
them, libpcap in order to capture packets that go through the network, and tcpdump
to filter and store them in a file. Packets can be filtered at the reception time as
well as later on, during the packet processing step. In the case of the network traffic
component, it filters the packets at the beginning, at the reception time, avoiding any
processing time demanded by unnecessary packets. Due to the fact that the traffic we
are interested in corresponds to TCP protocol and 102 port number, tcpdump is loaded
with a preconfigured filter following Berkeley Packet Filter (BPF) style [McC91; McC93].
Table 3.13 shows an example of the filter.

Table 3.13: Example of BPF rule used by tcpdump.

tcp port 102

The feature extractor module has been developed using Python [Pyt13] programming
language and specifically Scapy interactive packet manipulation program [Bio11]. Scapy
offers a wide range of possibilities including the reading of packets from a file, mani-
pulation of them and saving them in another type of file such as Comma Separated
Values (CSV) file. The extracted features are the packet number, timestamp, source
and destination IP addresses, payload length in bytes and the payload itself.

The next module, the data assembler module, has been developed using MATrix LABo-
ratory (MATLAB) [The13]. MATLAB is a high-level language and interactive environ-
ment for numerical computation, visualization, and programming. It allows the user to
analyze data, develop algorithms, and create models and applications. The language,
tools, and built-in math functions enable the user to explore multiple approaches and
reach a solution faster than using spreadsheets or traditional programming languages,
such as C/C++ or Java. The data assembler module, entirely developed in MATLAB,

61

reads a file in CSV format, analyses data, generates the corresponding group and finally
saves all groups’ details in another CSV file.

The rule generator component, as well as the feature extractor module, has been entirely
developed in MATLAB. At the beginning it reads a CSV file from which it takes all
the relative information about groups. This information is used later on to write the
corresponding rules in Snort rule language format. As an output, the module generates
an ASCII file containing all generated rules each one followed by the others.

Snort, written in the C programming language, is the base system of the anomaly detec-
tion system module. In fact, the developed anomaly detection system is a modification
of Snort. The modifications done enable us to use Snort as an ADS. As is explained on
Subsection 3.2.1, the maximum rule length and the impossibility of using the Content
keyword to analyze the same bytes’ position have to be overcome. The solution comes
from changing the source code of Snort and recompiling it generating a personalized
version of the well known application. Therefore, the implementation of the anomaly
detection system module has been done in C language.

Finally, the notification centre, as explained in Subsection 3.2.1, is an adaptation of
BASE [Flo10] software. In this case, the development of the module has not altered the
source code of BASE, but only included as a part of an integrated solution.

3.2.3 Validation

The validation of the system presented has been done by using network traffic of a real
ICS. The control system that has been used controls a steel rolling process. Even if
it is not a Critical Infrastructure, the steel rolling process is quite critical due to the
temperatures, the necessary amount of electrical power and the weight of the materials
that are involved. Moreover, a critical infrastructure such as those used for transport,
energy or grids, etc. use the same type of components as this process. A successful attack
against this kind of process could be the origin of many disasters such as considerable
economical losses, environmental disasters, including the loss of human lives. The PCSs
used in the installation are manufactured by Siemens. In fact, the PLCs and network
switches used correspond respectively to Siemens S7 and Siemens SCALANCE families.

Figure 3.1 shows the network diagram where traffic captures were carried out. As shown,

62

the host used to capture network data, the SCADA server, is part of a switched network,
thus, the capturing node is able to capture only traffic corresponding to broadcast,
multicast and traffic originated from and to the node.

A validation conducted using a real ICS is more realistic than employing traffic generated
in a simulated environment. Many times the reality is far away from simulations, even if
the models used in both cases are practically the same. ICSs are critical processes which
must ensure their availability in front of diverse threats such as software patches. Thus,
patches are tested before being deployed. In addition, there is an established thought
that it is better not to touch a control process device if it is already working.

The network traffic captures used for the validation purposes have been captured in
two different network segments, in order to check the system response with different
traffic. Both traffic captures were performed in attack-free conditions; there were no
anomalies before, during or after the capturing process. In total, two network traffic
captures have been used for system training and validation. As shown in Table 3.14, the
first and second captures are two hours and a half and two hours long respectively, and
they contain 309,830 and 329,742 packets. Filtering out all packets not corresponding
to Siemens S7 protocol, the first capture contains 99,808 valid or useful packets while
the second capture consist of 138,855 filtered packets.

Table 3.14: Captured data files for system training and validation.

Capture Duration Total number Useful number
number (seconds) of packets of packets
1 9,013 309,830 99,808
2 7,198 329,742 138,855

The difference of capturing time between both captured files is contradictory compared
with the number of captured packets. The first capture file, even if it is longer in time,
consists of less packets than the second one, shorter in time. This divergence is related
with the network segment where the traffic has been captured. Even if both packet
acquisitions have been made in the same ICS, the communication between different
devices could require more or less packets.

The presented system is divided in six modules or components that are at the same way
organized into two operational modes, offline and online. The objective of the offline
mode is to generate the behavioral pattern of the ICS network traffic. To do so, it

63

captures network traffic packets and it uses them to extract knowledge that later on will
be converted to rules describing normal operations. The online mode uses the generated
rules to compare with the traffic model of the actual situation, raising alerts in case the
anomaly detection system detects an anomaly. Therefore, a piece of each network traffic
capture file has been used to train the system and generate the rules, while the entire
capture file has been used to check if the anomaly detection systems detects a deviation
from the normality.

The 75% of each capture has been used to train the system and generate the correspon-
ding rules. The obtained results differ significantly depending on the network segment
where the traffic capture has been performed. As shown in Table 3.15, in the first case
74,856 packets have been used to create groups, giving a total number of 52 while the
minimum length of a group is one byte and the maximum 71 bytes. In the second case,
a total of 104,141 packets have been used, generating six groups of a minimum length
of one byte and a maximum of 227 bytes. As shown, the difference between the genera-
ted number of groups is high. Anyhow this does not mean that behavioral models are
inappropriate. Due to the fact that each generated group equates to a rule, in the first
case a total of 52 rules have been created while in the second case we obtained 6.

Table 3.15: Characteristics of generated behavioral patterns.

Capture Training num. Number Minimum Maximum
number of packets of groups length (bytes) length (bytes)
1 74,856 52 1 71
2 104,141 6 1 227

After the rules of each traffic capture have been generated, each capture file has been
tested with the corresponding set of rules. To do so, using the network configuration
showed in Figure 3.5, the ADS module has been loaded with the rules, and using Tcpre-
play software [Tur13], the traffic capture files have been replayed. The ADS module
analyzed all the traffic and every time it detected an anomaly, it raised an alert to the
notification centre component.

Table 3.16 shows the obtained results. As it can be observed, the number of raised
alerts or false positives are 49 for the first capture and 173 for the second. If the number
of false positives is compared with the number of packets not used for system training
purposes, the results are 0.2% for the first capture file and 0.5% for the second. These

64

01010011100101001011

0111011010111010101000101

1110101100100100100001011

0010111001000101100010110

0010101110101011111010101

1101010001010010010100010

1001001001100100001

Captured data

Network

switch

Traffic replaying node Anomaly Detection System

&

Notification Center

Figure 3.5: Validation network diagram.

numbers are relatively small, which indicate that the created set of rules have a high
accuracy. Obviously the rate decreases if the number of false positives are compared
with the total number of packets. In that case the obtained results are 0.016% for the
first capture and 0.052% for the second.

Table 3.16: Results of anomaly detection system component.

Capture number
1 2

False Positive packets 49 173
F.P. vs untrained packets 0.2% 0.5%
F.P. vs all packets 0.016% 0.052%
False Positive rules 7 2
F.P. vs all rules 13.46% 33.33%

Another interesting result is the number of different rules that raised an alert. In the case
of the first capture, from the 52 rules created by the rule generator module, just seven
different rules raised an alert. This means that the 49 packets corresponding to false
positives are concentrated in these seven rules. Thus, the system created 45 rules that
do not raise any alert, showing that they are correctly designed. For the second capture

65

just two different rules raised the alerts, compared with the total number or generated
rules, it can be observed that four rules have included all the possible members. If the
number of activated rules is compared with the total number of rules, the results for
the first case indicate 13.46% of the rules raised an alert, while in the second case the
proportion grows to 33.33%.

Several network protocols contain a packet identification number that grows each time
a packet is sent. Usually the identification number has an upper limit imposed by the
number of bytes dedicated to represent it. When the number of sent packets reaches
the upper limit, it is returned to zero, beginning again the loop. The presented system
is based on the network traffic capture time that the security engineer decides to use
to create the behavioral pattern. Even if used time is equivalent to a unique or various
process times, it could be that the number of sent messages do not reach the packet
identification upper limit. Therefore, the behavioral pattern will not reflect all the
possibilities, leaving a rule with a high probability to raise false positives.

3.3 Conclusions of the chapter

Proprietary binary protocols complicate the creation of ADSs as well as their unders-
tanding. Despite this, the payload of binary protocol packets can be treated as raw data
and with the usage of different techniques try to extract some knowledge. This chapter
presents a payload-based ADS for binary protocols based on ICSs repetitiveness. The
entire process is described together with the implemented system.

The presented system is composed of six components that together discompose the
packet payloads and extract a set of rules that later on are used to detect attack patterns.
The described methodology is validated through two different real ICS traffic captures.
The obtained results show its performance in terms of false positive rate.

The main advantage of the proposed approach is that is capable of working with different
kinds of protocols, thus, diversifying its applicability.

66

Chapter 4

A method to construct ICS network
traffic models for public protocols

Anomaly Detection Systems require behavioral models to detect anomalies, thus, the
first step is to create those models. The vast majority of ADSs require attack-free
training data to create behavioral models; chapter 3 describes a training-data dependent
ADS. The generation of a behavioral model based on training-data, whether attack-free
or not, requires the preparation of data, which in fact consumes time and resources.

Many ICSs control processes with a high availability level, must be running 24 hours,
365 days per year. Any process interruption could cause significant economical losses,
therefore, their operation is critical. Multiple reasons could cause a process interruption,
hence, the shorter the downtime, the smaller the possible effects.

Every time a process is changed or an old or malfunctioning device is replaced with a
new one, the behavioral model of the network traffic changes, forcing the creation of a
new pattern. A training-data dependent ADS will require a lot of time and resources to
prepare a good sample of data; the economical costs could be avoided by not creating
this data but sacrificing the quality of the ADS and compromising the security of the
ICS.

In this chapter, a method to generate realistic network traffic in laboratory conditions
without the need for a real ICS installation is introduced. The presented method de-
fines an algorithm, which eliminates the necessity of training-data during the behavioral
model creation process. Such a method could support experimentation through the re-
creation of realistic traffic in simulated environments. The defined algorithm uses ICS
application characteristics as input and generates a description of the network traffic.
The resulting traffic could be used for multiple applications, such as behavioral pattern

67

generation and network planning process.

4.1 ICS operation overview

As already mentioned in chapter 2, Industrial Control System is a general term used
to refer to several types of control systems, such as SCADA systems, DCSs and PLCs.
SCADA systems are used to control geographically dispersed assets, where the system
control is usually done from a centralized location. DCSs are used to control system that
are concentrated in a smaller area than SCADA systems, such as water and wastewater
treatment, oil refineries and so forth. PLCs, designed to control industrial equipment and
processes, are extensively used in almost all industrial processes. Moreover, even if PLCs
are the principal components of DCSs and SCADA systems, usually, in small control
system configurations, they are the primary components used to provide operational
control of discrete processes.

The operation of ICSs can be divided into two abstraction levels. The lower level is the
one which controls the physical actions and where they take place, while the operators
or control process maintainers are located in a higher level of abstraction. As shown
by figure 4.1, at the lower level we can find PLCs or RTUs as well as operation control
loops. At the higher level resides Human Machine Interfaces (HMIs) together with
Control servers and SCADA servers or Master Terminal Units (MTUs).

In order to clarify some terms, these are the descriptions of the most used devices in
ICSs, ordered from the lower to the higher abstraction layer:

• The control loops, the basis of ICS operations, consist of sensors, actuators, con-
troller and communication hardware. The sensors transmit information about the
actual state of controlled variables to the controllers. The controllers in turn, in-
terpret or understand the received information and based on the local strategy,
established by the ICS application, send to the actuators the information about
the actions to perform. The actuators receive the information and they execute
the corresponding action while the sensors begin again with the control loop by
sending the new state of the controlled variables to the controllers or PLCs.

• The PLCs are small industrial computers, used substantially in SCADA systems

68

HMI

Maintenance server

PLC

L
o
w
e
r

l
e
v
e
l

H
i
g
h
e
r

l
e
v
e
l

Temperature

sensor
Pressure

sensor
Pump

actuator

SCADA server

Data historian

Control

loop

Figure 4.1: Components of each abstraction level.

and DCSs. In SCADA environments, PLCs are often used as field devices because
they are more economical, versatile, flexible, and configurable than special-purpose
RTUs.

• The RTUs are special purpose data acquisition and control units designed to su-
pport SCADA remote stations; they provide the same control as PLCs but are
designed for specific control applications. Sometimes PLCs are implemented as
field devices to serve as RTUs; in this case, the PLC is often referred to as an
RTU.

• The SCADA server, also referred as MTU, is the master device in SCADA systems,
where PLCs and RTUs act as slaves.

• The Control Server is the device which hosts the supervisory application of the
PLC. To communicate with subordinate devices, it uses the ICS network.

69

• The HMI, as its name suggests, is the interaction point between process operators,
engineers and the process control application. It displays process status informa-
tion and historical information, and it permits monitoring and configuring a set of
points, control algorithms, and adjust and establish parameters in the controller.

• The Data historian is a centralized database for logging all process information
within an ICS. Information stored in this database can be accessed to support
various analyses, from statistical process control to enterprise level planning.

• The maintenance server is a node for maintainance of the ICS after its implemen-
tation. Usually, the maintenance server is located in another network, allowing an
external operator to perform remote maintenance avoiding physical presence and
the its costs.

The algorithm presented in this chapter is focused in the ICS network traffic between the
Control Server or SCADA server and the PLC or RTU. Therefore, the communication
between field devices and PLC or RTU is out of the scope of the presented algorithm.
In addition, the communication with the HMI is also out of interest.

