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Abstract

Vertical vibration deteriorates passenger comfort during an elevator travel.

The drive system is a source of vertical vibration as well as the source of

energy of the system. This report presents the results of a study of car

vertical vibrations generated at the drive system in elevator installations.

The elevator system can be considered as a translating assembly of iner-

tia elements coupled and constrained by one-dimensional slender continua.

The inertia elements are the car assembly, the counterweight, the traction

sheave and other rotating components of the system.

According to the roping arrangement and to the ratio of the tangential ve-

locity of the traction sheave to the velocity of the car, the traction elevators

can be classified as roped 1:1 or multiple reeving systems: the types exam-

ined in the present work are 1:1 and 2:1 traction elevators.

Distributed- and lumped-parameter models (DPM and LPM respectively)

are developed to calculate the natural frequencies and mode shapes of sta-

tionary elevator systems and their results compared.

A non-stationary model of a 1:1 roping configuration elevator is devel-

oped as well to simulate the elevator acceleration response. The model

accommodates the drive system dynamics: it includes the electric motor

and the torque and velocity controllers, which ensure that the car follows

a prescribed kinematic profile, so that good ride quality of the elevator

is achieved. The machine parameters are computed by means of the Fi-

nite Element Method simulation software FLUX. With respect to the car-

counterweight-sheave-ropes assembly, a LPM and a novel DPM are devel-

oped. The elevator dynamics represented by the DPM is described by a

partial differential equation set that is discretised by expanding the vertical

displacements in terms of the linear stationary mode shapes of a system



composed of three masses constrained by the suspension rope. The mod-

els are implemented in the MATLAB/Simulink computational environment

and the system response is determined through numerical simulation. It is

shown that the LPM forms a good approximation of the DPM.

Experimental tests are carried out on laboratory models. The elasticity

modulus of the rope and the friction coefficients at the guide rail contact

and at the machine are estimated. The acceleration response at the sus-

pended masses and at the drive machine, the machine shaft velocity and

the three phase current intensities supplied to the machine are measured

during several travels. The machine torque is estimated from the current

intensities.

The computed and measured accelerations are compared either in time or

frequency domain and it is demonstrated that the elevator car vibrates at

frequencies generated at the machine, especially when they are close to the

system natural frequencies.

The proposed simulation models can be used as design and analysis tools

in the development of high-performance elevator systems.
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1

Introduction

Elevators have become an integral part of any building facility over the past few decades.

In our everyday life, we depend on them for vertical transportation in offices, schools,

public buildings, airports, sub-stations...

Orona is a European company whose activity centres on the design, manufacturing,

installation, maintenance and modernisation of mobility solutions, such as elevators,

escalators and moving walkways. The business group is formed by 30 companies in

Spain, France, Portugal, United Kingdom, Ireland, Belgium, The Netherlands and

Luxembourg.

The work presented in this report is a fruit of the research strategy designed by Orona,

whose shared objective is the research and development of intelligent and safe transport

systems, more energy and socially efficient and better integrated into buildings. Orona

Elevator Innovation Centre (EIC) is the advanced research centre where innovative

solutions for the elevator industry are developed. It is geared towards technological

research and the development of products for the Elevation sector and incorporates

Ikerlan-IK4 and Mondragon Unibertsitatea as collaborative partners. These partners

have been working since 2005 in a series of projects with the objective to increase the

knowledge needed to design and manufacture comfortable elevators.

One of the challenges of elevator installations is to achieve and maintain good ride

quality standards. This research work focuses on vertical vibration in an elevator;

vertical vibration generated at the drive system and perceived by car passengers due

to the elasticity of the suspension ropes.

1



1. INTRODUCTION

1.1 History of elevators

Since the dawn of time, humans sought the way for more efficient vertical transportation

of freight and passengers to different levels. These devices for transport goods up and

down represent first elevators.

Elevator history begins several hundred years before Christ. The earliest elevators were

called hoists. They were powered by human and animal power, or sometimes water-

driven mechanisms. They were in use as early as the 3rd century BC.

Modern elevators were developed during the 1800s. These crude elevators slowly evolved

from steam driven to hydraulic power. The first hydraulic elevators were designed

using water pressure as the source of power. They were used for conveying materials

in factories, warehouses and mines. Hydraulic elevators were often used in European

factories.

In 1852, Elisha Graves Otis introduced the first safety contrivance for elevators. Otis

established a company for manufacturing elevators.

Revolution in elevator technology began with the invention of hydraulic and electricity.

Motor technology and control methods evolved rapidly and electricity quickly became

the accepted source of power. The safety and speed of these elevators were significantly

enhanced. The first electric elevator was built by the German inventor Wener Von

Siemens in 1880. In 1887, an electric elevator with automatic doors that would close

off the elevator shaft was patented. This invention made elevators safer. In 1889, the

first commercially successful electric elevator was installed. Another milestone in the

new business was the Eiffel Tower in 1889 which at 321 meters is still recognised as the

symbol of Paris. Many changes in elevator design and installation were made by the

great advances in electronic systems during World War II.

Today, modern commercial buildings commonly have multiple elevators with a unified

control system. In addition, all modern elevators have special override controls (to

make elevators go directly to a specific floor without intermediate stops).

1.2 Description of an elevator

A traction drive elevator is a complex system containing both mechanical and electrical

components. The electrical part of the system involves an electric motor operating in

a closed loop velocity control system. The mechanical part of the system is composed

2



1.2 Description of an elevator

of suspended masses (a car and a counterweight), a suspension system (hoist ropes or

belts), a traction sheave and pulleys (see Fig. 1.1).

Traction sheave

Car

Isolation pads

Sling

Compensation pulley

Counterweight

Shaft

Motor Driver

Tachometer

Controller Velocity reference

Shaft velocity

Hoist ropes

Compensation ropes

Travelling cables

Guides and Rollers

Compensation mass

Figure 1.1: Elevator system

The motor drives the traction sheave which in turn is coupled with the hoist ropes

attached to the sling and to the counterweight through a pulley system.

The elevator car is mounted in the sling fitted with rubber isolation pads, in order to

reduce its vibration.

The purpose of the counterweight is to balance a part of the weight of the elevator car

assembly and, consequently, to reduce the machine torque requirements.

Some elevator systems are equipped with compensation ropes to reduce or eliminate

3



1. INTRODUCTION

the effect of the varying mass of the hoist ropes as the elevator moves in the shaft,

thereby reducing variations in the motor current.

The car assembly moves vertically constrained by two guide rails, sliding or rolling

along them.

According to the roping arrangement and to the ratio of the tangential velocity of the

traction sheave to the velocity of the car, the traction elevators can be classified as

roped 1:1 or multiple reeving systems. The type of elevator system examined in the

present work is a 1:1 traction elevator as shown in Fig. 1.1.

1.3 Ride quality

One of the main problems in elevator systems is to achieve and maintain adequate ride

quality standards. In the 19nth century, passenger comfort was not thought of as an

important item for elevators; if it is considered the motor car industry of that time, the

cars were open, with no heating, and very noisy, very different from today. The elevator

industry, and building owners remained stagnated in this position for over 100 years

after Elisha Otis gave his revolutionary demonstration, in that elevator ride quality was

not a major concern as it did not have an affect on sales or maintenance revenues.

It was not until the last quarter of the 20th Century did the concept of Elevator ride

quality start appearing in specification documents. The Japanese Elevator industry

had basic ride quality requirements in place during the early 1980’s due to the cultural

demands of the Japanese population. These Japanese concepts started to be incorpo-

rated into international building owners and elevator consultants’ specifications with

varying degrees of success.

Some elevator consultants’ specifications attempted to incorporate very detailed testing

procedures using highly complex testing and recording instruments which also required

highly skilled technicians to operate, keep the instrumentation in calibration and un-

derstand the data and results obtained.

To enable a Worldwide method of standardized elevator testing of ride comfort an ISO

Standard for elevators (Measurement of lift ride quality ISO 18738) (1) was published

in 2003. This standard provides an International standardised method of testing and

recording elevator ride quality, as well as standardised terms and definitions, measuring

instrumentation, evaluation of ride quality, procedures for measuring ride quality and

4



1.3 Ride quality

reporting of results. It does not specify acceptable or unacceptable ride quality. More

information on measurement of elevator ride quality can be found in (2, 35, 36).

Ride quality is the term that stands for the following set of aspects: jerk, car accelera-

tion, vertical car vibration, lateral car vibration and sound inside the car.

The jerk (m/s3) is the time-derivative of acceleration. If the elevator moves with high

jerk, acceleration changes are very abrupt and can be felt as bumps.

The car acceleration (m/s2) determines how long it takes before the car reaches its

maximum speed. A high acceleration is generally considered uncomfortable, however,

it gives the impression that the car moves very fast.

The vertical car vibration is also measured as acceleration and can be felt by the feet of

a person, but is also discerned by the stomach and the internal ear. It is mostly caused

by vibrations of the drive and frequency converter. These are transferred to the car by

the traction media.

The lateral car vibration is caused by non-straightness of the guide rails, play between

car and guide rails and non-smooth guide rail transitions. Generally, it causes low-

frequent lateral movements of the car.

Finally, the sound level in the car should be low enough not to interfere with speech,

but hearing the elevator in motion is desirable from a psychological point of view.

More information about the sources of vibration in elevator systems can be found in

(9). Typical values of unacceptable acceleration and jerk are given in (21).

Concerning vibration, the standard ISO 18738 defines the ISO-weighted Maximum

Peak-to-Peak vibration value (ISO MPtP) and the ISO-weighted A95 vibration value

(ISO A95) (95% of all peaks of the ISO-weighted signal are below it) to evaluate the

ride performance of an elevator, based on the acceleration time signal measured inside

the car during a travel. The spectrum of the acceleration signal provides additional

information to asses ride performance.

High-rise buildings in modern cities require high-speed elevator systems to provide

quick access within them. Speeds up to 16 m/s have been achieved and if the velocity

is to be increased the technology of elevators will require a revolution to accomplish

the goal. Acceptable levels of vertical and lateral vibrations in high-speed elevators are

very small (53). Therefore, vibration suppression schemes are required.

5
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1.4 Dynamics of elevators

An elevator is a complex structure, described in Section 1.2. Next, the particularities

of its dynamics are briefly described.

1.4.1 Ropes

Hoist ropes, due to their flexibility, loading conditions, and relatively low internal damp-

ing characteristics, mainly determine the resonances within the system and, therefore,

the level of longitudinal and lateral vibration in the elevator system. There are addi-

tional resonance frequencies associated with particular components of the elevator such

as the car frame.

Excessive vibration of suspension and compensating ropes affect substantially elevator

system performance, as it induces high level dynamic stresses which cause excessive

friction wear and, consequently, shortening of the safe service life of the rope (25).

Besides, particularly in high-rise systems, vibration amplitude may reach large values,

that lead to mechanical breakdowns of the equipment and a disruption of the elevator

operation.

Ropes are axially moving continua with time-varying lengths. Therefore, their dynamic

characteristics vary during travel, rendering the system non-stationary. Moving slender

continua are inherently non-linear and they undergo non-linear resonance and modal

interaction phenomena, as modal interactions between the lateral and longitudinal os-

cillations and the car motions (55).

When any excitation frequency coincides with one of the natural frequencies of the rope

transient resonance phenomena occur (28).

1.4.2 Drive system

The drive system comprises the traction sheave and the corresponding motor powered

via an inverter. The motor shaft speed is controlled in order for the car to follow a

prescribed velocity profile to achieve good ride quality. The traction sheave sets in

motion the car-rope and the counterweight-rope subsystems.

The drive system is as well a source of vibration; oscillations in the torque exerted by

the motor or irregularities in the traction sheave, as imbalance, are cause of comfort

deterioration. Smooth performance of the drive system is fundamental to comfort in

6
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an elevator car.

Measurements in rotary machines have been carried out in order to detect imbalance or

defects in bearings or gears (6) and a number of control algorithms have been proposed

(20) to improve the comfort in elevators.

1.4.3 Guide rails

A key component of the elevator hoistway are the guide rails that constrain the lateral

motion of the elevator car. Guide rails flexibility or inaccuracy in their installation

mainly cause lateral vibration. Therefore, steps at the guide joints, uneven or curved

rails, bending (the lowest excitation frequency due to bending corresponds to the ve-

locity of the elevator divided by the length of the rail), and worn or flattened rollers, if

it is the case, excite lateral vibration. Measuring devices have been developed to asses

inaccuracies in the guide rails (18, 47).

1.4.4 Car

The car is a complex structure (see Fig. 1.2) that undergoes lateral and vertical vi-

bration. The response of the cab and frame to excitation forces from the rails-rollers

(or -shoes) interaction can be represented using multibody dynamics. The behaviour

of the transmission path from the guide rail to the car depends mainly on the mass,

flexibility and damping characteristics of the guide rollers or shoes and the car frame.

Figure 1.2: Elevator car (Reprinted from (14))

Simple multibody models of the car have been developed to study and reduce lateral

(56) and longitudinal (19) vibration. Vibration test equipment system using full-size

7
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1. INTRODUCTION

cars have been developed in order to test the good performance of the proposed vibra-

tion control systems (39, 66).

1.5 Aim of the thesis

At this stage of the thesis report, it will be roughly stated what the aim of the research

is, although more precise primary and secondary objectives will be set once a compre-

hensive literature review is done.

The research work will focus on one of the aspects of ride quality mentioned in Section

1.3: vertical vibration, particularly, that one associated with the suspension ropes.

As mentioned in Section 1.3, the origin of vertical vibrations can be usually found at

the drive system. The electrical motor interconnects and sets in motion the car- and

the counterweight-side subsystems, but it is as well a source of vibration; particularly,

the torque generated by the machine is not smooth but includes a ripple that causes

the elevator car to vibrate.

In this research, car vibration at torque ripple frequencies will be investigated. Thus,

the primary objective of the thesis can be stated as:

“The analysis of machine generated elevator car vertical vibrations”

1.6 Outline of the thesis

Chapter 1 presents a brief introduction to the elevator industry, the company Orona

and its research activity, a short history of elevators, ride quality as one of the elevator

industry concerns and the characteristics of the dynamics of elevator systems. It states

roughly the aim of the thesis research.

Chapter 2 discusses and assesses the literature related to the aim stated. The review

focuses particularly on the dynamics of the suspension ropes and the drive system, on

elevator system modelling and testing. It is critically appraised the literature about ver-

tical, lateral or coupled vertical-lateral vibrations, about stationary or non-stationary

either distributed- or lumped-parameter models.

In Chapter 3, the primary and secondary objectives to be achieved in the research work

are set and the methodology that will be applied to accomplish them described.
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In Chapter 4 distributed- and lumped-parameter models of an elevator with a 1:1 rop-

ing configuration are developed to calculate the natural frequencies and corresponding

mode shapes. The values of the parameters of a particular laboratory model are used

to calculate the values of natural frequencies and mode shapes by all the developed

models. The results are compared and some conclusions obtained.

In Chapter 6, a number of tests are carried out on a 1:1 roping configuration labo-

ratory model. The rope elasticity modulus is estimated from some of them. Other

tests consist of measuring the acceleration response at the suspended masses and at

the drive machine, the machine shaft velocity and the three phase current intensities

supplied to the machine during several travels. The machine torque is estimated from

the current intensities. Viscous friction at the guide-rail contact and at the machine

are estimated. The measured and simulated acceleration responses, either in time or

frequency domain, are compared and it is shown that the elevator car vibrates at fre-

quencies generated at the machine, especially when they are close to the system natural

frequencies.

Chapter 7 focuses on the vertical vibration of a 2:1 roping configuration elevator. A

mathematical model is developed to calculate the natural frequencies of the system. A

laboratory setup is used to carry out some experimental tests. The simultaneous accel-

erations of its main components are recorded during a travel. The frequency content

and the corresponding amplitudes of the torque ripple generated by the setup traction

machine are calculated by a FEM software. The experimental results are interpreted

according to the expected natural frequencies of the system and the electromagnetic

simulation results.

