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ABSTRACT
Mixed fractional Brownian motion is a linear combination of Brownian motion and
independent Fractional Brownian motion that is extensively used for option pricing.
The consideration of the mixed process is able to capture the long–range dependence
property that financial time series exhibit. This paper examines the problem of
deriving simultaneously the estimators of all the unknown parameters for a model
driven by the mixed fractional Brownian motion using the maximum likelihood
estimation method. The consistency and asymptotic normality properties of these
estimators are provided. The performance of the methodology is tested on simulated
data sets, and the outcomes illustrate that the maximum likelihood technique is
efficient and reliable. An empirical application of the proposed method is also made
to the real financial data from four Nordic stock market indices.

KEYWORDS
Mixed fractional Brownian motion; long–range dependence; Maximum likelihood
estimation; Nordic stock market indices.

1. Introduction

The construction of financial models that capture the fluctuation of financial assets has
been recently based on the mixed fractional Brownian motion (henceforth mfBm); a
linear combination of Brownian motion and independent fractional Brownian motion.
The reason is that financial time series have been found to exhibit long–range depen-
dence [11,16,27]. And, in the classical Black and Scholes model, the standard Brownian
motion process is unable to capture the stock price movements; because of its inde-
pendent increment property [4]. To overcome this issue, the fractional Black–Scholes
model was introduced where Brownian motion is substituted by fractional Brownian
motion (henceforth fBm); a parameterized (H ∈ (0, 1)) extension of Brownian motion
with short–range dependence for H < 1/2 and long–range dependence increments for
H > 1/2 [12,19,21]. However, except in the Brownian motion case (H = 1/2), fBm is
neither a semi–martingale nor a Markov process; the reason why the arbitrage oppor-
tunities appeared in the proposed model [7,30]. Therefore, to take into consideration
the long memory property; Cheridito [6] replaced the Brownian motion with mfBm
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for H ∈ (3/4, 1), and proved that the mfBm model is equivalent to the one driven by
Brownian motion, and thus it is arbitrage–free.

The suitable and promising use of mfBm to describe some phenomena in different ar-
eas raised interests in identifying the parameters of this process. Filatova [14] suggested
that mfBm process reflected better the real network traffic properties; and moreover,
the author developed the mfBm parameters estimation method for stochastic mod-
eling for computer network traffic. In the discrete framework, as in practical terms,
observations are only available in discrete time [32]; for instance, in finance, where
stock prices are collected once a day. The estimation problem of the mfBm parameters
was studied in [36] by the use of the maximum likelihood method; and proofs of the
estimators’ asymptotic properties were provided. Furthermore, paper [37] combined
the maximum likelihood approach with Powell’s method to compute these estimators
efficiently. Recall that the articles mentioned above investigated the parametric estima-
tion problem of the mfBm process itself. To the best of our knowledge, the problem of
estimating simultaneously all the unknown parameters in a model driven by the mfBm
process (mixed fractional Black–Scholes model), and its application to the real data
has not been studied before. Unlike in the case of the traditional geometric Brownian
motion [5], the drift fractional Brownian motion [18,34], and the geometric fractional
Brownian motion (see [20,35], and more recently [31]). Therefore, this article aims
to bridge that gap. Furthermore, in literature, the separate estimation for the Hurst
parameter H has been extensively studied using different estimation methods such as
the R/S (rescaled analysis) [3,13,24]. In this article, inspired by Weilin et al. [34] and
Misiran et al. [20] work in the fractional Brownian motion case; we propose a hybrid
simultaneous estimation approach of all the unknown parameters including the Hurst
index in the mixed fractional Brownian case; where the optimal value of the Hurst
parameter H is obtained by maximizing numerically the profile likelihood function.

The main contributions of this paper are first, to construct in the discrete frame-
work, the estimators of all the unknown parameters of the model driven by the mfBm
process using the maximum likelihood estimation method. The choice of the maximum
likelihood method in the range of other existing methods (least squares estimation,
minimum distance estimation, to cite few) is based on its well–known desirable asymp-
totic properties such as consistency, normality, and efficiency. Secondly, to study the
consistency and the asymptotic normality of these estimators. Thirdly, to illustrate
the efficiency performance of our algorithm through Monte Carlo simulations. Numer-
ical computations indicate that the proposed method performs significantly well and
provides reasonable estimations of all the unknown parameters of the studied model.
Finally, to show the application of our approach in a realistic context through an
empirical study.

This article is organized as follows. Section 2 addresses the estimation problem of
all the unknown parameters of the model governed by the mfBm process and provides
their maximum likelihood estimators. Section 3 deals with the study of the convergence
and the asymptotic normality of these estimators. The proposed approach is assessed
in section 4 by some numerical experiments. Section 5 presents our empirical results of
four Nordic stock market indices. Section 6 concludes the article and offers suggestions
for further research.
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2. Parameter identification

2.1. Model specification

On a probability space (Ω,F ,P), consider a Geometric Brownian motion market model
with investment in risky–asset whose price satisfies dSt = µStdt+ σStdBt, t ∈ [0, T ],
where µ ∈ (−∞,∞) and σ > 0 are the drift and the volatility parameter respectively.
To allow the long–memory property, replace the Brownian driver process σBt by the
mixed process Mt = σBt+ τBH

t ; a linear combination of Bt and independent fBm BH
t

of Hurst parameter H ∈ (0, 1), where (σ, τ) ̸= (0, 0) are two real constants. For more
elaborate details on the properties of mfBm, we refer to [38].
Hence, the model for the risky–asset governed by mfBm is given by the following
equation:

St = S0 exp

(
(µ− 1

2
σ2)t+ σ(Bt + λBH

t )

)
= exp(Yt), (1)

with S0 > 0 and λ = τ
σ .

