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ABSTRACT

Mixed fractional Brownian motion is a linear combination of Brownian motion and
independent Fractional Brownian motion that is extensively used for option pricing.
The consideration of the mixed process is able to capture the long-range dependence
property that financial time series exhibit. This paper examines the problem of
deriving simultaneously the estimators of all the unknown parameters for a model
driven by the mixed fractional Brownian motion using the maximum likelihood
estimation method. The consistency and asymptotic normality properties of these
estimators are provided. The performance of the methodology is tested on simulated
data sets, and the outcomes illustrate that the maximum likelihood technique is
efficient and reliable. An empirical application of the proposed method is also made
to the real financial data from four Nordic stock market indices.

KEYWORDS
Mixed fractional Brownian motion; long-range dependence; Maximum likelihood
estimation; Nordic stock market indices.

1. Introduction

The construction of financial models that capture the fluctuation of financial assets has
been recently based on the mixed fractional Brownian motion (henceforth mfBm); a
linear combination of Brownian motion and independent fractional Brownian motion.
The reason is that financial time series have been found to exhibit long-range depen-
dence [11,16,27]. And, in the classical Black and Scholes model, the standard Brownian
motion process is unable to capture the stock price movements; because of its inde-
pendent increment property [4]. To overcome this issue, the fractional Black—Scholes
model was introduced where Brownian motion is substituted by fractional Brownian
motion (henceforth fBm); a parameterized (H € (0, 1)) extension of Brownian motion
with short-range dependence for H < 1/2 and long-range dependence increments for
H > 1/2 [12,19,21]. However, except in the Brownian motion case (H = 1/2), {Bm is
neither a semi—martingale nor a Markov process; the reason why the arbitrage oppor-
tunities appeared in the proposed model [7,30]. Therefore, to take into consideration
the long memory property; Cheridito [6] replaced the Brownian motion with mfBm
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for H € (3/4,1), and proved that the mfBm model is equivalent to the one driven by
Brownian motion, and thus it is arbitrage—free.

The suitable and promising use of mfBm to describe some phenomena in different ar-
eas raised interests in identifying the parameters of this process. Filatova [14] suggested
that mfBm process reflected better the real network traffic properties; and moreover,
the author developed the mfBm parameters estimation method for stochastic mod-
eling for computer network traffic. In the discrete framework, as in practical terms,
observations are only available in discrete time [32]; for instance, in finance, where
stock prices are collected once a day. The estimation problem of the mfBm parameters
was studied in [36] by the use of the maximum likelihood method; and proofs of the
estimators’ asymptotic properties were provided. Furthermore, paper [37] combined
the maximum likelihood approach with Powell’s method to compute these estimators
efficiently. Recall that the articles mentioned above investigated the parametric estima-
tion problem of the mfBm process itself. To the best of our knowledge, the problem of
estimating simultaneously all the unknown parameters in a model driven by the mfBm
process (mixed fractional Black—Scholes model), and its application to the real data
has not been studied before. Unlike in the case of the traditional geometric Brownian
motion [5], the drift fractional Brownian motion [18,34], and the geometric fractional
Brownian motion (see [20,35], and more recently [31]). Therefore, this article aims
to bridge that gap. Furthermore, in literature, the separate estimation for the Hurst
parameter H has been extensively studied using different estimation methods such as
the R/S (rescaled analysis) [3,13,24]. In this article, inspired by Weilin et al. [34] and
Misiran et al. [20] work in the fractional Brownian motion case; we propose a hybrid
simultaneous estimation approach of all the unknown parameters including the Hurst
index in the mixed fractional Brownian case; where the optimal value of the Hurst
parameter H is obtained by maximizing numerically the profile likelihood function.

The main contributions of this paper are first, to construct in the discrete frame-
work, the estimators of all the unknown parameters of the model driven by the mfBm
process using the maximum likelihood estimation method. The choice of the maximum
likelihood method in the range of other existing methods (least squares estimation,
minimum distance estimation, to cite few) is based on its well-known desirable asymp-
totic properties such as consistency, normality, and efficiency. Secondly, to study the
consistency and the asymptotic normality of these estimators. Thirdly, to illustrate
the efficiency performance of our algorithm through Monte Carlo simulations. Numer-
ical computations indicate that the proposed method performs significantly well and
provides reasonable estimations of all the unknown parameters of the studied model.
Finally, to show the application of our approach in a realistic context through an
empirical study.