ICSs are characterized by being time-critical systems. One of their requirements is to
give a result in a deterministic time. The acceptable delay and jitter are dictated by the
individual installations, established as well by the process characteristics. In addition,
PLCs are small computers with limited computation resources able to accomplish only
the task they were designed for. The installation of additional software, such as an
antivirus or a host based IDS, is not feasible due to the lack of resources. Control
and SCADA servers instead, are usually hosted in computers with enough resources
and standard operating systems. Thus, PLCs act as slaves, leaving Control or SCADA
servers to behave as masters. The variable values represent physical states as well as
intermediate calculus results. The PLCs, which carry out the corresponding calculus
operations, have real and updated values. Control and SCADA servers in contrast,
need to update their variable values by querying the PLCs. The update of the values is
performed across the network. The communication between Control or SCADA servers
and PLCs follow a pull strategy, that is, PLCs act as servers waiting for incoming
connections while Control or SCADA servers ask about the status of the variables they
need to be updated. The pull strategy permits PLCs to focus on the control of the
processes; they do not have to control the update rates of variables. In case of push

70

strategy, PLCs will have to send variable value updates to Control or SCADA servers in
a predefined amount of time, in the update rate of each variable. This strategy demands
more PLC resources than the pull strategy.

Following the pulling strategy, it is important to differentiate the two types of update
rates used by ICSs: system update rates and variable update rates, both of them set
in seconds. Control and SCADA servers define a set of system update rates, lets call
them Us. Each system defines a different set of system update rates. In the same way,
each set can be composed of a variable number of system update rates. A set of system
update rates defines the time intervals in which the system will ask the PLC or the
RTU for the values of variables. Thus, the originated network traffic will be directly
associated to the set of system update rates. The applications of ICSs are composed,
among other things, by different variables. The engineer, or the application developer,
defines the variables of the application and the update rate of each variable, lets call Uv.
The variable update rate establishes the time interval in which each variable needs to
be updated. Even if variable update rates can be set freely, without considering system
update rates, due to the fact that system update rates take precedence over variable
update rates, the last ones have to be fitted into the system update rates. This, makes
the calculations easier and it reduces the generated network traffic by simplifying the
number of necessary requests. Therefore, even if there are multiple variables, each one
with a different variable update rate, all of them will be fitted into the set of system
update rates, resulting in a smaller combination of possibilities. This, eases the necessary
calculations as well as simplifies the resulting behavioral model.

4.2 Industrial Control System Applications

Industrial Control Systems are controlled by specially made (personalized) applications
for each industrial installation. An application is a combination of logic and values. The
logic is represented as value dependent conditional actions that the controller should exe-
cute. The values in turn, are stored on variables, the storage location and an associated
symbolic name. These applications, together with the controlled industrial systems,
are unique. Even if the purpose of the application is the same, depending on the pro-
grammer, it could have a different logic and it would use distinct values, giving a large

71

number of possibilities.

ICS application values can represent different types of physical states, a value could re-
present the state of a switch while another value could give the pressure of a tank. Thus,
the variables can be classified in different ways depending on the nature of the value
they store. In the same way, variables can be used to store logical values, values that
are not a physical state representation. These variables make the logic of an application
easier. Hence, the total number of variables could be bigger than the number of inte-
resting variables from the point of view of the operator or SCADA server. Depending
on the nature of the value stored by a variable or how frequently it is changed by the
application logic, it would be necessary to adjust the variable update rate to follow its
value.

Although the number of possible applications is enormous, the traffic that results from
these can be described by the following three components: variable classes, number of
variables and variable update rates. These components are defined by ICS application
designers and implemented by developers. The components are part of ICS application
specifications.

• Variable classes: refers to the kinds of variable that the system or the application
development tools are able to manage, e.g. boolean, integer, real and string.
The application programmer should select the appropriate one for each purpose,
e.g. store the status of a switch in a boolean variable, store the temperature
value in a real variable. Depending on the class, variables are allocated a specific
number of bytes. Thus, the assigned memory will depend on variable classes.

• Number of variables: from the operator’s point of view, in order for the HMI
to show the status of updated variable values, the SCADA server needs to update
them. Due to the fact that variables consume memory and process resources,
application developers try to use the minimum number of variables possible in
order to save resources. Variables can be connected to controller ports, where
the transformation between physical and cyber values is done. Even if an ICS
application consist of more variables than just those that are updated by the
SCADA server, from the generated network traffic point of view, only the updated
ones are interesting. Hence, the number of variables refers to the number of
updated variables across the network.

72

• Variable update rates: is the time rate at which variable values are refreshed.
Depending on their purpose, as defined by engineers, update rates can be the same
for all variables, or they can be defined per variable class or even per variable. On
the other hand, application developers should use the maximum Update Rate (UR)
possible in order to save resources. For example, in the case of a variable designed
to store the time in seconds, it would be enough to update it once per second. If
the value is meaningful in milliseconds, it should be updated every millisecond.
However, this would also increase the network traffic, and calculation times in
both end-nodes, i.e. SCADA server and PLC.

In ICSs, following the pulling strategy, SCADA servers interrogate PLCs using SCADA
communications protocols in order to refresh the value of local variables. After all,
SCADA servers hold the data that would be presented in a human readable form to
operators behind HMI devices. Even if the purpose of two applications is totally diffe-
rent, the number of variables, variable classes and update rates could be the same, and
would generate an identical communication pattern.

SCADA communications protocols such as Modbus/TCP, and DNP3 could be object
oriented or variable oriented protocols. During this project only the second type was
analyzed. In the case of variable oriented protocols, servers keep the memory address
in which variables are stored. In order to preserve the network bandwidth and system’s
resources, SCADA servers ask for several variables at the same time; variables fitted
into the same system update rate will be grouped in order to form a unique value status
request. Thus, for each system update rate, a single request that encompass multiple
variables will be generated instead of multiple request packets. This means that the
requested packet sizes are proportional to the number of requested variables.

4.3 Methodology

The goal of the proposed algorithm is to generate a network traffic model starting with a
real ICS application description. It focuses on the communication between the SCADA
server and PLCs with applications in the field of IDS. Before the actual construction of
the algorithm we conducted a thorough analysis of real traffic between SCADA servers
and PLCs from ABB [Abb13]. The analyzed network traffic was captured in the

73

Experimental Platform for Internet Contingencies (EPIC), the emulation testbed of
the Institute for the Protection and Security of the Citizen (IPSC), Joint Research
Centre (JRC) of the European Commission. The EPIC testbed is based on the Emulab
software [The12], that is able to recreate a wide range of experimentation environments
in which researchers can develop, debug and evaluate complex systems [Whi02]. The
testbed characteristics have been studied in several works [Sia12; Gen12; Pér10].

Network

switch

SCADA server

&

HMI

PLC

Capture node

ICS traffic

P
o
r
t

m
i
r
r
o
r
i
n
g

Figure 4.2: Experimental network topology

By using the EPIC platform, we constructed the topology shown in Figure 4.2. This
topology included a real PLC, a SCADA server together with HMI software, a network
switch and a dedicated node to capture network traffic. All the devices were connected
to the same commuted LAN. The switch was configured with the port mirroring feature
turned ON in order to capture all the traffic between the SCADA server and the PLC.

The PLC we used was ABB’s 800M with the Manufacturing Message Specification
(MMS) protocol. As shown in Figure 4.3, the MMS protocol is located above other pro-
tocols such as the Connection-Oriented Transport Protocol (COTP) and ISO Transport
Services on top of the TCP (TPKT).

74

IP

TCP

ISO Transport Services On

Top Of The TCP (TPKT)

Connection-Oriented

Transport Protocol (COTP)

MMS InvokeID Read

Ethernet

Figure 4.3: MMS protocol layers used by SCADA servers and PLCs from ABB

The communication between the SCADA server and PLC begins with a setup or initia-
lization process. Then, it continues with a loop that issues requests at each update rate
in order to refresh the variable values. At this point we assume that the initialization
process can be different for each communication protocol and device, and specific to each
vendor. Our work focuses on the second part of the communication in which variables
are updated. Figure 4.4 shows in detail the initialization process and the loop we are
focusing on, i.e. Repeat until Process duration.

75

SCADA

server
PLC

Process initialization

identify

getCapabilityList

getNameList

getProgramInvocationAttributes

getDomainAttributes

getNameList

read

repeat four times

repeat until

process duration

Figure 4.4: The sequence of messages exchanged by the SCADA server and PLC

ICS applications composed of different numbers of variables, variable classes and variable
update rates generate distinct network traffic patterns. Thus, in order to analyze the
output of each performed change, several ICS applications have been used to generate
diverse network traffic patterns. Each application ran for 20 minutes and the generated
traffic was captured in separate files using Tcpdump [Tcp13b]. The analyzed information
was extracted from captured files using Scapy [Bio11]. Each capture was analyzed in
terms of:

• Number of packets: number of packets captured.

• Number of different requests: number of different SCADA server requests
sent to the PLC.

• Size of each request (bytes): size in bytes of each request, including all layers.

• Packet inter-arrival time (seconds): average time in seconds between packets

76

arrival time.

• Packet inter-arrival time for each request (seconds): average time in se-
conds between packets arrival time for each request type.

• Size of each packet based on variable classes (bytes): packet size by taking
into account the number of variables and their specifications (class, update rate).

• Number of different requests based on variable classes: number of different
requests due to the fact that several variable classes could be combined in the same
request.

• Number of different requests based on update rates: number of different
requests due to the fact that several variable update rates could be combined in
the same system update rates.

Table 4.1: Description of applications used for algorithm construction

Size
Number Variable

Uv
[1] Us

[2]
Max. No. Number

of classes variables of
variables per Us

[1] applications
Small 1-6 1-4 1-13 6 1 7
Medium 7-60 1-4 1-12 6 10 4
Large 61-120 1-4 1-6 6 20 8

Total 19

[1] Uv = Variable update rate.
[2] Us = System update rate.

Table 4.1 summarizes the number of applications and their specifications. As shown,
three types of applications were used, depending on the number of variables, classified
as small, medium or large. The small ones, composed of up to 6 variables, were used to
analyze the effect of different variable classes and variable update rates into the network
traffic. By combining distinct variable classes in the same variable update rate, we
could see that distinct variable classes are not joined in a single packet. In the same
way, using multiple variable update rates we could see that all variable update rates are
fitted into system update rates. The medium size applications, with up to 60 variables,
were used to analyze the impact of multiple variables of the same variable class and
distinct variable update rate into the generated traffic. Even if different variable update

77

rates were used, they were chosen in order to see how the system fit them into system
update rates. Finally, large applications, with up to 120 variables, were used to analyze
the effect of numerous variables into network packets. In total, 19 application were
created and analyzed. The analysis of these features for all the analyzed applications
was used to construct the proposed algorithm.

4.4 Generating Traffic Models

The proposed algorithm generates the traffic model based on application specifications
instead of statistical traffic analysis. As explained in section 4.2, each application can
be described in terms of number of variables, class of variables and variable update
rates. These specifications are application dependent and are used to calculate the
communication pattern between the SCADA server and the PLC. Although the analysis
we made is specific to the MMS protocol, it can be adapted to other protocols as well,
e.g. Modbus.

The algorithm uses the "generic" Gaussian distribution in order to illustrate the appli-
cability of the approach. However, users can choose other distributions as well, e.g.
Poisson, in order to best fit their specific network patterns.

The proposed algorithm takes the following sets and variables as input:

• V = set of variables

• C = set of variable classes

• Uv = set of variable update rates

• Us = set of system update rates

• d = duration of the trace (in seconds)

• b = network bandwidth

Each variable of the set of variables, V , is a pair consisting of variable class and variable
update rate, denoted by (c, uv). In the same way, the set of variable classes, C, consist
of elements where each one is a pair of variable class and length in bytes, denoted by

78

(c, l), e.g. (integer, 2).

As output, the algorithm generates a set of packet descriptions P , where each packet is
defined as a pair including the transmission time and the size of the packet, denoted by
(θ, σ).

For simplicity, throughout the chapter we use theXz
y notation to denote the y component

of the z-th element in set X. For instance, taking the C set, the j-th element is denoted
by Cj, and the c component of the j-th element is denoted by Cj

c .

The algorithm starts with the MAIN function by initializing the set of packet des-
criptions P and numP , where the later one is used to count the number of packets.
Next, it loops through all system update rates U j

s and variable classes Ck
c and calls the

Packet(j, Ck
c) function to get the number of variables that should be placed in a packet.

Then, based on the returned value and the size of the variable class Ck
l , it calculates the

packet size σ at line #20.

As users can explicitly specify the length of the trace, i.e. through the d variable, we
calculate the number of transmissions by dividing d to each update rate U j

s . For each
transmission we increase numP and we generate a random number r using a Gaussian
distribution function. The role of this random number is to introduce a realistic deviation
from the configured update rate. Such deviations are caused by multi-process OSs,
delays in network communications, etc., and are frequent in real environments. Based
on this value we calculate the predicted transmission time θ and we add a new packet
description to P at line #25.

Starting with line #26 we sort the P set in a time order and we change the transmission
time of packets in order to take into account the bandwidth of the system. More
specifically, we calculate the time t needed to send each packet P j−1 by dividing the size
of the packet P j−1

σ by the bandwidth b. Then, if the time needed to send the previous
packet exceeds the actual packet transmission time, we update the transmission time of
the current packet, as shown in line #31.

Finally, we briefly describe the Packet(i, c) function, used to count the number of va-
riables sent out in the i-th system update rate. This function returns the number of
variables of class c for which the update rate satisfies one of the next three conditions.
The first condition given at line #7 is a particular case and counts all variables for

79

Algorithm 1 Traffic model generator

1: input :< Uv, C, V, Us, d, b >, output :< P >
2: /*The Packet function counts all variables of class C that satisfy a set of conditions. This number

is used by the MAIN function to calculate the size of the packet.*/
3: function Packet(i, c)
4: X := 0
5: for (j := 1 to |V |) do
6: if (V j

c = c) then
7: if ((i = 1) AND (V j

u < U2
s)) then

8: X := X + 1

9: if ((1 < i < |Us|) AND
10: (U i

s ≤ V j
u < U i+1

s)) then
11: X := X + 1

12: if ((i = |Us|) AND (U i
s ≤ V j

u)) then
13: X := X + 1

14: return X
15: function MAIN
16: P := ∅, numP := 0
17: /*The first phase calculates for each system Update Rate (Us) and each variable class (C) the set

of packet descriptions (P) from the request size (σ) and the packet transmission time (θ).*/
18: for j := 1 to |Us| do
19: for k := 1 to |C| do
20: σ := Ck

l · Packet(j, Ck
c)

21: for g := 1 to (d/U j
s) do

22: numP := numP + 1
23: r := rand(′Gauss′, 0, 10−3)
24: θ := (g − 1)U j

s + r
25: P := P ∪ (θ, σ)

26: sort_by_transmission_time(P)
27: /*The second phase uses the set P to calculate the transmission time taking into account the

available bandwidth (b).*/
28: for j := 2 to numP do
29: t := P j−1

σ /b
30: if P j

θ < P j−1
θ + t then

31: P j
θ := P j−1

θ + t

32: return P

80

which the configured update rate is smaller than the second system update rate. Re-
quests for all such variables will be sent out during the first system update rate. The
second condition, given at line #9, counts variables that are between two sequent system
update rates, i.e. U i

s and U i+1
s . Finally, the third condition, given at line #12, counts all

variables that have a greater update rate than the last system update rate, i.e. U i
s ≤ V j

u

for i = |Us|.

