Bridges: A Journal of Student Research

Issue 12

Article 2

2018

The Clean Air Act and Its Impact on Ground Level Ozone Pollution Levels in Los Angeles, California

Rebecca Ford Coastal Carolina University

Follow this and additional works at: https://digitalcommons.coastal.edu/bridges

Part of the Atmospheric Sciences Commons, and the Environmental Health Commons

Recommended Citation

Ford, Rebecca (2018) "The Clean Air Act and Its Impact on Ground Level Ozone Pollution Levels in Los Angeles, California," *Bridges: A Journal of Student Research*: Vol. 12 : Iss. 12, Article 2. Available at: https://digitalcommons.coastal.edu/bridges/vol12/iss12/2

This Article is brought to you for free and open access by the Office of Undergraduate Research at CCU Digital Commons. It has been accepted for inclusion in Bridges: A Journal of Student Research by an authorized editor of CCU Digital Commons. For more information, please contact commons@coastal.edu.

The Clean Air Act and Its Impact on Ground Level Ozone Pollution Levels in Los Angeles, California

Rebecca Ford

Ozone (O_3) occurs as a photochemically produced pollutant in the troposphere and its emission and concentration is regulated by the Clean Air Act (CAA) of 1970. The Los Angeles area is an example of how O_3 can be a public health hazard and taint a city's aesthetics and quality of life through photochemical smog. This study was conducted to observe the overall effectiveness of the CAA. I explored daily O_3 concentrations from 1980 to the present at three air quality monitoring stations in LA from the AirData database of the U.S. Environmental Protection Agency. National O_3 standards were only exceeded twice at one station throughout the study period. While the average O_3 concentrations have been well below the national standards since 1980, they have remained relatively constant, while variance about these averages has steadily declined, indicating a positive impact on O_3 concentrations in the LA metropolitan area.

Rebecca Ford is a senior at Coastal Carolina University from Powhatan, Virginia. She is a member of the university's Honors Program and is persuing an undergraduate degree in marine science. Rebecca is interested in the environmental education career field. Her study on the impact of the Clean Air Act on ozone pollution in Los Angeles was conducted for her Honors senior thesis under the advisement of Angelos Hannides, assistant professor in the Department of Marine Science.

INTRODUCTION

The U.S. Clean Air Act

In 1955, United States president Dwight D. Eisenhower signed the Air Pollution Control Act. Due to the fact that smog-related deaths and illnesses were gaining more and more attention in the media at the time, the Eisenhower administration drafted and passed the Act as the first ever federal legislation regarding air pollution (Roewe, 2014). Yet, the Air Pollution Control Act only provided funds for federal research and was not effective in physically fixing the air pollution issue. The five million dollars in funds provided were, however, enough to turn the nation's attention to the growing pollution problem, and eight years later, the Clean Air Act of 1963 was passed (Roewe, 2014).

The CAA of 1963 established a program within the U.S. Public Health Services and, unlike previous legislation, was able to establish and implement air pollution control regulations. Funds were also available for research of the actual techniques involved in monitoring and controlling air pollution. Four years later, the federal government expanded their control by creating the Air Quality Act of 1967. This act allowed the federal government to regulate interstate air pollution transport by conducting tests and inspections on stationary sources. Three years later, the Clean Air Act of 1970 was signed by Richard Nixon and although this legislation was technically an amendment to the CAA of 1963, it set the ground work for the modern-day CAA. Due to the fact that the legislation already in place was deemed inadequate, this new act allotted the federal government even more power in controlling and regulating emissions from industrial and mobile sources. The act created four major programs – the National Ambient Air Quality Standards (NAAQS), State Implementation Plans (SIPs), New Source Performance Standards (NSPS) and National Emission

Standards for Hazardous Air Pollutants (NESHAPs). At this time, the six criteria air pollutants were also established. These six pollutants are the most common nationally and they are particularly harmful to human health and the environment. These six pollutants are ground level ozone, nitrogen dioxide, particulate matter, lead, carbon monoxide, and sulfur dioxide. Since this new legislation called for more enforcement, the Environmental Protection Agency was established in the December of 1970.

The CAA was further enhanced in 1977 under Jimmy Carter's administration. In order to continue to encourage clean air after standards were met, a program titled Prevention of Significant Deterioration (PSD) that dealt with attainment areas was added to the act. Also, deadlines to initially meet the air quality standards set in the 1970 NAAQS were extended for non-attainment areas, or areas that did not meet one or more standards set in the legislation at that time. The next amendments were added in 1990 under George W. Bush, since the Reagan administration in the 1980s did not look to pass any Clean Air legislation.