SinceH > 1/2, the quadratic variation of the mixed process is σ2t. Consequently, (1)
is the solution of the Itô–Föllmer forward–type pathwise (ω–by–ω)(see [15]) stochastic
differential equation:

dSt = µStdt+ σStdMt, t ≥ 0. (2)

It is worth emphasizing that (2) requires H ≥ 1
2 to admit a solution. However, in this

article, we are interested in the study of long–range dependence. Therefore, the Hurst
parameter is strictly greater than 1

2 , that is,
1
2 < H < 1.

Hence estimating the parameters from (2) is equivalent to estimating the unknown
parameters from the following model:

Yt = (µ− 1

2
σ2)t+ σ(Bt + λBH

t ), t ≥ 0. (3)

Yt is equal to the RHS of (3) in L2 and with probability one.
Assume that the studied process is observed at discrete–time points (t1, t2, ..., tN )

and tk = kh, k = 1, 2, ..., N for a fixed interval h > 0 for the notation simplification
purpose. Thus the observation vector is Y = (Yt1 , Yt2 , ..., YtN )

T . (T ) denotes the vector
transposition. Hence, the discrete–time observation can be formulated in the form of
the vector as follows:

Y = (µ− 1

2
σ2)t+ σ(B + λBH), (4)

where Y = (Yh, Y2h, ..., YNh)
T , t = (t1, t2, ..., tN )T = (h, 2h, ..., Nh)T , B =

(Bh, B2h, ..., BNh)
T , and BH = (BH

h , BH
2h, ..., B

H
Nh)

T . We aim to construct esti-
mators of all the unknown parameters µ, σ, λ and H and study their asymptotic
properties as N → ∞.
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2.2. Estimation procedures

We use the maximum likelihood estimation (MLE) of the unknown parameters of the
mfBm in (1) based on discrete observations discussed above. The reason behind the
choice of MLE is its efficient application in a large set [26].

In (4), let m = µ− 1
2σ

2. Then, consider a general form of the model as follows:

Y = mt+ σ(B + λBH). (5)

The estimates for the drift parameter µ will be deduced from the estimates of m.
The evaluation of the likelihood function of Y is explicit, as the law of Y is Gaussian,
its joint probability density function is

f(Y;m,σ2, λ2,H) = (2πσ2)−
N

2 |Γ|−
1

2 exp

[
− 1

2σ2
(Y−mt)TΓ−1(Y−mt)

]
,

where |Γ| is the determinant of the covariance matrix

Γ = Γ(H,λ2) = [Cov[Bih, Bjh] + λ2Cov[BH
ih, B

H
jh]]i,j=1,2,...,N

= [h(i ∧ j) +
λ2

2
h2H(i2H + j2H − |i− j|2H)]i,j=1,2,...,N ;

with λ =
τ

σ
and i ∧ j denotes the minimum between i and j.

The log–likelihood function for θ = (m,σ2, λ2,H) is

l(Y; θ) = −N

2
ln(2π)− N

2
ln(σ2)− 1

2
ln |Γ| − 1

2σ2
(Y−mt)TΓ−1(Y−mt).

The ML estimate θ̂ of θ is obtained as the solution to the following system of equations

∂l(Y; θ̂)

∂m̂
=

1

2σ̂2
tTΓ−1(Y− m̂t) = 0, (6a)

∂l(Y; θ̂)

∂σ̂2
= − N

2σ̂2
+

1

2σ̂4
(Y− m̂t)TΓ−1(Y− m̂t) = 0, (6b)

∂l(Y; θ̂)

∂λ̂2
= −1

2
tr(Γ̂−1ΓH) +

1

2σ̂2
(Y− m̂t)T Γ̂−1ΓH Γ̂−1(Y− m̂t) = 0, (6c)

∂l(Y; θ̂)

∂Ĥ
= −1

2
tr(Γ̂−1Γ̂′) +

1

2σ̂2
(Y− m̂t)T Γ̂−1Γ̂′Γ̂−1(Y− m̂t) = 0, (6d)

where tr denotes ’trace’,

Γ̂ := Γ(Ĥ, λ̂2), Γ̂′ =
∂Γ(Ĥ, λ̂2)

∂Ĥ
,
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and

ΓH = Cov[BH
ih, B

H
jh]i,j=1,2,...,N =

1

2
h2H(i2H + j2H − |i− j|2H)i,j=1,2,...,N .

