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The parity of the number of elementary excitations present in a quantum system provides important
insights into its physical properties. Parity measurements are used, for example, to tomographically
reconstruct quantum states or to determine if the decay of an excitation has occurred, information that can
be used for quantum error correction in computation or communication protocols. Here, we demonstrate
a versatile parity detector for propagating microwaves, which distinguishes between radiation fields
containing an even or odd number n of photons, both in a single-shot measurement and without perturbing
the parity of the detected field. We showcase applications of the detector for direct Wigner tomography of
propagating microwaves and heralded generation of Schrödinger cat states. This parity detection scheme is
applicable over a broad frequency range and may prove useful, for example, for heralded or fault-tolerant
quantum communication protocols.
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I. INTRODUCTION

In quantum physics, the parity P of a wave function ψ
governs whether a system has an even or odd number of
excitations n. The parity affects, for example, the system’s
statistical properties such as the likelihood of transitions
occurring between distinct quantum states [1,2]. An ideal
measurement of the parity P of a system distinguishes
states with even n (0; 2; 4;…) from states with odd n
(1; 3; 5;…) while not providing any other information
about the precise value of n.
In superconducting circuits, for example, the parity of

the number of photons stored in a microwave cavity is
determined either by direct measurements [3], providing
immediate access to the value of P, or indirect measure-
ments [4], requiring the reconstruction of P from another
measured quantity. Direct measurements of the parity are
frequently used to reconstruct quantum states of radiation
fields stored in microwave cavities [3,5,6]. However, parity
measurements of propagating quantum radiation fields,
which can be used as the carriers of information in
quantum networks, have recently been realized in the
optical domain [7] with neutral-atom-based systems [8],

while experimental realizations in the microwave domain
are still lacking. Multiphoton quantum nondemolition
(QND) measurements of itinerant microwave fields are
an essential element for error detection [9] and error
correction in information-processing networks as they
provide a path towards detecting photon loss.
Parity measurements also play an important role in

protocols for error correction in quantum information
processing [10,11] and quantum communication applica-
tions [12]. Parity measurements have been demonstrated,
for example, with superconducting qubits for measure-
ment-based entanglement generation [13], for elements of
error correction [14–16], and entanglement stabilization
[17], an experiment which was also performed with
ions [18,19].

II. PARITY DETECTION SCHEME

The parity detector for propagating microwave fields
introduced here is based on a cavity QED system realized
in superconducting circuits. We characterize the detector
performance by measuring the parity of single-photon and
multiphoton states distributed sequentially over multiple
time bins as generated by a true single microwave photon
source. We illustrate the use of the detector to directly
evaluate the Wigner function of propagating fields of single
photons and their coherent superpositions with vacuum by
measuring their displaced parity. Finally, we highlight the
single-shot and QND nature of the parity detector by
heralding propagating, microwave-frequency Schrödinger
cat states, with a definite even or odd parity, from incident
coherent states with varying amplitude jαj.
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To measure the parity P of a propagating microwave field,
we engineer a controlled phase gate between a super-
conducting transmon qubit embedded in a cavity, acting
as an ancilla, and itinerant microwave photons [20–22]
acting as the control field. We realize this gate by tuning the
first (jei) to second (jfi) excited-state transition of the
transmon qubit, ωef=ð2πÞ ¼ 5.9 GHz, into resonance with
the fundamental mode of a cavity. The ground jgi to first
excited-state transition ωge is detuned by the anharmonicity
α=ð2πÞ ¼ ðωef − ωgeÞ=ð2πÞ ¼ −220 MHz, from the cavity
mode. Thus, a vacuum Rabi mode splitting, of size
2g1=ð2πÞ ¼ 76 MHz, occurs if and only if the transmon
is prepared in the excited state jei [21]. This ancilla-based
scheme allows for the quantum-nondemolition measurement
of the photon-number parity of the propagating field
reflected off the input of the detector, a feature that we
demonstrate explicitly here.
We arm the parity detector for a time Tw ¼ 1 μs, shorter

than both the lifetime T1 ¼ 4.5 μs and dephasing time
T⋆
2 ¼ 3.5 μs of the detector transmon qubit, by defining a

Ramsey sequence formed by two π=2 pulses separated by
Tw [see Fig. 1(a)]. Each photon impinging on the detector
input during the time Tw imparts a phase shift of ϕ ¼ π on
the superposition state ðjgi þ eiϕjeiÞ= ffiffiffi

2
p

of the transmon
qubit created by the first π=2 pulse [21]. As eiϕ is 2π
periodic, the Ramsey sequence encodes the parity of the
total number of scattered photons in the qubit population
after the second π=2 pulse, leaving the transmon in jei for
even hPi ¼ þ1 or in jgi for odd hPi ¼ −1. A schematic of
the measurement setup is shown and discussed in Fig. 1(b);
the sample and the wiring are presented in the Appendix A.