The growing national concern about acid rain and continued air pollution led to the 1990 amendments still in place today. As previously, the amendments increased government responsibility and authority and included legislation that focused on ozone protection and acid rain control, and also updated the 1977 NAAQS and NESHAPs.

Ozone as a Stratospheric Shield

Ozone is a gas that can be found in both the stratosphere and the troposphere. Stratospheric ozone, or good ozone occurs naturally and acts as a protective layer from the sun's harmful UV rays.

Although a single O_3 molecule has a short residency time in the atmosphere, new ozone molecules are constantly being created by the splitting of one atmospheric oxygen molecule by solar ultraviolet radiation that leads to a reaction with another complete atmospheric oxygen molecule:

$$3O_2 + UV \rightarrow 2O_3$$

The maximum concentration of ozone in the stratosphere is 12 ppm (Girard, 2014). Stratospheric ozone is referred to as a "shield" to the biosphere below because the formation of the ozone molecule itself is responsible for absorbing the sun's harmful UV rays.

Tropospheric Ozone as a Pollutant

Tropospheric ozone is considered to be ground-level ozone, or "bad ozone". This gas is classified as one of the six criteria air pollutants covered in the Clean Air Act and it is the ozone that this study focused on. This gas does occur naturally on the ground level in low concentrations, but is mostly formed from the reaction of sunlight, volatile organic compounds (VOCs) and nitrogen oxides (NO_x).

Sources of Ground-Level Ozone

The ozone that exists in the troposphere is a secondary pollutant. It is a product of the reaction that occurs between nitrogen oxides and volatile organic compounds (VOCs) once they are in the presence of sunlight; in order to identify the sources of the O₃ pollutant, the sources of the precursors must be identified. Nitrogen oxide is a term that encompasses both nitric oxide and nitrogen dioxide. More than half of the nitrogen oxides emitted globally, and in the United States, are produced by fossil fuel combustion (Hudman et. al., 2007).

The gases oxygen and nitrogen do not react with one another at normal temperatures. However, in conditions where the temperature is very high, the two are able to react. These conditions exist when coal is burned in an electric power plant, or when oil is burned as fuel in an automobile (Girard, 2014). Nitrogen oxide can also occur naturally from a bolt of lightning due to the area of high temperature surrounding the lightning strike. When the initial nitrogen and oxygen react, for all three sources listed, the resulting reaction is:

$$N_2 + O_2 = 2NO$$

The nitric oxide formed then reacts with more atmospheric oxygen to form nitrogen dioxide:

$$NO + O_2 = NO_2$$

VOCs are identified as carbon-containing compounds that readily vaporize to enter the atmosphere; they are gasses emitted from solids and/or liquids. Unlike most pollutants, the concentrations of VOCs are higher indoors than out. Household products, such as paints, cleaners, disinfectants, wood refinishers, etc. widely contain organic chemicals. When these products are used indoors, they release various kinds of VOCs when they dry. Outside the home, VOCs can be emitted from the incomplete combustion of fossil fuels. Pure gasoline is a liquid that emits VOCs. When gasoline is not used in the engine's reaction, or drips from the gas pump, VOCs get released. Small amounts of stratospheric ozone can also migrate down to the Earth's surface (Girard, 2014).

Impacts

The smog that results from ozone pollution has the ability to worsen asthma symptoms in adults and children by irritating a person's airways. It does this by causing the muscles in those airways to constrict, which blocks airflow in the lungs and traps it in the alveoli. This can trigger chest pain, cause coughing, throat irritation, airway inflammation, shortness of breath, wheezing, and cause chronic obstructive pulmonary disease (COPD) in anyone who is exposed to high levels of this pollutant.

Ozone pollution also affects ecosystems such as forests, wildlife refuges and areas, and other ecosystems that are home to trees and experience a heightened growing season. Similarly to human lungs, O₃ enters leaves and interferes with the photosynthetic process, decreasing energy production levels, slowing growth, and increasing susceptibility to disease and physical damage from insects and severe weather. When plant populations in a high ozone area experience these same effects, animal populations in the area may experience habitat loss and food loss, ultimately lowering ecosystem species diversity (EPA, 2017b).