To obtain (6c) and (6d), we use the differentiation formulas of a matrix with respect
to given parameter. For more details, see [25,28].
(6a) and (6b) result in the estimators

m̂λ2,H =
tTΓ−1Y

tTΓ−1t
, (7)

σ̂2
λ2,H =

1

N

(
(YTΓ−1Y)(tTΓ−1t)− (tTΓ−1Y)2

tTΓ−1t

)
. (8)

Observe that the accuracy of the estimators m̂λ2,H and σ̂λ2,H depend crucially on
λ2 and H, which also need to be estimated. Unlike (6a) and (6b); (6c) and (6d) do
not lead to an explicit form. Therefore, following Xiao et al. [36], we apply a hybrid
approach in which we replace σ and m by their maximum likelihood solutions ((7) and
(8) respectively) in the log–likelihood equation; and maximize the resulting function
in terms of the remaining parameters. Carrying out the substitution and dropping
constant terms, we get the profile log–likelihood function

−1

2
ln |Γ| − N

2
ln

(
(YTΓ−1Y)(tTΓ−1t)− (tTΓ−1Y)2

tTΓ−1t

)
. (9)

To obtain the estimators of the parameters λ2 and H, we numerically solve the partial
optimization problem given by (9) above. Note that maximization of (9) is equivalent

to the minimization of its negative log–likelihood. Hence, the optimal values of λ̂2 and
Ĥ are obtained by using the function fminsearch in MATLAB. Next, we calculate the
values of the estimators m̂ and σ̂ by substituting H with Ĥ and λ2 with λ̂2 in (7)
and (8) respectively. Finally, we deduce the values of the estimators µ̂ = m̂+ 1

2 σ̂
2 and

τ̂ = λ̂σ̂.

3. Asymptotic properties

This section studies the asymptotic behaviors, namely the L2–consistency, the strong
consistency, and the asymptotic normality of the maximum likelihood estimators with
closed forms presented in (7) and (8). The proofs of the asymptotic properties of the
estimators m̂λ2,H and σ̂2

λ2,H hold under the assumption that λ2 and H are known

constants. Regarding the estimators of λ2 and H, as they do not have closed forms;
their optimal values are obtained, and their asymptotic properties are studied through
a numerical approach. That is, using a simulation technique presented in section 4.

First, consider the L2–consistency of the drift parameter defined by (7). We need
the following technical results.
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Lemma 3.1. If A ∈ RN×N is a positive definite matrix, x ∈ RN , x ̸= 0 is a non–zero
vector, then

xTA−1x ≥ ∥x∥4

xTA x
.

Proof. See [22, Lemma 2.4].

Remark 1. As mentioned above, the studied process Yt is observed at discrete–time
points tk = kh, k = 1, 2, ..., N for a fixed interval h > 0. Therefore, following Mishura
et al. [22] as the driver process Mt has stationary increments; the N ×N covariance
matrix Γ has Toeplitz structure, that is,
Γk+l,l = Γl,k+l = E

(
M(k+l)h−M(k+l−1)h

)(
Mlh−M(l−1)h

)
= EM(k+1)hMh−EMkhMh

does not depend on l due to the stationarity of increments.

In particular, the following results hold under the assumption that λ2 and H are
known constants. Factually, it is the L2–consistency that needs the assumption, while
the expectation in the unbiasedness can be considered as the conditional expectation
that does not depend on these parameters (λ2 and H); thereby being equal to the
unconditional expectation. Thus, the unbiasedness holds whether or not λ2 and H are
estimated.

Theorem 3.2. The maximum likelihood estimator m̂λ2,H (defined by (7)) is unbiased
and converge in mean square to m as N → ∞.

Proof. Substituting Y by mt+ σ(Bt + λBH
t ) in (7), we have

m̂λ2,H =
tTΓ−1[mt+ σ(Bt + λBH

t )]

tTΓ−1t
= m+ σ

tTΓ−1(Bt + λBH
t )

tTΓ−1t
. (10)

Thus,

E[m̂λ2,H ] = m+ σ
tTΓ−1 E(Bt + λBH

t )

tTΓ−1t
= m,

and hence m̂λ2,H is unbiased.
Moreover,

Var[m̂λ2,H ] = σ2Var

[
tTΓ−1(Bt + λBH

t )

tTΓ−1t

]
= σ2 E

[
tTΓ−1(Bt + λBH

t )(Bt + λBH
t )TΓ−1t

(tTΓ−1t)2

]
= σ2 tTΓ−1Γ Γ−1t

(tTΓ−1t)2
=

σ2

tTΓ−1t
.

By Remark 1 and from Mishura et al. discrete scheme results [22, Theorem 2.5], we
have

tTΓ t = h2
N∑
l=1

N∑
m=1

Γl,m and ∥t∥ = h
√
N,
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where Γl,m = E
(
M(|l−m|+1)h−M|l−m|h

)
Mh, with Mt = σBt+τBH

t the mixed process.
As the process Mt has stationary increments and by Toeplitz theorem,

1

N2

N∑
l=1

N∑
m=1

Γl,m =
1

N
E(Mh)

2 −
N∑
k=2

2(N + 1− k)

N2
E(Mkh −M(k−1)h)Mh

→ lim
k→∞

E(Mkh −M(k−1)h)Mh = 0 as N → ∞.

Hence, with the use of Lemma 3.1,

Var[m̂λ2,H ] =
σ2

tTΓ−1t
≤ σ2 tTΓ t

∥t∥4
=

σ2

h2N2

N∑
l=1

N∑
m=1

Γl,m → 0 as N → ∞.

Next, we study the estimator σ̂2
λ2,H in (8).

