
Coordinated management of DVFS and cache partitioning under QoS
constraints to save energy in multi-core systems

Downloaded from: https://research.chalmers.se, 2020-07-11 06:44 UTC

Citation for the original published paper (version of record):
Nejat, M., Manivannan, M., Pericas, M. et al (2020)
Coordinated management of DVFS and cache partitioning under QoS constraints to save energy in
multi-core systems
Journal of Parallel and Distributed Computing, 144: 246-259
http://dx.doi.org/10.1016/j.jpdc.2020.05.006

N.B. When citing this work, cite the original published paper.

research.chalmers.se offers the possibility of retrieving research publications produced at Chalmers University of Technology.
It covers all kind of research output: articles, dissertations, conference papers, reports etc. since 2004.
research.chalmers.se is administrated and maintained by Chalmers Library

(article starts on next page)

Journal of Parallel and Distributed Computing 144 (2020) 246–259

Contents lists available at ScienceDirect

J. Parallel Distrib. Comput.

journal homepage: www.elsevier.com/locate/jpdc

Coordinatedmanagement of DVFS and cache partitioning under QoS
constraints to save energy inmulti-core systems
Mehrzad Nejat ∗, Madhavan Manivannan, Miquel Pericàs, Per Stenström
Department of Computer Science & Engineering, Chalmers University of Technology, Gothenburg, Sweden

a r t i c l e i n f o

Article history:
Received 7 November 2019
Received in revised form 18 April 2020
Accepted 17 May 2020
Available online 5 June 2020

Keywords:
Energy efficiency
Quality of service (QoS)
Dynamic voltage–frequency scaling (DVFS)
Cache partitioning
Multi-core resource management

a b s t r a c t

Reducing the energy expended to carry out a computational task is important. In this work, we
explore the prospects of meeting Quality-of-Service requirements of tasks on a multi-core system
while adjusting resources to expend a minimum of energy. This paper considers, for the first time,
a QoS-driven coordinated resource management algorithm (RMA) that dynamically adjusts the size
of the per-core last-level cache partitions and the per-core voltage–frequency settings to save energy
while respecting QoS requirements of every application in multi-programmed workloads run on multi-
core systems. It does so by doing configuration-space exploration across the spectrum of LLC partition
sizes and Dynamic Voltage–Frequency Scaling (DVFS) settings at runtime at negligible overhead. We
show that the energy of 4-core and 8-core systems can be reduced by up to 18% and 14%, respectively,
compared to a baseline with even distribution of cache resources and a fixed mid-range core voltage–
frequency setting. The energy savings can potentially reach 29% if the QoS targets are relaxed to 40%
longer execution time.

© 2020 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Resource management, at the micro-architectural level, aims
at maximizing multi-core system performance or energy effi-
ciency. However, if applications are not associated with any
Quality-of-Service (QoS) targets, in terms of performance con-
straints, the energy expenditure can be excessive. In contrast, if
applications have clearly defined QoS targets, resources can be
throttled down to deliver enough performance with a greatly
reduced energy cost.

Core Voltage–Frequency (VF) and the per-core share of the
Last-Level Cache (LLC) are two popular resources to control both
performance and energy-efficiency of applications running on a
multi-core system. The reason is that the former is most effective
for compute-intensive application phases whereas the latter can
be more valuable for memory-intensive phases.

We envision a resource management system where all appli-
cations in a multi-programmed workload on a multicore system
have QoS constraints that can be met by a baseline allocation of
resources; e.g., partitioning of LLC resources evenly across cores at
a given VF setting. The objective of our envisioned resource man-
ager is to maximize energy efficiency by dynamically distributing
resources at run-time across cores.

∗ Corresponding author.
E-mail addresses: nejatm@chalmers.se (M. Nejat), madhavan@chalmers.se

(M. Manivannan), miquelp@chalmers.se (M. Pericàs),
per.stenstrom@chalmers.se (P. Stenström).