Finally, Chapter 8 summarises all the work done and the conclusions obtained.
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2

Literature review

2.1 Outline

According to the aim stated in 1.5, this review will focus particularly on the literature

that reports the dynamics of elevators where the suspension and drive systems play a

significant role.

Ropes will be the only suspension system to be studied. Other suspension systems, as

belts (49), will not be examined.

Particular attention will be paid to the mathematical models developed and the exper-

imental tests performed to check their availability.

The car and the guide rails dynamics was described briefly in Sections 1.4.4 and 1.4.3

and will not be the focus of this review.

After a comprehensive review of the literature, it has been observed that, under some

assumptions, depending on the issue to analyse, the coupling between lateral and lon-

gitudinal vibrations of the suspension ropes is neglected. The topics where the elevator

longitudinal and lateral vibrations are modelled independently are described in 2.3.

First, vertical vibration cases are described. Either distributed-parameter or lumped-

parameter models are presented, either stationary or non-stationary. Next, lateral vi-

bration is the topic examined. In some cases, the models developed are non-stationary

and the axial transport velocity is prescribed; in some others, the drive system dynam-

ics is included.

Lateral vibration in compensation ropes is as well a cause for concern in the elevator

industry and is superficially described in section 2.3.
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2. LITERATURE REVIEW

Coupling between the lateral and longitudinal vibration will be the issue studied in 2.4.

2.2 Elevator systems

Elevators are axially translating media with time-varying length. Wickert and Mote

(64) shown that there is a critical transport velocity, that depends on the rope tension,

at which divergent instability occurs. Kaczmarczyck and Andrew (28) defined the

following dimensionless parameter to asses the variability rate of the rope lengths

ε =
V

ω0l0
(2.1)

where V is the elevator rated speed, ω0 denotes the lowest natural frequency and l0 the

corresponding length of the rope. In the case of hoist ropes in elevator systems, ε << 1

and it can be stated that the system natural frequencies vary slowly with time, but it

is not so small for the case of compensation ropes due to their low tension (28).

Depending on the scope of the dynamic phenomena chosen to study, various simplifi-

cations are made when modelling an elevator system.

One approach considers it as a translating assembly of one-dimensional distributed sub-

systems carrying lumped inertia elements at the ends, and acting together as a single

system due to constraints imposed between adjacent subsystems. The inertia elements

are the car assembly, the counterweight, the traction sheave and other rotating com-

ponents of the system. The one-dimensional slender continua are the suspension ropes

that vibrate laterally and vertically and have time-dependent length.

Therefore, the entire system is non-stationary and its response can be described by a

system of PDEs, derived from Hamilton’s principle (38) of the form (58)

µi(x)u
i
tt +Ci

[

ui
t

]

+ Li
[

ui
]

= Ni
[

ui
]

+ f i(x,t,θi) (2.2)

x ∈ Di(t), 0 ≤ t < ∞

where i = 1, 2, . . . indicates the component number, µi(x) a local mass distribution

function, ui(x,t) is a local (component) displacement vector representing the motion of

the component i, and Ci and Li are local linear operators. Ni is an operator acting

upon the global displacement vector that represents non-linear couplings and inter-

component constraints in the system. f i is a forcing function with harmonic terms of
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2.3 Vertical-lateral vibration coupling neglected

frequency θ̇i = Ωi. Di represents a local time-variant spatial domain defined as Di(t) =

{x : 0 < x < li(t)}, where li(t) represents the time-varying length of the component i.

The set of PDEs 2.2 can be discretised by series methods (Rayleigh-Ritz, Galerkin...)

(38), where the solutions are expanded in terms of the modes of the corresponding

linear stationary system. This procedure results in a system of ordinary differential

equations (ODE).

Alternatively one can seek the approximate solution to the PDE set using asymptotic

(perturbation) methods (23, 30, 58, 59).

2.3 Vertical-lateral vibration coupling neglected

It is often assumed that if the amplitude of the lateral vibration is small, the coupling

between the vertical and the lateral vibration can be neglected; thus, vertical and lateral

vibration are studied independently (28). The higher the rope tension is (it depends

on the suspended mass), the smaller it is the amplitude of the lateral vibration, and

the more adequate this approach.

2.3.1 Vertical vibration

Next, several possibilities to model the vertical dynamics of an elevator are reported as

well as experimental tests carried out to validate them. A summary of the models to

develop depending on the axial velocity of the elevator was proposed by Vladic et al.

(63).

2.3.1.1 Car-ropes subsystem distributed parameter models

Another simplification is to consider the car- and counterweight-side subsystems sep-

arately in the analysis. It is a consequence of assuming that the drive control system

allows an accurately prescribed motion of the traction sheave to be realized (31).

As previously stated (see Section 2.2), the parameters of the elevator system vary slowly

with time (28) but in the analysis they can be considered to be constant with the car

frozen at a certain position. In this case, the system can be modelled by a differential

equation that has got an analytical solution and the natural frequencies and modes of

either the vertical or the lateral vibration can be determined as a closed-form solution

solving Eqn. 2.2.
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2. LITERATURE REVIEW

Chi and Shu (10) calculated the longitudinal natural frequencies of a hoist rope of

constant length and three lumped masses (car frame, cabin and hitch device coupling

the car frame to the rope) connected by springs for various boundary conditions at

the top end (see Fig. 2.1). Kaczmarczyk and Andrew calculated the longitudinal and

lateral natural frequencies of the car-side subsystem modelling it as a fixed-free rod of

constant length carrying a concentrated mass at its free end (28).

Figure 2.1: Hoist rope of constant length and three lumped masses (Reprinted from (10))

2.3.1.2 Lumped parameter models

When the whole assembly of distributed subsystems is considered, the suspension rope

can be represented by a lumped-mass model with point masses joined by springs and

dampers with the corresponding stiffness and damping values. Such models are de-

scribed by a set of ODEs. The number of discrete mass points corresponds to the

number of degrees of freedom (DOF) of the system and to the number of natural fre-

quencies and mode shapes that are considered. Eqn. 2.2 is reduced to a set of ordinary

differential equations (ODE) of the form

Mq̈ (t) +Cq̇ (t) +Kq (t) = f (t) (2.3)

whereM,C and K are the mass, damping and stiffness matrices respectively. q(t) is the

vector of translational displacements with respect to the equilibrium position (angular

displacements for lumped pulleys or sheaves) and f (t) the vector of forces (torques for

pulleys). The values of these matrices are a function of the position of the car.

A number of models of this kind have been considered in the literature, from just 3
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DOF, in order to control longitudinal vibration (57), up to 11 DOF (40) or 27 DOF for

high speed elevators (53) (see Fig. 2.2). Zhou compared a lumped longitudinal model

of 8 DOF with a Finite Element Analysis (FEA) model (where the ropes are taken as

distributed parameter media) and concluded that the FEA model should be used to

study the elevator hoistway vertical dynamics in high buildings (70).

Figure 2.2: Lumped-parameter model (Reprinted from (53))

Mei et al. (37) developed a 9 DOF model of a 2:1 roping configuration elevator (see

Fig. 2.3) and proposed a parameter optimisation method to minimise car acceleration.

A lumped-parameter model enables to simulate the vertical vibration during a travel

by updating its parameters at every time step. A number of papers account for the

time-variability. For instance, in order to control vertical vibration, Venkatesh et al.

(61) represented the elevator hoistway dynamics as a parameter-varying linear state

space model, whose parameters were identified according a certain methodology (62);

Arakawa and Miyata (5) proposed a new algorithm to suppress the first mode longitudi-

nal vibration of a high speed elevator; Fukui et al. (13) developed a detection system to

avoid emergency stop procedures due to car forced vibration caused by passenger mis-

chief; Aldaia et al. (3) included a time-varying lumped-parameter model of the ropes

in a more complex one composed of interconnected parts (machine room, ropes, cabin

and counterweight) that interchanged energy through their connections; Herrera (19)
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shown that acceleration response was highly influenced by even the mass and damping

and stiffness characteristics of passengers by a 6-DOF eleveator model.

Figure 2.3: Lumped-parameter model of a 2:1 roping cfg. elevator (Reprinted from (37))

2.3.1.3 Experimental tests

There have been some attempts to identify the dynamic behaviour of the elevator by

experimental tests.

Roberts (53) tried to validate its 27 DOF model calculating the transfer function be-

tween the recorded velocities of the car and the traction sheave for different lengths of

the ropes.

Nai et al. (41) obtained experimental Frequency Response Functions (FRF) between

the sling and the sheave and between the car floor and the sling and identified resonance

frequencies of the ropes and the isolation pads.

Emory et al. (11) calculated the longitudinal and lateral natural frequencies of a sim-

plified aramid suspension rope-elevator car system and analysed how rope terminations

or the wrapping around the sheave affected their values; they concluded as well that

longitudinal vibration of two rope sections jointed by a sheave are coupled while lateral

vibration was almost uncoupled.
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2.3.1.4 Non-stationary models of an assembly of distributed subsystems

Kaczmarczyk and Ostachowicz (23, 30) investigated transient resonance phenomena in

mine hoisting ropes. The overall response of a hoisting rope system to inertial load due

to transport motion acceleration/deceleration and to harmonic excitation was studied

by means of distributed-parameter models (see Fig. 2.4). It was assumed that the drive

control system allowed an accurately prescribed motion of the traction sheave to be

realized. The PDE set was solved by a combined perturbation and numerical technique.

Figure 2.4: Catenary-vertical rope system (Reprinted from (23))

Zhang et al. (69) proposed a controller to dissipate the vibratory energy of an elevator

modelled as a mass driven by two flexible ropes with motors fixed at both ends.

2.3.2 Lateral vibration

Particularly in high rise buildings, lateral vibration of ropes can achieve large ampli-

tudes, hit the hoist walls and cause damage in the elevator installation. This is why a

lot of research works on lateral vibration of ropes have been reported.

2.3.2.1 Lumped-parameter models

Nakagiri (42, 43) calculated lateral natural frequencies by means of a lumped-parameter

model (see Fig. 2.5) where the rope was decomposed in a series of rigid links intercon-

nected by torsion springs.

Otsuki eta al. (44, 45, 46) proposed several control methods to suppress lateral vibra-

tions of elevators represented by lumped-parameter models.
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Figure 2.5: Lumped-parameter model for lateral vibration (Reprinted from (42))

2.3.2.2 Axial velocity prescribed non-stationary lateral vibration models

of the car-ropes subsystem

Kotera (33) analysed the free lateral vibrations of the hoist rope of a mining elevator

represented as a concentrated mass at the free end and axially moving with a constant

velocity (see Fig. 2.6); the displacement of both ends was zero for any time t.

Figure 2.6: Distributed-parameter model for lateral vibration (Reprinted from (33))

Yamamoto et al. (65) investigated the free and forced vibrations of a string of slowly

time-varying length. Passages through resonance were studied and it was observed and

experimentally checked (see Fig. 2.7) that the vibration maximum amplitude occurred

at a slightly lagged position from the resonance point and that the lag depended on

the string transport velocity.

Zhu and Ni (75) investigated the dynamic stability of the lateral vibration of verti-

cally moving beams and strings with time-varying length and various boundary con-

ditions from the energy standpoint. They concluded that the energy of vibration of

an undamped, uniformly accelerating or decelerating medium decreases and increases
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2.3 Vertical-lateral vibration coupling neglected

monotonically during extension and retraction, respectively (the “unstable shortening

rope behaviour” observed in the elevator industry) and that special jerk functions could

stabilise the translating medium.

Figure 2.7: Experimental setup to investigate lateral vibration resonance phenomena

(Reprinted from (65))

Figure 2.8: Vertically moving string lateral vibration (Reprinted from (75))

An active control methodology using a pointwise control force and/or moment was

developed by Zhu eta al. (73) to dissipate vibratory energy of translating media with

variable length.

Zhu and Xu (77) investigated the effects of bending stiffness and boundary conditions

on the dynamic characteristics of hoist ropes and identified the optimal stiffness and

damping coefficient of the suspension of the car against its guide rails for the moving
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rope.

Zhu and Chen (8, 71) determined the lateral response of rope-car systems in high-speed

elevators for general initial conditions and external excitation that arises from building

sway, pulley eccentricity, and guide-rail eccentricity. They showed that the vibratory

energy of the rope is usually much higher than that of the spring-suspended mass sub-

system.

Zhu and Chen (72) presented a control method to dissipate the vibratory energy as-

sociated with the lateral vibration of the rope and validated it by experimental tests

performed on a novel small-scale within limiting factors laboratory model (76) (see Fig.

2.9).

Figure 2.9: Schematic of the setup (Reprinted from (76))

Kaczmarczyk investigated the guide rail excitation mechanism and its influence on car

ride quality (24). He also solved the equations describing the lateral response due to a

boundary periodic excitation (25) and proposed the integration of shape memory alloy

elements within the suspension rope design to suppress lateral vibration.

Kaczmarczyk and Ostachowicz analysed the response of an elevator to stochastic guide

rail excitation (29).

Gang et al. (16) showed that the horizontal vibration behaviour is closely intercon-

nected with the location, velocity and acceleration of the elevator cab by means of a

model based on the wave theory of one-dimensional string vibration.

Kimura et al. (32) investigated the response of an elevator to building sway and found
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the exact solution to the forced vibration of a rope where both ends (the car and the

traction sheave) are moving, based on the assumption that rope tension and movement

velocity were constant and that the damping coefficient of the rope was zero.

2.3.2.3 Drive system dynamics included

Fung et al. (15) reported a control strategy to suppress the transient amplitudes of

lateral vibration of a moving elevator string with time-varying length that was coiled

around a rotor driven by a permanent magnet synchronous servo motor (see Fig. 2.10).

The axial velocity of the elevator was not prescribed. The mass and inertia of the rotor

were time-dependant due to the winding of the string either on or off it.

Figure 2.10: Machine included elevator system (Reprinted from (15))

2.3.2.4 Compensation ropes

A number of papers focus on the lateral vibration of compensation ropes. Compensation

ropes are subjected to low tensions and suffer from large amplitude low-frequency

vibrations. Blodgett and Majumdar (7) analysed lateral vibrations of compensation

ropes caused by heavy wind in tall buildings by means of a model that consisted of a

hanging rope excited by an oscillation at the upper end and having a weight suspended

at the lower end. The effect of introducing a damper at the upper end in order to limit
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the vibration was also examined.

Kaczmarczyk developed a model that accounted for the influence of centrifugal forces

as well as the Coriolis and lift profile acceleration terms to investigate the fundamental

features of the dynamic response of compensating ropes in a building subjected to

excitation caused by adverse environmental phenomena (26). He proposed how to

avoid the resonance phenomena that occur when excitation frequencies due to building

sway coincide with the natural frequencies of the ropes.

Zhu (74) developed a non-linear planar model of a slack cable (see Fig. 2.11) with

bending stiffness and arbitrarily moving ends for either compensation ropes or travelling

cables and validated it by experimental tests carried out in a laboratory setup (76) (see

Fig. 2.9).

Figure 2.11: Slack cable (Reprinted from (74))

2.4 Coupled vertical-lateral vibration

All the models that have been developed up to this point in this literature review have

dealt with either the vertical or the lateral vibration, and they have resulted accurate

enough to simulate certain characteristics of the elevator dynamics. Nevertheless, there

arise situations where longitudinal and lateral vibration coupling occurs.

Zhang et al. (68) investigated the lateral vibration of a mass-loaded string (see Fig.

2.12) due to the parametric excitation caused by an external harmonic disturbance

applied to the mass in the vertical direction. They validated the simulation results

experimentally (see Fig. 2.13) and shown that one of the cases of parametric resonance

may occur under a small vertical disturbance when the vertical natural frequency is

close to twice the lateral natural frequency. Zhang et al. proposed and validated a
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strategy to suppress this parametric resonance based on tuned-mass dampers (67).

Terumichi et al. (59) studied the non-stationary vibration of a string with time-varying

length and a mass-spring system attached at the lower end (see Fig. 2.14). The string

top end was excited sinusoidally by a horizontal displacement and the suspended mass

had two degrees of freedom, vertical and horizontal. It was shown analytically and

experimentally (see Fig. 2.15) that the axial velocity of the string influenced the vibra-

tion amplitude of the string and the mass at the passage through resonances.