The Impact of the Clean Air Act on Ozone Concentrations

The Clean Air Act sets standards for the six different criteria of air pollutants under the National Ambient Air Quality Standards (NAAQS). The process of evaluating, creating, and implementing these standards started in 1971 with the first Clean Air Act. There are both primary and secondary standards in this legislation. Primary standards deal with public health; these are said to be the

standards that protect the human populations that are extra sensitive to the effects of air pollution. These groups include children, elderly, and asthmatics. Secondary standards, on the other hand, deal more with public welfare. These standards protect crops, animals, buildings, and other things (living and non-living) from that sort of damage caused by harmful air emissions. To determine these standards, the United States Environmental Protection Agency (EPA) creates a plan that includes the reviews of scientific documents, which they then use to determine whether or not the current standards are set at an effective level. If they determine otherwise, a new standard is created.

The first standard implemented for ozone pollution was not exclusive to O_3 molecules; the standards set in 1971 regulated the concentration totals of any photochemical oxidants. By definition, photochemical oxidants are secondary pollutants formed by reactions that take place in the presence of sunlight between nitrogen oxides and reactive hydrocarbons (PA. Gov., 2017). The legislation passed in 1971 referenced both primary and secondary standards; the values were to be measured by the hour, and the presence of total photochemical oxidants could not exceed 0.08 parts per million, or ppm. The goal of this legislation would be considered met if the concentrations did not exceed 0.08 parts per million more than one hour per year. If a goal, such as this one, is within CAA standards, that particular area is considered to be an attainment area; if the goal is not met in a particular area or city, it is labeled a non-attainment area.

In 1979, the photochemical oxidant legislation was changed to only pertain to the actual O_3 molecule; this was not a drastic change. Ground level ozone itself is a secondary pollutant. The measurements were still recorded every hour, but the maximum concentration levels changed to 0.12 ppm. Attainment for this amendment was defined as the number of days exceeding the

maximum concentration was equal or less than one per year. When amendments for other criteria pollutants were added to the CAA in 1993, the EPA did not feel that the ozone standards had to change. It was not until 1997 when the EPA used the science available to determine that the standards in place were not effectively protecting both the public's health and welfare.

Thus, in 1997 new standards were passed and implemented. With the new legislation, the averaging time was every eight hours and the maximum concentration went back down to 0.08 ppm. In order to reach attainment, an area had to have an annual fourth-highest daily maximum averaged over three years. The fourth day was picked due to the fact that it "more directly relates to ozone concentrations associated with health effects" (Pennsylvania Department of Enivronmental Protection, 2017). Since it is over a longer span of time, the first three highest concentration days are considered outliers and probably exist under extreme circumstances. The three year averaging timespan along with the same regulations for attainment continued through the 2008 amendments, except the maximum concentration standard changed to 0.075 ppm for both the primary and secondary. The standards were again lowered in 2015 to 0.07 ppm.

Goal of this Study

In this study, I attempt to contribute to the conversation regarding the effectiveness of the CAA in improving air quality in a major metropolitan area of Los Angeles. I explored daily maximum O_3 concentrations from 1980 to the present of three air quality monitoring stations in metropolitan LA from the AirData database of the U.S. Environmental Protection Agency. I used various metrics of

this dataset to compare O_3 concentrations to the established NAAQS during this period, and to test whether the CAA has had an effect on air quality in LA.

METHODS

Study Site

The metropolitan area of Los Angeles was chosen as the site of this study due to the reputation and ranking it has as being one of the worst cities globally for atmospheric pollution and the leading city in the United States for air pollution. The CAA's NAAQS are based on maximum values, and if there is anywhere maximum values could have the potential of being obtained, Los Angeles, California, is that place. According to the Los Angeles Almanac, there were a total of 7,750,544 vehicles registered just in the city of LA in the year 2016 (Vehicle Registrations, 2017). As previously stated, automobiles are a major source of nitric oxides, which are a precursor to harmful ground level ozone. Another ingredient in the production of ozone is sunlight, and the city of Los Angeles, which is situated at 34 degrees north, lies close to the tropical regions and is subject to long days and strong sunlight year-round.

Three stations were selected for this study based on their location (Figure 1):

- West Los Angeles (site 06-037-0113), a coastal site
- Downtown Los Angeles- North Main Street (site 06-037-1103), an urban site
- Glendora (site 06-037-0016), a mountainous site.