The literature describes several Dynamic Voltage–Frequency
Scaling (DVFS) and LLC partitioning resource-management
schemes. Many of these schemes, such as [1,7,14,29,37,38], do not
consider QoS constraints. Other approaches focus on optimizing
the system when only a single application has QoS constraints
[5,6,12,28,33] and do not consider QoS targets of multiple ap-
plications on a multi-core system. A common scenario for QoS-
constrained workloads is to share the system between one
latency critical job and other best-effort batch jobs [4,9,13,16,
18,19,21–23,30]. In this scenario, the optimization is performed
on the best-effort jobs by utilizing the system resources only
when the latency-critical job is not using them. In contrast, in this
work, we consider the more general and challenging scenario in
which all the applications in a workload have strict performance
constraints. Instead of maximizing the aggregate performance or
system utilization, our target is to minimize the system energy
without sacrificing the performance of any application. The solu-
tion to this problem also works for a less strict scenario where a
bounded reduction in performance can be tolerated on any subset
of the applications. Hence, it is a general approach.

There are only a few prior works that impose performance
constraints on all the applications in a multi-programmed work-
load [8,34]. However, in these works, the core DVFS controller tar-
gets performance constraints, while the LLC controller attempts
to minimize the overall number of cache misses independently
from the DVFS decisions. Since minimizing the global LLC miss
rate can be in conflict with meeting individual performance tar-
gets, these approaches can potentially lead to QoS violations

https://doi.org/10.1016/j.jpdc.2020.05.006
0743-7315/© 2020 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-
nc-nd/4.0/).

https://doi.org/10.1016/j.jpdc.2020.05.006
http://www.elsevier.com/locate/jpdc
http://www.elsevier.com/locate/jpdc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jpdc.2020.05.006&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:nejatm@chalmers.se
mailto:madhavan@chalmers.se
mailto:miquelp@chalmers.se
mailto:per.stenstrom@chalmers.se
https://doi.org/10.1016/j.jpdc.2020.05.006
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

M. Nejat, M. Manivannan, M. Pericàs et al. / Journal of Parallel and Distributed Computing 144 (2020) 246–259 247

and are thus not acceptable solutions. Furthermore, they cannot
optimize system energy because the partitioning controller does
not take the DVFS effect into account. For example, a smaller
allocation of cache to an application can result in an increase in
the core voltage–frequency which has a quadratic effect on core
energy consumption.

This paper proposes, for the first time, an integrated resource
manager that controls LLC partitioning and core DVFS of all the
applications sharing multicore system resources in a coordinated
fashion. The goal is to minimize system energy while meeting
performance targets of every application. To this end, the Re-
source Management Algorithm (RMA) performs a configuration-
space exploration, at regular program intervals, to identify the
best allocation of resources. The challenge is to perform this
search in a complex multi-dimensional configuration space with
negligible run-time overhead and in a scalable fashion. We pro-
pose a multi-layer pruning heuristic to perform this operation in
polynomial time. The proposed method does not require any pro-
filing, training, or prior knowledge about the run-time behavior
of applications.

Our experimental results show that the proposed scheme us-
ing combined DVFS and LLC partitioning is more effective in
saving energy than using isolated DVFS or cache partitioning. The
energy of 4-core and 8-core systems is reduced by up to 18%
and 14%, respectively, when the QoS target is set to the baseline
execution for all applications. Furthermore, the energy savings
can potentially improve up to 29% if the QoS targets are relaxed
to 40% longer execution time.

This work makes the following contributions:

1. An online resource management scheme that controls per-
core DVFS settings and LLC partitioning in a coordinated
fashion to maximize system-level energy-efficiency while
respecting the QoS constraints for all applications in a
multiprogrammed workload.

2. A heuristic algorithm to find an optimal resource setting in
polynomial time that allows a large number of configura-
tions to be assessed at low overhead.

3. Evaluation of the resource management scheme, via a
novel simulation framework, that compares its efficiency
with different resource management algorithms on full
executions of benchmark applications in a multi-core sys-
tem. It provides insights on how the proposed scheme can
achieve significant energy savings.

This paper is an extended version of Nejat et al. [25]. The
original paper did not address some important research questions
regarding the efficiency of the proposed scheme. A first open
issue is statistics about how well the resource manager tracks
the QoS targets and how well it predicts performance and energy
consumption. To this end, our analysis shows that QoS is tracked
closely within a small margin and the probability of QoS violation
due to modeling error is only 4.3%.