Again, in what follows, the expectation in the unbiasedness can be considered as the
conditional expectation that does not depend on parameters λ2 and H; and thereby
being equal to the unconditional expectation. Thus, in the following results, both un-
biasedness and mean square convergence hold whether or not λ2 and H are estimated.

Lemma 3.3. Let Z = (Z1, . . . , ZN )T be an N–vector of independent N (0, 1) random
variables, then

E
[
(ZTZ)(aTZ)2

]
= (N + 2)aTa, (11)

where a is a real valued N–vector.

Proof. We can write

(ZTZ)(aTZ)2 = aT (ZTZ)(ZZT )a.

In the matrix (ZTZ)(ZZT ) the diagonal elements are of the form

(ZTZ)Z2
i = Z4

i + Z2
i

∑
j ̸=i

Z2
j

and the off diagonal elements, with i ̸= j, are of the form

(ZTZ)ZiZj = Z3
i Zj + ZiZ

3
j + ZiZj

∑
k ̸=i,j

Z2
k .

By independence and properties of N (0, 1) random variables, the expected values of
the diagonal elements are,

E

Z4
i + Z2

i

∑
j ̸=i

Z2
j

 = E
[
Z4
i

]
+ E

[
Z2
i

]∑
j ̸=i

E
[
Z2
j

]
= 3 + (N − 1) = N + 2,
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and the off diagonal elements are all zero. Thus, E
[
(ZTZ)(ZZT )

]
is a diagonal matrix

with diagonal elements N + 2. Therefore,

E
[
(ZTZ)(aTZ)2

]
= aTE

[
(ZTZ)ZZT

]
a = (N + 2)aTa,

which completes the proof.

Theorem 3.4. The maximum likelihood estimator σ̂2
λ2,H (defined by (8)) is asymp-

totically unbiased and converges in mean square to σ2 as N → ∞.
Furthermore,

E
[
σ̂2
λ2,H

]
=

N − 1

N
σ2 (12)

and

Var
[
σ̂2
λ2,H

]
=

2(N − 1)

N2
σ4. (13)

Proof. Substituting Y by mt+ σ(Bt + λBH
t ) in (8), we have

σ̂2
λ2,H =

σ2

N

[
(Bt + λBH

t )Γ−1(Bt + λBH
t )− [tTΓ−1(Bt + λBH

t )]2

tTΓ−1t

]
. (14)

Because Bt + λBH
t ∼ N (0,Γ), then Γ−1/2(Bt + BH

t ) ∼ N (0, IN ), where Γ−1/2 is the
inverse of Γ1/2 which is a symmetric matrix such that Γ1/2Γ1/2 = Γ, called the square
root of Γ, and IN is the N ×N identity matrix. Furthermore, (Bt + λBH

t )TΓ−1(Bt +

λBH
t ) ∼ χ2

N , tTΓ−1(Bt + λBH
t ) ∼ N (0, tTΓ−1t), and tTΓ−1(Bt+λBH

t )√
tTΓt

∼ N (0, 1).

As a result, by these arguments, the first component in (14) is a chi–squared random
variable withN degrees of freedom, which also coincides its expected value. The second
argument is a squared standard normal variable, so that the expected value is its
variance, which equals one.
Therefore, we get immediately

E[σ̂2
λ2,H ] =

σ2

N
(N − 1) =

N − 1

N
σ2,

which converges to σ2 as N → ∞, implying the asymptotic unbiasedness.
Next we prove the convergence in mean square. Because of the asymptotic unbi-

asedness, we need to prove only that Var[σ̂2
λ2,H ] → 0 as N → ∞.
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Now,

Var[σ̂2
λ2,H ] = E[(σ̂2

λ2,H)2]− (E[σ̂2
λ2,H ])2

=
σ4

N2

[
E
[(
(Bt + λBH

t )TΓ−1(Bt + λBH
t )

)2]
−2E

[
(Bt + λBH

t )TΓ−1(Bt + λBH
t )

[tTΓ−1(Bt + λBH
t )]2

tTΓ−1t

]
+E

[(
[tTΓ−1(Bt + λBH

t )]2

tTΓ−1t

)2
]
− (N − 1)

]
.

The first expectation in the latter part is the expected value of a squared chi–squared
variable with N degrees of freedom. Thus, by straightforward calculations we have,

E
[(
(Bt + λBH

t )TΓ−1(Bt + λBH
t )

)2]
= 2N +N2 = N(N + 2).

For the second expectation, we utilize Lemma 3.3 with Z = Γ−1/2(Bt + λBH
t ) and

a = Γ−1/2t. Noting that tTΓ−1(Bt − λBH
t ) = tTΓ−1/2[Γ−1/2(Bt − BH

t )] and using
Lemma 3.3, we get

E
[
(Bt + λBH

t )TΓ−1(Bt + λBH
t )[tTΓ−1(Bt + λBH

t )]2
]
= (N + 2)(tTΓt),

so that the second expectation becomes N + 2.
The last expectation is the expected value of the fourth moment of a standard normal
random variable, i.e., the kurtosis, which equals three. Thus,

E

[(
[tTΓ−1(Bt + λBH

t )]2

tTΓ−1t

)2
]
= 3.