This article is organized as follows. Section 2 addresses the estimation problem of
all the unknown parameters of the model governed by the mfBm process and provides
their maximum likelihood estimators. Section 3 deals with the study of the convergence
and the asymptotic normality of these estimators. The proposed approach is assessed
in section 4 by some numerical experiments. Section 5 presents our empirical results of
four Nordic stock market indices. Section 6 concludes the article and offers suggestions
for further research.



2. Parameter identification

2.1. Model specification

On a probability space (2, F,P), consider a Geometric Brownian motion market model
with investment in risky—asset whose price satisfies dS; = uSdt + 0SidBy, t € [0,T],
where p € (—00,00) and o > 0 are the drift and the volatility parameter respectively.
To allow the long—memory property, replace the Brownian driver process o B; by the
mixed process M; = o B; —|—TB{{ ; a linear combination of B; and independent fBm Bf[
of Hurst parameter H € (0,1), where (o,7) # (0,0) are two real constants. For more
elaborate details on the properties of mfBm, we refer to [38].

Hence, the model for the risky—asset governed by mfBm is given by the following
equation:

Sy = Spexp <(,u — %02)75 +o(B; + ABﬁ)) = exp(V}), (1)

with Sp >0 and A= 7.

Since H > 1/2, the quadratic variation of the mixed process is o?t. Consequently, (1)
is the solution of the It6-Follmer forward-type pathwise (w—by-w)(see [15]) stochastic
differential equation:

dSt == ,U,Stdt -+ O'Stht, t 2 0. (2)

It is worth emphasizing that (2) requires H > % to admit a solution. However, in this
article, we are interested in the study of long—range dependence. Therefore, the Hurst
parameter is strictly greater than %, that is, % < H < 1.

Hence estimating the parameters from (2) is equivalent to estimating the unknown
parameters from the following model:

1
Y= (u— 502)1t +o(B; + ABH), t>o. (3)

Y; is equal to the RHS of (3) in L? and with probability one.

Assume that the studied process is observed at discrete—time points (¢1,to, ..., tN)
and tp, = kh,k = 1,2,..., N for a fixed interval A > 0 for the notation simplification
purpose. Thus the observation vector is Y = (Y;,, Y4, ..., ¥z, )T. (1) denotes the vector
transposition. Hence, the discrete—time observation can be formulated in the form of
the vector as follows:

Y = (j— %02)75 + o(B +ABT), ()

where Y = (Yi,Yon,...Yan)', t = (t1,to,....tny)? = (h,2h,...,NO)T, B =
(Bh, Bopy .., Bnp)T, and BY = (B BH . BI)T. We aim to construct esti-
mators of all the unknown parameters p, o, A and H and study their asymptotic
properties as N — oo.



2.2. Estimation procedures
We use the maximum likelihood estimation (MLE) of the unknown parameters of the
mfBm in (1) based on discrete observations discussed above. The reason behind the
choice of MLE is its efficient application in a large set [26].

In (4),let m = p — %02. Then, consider a general form of the model as follows:

Y = mt + o(B + ABH). (5)

The estimates for the drift parameter u will be deduced from the estimates of m.
The evaluation of the likelihood function of Y is explicit, as the law of Y is Gaussian,

its joint probability density function is

N 1 1
f(Y;m, 0% N2, H) = (2m0?) 2 || 2 exp | — W(Y —mt)TT7Y (Y —mt)|,
o

where |I'| is the determinant of the covariance matrix
I' = F(H, )\2) = [COV[BZ'}“ th] + )\QCOV[B{}{, Bﬁl]]i,jil,Q,---,N
oA ‘ . .
= [h(inj)+ EhZH(ZQH + 52— Ji = 5P =128
with A= _ and i A j denotes the minimum between ¢ and j.
o
The log-likelihood function for 6 = (m, o2 A%, H) is

N N 1 1
(Y;0) = ——In(27) — = In(c?) — F Il = o5 (Y - mt)TT=HY — mt).
g

The ML estimate 6 of 6 is obtained as the solution to the following system of equations

8l((;;;é) _ %&QtTF_l(Y —t) =0, (6a)
8lg;2é) _ _%’2 + ﬁ(y —mt)TT7HY — t) =0, (6b)
alg;é) _ —%tr(f’_lFH) + 2(132 (Y =) Ty D7 (Y —it) =0, (6c)
W%é) = (BT 4 g (Y ) TR Y <) =0, (6d)

where tr denotes ’trace’,



and

1 . . o
Ty = Cov[Bf, Bftlij=12,..N = §h2H(22H + 52 =i = P g1,

To obtain (6¢) and (6d), we use the differentiation formulas of a matrix with respect
to given parameter. For more details, see [25,28].
(6a) and (6b) result in the estimators