As a result, the algorithm generates a set of packet descriptions, P, denoted by the
transmission time and the size of each packet.

4.5 Validation and experimental results

The proposed algorithm generates an ordered sequence of packets described by time and
size. A prototype of the algorithm was implemented in Matlab [The13] and it was used
in the validation process. The validation included several statistical methods comparing
the predicted traffic model with traces captured from a real SCADA installation.

Three different applications were used to validate the proposed approach. Each one
included a different number of variables, variable classes and variable update rates. The
real traffic for each application was then compared to the generated traffic models in
terms of: number of packets, packet sizes, throughput, and packet inter-arrival time.
The comparison of packet inter-arrival time between real and predicted traffic was done
separately for each system update rate. The results show the level of accuracy of the
predicted traces. The throughput analysis permits the validation of packet sizes and
packet transmission time.

For evaluating errors between the predicted and the real traffic we used the Mean Ab-
solute Percentage Error (MAPE). Error is defined as actual or observed value minus
the forecasted value. Percentage errors are summed without regard to sign to compute
MAPE. According to Lewis (1982) [Law08], the lower the MAPE the more accurate
the forecast. This way, it is considered that a MAPE value less than 10% shows a high
accuracy, while between 11% and 20% we can assume a good result. A result between
21% and 50% is considered reasonable. However, in case the error is larger than 51% it
can be a clear indicator of inaccuracy. Throughout the validation process we used the

81

following equation to calculate MAPE:

100

n

n∑
t=1

∣∣∣∣∣Rt − Pt
Rt

∣∣∣∣∣ , (4.1)

where Rt is the real value in the period t, Pt is the predicted value in period t and n is
the number of periods used in the calculations.

82

Table 4.2: Experimental results comparing the predicted and real network traffic

Application Number of Packets Throughput (bytes/sec.) Packets inter-arrival time error
packets sizes Avg. Max. Min. 50ms 500ms 1s 3s 6s

1
Predicted 29400 114 2793 2964 2736
Real 29165 113/114 2758 5928 113 4.88% 0.70% 0.32% 0.37% 0.12%
Error 0.80% 48.16% 1.27% 50% 2321%

2
Predicted 29400 132 3234 3432 3168
Real 29421 132 3236 6336 660 8.34% 0.28% 0.32% 0.06% 0.20%
Error 0.07% 0% 0.07% 46% 380%

3
Predicted 29400 152 3724 3952 3648
Real 29407 152 3725 6688 760 4.53% 0.15% 0.08% 0.01% 0.01%
Error 0.02% 0% 0.02% 41% 380%

83

4.5.1 Number of packets

As shown in Table 4.2 the calculated error for the predicted number of packets is smaller
than 1%. This is because even if the number of variables, variable classes and variable
update rates are different for each application, variables can be placed in the same
request, and will generate the same number of packets.

4.5.2 Packets sizes

For the second and third application, packet sizes are exactly the same in the predicted
and real applications, giving an error of 0%. Due to the fact that the analyzed protocol
has a dynamic field, i.e. the sequence number, which can change its size, for the first
application we recorded an error of 48.16%. The same can be observed in Figure 4.5.
The second and the third applications have the same maximum and minimum peaks
while the first application shows that predicted traffic’s throughput is higher than the
real one. At this point the proposed algorithm does not take into account the variation
of packet sizes, and this is why almost half of the real packets from the first application
have a different size. However, an improved version of the algorithm can take dynamic
sizes into account, but this would need more investigation and we consider it as part of
our future work.

84

0 40 80 120 160 200
2.5

3.0

3.5

4.0

Capture snapshot (seconds)

T
h

ro
u

g
h

p
u

t
(K

B
y

te
s/

se
co

n
d

)

Real

Predicted

Application 3

Application 2

Application 1

Figure 4.5: Comparison of throughput between predicted & real traffic

4.5.3 Throughput

The predicted throughput can be extracted by splitting the output of the algorithm in
blocks of one second and summing the number of bytes. The following equation shows

85

how to obtain the throughput for a specific second:

Throughput(secondx) =
∑
|Plength| :

secondx ≤ Ptime < secondx+1. (4.2)

As shown in Table 4.2, in all cases the average throughput error is smaller than 2%,
demonstrating the accuracy of the proposed algorithm. However, the errors for maxi-
mum throughput are bigger than 41%, while the error for minimum throughput for the
first application is about 2321%. These maximum values are due to real system opera-
tions in which transmission times can be delayed, leading to a drop in the throughput
value. In the next seconds these are followed by transmissions of the missed packets,
leading to an increase in the throughput value. Consequently, the measured errors in
some cases increase to large values. However, in the next seconds the error drops back
to values smaller than 2%. A clear example of this behavior is also shown in Figure 4.5,
where in the case of application 1 we can see a drop in the throughput, followed by a
peak.

4.5.4 Packet inter-arrival time

All the errors we measured for packet inter-arrival time were smaller than 10% and in
most cases the error was less than 1%. As expected, the largest error was measured
for the smallest update rate, i.e. 50ms, that is mainly due to the non-real-time OS
we used to run the SCADA server and due to network delays. In order to estimate the
distribution of packets in the predicted and real traffic, we also calculated the Cumulative
Distribution Function (CDF), shown in Figure 4.6. These figures show the accuracy of
the predicted and of real applications for the configured system update rates. In each
figure the horizontal axis is a ten millisecond time interval (given in seconds), while the
vertical axis represents the percentage of packets for each system update rate.

As we can clearly see in Figure 4.6, the largest difference between the predicted and real
packet distributions is for a 50ms update rate. The reason for this was already discussed
in the previous paragraph and it can also be justified by looking at the measured errors
in Table 4.2. The following figures show a more accurate CDF with the increase of the
system update rate. By inspecting these figures we also notice that packet distributions

86

0.045 0.05 0.055
0

0.2

0.4

0.6

0.8

1

Time(seconds)

P
er

ce
n

ta
g

e

CDF 50ms update rate

0.995 1 1.005
0

0.2

0.4

0.6

0.8

1

Time(seconds)

P
er

ce
n

ta
g

e

CDF 1s update rate

5.995 6 6.005
0

0.2

0.4

0.6

0.8

1

Time(seconds)

P
er

ce
n

ta
g

e

CDF 6s update rate

0.495 0.5 0.505
0

0.2

0.4

0.6

0.8

1

Time(seconds)

P
er

ce
n

ta
g

e

CDF 500ms update rate

2.995 3 3.005
0

0.2

0.4

0.6

0.8

1

Time(seconds)

P
er

ce
n

ta
g

e
CDF 3s update rate

Predicted

Application 1

Application 2

Application 3

Figure 4.6: The calculated Cumulative Distribution Function (CDF) for each system update
rate.

87

can be specific to each application. In fact, in order to predict more accurately the small
variations in the distribution that we can see in each case, the proposed algorithm used
a Gaussian distribution function. This way we increased the accuracy of the approach
and, as already discussed, we managed to obtain an error of less than 1% in most of
the cases. Nevertheless, we believe that the algorithm can be further improved in order
to take into account more application-specific variations and to further reduce all errors
below 1%.

4.6 Conclusions of the chapter

Recent approaches in the field of ICS traffic modeling [Mah10; Roo08; Che06] proved
that the construction of accurate network traffic models is a difficult task. The time and
resources required to construct realistic models constitutes one of the biggest issues that
engineers must solve. The automated model construction based on SCADA application
characteristics can effectively avoid these issues. Therefore, this chapter proposes an
approach to generate network traffic models for ICSs, starting from application-specific
data such as the number of variables, variable types and variable update rates. The
presented algorithm takes as input an application description and generates a traffic
model of a given duration. The algorithm was constructed by inspecting the network
traffic taken from a real SCADA installation including several applications. As shown
by experimental results, the algorithm is highly accurate and it can predict the number
of packets by an error < 1%, the packet sizes by an error of 0%, the throughput by an
error < 2% and the packet inter-arrival time by an error < 10%.

The main advantage of the proposed approach is that traffic models can be re-generated
easily if needed, without having to analyze real traffic or to develop new models. Fur-
thermore, the approach can be applied in several domains, starting with ADSs, to the
recreation of network traffic in simulated/experimental environments.

88

Chapter 5

A method to correct delay and jitter
issues

In Chapter 4, a method to construct ICS network traffic is presented. The exposed
method uses an algorithm that having an ICS application description, gives the expected
packet size for a certain period. The algorithm output has different applications, such
as a base for a behavioral model for an ADS or planning of network traffic.

ICS devices, as already discussed in chapter 2, are designed with limited computational
resources, and therefore, they are only able to satisfy process control tasks. Thus, the
installation of additional software such an anti-virus or an ADS, is not feasible due to
the lack of resources. Usually, ADSs are hosted in additional computers with common
operating systems and with access to the network segments desired to monitor.

Computers use time as a reference for multiple applications such as event logs, network
communication, etc. Log applications save the timestamp of each event in order to
register when they happened. Applications using network communication, for instance
email, need the time reference to know when an action took place.The system clock in a
computer is based on registers and oscillators. Registers, composed of a number of bits,
hold the time and oscillators, which add bits to registers, keep track of the ever-changing
time. Far from being stable, oscillators suffer from changes in temperature, air pressure,
magnetic field and so forth. For this reason, real system clocks have a frequency error,
hence, even if they can keep the track of time within a specified accuracy they can be
unreliable in some cases.

The time reference is essential in computer environments, but the frequency error of real
clocks makes it untrustworthy. In a single computer, some applications like databases
have difficulties when the time jumps backwards. Due to these errors, in a networked

89

environment where many computer applications have to work simultaneously, it is not
feasible to have several computers each one with its own time reference. Therefore,
computers not only need a time reference, they need a synchronized common time
reference.

Time synchronization between several computers can be achieved following different
strategies. On one hand, in centralized environments, where there is a main computer
and many subordinates, the central server can establish the time reference. Berke-
ley Algorithm [Gus89] and Cristian’s algorithm [Fla89] are two examples of time syn-
chronization in centralized environments. On the other hand, in distributed systems,
time synchronization is a complex task; one of the most used clock synchronization
solution is the Network Time Protocol (NTP) which is based on the UDP protocol
[Mil85; Mil88; Mil89; Mil92; Mil10]. Nowadays the NTP protocol is in its fourth version
(NTPv4) and it is able to keep the clocks synchronized with a maximum difference of
ten milliseconds across the Internet and with a minimum of two-hundred microseconds
in ideal conditions [Mil10]. Another time synchronization solution is the Precision time
protocol (PTP) [Wan11] defined by the standard IEEE 1588 [IEEE02; IEC04] which
provides time synchronization with up to nanosecond precision over ethernet networks.

In the last decades ICSs have evolved from isolated networks and proprietary hardware
and software to the usage of COTS hardware, standard communication protocols, co-
mmon software, also to be connected to corporate networks and/or to the Internet. As
already discussed in Chapter 2, this evolution brings together several positive as well
as negative aspects. Although most modern ICSs are connected to corporate networks
and/or Internet, best practice guidelines and standards of well known entities such as
the Centre for the Protection of National Infrastructure (CPNI) suggest to limit as much
as possible network interconnections in order to keep ICSs as secure as possible [Cen10].
Therefore, most ICSs are still isolated from other networks or they just permit necessary
traffic such as SCADA traffic. In isolated or restricted environments, it is uncommon
to find time synchronization protocols, specially those like NTP which require an exter-
nal server as reference. Thus, on ICSs, it is usual to find unsynchronized clocks which
fortunately does not affect the process itself.

Even if unsynchronized system clocks do not affect ICSs normal operation, in the case
of an ADS with a detection engine based on time, it is necessary to maintain the clocks
of different devices in good harmony; the false positive rate could be increased due to

90

device clock differences, decreasing the ADS performance.

In this chapter, a method to correct packet delay and jitter issues is presented. The
exposed method is based on an algorithm that does not change the system clock, it
works together with the ADS in order to modify its time reference to be synchronized
with the ICS network traffic source device.

5.1 Methodology

The goal of the proposed method is to correct the ADS clock reference based on the
degradation of static system update rates. It focuses on the variable value update
requests between the SCADA or Control server and PLCs or RTU. Before the actual
construction of the algorithm, a thorough analysis of real traffic between SCADA servers
and ABB PLCs [Abb13] was conducted. The analyzed network traffic was captured in
the Experimental Platform for Internet Contingencies (EPIC), the emulation testbed
of the Institute for the Protection and Security of the Citizen (IPSC), Joint Research
Centre (JRC) of the European Commission. The EPIC testbed is based on the Emulab
software [The12], that is able to recreate a wide range of experimentation environments
in which researchers can develop, debug and evaluate complex systems [Whi02]. The
testbed characteristics and performance has been studied and tested in several research
works [Sia12; Gen12; Pér10].

By using the EPIC platform, we constructed the topology shown in Figure 5.1. This
topology included a real PLC, a SCADA server together with HMI software, a network
switch and a dedicated node to detect anomalies and capture network traffic. All the
devices were connected to the same commuted LAN. In order to capture all the traffic
between the SCADA server and the PLC, the switch port mirroring feature has been
used.

The PLC we used was ABB’s 800M with the Manufacturing Message Specification
(MMS) protocol. As shown in Figure 5.2, the MMS protocol is located above other pro-
tocols such as the Connection-Oriented Transport Protocol (COTP) and ISO Transport
Services on top of the TCP (TPKT).