The three stations are all located right along the 34°N latitudinal line. Although the focal point of this study is downtown LA, the two bordering stations give a better, more in-depth view on how a ozone molecule behaves within a monitored region due to their climate similarities and their contrasting population sizes and infrastructure. For example, the strength of the solar energy reaching each location is the same, meaning the same amount of ozone-producing reactions should take place if there were no other factors contributing. However, downtown LA has more vehicles than mountainous Glendora, so it is hypothesized that there should be elevated ozone levels downtown.

Data

The AirData database (EPA 2017b) provided by the United States Environmental Protection Agency was used to gather all of the daily data points from the year 1990 to the present. Data from the three previously mentioned air quality stations were used for the daily average ozone concentration in ppm. The daily maximum concentration reported by the EPA followed the CAA standard definitions: the highest eight-hour average throughout the 17 different eight-hour averages collected over the course of a day.

Calculations and Indicators

The average monthly concentrations, annual averages from the monthly averages previously calculated, and the standard deviation between the yearly averages, were calculated in Microsoft Excel over the 27 year time span for all three sites. Twelve-month running averages were also used

to map interannual trends. In addition, to normalize the standard deviations to changing average magnitudes, I also calculated the coefficient of variance:

$$CV^* = (standard deviation/mean x 100) + 1.25$$

The concentrations were analyzed in their entirety to observe overall trends and compare the concentrations to the ozone standards established by the CAA. In summary, the following metric indicators were calculated and used:

- Average monthly concentrations and standard deviations
- Maximum monthly concentrations
- Minimum monthly concentrations
- Average yearly concentrations, standard deviations and coefficients of variance

Figure 1: EPA ozone monitoring stations used in this study indicated by blue markers, from left to right: ID 06-037-0113 (West L.A.), site ID 06-037-1103 (North Main St., L.A.), and site ID 06-037-0016 (Glendora). Other monitoring stations are shown in purple.

RESULTS

Average Monthly Concentration Trends

The average monthly O₃ concentrations, calculated by the daily concentration data, are shown in Figure 2. The data for the North Main Street site shows that the average monthly concentration never exceeded the corresponding NAAQS throughout the entire 26-year time series. The 12-point (month) running average is constant during the study period. However, there is a significant difference in the range of data points. In 1990, in downtown Los Angeles, the range of

concentration values was approximately 0.06 parts per million. In 2016, the range of concentration values was approximately 0.03 parts per million.

The data for West Los Angeles (the coastal site) reveals that, like downtown, the NAAQS were never exceeded throughout the 26 years of this study (Figure 2). In 1990, the range of concentration values was not as great as it was in the downtown site; the range of concentration values in 1990 in West LA was approximately 0.04 ppm, while in 2016 it was approximately 0.02 ppm. Although the difference was 0.01 ppm more downtown, there was still a decrease in the range of concentrations throughout the course of a single year from the year 1990 to 2016. From 2002 to 2003, there was a dramatic increase in value of the running average. Prior to the jump in 2002, the running average was a constant value at approximately 0.04 ppm until it dipped in 2001 to 0.03 ppm. After the jump, beginning in the year 2004, the running average was again a constant value, but that value was slightly higher, at approximately 0.045 ppm.

Data for the mountainous site, Glendora, showed higher and more scattered monthly concentration values for the entire 26 years (Figure 2). The annual range of concentration values in the year 1990 was approximately 0.09 ppm, which was the highest range out of all three sample sites. In 2016, the last full year of the study, the range of concentration values was approximately 0.04 ppm. Although the initial range of average monthly concentration data points was the highest at this site, the difference in the range from 2016 to 1990 was also the largest; the difference in the ranges was 0.05 ppm. Glendora was the only station where concentration levels exceed the standards. From 1997-1999, the average of the annual fourth daily maximum value was 0.12 ppm, when the standard was 0.08 ppm. From 2007-2009, the average of the annual fourth daily maximum value was 0.11 ppm,

when the standard was 0.075 ppm. The running average at this site began with a steady decrease unlike the other stations. From 1990 to the year 2000, the value of the running average decreased from 0.062 ppm to 0.038 ppm. After this initial decrease, the running average increased slightly and became steady at approximately 0.045 ppm.

Figure 2: Monthly average O_3 concentrations, indicated by each individual marking, and 12-point running averages at three sites: Top - West Los Angeles (site 06-037-0113); Middle - Downtown Los Angeles- North Main Street (site 06-037-1103); Bottom - Glendora (site 06-037-0016). The figure lines show the NAAQS in place during each year on the x-axis.