A second open issue is a deeper analysis into the trade-off
between performance-target relaxation and saved energy. This
is of value to cloud services that sell compute cycles such as
Amazon, to trade-off energy cost and QoS for each user in a
predictable manner. Our analysis shows that while a limited
reduction in the performance target (around 40% longer execu-
tion time) significantly improves energy savings, energy savings
quickly saturate after this point. We also bring important insights
into what applications benefit more from performance relaxation
than others. To this end, we find that with an RMA that controls
only DVFS it is usually most effective to select memory-intensive
applications. On other hand, if only cache partitioning is applied,
selecting compute-intensive applications as victims in several
workloads leads to the same result as selecting all applications.

Interestingly, with the proposed RMA that controls DVFS and
cache partitioning in a coordinated fashion, significant gains can
be achieved regardless of application characteristics.

The rest of the paper is organized as follows. Section 2 pro-
vides the motivation for this work. The proposed scheme is
described in Section 3. The simulation methodology and exper-
imental results are presented and discussed in Sections 4 and
5, respectively. Then, Section 6 puts this work in perspective of
related work. Finally, we conclude in Section 7.

2. Motivation

This section first presents the baseline architecture framework
and the basic assumptions. It then provides motivational data
for the potential of saving energy when both LLC and DVFS are
managed in a coordinated fashion.

We consider a multi-core system where each core runs a
single-threaded program. In the baseline system, the LLC capacity
is evenly partitioned among the cores and all the cores run at
some fixed base frequency. The QoS target for each application
is expressed in terms of the instruction per second (IPS) rate
on the baseline resource setting in each execution interval. This
is described in detail in Section 3.2. A cloud provider could, for
example, sell computing cycles cheaper if, say, the QoS target can
be relaxed to 40% longer execution time compared to the base-
line resource-setting. This form of QoS requirement can support
mixed workloads with different performance targets. The RMA
attempts to dynamically select a resource setting, in terms of a
per-core LLC partition size and VF for each individual application,
that minimizes the system energy and yet meet the QoS targets
expressed as a performance constraint.

The hypothesis is that the energy savings of an isolated DVFS
or LLC partitioning strategy are limited, and that with a global and
coordinated control of both resources it becomes possible to find
a more efficient set of resource settings. To investigate this, we
conduct an experiment on different 4-core workload mixes. The
details of the simulation methodology are provided in Section 4.
An application belongs to one of four categories:

A—Memory Intensive & Cache Sensitive
B—Memory Intensive & Cache Insensitive
C—Compute Intensive & Cache Sensitive
D—Compute Intensive & Cache Insensitive

An application is Memory Intensive if it has an MPKI with
the baseline LLC partition size that exceeds a preset threshold
(MPKI > 5). Otherwise, it is counted as Compute Intensive. In
addition, an application is Cache Sensitive if the variation in MPKI
when changing from a smaller partition size (50% of the baseline’s
partition size) to a larger one (150% of baseline’s partition size)
exceeds another preset threshold (20% change in MPKI), relative
to the per-core LLC size of the baseline system; provided that
the baseline MPKI is not too small (MPKI < 0.2). Otherwise, it
is Cache Insensitive. More details about application categories are
presented in Section 4.3.

Three RMAs are considered in this experiment: (1) DVFS only,
(2) LLC partitioning only, and (3) Combined, i.e., control of DVFS
and LLC partitioning in a coordinated fashion — the main con-
tribution of this work. All three RMAs use an ideal model of
performance and energy predictions of the configuration space
to select a resource setting that minimizes energy while meeting
the QoS targets.

Fig. 1 shows the energy saving results compared to the base-
line with a strict QoS target (top) and a target relaxed to 40%
longer execution time (bottom). For each mix of application cat-
egories, 4-core workloads are randomly generated according to
a methodology described in Section 4.3. Here, we present the

248 M. Nejat, M. Manivannan, M. Pericàs et al. / Journal of Parallel and Distributed Computing 144 (2020) 246–259

Fig. 1. Energy-saving results with strict (top) and relaxed to 40% longer execution time (bottom) QoS targets using different RMAs with perfect performance and
energy prediction models neglecting the overheads.

results for the first workload in each mix. The detailed evaluation
of the complete 4-core and 8-core workload set is presented in
Section 5.

