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The low-energy behavior of the strength function for the 1− soft dipole excitation in 6He is studied 
theoretically. Use of very large basis sizes and well-grounded extrapolation procedures allows to move 
to energies as small as 1 keV, at which the low-energy asymptotic behavior of the E1 strength function 
seems to be achieved. It is found that the low-energy behavior of the strength function is well described 
in the effective three-body “dynamical dineutron model”. The astrophysical rate for the α+n+n →6He+γ
is calculated. Comparison with the previous calculations is performed.

© 2020 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
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1. Introduction

The astrophysical radiative capture rates 
〈
σcapt,γ v

〉
are prime in-

gredients of the network nucleosynthesis calculations in the ther-
malized stellar environment. Some rates may be directly derived 
from experimental data. Some of them require sophisticated the-
oretical calculations and development of the adequate theoretical 
methods is essential in such cases.

The ability to reproduce in one theoretical calculation the be-
havior of the electromagnetic strength function simultaneously at 
intermediate energies ET ∼ 0.5 − 5 MeV and at very low en-
ergies ET � 0.1 − 0.5 MeV is crucial for determination of the 
low-temperature astrophysical capture rates based on experimental 
data (ET is energy relative to the corresponding breakup thresh-
old). The common idea is to measure the electromagnetic cross 
section at reasonably high energy (where it is relatively high) and 
then to extrapolate it to low energy theoretically, see Fig. 1. For 
two-body radiative captures A1 + A2 → A12 + γ this extrapolation 
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is quite straightforward, which can be illustrated by analytical R-
matrix type expression

dσA1 A2,γ

dET
∼ �(ET )

(ET − Er)2 + �2
tot/4

, �(ET ) ∼ Pl(ET ) , (1)

where the low energy asymptotic behavior is defined by the pene-
trability function Pl with definite angular momentum l. Obviously, 
this expression is valid for resonant radiative capture. For nonreso-
nant captures the direct calculation of the electromagnetic strength 
function (SF) dBπλ/dET of relevant multipolarity πλ is required. 
However, qualitative (especially, the low-energy) behavior of this 
SF is still mainly determined by the penetrability function Pl .

For the three-body radiative captures the situation is far not 
that straightforward. Since the classical paper [1] and till the mod-
ern compilation [2] the semiclassical expression for two-step cap-
ture is commonly used for determination of the three-body rates 
A1 + A2 + A3 → A123 + γ ,

〈
σA1 A2 A3,γ v

〉 = ∑ 〈
σA1 A2,(A1 A2)v

〉
i

�(A1 A2),i

〈
σ(A1 A2)A3,γ v

〉
i , (2)
i
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Fig. 1. Schematic view of the soft dipole strength functions and energy ranges avail-
able for measurements and important for astrophysics.

where i is the number of the intermediate resonance populated 
at the first step of capture into (A1 A2) subsystem. This expression 
is obtained from the rate equations for balance of three particles 
(A1 A2 A3)

Ẏ (i)
(A1 A2)

= N A ρ
〈
σA1 A2,(A1 A2)v

〉
i Y A1 Y A2

− �(A1 A2),i Y (i)
(A1 A2) ,

Ẏ(A1 A2 A3) =
∑

i

N A ρ
〈
σ(A1 A2)A2,γ v

〉
i Y (i)

(A1 A2)
Y A3 , (3)

where Y (i)
A are abundances of the species A in the state i, ρ is the 

density of the stellar media and N A is Avogadro constant. Equation 
(2) arises under the assumption of thermodynamic equilibrium for 
the intermediate resonant states: Ẏ (i)

(A1 A2) ≡ 0. Thus, the ratio

〈
σA1 A2,(A1 A2) v

〉
i /�(A1 A2),i

determines the classical concentration of the subsystem (A1 A2) in 
the resonant state number i in stellar media. Being essentially clas-
sical, the Eq. (2) does not hold for a number of genuine quantum-
mechanical situations. An example of such a situation is the direct 
2p radiative capture, which is the reciprocal process of 2p radioac-
tive decay [3].