Figure 2.12: Mass-loaded string system (Reprinted from (68))

Figure 2.13: Schematic diagram of the experiment system (Reprinted from (68))

Kaczmarczyk et al. (27) investigated the influence of building lateral vibrations on the
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dynamic response of hoists ropes by means of a model that consisted of a hoist rope

moving axially with a prescribed velocity and with a mass attached to the free end. It

was shown that the building sway results in a distributed inertial load acting upon the

hoist ropes which in turn may lead to resonance and modal interactions between the

lateral modes and the fundamental longitudinal mode.

Figure 2.14: Elevator model (Reprinted from (59))

Figure 2.15: Experimental setup (Reprinted from (59))

Salamaliki-Simpson et al. (54) developed a stationary model of an elevator car-hoist

rope assembly to investigate the response to three dimensional kinematic excitation

applied to the drive sheave end; the numerical simulation results demonstrated that

autoparametric 2:1 resonance between the longitudinal and lateral modes occurs due
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to nonlinear quadratic coupling between the modes.

Ren and Zhu developed a spatial discretisation and substructure method (51) to study

the longitudinal, lateral and coupled vibrations of moving elevator car-rope systems

(52).

2.5 Conclusions

As it was stated in Section 1.5, the focus of the thesis is the analysis of elevator car

vertical vibrations generated at the machine.

The literature review shows that the coupling between the vertical and the lateral vibra-

tion has often been neglected, particularly when the amplitude of the lateral vibration

is small, and that consequently the elevator vertical vibration has been modelled in-

dependently. It is an approach that does not account for any of the dynamic issues

described in Section 2.4. This thesis will deal with elevator vertical vibration caused

by vertical excitation forces due to the torque ripple generated at the machine; thus, it

will be developed a mathematical model of an elevator to study only vertical vibration.

Another approach reported in the Literature consists of lumping the inertia elements

(the car assembly, the counterweight and the traction sheave) at its corresponding

points and considering the elevator system as a translating assembly of these inertia

elements coupled and constrained by one-dimensional slender continua. This approach

involves not considering dynamic issues such as those described in Section 1.4.4 and

will also be assumed in this thesis.

Another simplification reported considers the car- and counterweight-side subsystems

separately in the analysis, as a consequence of assuming that the drive control system

allows an accurately prescribed motion of the traction sheave to be realized. However,

as this thesis will deal with excitation forces generated at the machine, that couples

the car- and counterweight-side ropes through the traction sheave, it has been decided

to develop a model of the whole assembly, including the car, the counterweight, the

ropes and the drive system. A common drive system model, reported in the related

literature, will be developed.

To summarise, it will be developed a mathematical model to describe the vertical vi-

bration of the car-counterweight-sheave-ropes assembly with all inertia components

lumped at their locations. A model of the drive system will be included as well. The
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input to it will be a desired reference velocity profile to be followed by the car.

The ropes are distributed-parameter media. Vertical vibration either distributed- or

lumped-parameter models of elevators have been reported. In the case of LPMs, the

suspension rope is approximated by a lumped-mass model with point masses joined

by springs and dampers with the corresponding stiffness and damping values. From a

mathematical point of view, the LPM is described by a set of ODEs (Eqn. 2.3) that has

got a closed-form solution (the eigenvalue problem) whereas the DPM is described by a

set of PDEs, that is usually solved by spatial discretisation methods such as Galerkin.

The Galerkin method has been extensively applied to solve the PDE sets that describe

the dynamics of DPMs of not only vertical but also lateral and coupled lateral-vertical

vibrations. Both approaches will be worked out in this thesis.

With respect to experimental tests, acceleration inside the cabin or certain frequency

response functions have been obtained in elevator installations, as described in Section

2.3.1.3, but it is more frequent to find specifically designed setups, such as those de-

scribed in Section 2.4, in order to test a certain characteristic of the elevator dynamics.

A real elevator installation is complex enough to difficult obtaining conclusions on cer-

tain features of its dynamics.

The influence of the machine generated torque ripple in elevator car vertical vibration

has not been specifically studied and reported in the literature. Regarding this issue,

some questions can be formulated: how large is the amplitude of the torque ripple?

what is the frequency content of it? which of these excitation frequencies are apparent

on the cabin floor? These are the question that this thesis will try to answer.
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3

Objectives and methodology

The main objective was stated in Section 1.5 as

“The analysis of machine generated elevator car vertical vibrations”

The main objective has been divided in some secondary objectives. Next, these sec-

ondary objectives are established and the methodology planned to achieve them de-

scribed.

1. To calculate the natural frequencies and mode shapes of an elevator with a 1:1

roping configuration.

It will be assumed that all inertia elements are lumped at their corresponding

points, that the rope material is uniform, that the sheave is perfectly rigid and

that there is no rope slip across the sheave, and only longitudinal motion will be

admitted in the car-rope and counterweight-rope subsystems.

(a) To elaborate a distributed-parameter model of a system that consists of three

masses constrained by a rope of fixed length.

Hamilton’s principle will be applied to derive the PDE set describing the

dynamics. A closed-form solution will be searched for.

(b) To elaborate a lumped-parameter model of a system that consists of three

masses constrained by a rope of fixed length.

The suspension rope will be represented by a lumped-mass model with point

masses joined by springs and dampers with the corresponding stiffness and

damping values. The resulting eigenvalue problem will be solved.
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(c) The natural frequencies and mode shapes obtained by both models will be

compared and the pertinent conclusions will be drawn.

2. To develop a model to simulate the acceleration response of an elevator with a

1:1 roping configuration to excitation generated at the machine.

The model will be implemented in the MATLAB/Simulink computational envi-

ronment.

(a) To develop a model of the drive system that comprises a permanent mag-

net synchronous motor powered via an inverter that supplies a pulse width

modulated (PWM) voltage.

The well known direct quadrature zero (dqo) mathematical transformation

will be applied to simplify the analysis of the three-phase synchronous ma-

chine.

A common vector control strategy oriented to the magnets flux will be im-

plemented to control the motor shaft speed in order for the car to follow a

prescribed velocity profile to achieve good ride quality.

(b) To compute the machine parameters by means of the Finite Element Method

simulation software FLUX and to estimate the amplitudes of the main fre-

quency components of the torque ripple.

(c) To develop a non-stationary DPM of the car-counterweight-sheave-rope as-

sembly.

The application of Hamilton’s principle will provide the PDE set describing

the dynamics. Galerkin method will be applied to discretise it by expanding

the vertical displacements in terms of the linear stationary mode shapes of

the system composed of three masses constrained by the suspension rope.

(d) To develop a non-stationary LPM of the car-counterweight-sheave-rope as-

sembly.

(e) To simulate and compare the car acceleration response during a travel by

both the DPM and the LPM models and to draw the pertinent conclusions.

3. To validate the simulation model by experimental measurements performed in a

laboratory model of an elevator.
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(a) To perform measurements on a 1:1 roping configuration laboratory setup.

During several travels, the acceleration response at the suspended masses

and at the drive machine, its shaft velocity and the three phase current

intensities supplied to it will be measured. The machine torque will be

estimated from the current intensities.

(b) To simulate the acceleration response of the system during a travel by means

of both models, the DPM and the LPM.

The torque ripple estimated from the current intensities will be added to the

controller generated torque as a perturbation. Simulation and experimental

results will be compared and the pertinent conclusions drawn.

4. To calculate the natural frequencies and mode shapes of an elevator with a 2:1

roping configuration.

It will be assumed that all inertia elements are lumped at their corresponding

points, that the rope material is uniform, that the sheave is perfectly rigid and

that there is no rope slip across the sheave, and only longitudinal motion will be

admitted in the car-rope and counterweight-rope subsystems.

A distributed-parameter model of the system will be developed. Hamilton’s prin-

ciple will be applied to derive the PDE set describing the dynamics. A closed-form

solution will be searched for.

5. To perform experimental measurements in a laboratory model of an elevator with

a 2:1 roping configuration.

(a) To compute the setup machine parameters by means of the Finite Element

Method simulation software FLUX and to estimate the amplitudes of the

main frequency components of the torque ripple.

(b) To observe the acceleration response of the car, the counterweight and the

machine during several travels and to interpret it with relation to the devel-

oped model results.

6. To draw the conclusions of the thesis work.
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4

Elevator 1:1 roping configuration

The natural frequencies and mode shapes of a stationary elevator with a 1:1 roping

configuration are calculated in this chapter. The elevator is represented by a system

that consists of three masses constrained by a rope of fixed length.

It is assumed that:

• The car, the counterweight and the traction sheave are lumped at their corre-

sponding points.

• The rope material is uniform.

• The sheave is perfectly rigid and there is no rope slip across it.

• Only longitudinal motion is admitted in the car-rope and counterweight-rope

subsystems.

Hamilton’s principle is applied to derive the equations describing its dynamics. A

closed-form solution is obtained and the natural frequencies and mode shapes calcu-

lated.

A lumped-parameter model of the system is developed as well. The suspension rope

is represented by a lumped-mass model with point masses joined by springs with the

corresponding stiffness values. The resulting eigenvalue problem is solved, the natural

frequencies and mode shapes calculated and then compared to those obtained from the

distributed-parameter model.

It is concluded that:
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4. ELEVATOR 1:1 ROPING CONFIGURATION

• The first three natural frequencies calculated using the DPM model and the LPM

model compare very well (the first natural frequency is 0 Hz and corresponds to

an overall transport motion of the system).

• At higher frequencies there are some differences between the results that are

obtained from these models.

It is demonstrated that if the rope is represented by a larger number of lumped

masses so that the number of degrees of freedom in the LPM is increased, this

model yields more accurate results with the differences between the frequencies

calculated from the DPM and LPM being decreased.

• The car, the counterweight and the sheave are located at the nodes for all higher

mode shapes from the 4th onwards.

4.1 Distributed-Parameter Model

A schematic representation of a traction elevator with a 1:1 roping configuration is

shown in Fig. 4.1. A stationary inertial system Ox has been fixed at the centre of the

traction sheave.

The hoist rope of mass density µ, elasticity modulus E and effective cross-sectional area

A passes over the traction sheave. The mass of the car is mc; the mass of the counter-

weight, mw; the radius of the traction sheave is r; the length from the counterweight

and car to the sheave lw and lc respectively; the total length of the rope is lt = lw + lw;

and I the moment of inertia of the sheave and msh = I/r2 denotes the effective mass

of the sheave.

The schematic shown by Fig. 4.2 is a system that consists of three masses constrained

by a rope of fixed length (see Fig. 4.2). The position measured from the counterweight

of any section of the undeformed rope is described by the variable s; t is the time.

The counterweight- and the car-side rope subsystems are described by the intervals

0 ≤ s ≤ lw and lw ≤ s ≤ lt respectively, where s = 0, s = lw and s = lt are the

positions of the counterweight, traction sheave and car respectively. The displacement

of any rope section in the counterweight- and car-side ropes are given by the functions

uw(s, t) and uc(s, t) respectively.

Hamilton’s principle is applied to obtain the following set of PDEs.
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Traction Sheave

O

x

mw

Counterweight

Ω

ξ

mc

lc

Car

lw

Figure 4.1: Schematic representation of a Lift System

µuw,tt − EAuw,ss = 0, 0 ≤ s ≤ lw (4.1)

µuc,tt − EAuc,ss = 0, lw ≤ s ≤ lt (4.2)

mwuw,tt(0, t) − EAuw,s(0, t) = 0 (4.3)

mcuc,tt(lt, t) + EAuc,s(lt, t) = 0 (4.4)

mshuw,tt(lw, t)− EA [uc,s(lw, t)− uw,s(lw, t)] = 0 (4.5)

The continuity of displacements requires that

uw,tt(lw, t) = uc,tt(lw, t) (4.6)
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4. ELEVATOR 1:1 ROPING CONFIGURATION

s

mw msh mc

uw(s, t) uc(s, t)

s = lw s = lts = 0

Figure 4.2: Three masses constrained by a rope of fixed length

It is searched a solution of the form

u(s, t) = q(t)Φ(s, lw(t)) (4.7)

where Φ(s, lw(t)) are the mode shapes represented as

Φ(s, lw(t)) =

{

Φw(s, lw(t)), 0 ≤ s ≤ lw
Φc(s, lw(t)), lw ≤ s ≤ lt

(4.8)

and the modal coordinate q(t)

q(t) = C sin(ωit+ ϕ) (4.9)

is a harmonic function of time and C an arbitrary constant.

4.1.1 Solving the equations

If the Eqn. 4.7 and its required derivatives are introduced into Eqns. 4.1 and 4.2, it

results

q̈(t) + ω2q(t) = 0 (4.10)

Φ′′

w + γ2Φw = 0 (4.11)

Φ′′

c + γ2Φc = 0 (4.12)

γ2 =
µ

EA
ω2 (4.13)

The mode shapes that satisfy Eqn. 4.11 have got the form
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4.1 Distributed-Parameter Model

Φw(s) = C1 sin(γs) + C2 cos(γs) (4.14)

Φc(s) = C3 sin(γs) + C4 cos(γs) (4.15)

The continuity condition requires that

Φw(lw) = Φc(lw) (4.16)

Introducing Eqn. 4.14 and its required derivatives, evaluated at s = 0, in Eqn. 4.3, it

is obtained

C2 = −
µ

mwγ
C1 (4.17)

Φw(s) = C1g1(γ, s) (4.18)

g1(γ, s) =
µ

mwγ
cos(γs)− sin(γs) (4.19)

We proceed in a similar manner with the Eqn. 4.15 and Eqn. 4.4 and it results

C3

(

µ

mcγ
cos(γlt)− sin(γlt)

)

= C4

(

µ

mcγ
sin(γlt) + cos(γlt)

)

(4.20)

Φc(s) = C4g2(γ, s) (4.21)

g2(γ, s) =
µ

γmc
cos(γ(lt − s))− sin(γ(lt − s)) (4.22)

Evaluating Eqns. 4.18 and 4.21 at s = lw and introducing them into Eqn. 4.16, we get

C1g1(γ, lw) = C4g2(γ, lw) (4.23)

The mode shapes must have the following form in order to satisfy the constraint 4.23,

Φw(γ, s) = Cg2(γ, lw)g1(γ, s) (4.24)

Φc(γ, s) = Cg1(γ, lw)g2(γ, s) (4.25)

where C is an undetermined constant value. If the derivatives of the mode shapes 4.24

and 4.25 are evaluated at s = lw, introduced into Eqn. 4.5, and the Eqns. 4.10 and

4.13 are used, the following expression is obtained
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−g1(lw, γ)g
′

2(lw, γ) + g2(lw, γ)g
′

1(lw, γ)−
msh

µ
γ2g1(lw, γ)g2(lw, γ) = 0 (4.26)

where g′1, g
′

2 denote the derivative of g1, g2 respectively with respect to s.

The Eqn. 4.26, which is called the characteristic equation, is the constraint that the

parameters γ must satisfy in order the Eqn. 4.7 to be a solution of the set of PDEs

4.1-4.5. That is to say, the roots of Eqn 4.26 determine the natural frequencies of the

system described by the set of PDEs 4.1-4.5.

The mode shapes given by equations 4.24 and 4.25 are valid as long as g1(γ, lw) or

g2(γ, lw) are not zero. At that case, the traction sheave is at a node, both rope sides

are decoupled and their natural frequencies and mode shapes correspond to a rope with

a suspended mass at one end and fixed at the other end.

4.1.2 Orthogonality conditions of the mode shapes

The mode shapes obtained satisfy some orthogonality properties. These properties are

useful when applying spatial discretisation methods of PDE sets such as Galerkin, where

these mode shapes are the basis for a series expansion that expresses the displacement of

any rope section as a sum of terms of the form a time dependent coefficient multiplying

a mode shape.

Let us consider the Eqn. 4.11 applied to the mode Φw,j(s) and use the Eqn. 4.13.