III. PARITY MEASUREMENTS

We examine the performance of this parity detector using
a well-characterized, spontaneous-emission, single-photon
source [23], operated on a separate chip. This source is
capable of creating phase-coherent superpositions of vac-
uum (j0i) and single-photon (j1i) states in a single time bin
with a pulse bandwidth κp=ð2πÞ ¼ 2 MHz, which is small
compared to the effective parity detector bandwidth, set by
the linewidth κeff=ð2πÞ ¼ 30 MHz of the detector cavity.
In this way, the phase imparted on the detector qubit by
each photon is well defined. Since the photon pulse length
1=κp is short compared to Tw, it is fully detected by the
Ramsey sequence during which the detector is armed.
We operate the single-photon source to emit sequences

of N ¼ 0; 1;…; 6 pulses, each containing a single-photon
Fock state j1i [23,24] traveling towards the detector, and
we record the average parity hPi of the pulse train as
indicated by our detector. We take the finite phase coher-
ence time T⋆

2 of the qubit and its readout fidelity into
account to linearly map the measured qubit excited pop-
ulation Pe to a parity value hPi using reference traces

consisting of Ramsey sequences with the same Tw (see
Appendix B).
We observe the measured parity hPi (blue bars) changing

sign, as expected, for each added single-photon pulse,
establishing the detector’s capability to discriminate even
(hPi ¼ þ1) from odd (hPi ¼ −1) photon number parity
[see Fig. 1(c), with the ideal result indicated by dark gray
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FIG. 1. Experimental setup and parity measurements. (a) Parity
detection pulse sequence: Ramsey pulses applied to the detector
qubit (red), the pulse train of N spontaneously emitted photons
(blue), the externally applied coherent mode-matched displacer
field (orange), and the readout pulse (purple). (b) Radiation
coming from a source, reflected off of a cavity (green) coupled to
a transmon (red) acting as the detector. The source is either a
single-photon emitter or a pulsed microwave generator with
amplitude and phase control. Dispersive readout of the transmon,
assisted by an additional cavity (purple), yields the photon parity
(purple box). Fields inside the detector cavity can be displaced
in situ by applying an additional coherent tone (orange). Standard
heterodyne detection of the (I; Q) quadratures of the reflected
light field (green box) is performed with a local oscillator (LO).
(c) Measured parity hPi (blue bars, on positive and negative log
scales) for a train of N single-photon pulses. We show the ideal
value of hPi (dark gray wireframes) and hPi considering finite
transmission efficiency η ¼ 78% between the source and detector
(red wireframes and dashed lines). Error bars indicate the
statistical standard deviation of �4% for the parity.
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wireframes]. The contrast in the measured hPi, plotted
on a logarithmic scale, reduces in good agreement with
ð1 − 2ηÞN (dashed red line) due to the finite transmission
efficiency η ¼ 78% between the source and the detector
(see Appendix B). We note that these losses are external to
the parity detector and independent of the detection event.

IV. WIGNER TOMOGRAPHY

Measuring the expectation value of the parity operator P
of a radiation field described by a wave function jψi, or a
corresponding density matrix ρ ¼ jψihψ j, displaced by an
operator Dα ¼ expðα†a − αa†Þ directly yields the value of
the Wigner function

π

2
WðαÞ ¼ hψ jD†

αPDαjψi ¼ TrðPDαρD
†
αÞ ð1Þ

at the point α in phase space [4,25,26]. Here, a is the photon
annihilation operator. With our parity detector, we directly
measureWðαÞ of a single mode, realizing the displacement
operation of the field to be detected by applying a mode-
matched coherent field to a second weakly coupled input of
the detector cavity-qubit system [Figs. 1(a) and 1(b)].
We illustrate the method on the vacuum j0i and single-

photon Fock states j1i as well as their phase-coherent
superpositions ðj0i � j1iÞ= ffiffiffi