-1y
¥ 2 = ———m-—- 7
M H = ~ppoty (7)
9 1 /(YITT'Y) T~ 1) — (¢TT~1Y)?
63 g = — - : (8)
AN tTT -1t

Observe that the accuracy of the estimators 72 g and 62 g depend crucially on
A? and H, which also need to be estimated. Unlike (6a) and (6b); (6¢) and (6d) do
not lead to an explicit form. Therefore, following Xiao et al. [36], we apply a hybrid
approach in which we replace o and m by their maximum likelihood solutions ((7) and
(8) respectively) in the log-likelihood equation; and maximize the resulting function
in terms of the remaining parameters. Carrying out the substitution and dropping
constant terms, we get the profile log—likelihood function

N (YITIY)(tTT 1) — (tTT~1Y)?
( ) o

1
N
T T

To obtain the estimators of the parameters A\*> and H, we numerically solve the partial
optimization problem given by (9) above. Note that maximization of (9) is equivalent
to the minimization of its negative log-likelihood. Hence, the optimal values of A2 and
H are obtained by using the function fminsearch in MATLAB. Next, we calculate the
values of the estimators 7 and & by substituting H with H and A2 with A2 in (7)
and (8) respectively. Finally, we deduce the values of the estimators i = m + %6’2 and

~

T=A0.

3. Asymptotic properties

This section studies the asymptotic behaviors, namely the L?-consistency, the strong
consistency, and the asymptotic normality of the maximum likelihood estimators with
closed forms presented in (7) and (8). The proofs of the asymptotic properties of the
estimators myz i and c}iz’ g hold under the assumption that A2 and H are known
constants. Regarding the estimators of A?> and H, as they do not have closed forms;
their optimal values are obtained, and their asymptotic properties are studied through
a numerical approach. That is, using a simulation technique presented in section 4.

First, consider the L?-consistency of the drift parameter defined by (7). We need
the following technical results.



Lemma 3.1. If A € RV*N s a positive definite matriz, v € RY, 2 # 0 is a non—zero
vector, then

4
T 4-1 |||
A > .
v = T A x

Proof. See [22, Lemma 2.4]. O

Remark 1. As mentioned above, the studied process Y; is observed at discrete-time
points tx = kh,k = 1,2,..., N for a fixed interval A > 0. Therefore, following Mishura
et al. [22] as the driver process M; has stationary increments; the N x N covariance
matrix I' has Toeplitz structure, that is,

Crrig = Tipr = B (Mgepiyn — Mei—nn) (M — Mg_1yn) = E Mgy, My — E My, My,
does not depend on [ due to the stationarity of increments.

In particular, the following results hold under the assumption that A\?> and H are
known constants. Factually, it is the L?-consistency that needs the assumption, while
the expectation in the unbiasedness can be considered as the conditional expectation
that does not depend on these parameters (A2 and H); thereby being equal to the
unconditional expectation. Thus, the unbiasedness holds whether or not A\? and H are
estimated.

Theorem 3.2. The mazimum likelihood estimator > g (defined by (7)) is unbiased
and converge in mean square to m as N — 00.

Proof. Substituting Y by mt + o(B; + AB}?) in (7), we have

t'T = mt 4+ o(B; + ABf)] o tIT-Y(B, + AB})
tIT—1¢ N tTT—1¢

My o = (10)

Thus,

. t'T=YE(B; + ABH)
E[rye gl =m+o Tr-1; =m,

and hence 72 g is unbiased.
Moreover,

t'T= (B, + ABf
Var[myz ] = UQVar[ (Bi + ABy )]

tTT—1¢
_ 2R [tTF_l(Bt + ABH)(B; + )\B{{)TF_lt}
(tTT-1t)2
L trlrrte . o?
(tTT-1t)2 tIT-1¢"

By Remark 1 and from Mishura et al. discrete scheme results [22, Theorem 2.5], we
have

N N
t'Tt=h*>"> Ty, and |t| =hVN,

=1 m=1



where I'; ,, = E (M(|l,m|+1)h — M|l,m|h)Mh, with M; = 0 B; + 7B}’ the mixed process.
As the process M; has stationary increments and by Toeplitz theorem,

N N N

1 2(N+1—k

N2 > . *E (Mp)* = :(]\/'Q)]E(Mkh — M—1yn) M
=1 m=1 k=2

— lim E(Mkh - M(kfl)h)Mh =0 as N — oc.
k—ro0

Hence, with the use of Lemma 3.1,

o? tTT t 2 LI
’Var[mxz H] IT-1; <o ||t|| h2N2 Lo L 1le —0 as N — oo.

