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Optical parametric amplifiers rely on second-order susceptibility (three-wave mixing)
or third-order susceptibility (four-wave mixing) in a nonlinear process where the energy
of incoming photons is not changed (elastic scattering). In the latter case, two pump
photons are converted to a signal and to an idler photon. Under certain conditions,
related to the phase evolution of the waves involved, this conversion can be very effi-
cient, resulting in large amplification of an input signal. As the nonlinear process can
be very fast, all-optical applications aside from pure amplification are also possible. If
the amplifier is implemented in an optical input-phase-sensitive manner, it is possible
to amplify a signal wave without excess noise, i.e., with a noise figure of 0 dB. In this
paper, we will provide the fundamental concepts and theory of such amplifiers, with a
focus on their implementation in highly nonlinear optical fibers relying on four-wave
mixing. We will discuss the distinctions between phase-insensitive and phase-sensitive
operation and include several experimental results to illustrate their capability. Different
applications of parametric amplifiers are also discussed, including their use in optical
communication links. c© 2020 Optical Society of America
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1. INTRODUCTION

1.1. List of Acronyms

ASE Amplified spontaneous emission
BER Bit error rate
CW Continuous wave

XPM Cross-phase modulation
DWDM Dense wavelength division multiplexing

DSP Digital signal processing
DFG Difference-frequency generation

DCM Dispersion compensating module
DRA Distributed Raman amplification

EDFA Erbium-doped fiber amplifier
FOPA Fiber-optic parametric amplifier
FWM Four-wave mixing

FSO Free-space optical
GVD Group-velocity dispersion

HLNF Highly nonlinear fiber
NF Noise figure

NLSE Nonlinear Schrödinger equation
OIL Optical injection locking

OSNR Optical signal-to-noise ratio
PPLN Periodically poled lithium niobate

PIA Phase insensitive amplifier/amplification
PLL Phase-locked loop
PSA Phase sensitive amplifier/amplification
PZT Piezoelectric transducer

PC Polarization controller
PMD Polarization-mode dispersion
PSD Power spectral density

QPSK Quadrature phase shift keying
QPM Quasi phase matching

RF Radio frequency
SHG Second-harmonic generation
SPM Self-phase modulation
SNR Signal-to-noise ratio
SMF Single-mode fiber
SDM Spatial-division multiplexing

SSMF Standard single-mode fiber
SOP State of polarization
SBS Stimulated Brillouin scattering
SRS Stimulated Raman scattering
SFG Sum-frequency generation

WDM Wavelength division multiplexing
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1.2. Introductory Remarks

Optical amplifiers are key enablers in numerous scientific and engineering fields
such as optical communication, imaging, sensing, and spectroscopy. The internet
revolution would not have been possible without optical amplifiers being used in
virtually all long-haul optical fiber transmission links reaching ranges from 100 km to
interoceanic distances. The invention of the erbium-doped fiber amplifier (EDFA) in
1987 [1] paved the way due to its outstanding properties including being broadband,
highly efficient, and polarization independent, and having small coupling loss and
low noise. In addition, its transition energy fortuitously coincides with the low-loss
spectral window of conventional optical fibers, allowing the simultaneous amplifica-
tion of hundreds of waves at different wavelengths carrying interdependent data, thus
eliminating expensive per-channel amplification or signal regeneration. Whenever
one sends an email, makes an internet search, or interacts in social media, it is certain
that these data have passed through numerous optical amplifiers.

There are many types of amplifiers, and they can be broadly classified in different
ways. All have their inherent benefits and drawbacks, so the proper choice depends
on the application in mind. Some are based on rare-Earth-ion-doped optical fibers
(such as the EDFA), and some are based on semiconductors, the latter normally being
electrically pumped, while others are usually optically pumped by an external laser.
Most rely on population inversion resulting in stimulated transitions between energy
levels in the host material. Optical amplifiers are commonly operated as lumped ele-
ments (i.e., amplification taking place at one specific point in a system), while some
can also suitably be implemented in a distributed fashion, e.g., amplification takes
place along a transmission fiber itself. Optical amplification can also rely on stimu-
lated scattering resulting from nonlinearities in a fiber. Examples include stimulated
Raman scattering (SRS) and stimulated Brillouin scattering (SBS). The second- (χ (2))
or third-order (χ (3), the Kerr effect) nonlinear susceptibility of a medium (such as
LiNbO3 or silica fiber, respectively) can also be used to create parametric amplifica-
tion through the effect of three-wave or four-wave mixing (FWM), respectively. Here
the optical pump wavelength defines a virtual energy transition state determining
the spectral region of the gain. Some amplifiers have a slow spontaneous transition
between the upper and lower energy state (which is the case in an EDFA, typically
milliseconds), making them particularly power efficient, while others have a very fast
transition (femtoseconds), allowing these to offer functionalities other than amplifica-
tion, such as ultrafast all-optical switching and signal wavelength conversion. Finally,
some amplifiers are bidirectional (i.e., amplifying light in both directions) such as the
EDFA, while others are unidirectional (such as parametric amplifiers, and those based
on SBS), which may be of practical importance in some cases.

During the past 20 years, there has been an increased interest in parametric amplifiers
and their prospects in various applications. Their basic features are now well under-
stood, and many of the implementation challenges have been solved, while others still
do remain. In addition, several experimental demonstrations have been made show-
ing some of their unique capabilities. Thus, these amplifiers now have the promise
of wider use in different applications and attracting a broader range of users. This
tutorial is therefore an attempt to condense the most important aspects of parametric
amplifiers and their applications into a single paper addressing both fundamental and
practical aspects. It is, however, not intended to be a comprehensive review of all the
progress made over the years as there are other sources for that [2–5].

In this tutorial, we will focus mostly on parametric amplifiers relying on the non-
linearity of conventional silica fibers (albeit tailored for this application) and their
application in optical communication systems operating in the low-loss attenuation
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window around 1550 nm. However, much of the discussion here is generic and can,
in principle, be applied using nonlinear platforms other than fibers as well as other
wavelength ranges for a range of other applications. We will distinguish between
phase-insensitive amplification (PIA) and phase-sensitive amplification (PSA), the
difference among the two simply being that the gain in the latter is dependent on
the absolute optical phase of the incoming signal wave, while it is not in the former.
The EDFA is thus an example of the former. In addition, parametric amplifiers can, in
principle, amplify light across a very broad spectrum as they do not rely on stimulated
emission of light at a specific energy dictated by the amplification medium transition
cross sections. In contrast, the spectral features of parametric amplifiers are dictated
by dispersion properties of the medium used and by the pump wavelength. Therefore,
the basic principles of these amplifiers can be translated to entirely new wavelength
ranges including visible to mid-infrared, thereby having the potential to open up new
application areas.

This paper is organized as follows. The remaining part of this section introduces
some basic and general aspects of optical amplifiers and their use in fiber-optic trans-
mission links. Section 2 provides a summary of the history of optical parametric
amplifiers. In Section 3, the basics of χ (2)-based and in particular χ (3)-based para-
metric amplification is discussed including many of the various regimes of operation
that are possible. It will also describe the specific case when an optical fiber is used
as the medium for amplification. Section 4 focusses on the noise properties, while
Section 5 presents practical implementation considerations. In Section 6, we discuss
the ability to mitigate transmission-fiber-induced nonlinear impairments, self-phase
modulation (SPM), and cross-phase modulation (XPM), in PSA-based optical trans-
mission links. Section 7 overviews actual experimental transmission study examples,
while Section 8 illustrates some other specific applications of parametric amplifiers.
Finally, before concluding in Section 10, we discuss future prospects including the
use of platforms other than optical fibers serving as the gain medium in Section 9.

1.3. Basic Aspects of Amplifiers and Their Use in Optical Transmission Links

In lightwave transmission systems, optical amplifiers are used primarily in three
ways: (1) as a booster at the transmitter to provide the optimal launch power, (2) as
an in-line amplifier to periodically compensate for the inherent transmission fiber
loss, and (3) as a preamplifier in the receiver to improve the receiver sensitivity in
an otherwise electronic-noise-limited receiver. Figure 1 shows a typical attenuation
spectrum for optical fibers used in transmission systems indicating a low-loss win-
dow of several hundred nanometers depending on acceptable attenuation. Currently
used EDFAs are suitable for amplification in the C-band (1525–1565 nm) and L-
band (1565–1605 nm), thus representing only about 20% of the full potential of the
transmission fiber. Therefore, there is ongoing research on other type of amplifiers
covering a larger spectral region, including, e.g., semiconductor optical amplifiers [6]
and parametric amplifiers being discussed here.

Aside from the ability to amplify light with sufficient gain across the desired optical
frequency range, the noise properties of amplifiers are of essential importance in
most applications. The noise figure (NF) is simply defined as the signal-to-noise ratio
(SNR) degradation caused by the amplifier, as observed with an ideal optical detector
(100% quantum efficiency) in the electrical domain before and after the amplifica-
tion. Two important assumptions are made in order for this definition to be valid: (1)
The input optical wave is noise limited only by shot noise, and (2) the amplifier is
operating in a linear regime, i.e., there is no degradation of the signal waveform upon
amplification. This is different from operating in saturation (i.e., when the amplifier
gain is dependent on the power of the input signal); an EDFA experiencing saturation
will normally not distort the signal waveform, a result of the very long excited state
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lifetime in erbium, and can thus be considered a linear amplifier in this context, while
for other types of amplifiers, this may not be the case.

Fundamentally, since the photon energy (hν) is much larger than the thermal energy
(kT) at room temperature, the lowest possible NF of optical amplifiers operating at
high gain (�10) is 2 (3 dB). This is in contrast to radio-frequency (RF) amplifiers,
which when operated at room temperature will be dominated by thermal noise both at
the input and the output, and quantum noise can be ignored, thus resulting in NF = 1
(0 dB) being possible. A more general expression for this quantum limit applicable
also at low optical gain is discussed in Section 4, NF = 2(1− 1/G)+ 1/G , thus rang-
ing from 1 to 2 (0 to 3 dB) as the gain (G) is increased from 1 to infinity. In reality, a
typical commercial EDFA has NF ∼= 5dB and a gain of 30 dB.

However, if an optical parametric amplifier is implemented in a phase-sensitive mode,
it can under certain conditions operate without generating excess noise, i.e., providing
a quantum-limited NF = 0 dB both at low and high gains, which is a unique property.
The fundamental reason for noiseless amplification is that in the phase-sensitive
regime, all the noise inputs of the amplifier also carry useful signal inputs, whereas
in the PIA regime, there is an equivalent noise input without a signal. This is not in
opposition to the Heisenberg uncertainty principle, since while the noise is reduced in
one quadrature, it is increased in the other (as will be discussed in Subsection 4.2).

When considering an optical transmission link (see Fig. 2), it is convenient to intro-
duce a NF for the whole link, thus describing the overall SNR degradation in the link.
Let us consider a link with m spans of periodic, lumped amplification with gain equal
to the span loss (L) at the conventional quantum limit (NF= 3 dB). In this case, the
link NF can be expressed as (see Subsection 4.3 for details)

NFlumped ≈ 1+ 2mG
(

1−
1

G

)
≈ 2mG, (1)

where the last approximation is made for many spans and G� 1.

Figure 1

Typical attenuation spectrum for a state-of-the-art silica fiber. The different amplifi-
cation bands have been indicated.

Figure 2

Fiber optic communication link with in-line optical amplifiers.
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This clearly illustrates the importance of span loss for the overall link noise perform-
ance. If we instead consider a case with an ideal distributed amplification (again with
an inherent NF= 3 dB for the amplification process) with no signal power variation
along the span, the resulting link NF is

NFdistributed ≈ 1+ 2m ln(G), (2)

which illustrates the fundamental benefit of distributed amplification in terms of SNR
degradation. The relative improvement compared to the case of lumped amplification
after many spans is G/ ln(G), showing that distributed amplification is particularly
useful with long (or high loss) spans. As an example, using 200 km spans with a fiber
having 0.2 dB/km loss, the link NFs in the above cases are 56 dB and 26 dB, respec-
tively, a huge 30 dB advantage for the distributed case in this idealized scenario. In
reality, the difference is significantly smaller, partly due to the fact that there will
always be some amount of undesired signal variation along the spans. Nevertheless,
this approach is used in many cases, e.g., when in-line amplification is undesired. The
preferred approach is to use the SRS effect mentioned earlier, creating Raman gain in
the transmission fiber itself by appropriately pumping it with one or several lasers in a
counter- and/or copropagation fashion along with the signal [7].

Here, however, we have ignored optical nonlinearities. These are essential for para-
metric amplification as will be discussed later, but also need to be considered in
optical fiber transmission systems where they will cause signal impairments. In fact,
noise and nonlinearities are the two fundamental aspects that will ultimately limit the
maximum throughput in any optical fiber communication link over long distances
of fiber.

Equations (1) and (2) can be modified if ideal PSAs (and replacing the input signal in
Fig. 2 with a signal and an idler wave each containing half the power of the signal in
the figure) with 0 dB NF are used instead, by simply replacing 2m with m, resulting
in an additional link NF improvement [8]. Thus, the best possible link performance in
terms of maintaining the highest SNR is distributed amplification with PSAs.

Optical amplifiers can also be used in free-space optical (FSO) transmission links.
In such links, nonlinearities can be ignored, and diffraction loss will often be the
main limiting factor for the power budget, particularly for long-reach links. Thus,
in this case, noise will be a particularly critical aspect when designing such links.
The link NF (dB) in this case is simply equal to the loss (dB) between the transmitter
and receiver plus the NF (dB) of the optical preamplifier (if being used as part of the
receiver).

2. BRIEF HISTORY OF PARAMETRIC AMPLIFIERS

This section briefly reviews parametric amplifiers and, in particular, fiber optical
parametric amplifiers.

2.1. Early Days of Nonlinear Optics

A parametric amplifier amplifies a signal via a medium in which some parameter
is changed by an external “pump.” Originally, parametric amplifiers were consid-
ered for electrical transmission lines, e.g., by Cullen [9], who analyzed oscillating
electric fields in a transmission line with varying capacitances. An analog effect
can be observed for a mechanical pendulum, which can be pumped by periodically
changing a parameter such as the pendulum length. This is well exemplified by a
children’s swing, where the swinging child produces the pumping via periodically
changing its center of mass (and thus effectively the length of the pendulum) twice
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every swing period [10]. Thus, the parametric pump in this case has a frequency twice
the swinging frequency.

Most often, however, we refer to parametric amplifiers in nonlinear systems, where
the parameter responsible for pumping depends on the amplitude of the signal that
is being amplified, or an external pump that drives the oscillation. In electronics,
nonlinear capacitors are the typical example [9,11], whereas in nonlinear optics, the
nonlinear susceptibility is responsible for coupling the signal with the pump.

Nonlinear optics started as a research field with the development of the laser [12],
which enabled coherent, intense, and collimated light. Franken [13] demonstrated
the first instance of optical nonlinearity, by showing second-harmonic generation
(SHG) in 1961. Although harmonics are the simplest example of parametric mixing,
other mechanisms such as sum- and difference- frequency mixing can be realized in
second-order nonlinear media, and the theory for this was laid out in the extensive
paper by Armstrong et al. [14], and also independently proposed by Akhmanov and
Khoklov [15].

In second-order nonlinear media, two waves are mixed to generate a third, and the
processes of sum/difference-frequency and SHG is then often called three-wave mix-
ing. Similarly, wave mixing in third-order nonlinear media is called FWM. As will be
explained in Subsection 3.2, the third-order nonlinearity is dominating in amorphous
glasses such as silica fibers, and since fiber parametric amplifiers are central to this
work, we will focus the review on these devices. However, since third-order nonlin-
earities, in general, are weaker than second order, they were demonstrated somewhat
later [16,17], and it took until 1974 before FWM was demonstrated in a multimode
fiber by Stolen et al. [18]. In single-mode fiber (SMF), FWM was demonstrated by
Hill et al. in 1978 [19], although in the visible regime.

As will be shown in Subsection 3.2c, low dispersion facilitates FWM, and therefore
the work on FWM in SMFs took off in the first half of the 1980s when lasers in the
1.3 µm regime became available [20–22]. These works demonstrated the three-wave
configuration (a pump close to the zero-dispersion wavelength surrounded by signal
and idler waves) that we today use most in parametric devices.