To formally generalize Eq. (2) for nonresonant capture rates [1,
2] it is implicitly assumed that the ratio

σA1 A2,(A1 A2)(E) v(E)

�(A1 A2)(E)
, (4)

can be interpreted as the classical concentration of composite sub-
systems A1 + A2 at any given energy E smaller than any resonance 
energy in the system. It was found that although this idea qualita-
tively looks quite reasonable, the direct three-particle calculations 
can reveal important quantitative effects [3–6].

As a rule, the prevailing contribution to three-body non-
resonant capture in a wide temperature range gives the dipole 
transition E1. Thus, the problem of three-body rates is connected 
with studies of soft dipole excitations (or soft dipole mode, SDM) 
in halo systems. In the papers [4–6] we focused on the 2p cap-
tures, studied by the example of the 15O+p+p → 17Ne+γ reac-
tion. It was found that semisequential dynamics (governed by the 
lowest resonances in the core+p subsystem) is essential for the 
low-energy behavior of the E1 SF determining the rate for this re-
action. In this work we studied the 2n captures for the case of 
the α+n+n → 6He+γ reaction. We find that for the 2n captures 
the situation is qualitatively different: the low-energy behavior of 
the E1 SF here is governed by the dynamics of the virtual state 
(spin-singlet s-wave scattering) in the n-n channel.

The astrophysical site, where α+n+n → 6He+γ reaction (and 
analogous two-neutron captures) may become important is the 
r-process of nucleosynthesis in neutron-rich stellar media in con-
ditions of high density, which makes possible three-body radiative 
captures. At the same time, the temperature should not be too high 
to avoid the inverse process of the photodisintegration. Several sce-
narios were suggested by astrophysicists: (i) the neutrino-heated 
hot bubble between the nascent neutron star and the overlying 
stellar mantle of a type-II supernova, (ii) the shock ejection of 
neutronized material via supernovae, (iii) merging neutron stars. 
Environment conditions such as temperatures and densities for 
these scenarios are quite different. For details see Ref. [7,8, and 
Refs. therein]. Calculations for specific scenarios may be the sub-
ject of separate studies.

There is a big difference in theoretical estimates of the 2n cap-
ture rates for the α+n+n → 6He+γ reaction: the results of papers 
[7–12] are highly inconsistent with each other. Important motiva-
tion of this work is also to get out of this uncertain situation.

2. Low-energy convergence of the E1 SF

The soft dipole excitation in 6He was studied in details in the 
recent paper [13]. For studies of E1 excitation the inhomogeneous 
three-body Schrödinger equation is solved[

Ĥ3 + Ṽ 3(ρ) − ET

]
	

J M(+)
Mim

= OE1,m	
J i Mi
gs ,

Ĥ3 = T̂3 + V cn1(rcn1) + V cn2(rcn2) + Vn1n2(rn1n2) , (5)

providing the WF 	 J M(+)
Mim

with pure outgoing wave asymptotics. 
The E1 transition operator has the following form

OE1,m = e
∑

i=1,3

Zi ri Y1m(r̂i) ,

and 	 J i Mi
gs is the 6He g.s. WF. The three-body potential Ṽ 3 pro-

vides phenomenological way to take into account the many-body 
effects in three-cluster system, which are beyond the three-cluster 
approximation. The possible effect of this potential was shown to 
be not very important in [13] and we neglect it in this work as 
well. The E1 strength function is then expressed via outgoing flux 
j associated with the WF 	 J M(+)

Mim
:

dBE1

dET
= 1

2π

∑
J

2 J + 1

2 J i + 1
j J . (6)

The hyperspherical expansion of the continuum WF

	
J M(+)
Mim

= C J M
Ji Mi 1m ρ−5/2

∑
Kγ

χ
(+)
J Kγ (�ρ)J J M

Kγ (�ρ) , (7)

is truncated in our calculations by the maximum value of the gen-
eralized angular momentum K = KFR. However, also the effective 
three-body potentials are used when solving Eq. (5), which are 
obtained by adiabatic procedure (so called “Feshbach reduction”) 
and this procedure allows to use much larger effective basis sizes 
K = Kmax.