EAΦ′′

w,j + ω2
jΦw,j = 0 (4.27)

If the Eqn. 4.27 is multiplied by the mode Φw,i(s) and then integrated from 0 to lw

(the counterweight-side rope length), it results

EAΦw,i(lw)Φ
′

w,j(lw)− EAΦw,i(0)Φ
′

w,j(0)− EA

∫ lw

0
Φ′

w,i(s)Φ
′

w,j(s)ds =

−µω2
j

∫ lw

0
Φw,i(s)Φw,j(s)ds (4.28)

In a similar manner, let us consider Eqn. 4.12 applied to the mode Φc,j(s). If it is

multiplied by the mode Φc,i(s) and integrated from lw to lt, it results
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4.1 Distributed-Parameter Model

EAΦc,i(lt)Φ
′

c,j(lt)−EAΦc,i(lw)Φ
′

c,j(lw)− EA

∫ lt

lw

Φ′

c,i(s)Φ
′

c,j(s)ds =

−µω2
j

∫ lt

lw

Φc,i(s)Φc,j(s)ds (4.29)

If the Eqn. 4.5 is applied to the mode Φi(lw), it results

−EAΦ′

w,i(lw) + EAΦ′

c,i(lw) +mshω
2
iEAΦw,i(lw) = 0 (4.30)

If Eqn. 4.3 is applied to the mode Φi(0), it results

EAΦ′

w,i(0) +mwω
2
iΦw,i(0) = 0 (4.31)

If Eqn. 4.4 is applied to the mode Φi(lt), it is obtained

−EAΦ′

c,i(lt) +mcω
2
iΦc,i(lt) = 0 (4.32)

If Eqn. 4.32 is introduced into Eqn. 4.29, Eqn. 4.31 into Eqn. 4.28, and the resulting

expressions are added up, it is obtained

EAΦw,i(lw)
(

Φ′

w,j(lw)− Φ′

c,j(lw)
)

−

EA

(
∫ lw

0
Φ′

w,i(s)Φ
′

w,j(s)ds+

∫ lt

lw

Φ′

c,i(s)Φ
′

c,j(s)ds

)

= (4.33)

−ω2
j

[

µ

∫ lw

0
Φw,i(s)Φw,j(s)ds+ µ

∫ lt

lw

Φc,i(s)Φc,j(s)ds+

+mwΦw,i(0)Φw,j(0) +mcΦc,i(lt)Φc,j(lt)]

If Eqn. 4.30 is introduced into Eqn. 4.33 and the symmetry of the resulting expression

with respect to the indexes i and j is considered, we obtain the following orthogonality

condition,

µ

∫ lt

0
Φi(s)Φj(s)ds+mwΦi(0)Φj(0) +

mcΦi(lt)Φj(lt) +mshΦi(lw)Φj(lw) = (4.34)

δij

[

µ

∫ lt

0
Φ2
i (s)ds+mwΦ

2
i (0) +mcΦ

2
i (lt) +mshΦ

2
i (lw)

]
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where

δij =

{

1, i = j
0 i 6= j

(4.35)

4.2 Lumped-Parameter Model

Another approach to calculate the natural frequencies and mode shapes of the system is

a lumped-parameter model, where not only the car, the counterweight and the sheave

inertia are lumped at their corresponding positions but also the counterweight- and

car-side rope masses are lumped at discrete points and then jointed to the sheave and

counterweight, the sheave and the car, by mass-less springs of stiffness constant given

by Eqn. 4.36 and Eqn. 4.37 respectively, for the case of a 5 DOF LPM (see Fig. 4.3).

kw =
2EA

lw
(4.36)

kc =
2EA

lc
(4.37)

The configuration of the system is described by five generalized coordinates representing

the counterweight, car and counterweight-side and car-side rope mass displacements

with respect to the equilibrium position and the sheave rotation angle: uw, uc, u1, u2

and ush = θr respectively.

The natural frequencies and mode shapes result from

Mü+Ku = 0 (4.38)

i.e., from the eigenvalue problem defined by

−Ku = Mω2u (4.39)

where the inertia M and stiffness K matrices and the vector u are given by Eqns. 4.40,

4.41 and 4.42 respectively.

M =













mw 0 0 0 0
0 m1 0 0 0
0 0 I/r2 0 0
0 0 0 m2 0
0 0 0 0 mc













(4.40)
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K =













kw −kw 0 0 0
−kw 2kw kw 0 0
0 kw (kw + kc) −kc 0
0 0 −kc 2kc −kc
0 0 0 −kc kc













(4.41)

u = [uw u1 ush u2 uc]
T (4.42)

Ir

mwxw

kw

m1

kw

mc

lc

xc

m2

kc

kc

lw

θ

Figure 4.3: 5 DOF model of a 1:1 roping cfg. elevator

4.3 Natural frequencies and mode shapes

The natural frequencies and mode shapes for a particular case will be calculated by the

two models developed. The parameter values correspond to a laboratory model that

will be described in Chapter 6.

The masses are mw =33 kg and mc =70.5 kg, the whole length and mass density of

the rope are 8.6 m and µ = 0.095 kg/m respectively and the moment of inertia and

the radius of the traction sheave I = 0.3385 kg·m2, r = 0.065 m respectively. The

product between the elasticity modulus and the cross-section area of the rope EA has

been assigned a value of 106 N.

In the case of the LPM, the eigenvalue problem defined by Eqn. 4.39 determines the

natural frequencies and mode shapes of the system.

In the case of the DPM, the roots of Eqn. 4.26 determine the natural frequencies of

the system and the corresponding modes are given by Eqns. 4.24 and 4.25.
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Fig. 4.4 shows the five natural frequencies calculated by the five DOF LPM and Fig.

4.5 shows the first six natural frequencies calculated by the DPM. The first natural

frequency is 0 Hz and corresponds to an overall transport motion of the system. Figs.

4.6 and 4.7 compare the natural frequencies calculated by both methods. Fig. 4.8

shows the natural frequencies calculated by the DPM and those calculated by an 11

DOF LPM for the same frequency band.

4.4 Conclusions

The first three natural frequencies calculated using the DPM model and the LPM

model compare very well (see Fig. 4.7). However, at higher frequencies there are some

differences between the results that are obtained from these models. It is demonstrated

that if the rope is represented by a larger number of lumped masses so that the number

of degrees of freedom in the LPM is increased, this model yields more accurate results

with the differences between the frequencies calculated from the DPM and LPM being

decreased (see Figs. 4.6 and 4.8).

Regarding the mode shapes, Fig. 4.9 shows the modes corresponding to the 2nd, 3rd,

4th and 5th natural frequencies calculated by both models when the counterweight-side

rope length is 2 m. The horizontal axis is the position given by the variable s with

respect to the reference frame shown in Fig. 4.2. The car, the counterweight and the

sheave are located at the nodes for all higher mode shapes from the 4th onwards.
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Figure 4.4: The five natural frequencies as a function of the counterweight-side rope

length calculated by the LPM
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Figure 4.5: The first six natural frequencies as a function of the counterweight-side rope

length calculated by the DPM
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Figure 4.6: Comparison of natural frequencies calculated by both models for those below

750 Hz
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40 Hz
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Figure 4.8: Comparison of natural frequencies calculated by both models for those below

750 Hz when the LPM has 11 DOFs
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frequencies calculated by both models
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5

Non-stationary model

It is developed a non-stationary model of the elevator to simulate its acceleration re-

sponse to excitation generated at the machine.

The model includes the drive system; it comprises a permanent magnet synchronous

motor powered via an inverter that supplies a pulse width modulated (PWM) voltage.

The well known direct quadrature zero (dqo) mathematical transformation is applied

to simplify the analysis of the three-phase synchronous machine. A common vector

control strategy oriented to the magnets flux is implemented to control the motor shaft

speed in order for the car to follow a prescribed velocity profile to achieve good ride

quality. The machine parameters are computed by means of the Finite Element Method

simulation software FLUX and the amplitudes of the main frequency components of

the torque ripple are estimated.

The car-counterweight-sheave-rope assembly is represented by a non-stationary either

distributed- or lumped-parameter model. In the case of the DPM, the PDE equation

set is discretised by the Galerkin method; the vertical displacements are expanded in

terms of the linear stationary mode shapes of the system composed of three masses

constrained by the suspension rope.

It is shown that only two modes contribute to the car and counterweight vibration re-

sponses and, as far as the prediction of the response of the car and the counterweight, it

can be concluded that a five degree-of-freedom lumped-parameter model is as accurate

as the distributed-parameter model.

It is observed that the excitation frequencies originated at the machine close to the ele-

vator system natural frequencies are particularly manifest in the car- and counterweight-
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frame acceleration signals and that their amplitude varies according to the proximity

between them (resonance phenomena).

5.1 Drive System Model

A model of the drive system is shown in Fig. 5.1. The input to the drive system is

a desired velocity profile and the output is the machine torque, that is the input to

the mechanical system. The drive system comprises a permanent magnet synchronous

motor (PMSM) powered via an inverter that supplies a pulse width modulated (PWM)

voltage.

In order to simplify the analysis of the three-phase synchronous machine, a mathemat-

ical transformation known as the direct quadrature zero (dqo) transformation (48) is

used. In the case of balanced three-phase circuits, application of the dqo transform

reduces the three AC quantities to two DC quantities. Simplified calculations can then

be carried out on these imaginary DC quantities before performing the inverse trans-

form to recover the actual three-phase AC results. According to the reference frame

transformation theory, the three phase variables, currents and voltages, are transformed

to the dq reference frame, which consists of the direct (d) axis and the quadrature (q)

axis and is rotating at the stator current frequency ωs, representing the fundamental

frequency. The fundamental frequency ωs satisfies the following equation,

ωs = pωm (5.1)

where p is the number of pole pairs of the machine stator and ωm the rotation speed

of the rotor. In this setup, the dq components of the currents and the voltages are

constant.

The motor shaft speed is controlled in order for the car to follow a prescribed velocity

profile ω∗

m to achieve good ride quality. A well known vector control strategy oriented to

the magnets flux has been implemented in the computer simulation (60). Such control

scheme consists of two control loops: outer and inner loops. In the outer control loop the

speed of the motor is regulated by a conventional Proportional Integral (PI) controller,

which sets the torque reference τ∗ with the aim of minimizing the speed error ω∗

m−ωm.

In the inner control loop two PI controllers are implemented in order to regulate the dq

axes currents id and iq. These two controllers set the dq axes voltage references v∗d and
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5.1 Drive System Model

v∗q in order to minimize the current errors. The q axis current reference i∗q is obtained

directly from the torque reference τ∗, because in permanent magnet synchronous motors

the relationship between the torque τ and the q axis iq current is practically constant

and known as the torque constant (see Eqn. 5.9). The field weakening strategy is not

implemented so that the d axis current reference i∗d is set to zero (34).
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Figure 5.1: The elevator model, with the mechanical and drive systems. The latter

includes the control diagram, the power converter and the electric motor
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5. NON-STATIONARY MODEL

5.1.1 Electric motor model

The machine is a 12 pole permanent magnet synchronous motor comprising a sta-

tor with 72 slots. The electric model of the motor is described by the following two

differential equations,

vd = Rsid +
dΨd

dt
− pωmLqiq (5.2)

vq = Rsiq +
dΨq

dt
+ pωm (Ldid +Ψpm) (5.3)

where vd and vq, id and iq and Ψd and Ψq are the dq axes voltages, currents and flux

linkages respectively, Ψpm is the magnet flux linkage, Rs is the stator resistance, Ld

and Lq are the dq axes inductances and ωm is the mechanical speed. The dq axes flux

linkages are defined as (60),

Ψd = Ldid +Ψpm (5.4)

Ψq = Lqiq (5.5)

Consequently, as Ψpm is constant,

vd = Rsid + Ld
did
dt

− pwmLqiq (5.6)

vq = Rsiq + Lq
diq
dt

+ pwm (Ldid +Ψpm) (5.7)

The torque τ generated by a motor is composed of two components: the average torque

τavg and the torque ripple τr. In addition, the torque ripple is composed of another two

components: the electromagnetic torque ripple and the cogging torque. The electro-

magnetic torque ripple is mainly due to the spatial distribution of stator windings and

the magnets shape, while the cogging torque depends mainly on the number of stator

slots and pole pairs (72). The average value of the torque produced by the motor can

be modelled as follows

τavg =
3

2
p (Ψdiq −Ψqid) (5.8)
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5.2 Vertical vibration model

The d axis current id is set to 0,

τavg =
3

2
pΨpmiq (5.9)

Eqn. 5.9 shows that the average torque generated by the motor τavg is proportional

to the q axis current iq. The magnitude of the electromagnetic torque ripple τr is also

proportional to the q axis current iq as it is demonstrated in (4). Nevertheless, the

magnitude of the cogging torque does not depend on the current magnitude and is

constant, even when the motor is not power supplied. Then, the overall torque τ is

computed as follows

τ = τavg + τr =
3

2
pΨpmiq +Kjiq sin(kωst) +Kcg sin(nωst) (5.10)

where Kj is the torque constant for the main component of the electromagnetic torque

ripple, whose order is j, and Kcg is the magnitude of the main cogging torque compo-

nent, whose order is n. In Fig. 5.2 the overall block diagram of the modelled motor is

shown, where it is satisfied that ωm = θ̇m and ωs = θ̇s.

5.2 Vertical vibration model

Two possibilities to model the car-counterweight-sheave-rope assembly will be imple-

mented: a DPM and a LPM.

5.2.1 Distributed-parameter model

The non-stationary DPM to be developed is based on the DPM described in Section

4.1.

In order to describe the oscillations of the rope, the classical moving frame approach is

applied (27) (see Figs. 4.1 and 5.3). Two frames of reference are defined: a coordinate

system Ωξ attached to the undeformed body at the counterweight and moving with it,

and a stationary inertial system Ox. The dynamic deformed position of an arbitrary

section of the rope during its motion is defined in the inertial frame by the position

vector

R(s, t) = RΩ(s, t) +Ri(s, t) +U(s, t) (5.11)
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5. NON-STATIONARY MODEL

DYNAMIC MODEL OF THE MOTOR
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Figure 5.2: Synchronous Motor Model

where s denotes the Lagrangian (material) coordinate of Pi, representing the dynam-

ically undeformed position of the rope section, and measured from the counterweight

frame. In this representation the axial transport motion is treated as essentially an

overall rigid-body translation, and the dynamic elastic deformations are referred to the

moving frame associated with this motion. All dynamic characteristics of the rope are

functions of the independent variables (s, t), with s being referred to the unstressed

state and the moving frame. Thus, RΩ = −li represents the position of the origin Ω in

the inertial frame (i is the unit vector in the positive x direction), Ri = si defines the

reference position Pi in the moving frame , and U = u(s, t)i is the dynamic deformation

vector with u representing the longitudinal motion of the rope.
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Figure 5.3: Reference frames

The longitudinal dynamic deflection in the car-side rope will be denoted as uc(s, t), and

the one in the counterweight-side rope as uw(s, t). Thus, the deformed position vector

is defined as

R =

{

(s+ uw (s, t)− lw) i, 0 ≤ s ≤ lw
(s+ uc (s, t)− lw) i, lw ≤ s ≤ lt

(5.12)

The continuity of deflection across the sheave requires uw(lw, t) = uc(lw, t). The velocity

vector of a rope particle P is determined by

Ṙ =







vw =
(

uw,t (s, t)− l̇w

)

i, 0 ≤ s ≤ lw

vc =
(

uc,t (s, t)− l̇w

)

i, lw ≤ s ≤ lt
(5.13)

51



5. NON-STATIONARY MODEL

5.2.1.1 Equations of Motion

Hamilton’s principle (38) yields the following equations and boundary conditions for

the dynamic deflections (see Appendix A).