2.2. Optical Amplification and Squeezing

Optical amplifiers are a key ingredient in lasers, so the history of optical amplifiers
follows that of lasers closely. Restricting ourselves to fiber amplifiers, some early
work was done by Snitzer et al. in the 60s, [23,24], where glass rods doped with
rare-Earth ions (Nd, Yb, Er) were demonstrated, as an early precursor to today’s
fiber amplifiers. However, as an alternative to amplifiers based on active fibers (i.e.,
fibers with specific dopants providing gain at specific frequencies), optical nonlin-
earities can also provide gain [15]. The earliest example was probably the Raman
gain investigated already in the mid-70s by Stolen et al. in fused (amorphous) sil-
ica fibers [18,25,26]. In this context also, Brillouin gain [27] should be mentioned
although the narrow bandwidth (10–100 of MHz) makes Brillouin amplification less
useful in fiber communications. The mid-80s saw renewed interest in fiber amplifiers,
because the fiber attenuation in telecom links was a critical hurdle to overcome. A key
breakthrough was then the EDFA [1,28] that came to revolutionize the area of fiber
communications, and related active-fiber amplifiers also became key drivers in laser
welding and machining. The impact of the EDFA in (optical) telecommunications is
hard to overstate, since it enabled both longer distances and increased bandwidths for
the data carried by fibers [29].
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Optical amplification is, in a quantum mechanical description, based on the process
of stimulated emission, which emits photons in the same quantum mechanical state
(often called mode) as an incoming photon—thus giving amplification. However,
at the same time, spontaneous emission, i.e., the emission of a photon with the
same energy but with otherwise random properties, has a nonzero probability.
Spontaneously emitted photons are therefore the key source of noise in optical
amplifiers and, concomitantly, the key limiting noise source in optical links where
optical amplifiers are used. Therefore, the theory of quantum mechanical noise in
amplification and photodetection are key elements in the understanding of optical
amplifiers and long-haul optical links.

The important paper by Caves [30] laid out the facts around this, and established the
noise properties of optical amplifiers, e.g., that PIAs always must add equivalent
input noise relative to the shot noise limit—the so-called 3 dB NF limit of optical
amplifiers. However, this limit can be somewhat circumvented by PSAs, where the
two quadratures of the optical field are subject to different gains. In the mid 80s,
Yamamoto et al. [31,32] also discussed the related fundamental quantum mechani-
cal limits of photodetection and amplification for such systems, but it is noteworthy
that the basic knowledge about the amplifier limitations to information capacity was
known by Gordon already in the 60s [33]. Soon these results found their way into
analyses of the noise limitations of transmission systems with optical amplifiers [34].

The unequal-quadrature gain provided by PSAs gives rise to so called squeezed pho-
ton states, where the uncertainty in the two quadratures are unequal [35,36]. It was
proposed in these papers that a parametric amplifier could be used to synthesize such
squeezed states, which would have uncertainties below the shot noise limit in one
quadrature, at the expense of higher uncertainty in the other quadrature. As a result, a
vivid research on parametric amplifiers and squeezing in the mid-80s was conducted,
and in 1985, Slusher demonstrated the first squeezed state by use of a parametric
amplification in Na-atoms [37]. In the following years, PSA [38] and squeezing [39]
was observed also by using FWM in fibers, even if the observed gain was very small.
It was also proposed [40,41] and later experimentally verified [42] that squeezing
could be realized in a nonlinear phase-sensitive interferometer. Marhic et al. [43] took
this idea a step further and demonstrated the first phase-sensitive parametric gain in a
fiber Sagnac interferometer using 300 m of polarization-maintaining fiber.

Amplifier NFs below 3 dB were experimentally observed for the first time by
Levenson et al. in a 1993 experiment using the second-order nonlinearity in KTP [44].
A set of experimental results by Imajuku et al. in the late 90s reported interferometric-
fiber-based PSA up to 20 dB [45], which later was implemented and evaluated in
various transmission link settings [46–49]. The first observation of a sub-3-dB NF
in fiber-based amplifiers was reported in 1999 using nonlinear Sagnac loops by
Levandovsky et al. [50,51] and independently also by Imajuku et al. [52,53].

2.3. Fiber-Optic Parametric Amplifiers

Fiber-optic parametric amplifiers (FOPAs), based on FWM in a guided wave (rather
than interferometric structure), were not successfully realized until the late 90s and
early 2000s. Even if EDFAs were available to provide high pump power, there were
two practical problems. One was the SBS that prevented the launch of a strong con-
tinuous wave (CW) pump in the fiber, thus effectively limiting the possible pump
power. The second was the nonlinearity of the fiber, which was so weak that kilo-
meters of fiber were needed, and so long fibers suffer from imperfections such as
varying zero-dispersion along the fiber length that will affect the FWM [54]. The lat-
ter problem was addressed by the development of single-mode highly nonlinear fibers
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(HNLFs) whose mode field enabled low-loss splicing to standard single-mode fibers
(SSMFs), while yet having a nonlinearity around 10 times higher. This was realized
by a combination of GeO2-doping of the core, a reduced core radius, and a W-shaped
refractive index profile. An overview of these fibers and the trade-offs involved
in their design can be found in Ref. [55]. The 1999 experiment by Imajuku et al.
[52] discussed above was one early example of HNLFs being applied to nonlinear
fiber-based amplifiers.

In 2001, Hansryd et al. [56,57] used HNLFs to develop the first fiber-based para-
metric amplifier with CW pumping and significant gain, now based on FWM. The
SBS was suppressed by phase modulating the pump, thereby increasing the Brillouin
threshold with 10–20 dB, virtually eliminating that problem. The HNLF is typically
designed with very low dispersion in the 1550 nm region, to facilitate phase matching
(cf. Subsection 3.2c.), which makes it an almost ideal platform for the exploration of
parametric devices. The smaller core radius contributes to shift the dispersion zero
from 1300 nm (which is given by the material dispersion of silica) to longer wave-
lengths [58]. The HNLF was thus the platform of choice in much of the parametric
device research in the first and second decades of the 2000s. Parametric (phase-
insensitive) amplifiers with very high gain [59] and large bandwidth [60–63] were
then demonstrated, and the fundamental noise properties of these amplifiers were
investigated as well [64–66].

Underlying much of this work was theoretical work on the understanding of FOPAs.
For example, the impact of dispersion on the gain spectrum was studied by Marhic
et al. [67,68]. By using a pair of pumps, a flat gain spectrum can be accomplished,
as explored theoretically [69] and experimentally [70]. The quantum mechanical
theory for parametric amplifiers was studied in a series of papers by McKinstrie et al.
[71–73].

PSA operation started to pick up interest around 2005 by Vasilyev [8] and McKinstrie
[73,74]. Experimentally, pioneering PSA work was done in the context of regen-
eration in a series of papers by Crussore et al. [75–77] and reviewed in Ref. [78].
Simultaneous phase and amplitude regeneration was shown in Refs. [79,80].

An important contribution to the studies of PSAs was the so-called copier-PSA setup,
introduced by Tang et al. [81,82] that will be discussed more in Subsection 3.2e. Its
key parts were a first parametric stage to “copy” the signal to a conjugate idler wave,
and then as a second stage, another parametric amplifier became phase-sensitive due
to the presence of all waves. Its phase and amplitude transfer characteristics were
studied in more detail in Refs. [83–85] and in a series of experiments with coherent
quadrature phase shift keying (QPSK) data by Tong et al. [86,87]. More recent devel-
opments including full transmission link experiments will be discussed later in this
paper.

3. FUNDAMENTAL ASPECTS OF PARAMETRIC AMPLIFIERS

In this section, we will discuss the basic properties of optical parametric amplifiers.
Since the optical wave phenomena we will discuss are generic, we will start by a
simple mechanical oscillator example, and then move on to optics.

3.1. Parametric Pendulum

A parametric amplifier amplifies an oscillation by changing a parameter governing
the properties of the oscillation. The simplest mechanical example is the children’s
swing, i.e., a mechanical pendulum, where a child standing on the swing “pumps”
the swing by periodically moving up and down. By periodically rising and squatting,
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the pumping takes place via a change of the effective pendulum length, which is the
parameter responsible for the interaction between the pumping motion and the swing-
ing motion. If this periodic pumping is done with proper frequency and phase, the
swing amplitude will increase, and the child thus parametrically amplifies the swing.
We use an analysis inspired by [10,88]. Let us denote the mass with m and the swing
angle relative to vertical with φ. The length of the swing is some function of time
L(t), so that the swing angular velocity is v = Lφ′(t) and the angular momentum p is

p =mvL =mL2φ′(t). (3)

The change in angular momentum is given by the torque around the rotation axis,
which is given by −mg L sin(φ), where g is the acceleration from gravity. Thus, we
have

p ′(t)=−mg L sin(φ)≈−mg Lφ, (4)

where the approximation of small angles is not necessary but suffices for this simple
case study. By differentiating Eq. (3) and eliminating p ′(t), using Eq. (4), one can
obtain the familiar equation of motion as a second-order equation for φ(t). However,
that approach includes the derivative of L , which is not suitable for the simple case
that we will study when L is piecewise constant, as elaborated in Ref. [88]. Instead,
we use a matrix approach, and write the equations of motion as

d
dt

(
φ

p

)
=

(
0 1

mL2(t)

−mg L(t) 0

)(
φ

p

)
=M(L)

(
φ

p

)
, (5)

where we introduced the matrix M, which is a function of L . If L is constant, the solu-
tion to these equations are given by(

φ(t)
p(t)

)
= T(t, L)

(
φ(0)
p(0)

)
, (6)

where the transfer matrix T(t, L)= exp(Mt)= I cos(ωt)+M sin(ωt)/ω, the unity
matrix is denoted I , and ω=

√
g /L is the frequency of oscillation. We can now

model changing, and piecewise constant, pendulum lengths by multiplying sequences
of the matrix T. For example, as kids quickly learn, by squatting (increasing L)
on the downward motion and rising up (decreasing L) during the upward motion,
they can amplify the swing. For one period of swinging, this is modeled by the
T-matrix product Tper = T2T1T2T1, where each matrix is evaluated at ωt = π/2, and
T1,2 =M(L1,2)

√
L1,2/g . Evaluating the matrix products gives the transfer matrix for

one period as

Tper =

(
( L1

L2
)

3
0

0 ( L2
L1
)

3

)
. (7)

This means that the swing angle φ is amplified a factor (L1/L2)
3 every swing period.

In Fig. 3, we plot φ(t)/φ(0) in blue from a numerical solution of Eq. (5) when L(t)
changes between L1 = 1+ 0.05 and L2 = 1− 0.05 at every quarter period (shown
in purple). For simplicity, we have put m = g = 1, which makes the swing period
approximately 2π . Figures 3(a) and 3(b) show the swing with two different initial
conditions, and the red line shows (for reference) the undamped swing, i.e., the solu-
tion for L(t)= 1. In Fig. 3(a), the longer pendulum length (squatting child) occurs
in the downward motion, and in Fig. 3(b), the shorter length (upright child) occurs in
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the downward motion. The dashed yellow line shows the resulting parametric gain
(L1/L2)

±3t/(2π) in the two cases. This reflects the phase-sensitive property of the para-
metrically amplified swing: given the same pump, one quadrature (the cosine-mode in
our case) is amplified while the other quadrature (the sine-mode) is deamplified.

The above is a linear physics example. In a nonlinear parametric amplifier, the pump-
ing is proportional to the signal itself or the powers of it, e.g., φ2 or φ3, which we
will refer to as second- or third-order nonlinearities. If φ comprises a single wave
at frequency ω, the parametric interaction will lead to multiples of this frequency,
which is called harmonic generation. If it comprises two or more frequencies, mixing
components such a sum-frequency generation (SFG) or difference-frequency gen-
eration (DFG) will arise. The above case with the mechanical pendulum would then
correspond to parametric downconversion, where the power of the pump with twice
the signal frequency is converted to (or from) the signal wave.

A context where this is particularly prevalent is in optics and more specifically, non-
linear optics. There the medium of wave propagation is nonlinear, and as a result the
wave equations governing the optical waves will comprise nonlinear terms that will
generate new frequencies via parametric mixing.

3.2. Nonlinearities in χ (2) and χ (3) Materials

Nonlinear optical materials are modeled electromagnetically via the polarization field
vector EP , which is related to the electric field vector EE via the susceptibility χ . To
allow for arbitrary functional dependencies, it is customary to write P as a Taylor
expansion of E as EP =

∑
k=1 χ

(k)( EE )k , where the order k of the nonlinearity is mod-
eled via the kth order susceptibility χ (k). To connect with the previous section, the
polarization vector will cause parametric interaction in the wave equation for the elec-
tric field, which can be derived from Maxwell’s equations (under some simplifying
assumptions) as

∇
2 EE −

1

c 2

∂ EE
∂t2
=

1

c 2

∂ EP
∂t2

. (8)
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Oscillations of a parametrically pumped swing in (a) amplified and (b) deampli-
fied mode. The purple lines show an oscillating but piecewise constant pendulum
length L(t), which is the same in (a) and (b). The blue lines show the correspond-
ing solution φ(t)/φ(0) to Eq. (5) with different initial conditions so that in (a), L is
longer during the downward motion and shorter in the upward motion, and for (b), the
opposite holds. The yellow dashed lines show the parametric amplification/damping
(L1/L2)

±3t/(2π) in the two cases. The red lines show for reference the unampli-
fied solutions for the constant length L(t)= 1, which is simply cos(t) in (a) and
sin(t) in (b).
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Various material properties are then modeled via the susceptibility, e.g., inhomogene-
ity if χ is spatially dependent, dispersion if χ depends on frequency, anisotropy if
χ is a matrix relating the components of EP to the components of EE .

In linear optics, EP = χ (1)(t, Er ) ∗ EE , and χ (1) is in the most general case a spatially
dependent matrix response function that should be convolved with the electric field.

In nonlinear optics, one must model χ as a tensor, a generalized array, relating each
component of n electric field vectors to each of the three polarization field com-
ponents. For an nth-order nonlinearity, the most general χ (n) tensor contains 3n+1

components, which may obviously be quite complicated [89,90]. For this tutorial,
however, we will restrict ourselves to scalar waves for simplicity, and we will discuss
mainly the frequency content of these waves.

Obviously the second-order nonlinearity is the lowest order, and it should be the first
one to manifest in most media as the optical power is increased. However, there is a
caveat. Consider a medium with inversion symmetry, i.e., if you change sign of all
coordinates, including the electric field direction, nothing should change, and the gov-
erning equations must be the same. However, if you change EE → − EE in Eq. (8)
also, the right-hand side must change to negative in such media. Thus, for second
(and all even nonlinearities), the minus signs cancel out, and the right-hand side (the
polarization field) will not change sign. The conclusion from this exercise is very
powerful: media with inversion symmetry cannot contain even-order nonlinearities.
In fact, for such media, the lowest order nonlinearity is the third order.

What media has inversion symmetry, then? Clearly gases and liquids with randomly
placed and oriented molecules will (macroscopically, on average) have inversion
symmetry and also amorphous solids, i.e., solids with no dominating crystal structure
but randomly placed and oriented molecules. Fused silica (normal window glass),
which makes up telecom fibers, belongs to this class of solids and has χ (2) = 0.
However, most crystalline glasses (e.g., KTP, LiNbO3, crystalline silicon, and other
semiconductors) do not, and will exhibit a second-order nonlinearity, χ (2).

3.2a. Second-Order Nonlinearities

Consider a monochromatic wave oscillating as E ∼ cos(ωt), and propagating in a
χ (2) material. The source term, the polarization field in Eq. (8), will be proportional to
cos2(ωt)= (1+ cos(2ωt))/2, and thus comprise a constant (nonoscillating) part and
a second-harmonic part. The constant part is called optical rectification, and usually
of is limited interest, but it will indeed correspond to a static electric field directed
transversally over the propagating wave.