91

Network

switch

SCADA server

&

HMI

PLC

Anomaly Detection System

&

Capture node

ICS traffic

P
o
r
t

m
i
r
r
o
r
i
n
g

Figure 5.1: Experimental network topology

IP

TCP

ISO Transport Services On

Top Of The TCP (TPKT)

Connection-Oriented

Transport Protocol (COTP)

MMS InvokeID Read

Ethernet

Figure 5.2: MMS protocol layers used by SCADA servers and PLCs from ABB

The communication between the SCADA server and PLC begins with a setup or initia-

92

lization process. Then, it continues with a loop that issues requests at each update rate
in order to refresh the variable values. At this point we assume that the initialization
process can be different for each communication protocol and device, and specific to each
vendor. Our work focuses on the second part of the communication in which variables
are updated. Figure 5.3 shows in detail the initialization process and the loop we are
focusing on, i.e. Repeat until Process duration.

SCADA

server
PLC

Process initialization

identify

getCapabilityList

getNameList

getProgramInvocationAttributes

getDomainAttributes

getNameList

read

repeat four times

repeat until

process duration

Figure 5.3: The sequence of messages exchanged by the SCADA server and PLC

In Chapter 4, as shown in Table 4.1, several applications, each one with different cha-
racteristics, were generated in order to analyze the created traffic in terms of size and
quantity of packets. The same traffic has been analyzed in this chapter but with timing
issues in mind. The inspected traffic has been broken down into different system update
rates and its analysis has been used to construct the proposed algorithm.

93

5.2 Delay and Jitter of Analyzed Traffic Packets

As already discussed in Chapter 4, Control or SCADA servers that follow a pulling
strategy, send variable value update requests to PLCs or RTUs. These update requests
are performed with a repetitive pattern following system update rates. For each system
update rate, all variables that satisfy two conditions are joined to form a unique request.
The first condition is that variables must correspond to a certain variable class. The
second one specifies a range of variable update rates that joint variables must satisfy.
Thus, for each system update rate there would be a set of requests, each one corres-
ponding to a different variable class. If a single variable class and a specific system
update rate are considered, there will be a packet repeated continuously among process
duration with a predefined time interval between two consecutive transmissions.

At this time, it is important to clarify some concepts that could induce an error. The
delay of a packet, also referred to as latency and measured in fractions of seconds,
specifies how long it takes for data to travel across a network from one computer to
another [Com08]. There are various types of delay:

• Propagation Delay: The time required for a signal to travel across a transmi-
ssion medium. Some delay in a network arises because a signal requires a small
amount of time to travel across a transmission medium.

• Access Delay: The time needed to obtain access to a transmission medium. It
depends on the number of stations that contend for access and the amount of
traffic each station sends.

• Switching Delay: The time required to forward a packet. The time required to
compute a next hop and begin transmission. An electronic device in a network
(e.g., a Layer 2 switch or router) must compute a next-hop for each packet before
transmitting the packet over an output interface.

• Queuing Delay: The time a packet spends in the memory of a switch or router
waiting to be selected for transmission.

• Server Delay: The time required for a server to respond to a request and send
a reply. Although not part of a network per se, servers are essential to most
communication. The time required for a server to examine a request, compute it

94

and send a response constitutes a significant part of overall delay. Servers queue
incoming requests, which means that server delay is variable and depends on the
load of the moment.

The variation of packet delay is commonly known as jitter [Dem02]. However, the term
jitter is used in different ways by different communities, hence, it is important to know
which are the different meanings:

• The first meaning is the variation of a signal with respect to some clock signal,
where the arrival time of the signal is expected to coincide with the arrival of the
clock signal.

• The second meaning has to do with the variation of a metric, in our case the delay,
with respect to some reference metric, in this case the minimum delay. It is also
named as Packet Delay Variation (PDV) [Int11].

The second meaning is frequently used by computer scientists and frequently (but not
always) refers to variation in delay. In our case, and for the rest of the document, we
will use the term jitter to refer to the variation of packet delay.

time

Us

J

-J
P = Packet

Us = System Update Rate

J = Packet Jitter

-J = Negative Packet Jitter

P

Figure 5.4: Packets, System Update Rate and Delay explanation.

As shown in Figure 5.4, the time between two consecutive packets is called system update
rate. Depending on which system update rate is used by a specific packet type, the time
between consecutive packets will be longer or shorter. In a networked environment
packets are created by an application, transmitted by a Network Interface Controller
(NIC), propagated across the wire, processed and retransmitted by networking devices,
received by the destination NIC and finally processed by the destination application. In

95

ideal conditions, the time between packets is a constant value. However, in real traffic,
it suffers small variations even if it pretends to maintain constant. Therefore, jitter
can be positive or negative. Positive jitter takes place when a packet is transmitted or
received after it was expected. On the contrary, negative jitter happens when a packet is
transmitted or received before it was expected. While IT systems are typically focused
first on confidentiality, then on integrity and finally on availability, ICSs emphasize
availability more than integrity and confidentiality. In addition, ICSs are real-time or
time-critical systems, which must deliver packets in a deterministic time. Thus, in IT
systems packets are created depending on the current load when it is possible, in ICSs
packets must be created when it corresponds, even if the current load can introduce
small variabilities. During the life cycle of a packet, it can suffer delays at the origin,
during the transmission and finally at the reception. Multiple factors could be the source
of the suffered delay, acting individually or in conjunction. These are some of the factors
that could influence a packet delay:

• At the source

– The application which originates the packet cannot create it due to current
load. Server delay.

– The source application cannot deliver the packet to the NIC. Server delay.

– The packet waits in the buffer of the NIC. Queuing delay.

– The NIC cannot send the message because of a network congestion. Access
delay.

• During the transmission

– Packet has to be retransmitted due to network collision.

– Network devices such as switches introduce a latency due to packet processing
time. Switching delay.

– Packet needs time to go across the wire. Propagation delay.

• At the destination

– Network card buffer is out of space and cannot process the packet, it has to
be discarded and retransmitted. Queuing delay.

96

– The packet waits in the buffer of the NIC. Queuing delay.

– The application of packet destination cannot process the packet due to con-
gestion. Server delay.

As shown, multiple factors can be the origin of packet delay, but none of the presented
causes could generate a negative packet jitter. All the given reasons can only cause a
positive delay and jitter. In fact, the delay, also known as latency, usually is understood
as an incremental value. A system with a low load, which generates periodical packets
and delivers them to another host using always the same network, without congestion,
the delays should be constant. Thus, there will not be any jitter. But as already
mentioned, no jitter situations only happen in ideal conditions; in real networks there
is always jitter, even if it is small.

time

rJ rJ rJ rJ rJ

rJ = Random Packet Jitter

 = Expected Packet Time

 = Real Packet Time

Figure 5.5: Random delay of Packets.

An ADS, as well as a PLC located in separated hosts as shown in Figure 5.1, expects
a succession of packets with an interval of system update rate. In fact, for each system
update rate, a set of packets will be delivered. Thus, a combination of all dispatched
packets at all system update rates, generates a set of multiple packets that for an
outside observer could be a fuzzy conjunction of packets. Figure 5.5 shows a succession
of expected packet times combined with real packet times. It can be observed that just
the first packet arrives when it was expected; the rest have a small delay variation that in
this case it can be explained as a random packet delay. A random packet delay generates
a random jitter that it depends on multiple factors as has been already explained.

Figure 5.6 shows a different situation. In this case, only the first packet arrives at the
expected time. The rest accumulate a constant positive delay that in each iteration
makes the real packet time get away from the reference time. Multiple reasons could be
the origin of this accumulated delay, these are some of them:

97

time

0.cJ 1.cJ 2.cJ 3.cJ 4.cJ

cJ = Constant Packet Jitter

 = Expected Packet Time

 = Real Packet Time

Figure 5.6: Packets with accumulated constant delay.

• The expected packet time is not correctly calculated, it is smaller than real.

• In the SCADA server, the trigger to create and send a new variable update request
is set every time the last message has been sent. Thus, to the system update rate
the queuing, access and propagation delays must be added.

• The clock oscillator of a SCADA server is imprecise, therefore, the system clock
slowly lags behind. Thus, the time difference between packets is greater than the
system update rate.

• The clock oscillator of the ADS host is imprecise, therefore, the system clock slowly
steps forward. Hence, for the ADS the time between packets is greater than system
update rate.

• A combination of some or all of them.

The fourth case describes a possible reason in which the delay is originated by the
clock reference of the destination host. In this case, for the rest of devices that receive
the same packets, they do not suffer any jitter. Thus, this is not jitter itself, but the
consequences in a real-time system could be the same.

As shown, jitter can originate for multiple reasons, some of them would create random
jitter while others would generate a constant one.

5.2.1 Delay of real ICS traffic packets

The algorithm presented in Chapter 4, generates ICS network traffic descriptions based
on ICS application specifications. The explained algorithm classifies the application

98

variables based on variable classes and variable update rates. Then, depending on a set
of system update rates and variable classes, it calculates the size of each variable value
update request. Although the main idea is to use all system update rates at once and
generate an output combining all of them, an individual output can be obtained for each
system update rate. This provides an easier understanding of the process.

As described in Section 5.1, an ICS has been used to generate real network traffic. The
used ICS is composed of six system update rates. In order to check the differences
between predicted and real traffic in terms of delay and jitter, several ICS applications,
each one with different characteristics, have been used to generate the network traffic.
The ICS applications have run for twenty minutes and then, the captured traffic has
been broken down into six different system update rates.

As already described, the algorithm presented in the previous chapter can be used to
generate individual traffic descriptions of each system update rate. Thus, the Matlab
based implementation of the algorithm has been used to generate the predicted traffic
of each application divided into different system update rates. The selected duration as
the algorithm input has been twenty minutes. Later, the predicted and real traffic have
been compared giving as a result an accumulative delay for each packet.

time

D = Delay

 = Predicted packet time

 = Real packet time

D
e
l
a
y

D

Figure 5.7: Explanation of the kind of figures used to describe the delay of each packet.

Figure 5.7 shows a time line in which there are placed the predicted packets times,
illustrated as red circles, and the real packet times, illustrated as blue triangles. The

99

difference of height between predicted and real packets symbolize the delay of the real
packet with respect to the predicted one. Note that a positive height means a positive
delay, i.e. the real packet has been captured after it was expected, while a negative
height means that the real packet has been captured before is was expected. The next
figures use the same terminology to show the delay between predicted and real packets
for each system update rate.

Figures 5.8, 5.9, 5.10, 5.11 and 5.12 show the time difference of each real packet with
respect to the predicted one. As can be seen, all of them present a similar shape of delay.
It can be observed that in each iteration a small portion of delay is accumulated, resulting
in a total of near twenty milliseconds in twenty minutes. But the accumulated delay is
negative in all cases, indicating that packets are received sooner than the corresponding
predicted time.

0 300 600 900 1200
−22.5

−20

−17.5

−15

−12.5

−10

−7.5

−5

−2.5

0

2.5

Process duration (seconds)

P
a
c
k
e
t

d
e
l
a
y

(
m
i
l
l
i
s
e
c
o
n
d
s
)

Figure 5.8: Delay of real packets respect to predicted traffic for 50ms system update rate.

There are multiple reasons that could explain why the packets are generated earlier
than the corresponding system update rate. One of the reasons could be that in order
to ensure that variable values are updated into the time system update rate, the SCADA
server requests the updates a little bit earlier than established system update rate. Thus,
even if there are small delays due to network congestion or the PLC is busy, it will be

100

0 300 600 900 1200
−22.5

−20

−17.5

−15

−12.5

−10

−7.5

−5

−2.5

0

2.5

Process duration (seconds)

P
a
c
k
e
t

d
e
l
a
y

(
m
i
l
l
i
s
e
c
o
n
d
s
)

Figure 5.9: Delay of real packets respect to predicted traffic for 500ms system update rate.

0 300 600 900 1200
−22.5

−20

−17.5

−15

−12.5

−10

−7.5

−5

−2.5

0

2.5

Process duration (seconds)

P
a
c
k
e
t

d
e
l
a
y

(
m
i
l
l
i
s
e
c
o
n
d
s
)

Figure 5.10: Delay of real packets respect to predicted traffic for 1000ms system update rate.

101

0 300 600 900 1200
−22.5

−20

−17.5

−15

−12.5

−10

−7.5

−5

−2.5

0

2.5

Process duration (seconds)

P
a
c
k
e
t

d
e
l
a
y

(
m
i
l
l
i
s
e
c
o
n
d
s
)

Figure 5.11: Delay of real packets respect to predicted traffic for 3000ms system update rate.

0 300 600 900 1200
−22.5

−20

−17.5

−15

−12.5

−10

−7.5

−5

−2.5

0

2.5

Process duration (seconds)

P
a
c
k
e
t

d
e
l
a
y

(
m
i
l
l
i
s
e
c
o
n
d
s
)

Figure 5.12: Delay of real packets respect to predicted traffic for 6000ms system update rate.

102

easier to meet the set up system update rate. Another possible reason is the inaccuracy
of the clock oscillators of both nodes or at least one of them. On one hand, if the clock
oscillator of the SCADA server is imprecise and it steps forward in each oscillation, the
real system update rate will be shorter than the predicted one, thus, packets will arrive
to the ADS earlier than they should. Even if the clock oscillator of the ADS system
steps forward too but with a smaller step than SCADA server, the result would be the
same. On the other hand, if the clock oscillator of the ADS is imprecise and it lags
behind in each oscillation, the predicted system update rate will be longer than the real
one, hence, for the ADS, packets will arrive earlier than they should. In addition, the
clock oscillator of the SCADA server could lag behind, but in order to have the same
consequence, the lags must be smaller than the clock oscillator of the ADS. Obviously,
a combination of different options could increase or decrease the delay of each packet.

To the best of our knowledge, there is no evidence of any SCADA server that sends
variable value update requests earlier than established system update rate. In addi-
tion, the EPIC emulation tested is composed of computers based on AMD Dual-Core
family processors. These processors are known to have a timing issue which generates,
together with other effects, a negative Packet InterNet Groper (PING) [Mil83] time
measurements. The manufacturer released a patch to solve the issue, even if it does not
openly admit it [Adv08]. Therefore, it suggest that the clock oscillator would be the
most probable factor of packets’ delay.