EAuw,ss − µg = µ
(

uw,tt − l̈w

)

(5.14)

EAuc,ss + µg = µ
(

uc,tt − l̈w

)

(5.15)

EAuw,s(0, t) −mwg = mw

(

uw,tt(0, t)− l̈w

)

(5.16)

−EAuc,s(lt, t) +mcg = mc

(

uc,tt(lt, t)− l̈w

)

(5.17)

τ

r
+ EA [uc,s (lw, t)− uw,s (lw, t)] = msh

(

uw,tt(lw, t)− l̈w

)

(5.18)

The rope dynamic displacements of the ropes are defined as

u (s, t) =

{

uw (s, t) = uew (s) + udw (s, t) , 0 ≤ s ≤ lw
uc (s, t) = uec (s) + udc (s, t) , lw ≤ s ≤ lt

(5.19)

where uew (s) and uec (s) express the static deflection at equilibrium of the rope sections

at the counterweight- and car-rope sides respectively and satisfy the set of PDEs qiven

as

EAuew,ss − µg = 0 (5.20)

EAuec,ss + µg = 0 (5.21)

EAuew,s(0) −mwg = 0 (5.22)

−EAuec,s(lt) +mcg = 0 (5.23)

τ e

r
+ EA

[

uec,s (lw)− uew,s (lw)
]

= 0 (5.24)

where τ e is the torque applied at the equilibrium position. The solution of Eqns.

(5.20)-(5.24) is given as

uew (s) =
g

EA

(

µ
s2

2
+mws

)

(5.25)

uec (s) =

=
g

EA

[

(µlt +mc) s−
µs2

2
+ lw (mw −mc − µlc)

]

(5.26)
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5.2 Vertical vibration model

The deflections with respect to the equilibrium position udw (d, t) satisfy the following

set of PDEs

EAudw,ss = µ
(

uw,tt − l̈w

)

(5.27)

EAudc,ss = µ
(

uc,tt − l̈w

)

(5.28)

EAudw,s(0, t) = mw

(

uw,tt(0, t)− l̈w

)

(5.29)

−EAudc,s(lt, t) = mc

(

uc,tt(lt, t)− l̈w

)

(5.30)

τd

r
+ EA

[

udc,s (lw, t)− udw,s (lw, t)
]

= msh

(

uw,tt(lw, t)− l̈w

)

(5.31)

The torque τ in Eqn. 5.18 satisfies that

τ = τ e + τd (5.32)

Eqns. 5.27-5.31 will be discretised by expanding the longitudinal displacements with

respect to the equilibrium position in terms of linear stationary mode shapes (Eqn.

5.33)

ud (s, t) =
n
∑

i=1

qi(t)Φi(s, lw) (5.33)

where Φi(s, lw) represents the mode shapes corresponding to the system described in

Section 4.1 and shown in Fig. 4.2. The first n linear stationary natural frequencies are

considered in Eqn. 5.33.

5.2.1.2 Mathematical Discrete Model

The series given by Eqn. 5.33 and its derivatives are substituted in Eqns. 5.14-5.18.

Next, the Galerkin method with the approximate solution given by Eqn. 5.33 is ap-

plied, where the orthogonality conditions of the modes given by Eqn. 4.8 and described

in section 4.1.2 are used. As a result, the following set of ODEs with time dependant

coefficients is obtained
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5. NON-STATIONARY MODEL

q̈+ 2ZΩq̇+Ω2q = M−1
1

[

τd

r
Φ(lw)− p1 + l̈w (p2 +mshΦ(lw)−M2q)−

2l̇wM2q̇− l̇2wM3q− csh(M4q̇+M5ql̇w − l̇wΦ(lw))−
g

EA
(2µl̇2w + l̈w(2µlw +mw −mc − µlt))

]

(5.34)

where the n×nmatricesΩ,Z,M1,M2,M3,M4,M5 and the n×1 vectors q(t),p1,p2,Φ(s)

are given by the Eqns. 5.35-5.45.

(Ω)ij = δijωi; δij = 1 if i = j, 0 if i 6= j (5.35)

(Z)ij = δijζi (5.36)

(M1)ij = δij

(

µ

∫ lt

0
Φ2
i ds+mwΦ

2
i (0) +mshΦ

2
i (lw) +mcΦ

2
i (lt)

)

(5.37)

(M2)ij = µ

∫ lt

0
Φi

∂Φj

∂lw
ds+

+mwΦi(0)
∂Φj

∂lw
(0) +mshΦi(lw)

∂Φj

∂lw
(lw) +mcΦi(lt)

∂Φj

∂lw
(lt) (5.38)

(M3)ij = µ

∫ lt

0
Φi

∂2Φj

∂l2w
ds+

+mwΦi(0)
∂2Φj

∂l2w
(0) +mshΦi(l)

∂2Φj

∂l2w
(lw) +mcΦi(lt)

∂2Φj

∂l2w
(lt) (5.39)

(M4)ij = Φi(lw)Φj(lw) (5.40)

(M5)ij = Φi(lw)
∂Φj

∂lw
(5.41)

(q(t))i = qi(t) (5.42)

(p1)i =
g

EA

(

2µl̇2w + l̈w(2µlw +mw −mc − µlt)
)

(

µ

∫ lt

lw

Φi ds+mcΦi(lt)

)

(5.43)

(p2)i = µ

∫ lt

0
Φi ds+mwΦi(0) +mcΦi(lt) (5.44)

(Φ(s))i = Φi(s) (5.45)

Eqn. 5.34 is a nonlinear time-varying ODE set. There are couplings among the co-

ordinates due to the products l̈w q, l̇w q̇, l̇2w q and terms representing the inertial load
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5.2 Vertical vibration model

due to the axial transport motion are present. The modal damping included in Eqn.

5.36 accommodates damping effects at the rail-guide contact and the coefficient csh in

Eqns. 5.34 accounts for not only viscous friction but also any other energy losses in the

machine.

5.2.2 Lumped-parameter model

This model is based in the 5 DOF lumped-parameter stationary model developed in

Section 4.2.

The spring stiffness constants in Eqns. 4.36-4.37 are updated every time instant dur-

ing the elevator travel. The sheave rotation angle is related to the length of the

counterweight-side rope by

r
dθ

dt
= −

dlw
dt

(5.46)

The torque provided by the machine in Fig. 5.1 is composed of two terms; the first one

accommodates the torque corresponding to the outbalance weight given by Eqn. 5.47

τ e = (mw −mc + µ(2lw − lt))gr (5.47)

and the second one τd is included in the vector ∆F given by Eqn. 5.48

∆F =

[

0 0
τd

r
0 0

]T

(5.48)

that relates to the rest of variables by Eqn. 5.49

Mü+Cu̇+Ku = ∆F (5.49)

where the inertia M, stiffness K and damping C matrices and the vector u are given

by Eqns. 4.40, 4.41, 5.50 and 4.42 respectively.

C =













cw 0 0 0 0
0 0 0 0 0
0 0 csh 0 0
0 0 0 0 0
0 0 0 0 cc













(5.50)

The damping matrix accounts for the friction at the guide-rail contact and at the

sheave.
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5. NON-STATIONARY MODEL

5.3 Simulation

The acceleration responses of the main components during an elevator travel will be

simulated by means of the models developed in Section 5.2.

The values of all the parameters correspond to the laboratory model that will be de-

scribed in Chapter 6. They correspond as well to the case described in Section 4.3.

The experimental tests that have been carried out in order to estimate some of these

values will be described as well in Chapter 6.

The masses are mw =33 kg and mc =70.5 kg. The length lt, the mass density µ and the

elasticity modulus cross-sectional area product EA of the rope are 8.6 m, 0.095 kg/m

and 106 N respectively. The moment of inertia and the radius of the traction sheave

are I = 0.3385 kg·m2 and r = 0.065 m respectively.

5.3.1 Computation of the motor parameters by FEA

The electric motor model (described in Section 5.1.1) uses some characteristic param-

eters such as inductances, resistance, magnet flux linkage and torque constants. All

those parameters of the motor have been computed by Finite Element Analysis (FEA)

by means of the software FLUX. In Fig. 5.4 the simulated motor geometry along with

the mesh distribution are shown.

Figure 5.4: Mesh distribution

As the motor consist of p=6 pole pairs, the simulation geometry can be simplified to

one pole pair domain. In Fig. 5.5 the magnetic field induced by the magnets around

the geometry of the motor is shown.
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Figure 5.5: Spatial distribution of the magnetic field induced by the magnets

Table 5.1 summarises the main motor parameters computed by FEA simulations.

Coil Resistance Rs 0.33 Ω

d-axis Inductance Ld 8.5 mH

q-axis Inductance Lq 11.7 mH

Magnet Flux Linkage Ψpm(rms) 0.83 Wb

Average Torque Constant Kτ 10.44 Nm/A

Torque Ripple Constant Kk 0.1354 Nm/A

Cogging Torque Magnitude Kcg 1.25 Nm

Table 5.1: Parameters computed by FEA simulations

In addition to the components of the torque ripple described, radial forces are generated

at the air gap between the stator and the rotor of the machine (17), that cause vibration

of the stator core and yoke. The radial magnetic force per unit area or magnetic pressure

waveform at any point of the air gap is obtained bay means of the Maxwell’s stress

tensor theorem given by Eqn. 5.51

Prd(θ, t) =
1

2µ0

(

B2
n(θ, t)−B2

tg(θ, t)
)

(5.51)

where θ is the rotation angle with respect to the axis of symmetry of the machine, µ0 is

the magnetic permeability, t is the time, and Bn and Btg the normal and the tangential

components of magnetic field around the air-gap.
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5. NON-STATIONARY MODEL

The force is decomposed in Fourier series, so that the inner surface of the stator is

subjected to several sinusoidally distributed loads. The main components in the series

contribute to the torque ripple too, specially when the spatial order and frequency

of the excitation force are close to the stator mode shape and corresponding natural

frequency respectively.

Fig. 5.6 shows the waveform of the magnetic radial pressure at a certain point of the

stator core as a function of the rotor position. The spatial period of this signal is π/6

for symmetry reasons.
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Figure 5.6: Magnetic radial force per unit area at rated load condition

Fig. 5.7 shows the components (spatial orders) in the corresponding Fourier series.

The highest component corresponds to the spatial order 0 and it is a constant pres-

sure; the spatial order 2 is a sinusoidal pressure distribution of spatial period π/6 and

corresponding excitation frequency twice the fundamental one, 2ωs, and it is the main

harmonic of the radial force.
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Figure 5.7: Fourier series components
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5.3 Simulation

5.3.2 Damping coefficients

Viscous friction and any other possible energy loss at the machine have been lumped in

the parameter csh in Eqns. 5.34 and 5.50; the value assigned to it is 3 kg/s, estimated

from some experimental tests that will be described in Chapter 6.

Damping at the guide-rail contact has been accommodated in the parameter ζi in Eqn.

5.36. The value assigned to it is 0.036 and has been estimated from experimental tests

described in Chapter 6. It is calculated by (12)

ζ =
1

2π
ln

x(t)

x(t+ T )
(5.52)

applied to the exponential decrease in the vibration amplitude that occurs after a sharp

and sudden stop of the car-frame in the laboratory setup. In Eqn. 5.52, x(t) is the

acceleration signal and T its period. The same value of ζ has been assumed for all

modes. The values of cw and cc in Eqn. 5.50 are assumed to be equal and calculated

by (12)

cw = cc = 2ζωmw (5.53)

where ω is the circular frequency corresponding to the period T . The value obtained

is around 148 kg/s.

5.3.3 System response

The particular reference velocity profile to be followed by the car-frame is given by Fig.

5.8.

The main electromagnetic torque ripple and the cogging torque frequency values are

respectively 6 and 12 times the fundamental frequency ωs, that is around 6 Hz at the

setup rated speed (see Fig. 5.8). Those frequencies are 36 Hz and 72 Hz respectively.

Furthermore, the 2nd order component of the radial force is around 12 Hz.

A particular torque ripple (see Chapter 6) has been added as a perturbation to the con-

troller generated torque. Fig. 5.9 shows the average power spectral density of the torque

ripple during the constant velocity stage. The frequency components corresponding to

the main electromagnetic torque ripple, the cogging and the main component of the

radial force, 36, 72 and 12 Hz respectively, are apparent, but there are also components

at 1 Hz and 6 Hz (the electric frequency) and some of its harmonics (18 Hz, 24 Hz).
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Figure 5.8: Reference a) velocity and b) counterweight-side rope length

The simulation model is implemented in the MATLAB/Simulink computational envi-

ronment. The travel has been simulated by the two models developed. In the case of

the DPM, the set of Eqns. 5.34 has been solved. Two cases have been considered: in

the first one, the first two terms have been considered in Eqn. 5.33 during the discreti-

sation process of the PDE set Eqns. 5.14-5.18; in the second one, the first five terms

that, for this particular case, involves considering all natural frequencies below 750 Hz.

Figs. 5.10 and 5.11 show the counterweight and car accelerations respectively, obtained

by simulating the LPM and the DPM with two and five terms.

It can be observed that both models provide almost the same accelerations. It is be-

cause the counterweight, the car and the sheave are located at nodes in all mode shapes

from the 4th onwards. Bearing in mind that for the higher modes (from the fourth mode

upwards) the locations of the car, traction sheave and counterweight elements corre-

spond to nodes, and considering that the first mode represents the overall motion of the

system, it can be concluded that only the second mode and the third mode contribute

to the acceleration responses of these elements. Therefore, the 5 DOF LPM model is a

good approximation to predict the counterweight, car and sheave response.

The spectrogram of the simulated counterweight and car accelerations are shown in

Figs. 5.12 and 5.13. The spectrograms, in dB/Hz (dB relative to the reference value of

1 m/s2), have been calculated by the Burg algorithm (50). The frequency band shown

is the interval 0-128 Hz. The natural frequencies of the system in that band have been

traced as well.
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5.4 Conclusions
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Figure 5.9: Torque ripple average power spectral density in the constant velocity stage

The excitation frequencies present in Fig. 5.9 appear in the spectrograms shown in

Figs. 5.12 and 5.13. The vibration amplitude at the excitation frequency of 12 Hz is

particularly high because it is the main component in the torque ripple (see Fig. 5.9)

but also due to its proximity to the second natural frequency of the system.

During the constant velocity stage, Fig. 5.10 shows that the amplitude of vibration

increases progressively until t =8 s. Figs. 5.12 and 5.13 show that the 2nd and 3rd

natural frequencies approach are the closest to the excitation frequency of 12 Hz around

that instant, which can be the reason of the progressive increase.

5.4 Conclusions

A comprehensive mathematical model has been developed in order to simulate the re-

sponse of the system. It includes the drive system, with the machine and its controllers,

whose parameters have been calculated by the electromagnetic FEM software FLUX.

The acceleration response of the system during a travel has been simulated. A partic-

ular torque ripple has been added to the controller generated one.

Regarding the car-counterweight-sheave-ropes assembly, a novel distributed-parameter

model is developed, but it is shown that only two modes contribute to the car and

counterweight responses and that a five degree-of-freedom lumped-parameter model is

as accurate as the distributed-parameter one.

61

Nonstationary/figures/espektrokizkur.eps


5. NON-STATIONARY MODEL

It is observed that the excitation frequencies originated at the machine close to the ele-

vator system natural frequencies are particularly manifest in the car- and counterweight-

frame acceleration signals and that their amplitude varies according to the proximity

between them (resonance phenomena).
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Figure 5.10: Simulated counterweight acceleration by the DPM with 2 terms (green),

the DPM with 5 terms (red) and the LPM
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Figure 5.11: Simulated car acceleration by the DPM with 2 terms (green), the DPM

with 5 terms (red) and the LPM
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5.4 Conclusions
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Figure 5.12: Spectrogram of the counterweight acceleration
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Figure 5.13: Spectrogram of the car acceleration
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5. NON-STATIONARY MODEL
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6

Measurements

A number of tests are performed on a 1:1 roping configuration laboratory model.

First, some tests are carried out to estimate the rope elasticity modulus.

Other tests consist of measuring the acceleration response at the suspended masses and

at the drive machine, the machine shaft velocity and the three phase current intensities

supplied to the machine during several travels. The machine torque is estimated from

the current intensities.

Viscous friction at the guide-rail contact and at the machine are estimated from the

experimental tests.

The measured and simulated acceleration responses, either in time or frequency domain,

are compared and it is shown that the elevator car vibrates at frequencies generated at

the machine, especially when they are close to the system natural frequencies.