The presence of a second-harmonic means that a wave at the double frequency will
be generated, and the efficiency of this process will depend on many things, e.g., the
attenuation in the medium at the second-harmonic frequency, as well as its propaga-
tion constant. If the propagation constant of the generating wave is β = 2π/λ, with
λ being the wavelength in the medium, that of the resulting second harmonic will be
2β. However, the medium has a frequency-dependent dispersion relation β(ω) that
forces any wave at the second harmonic to oscillate with wavenumber β(2ω), and if
this is not equal to 2β(ω), the process is not phase matched, and the generation of a
strong second harmonic will be precluded. Therefore, phase matching, and whether
the parametric process is strong or not, will in our context be determined by the lin-
ear dispersion relation for the ingoing waves (sometimes, which will then be stated
explicitly, extended with nonlinear contributions to the linear dispersion relations).
We can define a phase mismatch,1β, for the second-harmonic process as

1β = 2β(ω)− β(2ω). (9)
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Only when 1β is small, (in relation to the inverse interaction length in the nonlinear
medium), efficient harmonic generation is possible. One might think that it must be
possible to at least find one frequency for which the relation [Eq. (9)] holds, but it
is actually quite difficult in most nonlinear media, especially in waveguides. If one
seeks an efficient SHG, a common trick is then to add a periodicity (of order 1β) in
the waveguide to make up for the phase mismatch. This is sometimes called quasi-
phase matching (QPM), originally proposed in Ref. [14]. This technique is commonly
used in frequency-doubling crystals of LiNbO3, which can be used to generate green
(λ≈ 532) light from NdYAG laser light (λ= 1064 nm).

3.2b. Third-Order Nonlinearities—The Nonlinear Schrödinger Equation

The third-order nonlinearity manifests in most cases as a power-dependent refractive
index, the so-called Kerr-effect, and most Kerr-nonlinear effects can be physically
interpreted from this power-dependent index. If the index increases with optical
power, the media is said to be focusing, since an intense beam can induce its own
waveguide, and thus suppress diffraction [91]. In most glass crystals, this effect is
very weak, and kilo- to megawatts of power are required to induce such self-focusing
over the length of the material (typically centimeter distances for bulk crystals).

The most popular platform for the study of third-order nonlinear effects is without
doubt the single-mode optical fiber. Already in 1973, Hasegawa and Tappert [92]
proposed the nonlinear Schrödinger equation (NLSE) as a good model for short-pulse
propagation in SMFs, i.e.,

i
∂u
∂z
+ β

(
ω0 − i

∂

∂t

)
u + γ |u|2u = 0, (10)

where u(z, t) is the wave amplitude normalized so that |u|2 is the optical signal power,
z is the propagation distance along the fiber, and t is the time coordinate for the sig-
nal. The nonlinear coefficient is γ , and β(ω) denotes the dispersion relation, which
contains contributions from both the material and the waveguide (mode profile) prop-
erties of the fiber. The dispersion relation can be Taylor expanded around the optical
carrier frequency ω0, and the different orders in this series will correspond to deriv-
atives in the time domain. The notation β(ω0 − i∂/∂t) should thus be interpreted as
an operator defined by the Taylor expansion of β around ω0 where each term gives a
derivative order. If one limits the Taylor expansion order to 2, and transforms the time
and space coordinates to a comoving reference frame, the standard NLSE is obtained
[90] as

i
∂u
∂z
− β2

∂2u
∂t2
+ γ |u|2u = 0, (11)

where β2 denotes the dispersion coefficient, which is negative (positive) in the
anomalous (normal) dispersion regime. SSMFs have anomalous dispersion for wave-
lengths above 1310 nm, and in the 1550 nm region, which is most commonly used
in transmission, β2 =−20 ps2/km, and γ = 1.3 (W km)−1. There are two proper-
ties that make fibers such a nice playground for nonlinear optics, and it is their low
loss [< 0.2 (dB/km) typically] and their long propagation distances. In transmission
systems over hundreds of kilometers, the Kerr-nonlinearity is well-known to be sig-
nificant and distort the data. Thanks to the low losses, fibers enable kilometers of
propagation distances with limited attenuation so that nonlinear effects can manifest,
which is a curse in data communication but a blessing in nonlinear optics research.
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3.2c. Four-Wave Mixing

The study of parametric gain involves the study of how different frequencies inter-
act in a nonlinear medium, and to study this one, typically makes an ansatz for the
interacting waves. For this purpose, we will study the interaction of three waves;
a pump that is symmetrically surrounded by a signal wave and an idler wave, i.e.,
u = u p exp(iωp t)+ u s exp(iωs t)+ ui exp(iωi t), where 2ωp =ωi +ωs . For simplic-
ity, we assume CWs, which make the wave amplitudes u p,s ,i(z) functions of z only.
After inserting this ansatz in the NLSE, we will see that a number of mixing frequen-
cies is generated by the nonlinear term |u|2u, i.e., ωa +ωb −ωc , where indices a , b, c
may denote any of the pump, signal, or idler wave. For three input waves, 27 terms
arise, but many of them are degenerate, i.e., will oscillate at the same frequency. For
example, if a = b = c , we have terms ∼ |u p |

2u p and refer to this interaction as SPM.
For a 6= b = c or b 6= a = c , e.g., terms∼ |u s |

2u p arise, which are referred to as XPM.
These effects will not cause any power transfer between the waves. On the other hand,
the remaining terms, e.g.,∼ u2

pu∗s , will cause power transfer between frequencies, and
they are usually called FWM terms.

After inserting the ansatz into the NLSE and limiting ourselves to the terms oscillating
at ωp , ωs , ωi , we obtain the coupled set of equations,

du p

dz
= iu p(γ (2P − |u p |

2)+ βp)+ iγ 2u∗pu s ui , (12)

du s

dz
= iu s (γ (2P − |u s |

2)+ βs )+ iγ u2
pu∗i , (13)

dui

dz
= iui(γ (2P − |ui |

2)+ βi)+ iγ u2
pu∗s , (14)

where βp,s ,i are the respective propagation constants for the three waves and

P = |u p |
2
+ |u s |

2
+ |ui |

2 (15)

is the total power. These equations were solved and analyzed in detail in Ref. [93],
and here we will briefly describe the properties of the solutions in some relevant
cases. Other relevant papers solving the general four-wave interaction analytically are
[94,95], and the approximate route that we will follow is also done in Refs. [90,96].

First, one can note the existence of conserved quantities to the system [Eqs. (12)–
(14)]. The total power P is conserved, as is the power difference between the signal
and idler waves, C = |u s |

2
− |ui |

2, which is called the Manley–Rowe relation, after
the authors of [11] who derived it for the first time. It essentially says that no signal
light can be generated without an equal amount of idler light being generated at the
same time. In the next section, we will see that this follows trivially from photon
conservation in the quantum mechanical picture.

There is also a third invariant, the Hamiltonian, obtained from the observation that
the system [Eqs. (12)–(14)] is a Hamiltonian set of equations, which can be integrated
in terms of elliptic functions [93]. The general behavior of the solution is that for an
intense pump wave, power is transferred from the pump to the signal and idler waves
and then back again in a periodic fashion. The period of oscillation and the amount
energy transfer will depend on the initial conditions.

The physical interpretation of the coupled system [Eqs. (12)–(14)] is as follows.
The first three terms give rise to phase changes, which have a nonlinear contribu-
tion consisting of SPM and XPM (first two terms) and a linear contribution from the
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propagation constants βp,i,s (third term). These terms cause no power transfer, but the
fourth term does. It depends on the phase difference 1φ = 2φp − φs − φi between
the three waves, and only if this phase is constant or varies slowly with z can we have
a significant power transfer between the pump and signal/idler. This is called phase
matching. If it varies quickly with distance, the last terms in Eqs. (12)–(14) will aver-
age to zero and can be neglected, thus causing no power transfer between frequencies.
We will describe the solution to these equations in more detail in the next section.

A simple classical-physics interpretation of the terms like ∼ u2
pu∗i in the above

equations can be given in terms of the induced refractive index. By writing it like
u p[u pu∗i ], we view the bracketed factor as an induced refractive index, from which
the wave u p scatters. Since u p and ui have different frequencies and wavenumbers,
the induced refractive index forms a moving grating, with frequency ωp −ωi and
wavenumber βp − βi . It will then Doppler-shift the scattered wave to the frequency
ωp +ωp −ωi =ωs . The scattered wave will have a wavenumber according to the
Bragg condition βp + βp − βi , and the process is phase matched (most efficient) if
this wavenumber equals βs , i.e., if the linear phase mismatch

1β = 2βp − βs − βi (16)

is small, or vanishes. We can further analyze and solve Eqs. (12)–(14) by assuming
the pump power is much larger than the signal and idler, which essentially means
that we neglect second-order terms in the signal and idler from Eqs. (12)–(14).
Then, Eq. (12) becomes decoupled from the other equations and can be solved as
u p(z)= e p0 exp(i(βp + γ Pp)z), where e p0 is the initial (possibly complex) pump
amplitude and Pp = |e p0|

2 is the pump power. We then insert this into Eqs. (13) and
(14), and substitute u s ,i = e s ,i exp(i(κ +1β + βs ,i)z) to reach a coupled first-order
system with constant coefficients as

d
dz

(
e s

e ∗i

)
= i

(
κ γ e 2

p0

−γ e ∗2p0 −κ

)(
e s

e ∗i

)
= K

(
e s

e ∗i

)
. (17)

Here we have introduced the notation κ = γ Pp −1β/2 and the constant matrix K .
The solution to these equations can be written in terms of the matrix exponential as(

e s (z)
e ∗i (z)

)
= exp(K z)

(
e s (0)
e ∗i (0)

)
. (18)

The matrix exponential is defined via its Taylor expansion, and it can be evaluated in
closed form as follows: by noting that K 2

= ((γ Pp)
2
− κ2)I = g 2 I , we conclude that

all the even terms in the expansion are proportional to the unity matrix I . Similarly,
all the odd terms can be shown to be proportional to K , and the final result is that
exp(K z)= I cosh(g z)+ K sinh(g z)/g . The solution can be written in terms of the
canonicalµ and ν coefficients as(

e s (z)
e ∗i (z)

)
=

(
µ(z) ν(z)
ν∗(z) µ∗(z)

)(
e s (0)
e ∗i (0)

)
, (19)

where z is the fiber length and the coefficients are given by

µ(z)= cosh(g z)+ iκ
sinh(g z)

g
(20)

and
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ν(z)= i
γ e 2

p0

g
sinh(g z). (21)

Here the parametric gain coefficient g =
√
(γ Pp)

2
− κ2, which can be imaginary if

κ > γ Pp . Also note that the phase of the pump wave enters via the ν coefficient. The
highest gain coefficient (maximum gain) is g = γ Pp and occurs for κ = 0, or

2γ Pp −1β = 0, (22)

which generalizes the linear phase matching condition to account for the nonlinear
(SPM and XPM) contributions to the propagation constants.

The transfer matrix Eq. (19) of the parametric gain is very general, and the (µ, ν)
parametrization is subject to the important condition |µ|2 − |ν|2 = 1, which actually
follows from the Manley–Rowe invariance, cf. [3]. We will see that this transfer
matrix description underlies nearly all properties of parametric amplifiers.

3.2d. Parametric Amplification: Phase-Insensitive Gain

Let us first consider the case when the initial idler wave is zero, e i(0)= 0. Then, the
signal experiences the gain |µ|2 independently of its phase, and we therefore refer to
this situation as PIA. The phase insensitive gain is given by GPIA = |µ|

2.

For perfect phase matching, as described by Eq. (22), one can show that since γ Pp >

0, we must have1β > 0, which implies that the pump should lie in the anomalous dis-
persion regime. Then, we have GPIA = cosh2(γ Pp z). By noting that γ Pp z is the non-
linear phase shift, we can conclude that the parametric gain grows exponentially with
the nonlinear phase shift at perfect phase matching.

In contrast, when the linear phase mismatch is zero, 1β = 0, we obtain the limit
g → 0 and µ= 1+ iγ Pp z and ν = iγ e 2

p0z. This occurs, e.g., when the pump wave is
exactly at the zero-dispersion. In this case, GPIA = 1+ (γ Pp z)2, which grows only
quadratically with the nonlinear phase shift. However, this is not a generic property,
and, for example, dual-pump [69,97] or dual-core [98] amplifiers can have exponen-
tial gain also for zero linear mismatch. This is of practical importance since it can be a
route to flat and broadband gain.

We may note that the situation without an initial idler wave can be exploited in differ-
ent ways; if one focuses on the signal wave, one has a parametric amplifier, and if one
focuses on the idler wave—which becomes proportional to the conjugate signal—one
has a phase conjugator, i.e., a device that produces a conjugate signal wave. The idler
wave can also be used as a wavelength converter that transfers the signal to another
wavelength.

3.2e. Phase-Sensitive Amplification

In the above discussion, we saw that PIA arises when the idler wave is zero at the
input. In contrast, with both signal and idler present at the input, the output waves
described by Eq. (19) are a coherent superposition of the two input waves. This
may seem counterintuitive at first, since the waves oscillate at different frequencies.
However, the ν factor is in fact proportional to u2

p , which makes the whole term
proportional to u2

pu∗i oscillate with the same frequency as u s .

The coherent superposition is, just as in interferometry, phase-sensitive, and the signal
and idler can interfere constructively and destructively. The phase sensitive gain can
be calculated as
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GPSA =
|e s (0)µ(z)+ e ∗i (0)ν(z)|

2

|e s (0)|
2 . (23)

To simplify this expression, we assume the signal and idler input powers are equal,
i.e., |e s (0)| = |e i(0)|, which gives a phase sensitive gain,

GPSA(φ)= |µ|
2
+ |ν|2 + 2|µ||ν| cos(φ), (24)

where φ = φi + φs + φµ − φν = φi + φs − 2φp + φµ − π/2 is the phase angle of the
complex number µe s (0)e i(0)ν∗. Here the φp,s ,i denotes the initial phase angles for
the pump signal and idler waves, φµ is the phase angle of µ, and we can recall from
Eq. (21) that the phase angle of ν is φν = π/2+ 2φp . Depending on the relative phase
φ, we can now realize that this gain is maximum for φ = 0 (constructive interference)
and minimum for φ = π (destructive interference), i.e.,

GPSA−max /min = (|µ| ± |ν|)
2, (25)

from which we can see that the product of max and min gain is GPSA−maxGPSA−min =

(|µ|2 − |ν|2)2 = 1. This implies that the minimum gain is in fact an induced atten-
uation equal to the inverse maximum gain. The required change of the pump phase
for moving between maximum and minimum gain is thus π/2, and the same holds
for the signal and idler phase if they are changed synchronously (as they often are in
experiments). This differs from regular interferometry where the corresponding phase
change between constructive to destructive interference is π .

To demonstrate, the max/min gains experimentally are a nontrivial task, since one
needs to alter the relative phase between two different waves in a controlled way.
Independent laser sources, for example, cannot be used since their relative phase wan-
ders randomly. In the early work by Bar-Joseph et al. [38], this was done by external
modulation of light from a single laser, and in the work by Tang et al. [81,82], it was
elegantly demonstrated by using a two-step approach: a first parametric amplifier
generates the idler from a signal and pump wave with the appropriate phase. In a
second step, by inserting a dispersive fiber element before the PSA, the amplifica-
tion and deamplification were demonstrated as a function of wavelength separation
between the signal and idler. By using a commercial waveshaper instrument (that
can apply an arbitrary phase and amplitude to a set of wavelengths), this was done in
a more controlled way in later experiments by Kakande et al. [83], when as high as
30 dB of phase sensitive gain was demonstrated.

Another important observation is that GPSA−max = |µ|
2
+ |ν|2 + 2|µ||ν| =

2G − 1+ 2
√

G(G − 1), where G = GPIA = |µ|
2 is the phase insensitive gain. In

the limit of high gain, we thus have GPSA−max = 4GPIA, giving a 6 dB higher gain for
PSA compared to PIA for the same pump power. This is just thanks to the coherent
superposition of two equal amplitude waves that leads to a 4 times higher power than
a single wave would have. This will, as we will see, lead to a 6 dB advantage in SNR
for the phase-sensitive case.

3.3. Quantum Mechanical Interpretations and 1/2/4 Mode Operation

The classical-physics picture of FWM as scattering from induced gratings (described
in Subsection 3.2c), has a much simpler quantum mechanics interpretation. Within
quantum mechanics, a light wave is described as a stream of particles, photons, that
must obey certain simple physics conservation laws such as energy and momentum
conservation. We need to know that the energy of a photon is given by E = ~ω, and
the momentum by p= ~k, where ω and k are the angular frequency and the wave
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vector of the photon. The propagation constant is the modulus of the wave vector,
i.e., β = |k|. The above example with a pump surrounded by the signal and idler
waves is then seen as a process in which two pump photons are converted to one
signal and one idler photon, while maintaining energy and momentum conservation,

2ωp =ωs +ωi 2kp = ks + ki , (26)

where we dropped the constant ~ from the equations. While the vector conservation
property of the FWM wave vectors is important to maintain in, e.g., bulk crystals [89],
they are all parallel in fibers, so we can simply drop the vector property, and work with
propagation constants and thus recover the phase matching condition 2βp = βs + βi

from the photon momentum conservation. Thus, the Bragg condition used to describe
light scattering from diffraction gratings is nothing but photon momentum conser-
vation, and this is also the underlying physics behind applications such as photonic
tweezers and radiation pressure and similar laser-based manipulations of particles.