Even if for ICS devices the presented differences between real and predicted traffic
apparently do not have negative effects, for time based ADSs the same cannot be said.
The algorithm presented in Chapter 4 generates an output that can be used as reference
for a time based ADS. The algorithm output establishes when the SCADA server
should send each packet and what must be the throughput. Thus, it is important that
the SCADA server and the ADS work in synchronization in order to decrease the false
positive rate. As already discussed in Chapter 2, the quality of an ADS is measured
in terms of false positive, false negative and detection rates. In addition, the usual
approach to document the performance of an ADS is to relate the false positive rate to
the detection rate. This is done by drawing Receiver Operating Characteristic (ROC)
curves.

103

5.3 Correcting the Time Reference

As already discussed in the introductory part of this chapter, depending on the ICS
installation, the ICS network can be totally isolated from external networks, connected to
corporate networks or even connected to the Internet. In addition, there could be a time
synchronization protocol working in the network or each system could be responsible
for its own time. A time synchronization protocol such as NTP, could synchronize the
system clocks in small variations. As a consequence it would reduce the possible effects
of an imprecise clock oscillator. Hence, in an ICS installation there could be different
strategies for clock synchronization:

• In an Internet connected ICS a time synchronization protocol such as NTP could
be used.

• Even if the ICS is not connected to Internet, there could be an internal synchro-
nization protocol to synchronize device clocks.

• As it happens with the serial line, specific applications could include a time syn-
chronization mechanism.

• An ICS could be totally unsynchronized, in fact, for several years this has been
the most usual situation.

In this chapter, an algorithm is described that using SCADA server characteristics as
well as generated packets, corrects behavioral model timing reference, thus, increasing
the quality of the ADSs by reducing the false positives rate. The proposed algorithm
corrects the traffic model based on an iterative process among the ICS process duration.
Each ICS can be characterized by multiple factors, including the system update rates
together with the process duration. These characteristics will determine the singularities
of ICSs, and therefore, they must be included as the input of the presented algorithm.

The proposed algorithm takes the following sets and variables as input:

• PR = set of real packet descriptions

• Us = set of system update rates

• C = set of variable classes

104

• w = windows size (in packets)

• s = number of samples (packets) to calculate the mean delay

• f = correction factor

Each variable of the set of real packet descriptions, PR, is a pair consisting of packet time
and packet size, denoted by (θ, σ). As shown in Figure 5.13, the window size variable, w,
denotes the interval (number of packets) between each reference correction calculation.
In the same way, the number of samples, s, corresponds to the number of packets that
each correction takes into account. The correction factor, f , is used to reduce or amplify
the effect of each correction into the next group of packets.

0 300 600 900 1200
−22.5

−20

−17.5

−15

−12.5

−10

−7.5

−5

−2.5

0

2.5

Process duration (seconds)

P
a
c
k
e
t

d
e
l
a
y

(
m
i
l
l
i
s
e
c
o
n
d
s
)

w

s

W = window size (packets)

S = number of samples (packets) to calculate the mean delay

Figure 5.13: Window size and number of samples variables explanation.

As output, the algorithm generates a set of modified time packet descriptions PM , where
each packet is defined as a pair including the transmission time and the size of the packet,
denoted by (θ, σ).

For simplicity, throughout the chapter we use theXz
y notation to denote the y component

of the z-th element in set X. For instance, taking the C set, the j-th element is denoted

105

by Cj, and the c component of the j-th element is denoted by Cj
c .

The algorithm starts with the MAIN function and it loops though all system update
rates U j

s , all variable classes Ch
l and all packet descriptions P h

R. Next, it initializes u
and numP variables; the first one is used as the relative system update rate, while the
later one is used to count the number of packets. It checks if each packet corresponds
to the actual variable class, at line #9, and if the condition is satisfied, it continues by
increasing the number of packets. Then, the time difference between the actual and the
first packets is calculated, as well as the predicted packet time, and both of them are
compared to calculate the delay error at line #13.

Whenever the number of packets numP equals the window size w, the delay mean error
is calculated from the last number of samples s quantity at line #17. Finally, the relative
system update rate u is calculated, using the delay mean error and the correction factor
f .

Algorithm 2 Packet delay correction

1: input :< Us, PR, C, w, s, f >, output :< PM >
2:
3: function MAIN
4: for j := 1 to |Us| do // for each system update rate
5: u := U j

s // initialize update rate variable
6: for k := 1 to |C| do // for each variable class
7: numP := 0
8: for h := 1 to |PR| do // for each variable
9: if P h

Rσ = Ch
l then // check if variable corresponds with actual variable class

10: numP := numP + 1
11: φnumP := P h

Rθ − P 1
Rθ // calculate time difference respect first packet

12: P h
Mθ := u · k // calculate theoretical packet time

13: εnumP := φnumP − P h
Mθ // compare real and theoretical packet times

14: if numP = w then // if packet number is equal to windows size
15: /*calculate mean of real and theoretical packets’ time difference
16: for ‘s‘ amount of packets*/
17: ρ := mean(εnumP−s : εnumP)/w
18: u := u+ ρ · f // actualize u variable depending on correction factor

19: return PM

106

As already explained, as a result the algorithm generates a set of modified time packet
descriptions PM , that could be used by a time based ADS.

5.4 Validation

The proposed algorithm generates an ordered sequence of packets described by corrected
time and sizes. A prototype of the algorithm was implemented in Matlab [The13] and
it was used in the validation process.

Different applications were used to validate the proposed approach. The applications
were used both to create real ICS network traffic as well as to generate the predicted
traffic by the algorithm presented in the previous Chapter 4. Then, the predicted traffic
has been used as the input for the presented algorithm, obtaining a set of modified time
packet descriptions. The output of the last algorithm has been compared with the real
traffic in order to see if the accumulated delay is corrected and if the presented algorithm
is able to follow the timing issues.

0 300 600 900 1200
−12.5

−10

−7.5

−5

−2.5

0

2.5

5

Process duration (seconds)

P
a
c
k
e
t

d
e
l
a
y

(
m
i
l
l
i
s
e
c
o
n
d
s
)

Figure 5.14: Delay of real packets with respect to corrected traffic for 50ms system update
rate.

107

0 300 600 900 1200
−12.5

−10

−7.5

−5

−2.5

0

2.5

5

Process duration (seconds)

P
a
c
k
e
t

d
e
l
a
y

(
m
i
l
l
i
s
e
c
o
n
d
s
)

Figure 5.15: Delay of real packets with respect to corrected traffic for 500ms system update
rate.

0 300 600 900 1200
−12.5

−10

−7.5

−5

−2.5

0

2.5

5

Process duration (seconds)

P
a
c
k
e
t

d
e
l
a
y

(
m
i
l
l
i
s
e
c
o
n
d
s
)

Figure 5.16: Delay of real packets with respect to corrected traffic for 1000ms system update
rate.

108

0 300 600 900 1200
−12.5

−10

−7.5

−5

−2.5

0

2.5

5

Process duration (seconds)

P
a
c
k
e
t

d
e
l
a
y

(
m
i
l
l
i
s
e
c
o
n
d
s
)

Figure 5.17: Delay of real packets with respect to corrected traffic for 3000ms system update
rate.

0 300 600 900 1200
−12.5

−10

−7.5

−5

−2.5

0

2.5

5

Process duration (seconds)

P
a
c
k
e
t

d
e
l
a
y

(
m
i
l
l
i
s
e
c
o
n
d
s
)

Figure 5.18: Delay of real packets with respect to corrected traffic for 6000ms system update
rate.

109

Figures 5.14, 5.15, 5.16, 5.17 and 5.18 show the time difference of each real packet with
respect to the corrected one. Excluding Figure 5.18, the rest show how the delay di-
fference decreases in an iterative way, thus, compensating the accumulative error that
has been showed by uncorrected traffic. In addition, the delay has its minimum appro-
ximately three hundred seconds after process was started, and the maximum after 18
minutes. Moreover, the delay is enclosed between -5 and 2.5 milliseconds. This, com-
pared with uncorrected traffic, shows a 75% smaller error, which obviously will decrease
the probability of a false positive.

Although Figure 5.18 shows a delay improvement with respect to Figure 5.12, due to
the big positive delays at 450 and 756 seconds from the beginning of the process, the
algorithm tries to compensate them by relatively big system update rate. Thus, a
big positive delay is followed by a big but negative one. In this case, the error is not
minimized as much as in the previous cases, even though the result improves the original
delay. In the worst case, the minimum error is around minus eleven milliseconds, which
shows an improvement of 40%.

The idea of the presented algorithm is to correct with small and iterative hops the
reference of the system update rate. Hence, if the accumulative delay has small variations
the algorithm will be able to follow them without any problem. The windows size (w),
the number of samples (s) and the correction factor (f) variables permit to adjust the
algorithm behavior to the delay characteristics. The values of those variables used for
the presented results have been selected in order to obtain the minimum delay error
in average. Due to the fact that the number of possible combinations is significantly
large, a Matlab program was developed in order to calculate which combination gives
the minimum delay error in average. The calculations were performed individually for
each system update rate. Table 5.1 shows the w, s and f values used for each system
update rate.

Table 5.1: Selected windows size, number of samples and correction factor values for each
system update rate.

System Update Rate
50ms 500ms 1000ms 3000ms 6000ms

Window Size (w) 2 2 7 14 125
Number of Samples (s) 1 1 1 2 9
Correction Factor (f) 2 1 1 1 1

110

5.5 Conclusions of the chapter

The inaccuracy of system clock oscillators as well as SCADA server variable value update
processes designed to keep distance from possible delay effects, may produce imprecise
system update rates. The consequences could be diverse, especially in real-time systems
and time-based ADSs. An increased false positive rate reduces the quality of any ADS.
Therefore, where possible, all inaccuracy sources have to be removed, thus, increasing
the ADS level of trust .

The presented algorithm, corrects the time reference of packets generated by the al-
gorithm presented in Chapter 4. Those corrections are done by performing iterative
variations to each system update rate. The algorithm takes as input the previously
generated packet descriptions together with system update rates, variable classes and
another three variables which adjust the algorithm to each ICS installation conditions.
As the output, the algorithm generates a set of corrected time reference packet descrip-
tions, which can be used as a behavioral model for a time-based ADS. As shown by
experimental results, the algorithm is able to reduce the delay error almost to 25%; it
can also minimize the effect of possible outliers as shown by Figure 5.18.

The main advantage of the proposed approach is that traffic models can be adjusted to
each ICS installation conditions, thus, enabling their usage by time-based ADSs.

111

112

Chapter 6

Conclusions, Contributions
and Future Work

In this chapter a comprehensive overview of the main thesis results is given. Section
6.1 summarizes the work performed during the completion of the research work. The
achieved research has obtained several outcomes, which are listed in Section 6.2. During
the investigation, different research tracks have been explored. Some of them have
necessarily been discarded for the sake of completing thesis. Anyhow they deserve more
attention and have been identified as future research areas in Section 6.3.

6.1 Conclusions

The research work carried out is a result of a multi-domain approach to ICS secu-
rity. Thus results can be applied by different disciplines within the security community.
Research fields such as anomaly detection, automatic signature generation, automatic
traffic representation and bounding of delay and jitter have been included.

As part of the thesis work, a comprehensive review of different Anomaly Detection
System (ADS) techniques and research projects focusing on Industrial Control Systems
(ICSs) was performed, which was published as a conference paper [Gar11]. This survey
shows the different researched techniques used to detect anomalies in ICSs as well as
defining why behavior model-based Intrusion Detection Systems (IDSs) are preferred for
ICSs over rule-based ones. This survey showed network-based ICS ADSs as an emerging
research topic, which directly influenced the research fields followed during the thesis
work.

We captured and analyzed several real ICS network protocol traffic packets. The ana-

113

lyzed protocol is proprietary and binary, which does not allow the interpretation of the
payload content of the packets, and thus, the purpose of each one. Hence, a semantic
analysis of packets’ Protocol Data Unit (PDU) is not feasible. Traditional Information
Technology (IT) IDSs such as Snort, include very few rules that correspond to ICS pro-
tocols. Additionally, the included rules belong to very few ICS protocols, e.g. Modbus
and DNP3. Therefore, by default, traditional IDSs are able to detect a very low number
of ICS attacks. Our approach uses a modified version of the Snort IDS to learn from
common traffic traces, flagging previously unseen packets as anomalous. To do so, a
system, described in Section 3.2 has been implemented. This system extracts useful in-
formation from packet payloads and automatically generates a behavioral model of the
ICS traffic described as IDS rules. Rather than describing attack patterns, the genera-
ted set of rules synthesize the usual behavior. The system is able to detect anomalous
behavior. Conversely, it is not able to describe which kind of attack causes it.

The behavioral patterns created from optimal conditions’ usual traffic must guarantee
its quality. To do so, it must be ensured that the traffic is free of any type of attack
trace, which is a difficult task. In order to avoid the necessity of attack-free training
data, a method is proposed to build real traffic synthetically. As described in Section
4.2, ICS applications can be characterized by the number of variables, variable classes
and variable update rates. Several ICS applications (Section 4.3) were created in or-
der to generate real ICS network traffic. Then, resulting traffic was analyzed based
on several terms (Section 4.3), so changes on traffic originated by different ICS appli-
cations could be defined. As the outcome of the analysis, an algorithm, described in
Section 4.4 was created. Having ICS application characteristics as input, the resulting
method is designed in such a way that the algorithm gives an ordered set of packet
descriptions, formed by expected packet timestamp and packet size. The output can
be post-processed to calculate parameters like the network throughput. The design as
well as its validation was published in two conference papers [Gar12a; Gar12b]. The
output and its variations have diverse possible applicabilities, such as network capacity
planning or behavioral modeling for an ADS. In this sense, we have focused in ADSs,
leaving the other applicabilities as possible future work, discussed later in Section 6.3.

With an ADS as the final objective, the ICS network traffic generated by several ICS
applications was compared, in terms of delay, to the predicted traffic created by the
algorithm presented in Section 4.4. As we already described, the algorithm introduced

114

in Chapter 4 generates a set of packet descriptions, defined by packet timestamp and
packet size. The packet timestamp establishes the expected delivery moment, hence, this
information can be compared to real packet timestamps. The output of the comparison
gave a repetitive delay pattern, as shown in Section 5.2.1. This pattern exhibits an
accumulative negative delay which could result in an increase of ADS false positive rate,
thus, decreasing the overall quality of the ADS. In order to compensate the accumulative
delay, in Section 5.3 we present a second algorithm. This algorithm uses the outcome
of the previous algorithm as input, and based on each ICS installation characteristics,
it updates the timestamp reference of each packet. As output, it generates a new set
of installation customized packet descriptions. The results covered in Section 5.4 show
how the overall delay of packets has been decreased.