O

Next, we study the estimator 6%, ; in (8).
Again, in what follows, the expecta"cion in the unbiasedness can be considered as the
conditional expectation that does not depend on parameters A\?> and H; and thereby
being equal to the unconditional expectation. Thus, in the following results, both un-
biasedness and mean square convergence hold whether or not A\? and H are estimated.

Lemma 3.3. Let Z = (Zy,...,Zn)" be an N -vector of independent N'(0,1) random
variables, then

E[(Z"Z)(a"Z)%] = (N +2)a’a, (11)
where a s a real valued N —vector.
Proof. We can write

(zT2)(a*2)* =T (27 2)(22T)a.
In the matrix (Z7Z)(ZZ™) the diagonal elements are of the form

(272)2} =z} + 7}y 7
J#i

and the off diagonal elements, with i # j, are of the form

(Z2T2)2:Z; = Z} Z; + Zi 23 + 2,25 Y | Z.
k#i,j

By independence and properties of A/ (0,1) random variables, the expected values of
the diagonal elements are,

B| 20+ 225 2| = B2 +E[Z] L E[Z] =3+ (V-1 =N +2
J#i i



and the off diagonal elements are all zero. Thus, E [(Z7 Z)(ZZ7)] is a diagonal matrix
with diagonal elements N + 2. Therefore,

E[(Z272)(a"2)*| =d"E[(272)2Z"] a = (N +2)a’ a,
which completes the proof. O

Theorem 3.4. The mazimum likelihood estimator 6%, ;; (defined by (8)) is asymp-

totically unbiased and converges in mean square to o> as N — 0.
Furthermore,

. N -1
E (63 5] = ~ o? (12)
and
2(N —1
Var [&izVH} = (]V2)0'4. (13)

Proof. Substituting Y by mt + o(B; + AB}?) in (8), we have

. o2 N tIT—Y( B, + ABH))?
6% = N (B; + ABEYI=Y(B; + ABlT) — [ iTli_lt i)l

(14)

Because By + AB ~ N(0,T), then I'~Y2(B; + BH) ~ N(0, Iy), where I'~1/2 is the
inverse of T''/2 which is a symmetric matrix such that Y2112 = 1| called the square
root of T'; and Iy is the N x N identity matrix. Furthermore, (B; + ABf)TT—1(B, +

ABHY) ~ x%, tTT=Y(B, + ABH) ~ N(0,t7T~'t), and % ~N(0,1).

As a result, by these arguments, the first component in (14) is a chi-squared random
variable with NV degrees of freedom, which also coincides its expected value. The second
argument is a squared standard normal variable, so that the expected value is its
variance, which equals one.

Therefore, we get immediately

. o? N -1
E[6%: 1] = N -1)= TGQ,

which converges to 02 as N — oo, implying the asymptotic unbiasedness.
Next we prove the convergence in mean square. Because of the asymptotic unbi-
asedness, we need to prove only that Var[&iz’ ] = 0as N — oo.



Now,

Var[6%. ] = E[(63: )% — (E[63: g])?

ot

- 5 [E [((Bt F BT (B, + ABtH))z}
[t (B, + ABtH)]Q]

—9E [(Bt + ABITT=Y(B, + ABH) T

+E

([tTF_l(Bt + AB#)P)Z

tTT—1¢ -(V-1)

The first expectation in the latter part is the expected value of a squared chi—squared
variable with N degrees of freedom. Thus, by straightforward calculations we have,

E [((Bt +ABITT (B, + ABtH))Z} — 9N + N2 = N(N +2).