There is, however, another crucial property that the quantum mechanical (photon)
model tells us, and that is photon number conservation. We see from Eq. (26) that
when two pump photons are annihilated, one signal and one idler photon are created.
Thus, the signal and idler photons are created in pairs, and therefore the difference in
photon number between the signal and idler must be constant. Thus, the photon flux8
(number of photons per second flowing through the fiber) for signal minus idler must
be conserved, i.e.,

8s −8i =
Ps

hνs
−

Pi

hνi
= const, (27)

where Ps ,i denotes signal idler power. For small differences in signal and idler pho-
ton energies (as is often the case in practice), this means that the power difference
between the signal and idler is conserved, which we referred to above as the Manley–
Rowe condition. The quantum interpretation was pointed out by Weiss [99] around
the same time as the Manley and Rowe paper [11], so the condition is sometimes
called the Manley–Rowe–Weiss condition. In addition, the photon number conser-
vation will lead to power conservation in the FWM process, i.e., the power lost by
the pump is gained by the signal and idler. Since no power or momentum is lost in
the process, parametric mixing is referred to as an elastic scattering process. In con-
trast, stimulated Raman and Brillouin scattering are inelastic, and lose power and
momentum to optical and acoustical phonons (matter waves) in the material.

The single-pump FWM we described above is a special (degenerate) case of a more
general (nondegenerate) situation involving two pumps at different frequencies. The
corresponding photon energy conservation is then

ωp1 +ωp2 =ωs +ωi , (28)

where ωp1,p2 denotes the two pump frequencies. The corresponding linear phase
matching condition is 1β = βp1 + βp2 − βs − βi = 0, but the nonlinear XPM differs
from the single-pump case. For example, the gain coefficient is given by [97]

g 2
= 4γ 2 P1 P2 −

(
1β − γ (P1 + P2)

2

)
, (29)

where P1,2 are the pump powers. This implies that the maximum gain coefficient
occurs for 1β = γ (P1 + P2) and equals 2γ

√
P1 P2. It also implies that g does not

approach zero for zero linear mismatch, 1β = 0, in stark contrast with the single-
pump case. This occurs, for example, in a fiber with pumps symmetrically placed
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around the zero-dispersion wavelength, where high and flat gain can be obtained as
shown in, e.g., [69,70,97].

Often, the various frequency configurations of parametric amplifiers are classified
after how many signal frequencies (or modes) that are involved. It is therefore cus-
tomary to talk about degenerate or nondegenerate pump/signal processes when one or
more of the ingoing waves oscillate at the same frequency. Figure 4 shows a number
of different FWM processes with one-mode [Fig. 4(a)], two-mode [Fig. 4(b)], and
four-mode [Fig. 4(c–f)] interactions. We will discuss them separately below.

One-mode amplifier. The degenerate one-mode process shown in Fig. 4(a) is physi-
cally the same as the two-mode process in Fig. 4(b), but the roles of the pump and
signal waves have been exchanged. The two cases are described by the same set of
Eqs. (12)–(14), but the expected power flow for parametric gain goes in opposite
directions. The transfer function for a one-mode parametric amplifier is

e s (z)=µe s (0)+ νe s (0)
∗, (30)

where, just as for the two-mode amplifier, |µ|2 = GPIA = 1+ |ν|2. In the high-gain
limit, where |µ| ≈ |ν|, we find that e s (z) is the sum of two complex terms with equal
amplitude but different phase angles. The phase angle of the first term is φµ + φs , and
that of the second terms is φν − φs . When these are equal, i.e., φs = (φν − φµ)/2, then
we have maximum gain equal to |µ| + |ν|. When they are π radians out of phase, i.e.,
φs = (φν − φµ + π)/2, we have maximum attenuation, |µ| − |ν|. Thus, one quadra-
ture is amplified, and the other is deamplified by the same amount (in dB units) since
|µ| + |ν| = 1/(|µ| − |ν|).

This type of FOPA was demonstrated, e.g., in connection with optical regeneration,
cf. [75,79,100].

Two-mode amplifier. The two-mode amplifier [Figs. 4(b) and 4(d)] has a signal and
an idler wave, and it operates in a phase-insensitive mode if the idler is initially zero.
It was described in detail in Subsection 3.2c above, and its transfer characteristics
are given by the matrix relation Eq. (19). It is also equivalent to the widely studied
modulational instability of the NLSE, which describes how the CW solution to the
NLSE is unstable when perturbed by a small oscillation [101,102], and will lead to the
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Different parametric amplifier configurations with signals/idlers in red and pumps
in blue. (a) Degenerate one-mode amplifier. (b) A two-mode amplifier with degen-
erate pump. (c) A four-mode amplifier with one signal and three idler waves. The
following three processes jointly form the four-mode process. (d) The modulational
instability process, equivalent to the two-mode shown in (b). (e) The Bragg scattering
process. (f) The phase conjugation process.



Tutorial Vol. 12, No. 2 / June 2020 / Advances in Optics and Photonics 387

generation of a pulse train from the CW [103]. In fact, this is exactly the same ini-
tial condition as the three waves studied in Subsection 3.2c above, which means
that modulational instability and two-mode FWM in optical fibers are equivalent
phenomena.

Four-mode amplification. The four-mode interaction shown in Fig. 4(c) arises for
two pump waves and actually involves three separate FWM processes, shown in the
respective Figures 4(d–f). The four modes are denoted signal and idler1–3, and each
of the four waves can obtain gain from each of these three processes.

The first process [Fig. 4(d)] is the modulational instability described above, and it
arises around each pump without the other pump taking part in the process.

The second process [Fig. 4(e)] is the Bragg scattering process. This differs from the
other two processes in that it does not provide any parametric gain, but rather power
exchange. It will exchange the signal and idler two waves, similarly to a directional
coupler. It has been used for, e.g., wavelength exchange in wavelength division
multiplexing (WDM) systems [104,105].

The third process Fig. 4(f) is the phase conjugation process, and it is similar to the
modulational instability, with the difference that two pump waves are involved,
as described in Eq. (28). Just as for the modulational instability process, the phase
conjugation produces a conjugated idler wave from the signal.

It is possible to put all four-mode processes in a transfer matrix formulation, just as the
two-mode process, i.e.,

e s (z)
e ∗i1(z)
e i2(z)
e ∗i3(z)

=

µ ν δ κ

.. .. . .

.. .. . .

.. .. . .




e s (0)
e ∗i1(0)
e i2(0)
e ∗i3(0)

= G


e s (0)
e ∗i1(0)
e i2(0)
e ∗i3(0)

 , (31)

where G denotes a 4× 4 transfer matrix. The exact form, or a parametrization of this
matrix similarly to the µ, ν coefficients in Eq. (19), is an unsolved problem, even
if some progress and some studies on the four-mode problem have been made.
For example, a generalized Manley–Rowe condition can be formulated in that
|e s |

2
− |e i1|

2
+ |e i2|

2
− |e i3|

2 is conserved, which will put constraints on G . Some
theoretical analysis on the problem is found in the works of McKinstrie [69,71], and
a four-mode modulational instability analysis was published in Ref. [106]. A more
general theory based on transfer matrix singular value decomposition, so-called
Schmidt-mode decomposition, has been published as well [107–109]. Significantly
less works on four-mode than two-mode amplifiers have been published, however,
and some of the experimental work [110,111] will be discussed in Subsection 5.5f
below.

4. NOISE IN PARAMETRIC AMPLIFIERS

4.1. Amplifier Noise Basics

It is a fundamental fact, which follows from basic quantum mechanics [32], that
optical amplifiers produce noise. PSAs are sometimes called “noiseless,” because
they redistribute the quantum noise among the eigenmodes without adding any excess
noise and thus, in theory, do not reduce the SNR of a shot-noise-limited input signal.
PIAs on the other hand will always add extra noise and reduce the SNR [30]. For
example, a PIA such as the EDFA generates spontaneous emission noise, also called
amplified spontaneous emission (ASE) at the output with a power spectral density
(PSD) (in units of W/Hz) of [34]
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Ssp = nsp(G − 1)hν, (32)

where G is the amplifier gain, hν is the photon energy, and nsp ≥ 1 is the sponta-
neous emission factor, related to the inversion of the amplifier. For a fully inverted
amplifier, nsp = 1, and the noise PSD is said to be quantum-limited to (G − 1)hν. It
should be noted that this power is emitted in one polarization, and an equal amount is
generated in the other polarization, which is usually neglected in theory since it can be
filtered away from the signal with a polarizer. However, in measurements of ASE on
an optical spectrum analyzer, both polarizations contribute and should be accounted
for.

What is relevant in practice is how much the SNR is degraded by the amplifier.
Modeling the optical signal amplitude as a signal plus an additive ASE noise leads
to, after photodetection and squaring of this field, an electrical photocurrent with
three terms, namely (i) the signal power, Ps , (ii) beating between the signal and ASE
noise, so-called signal-spontaneous beating, and (iii) beating between the noise and
the noise, so called spontaneous-spontaneous noise beating. In most circumstances,
the s-sp noise dominates, and it has a variance of [34]

σ 2
s−sp = 4R2 Ps Ssp1 f , (33)

in units of A2, where R is the photodetector responsivity and1 f is the detector band-
width. This should be compared to the signal that gives an average photocurrent of
R Ps . We then define the amplifier NF as the ratio of the SNRs before and after the
amplifier,

NF =
SNRin

SNRout
, (34)

which is a measure of how much the SNR (after photodetection) has degraded after
the amplifier. It should be noted that this NF definition is based on direct-detected
signals for simplicity, and the use of a more strict definition based on field quadra-
tures and homodyne detection is possible but beyond the scope of this work. The
different definitions agree for high signal powers when noise–noise interaction can be
neglected. To obtain the SNR at the input, we use the fundamental shot noise (stem-
ming from the discreteness of photons and the generated photoelectrons), which has a
variance of σ 2

s = 2eRPin1 f , where e is the electron charge and Pin is the input power
to the amplifier. The SNR at the output is affected by both shot noise and ASE noise,
so the NF for the PIA such as the EDFA is

NFPIA =
(R Pin)

2

σ 2
s ,in

σ 2
s ,out + σ

2
s−sp

(RG Pin)
2 = 2nsp

G − 1

G
+

1

G
, (35)

where σs ,in/out denotes the shot noise variances based on the signal power before and
after the amplifier. We also need to assume a unit-quantum-efficiency detector with
responsivity R = e/hν to derive the right-hand side of Eq. (35). The first term in
Eq. (35) is the ASE contribution, and the second is the shot noise contribution. For a
link with m amplifiers of gain G , the noise variances need to be added by multiplying
the first term with m. We can invert the relationship (35) to express nsp,

nsp =
NF G − 1

2(G − 1)
, (36)

which is often approximated with nsp ≈NF G/(2(G − 1)) and used instead of nsp to
express the ASE spectral density as
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Ssp ≈NF G
hν
2
, (37)

from which we can interpret the NF as a measure of how much in excess of G the vac-
uum fluctuations, which carry half a photon (hν/2) of energy, are amplified, or, alter-
natively, a noise PSD amounting to NF half-photons added at the amplifier input.

The above is based on a so-called semiclassical analysis of an optical amplifier, where
the interaction medium is quantized but the optical field is still classical, and the
vacuum fluctuations need to be incorporated as a classical field with a PSD of half
a photon, hν/2. The ASE is then interpreted as amplified vacuum fluctuations (as
shown above), and shot noise can be seen as arising from beating between the signal
and the vacuum fluctuations in the photodetection process [112].

Similar results can be obtained also by a fully quantized optical field as described in,
e.g., [30,32,71]. Such models often recover the NF in the idealized ns p = 1 limit, and
give the well-known results for PIAs,

NFPIA = 2−
1

G
. (38)

4.2. Noise in the Two-Mode Parametric Amplifier

4.2a. Quantum Noise

In this section, we will perform a NF analysis for the two-mode parametric amplifier.
We model the amplifier with the transfer matrix Eq. (19). This discussion follows
partly that of [54], App. B, and similar treatments can be found, for example, in
Refs. [64,65] for the phase-insensitive FOPA, and [2,87] for the PSAs. At the input,
we assume shot-noise-limited fields, i.e., we have e s + ns and e i + ni as input sig-
nal/idler fields to the amplifier, where |e s ,i ]

2
= Ps ,i denotes the signal/idler powers

and ns ,i denotes independent noise fields with a PSD of hν/2. It is important to
account for both noise fields even if no signal/idlers are present. The input SNR is
then shot-noise-limited, and

SNRin,s =
(R Ps )

2

2e R Ps1 f
=

R Ps

2e1 f
=

Ps

2hν1 f
. (39)

The same expression applies for the input idler. Note that this result can be obtained
in two ways: (i) We either square the input field directly to yield a photocurrent
i = R(PS + 2

√
Ps ns ), where the second term is additive noise with a variance given

by R24Ps hν/21 f = 2e R Ps1 f . Here the factor of 4 in the detected photocur-
rent variance comes from the squared factor 2, times 1/2 from the averaging over
〈cos2(θ)〉, which is the relative phases between signal and noise, times 2 since the
optical noise is collected over an optical bandwidth of 21 f . (ii) Alternatively, we
neglect the vacuum fluctuations and postulate the presence of shot noise with variance
σ 2

s = 2e R Ps1 f when the input signals are detected.

At the output of the two-mode amplifier, we obtain for the signal wave

e s (z)=µe s + νe ∗i +µns + νn∗i , (40)

where the last two terms are the PSD of the ASE noise (or amplified vacuum fluctua-
tions). After photodetection, we obtain the signal current
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is = R |µe s + νe ∗i +µns + νn∗i |
2
= R(Ps ,out + 2Re [(µe s + νe ∗i )(µns + νn∗i )

∗
]),

(41)
where Ps ,out is the optical signal power after the amplifier, the second term is the
signal-noise beating, and we neglect the noise–noise beating. The signal gain after the
two-mode amplifier is

G s =
Ps ,out

Ps
=
|µe s + νe ∗i |

2

Ps
=

∣∣∣∣µ e s

|e s |
+ ν

e ∗i
|e s |

∣∣∣∣2, (42)

as we saw earlier in Eq. (23). The idler gain can be obtained by exchanging the s /i
indices. We may note that this gain is signal-phase-independent only when the idler is
zero, and then the phase-independent gain is GPIA = |µ|

2 as noted in Subsection 3.2e.
If no idler is present at the input (as for a copier, wavelength converter, or phase
conjugator), we define a conversion efficiency, η, instead of an idler gain as

η=
Pi,out

Ps
=
|νe ∗s |

2

Ps
= |ν|2. (43)

The signal-noise beating variance can be obtained as

σ 2
s−s p = 4R2

〈(Re [(µe s + νe ∗i )(µns + νn∗i )
∗
])2〉 = 2R2 Ps ,out〈|µns + νn∗i |

2
〉 =

= 2R2 Ps ,out(|µ|
2
+ |ν|2)

(
hν
2

)
(21 f )= 2R2 Ps ,out(|µ|

2
+ |ν|2)hν1 f , (44)

where< ·>means average. Thus, the SNR at the output becomes

SNRout =
Ps ,out

2(|µ|2 + |ν|2)hν1 f
, (45)

and finally the NF is obtained as

NF=
Ps (|µ|

2
+ |ν|2)

|µe s + νe ∗i |2
=
|µ|2 + |ν|2

GPSA
=

2GPIA − 1

GPSA
, (46)

where GPIA = |µ|
2
= 1+ |ν|2 is the phase-insensitive gain and GPSA is the phase-

sensitive gain, which depends on the complex initial pump, signal, and idler fields as
given by Eqs. (23), (24) and (42). We can now investigate this expression in a number
of different cases.

• The phase-insensitive case is obtained for e i = 0 for which GPSA = GPIA and NF =
2− 1/GPIA as expected.