The top figure shows that an energy saving of more than 19%
(on average 8.9%) is possible without a performance degrada-
tion on any of the cores. Using cache partitioning alone offers
only an energy saving of 2.5%, on average. Of course, the DVFS
controller cannot save energy without lowering the performance.
The combined scheme can cancel the performance degradation
on the core with a smaller cache share by increasing its VF while
the performance boost on the core that receives a larger cache
allows a reduction of VF on that core to save energy. Thus, a
more efficient resource setting that reduces the sum of core and
memory access energies with the same level of performance can
be found.

When all the applications are cache insensitive (B or D), none
of them benefits from a larger cache and there is limited op-
portunity to save energy. The bottom diagram of Fig. 1 shows
that a relaxation of the QoS targets, corresponding to 40% longer
execution time, opens up for further possibilities to save up to
29% of energy with the coordinated scheme proposed in this work
(17.7%, on average).

3. The proposed scheme

This section presents the proposed resource management
scheme. Fig. 2 shows an overview of the system. On each core,
a monitoring mechanism periodically collects information from
hardware performance counters. The RMA, which is part of a
light-weight power-management software handler, is invoked at
regular intervals after executing a fixed number of instructions.
It uses data collected from performance counters and Auxiliary
Tag Directories (ATD) [29] to do configuration-space exploration
of the performance and energy across all different LLC and fre-
quency configurations. Once the new optimal configuration is
found, it is applied to the DVFS and LLC partitioning controllers.
The rest of this section reviews the required hardware sup-
port and the necessary software components including the SW
integration, performance and energy models, and the RMA.

Fig. 2. Overview of the resource management scheme.

3.1. Hardware support and software integration

In order to support per-core DVFS, we assume that the chip
has as many voltage regulators as the number of cores. While
an aggressive assumption, it has been implemented, for example,
in [2,10,15]. The proposed scheme requires hardware support for
partitioning the LLC and predicting the miss counts at different
allocations with a minimum runtime overhead. We assume a
partitioning of LLC ways that is, for example, implemented in
Intel [11] and Qualcomm [39] products. This technique has two
advantages. First, the overhead of changing the partitions is lim-
ited to re-writing a bit-mask while the actual data movement is
automatically managed by the replacement policy during execu-
tion. Second, it allows the use of ATDs [29] to predict the effect
LLC partitioning decisions on the number of cache misses. ATDs
operate in parallel with the main cache and emulates the behav-
ior of the tag directory. It predicts the number of cache misses for
allocation of w cache ways by accumulating the number of hits
in recency positions larger than w and the ATD misses.

Furthermore, statistics from performance counters, including
computation time, memory access time, number of executed
instructions, and number of memory write backs, are needed.
Our technique also assumes statistics to model the effect of
memory-level parallelism on performance as further described
in Section 3.2. Finally, for implementing a low-overhead energy-
model, as discussed in Section 3.3, the system must support
measurement of core energy-consumption during an execution
interval.

The proposed method is invoked at the granularity of intervals
with a fixed instruction count. This granularity is set to a large

M. Nejat, M. Manivannan, M. Pericàs et al. / Journal of Parallel and Distributed Computing 144 (2020) 246–259 249

enough value that allows this method to be implemented as
a light-weight power-management software-handler with neg-
ligible overhead. We have found that an interval size of 100M
instructions keeps the overheads at a negligible level as we will
see in Section 5. This manager’s operation consists of two parts.
In the first step, it collects the performance statistics by reading
the registers that captures the performance counter values. In
the second step, based on these statistics, it determines the VF
of each core and controls the LLC partitioning by writing to the
corresponding registers for allocation bit masks.

3.2. Performance model

In order to predict the impact of resource allocations on the
performance, we consider the following simple IPS model as a
function of LLC allocation w and core frequency f :

IPS(w, f) =
IC

Cbase/f + AMAT×M(w)
(1)

where IC is the instruction count over each execution interval,
Cbase is the active CPU cycles excluding the memory access stalls,
AMAT is the average memory access time of LLC misses, andM(w)
is the LLC miss count as a function of w. Cbase is derived from
performance counters and we assume that it is independent of
w. Specifically, one performance counter can capture the total
stall cycles for accessing the main memory and another the total
execution cycles. Cbase can be established by subtracting stall
cycles from the full execution cycles. Finally, M(w) is derived
from the ATD.