2
p

created by our single-
photon source. All measurements of ðπ=2ÞWðαÞ were
evaluated for a 41 × 41-point grid of the in-phase I and
out-of-phase Q quadratures of the mode-matched displacer
pulse defining the amplitude α ¼ I þ iQ. We find excellent
agreement between the measured Wigner functions and
the expected ones for the created states (Fig. 2). We also
observe characteristic negative regions, a feature of quan-
tum signals, in the measured Wigner functions. In particu-
lar, we record the pure single-photon state j1i as a radially
symmetric Wigner function with value ðπ=2ÞWð0; 0Þ ¼
−0.55 at the origin of the phase space. For j0� 1i= ffiffiffi

2
p

,
we note that the path difference between the source and
displacer lines causes a phase rotation of approximately

−25° relative to the I axis, which we chose not to correct
for in the data analysis.
We reconstruct the most likely density matrix for each

of these states, imposing physicality with positive semi-
definite programming as well as taking the experimentally
determined finite mode-matching fidelity Fmm ¼ 84% and
transmission efficiency η ¼ 78% into account. We find
an average fidelity of 95% with respect to the ideal states
(see Appendix C).
We note that with our detection method, we are also able

to determine the joint parity of radiation fields occupying
distinct time bins within the same detection time window
Tw and thus perform joint Wigner tomography on those
fields. Since our current photon source did not allow us to
create states with entanglement shared across different time
bins, we defer this discussion to later work.

V. HERALDING OF CAT STATES
BY PARITY DETECTION

Finally, we illustrate the quantum-nondemolition and
single-shot character of this well-characterized parity
detection scheme by projecting an incident itinerant coher-
ent state jαi, having a Poisson-distributed photon number,
into an eigenstate of the parity operator P by parity
detection. We experimentally demonstrate that this process
creates heralded, propagating, even- or odd-parity cat states
when conditioned on the single-shot parity measurement
outcome.
We characterize the quantum properties of the reflected

field after its interaction with the parity detector by
measuring the statistical moments ha†nami [27–29] up to
order n, m ≤ 7 (see Appendix D). In principle, we could
have used a second parity detector for that purpose. By
comparing the noise in the detection chain with near-
quantum-limited linear amplification to the signal level
of a single photon, we extract an overall quantum efficiency
of the phase-preserving heterodyne detection of ηhet ¼
ð1þ N0Þ−1 ¼ 23%, with N0 ¼ 3.3 photons of added
noise [28].

FIG. 2. Wigner tomography by displaced parity measurement. Wigner tomography ðπ=2ÞWðI þ iQÞ of the vacuum state j0i, the
single-photon Fock state j1i, and their coherent superposition j0þ 1i= ffiffiffi

2
p

and j0 − 1i= ffiffiffi
2

p
. Insets show the expected results for the ideal

states, taking inefficiencies into account (see text).
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In each single measurement of the quadratures of the
field reflected from the detector, we also register the
weight-integrated quadrature of the single-shot readout
[30] of the transmon qubit embedded in the cavity of
the parity detector in 120 ns with a fidelity of Fro ¼ 94%.
The single-shot correlations between the postdetection field
and detector state allow us to reconstruct the most likely
state jsi of the full system after the interaction of the input
field with the detector. From the data, we evaluate the
density matrices ρ of the radiation field projected onto the
even (odd) detector parity subspace corresponding to
the detector qubit states jei (jgi). Performing this projec-
tion, we correct for the finite qubit readout infidelity
of 1 − Fro ¼ 6% [29]. In the analysis, we truncate the
Hilbert space of the radiation field at n ¼ 5. For the input
amplitude α ¼ 1.06, for example, we observe that the þ1
(−1) parity state of the detector heralds the radiation field in
an even (odd) cat state, containing entries predominantly in
the even (odd) rows and columns of the corresponding
density matrices [Figs. 3(a) and 3(b)]. This is the expected

consequence of the cat states jcate;oi ¼ ðjαi � j− αiÞ=N ð�Þ
α

being eigenstates of the parity operator P with eigenvalue

�1. Note that N ð�Þ
α ¼ ½2ð1� e−2jαj2Þ�1=2 is a normalizing

factor.
The fidelity with respect to the ideal even (odd) post-

detection cat states for this value of α (wireframes)
is FeðoÞ ¼ 0.88ð0.93Þ, when correcting for the finite
readout infidelity of 6%. Without correcting for the readout