• The NF for the generated idler in the phase-insensitive case is obtained by replac-
ing GPSA in Eq. (46) with the conversion efficiency, Pi,out/Ps = |ν|

2
= GPIA − 1,

thus obtaining NFi = (2GPIA − 1)/(GPIA − 1)1= 2+ 1/(GPIA − 1), which goes
to infinity as GPIA→ 1 in contrast to the signal behavior, whose NF goes to zero
in the same limit. However, for large gains, it approaches 2 just as the NF of the
signal.

• When the signal and idler have equal amplitudes, GPSA = |µ|
2
+ |ν|2 +

2|µ||ν| cos(φ), where φ is the phase angle of the complex number µν∗e s e i . We
obtain NF= 1/(1+ x cos(φ)), where x = 2|µ||ν|/(|µ|2 + |ν|2) ∈ [0, 1]. The
NF is then largest, NFmax = 1/(1− x ), for the phase-sensitive deamplification
case φ = π , and smallest, NFmin = 1/(1+ x ), for the maximum amplification
case φ = 0. The leading behavior for large gain is x ∼ 1− 1/(8G2

PIA) so that
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NFmax ∼ 8G2
PIA and NFmin ∼ 1/2+ 1/(8G2

PIA) in the two cases. The seemingly
unphysical NF < 1 for the maximum phase sensitive gain will be discussed below.

If the signal and idler are correlated and if the idler phase is conjugate to the signal
phase, the phase sensitive gain will be 4GPIA. This extra 6 dB of gain is real and
clearly observed in experiments, cf. e.g., [86,113]. This will give a 6 dB higher opti-
cal SNR (OSNR, defined as the optical signal power divided by the optical noise
power within some reference bandwidth, see, e.g., Fig. 16 in Ref. [87]) since the same
amplifier noise PSD is generated irrespective of whether the idler is present or not.

It might seem unphysical that the NF approaches 1/2 in the PS case. In fact, a NF less
than 1 means the SNR is improved after the amplifier. How can the SNR be higher rel-
ative to the input? The resolution of this paradox is that we have the same (or actually
a conjugate) signal present at a second wavelength, which is not accounted for at the
input, and the noises on these two waves are uncorrelated. The coherent superposition
will then add the signals coherently and the noise incoherently, thereby improving the
SNR by a factor of 2. This is the same as when two independent measurements of the
same signal can be averaged to increase the effective SNR by a factor of 2. Therefore,
the−3 dB of the NF must be interpreted with some care.

If instead both the signal and idler powers were accounted for at the input, the NF
would equal 2 times Eq. (46), and for maximum PS gain, it will then be given by
NFmax→ 1+ 1/(4G2

PIA) for large GPIA. This then agrees with the 0 dB NF predicted
for PSAs by quantum field theory [30–32].

4.2b. Additional Noise Sources

The above section discussed the fundamental quantum mechanical noise sources
related to amplified vacuum fluctuations. However, in practice, there are also a num-
ber of additional noise sources when FOPAs are realized. These have been described
and discussed in, e.g., [66]. We will briefly list them here.

Raman-scattering-induced noise. The strong pump wave will cause spontaneous
Raman scattering, and also downconversion of the high-frequency signals in FOPAs.
This was described originally in a series of papers by Voss et al. [114–116]. This
effect is expected to put a limit on the attainable PSA NF to be> 0.4 dB [117]. It will
also act asymmetrically depending on which side of the pump the signal is located.

Pump transfer noise. The ultrafast nature of FOPAs leads to a sensitivity in the gain
to pump power variations [64,118]. This will act as rapid gain fluctuations with asym-
metric statistics [119]. It will be an additive noise source whose expectation value is
proportional to the signal power, and therefore it will be more significant for high sig-
nal powers in to the FOPA.

Residual ASE. Since the pump is typically amplified with a booster amplifier, the
residual ASE from this amplifier might leak through filters and add to the signal.
In principle, this can be filtered away, but in practice it can be difficult since the
generated booster ASE power may be significant.

In Ref. [66], all these noise sources in addition to the quantum noise were theoretically
analyzed and experimentally characterized with good agreement.

4.3. Link Noise Figures and Distributed Amplification

The following section extends the discussion from Section 1 around Fig. 2. In lumped
amplifier links, the SNR will fall off linearly with the number of amplifier spans, if we
assume a balanced link, where the gain of each amplifier exactly compensates the loss
in each span. One can introduce a link NF that states how the SNR degrades from the
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input. Since the NF is inversely proportional to SNRout, the link NF will increase lin-
early with the number of amplifiers.

Two viewpoints can be taken: the type A link, where the amplifier precedes the loss,
and the type B link, where the loss precedes the amplifier of each span. Figure 2 shows
a type B link. For a PIA amplified link, the NF increases with the number of spans m
as [120,121]

NFPIA,A = 1+ 2m
(

1−
1

G

)
, (47)

NFPIA,B = 1+ 2mG
(

1−
1

G

)
. (48)

In a PSA amplified link, the NF increases as [72,120,121]

NFPSA,A = 1+m
(

1−
1

G

)
, (49)

NFPSA,B = 1+mG
(

1−
1

G

)
. (50)

These can now be compared to the copier-PSA links, where a complication is the
presence of the copier, which acts as a PIA (with a quantum-limited NF = 3 dB), but
where the 6 dB gain benefit discussed above reduces the contribution from each span
with a factor of 4 relative to the PIA. The copier-PSA link NF is approximately [121]

NFC−PSA,A =
5

2
+

m
2
, (51)

NFC−PSA,B =
3G
2
+

mG
2

. (52)

This shows that the copier-PSA link has a 6 dB advantage over the PIA link and a
3 dB advantage over the non-copier-PSA link assuming that the second terms in the
expressions dominate, which is the case in a many-span scenario. This comes at the
expense of sacrificing spectral efficiency as the data occupy two wavelengths. The
3 dB advantage over the non-copier-PSA link (which equally sacrifices spectral effi-
ciency) is a result of the copier-PSA link carrying twice the power since the idler is
generated in the copier and is not part of the system input signal power.

In fact, it is possible to do even better in terms of link NF, by considering distributed
amplification. This can be understood if one considers a link of total length L with
loss exp(αL) that contains m amplifiers of gain G so that G = exp(αL/m). Inserting
this in Eq. (47) gives NFPSA,A = 1+ 2m(1− exp(−αL/m)), and in the limit of many
infinitesimal spans, we obtain NFPSA,A = 1+ 2m(1− (1− αL/m))= 1+ 2αL , so
that for such a distributed amplifier, the NF grows logarithmically with the link losses.
This type of distributed amplification can be used also for a PSA link as suggested
by Vasilyev [8]. The benefits of copier-PSA relative to a PSA link remains even in
the distributed case, so the ultimate link amplification should employ a distributed
copier-PSA scheme.
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5. IMPLEMENTATION CONSIDERATIONS

In this chapter, we will discuss practical aspects of the implementations of FOPAs.
We first discuss aspects relevant for both phase-insensitive and phase-sensitive oper-
ation. Later, we discuss specific aspects related only to phase-sensitive operation. We
will also here discuss aspects relevant when using PSAs in optical transmission links.

5.1. General Aspects of Parametric Amplifiers

Figure 5 illustrates a possible implementation of a FOPA in a phase-insensitive imple-
mentation. In the case of phase-sensitive operation, an idler wave also needs to be
present at the input along with the signal. The key components are the pump laser
and the nonlinear medium providing the amplification, which dictate all the essen-
tial performance characteristics. In many of the reported experiments, the nonlinear
medium was a solid core silica fiber being tailored such that the core diameter is very
small (typically around 4 µm) leading to a significantly larger nonlinearity compared
with SSMF, while at the same time having low group-velocity dispersion (GVD),
which is needed to achieve good phase matching and high parametric gain. Such
fibers are referred to as HLNF. There exists, however, a large range of other nonlinear
platforms that can serve as the nonlinear gain media. While it is not easy to define a
single figure of merit that captures all essential aspects, it is fair to state that from a
“black-box” perspective, the HNLF does provide the best performance to date. If the
pump laser is not providing enough power to achieve sufficient gain, its power can be
boosted by, e.g., an EDFA as illustrated in the figure. In practice, an optical bandpass
filter at the EDFA output is often needed to reduce the amount of ASE. As FWM is a
polarization-dependent process, and the parametric gain is as well, which in practice
makes this a single-polarization amplifier: A polarization controller (PC) is needed
to set the pump and signal waves at the same polarization as they enter then nonlinear
medium. Polarization-independent amplification is, however, possible with either a
so-called diversity scheme or a so-called vector approach (using two orthogonally
polarized pump lasers), further discussed in Subsection 5.5c.

Some other fundamental characteristics specific to FOPAs are summarized here:

• An idler will be generated as a result of the FWM process. If the signal wave in
Fig. 5 is modulated with data, the idler will contain a phase conjugated copy of
this data. While the presence of the idler is not always desired, it is essential when
considering PSA as discussed in Subsections 3.2e and 5.5.

• FOPAs are, in contrast to most other amplifiers, unidirectional, as phase matching
is only fulfilled in the forward direction. This can be important as the buildup of
backward propagating ASE or other reflected optical power is not possible. This
directionality enables very high gain FOPAs. This is in contrast to, e.g., EDFA,
where this can cause gain reduction and increase of the NF. In addition, optical

Figure 5

Possible implementation of a fiber-optic parametric amplifier.
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isolation may not be necessary as a cavity with gain in both directions is not being
formed.

• FOPAs become essentially transparent in the signal band in absence of pump
power, while for EDFAs, the absence of pump power results in the erbium fiber
having a very large attenuation. This difference may have consequence when
considering system reliability.

• Finally, in FOPAs, the fundamental gain mechanism is a result of the anharmonic
motion of the bound electrons in the fiber host and is thus a process with very short
relaxation time (� 1 ps). This means that a FOPA can be used for many functions
operating at very high speed other than optical amplification, including, for exam-
ple, add–drop multiplexing, wavelength conversion, optical phase conjugation,
pulse compression, ultrafast switching and sampling, and phase regeneration. This
will be further discussed in Section 8. However, a related consequence of this is
that the noise properties of the pump are very important as excess intensity noise
from the pump will be transferred to the signal, thus potentially degrading the
amplifier performance. In addition, the pump laser should be operating in a single
mode. This is in contrast to EDFAs, having a time constant near 1 ms, effectively
averaging any pump noise (and also allowing multimode pumps), while thus not
being capable of other high-speed functionalities.

From Subsection 3.2d., we find a remarkably simple expression for the spectral
peak gain of a FOPA only being dependent on three parameters. In the case of
large gain and ideal phase matching condition, for a PIA, this is approximately
G = 1

4 exp(2γ P L), while for a PSA, it is up to 4 times (6 dB) higher. Here, γ is the
nonlinearity coefficient of the HNLF, typically 10 (W km)−1, P is the pump power
(W) and L (km) is the length of the HNLF. Thus, a simple rule of thumb is that a
nonlinear phase shift (γ P L) of π radians is needed to reach a PIA gain of about 20 dB
(and a PSA gain of 26 dB). Typically, an HNLF may be 500 m long and the pump
power about 1 W in the case of using an HNLF. As in most FOPA experiments, the
pump power is not itself providing enough power to serve as a FOPA pump, but it is
often first amplified in an EDFA. Thus, the OSNR at the EDFA output is in practice
the main limiting factor in terms of intensity noise. A simple rule of thumb is to main-
tain a pump OSNR larger than about 50 dB in order not to significantly suffer from
this noise transfer; however, this value also depends on the signal power entering the
amplifier [64,119]. The quantum limit of the NF of a high-gain FOPA operated in
phase-insensitive mode is 3 dB, while if operated in phase-sensitive mode, it is 0 dB.

5.2. Gain Spectrum Characteristics

Clearly, the spectral gain characteristic of any amplifier is important. In FOPAs, this
depends primarily on the GVD of the HLNF, which ideally should be very small.
The discussion in this section is focusing on the gain of phase-insensitive FOPAs.
However, the results essentially apply also to phase-sensitive FOPAs with the main
difference that PSA gain will be 6 dB higher (at high gain and with proper phase con-
dition), as discussed in Section 3. Figure 6 shows a calculated gain spectrum with the
following assumptions: HLNF with L = 500 m, γ = 16 (W km)−1, a dispersion slope
(S) of 0.02ps/(nm2 km), and a pump wavelength of 1550 nm, which is 2 nm above
the zero-dispersion wavelength (λ0) of the HLNF. In this single-pump case, the peak
gain grows exponentially with the pump power where perfect phase matching occurs.
At wavelengths close to the pump wavelength, the gain grows only quadratically with
the pump power. As seen in this example, significant gain can be expected over nearly
100 nm. It should be noted that ASE is here ignored, which can have an impact in
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saturating the gain. For proper modeling, particularly when targeting high gain, this
aspect should be considered.

In Fig. 7, the gain spectrum of a dual-pump amplifier is shown with otherwise same
parameters as in Fig. 6. The pump wavelengths are 1466.5 nm and 1643.6 nm, respec-
tively, i.e., their “center of gravity” is 0.3 nm above λ0, carefully chosen to reach good
spectral flatness. It is seen that the gain spectrum is much flatter in this case, and the
gain grows approximately exponentially with the pump power across a broad spectral
range, a result of four perfectly phase matched signal wavelengths. One can also
note that the peak gain is the same in Figs. 6 and 7 for any given total pump power.
Thus, for a certain peak gain target, the dual-pump case requires only half the power
in each pump laser compared with the single-pump case. While the dual-pump case
is more challenging to implement, aside from the advantage of a flat gain spectrum,
it is easier to deal with the problem of SBS (discussed later) since the power of each
pump is 50% lower in this case. It should be noted that, while in Fig. 6 higher-order
dispersion, i.e., β4 is not influencing the shape of the gain spectrum (for reasonable
values of β4) due to the relatively large difference between the pump wavelength and
the zero-dispersion wavelength, in Fig. 7, however, β4 has a large impact on the gain
shape. In this case, β4 was carefully chosen to obtain a broad and flat gain spectrum,
resulting in significant gain over about 180 nm.

Figure 8 shows an example of the impact of the nonlinear coefficient and dispersion
on the gain spectrum in dual-pumped amplifiers with a total power of 800 mW. The
red-colored gain spectrum being approximately 180 nm wide is from Fig. 7, while the
blue-colored spectrum corresponds to a case with 10 times larger nonlinearity with
the length of the HNLF being correspondingly 10 times shorter than the case in the
red spectrum. The nonlinear phase shift and the peak gain are thus the same. However,
as seen, the spectral width of the latter is significantly larger (about 350 nm). This
illustrates that it is, in principle, beneficial to use a more nonlinear element, while
at the same time being shorter. A key challenge is to develop a suitable platform to
implement this. Currently used solid core silica HLNFs cannot be expected to reach
such a high nonlinear coefficient. Other much more nonlinear platforms are being

Figure 6

Parametric gain spectrum at various pump powers with a single pump at 1550 nm,
which is 2 nm above the wavelength of zero-dispersion in the HNLF, which is 500 m
long with γ = 16 (W km)−1 and dispersion slope S = 0.02 ps/(nm2 km).
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explored, but it is challenging to achieve a large effective length to reach a sufficient
nonlinear phase shift due to relatively high waveguide losses.

From Figs. 6–8, it is clear that the spectral width of the gain of an HNLF-based
parametric amplifier can be expected to be up to a few 100 nm. However, the above
examples are ideal, and, in reality, other factors can degrade the spectral gain per-
formance. These include dispersion variation along the HNLF [54,90,122] (which
was here assumed constant), nonideal higher-order dispersion, SRS (causing a spec-
tral gain tilt), and polarization-mode dispersion (PMD, causing a relative polarization

Figure 7

Parametric gain spectrum at various pump powers with two pumps operating at
1466.5 nm and 1643.6 nm, respectively. The power in each pump is equal, and the
power mentioned reflects the total power of the two pumps. The value of the disper-
sion curvature (β4) was 2.4 · 10−5ps4/km. The average pump wavelength was 0.3 nm
above λ0. Other parameters are same as in Fig. 6.