The three components presented in this dissertation can be further developed and im-
proved, an aspect that is discussed in Section 6.3.

Regarding the security of ICSs, the ADSs are not the unique and neither the best solu-
tion. Security is a continuous process which has to evolve every day together with the
complexity and capacity of threats progress day by day. The security of ICSs can be im-
proved in multiple ways, ADSs are a promising area due to the repetitiveness and static
patterns of the ICSs. Even though, as a whole and unique security solution, they are a
small drop of water in the ocean. In the same way, the ADSs are very heterogeneous,
there are of multiple colors and shapes and still the possibilities are enormous. This
brings the opportunity to further research opportunities, as the conducted research in
this area shows no sign of reaching an end.

6.2 Contributions

The following are the main contributions of this thesis work:

• This thesis provides a comprehensive review of ICS ADSs research works (Section
2.4).

• We provide a system that automatically analyzes, characterizes and creates beha-
vioral models of ICS network traffic (see Chapter 3). In the same way, the system
synthesizes each behavioral model into a set of IDS rules. The resulting set of

115

rules does not describe intrusion patterns, instead, it defines which is the usual
traffic.

• Although the system has been designed to work with binary and private ICS
protocols, we do not limit the scope of the system to a few ICS protocols. The
experiments are run with real ICS traffic and we consider that the system is able
to work with any type of public and binary ICS protocols as well.

• The generated set of rules describes what the network traffic should be, thus, in
order to validate it, an IDS that works as an ADS has been necessary. Therefore,
an open source IDS, Snort, has been modified in order to use the generated set of
rules as a behavioral pattern.

• We present a method, together with an algorithm (see Chapter 4), that having
ICS application characteristics, generates a set of packet descriptions, each one
composed of a packet timestamp and packet size. Although the applications of
the generated set of packets are diverse, we have focused on its use as a behavioral
model for ADSs.

• The ICS application characteristics have never been used for ICS network data
profiling (see Section 2.4). We demonstrate that this is a valid method for ICS
network traffic characterization which generates useful behavioral patterns.

• We introduce an algorithm to diminish the effects generated by system clock im-
precise oscillators to the delay of ICS network packets (see Chapter 5). We show
that imprecise system clock oscillators could cause cumulative delays that could
decrease the quality of an ADS by increasing its false positive rate. This algorithm
changes the set of packet descriptions generated through the previous method by
customizing to each ICS installation characteristics.

6.3 Future Work

For obvious reasons, this thesis work had to focus on limited research objectives. Any-
how, during this time, other interesting areas have been considered and analyzed. Even
if they have been discarded for the completion of the thesis, they still deserve the atten-

116

tion of the scientific community. Here we present some of those topics and we depict
how the work carried out during the thesis can further be followed.

• The automatic signature generation system for ICS private binary protocol, pre-
sented on Chapter 3, classifies the traffic based on characteristics such as source
IP address among others. But, traffic flows can be classified taking into account
multiple characteristics, including the packet size. Packets of a specific size in
the same network protocols usually have a common purpose, even if their content
changes over the time, e.g. several packets, generated to update the value of a
temperature sensor, with the same source and destination, would have the same
PDU size. Based on this assumption, we believe that a more extensive packet
classification would provide a more explicit and reduced set of rules. Additionally,
we believe that the new output would increase the quality of the ADS.

• The generated system was validated against a determinate ICS private binary
protocol such as Siemens S7. Although we used a specific protocol, the method
does not try to understand the content of packet PDUs, thus, we believe that the
system should work with other kind of protocols, including public and text based
ones.

• By using reverse engineering, it would be interesting to extract the traffic semantic
by associating groups of bytes of unknown payloads, with the obtained values in
the SCADA server.

• The method presented in Chapter 4, which automatically generates traffic models
based on ICS application characteristics, is focused on the network traffic between
a SCADA server and a PLC. In order to cover the whole communication schema,
returning packets from the PLC should be analyzed and the presented algorithm
should be updated thus generating a whole traffic model. This would allow not
only the detection of anomalies out of traffic between the SCADA server and the
communication network, but also the anomalies generated in the PLC, giving the
opportunity to perform an early detection of possible attacks.

• The generation of the algorithm was based on a specific ICS public protocol.
Although, the algorithm has been generalized so the output would be the same
for other ICS protocols. It would be interesting to analyze its performance for all
possible protocols.

117

• The main advantage of the proposed approach is that traffic models can be re-
generated easily if needed. Furthermore, the approach can be applied in several
domains, starting from ADSs, to the recreation of network traffic in simulated/-
experimental environments. As future work, it would be interesting to apply the
approach in the previously mentioned fields. Additionally, further work is needed
to enhance it with application-specific analysis in order to further reduce errors in
all measured cases below 1%.

• The algorithm presented in Chapter 5 corrects the timestamp reference of the
packets generated by the method presented in Chapter 4. The algorithm takes
as input a set of packet descriptions among other variables that describe the cha-
racteristics of an ICS installation, such as window size w, number of samples s
and the correction factor f . Although several simulations have been done in order
to determine which are the best values of those variables that give the minimum
error, the simulation of all the possibilities takes months of work. Thus, further
work is needed in order to obtain all the possibilities and try to find a relationship
between variables corresponding to different system update rates.

• In the same way that the algorithm presented in Chapter 4 generates a traffic
model between a SCADA server and a PLC, the algorithm described in Chapter 5
corrects the same traffic model. In the case of the traffic generated by a PLC, the
delays would be different. Thus, as well as the update of the algorithm introduced
in Chapter 4, further work is necessary to update the algorithm and include the
timing corrections for the traffic originated by the PLC.

118

Bibliography

[Abb13] ABB Group. Abb, 2013. Online. Accessed on December 10, 2013. Available
at: http://www.abb.com.

[Adv08] Advanced Micro Devices, Inc. AMD Dual-Core Optimizer, July 31, 2008.
Online. Accessed on December 10, 2013. Available at: http://support.amd.
com/en-us/search/utilities#k=AMD%20Dual-Core%20Optimizer.

[Bay12] Colin R. Bayliss and Brian J. Hardy. Transmission and distribution electrical
engineering. Newnes, 4 edn., 2012.

[Big03] John Bigham, David Gamez, and Ning Lu. Safeguarding SCADA Systems
with Anomaly Detection. In Computer Network Security, vol. 2776, pp. 171–
182. Springer Berlin Heidelberg, 2003.

[Bio11] Philippe Biondi. Scapy, 2011. Online. Accessed on December 10, 2013. Avai-
lable at: http://www.secdev.org/projects/scapy/.

[Bis02] Matt Bishop. Computer Security: Art and Science. Addison-Wesley Profe-
ssional, December 12, 2002.

[Byr04] Eric Byres, Matthew Franz, and Darrin Miller. The Use of Attack Trees in As-
sessing Vulnerabilities in SCADA System. In Proceedings of the International
Infrastructure Survivability Workshop. 2004.

[Byr12] Eric Byres. Understanding Deep Packet Inspection for SCADA Security. Tech.
rep., Tofino Security, December 20, 2012. Online. Accessed on December 10,
2013. Available at: http://www.tofinosecurity.com/downloads/647.

[Byr13] Eric Byres. Project SHINE: 1,000,000 Internet-Connected SCADA and ICS
Systems and Counting, September 19, 2013. Online. Accessed on December

119

http://www.abb.com
http://support.amd.com/en-us/search/utilities#k=AMD%20Dual-Core%20Optimizer
http://support.amd.com/en-us/search/utilities#k=AMD%20Dual-Core%20Optimizer
http://www.secdev.org/projects/scapy/
http://www.tofinosecurity.com/downloads/647

10, 2013. Available at: http://www.tofinosecurity.com/blog/project-

shine-1000000-internet-connected-scada-and-ics-systems-and-

counting.

[Car09] Andrea Carcano, Igor Nai Fovino, Marcelo Masera, and Alberto Trombetta.
Scada Malware, a Proof of Concept. In Critical Information Infrastructure
Security, pp. 211–222. Springer Verlag, Rome, Italy, 2009.

[Car10] Andrea Carcano, Igor Nai Fovino, Marcelo Masera, and Alberto Trombetta.
State-Based Network Intrusion Detection Systems for SCADA Protocols: A
Proof of Concept In Critical Information Infrastructures Security, vol. 6027,
pp. 138–150. Springer Berlin Heidelberg, 2010.

[Car11] Andrea Carcano, Alessio Coletta, Michele Guglielmi, Marcelo Masera, Igor Nai
Fovino, and Alberto Trombetta. A Multidimensional Critical State Analysis
for Detecting Intrusions in SCADA Systems. Industrial Informatics, IEEE
Transactions on, vol. 7(2):pp. 179–186, May, 2011.

[Cen10] Centre for the Protection of National Infrastructure and PA Consul-
ting Group. Good Practice Guide – Process Control and SCADA
Security. Tech. rep., Centre for the Protection of National Infras-
tructure, 2010. Online. Accessed on December 10, 2013. Available
at: http://www.cpni.gov.uk/documents/publications/2008/2008031-

gpg_scada_security_good_practice.pdf?epslanguage=en-gb.

[Che06] Steven Cheung, Bruno Dutertre, Martin Fong, Ulf Lindqvist, Keith Skinner,
and Alfonso Valdes. Using Model-based Intrusion Detection for SCADA Net-
works. Proceedings of the SCADA Security Scientific Symposium, 2006.

[Chr07] Henrik Christiansson and Eric Luiijf. Creating a European SCADA Security
Testbed. Critical Infrastructure Protection, pp. 237–247, 2007.

[Com08] Douglas E Comer. Computer Networks and Internets. Prentice Hall Press,
New Jersey, fifth edn., 2008.

[Cou07] Maurilio Pereira Coutinho, Germano Lambert-Torres, Luiz Eduardo Borges
da Silva, Jonas Guedes Borges da Silva, Jose Cabral Neto, E. da Costa Bortoni,
and Horst Lazarek. Attack and fault identification in electric power control

120

http://www.tofinosecurity.com/blog/project-shine-1000000-internet-connected-scada-and-ics-systems-and-counting
http://www.tofinosecurity.com/blog/project-shine-1000000-internet-connected-scada-and-ics-systems-and-counting
http://www.tofinosecurity.com/blog/project-shine-1000000-internet-connected-scada-and-ics-systems-and-counting
http://www.cpni.gov.uk/documents/publications/2008/2008031-gpg_scada_security_good_practice.pdf?epslanguage=en-gb
http://www.cpni.gov.uk/documents/publications/2008/2008031-gpg_scada_security_good_practice.pdf?epslanguage=en-gb

systems: An approach to improve the security. In Proceedings of Power Tech
2007, pp. 103–107. IEEE Press, 2007.

[Cou08] Maurilio Pereira Coutinho, Germano Lambert-Torres, Luiz Eduardo Borges
da Silva, Jonas Guedes Borges da Silva, Jose Cabral Neto, and Horst Lazarek.
Improving a methodology to extract rules to identify attacks in power sys-
tem critical infrastructure: New results. In Transmission and Distribution
Conference and Exposition, 2008., pp. 1–6. IEEE, 2008.

[Cou09] M. P. Coutinho, G. Lambert-Torres, L. E. B. da Silva, H. G. Martins,
H. Lazarek, and J. C. Neto. Anomaly detection in power system control center
critical infrastructures using rough classification algorithm. In 3rd IEEE In-
ternational Conference on Digital Ecosystems and Technologies, 2009. (DEST
’09), pp. 733–738. IEEE, jun 2009.

[Cun10] Robert Cunningham, Steven Cheung, Martin Fong, Ulf Lindqvist, David
Nicol, Ronald Pawlowski, Eric Robinson, William Sanders, Sankalp Singh,
Alfonso Valdes, Bradley Woodworth, and Michael Zhivich. Securing current
and future process control systems. International Federation for Information
Processing Digital Library, vol. 253(1), 2010.

[Dam95] Marc Damashek et al. Gauging similarity with n-grams: Language-
independent categorization of text. Science, vol. 267(5199):pp. 843–848, 1995.

[DAn06] Salvatore D’Antonio, Francesco Oliviero, and Roberto Setola. High-speed
intrusion detection in support of critical infrastructure protection. In Critical
Information Infrastructures Security. First International Workshop, CRITIS
2006, pp. 222–234. Springer, August 31, 2006.

[Deb00] Hervé Debar, Marc Dacier, and Andreas Wespi. A revised taxonomy for
intrusion-detection systems. In Annales des télécommunications, vol. 55, pp.
361–378. Springer-Verlag, 2000.

[Dem02] C. Demichelis and P. Chimento. IP Packet Delay Variation Metric for IP
Performance Metrics (IPPM). Tech. rep., Internet Engineering Task Force,
2002. Online. Accessed on December 10, 2013. Available at: http://tools.

ietf.org/rfc/rfc3393.txt.

121

http://tools.ietf.org/rfc/rfc3393.txt
http://tools.ietf.org/rfc/rfc3393.txt

[Dig13] Digital Bond, Inc. Basecamp, 2013. Online. Accessed on December 10, 2013.
Available at: http://www.digitalbond.com/tools/basecamp/.

[Düs10] Patrick Düssel, Christian Gehl, Pavel Laskov, Jens-Uwe Bußer, Christof Stör-
mann, and Jan Kästner. Cyber-Critical Infrastructure Protection Using Real-
time Payload-based Anomaly Detection. Critical Information Infrastructures
Security, vol. 6027:pp. 85–97, 2010.

[Eur04] European Commission. Communication from the Commission to the Coun-
cil and the European Parliament - Critical Infrastructure Protection in the
fight against terrorism. Tech. rep., European Commission, 2004. Online.
Accessed on December 10, 2013. Available at: http://eur-lex.europa.eu/

LexUriServ/LexUriServ.do?uri=COM:2004:0702:FIN:EN:PDF.

[Fal11] Nicolas Falliere, Liam O. Murchu, and Eric Chien. W32.Stuxnet Dossier,
February 2011 2011. Online. Accessed on December 10, 2013. Avai-
lable at: http://www.symantec.com/content/en/us/enterprise/media/

security_response/whitepapers/w32_stuxnet_dossier.pdf.