It is well known that AMAT is sensitive to Memory Level
Parallelism (MLP). To model the MLP effect, we use the approach
proposed by Karkhanis and Smith [17] based on probability func-
tions. If Pov(i) denotes the probability of having i overlapping LLC
misses during an interval and ML is the memory access latency
for an isolated DRAM access, AMAT can be calculated as follows:

AMAT = ML×
∑

i

Pov(i)
i

(2)

We use this formula in our simulations by collecting the MLP
histogram statistics during an interval. This can be captured by
performance counters similar to those available in some modern
processors (such as Intel’s L1D_PEND_MISS.PENDING counter).
We then substitute this AMAT value in (1) to estimate the per-
formance of different configurations. In Section 5 we analyze the
accuracy of the model.

3.3. Energy model

The RMA must only model the energy consumption of the
components that are affected by its decisions. That includes the
energy of core and memory accesses. This low-overhead energy-
model uses the statistics collected over an execution interval
with fixed number of instructions (IC). Hence the Energy-Per-
Instruction (EPI) is calculated for each core i as follows:

EPIi(w, f) =
Ec,dyn(f)+ Pc,static(f)× T + Emem(w)

IC
(3)

In this model, T is the time to execute IC instructions. This
is derived from the performance model. Ec,dyn represents the
dynamic energy consumed by different core events. In our config-
uration space, this parameter is only affected by the core voltage
which is determined by the core frequency. Pc,static is the constant
static power consumption of the core which is also dependent
on the core voltage. The value of the core static power can be
evaluated offline for each frequency setting and get stored in a
table with as many entries as the number of frequencies. Core

dynamic energy is derived by subtracting the static energy during
an interval from the core energy measurements of that interval.
To estimate the dynamic energy at other frequencies, this value is
scaled by the core voltage squared. Emem is the energy consumed
by memory accesses. This parameter is dependent on both the
number of cache misses and write-backs to the main memory.
The cache misses are estimated from the ATD, and the write-
backs are measured from the performance counters. We make the
simplifying assumption that the number of write-backs does not
change with cache size. The accuracy of the model is studied in
Section 5

3.4. Resource management algorithm (RMA)

An overview of the proposed RMA is shown in Fig. 3(a). After
the RMA is invoked by a particular core, LLC miss values are
collected from the ATD as a function of the cache partition size.
The performance model uses these values to predict the IPS rate
for different system configurations. The configuration space for
each core has two dimensions: cache allocation w and frequency
f . Considering all the possible combinations among all the cores
creates a significantly complex search space that is not feasible
for online resource management because of the performance
overhead it would impose.

To address this problem, the RMA prunes the search space on
each core and reduces it to a single dimension as follows. For each
possible allocation of cache to each core, a minimum frequency
can be found that meets the IPS constraint. This is depicted by the
yellow bars in the hypothetical graphs in Fig. 3(a). We can easily
ignore the other configurations because any lower frequency vi-
olates the performance constraints while higher frequencies (and
voltages) increase the energy consumption.

If wb and fb represent the baseline system configuration, the
minimum frequency is derived from the following equations:

QoS(w, f) =
{
True, if IPS(w, f) ≥ IPS(wb, fb)× α

False otherwise
(4)

fmin(w) = min {f | QoS(w, f) } (5)

The parameter α in (4) – 0 ≤ α ≤ 1 – is used for relaxing the
performance target. In case of a strict target, α = 1, otherwise
0 ≤ α < 1. If no fmin is found for some smaller values of w, those
values are discarded from the minimum frequency set.

In the next step, the energy model transforms the minimum
frequency set into an EPI-set for the current core (j) using (3) and
(5):

ej(wj) = EPIj(wj, fmin(wj)) (6)

At this point, the new EPI-set is passed to the optimization
algorithm. This EPI-set shows an estimation of the energy com-
ponent related to this core as a function of its cache allocation.
This energy curve is used together with that of the other cores,
in the next step, by the optimization algorithm. As explained
in Section 3.5, this algorithm evaluates different distributions of
cache resources to minimizes the sum of energy values over all
the cores. To avoid unnecessary interactions with the other cores,
the RMA keeps a record of the latest EPI-set generated on each
core. So, whenever a particular core invokes the RMA, it only
updates the stored EPI-set of that core, before executing the final
optimization.