It was shown in [13] that the increasingly large size of hyper-
spherical basis is needed to obtain converged E1 SF when moving 
to lower energies, see Figs. 3 and 4 of [13]. Visually converged E1 
SF was obtained in the whole energy range. However, if we in-
vestigate the extreme low-energy part of the SF (also the range, 
important for astrophysical calculations) we can find that the prob-
lem persists. One may see in Fig. 2 that even in the largest-basis 
calculations of [13] with Kmax = 101 the SF is converged down 
to ET ∼ 60 − 80 keV. At lower energies (e.g. at ET = 1 keV), the 
curves corresponding to Kmax = 101, 91, 81 are nearly equidistant 
indicating very slow convergence at maximum Kmax achieved in 
the calculations.



L.V. Grigorenko et al. / Physics Letters B 807 (2020) 135557 3
Fig. 2. Low-energy ratio of the E1 SF calculated with full three-body Hamiltonian 
to that obtained in the “no FSI” approximation (plane wave final state is used). 
Curves correspond to different sizes Kmax of the hyperspherical basis. Gray curves 
correspond to exponential extrapolation to infinite basis, see Fig. 3 (upper and lower 
boundaries, defined by the extrapolation uncertainty). See also Fig. 4 of Ref. [13].

Fig. 3. Example of the convergence of the E1 SF for ET = 1 keV calculated in full 
three-body model and with n-n FSI switched off (diamonds). Dotted curves show 
exponential extrapolation to infinite basis by Eq. (8).

What to do in this situation? It can be seen in Fig. 3 that the 
convergence over Kmax has perfectly exponential character

dB E1(ET , Kmax)

dET
= dB E1(ET ,∞)

dET
− c1 exp

(
− Kmax

c2

)
, (8)

in a broad range of Kmax values from about 35 to 101. The 
exponential convergence character is known for binding energies
of three-body systems with certain “good” two-body potentials 
(non-singular and short-range) [14]. The exponential convergence 
character of three-body widths was numerically demonstrated in 
Refs. [15–19]. So, analogous observation for low-energy E1 SF is 
not completely unexpected. The exponential convergence character 
in Fig. 3 means that enormous basis sizes are needed for complete 
convergence at low ET values: at ET = 1 keV the 95% convergence 
would be achieved at Kmax ∼ 250. Direct calculation is thus not an 
option in such situation.

Where is the source of the convergence problem? We have 
found in [13] that the low energy convergence of the SF is much 
faster if the n-n interaction is switched off. The same calculations 
performed for such a “truncated” Hamiltonian in the low-energy 
domain indicate that the convergence issue is not severe in this 
case, see Fig. 4. The calculations with the “no n-n FSI” three-body 
Hamiltonian are fully converged (the 95% convergence is achieved 
with Kmax ∼ 45, see Fig. 3). However, this approximation provides 
drastically smaller (∼ 9 times) values of the E1 SF in the low-
energy domain, which shows that the n-n FSI is essential for the 
question.
Fig. 4. The same as Fig. 2, but for “no n-n FSI” three-body Hamiltonian. See also Fig. 
4 of Ref. [13].

Fig. 5. Simplification of the calculation scheme for SDM in the three-body case. 
(a) Initial complete 3-body Hamiltonian. (b) For core+p+p system the dynamical 
domination of resonances in the core-p subsystem motivates the use of simplified 
Hamiltonian in the “Y” Jacobi system. (c) For core+n+n system the dynamical dom-
ination of the n-n FSI motivates the use of simplified Hamiltonian in the “T” Jacobi 
system.