infidelity, the fidelity is F̃eðoÞ ¼ 0.86ð0.91Þ. Here, FeðoÞ is
limited by the coherence of the qubit, as well as by its
steady-state thermal population Pth

e ¼ 4%. The latter could
be reduced substantially by performing a qubit reset [31].
The Wigner functions after parity detection, WðαÞ,

which we calculate from the most likely density matrices,
show the expected features: two positive regions centered at
�α along the I axis (red line) and fringes along the Q axis
(blue line), with values of opposite sign at the origin
[Figs. 3(c) and 3(d)]. The reconstructed density matrices
show a high contrast between the parity of the even and odd
cat states, which in other works is referred to as the fringe
visibility [7], which we evaluate to V ¼ Peven − Podd ¼ 1.7
(1.6 without correction for the readout error) for our data,
close to the ideal value of 2. The high-fidelity projection of
the detected state into an eigenstate of the parity operator
demonstrates the quantum-nondemolition nature of the
presented parity detection scheme. Similar measurement-
induced collapse of coherent states into cat states has been
reported recently with propagating optical fields at signifi-
cantly lower parity contrast [7] and for stationary micro-
wave fields trapped in cavities [32].
We further explore the nonclassical properties of the

generated cat states for mean photon numbers of up to
n ¼ 2 by extracting the normalized zero-time second-order
correlation function gð2Þð0Þ ¼ ha†2a2i=ha†ai2. Note that
gð2Þð0Þ is directly computed from the measured moments,
in contrast to the data plotted in Fig. 3 for which maximum
likelihood estimation was used. We present gð2Þð0Þ for four
characteristic cases in Fig. 4: not operating the detector
(blue), operating the detector in single-shot mode to create
even (red) and odd cat states (black), and not distinguishing
the parity detector states and thus creating a statistical
mixture of cat states (orange symbols). We observe a

(d)
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FIG. 3. Propagating microwave cat states. (a,b) Real part of
density matrices ReðρijÞ for (a) the even cat state and (b) the odd
cat state with amplitude α ¼ 1.06. Ideal cat states are shown as
wireframes. (c,d) Wigner functions reconstructed from the
measured moments of the (c) even and (d) odd cat state for
α ¼ 1.06. Cuts along the I axis [ðπ=2ÞWðI; Q ¼ 0Þ, red solid
line] and Q axis [ðπ=2ÞWðI ¼ 0; QÞ, blue solid line] are shown.
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FIG. 4. Power dependence of photon correlations. Normalized
zero-time photon correlation gð2Þð0Þ on a log scale vs the average
number of photons n in the coherent tone applied to the input of
the parity detector, for the coherent state jαi (blue dots), a
statistical mixture of jαi and j−αi (yellow dots), the even cat
state (red triangles), and the odd cat state (black diamonds).
Calculated values for the ideal states are shown as solid and
dashed lines. Error bars indicate the statistical standard deviation
of the data.
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continuous transition: In the low power regime, the odd cat
state is antibunched, gð2Þð0Þ ∼ 0.2, as it is composed
predominantly of the single-photon Fock state [33], and
the even cat state is strongly bunched, gð2Þð0Þ ∼ 8, as it
consists mostly of vacuum and two-photon components.
Both the coherent state and the mixture obey Poissonian
statistics with gð2Þð0Þ ∼ 1. For jαj2 > 1, the measured
gð2Þð0Þ → 1 for all states. This convergence with increasing
power towards the value of the statistical mixture is expected
for all moments of the cat states. Distinguishing cat states
from classically mixed states thus becomes more difficult
with increasing amplitude using the heterodyne detection
technique. While this limits the maximum jαj characterized
in this set of experiments, we expect our parity detector to
work up to larger photon numbers. Experimentally, we have
performed Wigner tomography of coherent states with up to
jαj2 ¼ 10 photons in the cavity, showing no degradation
of performance. This process is consistent with a parity
detection process, though not sufficient to prove that the
measurement operator is the expected one. The photon
number at which nonlinear effects become appreciable in
the detection process remains to be determined. However,
since keeping jαj2 < 8 ensures that the average population in
the cavity is less than 1 at all times, we expect to be able to
generate a cat state of at least this order of magnitude.