6.1 Tests in elevator installations

A number of tests have been fulfilled on real elevator installations.

One of the tests consists of measuring acceleration responses during an elevator travel.

Accelerometers have been placed on the car floor and on the ropes (see Fig. 6.1). It

has been observed that excitation frequencies generated at the machine are present in

the acceleration measured on the car floor.

Some other tests have been performed to obtain the natural frequencies of the system.

For instance, for a certain car position, a force has been applied to the elevator car
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6. MEASUREMENTS

by either an impact hammer or an inertial shaker1 (see Fig. 6.2), both the applied

force and the acceleration car have been measured and the frequency response func-

tions between them calculated. The results show some natural frequencies, but it is

not clear whether they correspond to the whole system, due to the rope elasticity, or,

for instance, to a particular component of the car-frame.

The acceleration measured by the accelerometer placed on the rope (see Fig. 6.1) shows

a similar frequency content in the three directions of the space, due to coupling.

Figure 6.1: Accelerometer attached to the rope

Figure 6.2: Inertial shaker at the bottom of the car

Operational modal analysis (OMA) has been applied (22) in order to identify car nat-

ural frequencies and mode shapes during an elevator travel, and a rigid body mode

corresponding to the first natural frequency of the system could have been identified.

Some tests have been carried out to identify passages through resonances. The accel-

eration response of the elevator car during a travel has been measured either with or

1Gearing & Watson V100 with Trunnion T100 and amplifier DSA1
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6.2 Laboratory model

without additional excitation force applied at a certain frequency and supplied by the

previous inertial shaker placed at the bottom of the car. No clear conclusion has been

obtained.

To summarise, although some rough conclusions can be obtained from measurements

performed on a real elevator installation, tests fulfilled on a simpler laboratory model

can be more helpful to check the simulation models.

6.2 Laboratory model

The schematic of the laboratory model and the experimental setup are shown in Fig.

6.3.

Traction machine

Diverting pulley

mw

lw

mc

lc

Data Acquisition and Measurement System

Accelerometers

Figure 6.3: Experimental setup

Two equal rigid rigs are suspended at each side of the traction sheave by one wire rope

and guided vertically as illustrated in Fig. 6.4.

A finite element model of the car or counterweight frame assemblies has been developed

in order to calculate its natural frequencies with the first natural frequency determined
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6. MEASUREMENTS

Figure 6.4: Setup frame

as around 235 Hz.

Fig. 6.5 shows the machine assembly with the traction sheave and the diverting pulley.

Figure 6.5: Machine, traction sheave and diverting pulley

The suspended rig at the diverting pulley side will be referred to as the counterweight,

and that one suspended directly from the traction sheave as the car. Both rigs have

got the same mass, 33 kg, but there is the possibility to increase it by placing some

weights on them. The length from the car to the traction sheave is lc and that one

from the counterweight to the diverting pulley is lw = lt − lc, where lt =8.6 m. Other

approximate values of the system parameters are I = 0.3385 kg·m2, r = 0.065 m and
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6.3 Elasticity modulus of the rope

µ = 0.095 kg/m.

6.3 Elasticity modulus of the rope

Experimental tests have been carried out in order to determine the value of the product

of the rope elasticity modulus and the cross-section area EA. The determination of the

value of EA is based on the characteristic equation (Eqn. 6.1) that gives the natural

frequencies of a system that consists of a rope with a fixed end and a suspended mass

at the other end ((28)).

mcγn sin(γnl)−m cos(γnl) = 0 (6.1)

fn =
1

2π
γn

√

EA

m

where l is the length of the rope and f the natural frequency. According to the system

described by Eqn. 6.1, the machine (see Fig. 6.5) is not working and the rope top end

is fixed. The sensors used are given in Table 6.1.

Acquisition system B&K Pulse

Accelerometers B & K 4371, s.n. 1573419

Charge amplifiers B & K 2635, s.n. 1602883

Table 6.1: Measurement system

It is measured the transitory acceleration response of the suspended mass, for different

mass values and rope lengths, and the system first natural frequency and corresponding

damping ratio are identified from the acceleration signal power spectrum. For instance,

Fig. 6.6 shows the frame acceleration for the case of a suspended mass of 153 kg and

a 4 m long rope and Fig. 6.7 the average PSD in the interval 1-1.5 s estimated by the

Burg algorithm (50), given in dB/Hz relative to the reference value of 1 m/s2.

Table 6.2 shows the average results obtained.

The values of the product EA for the different suspended masses can be seen in Fig.

6.8.
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Figure 6.6: Acceleration of the frame after a hammer impact
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Figure 6.7: PSD of the frame acceleration in the 1-1.5 s interval

It can be concluded that as the tension of the rope increases the value of EA increases

as well. The slope of the curve decreases as the value of the mass increases.

An average value of EA = 106 N has been assumed in the simulations.

6.4 Tests during elevator travels

The values of the system parameters considered in the computer simulations in section

5.3 correspond to the laboratory model described in section 6.2. Those simulation

results have been compared to those obtained from experimental tests performed on

the laboratory model (see Fig. 6.3).
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6.4 Tests during elevator travels

Mass [kg] Length [m] Frequency [Hz] Damping ratio [%]

33 6 9.6 4.1

4 11.3 3.6

2 14.1 4.0

57 6 8.4 6.2

4 9.8 3.0

2 12.6 4.2

105 6 6.6 9.3

4 8.0 2.7

2 10.4 6.0

153 6 5.7 7.0

4 6.9 4.0

2 9.2 10.7

201 6 5.1 6.3

4 6.1 3.9

2 8.5 11.9

Table 6.2: First natural frequency and damping ratio of a suspended mass system

6.4.1 Measurement procedure

Three accelerometers, each with its corresponding charge amplifier (see Table 6.1) have

been placed on the frames at the car and at the counterweight side respectively, and

on the machine (see Fig. 6.3).

The accelerations have been recorded during a travel together with the encoder signal,

proportional to the actual velocity of the machine shaft, and the current intensities of

the three phases feeding the machine, measured by current transducers. The sampling

frequency has been set as 16384 Hz.

Several tests have been carried out, with the rigs travelling in both directions; the mass

of the counterweight set as mw = 33 kg in all the tests and the mass of the car mc has

taken four different values: 33, 45.5, 58 and 70.5 kgs.

6.4.2 Measured torque ripple

Fig. 5.8 shows the reference velocity and counterweight-side rope length time pro-

files corresponding to one of the test travels; in this particular case, mw =33 kg and
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Figure 6.8: Values of the product EA as a function of the suspended mass

mc =70.5 kg. The velocity profile is composed of acceleration and deceleration stages

and a constant velocity stage where the rig velocity is around 0.4 m/s.

The machine torque has been estimated from the measured three phase current inten-

sities by means of the quadrature zero (dqo) transformation theory (48) and Eqn. 5.9.

Fig. 6.9 shows the torque time plot corresponding to the time profiles shown in Fig.

5.8.
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Figure 6.9: Machine torque for the case mw =33 kg and mc =70.5 kg

According to the reference system in Fig. 5.3, the torque assumes negative values.

During the constant velocity stage, the absolute mean value of the torque decreases

slightly, because the car-side rope length and mass decrease during the travel and a
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6.4 Tests during elevator travels

smaller torque is needed.

There is a very apparent oscillation of the torque with period at around one second,

which corresponds to the period of rotation of the machine shaft, possibly due to im-

balance of the machine.

At the deceleration stage, it is not the machine controller that stops the travel, but the

machine brake is applied. This scenario is reflected in the torque diagram at the end

of the travel.

Fig. 5.9 shows the average power spectral density of the torque ripple during the

constant velocity stage. The frequency components corresponding to the main electro-

magnetic torque ripple, the cogging and the main component of the radial force, 36, 72

and 12 Hz respectively, are apparent, but there are also components at 1 Hz, due to the

machine imbalance, 6 Hz, the electric frequency (the frequency of the stator currents),

and some of its harmonics (18 Hz, 24 Hz). The actual amplitudes of the electromagnetic

(36 Hz) and cogging torque (72 Hz) components obtained from the measured current

intensities are around 0.3 Nm and 0.5 Nm respectively and differ from the amplitudes

calculated by FEA (Table 5.1). The amplitudes of the frequency components at 1 Hz,

6 Hz and 12 Hz are around 2 Nm, 0.3 Nm and 3.5 Nm respectively.

6.4.3 Experimental results

Fig. 6.10 show the counterweight and car accelerations recorded during the travel

described in section 6.4.2, where the counterweight and car masses were mw =33 kg and

mc =70.5 kg respectively and the velocity profile was given by Fig. 5.8 (a). Frequencies

below 1 Hz have been filtered out.

Figs. 6.11 and 6.12 show the spectrograms of the accelerations measured by the sensors

placed on the car and the counterweight respectively. The spectrograms, in dB/Hz (dB

relative to the reference value of 1 m/s2), have been calculated by the Burg algorithm

(50). The frequency band shown corresponds to the interval 0-128 Hz. The natural

frequencies of the system in that band have been traced as well.

When analysing the frequency content of the accelerations recorded, it must be con-

sidered that there is a diverting pulley between the sheave and the counterweight, that

could damp vibration.

The main electromagnetic torque ripple and the cogging torque frequency values are

respectively 6 and 12 times the fundamental frequency ωs, which is around 6 Hz at
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Figure 6.10: Accelerations of a) the car and b) the counterweight

the rated speed of the system. Those frequencies are 36 Hz and 72 Hz respectively.

Furthermore, the 2nd order component of the radial force is around 12 Hz. All these

frequencies appear in the spectrograms shown in Figs. 6.11 and 6.12. Vibration am-

plitude at the excitation frequency of 12 Hz is particularly high due to its proximity to

the second natural frequency of the system. Fig. 6.11 shows that during the constant

velocity stage the amplitude corresponding to the frequency of around 12 Hz increases

progressively; it could be because the 3rd natural frequency gets progressively closer to

this frequency. However, this feature is not quite clear in Fig. 6.12. Fig. 6.12 shows

that there is an excitation frequency at 24 Hz; this could correspond to the component

of spatial order 4 in the radial force (see Fig. 5.7). Although its amplitude is not

so high in the FEM calculation, it could be due to its proximity to the 2nd natural

frequency.

6.4.4 Friction and energy losses at the machine

Viscous friction and any other possible energy loss at the machine have been accom-

modated in the parameter csh. A rough estimate of its value has been obtained by

applying the following equation that is satisfied during the constant velocity stage

when mc = mw

τ/r − cshθ̇r − cwθ̇r − ccθ̇r = 0 (6.2)
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6.5 Comparison of experimental ad simulation results
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Figure 6.11: Spectrogram of the acceleration measured on the car

where τ is the torque measured at the corresponding travel and θ̇ the shaft velocity.

The value obtained is around 3 kg/s.

6.4.5 Damping at the rail-guide contact

The value of ζi in Eqn. 5.36 has been calculated by Eqn. 5.52. Based on the exponential

decrease in the amplitude shown in Fig. 6.10 when the rigs stopped at the end of the

travel, the value obtained is around 0.036. The same value of ζ has been assumed for

all modes. The values of cw and cc are assumed to be equal and calculated by Eqn.

5.53. The value obtained is around 148 kg/s.

6.5 Comparison of experimental ad simulation results

Figs. 6.13 and 6.14 show the comparison between the recorded and the simulated

counterweight and car accelerations respectively where a highpass filter with the cut-

off frequency at 1 Hz has been applied to both signals (simulated and measured).

The spectrogram of the simulated counterweight and car accelerations is shown in Figs.

5.12 and 5.13.

The excitation frequencies corresponding to the main electromagnetic torque ripple,

the cogging and the second order component of the radial force, particularly manifest

due to its proximity to the first natural frequency, can be observed.
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Figure 6.12: Spectrogram of the acceleration measured on the counterweight

The progressive increase in amplitude during the constant velocity stage at the excita-

tion frequency of 12 Hz that was observed in the acceleration recorded on the car (see

Fig. 6.10) is observed as well in the simulated one (see Fig. 6.14); however, it is not so

evident in the counterweight acceleration (see Fig. 6.13).

Regarding the deceleration stage, in the simulation it is the machine controller that

stops the travel, while it is the brake in the experimental tests, causing high vibrations,

that are not observed in the simulation results.
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Figure 6.13: Recorded (red) and simulated (black) counterweight accelerations
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Figure 6.14: Recorded (red) and simulated (black) car accelerations

6.6 Conclusions

Experimental tests have been performed using a laboratory model to study vertical

vibrations of the car and counterweight assembly due to excitations generated at the

drive system in an elevator installation.

Simultaneous accelerations of the setup components, the velocity signal provided by

the encoder, and the three phase motor currents have been recorded during a number

of travels for a range of suspended masses. The torque supplied by the machine has

been estimated from the phase current intensities.

Estimates of values of the rope elasticity modulus and the friction coefficients have been

obtained from experimental tests and used in the simulations.

The accelerations obtained in the simulations are similar in amplitude and frequency

content to the corresponding measured dynamic signals. It is shown that the drive-

system borne excitation frequencies close to the elevator system natural frequencies

appear in the car- and counterweight-frame acceleration signals.

The proposed simulation models can be used as design and analysis tools in the devel-

opment of high-performance elevator systems.
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7

Elevator 2:1 roping configuration

In this chapter a 2:1 roping configuration elevator system is considered and machine

generated elevator vertical vibrations investigated.

The 2:1 roping configuration system is modelled as an assemblage of one-dimensional

distributed subsystems, the rope segments, with lumped inertia elements (car, counter-

weight, traction sheave, pulleys) at their ends, and acting together as a single system

due to constraints imposed between adjacent subsystems. It is assumed that:

• All inertia elements are lumped at their corresponding points.

• The rope material is uniform.

• The sheave is perfectly rigid and there is no rope slip across it.

• Only longitudinal motion is admitted in the rope subsystems.

The eigenvalue problem is solved analytically and the natural frequencies and corre-

sponding mode shapes obtained.

The machine torque ripple and the radial forces generated at the machine air-gap be-

tween the stator and the rotor are computed using FEM simulation.

The acceleration response at the suspended masses and at the drive machine end in a

laboratory model is measured during the system travel.

The experimental results confirm the FEM simulation results obtained concerning the

excitation frequencies.

It is confirmed as well that the excitation frequencies close to the natural frequencies

of the system are particularly magnified at the setup rig.
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7. ELEVATOR 2:1 ROPING CONFIGURATION

7.1 Natural frequencies and mode shapes

The natural frequencies and mode shapes of a 2:1 roping configuration elevator system

(see Fig. 7.2) are calculated in this section.

The ropes are assumed to be continuous and homogeneous one-dimensional continua.

It is assumed as well that they do not slip on the sheave.

The inertia elements are lumped at their corresponding discrete points. Both the car

and counterweight are composed of two elements, the frame, represented by a rectangle,

and a pulley, represented by a circle. Fig. 7.1 shows the corresponding scheme and the

variables involved.

The mass of the car (the car pulley included) and the radius and moment of inertia of

the corresponding pulley are m1, r1 and I1 respectively. The corresponding parameters

of the counterweight are m2, r2 and I2. The mass density, the elasticity modulus and

the cross section area of the ropes are µ, E and A respectively. The whole length of

the rope is lt.

An inertial reference frame fixed at the ceiling will give the equilibrium position of any

section of the cable, x.

I1, r1

I3, r3

I2, r2

m1

m2

x

x = l3

x = l1

x = l2

u1(x, t) u2 u3 u4

Figure 7.1: Model of a 2:1 configuration
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There are two variables describing the displacement of the suspended masses: the

acceleration of the centre of mass and the rotation angle of the pulley. Those describing

the movement of the car are uc,1(t) and θ1(t), and for the counterweight uc,2(t) and

θ2(t). It is assumed that the centre of masses of the traction sheave is fixed (uc,3(t) =

0) and θ3(t) will be the variable describing its angle of rotation.

The cable will be divided into four parts in order to describe the dynamic displacement

of any of its points:

• The part from the ceiling to the car pulley, whose displacement will be given by

u1(x, t) for 0 ≤ l ≤ l1.