3. Dynamical dineutron model of SDM

Because the behavior of E1 SF in 6He is so sensitive to virtual 
state in the spin-singlet n-n channel, then maybe a good approx-
imation to it can be obtained by taking into account only the 
dynamics of the “dineutron”. This can be done applying the for-
malism developed in [4,6] for studies of SDM excitations in 17Ne, 
but in the “T” Jacobi system, see Fig. 5. What we get in this case 
can be called “dynamic dineutron model”. Analogous model we 
have already applied for qualitative studies of two-neutron emis-
sion in dineutron approximation [20].

The idea of the method is that for E1 excitation studies instead 
of solving the three-body Schrödinger equation (5) with Hamilto-
nian Ĥ3 we introduce the simplified Hamiltonian

Ĥ ′
3 = T̂3 + V y(Y) + Vn1n2(X) , (9)

which factorize the degrees of freedom in the “T” Jacobi system, 
see Fig. 5. The latter Hamiltonian allows exact semianalytical so-
lution, since it has Green’s function of a simple analytical form, 
which (schematically) looks like

G(+)
ET

(XY,X′Y′) = 1

2π i

∫
dExG(+)

Ex
(X,X′)G(+)

ET −Ex
(Y,Y′) ,

where G(+)
Ex

(X, X′) and G(+)
ET −Ex

(Y, Y′) are ordinary two-body Green’s 
functions of the X and Y subsystems. This approach can be jus-
tified if the interactions V cn1(rcn1 ) and V cn2(rcn2 ) in (5) are not 
of a prime importance for the system dynamics and can be re-
placed with one effective interaction V y(Y). It can be seen in Fig. 5
that both in two-proton case (b) and in two-neutron case (c) the 
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Fig. 6. Comparison of the E1 strength functions calculated in full three-body model 
(Grigorenko, 2020: [13]), in “no FSI” approximation, and in different dineutron 
model settings.

Fig. 7. Comparison of the low-energy asymptotics of the E1 strength functions calcu-
lated in full three-body model (Grigorenko, 2020: [13]), in “No FSI” approximation, 
in different dineutron model settings, and in paper (de Diego, 2010: [10]).

dynamically important (in both cases resonant) interaction is asso-
ciated with X coordinate, while de-facto insignificant interactions 
are “hidden” in the effective interaction V y depending only on the 
Y coordinate. For technical details of the three-body method and 
dineutron approximation, see Refs. [13,20].

The calculations of E1 SF within dynamical dineutron model are 
shown in Fig. 6. Three test interactions in the Y subsystem have 
the Gaussian formfactors

V y(Y ) = V 0y exp[−(Y /Y0)
2] ,

with Y0 = 3 fm, acting in p-wave only. They are: (i) no interaction 
V 0y = 0 (leads to plane wave over Y coordinate), (ii) attraction 
with V 0y = −14 MeV, and (iii) repulsion with V 0y = 45 MeV. 
Attractive interaction was fitted to reproduce the profile of the 
three-body E1 strength function in a broad energy range. How-
ever, if we turn to low-energy behavior of the E1 SF in Fig. 7, 
then we see that the best match with calculated low-energy be-
havior of a three-body SF is obtained with repulsive V y potential. 
The “trivial” assumption of the absence of interaction V 0y = 0 in Y
subsystem leads to overall good agreement with the three-body SF. 
In any case a comparison of attractive and strongly repulsive inter-
actions shows a mismatch of only � 50% in the low-energy region. 
Therefore, the uncertainty associated with the “unphysical” inter-
action V y is not large in the asymptotic region anyhow, although 
it changes drastically the profile of the E1 SF at higher energies.
Fig. 8. Three-body astrophysical radiative capture rates for the α+n+n →6He+γ re-
action obtained with different E1 SFs in this work (colored curves) and in the other 
models (gray curves) in Refs. (Görres, 1995: [9]), (Efros, 1996: [7]), (Bartlett, 2006: 
[8]), (de Diego, 2010: [10]), (de Diego, 2011: [11]), (de Diego, 2014: [12]).