VI. CONCLUSION

We realized a parity detector for multiphoton itinerant
microwave fields in the quantum regime. We illustrated the
use of the parity detector for direct Wigner tomography
of propagating quantum microwave radiation fields at the
single-photon level. Single-shot projection onto parity
eigenstates allowed us to demonstrate the nondemolition
nature of the detection by generating heralded microwave-
frequency cat states from coherent input fields.
QND parity detection of itinerant microwaves could

facilitate connecting nodes of a quantum network faithfully
in the presence of finite loss in the channel. Encoding
quantum information in states with a given parity and
performing joint parity measurements of time-bin encoded
fields efficiently in the single-shot case allow the parity
detector to signal photon loss, i.e., taking the radiation out
of the parity subspace, without providing information on
the basis of encoding. Using the detector presented here
may allow for repeated parity measurements and stabiliza-
tion of a given parity subspace [3,15,17,34].
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APPENDIX A: SAMPLE FABRICATION AND
EXPERIMENTAL SETUP

The sample, shown in Fig. 5, is fabricated on a
4.3 × 7-mm silicon chip. All elements except for the
Josephson junctions are patterned in a 150-nm-thick
sputtered niobium film using photolithography and reactive
ion etching. The Josephson junctions are fabricated in a
separate step using electron-beam lithography and shadow
evaporation of aluminum in an electron-beam evaporator.
As sketched in Fig. 1(b) and pictured in Fig. 5, the sample
consists of a transmon qubit (red), simultaneously coupled
to one detection cavity (green) and a readout cavity
(purple). For both cases, we have added a Purcell filter
to protect the qubit from decay by emission into trans-
mission lines. Aweakly coupled input port (orange) allows
for displacing the field in the detection cavity, a feature
used for the presented Wigner tomograms. Both the parity
detection device described in this paper and the single-
photon source embedded in the on-chip switch of Ref. [23]
are mounted in the base temperature stage (20 mK) of a
dilution refrigerator, as shown in the wiring diagram in
Fig. 6. The switch is operated such that the radiation from
the single-photon source is routed to the detector for
the parity measurement of sequences of single photons
[Fig. 1(c)] and for the Wigner tomograms of single-photon
states (Fig. 2). For the cat-state heralding via parity
detection (Figs. 3 and 4), the switch routes the classical
signals of the line labeled “Coherent in” to the detector.
Both output lines are operated with a Josephson parametric
amplifier as the first amplifier of the chain.

FIG. 5. False color micrograph of the sample. A transmon qubit
(red) is coupled to the detection cavity (green) and its Purcell filter
(cyan), as well as to a readout cavity (purple) and a corresponding
Purcell filter (brown). A weakly coupled input port (orange)
allows for displacing the field in the detection cavity. Silicon is
shown in dark gray and niobium in light gray.
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APPENDIX B: POPULATION TO
PARITY MAPPING

To achieve parity measurements of a signal sent towards
the parity detection chip but avoid sensitivity to other
sources of qubit dephasing, such as photon shot noise, we
assume that the source of qubit dephasing, leading to the
observed T⋆

2 ¼ 3.5 μs, is uncorrelated with the signal that
we perform tomography on, and we measure its parity in
the following way. For each set of parity measurement
presented, we record two reference traces, which consist of
a Ramsey sequence with pulse separation Tw but no signal
or displacement pulse applied. The reference for even or
odd parity consists of pulses ðπ=2;�π=2Þ, respectively,
applied to the transmon. We record average qubit jei state
populations Pe�, in these reference traces, which differ
from the ideal values of 1 and 0 by an amount PT�

2
¼

0.5½1 − expð−Tw=T⋆
2Þ� ≈ 12.5% as governed by the qubit

coherence. The average qubit excited population measured

at a given displacement PeðαÞ is in the range ðPe;þ; Pe;−Þ,
which we map linearly into the plotted parity value:

hPi ¼ PeðαÞ − ðPe;þ þ Pe;−Þ=2
ðPe;þ − Pe;−Þ=2

∈ ð−1;þ1Þ; ðB1Þ

an assumption that corrects for state preparation and
measurement (SPAM) errors, and dephasing during the
time Tw, under the reasonable assumption that those are
independent of the signal and displacer pulses.
In a single-shot measurement, we find the correct

phase in the Ramsey sequence with probability PRamsey ¼
1 − PT⋆

2
¼ 0.875, and we assign the correct state in the

readout with probability Pro ¼ ð1þ FroÞ=2 ¼ 0.97. The
correct average parity assignment is PSSparity¼ProPRamseyþ
ð1−ProÞð1−PRamseyÞ≈85% for the parameters of this
experiment. In the limit of low errors, that is, Tw ≪ T⋆