Collecting the results, we get finally,

Var[σ̂2
λ2,H ] =

σ4

N2

(
N(N + 2)− 2(N + 2) + 3− (N − 1)2

)
=

2(N − 1)

N2
σ2,

which converges to zero as N → ∞.
This completes the proof of the mean square convergence of σ̂2

λ2,H .

From a practical point of view, since the values of the parameters λ2 and H are
unknown; it is crucial to point out the continuity of the estimators m̂λ2,H and σ̂λ2,H in
these parameters which support their usability. With the use of Lemma 3.1 in (10) and
(14), it can be noted that the two estimators are continuous in λ2 and H. Moreover,
referring to the simulation results in section 4, the average of the µ̂ estimates is close
to the true parameters. The parameter µ̂ is deduced from m̂ and σ̂ as µ̂ = m̂ + 1

2 σ̂
2.

This result also supports the usability of estimators m̂λ2,H and σ̂λ2,H .
We now show the strong consistency of the MLE m̂λ2,H and σ̂2

λ2,H as N → ∞. In

particular, the following results hold under the assumption that λ2 and H are known
constants.
we need the following auxiliary statement.
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Lemma 3.5. let h > 0 and {m̂(N)
λ2,H , N = 1, 2, ...} be the ML estimator of the parameter

m of the model (3) by the observations Ykh, k = 1, 2, ...N . Then the random process

m̂
(N)
λ2,H has independent increments.

Proof. See [22, Lemma 2.6]

Theorem 3.6. The estimators m̂λ2,H and σ̂2
λ2,H defined by (7) and (8), respectively,

are strong consistent, that is,

m̂λ2,H → m a.s N → ∞, (15)

σ̂2
λ2,H → σ2 a.s as N → ∞. (16)

Proof. First, we discuss the convergence of m̂λ2,H .

By Theorem 3.2, Var[m̂
(N)
λ2,H ] → 0 as N → ∞, therefore, following Mishura et al. [22,

Theorem 2.7], we have

Var

[
m̂

(N)
λ2,H − m̂

(N0)
λ2,H

]
= Var[m̂

(N)
λ2,H ]−Var[m̂

(N0)
λ2,H ]

− 2

√
Var[m̂

(N)
λ2,H ]Var[m̂

(N0)
λ2,H ]corr

(
m̂

(N)
λ2,H , m̂

(N0)
λ2,H

)
→ Var[m̂

(N0)
λ2,H ] as N → ∞.

The process m̂
(N)
λ2,H has independent increments. Therefore by Kolmogorov’s inequality,

for ϵ > 0 and N ∈ N

P

(
sup

N≥N0

∣∣∣m̂(N)
λ2,H − m̂

(N0)
λ2,H

∣∣∣ > ϵ

2

)
≤ 4

ϵ2
lim

N→∞
Var

[
m̂

(N)
λ2,H − m̂

(N0)
λ2,H

]
=

4

ϵ2
Var[m̂

(N0)
λ2,H ].

Then, using the unbiasedness of the estimator, we get

P

(
sup

N≥N0

∣∣∣m̂(N)
λ2,H −m

∣∣∣ ≥ ϵ

)
≤ P

(
sup

N≥N0

∣∣∣m̂(N0)
λ2,H −m

∣∣∣ ≥ ϵ

2

)
+ P

(
sup

N≥N0

∣∣∣m̂(N)
λ2,H − m̂

(N0)
λ2,H

∣∣∣ ≥ ϵ

2

)
≤ 4

ϵ2
Var[m̂

(N0)
λ2,H ] +

4

ϵ2
Var[m̂

(N0)
λ2,H ]

=
8

ϵ2
Var[m̂

(N0)
λ2,H ] → 0 as N0 → ∞,

hence
∣∣∣m̂(N)

λ2,H −m
∣∣∣ → 0 as N → ∞ almost surely.

Moreover, we will show that

∑
N≥1

P

( ∣∣σ̂2
λ2,H − σ2

∣∣ > 1

N δ

)
< ∞, (17)

for some δ > 0.
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The Chebyshev’s inequality combined with the mean square convergence calcula-
tions in Theorem 3.4 implies that for any small positive δ

P

[ ∣∣∣∣σ2

N

[
(Y TΓ−1Y )(tTΓ−1t)− (tTΓ−1Y )2

tTΓ−1t

]
− σ2

∣∣∣∣ > 1

N δ

]

≤ σ4

N2δ
E

[
1− 1

N

[
(Y TΓ−1Y )(tTΓ−1t)− (tTΓ−1Y )2

tTΓ−1t

]]2

=
σ4

N2δ+2
.

Thus (17) is proven, which implies (16) by the Borel–Cantelli lemma.

We now move on to the study of the asymptotic normality of the estimators m̂λ2,H

and σ̂2
λ2,H .

Regarding the asymptotic normality of m̂λ2,H , we note that the estimator is normal
with expectation m and variance

Var[m̂λ2,H ] =
σ2

tTΓ−1t
.

Consequently,

√
tTΓ−1t(m̂λ2,H −m) ∼ N (0, σ2).

Hence, in what follows, we study the asymptotic distribution of σ̂2
λ2,H .