For the second expectation, we utilize Lemma 3.3 with Z = T=2(B; + AB}!) and
a = I'Y2¢. Noting that t"T~1(B; — ABf') = t"T-1/2[1-Y2(B, — BF)] and using
Lemma 3.3, we get

E [(By + AB) T (B, + AB)[t'T1(B, + AB)]*] = (N +2)(t'T),

so that the second expectation becomes N + 2.
The last expectation is the expected value of the fourth moment of a standard normal
random variable, i.e., the kurtosis, which equals three. Thus,

. ([tTF‘l(Bt + AB{I)P)Q] .,

tTT—1¢

Collecting the results, we get finally,

;42(N(N+2)—2(N+2)+3—(N—1)2):2(]\7_1)027

Var[&§z7H] = N2

which converges to zero as N — oc.
This completes the proof of the mean square convergence of &f\g - ]

From a practical point of view, since the values of the parameters A> and H are
unknown; it is crucial to point out the continuity of the estimators 72 i and 62 f in
these parameters which support their usability. With the use of Lemma 3.1 in (10) and
(14), it can be noted that the two estimators are continuous in A?> and H. Moreover,
referring to the simulation results in section 4, the average of the i estimates is close
to the true parameters. The parameter ji is deduced from m and 6 as 1 = m + %&2.
This result also supports the usability of estimators 7> i and 62 g.

We now show the strong consistency of the MLE 12 i and (33\27 g as N —oo. In
particular, the following results hold under the assumption that \?> and H are known
constants.
we need the following auxiliary statement.



Lemma 3.5. leth > 0 and {m&ﬁf}q, N =1,2,...} be the ML estimator of the parameter

m of the model (3) by the observations Yin,k = 1,2,...N. Then the random process
(N)

mv y has independent increments.
Proof. See [22, Lemma 2.6] O

Theorem 3.6. The estimators myz r and 63. 5 defined by (7) and (8), respectively,
are strong consistent, that is,

my2g —m a.s N — oo, (15)

&iz,H — 0% a.s as N — oo. (16)

Proof. First, we discuss the convergence of 112 g.

By Theorem 3.2, Var[m(giq] — 0 as N — oo, therefore, following Mishura et al. [22,
Theorem 2.7], we have

Var [mgf;gq _ m<N4 — Varfiny] — Varfi{)]

— 2\/ Var[mf\lz\{)[{]\/ar[mgq%]corr (m(;!)H, m&f‘}){) — Var[mg\].zv"};] as N — o0.

The process m&f)H has independent increments. Therefore by Kolmogorov’s inequality,

fore >0and N € N

4 4
w0 — )| > 2) < i Var [mgf;;{ - mgf;og,] = A Vari )

62 N—oo

P< sup
N>N,

Then, using the unbiasedness of the estimator, we get

P( sup [~ m| =€) < P( sup [l - m| > §)
NZNO ’ NZNO ) 2
4 4
+P( sup [m® —mo ] > £} < Svarpn()] + S varm (o]
N2>No ’ ’ 2 €2 ) €2 )
8
= 6—2Var[mg\]2\i‘}){] —0 as Ny — oo,
(M)

hence ‘m N m‘ — 0 as N — oo almost surely.

Moreover, we will show that

R 1
ZP<‘U§\2,H_O-2‘ > M) <OO, (17)

N2>1

for some ¢ > 0.

10



The Chebyshev’s inequality combined with the mean square convergence calcula-
tions in Theorem 3.4 implies that for any small positive §

2 YTF—1Y TF_l _ tT]_“—ly 2 1
L[ |2 [T T - TR )
N tTT—1¢ N?
ot 1 [(YTD=IY)(#TT— 1) — (¢TT-1Y)? ot
SyuE|l-% T 1 = Nz
Thus (17) is proven, which implies (16) by the Borel-Cantelli lemma. O

We now move on to the study of the asymptotic normality of the estimators 12 g
and &32 e
Regardfng the asymptotic normality of 7712 ;7, we note that the estimator is normal
with expectation m and variance

o2

Var[m,\;H] = m

Consequently,
Vv tTF_1t<ﬁ’L/\27H — m) ~ N(O, 0’2).

Hence, in what follows, we study the asymptotic distribution of 6?\2’ -

The proof of the &3\27 g asymptotic normality requires a criterion from the Malliavin
calculus; plus precisely, the results of the Malliavin derivative D with respect to the
Gaussian process M; = B; + )\Bfl . These results are very well presented in Xiao et
al. [36]. Therefore, borrowing the idea of Xiao et al., we will make use of the following
technical lemma.

Lemma 3.7. For a time interval [0,T], we denote by & the set of real-valued step
functions on [0,T] and let H be the Hilbert space defined as the closure of £ with
respect to the scalar product

(Lo, Ljo,9)4, = Ru(t, s),

where Ry (t,s) is the covariance function of the mfBm. We will denote by ||.||,, the
norm in H induced by (-,-),,; define

=

1 [N . 1 _ /
Fy = 5((&2,}[—02):@ (B: + ABHTT 1(Bt+)\BfI)}— 5

Then we have

~9
20/\27H
o2

2
HDFNHH =

Proof. See [36, Lemma 4.3]. O

The asymptotic distribution of &3\27 g is embedded in the following theorem.