The nearly linear behavior of the E1 SFs in the left part of 
log-scale Fig. 7 indicates that the correct low-energy asymptotic 
behavior

dB E1(ET )/dET ∼ E3
T , (10)

is almost achieved.

4. Three-body capture rate

The E1 nonresonant astrophysical radiative capture rate for the 
three-body reactions is given by the expression

〈
σA1 A2 A3,γ v

〉 =
(∑

Ai∏
Ai

)3/2 (
2π

mkT

)3 2(2 J f + 1)∏
(2 J i + 1)

×
∫

dET
16π

9
E3
γ

dB E1(ET )

dET
exp

[
− ET

kT

]
, (11)

where Eγ = ET + Eb (Eb = 0.973 MeV for 6He) and J i are the spins 
of incident clusters, while J f is the spin of the bound final state 
(0+ in the 6He case). Note that the E1 strength function dB E1/dET

in Eq. (11) is the strength function for the reciprocal process of 
6He E1 EM dissociation.

The two-neutron capture rates calculated with SFs discussed 
above are shown in Fig. 8. The most trivial dineutron model result 
with V 0y = 0 has a good overall agreement with the three-body 
result (the deviation is never more than ∼ 50%). The temperature 
region from 1 to 10 GK is better described by the dineutron model 
with V 0y = −14 MeV, reproducing best the “bulk” of the three-
body SF.

If we perform the rate calculations starting with the asymptotic 
expression for the SF (10) then the rate is given by

〈
σ2n,γ v

〉 ∼ T
[

1 + 12(Eb/T ) + 60(Eb/T )2 + . . .
]

. (12)

This asymptotic expression (shown by the green dashed curve in 
Fig. 8) is very precise up to T ∼ 0.1 GK and at T ∼ 0.6 GK the 
difference from the three-body SF is just a factor of 2. This empha-
sizes the importance of a correct description of the SF low-energy 
asymptotics.

Finalizing the discussion here, the phenomenological recipe for 
using the dineutron model seems very simple:
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(i) If there is no experimental information at all, then it is very 
reasonable to make the rate estimates with V y ≡ 0. As we have 
seen above, in the case of 6He the overall agreement in a broad 
temperature range is also very reasonable.
(ii) If there is experimental information about E1 strength function, 
parameters of the dineutron model can be fitted to the experimen-
tal SF profile. In that case we have nearly perfect description of the 
rate at T > 0.7 − 1.0 GK. At T → 0 the dineutron model does not 
guarantee precise asymptotic behavior, but the mismatch is not se-
vere.
(iii) Despite the uncertainties of the dineutron model it imme-
diately provides the results which is much closer to the highly 
accurate three-body calculation results than any result obtained in 
this field before, see Fig. 8 and discussion of the next Section. In 
that sense it is very strong phenomenological tool.

5. Comparison with previous results

The calculations of the astrophysical radiative capture rate for 
the 4He+n+n → 6He+γ reaction are given in a number of papers 
[7–12]. The results of the papers [7–9] are based on different qua-
siclassical two-step approximations. So, maybe, it is not surprising 
that they are highly incompatible with each other and with results 
of this work.

More attention needs to be paid to the results of the three-body 
model [10–12], which, in principle, should be consistent with the 
results of this work. There are two issues.
(i) All three results [10–12] are declared to be based on the same 
E1 SF from paper [10]. However, different rate values can be found 
in papers [10–12], see Fig. 8. We have no understanding of this 
fact.
(ii) It was discussed in Ref. [13] that the E1 SF from [10] has some 
kind of suspicious enhancement of the low-energy behavior, which 
is not reproduced in the other three-body approaches (see Fig. 9 of 
this work, Fig. 14 in Ref. [13], and also Refs. [21,22]).