Average Yearly Concentration Trends

The average yearly O_3 concentrations for all three sample sites were calculated by averaging the monthly average concentration values for each year (Figure 3). The difference between the yearly average and the running average is the fact that the running average is continuously calculating an average with an overlapping twelve data points, whereas the yearly average is a set calculation for each calendar year, using the twelve monthly average concentration values previously calculated. The trends between the yearly and running averages are very similar. Site ID 06-037-0016, Glendora, still shows a significant decrease in its yearly average. This yearly average decline is much more dramatic than the running average decline, and it drops from 0.07 ppm to 0.04 ppm. The yearly average for all three sites does not show a steady average value like the running average does. The peak in the West LA concentration values still exists between 2002 and 2003. After the year 2002, the trends between all three sample sites show peaks and falls on the same years. All three sample sites have a relative maximum in 2003, 2006, and 2015. Prior to the year 2002, the downtown and west LA sites both had a relative minimum yearly concentration value in the year 1993.

Figure 3: The yearly averages of all three sample sites starting at 1990 and ending in 2016, calculated from the monthly averages.

The standard deviations of the yearly averages reaffirm the results of the diminishing range in average monthly O_3 concentration values over the course of a single year that can be seen at each sample site. From 1990 to 1998, all three sample sites have a higher, more variable standard deviation value; Glendora exhibits the largest drop (from 0.035 to 0.02) during this time frame. West LA has the lowest standard deviation values overall and most steady throughout the entire 27 years, while the downtown site has an absolute maximum standard deviation value in the year 1994, which corresponds with relative maximums of the other two stations.

Coefficient of Variance

Standard deviations about average monthly concentrations are shown as coefficients of variance in Figure. Coefficient of variance is a more reliable measurement of variance than standard deviation due to the fact that it adjusts for variations in the magnitude of the average. CV is calculated by the following:

CV = (standard deviation/monthly average concentration)*100

For the downtown site, the CV highlighted the standard deviation absolute maximum of 1994, reaching 63.3 percent. Up to the year 2000, all three sample sites experienced fluctuations in CV values.

The West LA site had a maximum CV value in the year 1992 with a value of 42.8 percent. The CV for this site then dropped to 24.8 percent by the year 1995, and rose again to 39 percent in 2000. After this rise and fall and rise again pattern, the CV steadily decreased to 13 percent in 2016.

Glendora only reached a 30.5 percent CV in the year 2016, but experienced the lowest decrease in CV over the course of the study. The decrease in this site was even less than the downtown site, which ended up with a 22.5 percent CV despite the fact that this was the site with the highest CV overall. The highest CV overall is referring to the 63.3 percent variance in 1994 that was previously mentioned.

Figure 4: Coefficients of variable about annual average concentrations for the three study sites.

Monthly Maximum Values

In order to observe where the overall decreasing trend of CV originated, both the monthly maximum O₃ concentration values (Figure) and the monthly minimum O₃ concentration values (Figure) were plotted from the daily data retrieved from the AirData database. The downtown site showed not only an overall decrease in the highest maximum monthly O₃ concentration values, but an overall decrease in a range of these values over the years. The lowest monthly concentration in the year 1990 was right at 0.02 ppm, and it increased slightly in the later years to approximately 0.03 ppm. The highest maximum O₃ concentration in the year 1990 was 0.135 ppm, but ended up being halved and becoming relatively steady beginning in the year 2010.

The West LA site showed the same trend in monthly maximum O_3 concentration values, but did not experience the increase in the lowest monthly maximum O_3 value that the downtown site did. In 1990, the lowest data point was at 0.04 ppm, and it stayed constant at that value besides outliers in the years 1993, 2000, and 2001. Both sites exhibit a very obvious decrease in the range of monthly maximum O_3 data points over the 27 years.

Glendora did not seem to follow the distinct pattern on a decreasing range in monthly maximum O_3 concentration values. The lowest monthly maximum O_3 concentration value did remain at around 0.03 throughout the 27 years, which was also the case in the other two sample sites, even though the highest maximum monthly O_3 concentration values at Glendora did not dramatically decrease like they did in the other two sites. In 1990, the highest data point was at 0.143 ppm, and in 2017 the highest monthly maximum O_3 concentration was 0.10 ppm. For the entirety of the study, the maximum monthly O_3 concentrations at Glendora only had a slight decrease (approximately 0.033 ppm) in range and the data points still had a visually sporadic pattern that the other two sites did not experience after the year 2010.