11



Theorem 3.8. We have

1 /N
\15(63\271{—02) i>J\/’(0,1) as N — oo.

o?
Proof. Using the results of Theorem 3.4, we get

. . 1 [N > N __. )
A}flooE[FJ%/] = A}flooE [02 2(0,2\2,1{—02)} = ]\}EHOOT‘ALE[J;H—2U?\27H02+U4] =1.

By Theorem 3.4 and Lemma 3.7 | DF’ N||3_[ converges in L? to the constant 2. Applying
Theorem 4 in Nualart and Ortiz-Latorre [23], the proof is complete. O

4. Simulation Results

This section investigates the efficiency of the constructed maximum likelihood estima-
tors through Monte Carlo simulation studies. The simulation studies aim to illustrate
the proven properties of the estimators. That is, to show that in fact, the estimated
parameters do converge to the actual values as the sample size increases. The crucial
phase of Monte Carlo simulation is the construction of the mixed fractional Brownian
motion path. The mfBm simulation procedure used in this article is as follows: First,
based on the method of [17], generate the standard Brownian motion. Next, using
Wood’s method: circulant matrix [33], generate fractional Gaussian noise using the
algorithm proposed in [29]. The path of fractional Brownian motion is obtained by
taking the cumulative sums of the fractional Gaussian noise. Finally, mfBm path is
constructed. For a sample size of 500 and a sampling interval of 0.002, Figure 1 to
3 illustrates the path of the mixed process M; for different o, 7, and H parameters
values. The figures highlight the fact that the Brownian motion process with Holder
index « and the fractional Brownian motion with Holder index (3, the path of a linear
combination between them will be a curve with Holder index which is the minimum
between o and S (see [2]).

In the following, we describe the complete u, o, 7, and H parameters estimation

procedure from discrete observations Y;;,1 < i < N, as presented in section 2. The
observations Y = Yy, Yoy, ..., Y, are simulated for different values of u, o, 7,and H,
with fixed sampling interval h = 1/252,1/52,1/12 (data collected by daily, weekly and
monthly observations, respectively), and sample size N = 100, 200, 300, and 500. For
each case, sample sizes are replicated 100 times from the actual model.
In the numeric maximization of (9), as we are dealing with an optimization problem
involving an inverse of a large—scale matrix with exponential elements; we follow one of
the Coeurjolly’s approach [9]; the use of the Cholesky decomposition of the covariance
matrix I'. That is, as I' is a symmetric positive definite matrix; it can be written as LL”
where L is a lower triangular matrix. In terms of storage, it is much easier to compute
the inverse of a lower triangular matrix. Hence, I ! = (L~1)7 L~! and the determinant
of I'; |T'| = ‘Lz‘. To deal with the fact that eigenproblem might be ill-conditioned and
hard to compute even when the matrix itself is well-conditioned with respect to the
inversion; we use the Multiprecision Computing Toolbox [1]; a MATLAB extension for
computing with arbitrary precision. The toolbox allows solving of numerically unstable
problems such as ill-conditioned matrices and minimizes rounding and cancellation
errors in computations.

12



The algorithm of our estimation method used in this article is shown in Figure 4
and summarized as follows:
Step 1. Set N: the sample size and h: the sampling interval;
Step 2. Set the values of u, o, 7, and H parameters;
Step 3. Generate mixed fractional Brownian motion based on the above—cited algo-
rithms;
Step 4. Construct the path of model 4; K R
Step 5. Numerically maximize (9) to get the estimators H of H and A\? of \?;
Step 6. Compute m by substituting H with H and A2 with A% in (7);
Step 7. Calculate & by substituting H with H and A2 with A2 in (8);
Step 8. Deduce the drift estimator & = m + %&2;
Step 9. Deduce the estimator 7 = A6

Note that in the case of empirical analysis, step 1 to 4 are skipped and proceed from
5t0 9.

H=0.7
H=0.9

Figure 1. Simulated mfBm paths for different values of H (o = 0.4, 7 = 1.4).

For the sampling interval h = 1/252, the means and standard deviations (S.Dev.)
of the estimators for different samples size are given in Table 1; where the true value
is the parameter value used in the Monte Carlo simulation. Tables 2 and 3 report
h =1/52 and h = 1/12 sampling intervals simulation results; to investigate the effect
of the underlying sampling interval.
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Set the sampling interval h,
sampling size n, and u,0, T values

!