Figure 8

Parametric gain spectra with a 500 m HLNF having γ = 16 (W km)−1 (red curve) and
a 50 m hypothetical HNLF having γ = 160 (W km)−1 (blue curve). The total pump
power was 800 mW. Red curve is from Fig. 7. For the 50 m case, the pump wave-
lengths were optimized as 1406.5 nm and 1726.2 nm, and their average wavelength
was 0.95 nm above λ0. Other parameters are the same as in Fig. 7.
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rotation of the involved waves thus impacting the gain). The latter problem can essen-
tially be solved by using a polarization-maintaining HLNF by keeping all waves
copolarized [123]. In general, all of the above aspects become increasingly important
when targeting a broad spectral gain, but their importance clearly will depend on the
nonlinear platform being used, and it is generally also easier to achieve a broad and
flat gain spectrum if the target gain value is smaller. Parametric gain over 270 nm has
been experimentally observed [61]. Figure 9 shows a measured gain spectrum using
two pumps separated by 103 nm resulting in a flat 40 dB gain across 81 nm [124].
The impact of SRS on dual-pumped FOPAs with a pump wavelength separation up
to 180 nm was experimentally studied in Ref. [62]. An analysis of broadband and flat
two-pump FOPA gain spectra was provided in Ref. [97].

It should be noted that, in many applications, the idlers generated in a FOPA reduce
the useful spectral range of the amplifier to 50% of the bandwidth discussed above.
One exception to this is the use of FOPA as a gain medium in a wavelength tunable
laser [60]. In addition, in PSAs (discussed in Subsection 6.4), the idlers play a key
role and need to be present at the input along with the signal. As observed in Fig. 6,
the FOPA gain spectrum with a single-pump laser has characteristic peaks at each
side of the pump wavelength. As discussed, a much flatter gain spectrum is possible
by using two pumps. However, it should be pointed out that it is possible to obtain a
broadband and flat gain spectrum with a single pump as well, by either minimizing
the net dispersion at the pump wavelength [63] (e.g., by operating the pump very
close to the zero-dispersion wavelength of the HNLF), which comes at the expense of
lower spectral peak gain with the same pump power as in the dual-pump case, or by
performing QPM [125,126]. The fundamental reason for the two-lobed gain feature in
the single-pump case is that perfect phase matching only occurs at two specific signal
wavelengths while the phase mismatch at other wavelengths grows as the waves prop-
agates along the fiber. This also becomes more pronounced at higher pump power
and gain. An interesting approach to mitigate this is to apply the QPM method by
periodically inserting spectrally selective phase correctors only affecting the phase of
the pump. This approach attempts to maintain ideal phase matching (relative phase

Figure 9

Measured (symbols) and calculated FOPA gain spectrum in a dual-pump configu-
ration. The pump separation was 103 nm with their average wavelength being near
the zero-dispersion of the HNLF used. The total pump power was 2.1 W, and the
length and nonlinearity coefficient of the HNLF were approximately 350 m and
14 (W km)−1, respectively. Reprinted with permission from [124]. Copyright 2008
Optical Society of America.
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being π/2) along the HLNF, by periodically realigning the phases [see Fig. 10(a)].
This results in an accumulated gain that grows nearly exponentially along the full
fiber over a wide spectral range, while otherwise the accumulated gain increases at
different rates at different wavelengths, as illustrated in Fig. 10(b).

5.3. Dealing with Detrimental Stimulated Brillouin Scattering

When implementing a parametric amplifier in an optical fiber, one undesired phe-
nomenon that needs to be dealt with is SBS. This is a fiber nonlinearity occurring due
to the interaction of the input wave and the fiber that manifests itself as the generation
of an amplified backward propagating wave once a threshold power of input power
has been reached. This prohibits the growth of parametric gain since much of the
pump wave is thus being reflected. The input power threshold for this to occur is
typically 10 mW in a long SSMF, and decreases with increasing effective length of
the fiber. At such powers, no FOPA gain can be expected when using a conventional
HLNF as the nonlinear element. The use of smaller fiber core area (resulting in a
larger nonlinear coefficient) or the use of a shorter HNLF is not helping here. This is
because, if we target a certain FOPA gain, the scaling of the SBS threshold will follow
along these changes. Thus, if one wants to use a solid core silica fiber as the nonlinear
medium on a FOPA, other approaches to avoid SBS have to be pursued. One com-
monly used approach is to phase modulate the pump with a frequency higher than the
spectral bandwidth of SBS (typically up to 100 MHz in optical fibers) such that the
SBS threshold is increased (see Ref. [127] and references therein). If several appropri-
ately chosen frequencies are used, the threshold can theoretically be increased 3 times
per RF frequency used. A drawback with this approach is that phase modulation can
unintentionally convert into intensity modulation (e.g., due to dispersion or optical
pump filtering [128]), thus degrading the FOPA performance. Another method is to
impose a temperature gradient along the HNLF such that the spectral peak of the SBS
is gradually changing along the fiber [129]. Finally, another approach is to impose a
strain along the fiber also causing a shift in the SBS spectral peak (along with some
amount of undesired dispersion changes along the fiber) [130]. The result of using
the last approach, along with the insertion of optical isolators in between sections of
HNLF, to prevent buildup of SBS is shown in Fig. 11 [85].

The relative SBS threshold increase by using these two approaches was 11 dB
(approximately half due to the strain and half due to the isolators). This allowed
up to 10 dB of parametric gain without any use of pump phase modulation. Without

Figure 10
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this approach, no parametric gain was observed. As also indicated in the figure,
with only one pump phase modulation frequency (300 MHz), the gain can further be
increased significantly as the SBS threshold is increased another factor of 3 (4.8 dB).

5.4. Saturation Properties and Nonlinear Penalties

In optical amplifiers, saturation of the gain will take place whenever the amplified
signal power reaches a level approaching that of the pump power, and this is certainly
the case also with parametric amplifiers, albeit with a number of particular features.
Theoretically, for an amplifier with (small-signal) gain G0, saturation will occur for
an input signal power Ps when G0 Ps is a significant fraction of the pump power. For
phase-insensitive FOPAs, a semiempirical theory can be derived to obtain a simple
formula for the gain as function of the input signal power [131],

G(Ps )=
G0

1+ 2Ps G0
Pp

, (53)

where Pp denotes the pump power.

Figure 12 from [132] shows the measured and calculated output signal, idler, and
pump powers, respectively, in a FOPA versus input signal power. At low input sig-
nal power, the gain is about 27 dB, but it starts to reduce at input powers of about
−10 dBm (thus, the sum of output signal and idler powers at that point are about
0.1 W), at which point the pump output power is also starting to reduce with increas-
ing signal power. The pump power depletion continues, and in contrast to other
amplifiers, it reaches a sharp minimum at a particular level of input signal power,
in this case about 5 dBm. At that point, as much as 99.92% of the pump power was
depleted, and as the signal input power is further increased, power from the signal

Figure 11

Top, FOPA with increased SBS threshold using four strained HNLF sections with
optical isolators in between, and no phase modulation of the pump. Bottom, measured
FOPA gain spectrum. c© 2012 IEEE. Reprinted, with permission, from C. Lundström
et al., IEEE Photon. Technol. Lett. 25, 234–237 (2013) [85].
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and idler is being transferred back to the pump. This is a direct consequence of the
phase matching condition being changed due to SPM in the HLNF to the extent that
a situation of “parametric attenuation” is occurring (see Subsection 3.2e). In a first-
order theory, the FOPA will periodically alter between amplification and attenuation
as the optical input power is increased, and no power will actually be lost. However,
this is too simplistic, as there will be many new idlers generated in this process. This
can be seen by comparing the output spectra of the FOPA in the unsaturated case
(middle figure in Fig. 12 corresponding to the blue operating point in left figure)
and in the maximum pump depletion case (right figure in Fig. 12 corresponding to
the red operating point in left figure). In the unsaturated case, only the pump, signal,
and one idler are present, while in the other case, where the pump is nearly fully
depleted, not only the signal is present at the output, but also tens of new idlers, which
are a result of higher-order mixing products. The maximum observed conversion of
input pump power to the signal output power was 53% (at an input signal power of
2 mW). This illustrates that the conversion efficiency in FOPAs can be quite large and
similar to that in EDFAs. The pump depletion feature has been used to demonstrate
a fast switching operation with very low power (less than 0.01 mW) [133], and for
time-domain add–drop multiplexing [134].

It should finally be noted that precaution is needed when amplifying multiwave-
length signals with parametric amplifiers (e.g., for dense WDM transmission). While
cross talk among these wavelengths may be negligible at low power into FOPAs, it
will at some power start to cause a penalty [86,135]. Also nonlinear cross talk from
FWM between WDM channels might cause signal distortions [136–139]. It was sug-
gested that using shorter fibers and higher pump powers would reduce the problems
[136,137]. Stephens et al. [138] showed experimentally that a hybrid Raman–FOPA
would reduce the problem significantly. In PSAs, the problem is worsened due to the
presence of the idlers, and a theoretical analysis of the problem was performed by
Chen et al. [139].

5.5. Phase-Sensitive Operation of Parametric Amplifiers

When a FOPA is implemented such that not only the pump and signal waves are
present at the input, but also an idler wave, it can provide some remarkable features
such as squeezing of phase noise [79] and amplification with a quantum-limited NF
of 0 dB. A simple explanation of how 0 dB NF can be reached is as follows: the signal
and idler waves are mutually coherent and will thus add up coherently while the noise
in the waves are entirely uncorrelated, and will add up only in terms of power. Thus,
there is some similarity between PSAs and coherent receivers (where a local oscillator
and signal are added coherently, while in a PSA, a signal and its conjugate are added

Figure 12

Saturation characteristics of a FOPA. Power evolution versus signal input power
(left). Output spectrum with input power being −20 dBm (middle). Output spectrum
with input power being 4.6 dBm (right). The input pump power was 1 W, and the fiber
length was 750 m. Reprinted with permission from [132]. Copyright 2007 Optical
Society of America.
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coherently), and one could refer PSAs as a “coherent amplifier” where the output
is optical in contrast to a coherent receiver where it is electrical. A parametric two-
mode-FOPA-based, single-ended, single-quadrature coherent receiver in which the
FOPA served simultaneously as amplifier and mixer was analyzed and compared to
a traditional coherent receiver in Ref. [140]. While the needed idler can be generated
in different ways, one very simple approach is to use the process of FWM in, e.g., an
optical fiber. With a signal and pump with sufficient power entering this fiber, an idler
will be generated at the wavelength 2λp − λs (see Fig. 13). If the signal wave at the
input contains information, the idler will contain the same data but will be phase con-
jugated. Thus, we refer to this element as the copier, and the scheme was originally
proposed by Tang et al. in Refs. [81,82]. In fact, this is essentially a PIA as discussed
in Subsection 5.1 but without the need to provide gain. An important point of using a
phase-conjugated idler wave is that the amplification in subsequent PSAs will become
modulation format independent—both quadratures will be amplified independently
allowing the use of any modulation format, e.g., m-QAM signals. The copier con-
cept is also readily compatible with WDM signal transmission with a separate idler
being generated from each of the input signal waves. Since the quantum-limited NF
of the copier is 3 dB (at high conversion efficiency), this will generate excess noise.
However, it has been shown [87] that with a sufficiently large loss between the copier
and a subsequent PSA (as in practice would be the case in many transmission sys-
tems), this excess noise becomes insignificant relative to the quantum noise and will
not impact the overall system noise performance.

However, since PSAs provide a gain that depends on the relative optical phase among
the pump, signal, and idler wave, it is important to ensure that the desired phase rela-
tionship is maintained. This can in practice be achieved by implementing an optical
phase-locked loop (PLL) controlling the phase of one of the waves [for example with
a piezoelectric transducer (PZT) stretcher] to maintain the PSA gain at its maximum.
As PSAs are normally polarization-dependent (for polarization-independent imple-
mentations, see Subsection 5.5c), the three waves should be copolarized once they
enter the PSA.

In optical fiber links, it is possible to use PSAs both as in-line amplifiers and as pream-
plifiers in receivers as illustrated in Fig. 14. Idler waves containing the same informa-
tion as the signal waves need to copropagate along the link with the signal. Thus, the
spectral occupancy in the optical domain is twice that of conventional systems using,
e.g., EDFA in-line amplifiers. However, as pointed out earlier, PSAs can potentially
have very large gain bandwidth. It should also be noted that the idlers are not needed
at the receiver and can simply be dumped along with the pump at that point (no added
benefit can be expected by also detecting the idlers). Thus, the purpose of the idlers is
only to participate in the PSA amplification process. There are neither any particular

Figure 13

Copier-based approach for generation of a pump, signal, and idler waves needed for
operating a PSA. With sufficient loss between the copier and the PSA, the nonideal
NF of the copier will not impact the overall link NF.
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requirement on the receivers, e.g., in terms of bandwidth when compared to conven-
tional receivers.

The link NF was described in Subsection 4.3, and it was stated that a PSA-based link
will have a 3 dB advantage due to its lower NF. In the copier-PSA case illustrated in
Figs. 13 and 14, however, there is a 6 dB link NF advantage over a conventionally
amplified link (using ideal amplifiers with 3 dB NF), in the case of propagation over
many spans. This advantage can be used to extend the overall link reach by a factor
of 4 in the linear case (and sometimes even more in the nonlinear case—see below),
and/or increase the span length or the number of bits transmitted per symbol, albeit
this comes with the disadvantage of the need to copropagate the idlers resulting in less
efficient use of spectrum and in transmitting 2 times the power over the transmission
fiber.

While in most cases it is desired that the signal and idler power are equal as they enter
a PSA, as this will provide the best overall NF, they do not need to be equal. One can
in such a case define a different NF for the signal and idler (the overall NF can never
reach below 0 dB), and this was analyzed in detail in Ref. [141]. In Ref. [142], it was
shown that in a situation of unequal signal and idler power or OSNR at the PSA input,
the two amplified waves at the output are equalized both in terms of their power and
OSNR. As an example, an input idler being 20 dB smaller in power (and OSNR) rela-
tive to the signal at the PSA input was observed to have increased its OSNR by 17 dB
at the PSA output, while the signal was observed to have reduced its OSNR by 3 dB.

As the spectral gain characteristics of PSAs fundamentally are not different than
those in the PIAs discussed earlier, aside from the 6 dB gain increase as described in
Subsection 3.2e, we will not discuss this further here. However, broadband PSAs have
been demonstrated in Ref. [123], where a single pumped polarization-maintaining
HLNF was used to demonstrate more than 10 dB gain across 170 nm with a sub-3-dB
NF.

5.5a. Optical Pump Recovery Using Injection Locking

An important aspect when considering PSAs in optical transmission is the need for
a high-performance pump wave in each of the in-line PSAs or for PSA preamplified
receivers. This can be achieved by propagating the pump wave along with the signal
and idler (not shown in Fig. 14), but its power in the transmission fiber needs to be
low enough to avoid SBS. In practice, this means the power of the pump wave at the
PSA input can be very small. This necessitates an approach to recover the pump wave
with sufficiently high SNR and high power to serve as a proper pump for the PSAs. A
useful approach for this is to use optical injection locking (OIL) [143]. It has recently
been demonstrated that a CW wave can be recovered to provide a high-performance
pump for use in PSAs at power levels below−60 dBm [144]. Figure 15 illustrates the
concept and some experimental results. As the frequency of the slave laser and the
frequency of the incoming wave from the master laser are free-running, it is important

Figure 14

Schematic of a copier-PSA optical fiber transmission link.
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that their relative frequency offset is minimized for stable injection locking, in par-
ticular when locking at low powers when the locking bandwidth will be small. For this
purpose, an electrical PLL was used to control the slave laser frequency. In addition,
the incoming wave was preamplified with an EDFA, which allowed the optimization
of the power actually being injected into the slave laser. While the phase noise is
reduced with lower power into the slave laser (due to the filtering bandwidth in the
OIL process becoming smaller), eventually the impact of the slave laser linewidth
becomes important resulting in an optimum injected power [144]. As shown in Fig. 15
(right), phase locking with low phase noise can be achieved at a power into the slave
of around −45 dBm, which corresponds to an input power to the EDFA of only
−65 dBm. In subsequent measurement in a PSA, the observed penalty compared to a
back-to-back scenario without the OIL was only about 0.3 dB.