Figure 5: Monthly maximum O₃ concentrations at the three study sites with a running 12-point average line: Top - West Los Angeles (site 06-037-0113); Middle - Downtown Los Angeles- North Main Street (site 06-037-1103); Bottom - Glendora (site 06-037-0016).

Monthly Minimum Values

The monthly minimum O_3 concentrations for each site (Figure) did not show the same trends that the monthly maximum concentration plots did. The downtown site had monthly minimum values that kept the same range in data throughout the study, with the exception of three outlier data points that reached values of up to 0.06 ppm, even though in 1990 the lowest monthly minimum O_3 value was 0.001 ppm, and reached 0.0 ppm in 1991. The lowest values began to increase from these minimal values in the year 2002, and by 2017 the lowest monthly minimum value was up to 0.012 ppm. Although the annual range of about 0.03 ppm stayed constant over the course of the study, all of the actual concentration values of the monthly minimum increased as the years went on.

The West LA site followed the same increasing trend but not as closely as the downtown site. In 1991, the downtown site also exhibited a minimum monthly minimum O_3 concentration value at 0.0 ppm. Unlike sample site 06-037-1103, sample site 06-037-0113 also experienced a value of 0.0 ppm in the year 2012. In 2017, the lowest value was higher than 0.01 ppm. These values experience the same overall increase in the year 2002 that the running average for this site also showed.

The last site, Glendora, showed a major decrease in the range of the monthly minimum O_3 concentration values per year from the beginning to the end of the study. From 1991-1996, there were monthly minimum values that reached 0.06 ppm. Those data points were the highest out of all of the minimum monthly values recorded. The overall lowest monthly minimum O_3 concentration data points did experience an increase like the other two stations overall, yet there were still five instances after the year 2006 where the concentration value was under 0.006 ppm.

Figure 6: Monthly minimum O₃ concentrations at the three study sites with a running 12-point average line: Top - West Los Angeles (site 06-037-0113); Middle - Downtown Los Angeles- North Main Street (site 06-037-1103); Bottom - Glendora (site 06-037-0016).

Seasonal Trends

The monthly average concentrations at the downtown site for all 12 months of the years 1990 and 2016 were plotted to see the trends of O_3 concentrations seasonally (Figure). The year 1990 was chosen since it was the first year of the study and, theoretically, should have experienced the highest O_3 concentrations out of the entire study. There is an obvious peak in concentrations during the summer months, beginning in May and decreasing again in October. The range between the highest summer concentration (July) and the lowest winter month (January) is 0.073 ppm. There was a difference of 0.072 ppm between July and December.

The 2016 data show a more subtle trend than the 1990 graph. The highest points are still in the summer months, but there is no sharp peak. The highest average monthly O_3 concentration in 2016 was in August, and the difference between the August concentration and the January concentration was 0.05 ppm, which is 0.023 ppm lower than the difference in 1990. The difference between August and December was also 0.05 ppm in 2016.

Figure 7: Monthly average concentrations at the downtown site for the first (1990) and last year (2016) of the study data set.

DISCUSSION

O₃ Concentration Trends

The purpose of this research was to contribute to the overall conversation regarding the

effectiveness of the CAA, a unique piece of legislation that the U.S. has been enforcing for the last

47 years. Specifically, this study focused on O_3 levels in Los Angeles, California. In order to be able to understand the impacts of the CAA on this air pollutant, there must be a general understanding of how O_3 , a secondary pollutant, behaves generally in the atmosphere. Theoretically, O_3 should not exist in the troposphere except for at extremely low (almost an absolute zero) concentration. As previously mentioned, O_3 is a product of the reaction that takes place between nitrous oxides and VOCs (Hudman et al., 2007). In order to decrease the concentration of O_3 in the atmosphere, the concentrations of the two reactants must first decrease. Along with creating NAAQS for O_3 pollution, the CAA also continuously strengthened their NAAQS regarding nitrous oxides, which are mainly emitted through automobile emissions, during the time of this study. By 1994, Congress stated that NO_2 levels had to be 90 percent of what they were in 1990 (Lee et al., 2007).

Changing standards regarding nitrogen dioxide, though, have to be paired with new technologies that decrease the amount of incomplete combustion that takes place in an automobile's engine. An example of this would be the catalytic converter that was invented in 1970, and is since then being constantly improved. Since new technology is required, new cars (relative to the time the technology was invented) are the only ones on the road driving with decreased emissions. Decreasing NO_x emissions take time; the yearly averages of the data in this study did not significantly decrease until the year 1999. This decrease could in part be due to the increasing number of cars on the road with less NO_x emissions. Year 1999 was only two years after the decrease in NAAQS from 0.12 ppm to 0.08 ppm, which would be a more direct factor influencing the decrease in the yearly average concentration of O_3 at that time.