Generate Mixed Fractional
Brownian motion

}

‘ Construct the path of model 4 ‘

Empirical study procedure
l starts here

‘ Numerically maximize equation 9 ‘
To obtain A and A2

|

‘ Compute M using equation 7 ‘

|

‘ Calculate & using equation 8 ‘

|

L1,
Deduceu=m+za2

and T = A6

Figure 4. Monte Carlo simulation flow chart

From numerical computations, we observe that on the one hand in all the three
sampling intervals cases, as the sample size increases from 100 to 300, the simulated
mean of the estimators slowly converges to the true value; on the other hand, the
sample variation from 100 to 500 makes the simulated mean converges quickly to
the actual value. Therefore, for rapid convergence of the estimated parameters, a large
sample size of 500 and above is needed; the larger the sample, the better the estimation.
However, overall in all the three cases, the simulated standard deviation and the bias
decreases as the number of observations increases. Hence, we can conclude that the
Maximum likelihood estimation method proposed in this article performs well since the
estimated parameters results move towards their chosen values for H > 1/2. Moreover,
regarding the effect of the sampling interval, we observe that the obtained estimators
are not affected by the sampling interval since neither restriction was placed on the
sampling interval nor dependence of it with the estimators.

Regarding the range of the maximization procedure for the parameter H = 0.5,0.95
in the 100 times’ simulation replications; for each sampling interval in the four studied
sample sizes, it is as follows:

e For h = 1/252, when H = 0.55, the range’s minimum value is 0.5000, and the
maximum value is 0.8733. When H = 0.95, the range’s minimum value is 0.9000,
and the maximum is 0.9737.

e For h = 1/52, when H = 0.55, the minimum value of the range is 0.5000, and
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the maximum is 0.7213. When H = 0.95, the range’s minimum value is 0.9000,
and the maximum is 0.9666.

e For h = 1/12, when H = 0.55, the minimum value of the range is 0.5000, and
the maximum is 0.7156. When H = 0.95, the range’s minimum value is 0.9000,
and the maximum is 0.9852.

Hence, when H = 0.5,0.95, all the H estimates fall in the interval 0.5 to 1; H € (0.5, 1).

5. Empirical study

This section presents the application of our method described in the previous sections
to the real data. The purpose is to estimate the parameters of the risky—asset market
model using the proposed estimation approach based on the daily return series. The
utilized data in this empirical analysis have been retrieved from Thomson Reuters
DataStream database. They are daily historical data for the Helsinki stock market
index (OMXH25), the Norwegian index (AXLT), the Swedish index (OMXS20), all
three indices spanning from January 01, 2010 to December 28, 2018, and containing
2347 observations. The Danish index (OMXC20) covers the period from November
25, 2011 to December 31, 2018, which is 1852 observations. As mentioned above, data
are collected daily, in other words, the index prices are observed at a time interval of
h =1/252. All indices’ closing prices were transformed into logarithmic returns using
the formula:

X
r=InX,—InX, 1 =In <th1>

where X;_1 and X; are two consecutive observations for a time series, and 7; is its
return.

Basic descriptive plots of data are presented in Figure 5 to 8 as follows: In all figures,
chart(a) represent the timeline plot of the series; they reflect the non—stationarity as
no long—run average appears in all the series. Chart(b) illustrates the logarithm trans-
formation trend of the series over time. Log—returns reveal high volatility, prominent
spikes and jump; however, they appear to be stable around the mean. Chart(c) demon-
strate the closer normal distribution but not completely Gaussian as the normalized
histogram try to capture all features. Chart(d) plots the quantile—quantile(Q—Q) of the
log—returns distribution against the standard normal distribution quantiles. The plots
indicate that log—returns distribution exhibit an S—shape curve compared to the nor-
mal distribution; with the presence of significantly larger historical quantiles in the tail
of the distribution; which implies the non—normality distribution of the log—returns.

Table 4 reports for the indices mentioned above, the sample size, their mini-
mum/maximum values, the returns sample mean, standard deviation, skewness, and
kurtosis. For all the series, the mean returns are marginally positive. They all are left-
skewed as they all have negative skewness. Moreover, all series are leptokurtic as they
all display a kurtosis coefficient significantly higher than three. Such features (skewness
and kurtosis) implying the non—normality distribution; are common in return series.
Q-Q plots also confirm these results (see charts(d) in Figure 5 to 8).