5.5b. Dispersion Management in PSA Links

In PSA amplified links, the waveform and temporal position of the signal and idler
wave should ideally be equal as they enter each PSA. Therefore, dispersion compen-
sation is needed in each span for proper operation of the PSAs, such that the coherent
superposition of the waves operates properly. If the dispersion length is much larger
than the span length (which can be the case when operating at low symbol rates or if
the transmission fiber is dispersion shifted to provide low GVD at the operating wave-
length), it may be sufficient to only match the relative propagation delay of the signal
and idler waves. If we consider linear wave propagation, it does not matter where the
dispersion compensation is made within the span. However, in the nonlinear regime,
its placement will play an essential role. In fact, the amount of pre- and postspan trans-
mission dispersion compensation can be optimized for a given case (this depends on
many aspects including the symbol rate and modulation format). The reason for this is
the PSA capability to mitigate nonlinearities in the transmission fiber. This is possible
because both the signal and idler essentially experience the same distortion, which to
a relatively large extent can be canceled in the coherent signal plus idler superposition
process in PSAs, as discussed in Section 6.

Figure 16 shows a few experimental results on the impact of the amount of dispersion-
precompensation in each of the 81 km long SSMF spans of a transmission link [145].
The postcompensation is equal to the span dispersion minus the precompensation.
As seen in Fig. 16(a), there is a clear optimum precompensation corresponding to
about 15 km of SSMF in the case of PSA that results in a large transmission reach
increase compared with no precompensation or with the PIA. In the case of PIA, the
impact of precompensation is much smaller. It is interesting to consider the case of

Figure 15

Injection locking principle (left) and measured phase-noise variation versus slave
laser input power (right). Reprinted with permission from [144]. Copyright 2018
Optical Society of America.
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distributed Raman amplification (DRA), which is well known to improve the overall
link NF, see, e.g., Eq. (2). However, in principle, it can also improve the PSA-enabled
nonlinearity mitigation further. This is because a first-order perturbation analysis
suggests that a flat or symmetric span power map in a link could lead to very efficient
nonlinearity mitigation [145–147]. Figure 16(b) shows the measured reach in this
case where Raman pumps were placed 27 km apart in the 81 km spans. Again, sig-
nificant impact is observed from the amount of precompensation, and approximately
50% precompensation is found to be optimum in accordance with theory. It should
be pointed out that when DRA is used to compensate for span losses, the low noise
property of the PSAs have limited impact on the link performance, but it is rather their
nonlinearity mitigation capability that is essential.

A further reach improvement can be expected by optimizing the dispersion prec-
ompensation in each span independently. In Ref. [148], a two-span optimization
in a lumped amplification case resulted in optimal precompensation values of 5%
and 35% (or vice versa) for the two spans (in contrast to the 15% in the single-span
optimization) with a corresponding 50% further transmission reach increase. This
was be extended to more spans, and a four-span dispersion map optimized PSA
link provided 2.1 times reach improvement over a single-span optimized PSA link,
which represents a 4.3 times reach extension compared to a dispersion unmanaged
(i.e., all dispersion compensation is performed in the electrical domain after coherent
detection) PIA link [149]. Finally, it can be noted that the use of a Volterra equalizer,
which is capable of mitigating nonlinearities after signal detection using digital signal
processing (DSP), is useful also in the context of PSA amplified links. In Ref. [150],
it was shown that such equalization can significantly relax the precise requirement on
the dispersion precompensation discussed above.

5.5c. Polarization Management in PSAs

As the FWM process upon which the parametric amplifiers rely on is polarization-
dependent, so is the parametric gain. In cases with polarization-independent operation
or cases when signals in both polarizations need to be amplified, there are two basic
options available. These are illustrated in Fig. 17 from [151]. The first is a so-called
diversity scheme in which a nonlinear medium (e.g., an HLNF) is utilized in two
directions such that the pump power is split equally among the two paths. As the
signal state of polarization (SOP) varies, it will travel partially in each direction

Figure 16

(a) Maximum transmission reach (in terms of number of 81 km spans) for both PSA
and PIA implementations versus the amount of dispersion compensation before the
transmission span. (b) Maximum reach in the case when the spans are amplified using
distributed Raman amplification. Reprinted with permission from [145]. Copyright
2018 Optical Society of America.
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with the net (ideal) result that the signal is amplified independently of its SOP. The
second approach (right in Fig. 17) is referred to as the “vector approach,” in which
two orthogonal pumps are used to essentially independently amplify each SOP of the
signal. Approaches similar to these have been demonstrated in several experiments
in the case of PIA [152–156]. Some recent examples include the demonstration of
a diversity loop implementation with improved SBS suppression capability [157],
which was extended to show polarization-insensitive amplification of WDM signals
carrying an aggregate data rate of over 2 Tb/s [158]. In Ref. [159], the vector imple-
mentation of a FOPA was demonstrated to be capable of polarization-insensitive
amplification of WDM signals as well.

The situation is, however, more complicated in the case of PSAs, since we now have
to deal with polarization and the optical phase simultaneously. Nevertheless, these
schemes can also provide functionalities that conventional PSAs cannot provide, e.g.,
quadrature demultiplexing [160].

In Ref. [151], an analysis of how to achieve polarization independence was provided.
The conclusion was (valid for both vector and diversity amplifiers and in presence of
PMD) that polarization-independent PSA operation is only possible with polarization
trackers in realistic optical transmission scenarios:

• A nondegenerate PSA with a dual-polarization-modulated signal is possible with
one polarization tracker rotating the idler or the signal.

• A no-degenerate PSA with a single-polarization-modulated signal is possible with
one polarization tracker rotating both the idler and signal.

5.5d. Capacity Considerations

The capacity of a communication channel is given by the famous expression [161],

C = B log2(1+ SNR), (54)

where B is the channel bandwidth and SNR is the signal-to-noise ratio. In PSAs, we
need to transmit the idler along with the signal while it does not contain any additional
information. Therefore, at very high SNR, the PSA approach will suffer from a factor
of 2 reduction in terms of capacity relative to that of PIA-based systems (e.g., using
EDFAs). However, at low SNR, the opposite holds, i.e., the capacity in a PSA-based
system is twice that of a conventional one. This can be seen by simply comparing the
capacity of a PSA versus a PIA system,

CPSA

CPIA
=

1

2

log2(1+ 4SNR)

log2(1+ SNR)
, (55)

Figure 17

Schematics of two possibilities to implement polarization-independent operation with
parametric amplifiers. Left, diversity approach. Right, vector approach. Reprinted
with permission from [151]. Copyright 2016 Optical Society of America.
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where SNR is the signal-to-noise ratio for the PIA case. The reason for the factor of
4 improvement for the SNR in the case of PSA can be extracted from the discussion
in Subsection 4.2a, and can be explained as follows: if we consider the signal or the
idler independently, its quantum-limited NF= 1/2, while that of a PIA is 2. Of course,
the signal and idler need to be present simultaneously at the amplifier input, such that
their combined NF= 1. However, the presence of the idler is already accounted for in
(55) by the factor 2 in the denominator. The SNR advantage can be leveraged, e.g., to
extend the transmission system reach as demonstrated in Section 7. At very low SNR,
the term log2(1+ SNR)≈ SNR/ ln(2) and what is outside and inside of the logarithm
are thus equally important for the system capacity. Figure 18 illustrates this where it
is also indicated that the PSA and PIA system capacities are equal at SNRPIA = 3 dB,
or equivalently at a spectral efficiency of 1.58 bit/s/Hz. An interesting case where this
is relevant is in deep-space transmission where the SNR can be very small. It should
be pointed out here that the above discussion is only considering a linear system.
The capacity for nonlinear optical links is unknown in most cases. However, as is
discussed in Section 6, PSAs can significantly mitigate impairments caused by trans-
mission fiber nonlinearities. In addition, it is worth mentioning that there is no need
to recover the idler at the receiver meaning that the capacity loss at high SNR only
applies in the optical domain and not in the electrical domain, i.e., there is no need
for addition received bandwidth relative to a system using PIAs. An experimental
study of using a PSA-preamplified receiver with a very low SNR incoming signal was
presented in Ref. [162]. This showed a record sensitivity (at BER= 10−6) of only one
photon-per-information bit using a QPSK modulation format at 10 Gb/s data rate and
100% forward-error-correction overhead. It should be pointed out that the sensitivity
included all the power of the incoming signal and idler, as well as the pump wave.

5.5e. Parametric Amplification in Multimode Fibers

The discussion so far has focused on parametric amplification in a SMF. However,
there has also been some recent work on such amplification in multimode fibers
[163–166]. This can be of interest in future spatial-division multiplexed (SDM) trans-
mission systems that rely on carrying independent data in each of the modes [167].
The modeling of such a solution is of course more complex than the case of a SMF.
As an example, if the target is amplification in four spatial modes, one needs to solve
12 coupled nonlinear equations as there are three different nonlinear processes tak-
ing place simultaneously. In addition, the geometry of the fiber has to be carefully
optimized. It is of particular interest to consider the case of using only a single laser
to provide pump power to all modes while having minimal amount of nonlinear cross
talk among the signals in the modes. It is then important to target a situation such
that the relative phase velocity difference between any two modes (1β1) is large

Figure 18

Comparison of relative capacity of a PSA versus a PIA amplified system. The solid
black line is the capacity for a PIA system.
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(efficiency of intermodal processes are low), while at the same time, all modes should
have a small GVD (β2) for efficient parametric amplification. Figure 19 shows an
attempt to reach this situation in a realistic fiber case [168,169]. The Ge-doped fiber
has an index profile that is graded in the core with double cladding surrounding it
and supports four linearly polarized modes. As seen in Fig. 19(b), it is possible to
amplify all four modes with a gain on at least 10 dB across a spectral range of 30 nm.
Note that while the dispersion properties of the fiber were optimized, its nonlinear
coefficient was not, and varied between 4.3− 13.1 (W km)−1 among the modes. In
addition, amplification of such a fiber could be used to perform efficient wavelength
conversion among the spatial modes.

5.5f. Four-Mode PSAs

As discussed in Subsection 3.3, it is possible to implement a so-called four-mode PSA
in which four information carrying waves (one signal and three idlers) are interacting
nonlinearly with two pump waves. The process can be described by a 4 × 4 transfer
matrix [69]. Similar to the single-pump two-mode PSA, the dual-pump four-mode
PSA is modulation format independent and compatible with WDM supporting many
signal channels. Here, the PSA amplification is in theory 12 dB higher than the corre-
sponding PIA gain (in the two-mode PSA, it is 6 dB), which is a result of a coherent
superposition of the four information carrying waves giving 42

= 16 times, or 12 dB
coherent gain. The overall quantum-limited NF is still 0 dB, while the expected link
NF improvement is 9 dB (in contrast to 6 dB for a conventional copier-PSA imple-
mentation). Figure 20 shows experimental spectra of an HLNF-based four-mode PSA
output in the case of no idlers at the input and with the idlers (each with the same input
power as the signal) at the input [110]. The observed signal (−10 dBm input power at
1540 nm) gain in the former case was 9.3 dB while in the second case it was 19.6 dB.
The observed gain increase of 10.3 dB was thus relatively close to the expected 12 dB.

While this approach can improve the link NF compared with a two-mode PSA, it
is also useful to, e.g., further reduce the impact of SBS given a certain gain target.
However, an obvious drawback with this implementation is the loss of spectral effi-
ciency as four waves at different frequencies will need to carry the same information,
while also being rather complex to implement [110].

Figure 19

Left, geometry and spatial modes of a fiber dispersion-optimized for parametric
amplification. Right, resulting simulated gain spectrum using a single pump with total
power of 12 W (optimized among the modes) and fiber length of 150 m. The arrow
indicates the pump wavelength. Reprinted with permission from [168,169]. Copyright
2016 and 2017 Optical Society of America.
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As will be discussed in Section 6, PSAs have the capability to mitigate nonlinear
transmission fiber impairments, and this has also been confirmed experimen-
tally. However, to date, no such studies have been made regarding the particular
nonlinearity mitigation capabilities for four-mode PSAs.

It should be mentioned that four-mode PSAs have been used to demonstrate fre-
quency multicasting with significant enhancement of the SNR. In Ref. [111], a
spectrally uniform 12 dB OSNR advantage over conventional, phase-insensitive para-
metric multicasting was demonstrated. The prospects of truly noiseless signal spectral
replication with four-mode PSAs is extensively discussed in Ref. [2].

6. TRANSMISSION FIBER NONLINEARITY MITIGATION

It was, somewhat surprisingly, observed in the early experiments of copier-PSA trans-
mission that not only was the PSA superior in the linear but in the nonlinear regime as
well [170,171]. The reason for this is the coherent superposition of the signal and idler
and the fact that they have accumulated similar, correlated, nonlinear distortions.

The phenomenon can be explained as follows. Consider a complex signal with a con-
stant complex value a subject to additive noise n. We call this noisy signal x1 = a + n.
Then we generate the conjugate signal x2 = x ∗1 . These signals are shown in Fig. 21(a)
for a = exp(iπ/4) and an ensemble of 5000 independent noise realizations. We then
transmit these signals in a nonlinear fiber so both signals are subject to self-phase (and
cross-phase) modulation. We neglect dispersion. This leads to the signals

y1 = (a + n) exp(i p|a + n|2), (56)

y2 = (a + n)∗ exp(i p|a + n|2), (57)

where p is a measure of the nonlinearity, and for weak noise, the nonlinear phase shift
would be given by p|a |2. These signals are shown in Fig. 21(b), and in Fig. 21(c) with
y2 conjugated. The conjugate superposition now forms

z=
y1 + y ∗2

2
= (a + n) cos(p|a + n|2), (58)

Figure 20

Measured output spectrum of a four-mode PSA without and with the idlers at the
input. The observed signal gain with the idlers is 10.3 dB higher than without them,
which is due to the coherent superposition of four waves. Reprinted with permission
from [110]. Copyright 2012 Optical Society of America.
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which turns the phase noise (partly) into amplitude noise and also, importantly,
reduces the overall spread of the resulting constellation point. This shows how the
transmission of conjugate data followed by coherent superposition can significantly
improve the tolerance to nonlinear distortions.

Since this configuration is precisely the one used in a copier-PSA transmission link,
the robustness to NL distortions was indeed observed in some of the first transmis-
sion experiments of that type [171]. Independently, a similar idea was proposed by
Liu et al. around the same time [147,172]. The implementation was different in that
they used the second polarization to transmit the conjugate data and performed the
coherent superposition in DSP in a coherent receiver, rather than optically in a PSA.
Also other schemes were proposed based on DSP implementations, e.g., different
wavelength channels [173] or different temporal symbols [174], so-called “conjugate
data repetition.”

An important unique benefit in the PSA implementation is that the signal is main-
tained in the optical domain, and the coherent superposition can be distributed and
repeated several times in a PSA link. The DSP-based implementations are limited to
receiver processing only.

This makes a copier-PSA link extremely tolerant to nonlinear distortions, and nonlin-
ear phase shifts as high as 6 radians (likely the highest ever reported) were found in a
10 Gbaud experiment using QPSK modulation [175]. A reach extension of 5.6 times
compared to a PIA-based link was found, where we can note that only 4 times is to be
expected from the 6 dB improved SNR, and the rest can be attributed to the nonlinear
compensation.

While the theory for this twin wave mitigation neglects dispersion, it can indeed be
shown that a large amount of accumulated dispersion will degrade the performance of
the scheme used for coherent long-haul transmission. However, for copier-PSA links,
the periodic coherent superposition makes it possible to optimize the dispersion. This
will be discussed more in the next section.

7. EXPERIMENTAL TRANSMISSION RESULTS USING PHASE-SENSITIVE
AMPLIFIERS

In this section, some examples of experimental results relying on PSAs being used
in optical communication links will be presented. This is not intended to be a review
of experimental results, but rather illustrate key features of using PSAs in real exper-
iments. First, we discuss results using HNLF-based PSAs as in-line amplifiers in
long-haul optical fiber transmission systems in which both noise and transmission

Figure 21

Effect of conjugate twin wave transmission. (a) The initial signal (blue) and its conju-
gate (red). (b) Both signal after propagation subject to SPM and XPM. (c) As in (b) but
with the red signal conjugated. (d) The resulting signal after coherent superposition.
The simulation is based on 5000 points, with an SNR of 20 dB and a nonlinear phase
shift of 0.8 rad.



410 Vol. 12, No. 2 / June 2020 / Advances in Optics and Photonics Tutorial

fiber nonlinearities degrade the performance. Then, we also discuss results demon-
strated with PSAs based on lithium niobate in which the second-order nonlinearity is
used.