The proof of the σ̂2
λ2,H asymptotic normality requires a criterion from the Malliavin

calculus; plus precisely, the results of the Malliavin derivative D with respect to the
Gaussian process Mt = Bt + λBH

t . These results are very well presented in Xiao et
al. [36]. Therefore, borrowing the idea of Xiao et al., we will make use of the following
technical lemma.

Lemma 3.7. For a time interval [0, T ], we denote by E the set of real–valued step
functions on [0, T ] and let H be the Hilbert space defined as the closure of E with
respect to the scalar product

⟨1[0,t],1[0,s]⟩H = RH(t, s),

where RH(t, s) is the covariance function of the mfBm. We will denote by ∥.∥H the
norm in H induced by ⟨·, ·⟩H; define

FN =
1

σ2

√
N

2
(σ̂2

λ2,H − σ2) =
1√
2N

[
(Bt + λBH

t )TΓ−1(Bt + λBH
t )

]
−
√

N

2
.

Then we have

∥DFN∥2H =
2σ̂2

λ2,H

σ2
.

Proof. See [36, Lemma 4.3].

The asymptotic distribution of σ̂2
λ2,H is embedded in the following theorem.

11



Theorem 3.8. We have

1

σ2

√
N

2
(σ̂2

λ2,H − σ2)
L−→ N (0, 1) as N → ∞.

Proof. Using the results of Theorem 3.4, we get

lim
N→∞

E[F 2
N ] = lim

N→∞
E
[
1

σ2

√
N

2
(σ̂2

λ2,H−σ2)

]2
= lim

N→∞

N

2σ4
E[σ̂4

λ2,H−2σ̂2
λ2,Hσ2+σ4] = 1.

By Theorem 3.4 and Lemma 3.7 ∥DFN∥2H converges in L2 to the constant 2. Applying
Theorem 4 in Nualart and Ortiz–Latorre [23], the proof is complete.

4. Simulation Results

This section investigates the efficiency of the constructed maximum likelihood estima-
tors through Monte Carlo simulation studies. The simulation studies aim to illustrate
the proven properties of the estimators. That is, to show that in fact, the estimated
parameters do converge to the actual values as the sample size increases. The crucial
phase of Monte Carlo simulation is the construction of the mixed fractional Brownian
motion path. The mfBm simulation procedure used in this article is as follows: First,
based on the method of [17], generate the standard Brownian motion. Next, using
Wood’s method: circulant matrix [33], generate fractional Gaussian noise using the
algorithm proposed in [29]. The path of fractional Brownian motion is obtained by
taking the cumulative sums of the fractional Gaussian noise. Finally, mfBm path is
constructed. For a sample size of 500 and a sampling interval of 0.002, Figure 1 to
3 illustrates the path of the mixed process Mt for different σ, τ , and H parameters
values. The figures highlight the fact that the Brownian motion process with Hölder
index α and the fractional Brownian motion with Hölder index β, the path of a linear
combination between them will be a curve with Hölder index which is the minimum
between α and β (see [2]).

In the following, we describe the complete µ, σ, τ , and H parameters estimation
procedure from discrete observations Yih, 1 ≤ i ≤ N , as presented in section 2. The
observations Y = Yh, Y2h, ..., YNh are simulated for different values of µ, σ, τ ,and H,
with fixed sampling interval h = 1/252, 1/52, 1/12 (data collected by daily, weekly and
monthly observations, respectively), and sample size N = 100, 200, 300, and 500. For
each case, sample sizes are replicated 100 times from the actual model.
In the numeric maximization of (9), as we are dealing with an optimization problem
involving an inverse of a large–scale matrix with exponential elements; we follow one of
the Coeurjolly’s approach [9]; the use of the Cholesky decomposition of the covariance
matrix Γ. That is, as Γ is a symmetric positive definite matrix; it can be written as LLT ,
where L is a lower triangular matrix. In terms of storage, it is much easier to compute
the inverse of a lower triangular matrix. Hence, Γ−1 = (L−1)TL−1 and the determinant
of Γ; |Γ| =

∣∣L2
∣∣. To deal with the fact that eigenproblem might be ill–conditioned and

hard to compute even when the matrix itself is well–conditioned with respect to the
inversion; we use the Multiprecision Computing Toolbox [1]; a MATLAB extension for
computing with arbitrary precision. The toolbox allows solving of numerically unstable
problems such as ill–conditioned matrices and minimizes rounding and cancellation
errors in computations.
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The algorithm of our estimation method used in this article is shown in Figure 4
and summarized as follows:
Step 1. Set N: the sample size and h: the sampling interval;
Step 2. Set the values of µ, σ, τ , and H parameters;
Step 3. Generate mixed fractional Brownian motion based on the above–cited algo-
rithms;
Step 4. Construct the path of model 4;
Step 5. Numerically maximize (9) to get the estimators Ĥ of H and λ̂2 of λ2;

Step 6. Compute m̂ by substituting H with Ĥ and λ2 with λ̂2 in (7);

Step 7. Calculate σ̂ by substituting H with Ĥ and λ2 with λ̂2 in (8);
Step 8. Deduce the drift estimator µ̂ = m̂+ 1

2 σ̂
2;

Step 9. Deduce the estimator τ̂ = λ̂σ̂.
Note that in the case of empirical analysis, step 1 to 4 are skipped and proceed from
5 to 9.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1t
-1

-0.8
-0.6
-0.4
-0.2

0
0.2
0.4
0.6
0.8

1

Mt

H = 0.5H = 0.7H = 0.9

Figure 1. Simulated mfBm paths for different values of H (σ = 0.4, τ = 1.4).