[Fid12] David P Fidler. Tinker, tailor, soldier, duqu: Why cyberespionage is more
dangerous than you think. International Journal of Critical Infrastructure
Protection, vol. 5(1):pp. 28–29, 2012.

[Fla89] Cristian Flaviu. Probabilistic clock synchronization. Distributed computing,
vol. 3(3):pp. 146–158, 1989.

[Flo10] Alejandro Flores, James Fields, Axton Graham, Jon Hart, Kevin Johnson,
Doug Mackie, Sean Muller, Tim Rupp, Christian Svensson, and Max Valdez.
Basic Analysis and Security Engine, 2010. Online. Accessed on December 10,
2013. Available at: http://base.secureideas.net.

[Fov09] Igor Nai Fovino, Andrea Carcano, Marcelo Masera and Alberto Trombetta.
Design and Implementation of a Secure Modbus Protocol. Critical Infrastruc-
ture Protection III, pp. 83–96, 2009.

[Fov10] Igor Nai Fovino, Andrea Carcano, Thibault De Lacheze Murel Murel, Al-
berto Trombetta, and Marcelo Masera. Modbus/dnp3 state-based intrusion
detection system. In Advanced Information Networking and Applications

122

http://www.digitalbond.com/tools/basecamp/
http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=COM:2004:0702:FIN:EN:PDF
http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=COM:2004:0702:FIN:EN:PDF
http://www.symantec.com/content/en/us/enterprise/media/security_response/whitepapers/w32_stuxnet_dossier.pdf
http://www.symantec.com/content/en/us/enterprise/media/security_response/whitepapers/w32_stuxnet_dossier.pdf
http://base.secureideas.net

(AINA), 2010 24th IEEE International Conference on, pp. 729–736. IEEE,
20-23/04/2010 2010.

[Gal13] Brendan Galloway and Gerhard P. Hancke. Introduction to Industrial Control
Networks. Communications Surveys & Tutorials, vol. 15(2):pp. 860–880, July
25, 2013.

[Gao10] Wei Gao, T. Morris, B. Reaves, and D. Richey. On SCADA control system co-
mmand and response injection and intrusion detection. In eCrime Researchers
Summit (eCrime), 2010, pp. 1–9. IEEE, October 18, 2010.

[Gar11] Iñaki Garitano, Roberto Uribeetxeberria, and Urko Zurutuza. A Review of
SCADA Anomaly Detection Systems. In Soft Computing Models in Industrial
and Environmental Applications, 6th International Conference SOCO 2011,
vol. 87, pp. 357–366. Springer Berlin Heidelberg, 2011.

[Gar12a] Iñaki Garitano, Christos Siaterlis, Béla Genge, Roberto Uribeetxeberria, and
Urko Zurutuza. A method to construct network traffic models for process
control systems. In Emerging Technologies & Factory Automation (ETFA),
2012 IEEE 17th Conference on, pp. 1–8. IEEE, September 17 2012.

[Gar12b] Iñaki Garitano, Roberto Uribeetxeberria, and Urko Zurutuza. Método para la
construcción de modelos de tráfico de red para la evaluación de la seguridad
de sistemas de control de procesos. In XII Reunión Española sobre Crip-
tología y Seguridad de la Información (RECSI 2012). Mondragon Unibertsi-
tatea, September 4, 2012.

[Gas05] Luciano Paschoal Gaspary, Ricardo Nabinger Sanchez, Diego Wentz Antunes,
and Edgar Meneghetti. A snmp-based platform for distributed stateful in-
trusion detection in enterprise networks. Selected Areas in Communications,
IEEE Journal on, vol. 23(10):pp. 1973–1982, 2005.

[Gen12] Béla Genge, Christos Siaterlis, Igor Nai Fovino, and Marcelo Masera. A Cyber-
Physical Experimentation Environment for the Security Analysis of Networked
Industrial Control Systems. Computers & Electrical Engineering, vol. 38(5):pp.
1146–1161, September, 2012.

123

[Gon07] Jesus Gonzalez and Mauricio Papa. Passive scanning in modbus networks. In
Critical Infrastructure Protection, vol. 253, pp. 175–187. Springer, 2007.

[Gus89] Riccardo Gusella and Stefano Zatti. The accuracy of the clock synchronization
achieved by TEMPO in Berkeley UNIX 4.3 BSD. Software Engineering, IEEE
Transactions on, vol. 15(7):pp. 847–853, 1989.

[Had10] Dina Hadžiosmanović, Damiano Bolzoni, and Pieter Hartel. MEDUSA: Mining
Events to Detect Undesirable uSer Actions in SCADA. In Proceedings of the
13th international conference on Recent advances in intrusion detection, pp.
500–501. Springer, 2010.

[Hen08] Mariana Hentea. Improving Security for SCADA Control Systems. Interdisci-
plinary Journal of Information, Knowledge, and Management, vol. 3(12):pp.
73–86, 2008.

[ICS12] ICS-CERT. ICS-CERT Incident Response Summary (2009-2011). Tech. rep.,
Industrial Control Systems Cyber Emergency Response Team, 2012. Online.
Accessed on December 10, 2013. Available at: http://ics-cert.us-cert.

gov/ICS-CERT-Incident-Response-Summary-2009-2011.

[ICS13] ICS-CERT. ICS-CERT Monitor April-June 2013. Tech. rep., Industrial
Control Systems Cyber Emergency Response Team, June 27, 2013. On-
line. Accessed on December 10, 2013. Available at: http://ics-cert.us-

cert.gov/monitors/ICS-MM201306.

[IEC04] IEC. 61588-2004 - IEC/IEEE Precision Clock Synchronization Protocol for
Networked Measurement and Control Systems (Adoption of IEEE Std 1588-
2008). Tech. rep., TC9-Technical Committee on Sensor Technology of the
IEEE I & M Society, 2004.

[IEEE02] IEEE. 1588-2002 - IEEE Standard for a Precision Clock Synchronization
Protocol for Networked Measurement and Control Systems. Tech. rep., IEEE
Instrumentation and Measurement Society, December 10, 2002.

[Igu06] Vinay M. Igure, Sean A. Laughter, and Ronald D. Williams. Security issues
in SCADA networks. Computers and Security, vol. 25(7):pp. 498–506, 2006.

[Int11] International Telecommunication Union. Internet protocol data communi-

124

http://ics-cert.us-cert.gov/ICS-CERT-Incident-Response-Summary-2009-2011
http://ics-cert.us-cert.gov/ICS-CERT-Incident-Response-Summary-2009-2011
http://ics-cert.us-cert.gov/monitors/ICS-MM201306
http://ics-cert.us-cert.gov/monitors/ICS-MM201306

cation service – IP packet transfer and availability performance parameters.
Tech. rep., International Telecommunication Union, 2011. Online. Accessed on
December 10, 2013. Available at: https://www.itu.int/rec/dologin_pub.
asp?lang=s&id=T-REC-Y.1540-201103-I!!PDF-E&type=items.

[ISO11] ISO and IEC. Iso/iec 27005:2011 information technology - security techniques
- information security risk management. Tech. rep., ISO and IEC, May 23,
2011.

[Kal09] Anas Abou El Kalam and Yves Deswarte. Critical Infrastructures Security
Modeling, Enforcement and Runtime Checking. In 3rd International Work-
shop on Critical Information Infrastructures Security (CRITIS 2008), vol.
5508 LNCS, pp. 95–108. Springer Verlag, Rome, Italy, 2009.

[Kru05] Ronald L. Krutz. Securing SCADA Systems. Hungry Minds Inc, Indianapolis,
Indiana, 2005.

[Law08] Kenneth D. Lawrence, Ronald K. Klimberg, and Sheila M. Lawrence. Funda-
mentals of Forecasting Using Excel. Industrial Press Inc., 2008.

[Mah10] Abdun Naser Mahmood, Christopher Leckie, Jiankun Hu, Zahir Tari, and
Mohammed Atiquzzaman. Network Traffic Analysis and SCADA Security.
Handbook of Information and Communication Security, pp. 383–405, 2010.

[Mat09] John Matherly. SHODAN - Computer Search Engine, 2009. Online. Accessed
on December 10, 2013. Available at: http://www.shodanhq.com.

[McA11] McAfee Foundstone Professional Services and McAfee Labs. Global
Energy Cyberattacks: "Night Dragon". Tech. rep., McAfee, Inc.,
February 10, 2011. Online. Accessed on December 10, 2013. Availa-
ble at: http://www.mcafee.com/in/resources/white-papers/wp-global-
energy-cyberattacks-night-dragon.pdf.

[McC91] Steven McCanne. The BPF manual page. Lawrence Berkeley Laboratory,
Berkeley, CA, 1991.

[McC93] Steven McCanne and Van Jacobson. The BSD packet filter: A new architec-
ture for user-level packet capture. In Proceedings of the USENIX Winter 1993
Conference, pp. 2–2. USENIX Association, 1993.

125

https://www.itu.int/rec/dologin_pub.asp?lang=s&id=T-REC-Y.1540-201103-I!!PDF-E&type=items
https://www.itu.int/rec/dologin_pub.asp?lang=s&id=T-REC-Y.1540-201103-I!!PDF-E&type=items
http://www.shodanhq.com
http://www.mcafee.com/in/resources/white-papers/wp-global-energy-cyberattacks-night-dragon.pdf
http://www.mcafee.com/in/resources/white-papers/wp-global-energy-cyberattacks-night-dragon.pdf

[McE10] Thomas McEvoy and Stephen Wolthusen. Trouble brewing: Using observa-
tions of invariant behavior to detect malicious agency in distributed control
systems. In Critical Information Infrastructures Security, vol. 6027, pp. 62–72.
Springer Berlin Heidelberg, 2010.

[McG09] Robert Wesley McGrew and Rayford B Vaughn. Discovering vulnerabilities
in control system human–machine interface software. Journal of Systems and
Software, vol. 82(4):pp. 583–589, 2009.

[McM10] Robert McMillan. Siemens: Stuxnet worm hit industrial systems,
14/09/2010 2010. Online. Accessed on December 10, 2013. Available at:
http://www.computerworld.com/s/article/print/9185419/Siemens_

Stuxnet_worm_hit_industrial_systems?taxonomyName=Network+

Security&taxonomyId=142.

[Mil83] David L Mills. Internet Delay Experiments. Tech. rep., Internet Engineering
Task Force, 1983. Online. Accessed on December 10, 2013. Available at: http:
//www.ietf.org/rfc/rfc889.txt.

[Mil85] David L. Mills. Network Time Protocol (NTP). Tech. rep., Internet Enginee-
ring Task Force, 1985. Online. Accessed on December 10, 2013. Available at:
http://www.ietf.org/rfc/rfc958.txt.

[Mil88] David L. Mills. Network Time Protocol (Version 1) Specification and Im-
plementation. Tech. rep., Internet Engineering Task Force, 1988. Online.
Accessed on December 10, 2013. Available at: http://www.ietf.org/rfc/

rfc1059.txt.

[Mil89] David L. Mills. Network Time Protocol (Version 2) Specification and Imple-
mentation. Tech. rep., Internet Engineering Task Force, 1989. Online. Accessed
on December 10, 2013. Available at: http://www.ietf.org/rfc/rfc1119.ps.

[Mil92] David L. Mills. Network Time Protocol (Version 3) Specification, Implementa-
tion and Analysis. Tech. rep., Internet Engineering Task Force, 1992. Online.
Accessed on December 10, 2013. Available at: http://www.ietf.org/rfc/

rfc1305.txt.

[Mil10] David L. Mills, Jim Martin, Jack Burbank, and William Kasch. Network

126

http://www.computerworld.com/s/article/print/9185419/Siemens_Stuxnet_worm_hit_industrial_systems?taxonomyName=Network+Security&taxonomyId=142
http://www.computerworld.com/s/article/print/9185419/Siemens_Stuxnet_worm_hit_industrial_systems?taxonomyName=Network+Security&taxonomyId=142
http://www.computerworld.com/s/article/print/9185419/Siemens_Stuxnet_worm_hit_industrial_systems?taxonomyName=Network+Security&taxonomyId=142
http://www.ietf.org/rfc/rfc889.txt
http://www.ietf.org/rfc/rfc889.txt
http://www.ietf.org/rfc/rfc958.txt
http://www.ietf.org/rfc/rfc1059.txt
http://www.ietf.org/rfc/rfc1059.txt
http://www.ietf.org/rfc/rfc1119.ps
http://www.ietf.org/rfc/rfc1305.txt
http://www.ietf.org/rfc/rfc1305.txt

Time Protocol Version 4: Protocol and Algorithms Specification. Tech. rep.,
Internet Engineering Task Force, 2010. Online. Accessed on December 10,
2013. Available at: http://www.ietf.org/rfc/rfc5905.txt.

[Mil12] Bill Miller and Dale Rowe. A Survey of SCADA and Critical Infrastructure
Incidents. In Proceedings of the 1st Annual conference on Research in infor-
mation technology, pp. 51–56. ACM, 2012.

[Mit13] Robert Mitchell and Ing-Ray Chen. Behavior-Rule Based Intrusion Detec-
tion Systems for Safety Critical Smart Grid Applications. Smart Grid, IEEE
Transactions on, vol. 4(3):pp. 1254–1263, 2013.

[Mit13] Robert Mitchell and Ing-Ray Chen. A Survey of Intrusion Detection Tech-
niques for Cyber Physical Systems. ACM Computing Surveys (CSUR), 2013.

[MP06] PS Motta Pires and Luiz Affonso HG Oliveira. Security Aspects of SCADA
and Corporate Network Interconnection: An Overview. In Dependability of
Computer Systems, 2006. DepCos-RELCOMEX’06. International Conference
on, pp. 127–134. IEEE Computer Society, 2006.

[Nat06] National Institute of Standards and Technology. Minimum Security Require-
ments for Federal Information and Information Systems. Tech. rep., Na-
tional Institute of Standards and Technology, 2006. Online. Accessed on De-
cember 10, 2013. Available at: http://csrc.nist.gov/publications/fips/
fips200/FIPS-200-final-march.pdf.

[Nic12] Andrew Nicholson, S Webber, S Dyer, T Patel, and Helge Janicke. SCADA
security in the light of Cyber-Warfare. Computers & Security, vol. 31(4):pp.
418–436, 2012.

[Oma07] Paul Oman and Matthew Phillips. Intrusion Detection and Event Monito-
ring in SCADA Networks. In Critical Infrastructure Protection, pp. 161–173.
Springer, 2007.