• The part from the traction sheave to the car pulley, whose displacement will be

given by u2(x, t) for l3 ≤ l ≤ l1.

• The part from the traction sheave to the counterweight pulley, whose displacement

will be given by u3(x, t) for l3 ≤ l ≤ l2.

• The part from the ceiling to the counterweight pulley, whose displacement will

be given by u4(x, t) for 0 ≤ l ≤ l2.

The following relations are satisfied between the displacement of the centres of masses

and the rotation angles of the pulleys of the car and counterweight, and the traction

sheave and those of the cable displacement functions.

uc,1(t) =
1

2
[u1(l1, t) + u2(l1, t)] (7.1)

uc,2(t) =
1

2
[u3(l2, t) + u4(l2, t)] (7.2)

uc,3(t) = 0 (7.3)

θ1(t) =
1

2r1
[u1(l1, t)− u2(l1, t)] (7.4)

θ2(t) =
1

2r2
[u3(l2, t)− u4(l2, t)] (7.5)

θ3(t) =
1

r3
u3(l3, t) (7.6)

The dynamics of the system of Fig. 7.1 is described by the following set of PDE.

mui,tt(x, t)− EAui,xx(x, t) = 0, ∀i = 1, ..., 4 (7.7)

81



7. ELEVATOR 2:1 ROPING CONFIGURATION

The corresponding boundary conditions for the set of Eqns. 7.7 are

u1(0, t) = 0 (7.8)

u4(0, t) = 0 (7.9)

m1üc,1(t) + EA u1,x(l1, t) + EA u2,x(l1, t) = 0 (7.10)

I1θ̈1(t) + EA u1,x(l1, t)r1 − EA u2,x(l1, t)r1 = 0 (7.11)

m2üc,2(t) + EA u3,x(l2, t) + EA u4,x(l2, t) = 0 (7.12)

I2θ̈2(t) + EA u3,x(l2, t)r2 − EA u4,x(l2, t)r2 = 0 (7.13)

u2(l3, t) = −u3(l3, t) (7.14)

u2,x(l3, t)r3 − u3,x(l3, t)r3 + I3θ̈3(t) = 0 (7.15)

where ()x means the derivative with respect to x.

We search for solutions to the set of Eqns. 7.7 with boundary conditions 7.8-7.15 of

the form

ui(x, t) = q(t)Φi(x), ∀i = 1, ..., 4 (7.16)

The following ODEs are obtained by substituting the derivatives of the Eqn. 7.16 into

the set of PDEs 7.7.

q̈(t) + ω2q(t) = 0 (7.17)

Φ′′(x) + γ2Φ(x) = 0 (7.18)

γ2 =
µ

EA
ω2 (7.19)

Thus, the Eqn. 7.16 will have the following form in order to satisfy the ODEs 7.17 and

7.18.

ui(x, t) = (Ai sin(γx) +Bi cos(γx)) sin(ωt), ∀i = 1, ..., 4 (7.20)

From condition 7.8, it results

u1(x, t) = A1q(t) sin(γx) (7.21)
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In a similar manner, from condition 7.9,

u4(x, t) = A4q(t) sin(γx) (7.22)

Exp. 7.1 is differentiated twice with respect to time (it involves the second deriva-

tives with respect to time of u1(l1, t) and u2(l2, t) given by Eqn. 7.20), and u1(x, t)

and u2(x, t) are differentiated with respect to x and evaluated at l1. The resulting

expressions are introduced into Eqn. 7.10. Then, by means of Eqns. 7.18 and 7.19, we

obtain

(A1 +A2) f1(γ) +B2f2(γ) = 0 (7.23)

f1(γ) =
1

2

m1

µ
γ sin(γl1)− cos(γl1) (7.24)

f2(γ) =
1

2

m1

µ
γ cos(γl1) + sin(γl1) (7.25)

In a similar manner, Eqn. 7.4 is differentiated twice with respect to time, and the

resulting one together with u1,x(l1, t) and u2,x(l1, t) obtained before is introduced into

Eqn. 7.11 to obtain

(A1 −A2) g1(γ)−B2g2(γ) = 0 (7.26)

g1(γ) =
I1

2µr21
γ sin(γl1)− cos(γl1) (7.27)

g2(γ) =
I1

2µr21
γ cos(γl1) + sin(γl1) (7.28)

The same procedure is applied with Eqns. 7.2 and 7.5 and Eqns. 7.12 and 7.13 to

obtain

(A3 +A4) f3(γ) +B3f4(γ) = 0 (7.29)

f3(γ) =
1

2

m2

µ
γ sin(γl2)− cos(γl2) (7.30)

f4(γ) =
1

2

m2

µ
γ cos(γl2) + sin(γl2) (7.31)
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(A3 −A4) g3(γ) +B3g4(γ) = 0 (7.32)

g3(γ) =
I2

2µr22
γ sin(γl2)− cos(γl2) (7.33)

g4(γ) =
I2

2µr22
γ cos(γl2) + sin(γl2) (7.34)

In a like manner, from Eqn. 7.6 and Eqn. 7.15, it results

A3g5(γ) +B3g6(γ)−A2f5(γ) +B2f6(γ) = 0 (7.35)

g5(γ) =
I3
µr23

γ sin(γl3) + cos(γl3) (7.36)

g6(γ) =
I3
µr23

γ cos(γl3)− sin(γl3) (7.37)

f5(γ) = cos(γl3) (7.38)

f6(γ) = sin(γl3) (7.39)

Finally, from Eqn. 7.14

(A2 +A3) f6(γ) + (B2 +B3) f5(γ) = 0 (7.40)

As a result, it is obtained a set of linear algebraic equations formed by Eqns. 7.23,

7.26, 7.29, 7.32, 7.35 and 7.40 that can be expressed as

Ab = 0 (7.41)

where

A =

















f1 f1 f2 0 0 0
g1 −g1 −g2 0 0 0
0 0 0 f4 f3 f3
0 0 0 g4 g3 −g3
0 −f5 f6 g6 g5 0
0 f6 f5 f5 f6 0

















(7.42)

(7.43)

b = [A1 A2 B2 B3 A3 A4]
T (7.44)

In order the set of equations 7.41 to have other solution but the null, we have got that
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detA = 0 (7.45)

Eqn. 7.45 is the characteristic equation, the roots of which will provide us the natural

frequencies of the system. It results,

detA = F3(γ)F1(γ)− F2(γ)F4(γ) = 0 (7.46)

F1(γ) = g5(γ)f4(γ)g3(γ) + g5(γ)f3(γ)g4(γ)− 2f3(γ)g3(γ)g6(γ) (7.47)

F2(γ) = f5(γ)f2(γ)g1(γ) + f5(γ)f1(γ)g2(γ) + 2f1(γ)g1(γ)f6(γ) (7.48)

F3(γ) = −f2(γ)g1(γ)f6(γ)− f1(γ)g2(γ)f6(γ) + 2f1(γ)g1(γ)f5(γ) (7.49)

F4(γ) = f4(γ)g3(γ)f6(γ) + f3(γ)g4(γ)f6(γ)− 2f3(γ)g3(γ)f5(γ) (7.50)

In this case, the solution of the set of equations is

A1 =
1

2
CF4(γ)F5(γ) (7.51)

A2 = −
1

2
CF4(γ)F6(γ) (7.52)

A3 = −
1

2
CF3(γ)F7(γ) (7.53)

A4 =
1

2
CF3(γ)F8(γ) (7.54)

B2 = Cf1(γ)g1(γ)F4(γ) (7.55)

B3 = Cf3(γ)g3(γ)F3(γ) (7.56)

where C is an arbitrary constant and

F5(γ) = f1(γ)g2(γ)− f2(γ)g1(γ) (7.57)

F6(γ) = f2(γ)g1(γ) + f1(γ)g2(γ) (7.58)

F7(γ) = f4(γ)g3(γ) + f3(γ)g4(γ) (7.59)

F8(γ) = f3(γ)g4(γ)− f4(γ)g3(γ) (7.60)

Finally, the mode shapes are given by the following expressions
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u1(x, t) =
1

2
Cq(t)F4(γ)F5(γ) sin(γx) (7.61)

u2(x, t) = Cq(t)

(

−
1

2
F4(γ)F6(γ) sin(γx) + f1(γ)g1(γ)F4(γ) cos(γx)

)

(7.62)

u3(x, t) = Cq(t)

(

−
1

2
F3(γ)F7(γ) sin(γx) + f3(γ)g3(γ)F3(γ) cos(γx)

)

(7.63)

u4(x, t) =
1

2
Cq(t)f3(γ)g3(γ)F3(γ)F8(γ) sin(γx) (7.64)

7.2 The laboratory setup

Fig. 7.2 shows the laboratory model with a 2:1 roping configuration where the exper-

imental tests have been carried out. There is one only rope, 23 m long. The machine

is half a meter over the ceiling. Fig. 7.3 shows the machine and the traction sheave.

The approximate values of the parameters are as follows: the radius and moment of

inertia of the traction sheave, r = 0.08 m and I = 0.3385 kg·m2 respectively; the radius

and moment of inertia of the car- and counterweight-pulleys, 0.08 m and 0.0029 kg·m2

respectively; the mass of the suspended frames, 94 kg (see Fig. 7.4); the mass density

of the rope, 0.095 kg/m, and the product of the elasticity modulus and the cross-section

area, EA = 106 Pa.

Solving Eqn. 7.45 according to the values of the parameters given in Section 7.2, the

natural frequencies of the setup (see Fig. 7.5) as a function of the length l1 (see Fig.

7.1) are obtained. As the suspended masses are equal, Fig. 7.5 shows a symmetric

graph with respect to the vertical axis l1 = 5.5 m, that corresponds to the situation at

which the distances from the car and the counterweight to the ceiling are equal.

Some natural frequencies decrease as l1 increases; it suggests that those natural frequen-

cies are associated to the car-rope subsystem, that lengthens; some others increase as

l1 increases (as l2 decreases) and it suggests that they are related to the counterweight-

rope subsystem, that shortens.

7.2.1 Finite element analysis of the motor

The diagram of the laboratory model drive system is the same as that one corresponding

to the 1:1 roping cfg. (see Fig. 5.1).

The machine is a 16 pole permanent magnet synchronous motor comprising a stator
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Traction machine

Accelerometers

Measurement system

Figure 7.2: 2:1 roping configuration laboratory setup

Figure 7.3: Machine and traction sheave

with 48 slots. The characteristics of this machine are summarised in Table 7.1. Its

model is the same as in Fig. 5.2 and described in section 5.1.1.

The electric motor model uses some characteristic parameters such as inductances,

resistance, magnet flux linkage and torque constants. All those parameters of the

motor have been computed by Finite Element Analysis (FEA).

As the motor consist of p=8 pole pairs, the simulation geometry can be simplified to

one pole pair domain. In Fig. 7.6 the magnetic field induced by the magnets around

the geometry of the motor is shown.

Table 7.2 summarises the main motor parameters computed by FEA simulations.
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Figure 7.4: Hanging mass

Rated speed 382.5 rpm

Rated current 22.28 A

Rated torque 293 Nm

Maximum current 38.65 A

Maximum torque 513 Nm

Table 7.1: Machine characteristics

Apart from those components of the torque ripple considered, additional harmonics

appear due to the radial magnetic forces between the stator and the rotor generated at

the air-gap. The radial magnetic force per unit area or magnetic pressure waveform at

any point of the air gap is obtained bay means of the Maxwell’s stress tensor theorem

(17) given by Eqn. 7.65.

pr(θ, t) =
1

2µ0

(

B2
n(θ, t)−B2

t (θ, t)
)

(7.65)

where θ is the rotation angle with respect to the axis of symmetry of the machine, µ0 is

the magnetic permeability, t is the time, and Bn and Bt the normal and the tangential

components of magnetic field around the air-gap. Fig. 7.7 shows the waveform of

the magnetic radial pressure at a certain point of the stator core as a function of the

rotor position. The spatial period of this signal is π/4 for symmetry reasons. Fig. 7.8

shows the components (spatial orders) in the corresponding Fourier series. The highest

component corresponds to the spatial order 0 and it is a constant pressure; the spatial

order 2 is a sinusoidal pressure distribution of spatial period π/8 and corresponding

88

Stationary2/figures/karroC21.ps


7.3 Measurements

1 2 3 4 5 6 7 8 9 10
0

50

100

150

200

250

Length [m]

F
re

qu
en

cy
 [H

z]

Figure 7.5: System natural frequencies versus length l1 (first one in red; second one in

blue; third one in black; fourth one in magenta and fifth one in green)

Coil Resistance Rs 0.7 Ω

d-axis Inductance Ld 7.16 mH

q-axis Inductance Lq 9.86 mH

Magnet Flux Linkage Ψpm(rms) 0.560 Wb

Average Torque Constant Kτ 13.44 Nm/A

Torque Ripple Constant Kτ12 0.0781 Nm/A

Cogging Torque Magnitude ∆τc < 0.1 Nm

Table 7.2: Parameters computed by FEA simulations

excitation frequency twice the fundamental one, 2ωs, and it is the main harmonic of

the radial force.

7.3 Measurements

Fig. 7.2 shows a scheme of the setup with the acquisition system. Three accelerome-

ters, each with its corresponding charge amplifier (look at Table 7.3) have been placed

on both frames and on the machine.

The velocity profile (see Fig. 7.9) is composed of acceleration and deceleration
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Figure 7.6: Spatial distribution of the magnetic field induced by the magnets
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Figure 7.7: Magnetic radial force per unit area at rated load condition

periods and a constant velocity stage where the car velocity is around 1.4 m/s (ωm =

35 rad/s). During the travel, the car (the left rig at Fig. 7.1) moves from the initial

position l1 = 8.5 m to the final l1 = 2.3 m. The rigs are at the same height when l1 =

5.5 m, which occurs around t =10 s.

The acceleration signals measured have been sampled at 512 Hz. Fig. 7.10 shows the

accelerations of a) the machine, b) the counterweight and c) the car obtained. Low

frequencies up to 2 Hz have been filtered.

Acquisition system B&K Pulse

Accelerometers B & K 4371, s.n. 1573419

Charge amplifiers B & K 2635, s.n. 1602883

Table 7.3: Measurement system
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Figure 7.8: Fourier series components
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Figure 7.9: a) Velocity and b) displacement profiles

The evolution of the power spectral density (PSD) of the accelerations during the travel

of the machine and the car have been represented in Figs. 7.11 and 7.12 respectively.

The Burg algorithm (50) has been applied to obtain them, by means of the correspond-

ing Matlab function. The Burg algorithm estimates the spectral content by fitting an

autoregressive (AR) linear prediction filter model of a given order to the signal. Blocks

of 200 samples with an overlapping of a 90% have been taken to estimate the frequency

content. The order of the filter has been 150.

According to the conclusions obtained in Section 7.2.1, during the constant velocity

stage of the system travel, the fundamental frequency ωs is around 15 Hz, the main

electromagnetic torque ripple around 90 Hz, the cogging torque frequency around 180

Hz and the main harmonic of the radial force around 30 Hz.

The acceleration measured on the machine (look at Fig. 7.11) shows clearly the pres-
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ence of the fundamental frequency and all its multiples. Fig. 7.12 shows that some

excitation frequencies are particularly amplified: the fundamental frequency at 15 Hz,

as it close to the first two natural frequencies of the system (look at Fig. 7.5), the main

harmonic of the radial force at 30 Hz, an important component of the torque ripple

whenever there is any eccentricity in the machine shaft, and the electromagnetic torque

ripple component at 90 Hz, close to the third natural frequency (look at Fig. 7.5). It

is manifest as well a component at 60 Hz, at which there is an important component

of the radial force (look at Fig. 7.8).

Besides, the vibration amplitude around the instant t = 10 s, for low frequencies, is

particularly high, what can be due to the fact that the excitation frequency at 15 Hz

and the first two natural frequencies (at 9 Hz and 13 Hz) are all the three very close

to each other.
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Figure 7.10: Accelerations of a) the machine , b) the car and c) the counterweight

7.4 Conclusions

The vertical vibration caused by torque ripple generated at the drive system is trans-

mitted through the suspension ropes to the car.