2 ,
the error in the Ramsey sequence PT�

2
scales as 0.5Tw=T⋆

2 ,
showing that the average parity assignment error is reduced
linearly with increasing qubit lifetime.
We measured the finite transmission efficiency η ¼ 78%

between the source and the detection chips independently
by using the nonlinear response of the single-photon source
and the detector as calibrated power sources [21]. An
emitted sequence of N single photons, where each has an
independent transmission efficiency η, reaches the detector
with k photons with a probability given by the binomial
distribution Bðk;N; ηÞ ¼ ðNkÞηkð1 − ηÞN−k. The expected
parity, plotted in dashed red in Fig. 1(c), is given by
hPiexp ¼

P
N
k¼0ð−1ÞkBðk;N; ηÞ ¼ ð1 − 2ηÞN .

APPENDIX C: STATE RECONSTRUCTION
FROM WIGNER TOMOGRAMS

We use a beam-splitter model [35] to account for finite
transmission efficiency η ¼ 78% between the source and
the detection chips. This model shows the losses by a
perfect beam splitter with transmission efficiency η, mixing
the signal with a vacuum mode. The effect on the measured
Wigner function is similar to that on the Q function in
heterodyne detection [28]: The measured data are a con-
volution of the ideal Wigner function with a Gaussian
kernel whose radius depends on the transmission efficiency.
In mathematical terms, we measure W0ðαÞ given by

W0ðαÞ ¼ 1

πð1 − ηÞ
Z

exp

�
−
2ηjα0 − α=ηj2

1 − η

�
Wðα0Þd2α0:

ðC1Þ

We account for the finite overlap of the displacement
pulse with the single-photon waveform in the following
way. We determine the waveform of the pulses emitted by
our single-photon source by measuring the average ampli-
tude of 105 time traces for which we prepared the photon
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same sample [23]. The dc cabling for applying external magnetic
fields with one coil each on the switch sample holder and on the
detector is not shown.
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pulse j0þ 1i. The strong spontaneous decay to a trans-
mission line prepares an exponential waveform with decay
constant Tp ≈ 80 ns [23]. We approximate the displace-
ment pulse shape to the source waveform. A finite mode
matching efficiency, given by the overlap Fmm ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − ϵ2

p
of the normalized amplitudes of the signal and the displacer
pulses, leads to an effective displacement of the real signal
by

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − ϵ2

p
α and the displacement of an additional mode

by ϵα. We now assume that this additional mode is in its
vacuum state and uncorrelated with the signal. Then,
according to Eq. (1), the measured value of the Wigner
function W00ðαÞ ¼ exp½−ϵ2ðjαj2=2σ2vacÞ�W0ð

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − ϵ2

p
αÞ is

separable into a product of the Wigner function of vacuum
displaced by ϵα and the Wigner function of the signal
displaced by

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − ϵ2

p
α, with σ2vac ¼ 0.5 photons. We fit the

value of ϵ on the measurement data taken from the single-
photon Fock state j1i (see Fig. 2) and obtain a mode-
matching fidelity of Fmm ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − ϵ2

p
¼ 84%. This single

value for the efficiency is then used to reconstruct all most
likely density matrices. Two factors dominate the reduction
of Fmm from its ideal value of unity. First, our data
acquisition chain records data with a sampling interval
of 10 ns, resulting in eight data points acquired for the
photon pulse shape of duration Tp, limiting our ability to
determine the mode function with higher accuracy. Second,
the input bandwidth limited by the finite coupling strength
of the displacer line to the cavity, designed to be
κin ¼ 2π × 0.5 MHz, which is a one-fourth of the band-
width of the photons, also limits the achievable mode-
matching bandwidth. From simulations, we expect these
two factors to reduce the mode-matching fidelity by a
similar amount. Predistortion of the pulses generated by the
Arbitrary Waveform Generator (AWG)—similar to that
used for flux pulses [36]—faster acquisition rate for the
measurement of the mode function, as well as parametri-
zation and experimental optimization of the temporal shape
of the displacement field may improve the mode-matching
efficiency to approach unity in future experiments.
For all single-mode Wigner tomography data sets taken,