7.1. System Results Using Highly Nonlinear Fiber-Based PSAs

As already mentioned, the key benefits of using PSAs as the in-line amplifier are that
fiber communication links are the improved link NF and the nonlinearity mitigation.
Figure 22 shows a schematic of a setup used with the aim to experimentally quantify
these in the case of single channel system [176]. A conventional transmitter (using
I-Q modulator encoded with 16-QAM data at 10 Gb/s) and coherent receiver were
used. As span-by-span optical dispersion compensation is needed, this was imple-
mented with dispersion compensating modules (DCMs) with the precompensation
value set with the aim to optimize the nonlinearity mitigation. The span loss in the
experiment was significantly higher than the 80 km span itself (which was 21.5 dB
including the SSMF and the two DCMs) due to the other component in the loop
resulting in a total loss per span of 34.5 dB. The PSA gain was 21.5 dB, while the
additional gain needed to cancel the loop transmission loss was compensated by an
EDFA without any significant excess noise contribution. The PSA used was imple-
mented by strained, HNLF, and in-line isolators for SBS suppression as described in
Subsection 5.3. Prior to the PSA in each revolution in the loop, the signal and idler
were separated from the weak and noisy pump, which was recovered using the optical
injection-locking technique described in Subsection 5.5a. In addition, the polarization
states were coaligned. After the PSA, the signal and idler power were equalized in an
optical processor (WaveShaper), and the signal gain was maximized using a PLL (not
shown in the figure) adjusting the relative optical phase of the pump branch prior to
the PSA with a PZT. In addition, the pump power was attenuated not to excite SBS in
the span transmission fiber. It can be noted that the PSA acted as a “copier” prior to
the first transmission in the loop, but as a PSA for all remaining circulations. After the
final circulation under consideration in the experiment, nonlinearity mitigation in the
last span was carried out by using coherent superposition of the signal and idler after
detection in the digital domain, similar to [147].

Figure 23 shows experimental constellation diagrams of the received signal under
different conditions for the experiment discussed above. Constellation diagrams after
N round trips with in-line PSA or PIA amplification are shown at low (−3 dBm) and

Figure 22

Setup of long-haul transmission of data emulated with circulating loop using PSA
as in-line amplifiers. Reprinted with permission from [176]. Copyright 2017 Optical
Society of America.
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high (+8 dBm) span launch powers. Constellations in the left and right columns cor-
respond to a bit error rate (BER) of 10−3, and the values in parenthesis are calculated
accumulated nonlinear phase shifts.

It is clear that the PSA performs significantly better than the PIA in the low power
(essentially linear transmission regime), resulting in an extension of the noise-limited
reach (BER= 10−3) from about one to six 80 km spans, which is due to the link NF
improvement in this case. In the case of high launch power, nonlinear distortion is
clearly seen already after 160 km in the case of PIA, while for the PSA, a similar
amount of distortion is noted only after 560 km, clearly demonstrating the capability
of PSA to compensate SPM-induced distortion in the transmission fiber. When opti-
mizing the launch power in each case for maximum reach (3 dBm in both cases), the
maximum reach for the PSA was 1040 km, being about 4 times larger than in the PIA
case. Recent experiments have demonstrated a reach improvement of as much as 5.6
times at optimal launch powers with 10 Gbd QPSK data, operating at a total estimated
accumulated nonlinear phase shift of 6.2 rad due to SPM in the signal [175]. Also,
recently [177] the first experimental demonstration of PSA-based mitigation of XPM
in a WDM transmission system was presented.

7.2. System Results Using LiNbO3-Based PSAs

The second-order nonlinearity, χ (2) discussed in Subsection 3.2a, can also be utilized
to perform phase-sensitive parametric amplification. A suitable platform for this
is periodically poled LiNbO3 (PPLN). These are compact devices, typically a few
centimeters long, with a large second-order nonlinearity, while also not suffering
from the SBS problems in HNLF as discussed in Subsection 5.3. There exist several
configurations to achieve parametric amplification in this platform. A PPLN-based
PSA for in-line operation, e.g., in a fiber transmission system, was demonstrated in
Refs. [178,179]. As shown in Fig. 24, the setup relied on three PPLN waveguides, as
well as on injection locking for carrier recovery and a PLL for stable operation. One
of the PPLN waveguides was used for carrier recovery, using a cascade of the SHG
process and the DFG process, as indicated in the bottom of the figure. The other two
waveguides were used for PSA pump generation (0.3 W at 770 nm, relying on SFG)
and for PSA amplification, respectively. This represents a one-mode PSA, which is
very suitable for phase regeneration.

Figure 23

10 Gbd, 16-QAM signal constellation diagrams for PIA and PSA in-line amplifier
operation in the loop experiment in Fig. 22. The number of round trips is denoted N.
Reprinted with permission from [176]. Copyright 2017 Optical Society of America.
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The experimental results showed a PSA gain of up to 11 dB, and very clear phase
noise regeneration features by studying a 40 Gb/s binary phase modulated signal. In
addition, nonlinear phase noise caused by a transmission fiber was successfully mit-
igated. A long-haul transmission study was later demonstrated in a circulating loop
experiment using a PSA with 18 dB gain in a 40 km span over 1000s of km [178].

8. OTHER APPLICATIONS OF FIBER-OPTIC PARAMETRIC AMPLIFIERS

Aside from the basic function of amplifying light, both PIA and PSA implementa-
tions have several interesting applications beyond those described earlier for optical
transmission applications. There are too many such applications suggested and
demonstrated in the literature to be listed here, so we just provide some examples. An
obvious one is wavelength conversion as idler(s) are generated at new frequencies
dictated by the input waves. An impressive example is in Ref. [180] where HLNF-
based FWM of waves at 1300 nm and 1589 nm was used to generate a wave at around
2000 nm. Another wave was similarly generated in another HNLF being tunable over
1912–2155 nm. These waves were subsequently used for FWM in a short silicon
waveguide resulting in a conversion range of over 600 nm with an idler being gen-
erated at up to 2388 nm. A very different application example is quadrature signal
decomposition [160] where a polarization diverse PSA (see Section 5.53) was used
to convert a 20 Gbaud, 16-QAM encoded signal to two independent 4-PAM output
signals. We should here also highlight that the phase conjugation of signals enabled
by the FWM process can itself be used to mitigate both dispersive and nonlinear
effects in optical transmission fibers. This topic is beyond the scope of this tutorial,
but an overview of the capabilities is provided in Ref. [181]. Below, we discuss in
more detail two particular applications, signal regeneration and all-optical sampling.

8.1. Amplitude and Phase Regeneration

As signals for a variety of reasons can be impaired in terms of amplitude and phase, it
is of interest to explore all-optical approaches that can regenerate such signals. PSA

Figure 24

Schematic of a PPLN-based PSA implementation (top) and principle (bottom).
Reprinted with permission from [178]. Copyright 2013 Optical Society of America.



Tutorial Vol. 12, No. 2 / June 2020 / Advances in Optics and Photonics 413

has been shown to have such capabilities. An example on how phase regeneration
can be implemented is illustrated in Fig. 25 (top). Here a single-pump, two-mode
PSA approach with a copier is considered. However, in contrast to the transmission
experiments described in Subsection 7.1, the signal and idler are here encoded with
identical data (i.e., the idler is not a phase-conjugated copy of the signal). The bottom
figure shows the calculated signal gain and output phase as a function of the input
phase at different pump power. The result is, when the PSA gain is large enough, the
output signal phase can only become a multiple of π , irrespective of the input signal
phase, which is the basis for phase regeneration.

Figure 26 from [84] shows an experimental validation of this functionality, illustrat-
ing the measured output phase and constellation diagram. Here, instead of varying the
pump power (i.e., gain), the relative power difference of the idler and signal was var-
ied. The left figure illustrates the case without idler, i.e., a PIA, and shows an output
phase tracking that of the input, as expected. However, as the idler power becomes
equal to the signal power in the right set of figures, the output phase can only be 0
or π , and the constellation diagram is squeezed to a single line across the real axis.
Under certain operating conditions, it has been found that also amplitude noise can be
reduced significantly, which is a consequence of the signal-induced gain saturation of
the PSA.

In Ref. [79], a “black-box” one-mode PSA-based all-optical amplitude and phase
regenerator was presented. The principle, shown in Fig. 27, is that two pumps are
symmetrically located around a single, degenerated signal/idler wave. Amplitude and
phase noise was emulated by adding RF tones to the signal wave in the experiment.
The key aspect to obtain a “black-box” operation is the use of injection locking in
order to generate two phase-stable pumps. In a first HNLF stage, an idler was gener-
ated by FWM of a small fraction of the signal and a local pump, which did not contain
any data since the idler phase is equal to twice the signal phase (being encoded with a
BPSK signal) minus the pump phase. The idler was subsequently fed into a slave laser
for injection locking, resulting in a high SNR pump wave for the subsequent PSA
regenerator stage. It may be noted that in this experiment, the “black-box” NF was
dictated by the EDFA at the system input, and can thus only reach 3 dB at best.

Figure 25

Top, principle of optical phase regeneration in a two-mode PSA. Bottom, calculated
gain and output signal phase at increasing pump powers.
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Figure 28 shows an example of the phase noise regeneration capability. It shows
the elimination of ±80 deg of peak differential phase distortion. In addition, it was
shown that both amplitude and phase noise could be substantially reduced with a
corresponding reduction of the BER. While this demonstration relied on a binary
phase modulation format, this work has later been significantly extended, showing
the compatibility of phase-regeneration with multiple wavelength channels [182],
and to QPSK modulation format [183]. Although the amplitude regeneration in the

Figure 26

Experimental results of two-mode PSA-based phase regeneration. Top, output phase
versus input phase. Bottom, corresponding constellation diagrams. The idler power is
increasing from left to right, where it is equal to the signal power. Reprinted with per-
mission from [84]. Copyright 2011 Optical Society of America.

Figure 27

Schematic of a “black-box” all-optical phase regenerator based on a one-mode PSA.
Reprinted with permission from Macmillan Publishers Ltd: R. Slavík et al., Nat.
Photonics 4, 690–695 (2010) [79]. Copyright 2010.
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scheme above relied on gain saturation, which only works with a single wavelength
channel, more advanced schemes have been proposed [184] that combine PSA-based
phase regeneration with multichannel-compatible amplitude regeneration [185] for
multichannel regeneration of advanced modulation formats.

8.2. All-Optical Sampling

A parametric amplifier can be used as an optical waveform sampling device with
very high bandwidth due to its very fast response time. The basic principle [186] is
shown in Fig. 29 (top). Instead of using a CW pump, here a pulsed pump is used.
Whenever the pump is present, an idler will be generated that has a power propor-
tional to the input signal. The typical parametric gain is 0–10 dB. For equivalent-time
sampling oscilloscope operation, the repetition rate of the pump can be arbitrarily
low, but requires the signal to be repetitive. The idler can thus be filtered out and
captured with a slow detector for waveform or eye diagram reconstruction. The
signal waveform is then built up by adding up all the stroboscopic snapshots of the
signal. In contrast to electronic sampling, in this case, there are no concerns with
impedance-mismatch-induced waveform distortion. In addition, since the measure-
ment bandwidth is dictated by the pump pulse duration, it can be very high. In Fig. 29
(bottom left), an example waveform of a part of a 27

− 1 pseudo-random sequence
of data pulses at 640 Gb/s is shown, illustrating the high bandwidth capability. The
approach was made independent of the signal polarization state by inserting a short
section of polarization-maintaining fiber in front of the HNLF and aligning the pump
to 45 deg between the principal axes, resulting in temporally displaced sampling of
the two polarizations, which are detected jointly in the slow detector [187,188].

The principle above can readily be extended to the characterization of complex modu-
lation formats by replacing the detector in Fig. 29 (top) with a coherent receiver. An
example of the capture of a 10 Gbd QPSK signal including the detailed transitions is
also shown in the figure (bottom right). The approach can also be modified to a real-
time signal capture by using several parallel HNLF to capture the waveform with high
sampling rate to circumvent a possible electronic bandwidth/sampling rate bottleneck.
In Ref. [189], four HNLFs were used to equidistantly sample a 40 Gb/data in real time
with an aggregate rate of 100 Gsamples/s, which, of course, can be scaled further to
higher rates.

Figure 28

Experimental results of phase regeneration in a one-mode PSA. Reprinted with per-
mission from Macmillan Publishers Ltd.: Slavík et al., Nat. Photonics 4, 690–695
(2010) [79]. Copyright 2010.
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9. FUTURE OUTLOOK INCLUDING OTHER NONLINEAR PLATFORMS

While the fundamental properties of parametric amplifiers are well understood and
many experimental demonstrations have been made as discussed in this tutorial paper,
there are still several challenges remaining to be solved in order for them to be imple-
mented in a broad range of applications. The key merits of HNLFs as a nonlinear
platform for parametric amplification are its low dispersion and very low loss, of the
order of 0.5 dB/km, which makes it possible to reach a large gain with a few 100 m
of fiber. As discussed earlier, a nonlinear phase shift of γPL= 3 radians will result
in a small-signal PIA gain of about 20 dB assuming perfect phase matching and no
loss. However, HNLFs suffer from SBS and from SRS, which set practical limits to
the possible NF, as well as from PMD. Signal-polarization-independent operation
is desired in many applications and is in practice very difficult to achieve in a con-
ventional HLNFs, in particular for phase-sensitive operations. Here, both phase and
polarization need to be carefully controlled over a sufficiently broad spectral range.
One possibility would be to consider polarization-maintaining HNLFs, since the
impact of PMD will then be negligible. There are, however, other nonlinear platforms
that can serve as platforms for parametric amplifiers, including the PPLN waveguides
discussed earlier. An important aspect to first consider when studying these platforms
is the intended operating wavelength range for a given application keeping in mind
that, in principle, the parametric amplification approach described here can be trans-
lated to any other wavelength range given a suitable nonlinear platform. Other aspects
to consider include not only the target gain and bandwidth, but also the output signal
power, as some platform may suffer more than others from nonlinear two- or three-
photon absorption, which may prohibit high enough power operation. Fundamentally,
parametric amplifiers can be very power efficient with a suitable very high nonlinear-
ity platform, which would require less pump power for a given gain target. It should
be pointed out that the “black-box” NF includes the insertion loss into the amplifying
medium, which thus needs to be very small to take full advantage of the noise per-
formance of PSAs. Here, we will not review the many potential candidate platforms
that have been investigated, Si, SiN, AlGaAs, Hydex, holey microstrand fibers with
γ > 1000 (W km)−1 [190,191], but simply state that the main target criteria may
be summarized as nonlinear phase shift of at least 3 rad with small and anomalous

Figure 29

Top, all-optical sampling based pulsed-pump PIA operation. Bottom, examples
shown are a pulsed data sequence at 640 Gb/s (left) and a QPSK signal captured
by using a coherent received to detect the idler (right). Reprinted with permission
from [187,188]. Copyright 2007 Wiley-VCH Verlag GmbH & Co. and 2008 Optical
Society of America.
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dispersion in the waveguide to support the target operating bandwidth, and operation
at sufficiently high output signal power for a given application. Therefore, we believe
there are interesting prospects to develop compact parametric amplifiers that promise
large optical bandwidth, polarization-diversity, very low PMD, a NF approaching
0 dB, negligible SBS, and a high bandwidth PLL for excellent phase control (small
device latency).

10. CONCLUSION

In this tutorial, we have described the fundamental principles, theory, and applications
of optical parametric amplifiers. We have discussed their spectral gain characteris-
tics and the distinctions between phase-insensitive and phase-sensitive operation.
The implementations considered here mostly rely on the use of a nonlinear platform
using HNLFs in FOPAs, but there are certainly other promising candidates as well.
While most applications discussed related to optical communications, it is likely that
other application areas, such as spectroscopy or quantum photonics, can benefit from
parametric amplification and processing. A key aspect here is that the response time
of FOPAs is very fast, implying many possible functionalities aside from pure ampli-
fication, such as phase regeneration discussed here. This, on the other hand, places
stringent requirement on the pump laser in order not to suffer from performance
degradation. Perhaps the most intriguing aspects of PSAs is their quantum-limited NF
of 0 dB, i.e., amplification without adding excess noise (with 1 dB being experimen-
tally demonstrated) and the fact that, in principle, it can be scaled to any wavelength
for a large variety of potential applications.
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