For the sampling interval h = 1/252, the means and standard deviations (S.Dev.)
of the estimators for different samples size are given in Table 1; where the true value
is the parameter value used in the Monte Carlo simulation. Tables 2 and 3 report
h = 1/52 and h = 1/12 sampling intervals simulation results; to investigate the effect
of the underlying sampling interval.
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0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1t
-4

-3

-2

-1

0

1

2

Mt

H = 0.5H = 0.7H = 0.9

Figure 2. Simulated mfBm paths for different values of H (σ = 1, τ = 3).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1t
-6
-4
-2
0
2
4
6
8

10
12

Mt

H = 0.5H = 0.7H = 0.9

Figure 3. Simulated mfBm paths for different values of H (σ = 5, τ = 12).

14



 

 

 

 

 

 

 

 

 

 

   

 

 

   

 

 

 

 

  

 

 

  

 

 

 

  

Set the sampling interval h, 

sampling size n, and 𝜇,𝜎, 𝜏 values 

Generate Mixed Fractional 

Brownian motion 

Construct the path of model 4 

Numerically maximize equation 9 To obtain 𝐻 and 𝜆መ2 

Compute 𝑚ෝ  using equation 7 

Calculate 𝜎ො using equation 8 

Deduce 𝜇Ƹ  = 𝑚ෝ  + 
1

2
 𝜎ො2 

and 𝜏Ƹ = 𝜆መ𝜎ො 

Empirical study procedure 

starts here 

Figure 4. Monte Carlo simulation flow chart

From numerical computations, we observe that on the one hand in all the three
sampling intervals cases, as the sample size increases from 100 to 300, the simulated
mean of the estimators slowly converges to the true value; on the other hand, the
sample variation from 100 to 500 makes the simulated mean converges quickly to
the actual value. Therefore, for rapid convergence of the estimated parameters, a large
sample size of 500 and above is needed; the larger the sample, the better the estimation.
However, overall in all the three cases, the simulated standard deviation and the bias
decreases as the number of observations increases. Hence, we can conclude that the
Maximum likelihood estimation method proposed in this article performs well since the
estimated parameters results move towards their chosen values for H > 1/2. Moreover,
regarding the effect of the sampling interval, we observe that the obtained estimators
are not affected by the sampling interval since neither restriction was placed on the
sampling interval nor dependence of it with the estimators.

Regarding the range of the maximization procedure for the parameter H = 0.5, 0.95
in the 100 times’ simulation replications; for each sampling interval in the four studied
sample sizes, it is as follows:

• For h = 1/252, when H = 0.55, the range’s minimum value is 0.5000, and the
maximum value is 0.8733. When H = 0.95, the range’s minimum value is 0.9000,
and the maximum is 0.9737.

• For h = 1/52, when H = 0.55, the minimum value of the range is 0.5000, and
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the maximum is 0.7213. When H = 0.95, the range’s minimum value is 0.9000,
and the maximum is 0.9666.

• For h = 1/12, when H = 0.55, the minimum value of the range is 0.5000, and
the maximum is 0.7156. When H = 0.95, the range’s minimum value is 0.9000,
and the maximum is 0.9852.

Hence, whenH = 0.5, 0.95, all theH estimates fall in the interval 0.5 to 1;H ∈ (0.5, 1).

5. Empirical study

This section presents the application of our method described in the previous sections
to the real data. The purpose is to estimate the parameters of the risky–asset market
model using the proposed estimation approach based on the daily return series. The
utilized data in this empirical analysis have been retrieved from Thomson Reuters
DataStream database. They are daily historical data for the Helsinki stock market
index (OMXH25), the Norwegian index (AXLT), the Swedish index (OMXS20), all
three indices spanning from January 01, 2010 to December 28, 2018, and containing
2347 observations. The Danish index (OMXC20) covers the period from November
25, 2011 to December 31, 2018, which is 1852 observations. As mentioned above, data
are collected daily, in other words, the index prices are observed at a time interval of
h = 1/252. All indices’ closing prices were transformed into logarithmic returns using
the formula:

rt = lnXt − lnXt−1 = ln

(
Xt

Xt−1

)
where Xt−1 and Xt are two consecutive observations for a time series, and rt is its
return.

Basic descriptive plots of data are presented in Figure 5 to 8 as follows: In all figures,
chart(a) represent the timeline plot of the series; they reflect the non–stationarity as
no long–run average appears in all the series. Chart(b) illustrates the logarithm trans-
formation trend of the series over time. Log–returns reveal high volatility, prominent
spikes and jump; however, they appear to be stable around the mean. Chart(c) demon-
strate the closer normal distribution but not completely Gaussian as the normalized
histogram try to capture all features. Chart(d) plots the quantile–quantile(Q–Q) of the
log–returns distribution against the standard normal distribution quantiles. The plots
indicate that log–returns distribution exhibit an S–shape curve compared to the nor-
mal distribution; with the presence of significantly larger historical quantiles in the tail
of the distribution; which implies the non–normality distribution of the log–returns.