we recover the most likely density matrix of the itinerant
photonic state ρML by minimizing the norm of the differ-
ence between the corresponding Wigner function
W00ðαjρMLÞ and the acquired data, enforcing a semipos-
itive-definite density matrix with trace 1, and truncating the
Hilbert space to a maximum of five photons.
As we sweep the preparation angle θ of the pulse on

the source qubit, we expect to emit the state jγi ¼
cosðθ=2Þj0i þ sinðθ=2Þj1i. We plot the single-photon pop-
ulation and the real part of the coherence in Fig. 7, together
with the calculated values of Reðρ01Þ and Reðρ11Þ for the
perfect state jγi. Here, we correct for the optical path length
by applying a global phase correction minimizing the
imaginary part of the coherence Imðρ01Þ, which has
magnitudes below 0.1 in all entries (not shown).

The fidelity of the most likely density matrix ρML with
respect to the ideal density matrix ργ ¼ jγihγj is measured
by taking the trace F ¼ Trð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ργ
p

ρML
ffiffiffiffiffi
ργ

pp Þ2 (see Table I).
The degradation of the fidelity with increasing amplitude
of the Gaussian excitation pulse is due to its rather long
180-ns duration in comparison to the characteristic
emission time Tp ¼ 80 ns of the source. This pulse length
leads to a small probability of two-photon emission [37].
When reconstructing the state after a θ ¼ 2π pulse, which
would ideally create the vacuum state, we find 6% two-
photon population and 4% single-photon population.
Two-photon emission is the most likely origin of the
differences between data and theory for large preparation
angles (see Fig. 7).

APPENDIX D: MOMENTS OF INPUT AND
HERALDED CAT STATES

We measure integrated and weighted I, Q quadratures of
the reflected radiation using a parametric amplifier operat-
ing close to the quantum limit, with a phase-preserving

FIG. 7. Selected density matrix elements from Wigner tomog-
raphy. The real parts of the single-photon population Reðρ11Þ
(blue) and coherence Reðρ01Þ (yellow) are plotted versus prepa-
ration angle θ of the source. The most likely density matrices ρ
are reconstructed from Wigner tomography, taking losses in
transmission and finite mode-matching efficiency into account
(see text). Solid lines represent the calculated values for the ideal
states.

TABLE I. Fidelities Fθ for the prepared state jγi ¼
cosðθ=2Þj0i þ sinðθ=2Þj1i (in bold, fidelities of data presented
in Fig. 2).

θ 0 π=4 π=2 3π=4 π 5π=4 3π=2 7π=4 2π

Fθ 1 0.99 0.98 0.97 0.95 0.88 0.85 0.88 0.89
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gain of 18 dB at the cavity frequency, yielding an overall
heterodyne chain detection efficiency of ηhet¼ð1þN0Þ−1¼
23%, with N0 ¼ 3.3 photons of added noise [28]. Together
with the integrated and weighted q quadrature of qubit
readout, those results form a three-dimensional histogram
fI; Q; qg from which we extract the correlations between
the qubit and radiation field [29]. Projected on qubit readout
indicating the excited (ground) state, we evaluate the
statistical moments ha†nami of the radiation field. By
applying a global phase rotation, we maximize the real part
of the second-order moments. The relation Reha†nami ¼
Reha†mani then holds. We display the resulting measured
real part of the moments up to order nþm ¼ 4, with n ≤ m,
averaged about 30 million times per state in Fig. 8.
The imaginary parts are ideally vanishing. We observe
values below 0.1 for most moments, except for the third-
order ones, which can reach up to 0.4. This deviation is
reproduced in simulations by taking into account a small
(below 5%) deviation from the ideal π phase shift per
photon, which is consistent with the ratio of the pulse
bandwidth to the cavity linewidth κp=κeff ≈ 7%, defining
our precision in the acquired conditional phase over the
pulse spectrum.
We observe that for the initial coherent state jαi, all

moments are of order 1 (their expectation scales as jαjnþm).
Once postselected upon a given parity result, the odd order
moments are heavily suppressed. This case is expected as
an odd number of photon annihilation or creation operators
changes parity subspace. We note that the differences
between the odd and even cat states are significantly larger
than the statistical uncertainty but relatively small as
compared to the absolute value of the moments. The
characteristic feature of an even (odd) cat state lies in
the moments with (n;m) both even being larger (smaller)
than those with (n;m) both odd.
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