Besides the initial decrease (1990-1999), the monthly concentrations of O_3 did not seem to vary for the worse or better. When the NAAQS went from 0.08 ppm to 0.075 ppm, it had no observable effect on the monthly concentrations.

Regional Trends

Sampling site 06-037-1103 was located directly in downtown LA on North Main Street. It was expected that this sampling site would be the site with the highest O_3 concentrations overall, even with the CAA being enforced. This prediction was based on the fact that the precursors for the O_3 pollutant are major byproducts of automobiles and downtown LA was by far the most populated sample site. Yet, that was not the case. The sampling site with the highest, least regulatory O_3 concentration throughout the study was sampling site 06-037-0016, located in the mountainous county of Glendora.

According to an LA Times (2014) article titled *Pollution Burdens*, Glendora was in the 83.95 percentile for O_3 and the 84.22 percentile for "toxic releases" (as of 2014). Downtown LA, however, was only in the 40 percentile for O_3 but was in the 77.51 percentile for toxic releases. The rankings regarding O_3 were nearly halved from Glendora to downtown LA. Yet, the actual emissions coming from both areas were less than 10 percent away from one another. The "toxic releases" category does cover every pollutant, along with pesticide usage, so these numbers are not directly correlated with O_3 concentrations. However, the similar magnitudes of physical emissions when compared to the drastic differences of the O_3 concentrations can be used as an indicator that the O_3 molecules present in Glendora were most likely formed elsewhere.

The annual wind pattern in LA follows a WSW pattern, i.e., blowing from the west-southwest. Glendora is located to the northeast of downtown LA, which means that a wind gust blowing from the south west would transport air and the pollutants it contains from the urban area of LA to the region of Glendora. When the many vehicles and households emit the nitrous oxides and VOCs in the city, they are reacted but then transported and deposited in Glendora. In addition to the wind patterns, the topography of Glendora aids in trapping the O_3 molecules. The altitude of Glendora is 774' above sea level, whereas the altitude of Downtown LA is 285ft. above sea level. It is because of this that the O_3 molecules are able to build up and continuously increase in concentration (Fehsenfeld et al., 1983).

Another O_3 concentration trend that can be classified as a regional trend is the jump recorded at the west LA site in the year 2002 (Figure 2). Immediately prior to the peak, there was a sharp decrease in the running average of O_3 concentration and after the jump, the running average went right back to the stable concentration it had in the years leading up to 2002. This sample site was the site chosen to resemble a coastal area, being that it is located in West LA and more toward the Pacific Ocean. With that in mind, the driving force behind this behavior could be the 1997-1998 El Niño event that occurred. According to Ziemke et al. (2003), this particular weather event had the largest detected increases in tropospheric O_3 between the years 1979-2000. An El Niño begins in the west Pacific, over the countries like Indonesia, and then makes its way eastward toward the West Coast of the U.S., and the changes in the air pressure that result from the shift have the ability to have effects that last far longer than a year.

During this weather phenomenon, the warm temperatures of the Pacific's surface waters shift from west of the Dateline to the east. When this shift occurs, the air convection over the east Pacific Ocean is enhanced, resulting in a higher pressure system. High air pressure is then associated with tropospheric divergence, which increases O₃ concentrations by suppressing upwelling. The proximity of this site to the ocean may be the reason this site experiences this effect more than the other two sites.

IMPACT OF THE CAA

Trends in Variance

From the results of this study, it can be concluded that the major impact of the CAA on controlling O_3 pollution has been in decreasing the variability of O_3 concentrations. A coefficient of variance calculation is designed to show the percent of data points that vary from the average value, and the plot of all three stations CV do show that they all decrease over the time period that this study covers. Specifically, it was found that this decrease in variance comes from a decrease in the highest monthly maximum O_3 concentration values and a decrease in the lowest monthly maximum concentration values. The effect of the CAA on the monthly minimum O_3 concentrations was not as dramatic; some monthly minimum values reached lows of 0.0 ppm, therefore there was not a lot of decreasing potential.