Table 4 reports for the indices mentioned above, the sample size, their mini-
mum/maximum values, the returns sample mean, standard deviation, skewness, and
kurtosis. For all the series, the mean returns are marginally positive. They all are left-
skewed as they all have negative skewness. Moreover, all series are leptokurtic as they
all display a kurtosis coefficient significantly higher than three. Such features (skewness
and kurtosis) implying the non–normality distribution; are common in return series.
Q–Q plots also confirm these results (see charts(d) in Figure 5 to 8).

Next, we investigate the presence of long–range dependence property in the studied
indices. The method used is the plot of the sample autocorrelation functions of the
daily returns. As illustrated in Figure 9 and 10, slow and very weak decay of the
autocorrelation function is observed.
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Figure 5. Statistical plots of daily returns for OMXH25 index.
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Figure 6. Statistical plots of daily returns for AXLT index.
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Figure 7. Statistical plots of daily returns for OMXS30 index.
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Figure 8. Statistical plots of daily returns for OMXC20 index.
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Figure 9. Sample ACF for the OMXH25 and AXLT log-returns.
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Table 4. Descriptive statistics of daily returns.

Index Nobs* Min Max Mean S.Dev Skew Kurt
OMXH25 2347 -0.0875 0.0798 2.536 ∗ 10−4 0.0125 -0.2072 6.7377
AXLT 2347 -0.0576 0.0544 3.258 ∗ 10−4 0.0108 -0.2637 5.8796

OMXS30 2347 -0.0880 0.0624 1.671 ∗ 10−4 0.0114 -0.3544 7.3244
OMXC20 1852 -0.0559 0.0500 4.906 ∗ 10−4 0.0097 -0.2984 5.3800

*Nobs: Number of observations.

Therefore, one can conclude that the studied indices have long–range dependence. To
what degree? This will be determined by the long–memory parameter estimated in
what follows. The final step is to estimate the unknown parameter of the risky–asset
market model; namely H, µ, σ, and τ from the considered financial series, using our
estimation procedure proposed in section 2 and the estimation algorithm in section 4.
Using the real data and (1), we estimated all the desired parameters.

Table 5 presents the estimation results. The results reveal strong and almost equal
evidence of long–range dependence in all the return series during the sample period; as
the estimated Hurst parameter is higher than 1/2. In other words, all the indices are
persistent, and the closer H is to 1, the higher the degree of persistence. This estimated
parameter also suggests a high degree of predictability of the future returns in all the
indices based on the historical returns. This finding agrees with the work [8]; where
the used estimated long–range parameter (the differencing parameter d) was found
significantly positive for the case of Finnish, Danish, and Norwegian stock indices.
The expected returns (µ̂), as well as, the volatility (σ̂) parameters in short memory
are relatively close for all indices; implying that all indices have reasonably same daily
volatility. The magnitude parameters (τ̂) of the long–range dependence is also slightly
equal in all cases; except in the case of OMXC20 where a lower amplitude is observed.
However, this is due to the OMXC20’s number of observations, which is less compared
to the other three indices.

Table 5. Empirical results by our method.

Index Hurst parameter (Ĥ) µ̂ σ̂ τ̂
OMXH25 0.8481 0.0379 0.2754 0.0013
AXLT 0.8279 0.0293 0.2423 0.0026

OMXS30 0.8196 0.0344 0.2622 0.0012
OMXC20 0.8716 0.0238 0.2181 9.523 ∗ 10−4

6. Conclusion

Stochastic models driven by long–memory processes have grown into essential tools
in the financial world to provide a deep understanding of the behavior of the market.
Among the driver processes, the mixed fractional Brownian motion has been found to
shed much light on the debate to whether a given market is long–range dependent or
not. However, a crucial problem which rises in practice is to provide the optimal pa-
rameter estimation procedure in the discrete framework of the model driven by mfBm.
This article examines the issue of deriving simultaneously the estimators of all the un-
known parameters for a mixed fractional Black–Scholes model in the discrete domain.
Using the maximum likelihood methodology; the estimators of the drift, the volatility,
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the long–range dependent amplitude, and the Hurst parameter are constructed. The
asymptotic behavior, namely the consistency and the asymptotic normality of these
estimators are also provided. Furthermore, Monte Carlo simulation studies are per-
formed to illustrate the efficiency of our algorithm. Numerical computations indicate
the asymptotic convergence of the estimated parameters to the actual value, and that
the proposed method achieves the purpose significantly well. Moreover, to show the
application of our approach to the real data; an empirical study was done on four
Nordic stock markets indices.
Regarding the analysis of the long–range dependence in the studied stock indices; re-
sults indicate similar and robust evidence of long–term dependence in the returns of
all indices with the estimated Hurst parameter above 0.80. This finding implies that
in the Nordic stock markets the no–arbitrage condition (more precisely no free lunch
with vanishing risk) of the Fundamental Theorem of Asset Pricing [see for example
10] is satisfied; since by Cheridito [6], the mfBm with H > 0.75 is equivalent in law to
Brownian motion. Further research includes the use of the proposed approach to inves-
tigate the possibility of long memory in other stock markets or exchange rates and a
comparison of our method with different stochastic models governed by long–memory
processes. Also, the data does not support Gaussianity, adding a jump component to
the model will able to capture the heavy tails.
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