[Pér10] Andrés Pérez Garcia and Christos Siaterlis and Marcelo Masera. Studying cha-
racteristics of an Emulab testbed for scientifically rigorous experiments. In Dis-
tributed Simulation and Real Time Applications (DS-RT), 2010 IEEE/ACM
14th International Symposium on, pp. 215–218. IEEE, 2010.

127

http://www.ietf.org/rfc/rfc5905.txt
http://csrc.nist.gov/publications/fips/fips200/FIPS-200-final-march.pdf
http://csrc.nist.gov/publications/fips/fips200/FIPS-200-final-march.pdf

[Pre10] Upeka Premarathne, Uthpala Premarathnet, and Kithsiri Samarasinghe. In-
trusion detection for IEEE 802.11 based industrial automation using possi-
bilistic anomaly detection. InWireless And Optical Communications Networks
(WOCN), 2010 Seventh International Conference On, vol. 1, pp. 1–5. IEEE,
September 6, 2010.

[Pyt13] Python Software Foundation. Python, 2013. Online. Accessed on December
10, 2013. Available at: http://www.python.org.

[Rab10] Julien Rabatel, Sandra Bringay, and Pascal Poncelet. Fuzzy anomaly detection
in monitoring sensor data. Fuzzy Systems (FUZZ), 2010 IEEE International
Conference on, pp. 1–8, July 18, 2010.

[Rap13] Rapid7. Metasploit, 2013. Online. Accessed on December 10, 2013. Available
at: http://www.metasploit.com.

[Ree12] Jason Reeves, Ashwin Ramaswamy, Michael Locasto, Sergey Bratus, and Sean
Smith. Intrusion detection for resource-constrained embedded control systems
in the power grid. International Journal of Critical Infrastructure Protection,
vol. 5(2):pp. 74–83, July, 2012.

[Roe13] Martin Roesch and Chris Green. SNORT Users Manual 2.9.5. The Snort
Project, 2013. Online. Accessed on December 10, 2013. Available at: http:

//s3.amazonaws.com/snort-org/www/assets/166/snort_manual.pdf.

[Roo08] Tanya Roosta, Dennis K. Nilsson, Ulf Lindqvist, and Alfonso Valdes. An
Intrusion Detection System for Wireless Process Control Systems. In 5th IEEE
International Conference on Mobile Ad Hoc and Sensor Systems, 2008. MASS
2008, pp. 866–872. IEEE, 2008.

[Rru09] Julian Rrushi and Roy Campbell. Detecting cyber attacks on nuclear power
plants. In Critical Infrastructure Protection II, vol. 290, pp. 41–54. Springer,
2009.

[San12] David E. Sanger. Obama order sped up wave of cyberattacks against
Iran. The New York Times, June 1, 2012. Online. Accessed on De-
cember 10, 2013. Available at: http://www.nytimes.com/2012/06/01/

128

http://www.python.org
http://www.metasploit.com
http://s3.amazonaws.com/snort-org/www/assets/166/snort_manual.pdf
http://s3.amazonaws.com/snort-org/www/assets/166/snort_manual.pdf
http://www.nytimes.com/2012/06/01/world/middleeast/obama-ordered-wave-of-cyberattacks-against-iran.html?pagewanted=all&_r=0
http://www.nytimes.com/2012/06/01/world/middleeast/obama-ordered-wave-of-cyberattacks-against-iran.html?pagewanted=all&_r=0

world/middleeast/obama-ordered-wave-of-cyberattacks-against-

iran.html?pagewanted=all&_r=0.

[Sav12] Kevin Savage and Branko Spasojevic. W32.Flamer, June 5, 2012 2012. Online.
Accessed on December 10, 2013. Available at: http://www.symantec.com/

security_response/writeup.jsp?docid=2012-052811-0308-99.

[Sho11] Ahmed F Shosha, Pavel Gladyshev, Shinn-Shyan Wu, and Chen-Ching Liu.
Detecting cyber intrusions in SCADA networks using multi-agent collabora-
tion. In Intelligent System Application to Power Systems (ISAP), 2011 16th
International Conference on, pp. 1–7. IEEE, September 25, 2011.

[Sia12] Christos Siaterlis, Andres Perez Garcia, and Bela Genge. On the Use of Emu-
lab Testbeds for Scientifically Rigorous Experiments. IEEE Communications
Surveys and Tutorials, 2012. Accepted.

[Sou13a] Sourcefire, Inc. Protecting control networks. Tech. rep., Sourcefire, Inc.,
2013. Online. Accessed on December 10, 2013. Available at: http://www.

sourcefire.com/protecting-control-networks-whitepaper.

[Sou13b] Sourcefire, Inc. Snort, 2013. Online. Accessed on December 10, 2013. Available
at: http://www.snort.org.

[Sto13] Keith A. Stouffer, Joseph A. Falco, and Karen A. Scarfone. Guide to Industrial
Control Systems (ICS) Security. Tech. rep., National Institute of Standards
and Technology, May 14, 2013. Online. Accessed on December 10, 2013. Availa-
ble at: http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.

SP.800-82r1.pdf.

[Sve09a] Nils Svendsen and Stephen Wolthusen. Modeling And Detecting Anomalies
In Scada Systems. Critical Infrastructure Protection II, pp. 101–113, 2009.

[Sve09b] Nils Svendsen and Stephen Wolthusen. Using physical models for anomaly
detection in control systems. In Critical Infrastructure Protection III, vol.
311, pp. 139–149. Springer Berlin Heidelberg, 2009.

[Sym11] Symantec Corporation. W32.Duqu The precursor to the next Stuxnet, Novem-
ber 23, 2011 2011. Online. Accessed on December 10, 2013. Available at:
http://www.symantec.com/content/en/us/enterprise/media/security_

129

http://www.nytimes.com/2012/06/01/world/middleeast/obama-ordered-wave-of-cyberattacks-against-iran.html?pagewanted=all&_r=0
http://www.nytimes.com/2012/06/01/world/middleeast/obama-ordered-wave-of-cyberattacks-against-iran.html?pagewanted=all&_r=0
http://www.nytimes.com/2012/06/01/world/middleeast/obama-ordered-wave-of-cyberattacks-against-iran.html?pagewanted=all&_r=0
http://www.symantec.com/security_response/writeup.jsp?docid=2012-052811-0308-99
http://www.symantec.com/security_response/writeup.jsp?docid=2012-052811-0308-99
http://www.sourcefire.com/protecting-control-networks-whitepaper
http://www.sourcefire.com/protecting-control-networks-whitepaper
http://www.snort.org
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-82r1.pdf
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-82r1.pdf
http://www.symantec.com/content/en/us/enterprise/media/security_response/whitepapers/w32_duqu_the_precursor_to_the_next_stuxnet.pdf
http://www.symantec.com/content/en/us/enterprise/media/security_response/whitepapers/w32_duqu_the_precursor_to_the_next_stuxnet.pdf

response/whitepapers/w32_duqu_the_precursor_to_the_next_stuxnet.

pdf.

[Tcp13a] Tcpdump/Libpcap. libpcap, 2013. Online. Accessed on December 10, 2013.
Available at: http://www.tcpdump.org.

[Tcp13b] Tcpdump/Libpcap. tcpdump, 2013. Online. Accessed on December 10, 2013.
Available at: http://www.tcpdump.org.

[Ten13] Tenable Network Security. Nessus vulnerability scanner, 2013. Online.
Accessed on December 10, 2013. Available at: http://www.tenable.com/

products/nessus.

[The12] The University of Utah. Emulab bibliography, February 28, 2012. On-
line. Accessed on December 10, 2013. Available at: http://www.emulab.net/
expubs.php.

[The13] The MathWorks, Inc. MATLAB - The Language of Technical Computing,
2013. Online. Accessed on December 10, 2013. Available at: http://www.

mathworks.com/products/matlab/.

[Tsa05] Chi-Ho Tsang and Sam Kwong. Multi-agent intrusion detection system in
industrial network using ant colony clustering approach and unsupervised fea-
ture extraction. In Industrial Technology, 2005. ICIT 2005. IEEE Interna-
tional Conference on, pp. 51–56. IEEE, December 14, 2005.

[Tur05] Robert J Turk. Cyber incidents involving control systems. Idaho National
Engineering and Environmental Laboratory, 2005.

[Tur13] Aaron Turner. Tcpreplay, 2013. Online. Accessed on December 10, 2013.
Available at: http://tcpreplay.synfin.net.

[Val03] Alfonso Valdes. Detecting novel scans through pattern anomaly detection. In
DARPA Information Survivability Conference and Exposition, 2003. Procee-
dings, vol. 1, pp. 140–151. IEEE, 2003. Online. Accessed on December 10, 2013.
Available at: http://www.csl.sri.com/papers/valdes-discex03/valdes-
discex03.pdf.

[Val09a] Alfonso Valdes and Steven Cheung. Communication Pattern Anomaly De-

130

http://www.symantec.com/content/en/us/enterprise/media/security_response/whitepapers/w32_duqu_the_precursor_to_the_next_stuxnet.pdf
http://www.symantec.com/content/en/us/enterprise/media/security_response/whitepapers/w32_duqu_the_precursor_to_the_next_stuxnet.pdf
http://www.symantec.com/content/en/us/enterprise/media/security_response/whitepapers/w32_duqu_the_precursor_to_the_next_stuxnet.pdf
http://www.tcpdump.org
http://www.tcpdump.org
http://www.tenable.com/products/nessus
http://www.tenable.com/products/nessus
http://www.emulab.net/expubs.php
http://www.emulab.net/expubs.php
http://www.mathworks.com/products/matlab/
http://www.mathworks.com/products/matlab/
http://tcpreplay.synfin.net
http://www.csl.sri.com/papers/valdes-discex03/valdes-discex03.pdf
http://www.csl.sri.com/papers/valdes-discex03/valdes-discex03.pdf

tection in Process Control Systems. In IEEE Conference on Technologies
for Homeland Security, 2009. HST’09., pp. 22–29. IEEE, April 11, 2009. On-
line. Accessed on December 10, 2013. Available at: http://www.csl.sri.com/
papers/HST09ValdesCheung/commPatternPCS-Valdes-Cheung-HST09.pdf.

[Val09b] Alfonso Valdes and Steven Cheung. Intrusion monitoring in process control
systems. In System Sciences, 2009. HICSS’09. 42nd Hawaii International
Conference on, pp. 1–7. IEEE, January 5, 2009.

[Ver08] Jared Verba and Michael Milvich. Idaho National Laboratory Supervisory
Control and Data Acquisition Intrusion Detection System (SCADA IDS) In
Technologies for Homeland Security, 2008 IEEE Conference on, pp. 469–473.
Idaho Natl Lab, Idaho Falls, ID 83415 USA., IEEE, 2008.

[Wan11] Wenye Wang, Yi Xu, and Mohit Khanna. A survey on the communication
architectures in smart grid. Computer Networks: The International Journal
of Computer and Telecommunications Networking, vol. 55(15):pp. 3604–3629,
Octover, 2011.

[Wan13] Wenye Wang and Zhuo Lu. Cyber security in the smart grid: Survey and
challenges. Computer Networks: The International Journal of Computer and
Telecommunications Networking, vol. 57(5):pp. 1344–1371, April, 2013.

[Whi02] Brian White, Jay Lepreau, Leigh Stoller, Robert Ricci, Shashi Guruprasad,
Mac Newbold, Mike Hibler, Chad Barb, and Abhijeet Joglekar. An Integrated
Experimental Environment for Distributed Systems and Networks. ACM
SIGOPS Operating Systems Review, vol. 36(SI):pp. 255–270, 2002.

[Xue07] Feng Xue and Weizhong Yan. Parametric model-based anomaly detection for
locomotive subsystems. In Neural Networks, 2007. IJCNN 2007. International
Joint Conference on, pp. 3074–3079. IEEE, August 12, 2007.

[Yan06] Dayu Yang, Alexander Usynin, and J. Wesley Hines. Anomaly-Based Intrusion
Detection for SCADA Systems. In 5th Intl. Topical Meeting on Nuclear Plant
Instrumentation, Control and Human Machine Interface Technologies, pp. 12–
16. Citeseer, 12-16 of November, 2006.

[Yan12] Ye Yan, Yi Qian, Hamid Sharif, and David Tipper. A survey on cyber se-

131

http://www.csl.sri.com/papers/HST09ValdesCheung/commPatternPCS-Valdes-Cheung-HST09.pdf
http://www.csl.sri.com/papers/HST09ValdesCheung/commPatternPCS-Valdes-Cheung-HST09.pdf

curity for smart grid communications. Communications Surveys & Tutorials,
vol. 14(4):pp. 998–1010, January 30, 2012.

[Zha11] Difan Zhang, Wei Yu, and Rommie Hardy. A distributed network-sensor based
intrusion detection framework in enterprise networks. In Military Communi-
cations Conference, 2011 (MILCOM 2011), pp. 1195–1200. IEEE, 2011.

132

	Contents
	Introduction
	Motivation
	Research Objectives, Thesis Statements, Contributions and Limitations
	Methodology
	Document Overview

	Related Work
	Definitions
	Overview of Industrial Control Systems
	Critical Infrastructures
	The evolution of Industrial Control Systems
	Components and operation of Industrial Control Systems
	Architecture of Industrial Control Systems
	Industrial Control Systems vs. Information Technologies
	Major ICS cyber attacks and incidents

	IDS quality measures
	Industrial Control System Intrusion Detection Systems
	Behavior-based Intrusion Detection Systems
	Behavior-specification-based Intrusion Detection Systems
	Knowledge-based Intrusion Detection Systems

	An Anomaly Detection System for ICS network binary private protocols
	ICS network traffic repetitiveness
	Anomaly Detection System for ICS binary private protocol
	Components of the Anomaly Detection System
	Implementation
	Validation

	Conclusions of the chapter

	A method to construct ICS network traffic models for public protocols
	ICS operation overview
	Industrial Control System Applications
	Methodology
	Generating Traffic Models
	Validation and experimental results
	Number of packets
	Packets sizes
	Throughput
	Packet inter-arrival time

	Conclusions of the chapter

	A method to correct delay and jitter issues
	Methodology
	Delay and Jitter of Analyzed Traffic Packets
	Delay of real ICS traffic packets

	Correcting the Time Reference
	Validation
	Conclusions of the chapter

	Conclusions, Contributions and Future Work
	Conclusions
	Contributions
	Future Work

	Bibliography