The decrease in maximum concentration values occurs when the NAAQS decrease from 0.12 ppm to 0.08 ppm. With the strengthening of the NAAQS, the state of California also had to re-evaluate and create more intense SIPs. According to the California Air Resources Board (2017), the SIPs

beginning in 1997 have state SIP measures which include regulatory and incentive programs regarding consumer products, fuels, and mobile sources which are designed to meet the NAAQS. Each SIP has a 15-year scope, so it can be predicted that the variability of O_3 is only going to decrease as time goes on.

Seasonal Variance

 O_3 is produced photochemically, meaning where there is sunlight O_3 is being produced (Hudman et al., 2007). When there is more sunlight, more O_3 is produced. In the northern hemisphere, there is more sunlight in the summer months (late May – early October). The seasonal plot of 1990, the first year of the study, had a far greater slope between the winter and summer months than 2016, the last full year of the study. The decrease in coefficient of variance can ultimately be considered a result of this decrease in seasonality. Since the coefficient of variance was calculated per year, and the mean and standard deviation used to calculate it were of the 12 months, it only makes sense that both would decrease. Again, this decrease in seasonality is a result of the strengthened SIPs that California has been continuously updating with every NAAQS. Thus, this is where the CAA has had most of its success regarding controlling the O_3 concentration.

Potential Errors and Gaps

The farthest this study dates back is 1980, and that data was only available for one site, downtown LA. That being said, the CAA was passed in 1970. There were 10 years of the daily maximum O_3 concentration values that were not recorded when the CAA was initially passed. The absent data

could show that there was a significant decrease in overall O_3 concentration in this time period, which would support that the CAA was very impactful in LA. Yet, since the 27- year period of which this study observed, there were four different NAAQS that were passed, each being lower than the last.

In addition, there were also years during the study that did not have data available for every day. However, there was never an instance where a full month did not have data. Using the averages of monthly O_3 concentrations aimed to diminish the impacts of the missing daily data.

The extent and the amount of data used to draw conclusions from this study were adequate to examine the question at hand for this study. Other studies of this kind may further illuminate the ways in which the CAA and other environmental legislation in the U.S. and worldwide have the potential to be enforced in the most efficient, effective way possible.

REFERENCES

California Air Resources Board (2017, September 5). 2016 State Strategy for the State Implementation Plan for Federal Ozone and PM2.5 Standards (State SIP Strategy).

EPA. (2017a, July 18). Air Data: Air Quality Data Collected at Outdoor Monitors Across the US. Retrieved from https://www.epa.gov/outdoor-air-quality-data.

EPA (2017b, February 27). Ecosystem Effects of Ozone Pollution. Retrieved from https://www.epa.gov/ozone-pollution/ecosystem-effects-ozone-pollution.

Fehsenfeld, F. C., Bollinger, M. J., Liu, S. C., Parrish, D. D., McFarland, M., Trainer, M., ... & Lenschow, D. H. (1983). A study of ozone in the Colorado mountains. *Journal of Atmospheric Chemistry*, 1(1), 87-105.

Girard, J.E. (2014). *Principles of Environmental Chemistry*. Burlington, Massachusetts: Jones and Bartlett Learning.

Hudman, R. C., Jacob, D. J., Turquety, S., Leibensperger, E. M., Murray, L. T., Wu, S., et al. (2007). "Surface and lightning sources of nitrogen oxides over the United States: Magnitudes, chemical evolution, and outflow." *Journal of Geophysical Research-Atmospheres, 112*(D12). doi: 10.1029/2006JD007912.

LA Almanac (2017). Vehicle Registrations Los Angeles County. Retrieved from http://www.laalmanac.com/transport/tr02.php.

LA Times (2014, April 25). Pollution burdens. Retrieved from http://graphics.latimes.com/responsivemap-pollution-burdens/. Lee, J., Hounshell, D. A., & Veloso, F. M. (2007). "Innovation and technology policy: Lessons from emission control and safety technologies in the US automobile industry." Retrieved from http://web.mit.edu/sis07/www/lee.pdf.

Pennsylvania Department of Environmental Protection (2017). Ozone standard. Retrieved from http://www.dep.pa.gov/Business/Air/BAQ/PollutantTopics/Pages/Ozone-Standard.aspx

Roewe, B. (2014, July 14). "A look back at first US air pollution legislation." Retrieved from https://www.ncronline.org/blogs/eco-catholic/look-back-first-us-air-pollution-legislation

Ziemke, J. R., & Chandra, S. (2003). "La Nina and El Nino—induced variabilities of ozone in the tropical lower atmosphere during 1970–2001." *Geophysical research letters*, *30*(3): 1142. doi:10.1029/2002GL016387.