We attempted to reproduce the low-energy behavior of the E1 
SF [10] in the dynamical dineutron model. That was found to be 
very difficult. Evidently, the low-energy enhancement of the SF re-
quires the reduction of the centrifugal barrier in the Y channel (for 
E1 transition the “dineutron” cluster should be in l y = 1 relatively 
α-core). It can be seen in Fig. 9 that the SF, which is pretty close 
to [10], can be obtained in the dineutron model. However, this re-
quires an unrealistic potential in Y channel: here we use Gaussian 
potential with extremely large radius of Y0 = 6 fm, which in our 
opinion has no reasonable justification. And even so, if we look in 
Fig. 7 it can be found that still it does not help to reproduce the 
correct asymptotic low-energy behavior of the E1 SF. Even more 
extreme potential, with Y0 = 8 fm, is required to reproduce the 
behavior of SF from [10] down to ET ∼ 0.3 MeV and for lower 
energies the dineutron SF turns to expected ∼ E3

T trend. So, in 
the log-scale it can be seen that the low-energy SF of [10] has 
no chance to be reconciled with ours.

The rate calculated in [10] overlaps with our three-body result 
in a broad temperature range (and it is drastically smaller for T <

0.5 GK). We think that this contradicts SF behavior. The dineutron 
SF with Y0 = 6 fm approximates SF [10] well: it is smaller or equal
to SF [10] in the whole energy range, see Fig. 9. However, the rate 
computed with this dineutron SF is larger than the rate from [10]
in the whole temperature range, see Fig. 8.

6. Conclusion

The convergence of the SDM (E1) strength function for 6He be-
comes slower with decreasing decay energies. Large-basis (with 
Kmax = 101) calculations allowed to obtain fully converged SF val-
ues down to energies as low as 60-80 keV. For the lower ener-
Fig. 9. Comparison of the E1 low-energy strength functions calculated in our full 
three-body model (Grigorenko, 2020: [13]), in different dineutron model settings, in 
paper (de Diego, 2010: [10]) with experimental data of Ref. (Aumann, 1999: [23]).

gies (e.g., as small as 1 keV) it was shown that the extrapolation 
scheme allows to obtain reliable SF values.

It was demonstrated that the low-energy E1 SF in 6He case 
is strongly affected by the virtual state in the spin-singlet n-n
channel. For that reason a very reliable approximation for the low-
energy E1 SF can be obtained in a dynamical dineutron model. 
Within the dineutron approximation the three-body dynamics is 
reduced to a kind of factorized two-body semisequential dynam-
ics. As a result, the three-body Green’s function in the dineutron 
approximation has a compact analytical form, allowing exact semi-
analytical calculations. This is an important result in several ways:
(i) The dineutron model provides a simple semianalytical cross 
check and reliable shortcut for the bulky three-body calculations 
for the low-energy three-body (namely, two-neutron) radiative 
capture reactions.
(ii) Important qualitative difference between two-proton and two-
neutron radiative captures is elucidated, see Fig. 5. In the case of 
the low-energy two-proton capture the dynamics is also factorized 
to two-body semisequential dynamics, but in the “Y” Jacobi sys-
tem, which allows to take into account the low-lying resonances 
in the core+p channel. The diproton correlation does not play im-
portant role in the low-energy region.
(iii) The effective low-energy reduction of the three-body dynamics 
to dynamics of dineutron emission may be seen as very intuitive 
and even trivial result. However, without bulky three-body cal-
culations we would never be sure at what level of accuracy this 
approach really works. Now, the semi-analytical dineutron model, 
supported by our high-precision three-body calculations, reliably 
predicts the low-energy behavior of the strength function and cap-
ture rates and, thus, provides reliable extrapolation of experimental 
data measured at sufficiently high energies.

All the previous results [7–12] for the 4He+n+n → 6He+γ as-
trophysical radiative capture rate are highly inconsistent with each 
other and with the results of this work. For calculations [10–12]
the origin of important problems can be identified as inconsistent 
treatment of the low-energy region of the E1 SF. Thus, our results 
emphasize the importance of the accurate treatment of few-body 
dynamics for consistent determination of the low-temperature 
parts of the astrophysical three-body capture rates.
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