Next, we investigate the presence of long—range dependence property in the studied
indices. The method used is the plot of the sample autocorrelation functions of the
daily returns. As illustrated in Figure 9 and 10, slow and very weak decay of the
autocorrelation function is observed.
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Table 4. Descriptive statistics of daily returns.

Index Nobs* Min Max Mean S.Dev | Skew Kurt
OMXH25 | 2347 | -0.0875 | 0.0798 | 2.536 « 10~* | 0.0125 | -0.2072 | 6.7377

AXLT 2347 | -0.0576 | 0.0544 | 3.258 x 10~* | 0.0108 | -0.2637 | 5.8796
OMXS30 2347 | -0.0880 | 0.0624 | 1.671 % 10~* | 0.0114 | -0.3544 | 7.3244
OMXC20 | 1852 | -0.0559 | 0.0500 | 4.906 « 10~* | 0.0097 | -0.2984 | 5.3800

*Nobs: Number of observations.

Therefore, one can conclude that the studied indices have long-range dependence. To
what degree? This will be determined by the long—memory parameter estimated in
what follows. The final step is to estimate the unknown parameter of the risky—asset
market model; namely H, u, o, and 7 from the considered financial series, using our
estimation procedure proposed in section 2 and the estimation algorithm in section 4.
Using the real data and (1), we estimated all the desired parameters.

Table 5 presents the estimation results. The results reveal strong and almost equal
evidence of long-range dependence in all the return series during the sample period; as
the estimated Hurst parameter is higher than 1/2. In other words, all the indices are
persistent, and the closer H is to 1, the higher the degree of persistence. This estimated
parameter also suggests a high degree of predictability of the future returns in all the
indices based on the historical returns. This finding agrees with the work [8]; where
the used estimated long-range parameter (the differencing parameter d) was found
significantly positive for the case of Finnish, Danish, and Norwegian stock indices.
The expected returns (f1), as well as, the volatility (6) parameters in short memory
are relatively close for all indices; implying that all indices have reasonably same daily
volatility. The magnitude parameters (7) of the long-range dependence is also slightly
equal in all cases; except in the case of OMXC20 where a lower amplitude is observed.
However, this is due to the OMXC20’s number of observations, which is less compared
to the other three indices.

Table 5. Empirical results by our method.

Index Hurst parameter (H) [ 2 7
OMXH25 0.8481 0.0379 | 0.2754 0.0013
AXLT 0.8279 0.0293 | 0.2423 0.0026
OMXS30 0.8196 0.0344 | 0.2622 0.0012
OMXC20 0.8716 0.0238 | 0.2181 | 9.523 % 10~*

6. Conclusion

Stochastic models driven by long—memory processes have grown into essential tools
in the financial world to provide a deep understanding of the behavior of the market.
Among the driver processes, the mixed fractional Brownian motion has been found to
shed much light on the debate to whether a given market is long—range dependent or
not. However, a crucial problem which rises in practice is to provide the optimal pa-
rameter estimation procedure in the discrete framework of the model driven by mfBm.
This article examines the issue of deriving simultaneously the estimators of all the un-
known parameters for a mixed fractional Black—Scholes model in the discrete domain.
Using the maximum likelihood methodology; the estimators of the drift, the volatility,
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the long-range dependent amplitude, and the Hurst parameter are constructed. The
asymptotic behavior, namely the consistency and the asymptotic normality of these
estimators are also provided. Furthermore, Monte Carlo simulation studies are per-
formed to illustrate the efficiency of our algorithm. Numerical computations indicate
the asymptotic convergence of the estimated parameters to the actual value, and that
the proposed method achieves the purpose significantly well. Moreover, to show the
application of our approach to the real data; an empirical study was done on four
Nordic stock markets indices.

Regarding the analysis of the long—range dependence in the studied stock indices; re-
sults indicate similar and robust evidence of long—term dependence in the returns of
all indices with the estimated Hurst parameter above 0.80. This finding implies that
in the Nordic stock markets the no—arbitrage condition (more precisely no free lunch
with vanishing risk) of the Fundamental Theorem of Asset Pricing [see for example
10] is satisfied; since by Cheridito [6], the mfBm with H > 0.75 is equivalent in law to
Brownian motion. Further research includes the use of the proposed approach to inves-
tigate the possibility of long memory in other stock markets or exchange rates and a
comparison of our method with different stochastic models governed by long—memory
processes. Also, the data does not support Gaussianity, adding a jump component to
the model will able to capture the heavy tails.
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