Hoist ropes, due to their flexibility, loading conditions, and relatively low internal damp-

ing characteristics, largely determine the resonances within the system and the amount

of vibration.
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Figure 7.11: Machine acceleration PSD

A 2:1 roping configuration laboratory model has been represented as an assemblage

of one-dimensional distributed subsystems, the rope segments, with lumped inertia

elements (car, counterweight, traction sheave, pulleys) at their ends, and acting to-

gether as a single system due to constraints imposed between adjacent subsystems.

The eigenvalue problem has been solved analytically and the natural frequencies and

corresponding mode shapes obtained.

The machine torque ripple and the radial forces generated at the machine air-gap be-

tween the stator and the rotor have been computed using FEM simulation.

The acceleration response at the suspended masses and at the drive machine end in a

laboratory model have been measured during a number of travels.

The experimental results corroborate the FEM simulation results obtained concerning

the excitation frequencies.

It is confirmed as well that the excitation frequencies close to the natural frequencies

of the system are particularly magnified at the setup rig.
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Figure 7.12: Car acceleration PSD
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8

Summary and conclusions

8.1 Introduction

The primary objective of the thesis was stated as

“The analysis of machine generated elevator car vertical vibrations”

Thus, this research work has focused on one of the aspects of elevator ride quality: ver-

tical vibration, particularly that one associated with the suspension ropes, and caused

by the torque ripple generated at the drive system.

According to the main objective of the research and the conclusions drawn from the

review of the literature, the following decisions were taken:

• Concerning the elevator model to be developed:

– It has been developed a mathematical model of an elevator to study only

vertical vibrations, because the coupling between the vertical and the

lateral vibration has been neglected, and because the aim of the research is

elevator vertical vibrations caused by vertical excitation forces.

– The inertia elements (the car assembly, the counterweight and the traction

sheave) have been lumped at its corresponding points, and the elevator

system is represented as a translating assembly of these inertia elements

coupled and constrained by one-dimensional slender continua, which involves

not considering dynamic issues such as those described in Section 1.4.4.
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– A model of the whole assembly, including the car, the counterweight,

the ropes and the drive system has been developed, because the research to

be done deals with excitation forces generated at the machine, that couples

the car- and counterweight-side ropes through the traction sheave.

A common drive system model, reported in the related literature, has been

developed as well. The input to it is a desired reference velocity profile to

be followed by the car.

– Regarding the ropes, that are distributed-parameter media, either lumped-

or distributed-parameter models have been developed.

• With respect to experimental tests, as a real elevator installation is complex

enough to make difficult obtaining conclusions on the features of its dynamics,

tests have been carried out in laboratory models.

• The influence of the machine generated torque ripple in elevator car vertical

vibration has been specifically studied in this research.

8.2 Main contributions

Next, the main contributions of the research work are enumerated.

Regarding the stationary model of the 1:1 roping configuration elevator system:

• A closed-form solution of the distributed-parameter model equations describing

the dynamics of the system has been obtained.

The orthogonality properties of the mode shapes satisfying the equations have

been obtained as well.

• A lumped-parameter model has been developed too and the following conclusions

have been drawn with respect to the distributed parameter model:

– The first three natural frequencies calculated using the DPM model and

the LPM model compare very well (the first natural frequency is 0 Hz and

corresponds to an overall transport motion of the system).
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– At higher frequencies there are some differences between the results that are

obtained from these models.

It has been demonstrated that if the rope is represented by a larger number

of lumped masses so that the number of degrees of freedom in the LPM

is increased, this model yields more accurate results with the differences

between the frequencies calculated from the DPM and LPM being decreased.

– The car, the counterweight and the sheave are located at the nodes for all

higher mode shapes from the 4th onwards.

Regarding the non-stationary model of the 1:1 roping configuration elevator

system:

• It includes the drive system, with the machine and its controllers, whose

characteristics have been calculated by the electromagnetic FEM software FLUX.

The torque ripple amplitude has also been computed.

• A novel distributed-parameter model has been developed, as well as a

lumped-parameter model. The DPM is described by a set of PDE that is solved

by the Galerkin method.

• It is shown that only two modes contribute to the car and counterweight vibration

responses and, as far as the prediction of the response of the car and the coun-

terweight, it is concluded that a five degree-of-freedom lumped-parameter

model is as accurate as the distributed-parameter model.

Concerning the experimental tests carried out in a 1:1 roping configuration elevator

model, the most noteworthy is:

• Simultaneous car and counterweight accelerations, the velocity signal pro-

vided by the encoder, and the three phase motor currents from which to estimate

the machine torque have been recorded during a number of travels for a range

of suspended masses.

• Estimates of values of the rope elasticity modulus and the friction coeffi-

cients have been obtained from experimental tests and used in the simulations.
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• The accelerations obtained in the simulations are similar in amplitude and

frequency content to the corresponding measured dynamic signals.

• It is shown that the drive-system borne excitation frequencies close to the

elevator system natural frequencies appear in the car- and counterweight-

frame acceleration signals.

With respect to the 2:1 roping configuration elevator, the main conclusions are:

• A closed-form solution of the distributed-parameter model equations

describing the dynamics of the system has been obtained.

• Similar experimental tests to those carried out in the case of the 1:1 roping cfg.

show the presence of machine generated excitation frequencies in the

accelerations measured.

• It is confirmed as well that the excitation frequencies close to the natural

frequencies of the system are particularly manifest in the acceleration spectra

of the suspended masses.

The proposed simulation models can be used as design and analysis tools in the

development of high-performance elevator systems.

8.3 Publications

Related to the work developed, the following paper was accepted on June 1st 2013:

• X. Arrasate, S. Karczmarczyk, G. Almandoz, J.M. Abete, I. Isasa. The modelling,

simulation and experimental testing of the dynamic responses of an elevator sys-

tem. Mechanical Systems and Signal Processing.

The following papers have been presented in a number of Conferences:

• X. Arrasate, J. M. Abete and S. Kaczmarczyk. Distributed longitudinal vibration

model of a lift system including the machine dynamics. 2nd International Confer-

ence on Experiments/Process/System Modelling/Simulation and Optimization.

2nd IC-EpsMsO, Athens (Greece). July 2007.

98



8.4 Future work

• X. Arrasate, J.M. Abete , S. Kaczmarczyk. The Simulation Model of the Vertical

Dynamics and Control of an Elevator System. 2nd edition of the symposium of

the Mechanics of Slender Structures. Baltimore, USA. July 2008.

• X. Arrasate, J.M. Abete , S. Kaczmarczyk. A Simulation Model of the Vertical

Dynamics of an Elevator System. 3rd edition of the Symposium of the Mechanics

of Slender Structures. Donostia-San Sebastin (Spain). July 2010.

• X. Arrasate, S. Kaczmarczyk, G. Almandoz, J.M. Abete, I. Isasa. The modelling

and experimental testing of the vertical dynamic response of an elevator system

with a 2:1 roping configuration. 25th International Conference on Noise and

Vibration engineering (ISMA2012). Leuven (Belgium) 17-19 September 2012.

• X. Arrasate, S. Kaczmarczyk, G. Almandoz, J. M. Abete, I. Isasa. The Modelling,

Simulation and Experimental Testing of Vertical Vibrations in an Elevator System

with 1:1 Roping Configuration. 2nd Symposium on Lift and Escalator Technology.

Northampton (UK), 26-27 September 2012.

• X. Arrasate, S. Kaczmarczyk, G. Almandoz, J.M. Abete, I. Isasa. Measurement

and Simulation of Machine-Borne Vertical Vibration in Elevator Systems. Inter-

national Conference on Vibration Problems. Lisbon (Portugal), 9-12 September

2013.

8.4 Future work

It has been demonstrated that the elevator car vibrates at frequencies generated at

the drive system. The values of these excitation frequencies depend on the machine

characteristics, such as the number of stator pole pairs or slots.

It has been shown as well that the proximity of an excitation frequency to any natural

frequency of the system could make more manifest that tone in the car acceleration

spectrum.

Currently the author is working on the design of new electrical machines for trans-

portation systems that should minimise the torque ripple and whose main excitation

frequencies should be far from the natural frequencies of the system.
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Appendix A

Non-stationary model equations

In this appendix, it is derived the set of PDEs 5.14-5.18 in section 5.2.1.1 that describes

the dynamics of the non-stationary model of the 1:1 roping configuration elevator.

The extended Hamilton’s principle (38) is applied, which means that

∫ t2

t1

(δL+ δW ) dt = 0, L = E−Πe −Πg (A.1)

where L is the system Lagrangian, E the kinetic energy, Πe the rope elastic strain

energy, and Πg the system gravitational potential energy. δW is the virtual work done

by the non-conservative forces. The kinetic energy of the system is expressed as

E =

∫ lw

0
Êw(uw,t, l̇w) ds+

∫ lt

lw

Êc(uc,t, l̇w) ds+ Emw (uw,t(0, t), l̇w) +

+Emsh
(uw,t(lw, t), l̇w) + Emc(uc,t(lt, t), l̇w) (A.2)

where Êw(uw,t, l̇w) and Êc(uc,t, l̇w) are the kinetic energy densities of the counterweight-

and car-side ropes, and Emw(uw,t(0, t), l̇w), Emsh
(uw,t(lw, t), l̇w) and Emc(uc,t (lt, t) , l̇w)

the kinetic energies of the counterweight, traction sheave and car, respectively. Those

energy components are described by the following expressions

Êw(uw,t, l̇w) =
1

2
µ
(

uw,t − l̇w

)2
(A.3)

Êc(uc,t, l̇w) =
1

2
µ
(

uc,t − l̇w

)2
(A.4)

Emw (uw,t(0, t), l̇w) =
1

2
mw

(

uw,t(0, t)− l̇w

)2
(A.5)
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Emsh
(uw,t(lw, t), l̇w) =

1

2
msh

(

uw,t(lw, t)− l̇w

)2
, msh =

I

r2
(A.6)

Emc(uc,t (lt, t) , l̇w) =
1

2
mc

(

uc,t (lt, t)− l̇w

)2
(A.7)

and (̇) and ()t express respectively differentiation and partial differentiation with respect

to t.

The elastic strain energy of the ropes is

Πe =

∫ lw

0
Π̂w(uw,s) ds+

∫ lt

lw

Π̂c(uc,s) ds (A.8)

where (),s denotes partial differentiation with respect to s, and Π̂w(uw,s) and Π̂c(uw,s)

are the counterweight- and the car-side rope elastic strain energy densities respectively.

Those are given by

Π̂w(uw,s) =
1

2
EAu2w,s

Π̂c(uc,s) =
1

2
EAu2c,s

The gravitational potential energy calculated at the sheave level is

Πg = g

[

µ

∫ lw

0
uw ds− µ

∫ lt

lw

uc ds+mwuw(0, t) −mcuc(lt, t)+

−mclc −mwlw −
1

2
µl2w −

1

2
µlc

2

]

(A.9)

where g is the acceleration of gravity.

The virtual work done by the machine torque is given by

δW =
τ

r
(δuw(lw)− δlw) (A.10)

Hamilton’s principle requires that any virtual displacement, arbitrary between two

instants t1 and t2, vanishes at the ends of the time interval, so that at t = t1 and t = t2

δuw = 0, δuc = 0, δuw(0, t) = 0, δuw(lw, t) = 0, δuc(lt, t) = 0, δlw = 0 (A.11)

Regarding the kinetic energy,
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∫ t2

t1

δEdt =

∫ t2

t1

δ

(
∫ lw

0
Êw(uw,t, l̇w)ds

)

dt+

+

∫ t2

t1

δ

(
∫ lt

lw

Êc(uc,t, l̇w)ds

)

dt+

∫ t2

t1

δEmw (uw,t(0, t), l̇w)dt+

+

∫ t2

t1

δEmsh
(uw,t(lw, t), l̇w)dt+

∫ t2

t1

δEmc(uc,t(lt, t), l̇w)dt (A.12)

The first term in the sum to the right of the equal sign in Eqn. A.12 is developed as

∫ t2

t1

δ

(
∫ lw

0
Êw(uw,t, l̇w)ds

)

dt =

∫ lw

0
ds

∫ t2

t1

δ
(

Êw(uw,t, l̇w)
)

dt (A.13)

δ
(

Êw(uw,t, l̇w)
)

= µ
(

uw,t − l̇w

)

(

∂

∂t
δuw −

d

dt
δlw

)

(A.14)

Introducing A.14 into A.13, it is obtained

∫ t2

t1

δ
(

Êw(uw,t, l̇w)
)

dt =

−

∫ t2

t1

µ
(

uw,tt − l̈w

)

δuwdt+

∫ t2

t1

µ
(

uw,tt − l̈w

)

δlwdt (A.15)

where the conditions A.11 have been applied. Consequently,

∫ t2

t1

δ

(
∫ lw

0
Êw(uw,t, l̇w)ds

)

dt =

∫ t2

t1

dt

[

−

∫ lw

0
µ
(

uw,tt − l̈w

)

δuwds+

∫ lw

0
µ
(

uw,tt − l̈w

)

δlwds

]

(A.16)

In a similar manner, the rest of terms in the sum to the right of the equal sign in Eqn.

A.12 can be developed, to obtain

∫ t2

t1

δ

(
∫ lt

lw

Êc(uc,t, l̇w)ds

)

dt =

∫ t2

t1

dt

[

−

∫ lt

lw

µ
(

uc,tt − l̈w

)

δucds+

∫ lt

lw

µ
(

uc,tt − l̈w

)

δlwds

]

(A.17)
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∫ t2

t1

δEmwdt =

∫ t2

t1

dt
[

−mw

(

uw,tt(0, t) − l̈w

)

δuw(0) +mw

(

uw,tt(0, t)− l̈w

)

δlw

]

(A.18)

∫ t2

t1

δEsdt =

∫ t2

t1

dt
[

−msh

(

uw,tt(lw, t)− l̈w

)

δuw(lw) +msh

(

uw,tt(lw, t)− l̈w

)

δlw

]

(A.19)

∫ t2

t1

δEmcdt =

∫ t2

t1

dt
[

−mc

(

uc,tt(lt, t)− l̈w

)

δuc(lt) +mc

(

uc,tt(lt, t)− l̈w

)

δlw

]

(A.20)

The elastic strain energy of the system, expressed by A.8, can be developed as

δΠ̂w = EA uw,s
∂

∂s
(δuw) (A.21)

∫ t2

t1

δ

(
∫ lw

0
Π̂w ds

)

dt =

∫ t2

t1

dt EA

[

uw,s(lw)δuw(lw)− uw,s(0)δuw(0)−

∫ lw

0
uw,ss ds δuw

]

(A.22)

∫ t2

t1

δ

(
∫ lt

lw

Π̂c ds

)

dt =

∫ t2

t1

dt EA

[

uc,s(lt)δuc(lt)− uc,s(lw)δuc(lw)−

∫ lt

lw

uc,ss ds δuc

]

(A.23)

With respect to the gravitational component of Eqn. A.1, it results

∫ t2

t1

δΠg =

=

∫ t2

t1

[
∫ lw

0
µg δuw ds−

∫ lt

lw

µg δuc ds+mwg δuw(0)+

−mcg δuc(lt) +mcg δlw −mwg δlw − µlwg δlw + µlcg δlw

]

(A.24)
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Finally, regarding the virtual work done by the non-conservative forces, given by the

expression A.10, it is obtained

∫ t2

t1

δW dt =

∫ t2

t1

dt
[τ

r
δuw(lw)−

τ

r
δlw

]

(A.25)

Eqns. A.16, A.17, A.18, A.19 and A.20 are introduced into expression A.12. The

resulting A.12 and Eqns. A.22, A.23, A.24 and A.25 are introduced into Eqn. A.1.

In the resulting Eqn. A.1, grouping the terms that multiply δuw, δuc, δuw(0), δuc(lt)

and uw(l), the equations 5.14, 5.15, 5.16, 5.17 and 5.18 are obtained respectively. An

identity is obtained from those terms that multiply δlw.
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