3.5. Optimization algorithm

After pruning the configuration space of each core to a set of
EPI values for each possible allocation of LLC, we need to find the
best combination of allocations with a sum equal to the LLC size.

250 M. Nejat, M. Manivannan, M. Pericàs et al. / Journal of Parallel and Distributed Computing 144 (2020) 246–259

Fig. 3. Overview of the RMA (a) and the reduction levels in the optimization algorithm for a 4 core system (b).

We define a vector V = {w1, w2, . . . , wN} as an LLC allocation
over N cores, A as the total number of available LLC ways, and
Wmax as an upper bound for LLC allocation to each core. We then
define the optimization problem as follows:

minimize
V

N∑
j=1

ej(wj)

subject to
N∑
j=1

wj = A ,

2 ≤ wj ≤ Wmax ∀j ∈ [1,N]

(7)

Here, we assume a minimum allocation of two cache ways
for each core. To solve this problem in polynomial time, we
leverage a form of dynamic programming optimization presented
in [9]. This work proposes a market-based scheme to improve
system utilization using cache partitioning. They use a recursive
reduction procedure in their auction system that inspired us to
apply it to our more general problem of considering also another
dimension; DVFS.

The pseudocode of our optimization algorithm is shown in
Algorithm 1. It starts from N different energy curves for each
core (lines 13–16). Each curve is the latest EPI-set generated
for that core, as explained earlier Eq. (6). Each pair of curves is
then reduced to a single curve that gives the lowest energy for
different cache allocations to that pair of cores (lines 18–20). After
the first level of reductions, there will be N/2 remaining curves.
By repeating the same process, in log2 N levels of reductions, the
cache allocation that minimizes the sum of energy values over all
cores is found (lines 22–23).

The reduction process works as follows. Let us assume a pair
of cores j and k and a maximum way allocation Wjk to the pair
while Vjk = {wj, wk} denotes a specific allocation to these cores.
A V ∗jk could easily be found that minimizes Ejk = ej(wj) + ek(wk)
such that wj+wk = Wjk. Hence, the two curves ej(wj) and ek(wk)
are reduced to a single curve E∗jk and a corresponding allocation
vector V ∗jk both as a function of total allocation Wjk (lines 27–43)

One of the advantages of this algorithm is that, during a reduc-
tion level, each reduction function is independent of the others.
In this system, each core invokes the RMA after executing a fixed
number of instructions and the energy curve is updated only
for that core. Therefore, only the reductions which are affected
by this update need to be executed. As depicted in Fig. 3(b),
only log2 N reductions are required in a system with N cores.
This significantly improves the overhead and scalability of the
algorithm.

Algorithm 1 Global Optimization Algorithm Pseudocode.
1: Definitions:
2: ej(wj): energy curve of core j as a function of LLC way allocation wj
3: X: a core group e.g. {1, 2}
4: VX = {wj,∀j ∈ X}: an allocation vector to group X
5: WX : total allocation to group X
6: Wmax: maximum allocation limit to each core
7: TX (WX) = [EX , VX]: an array of tuples such that:
8:

∑
∀wj∈VX

wj = WX and
∑
∀wj∈VX

ej(wj) = EX

9: A: Total LLC ways, i.e. associativity
10: N: Total number of cores
11:
12: function Main()
13: for j ∈ [1,N] do
14: Tj(wj)← [ej(wj), wj]

15: end for
16: ArrayT← {Tj,∀j ∈ [1,N]}
17: repeat
18: For each pair Z = {j, k} in ArrayT do
19: TZ ← Reduce (Tj, Tk)
20: Replace {Tj, Tk} with TZ
21: until length(ArrayT)> 1
22: TFinal =ArrayT[0]
23: Return TFinal(A)
24: end function
25:
26: function Reduce(TX , TY)
27: n← length(X)+ length(Y)
28: Wmin ← n× 2 // minimum allocation of two ways for each core
29: for WXY ∈ [Wmin, n×Wmax] do
30: E∗XY ←∞
31: for WX ∈ [length(X),WXY − length(X)] do
32: WY ← WXY −WX
33: EX ← TX (WX)(0)
34: EY ← TY (WY)(0)
35: if EX + EY < E∗XY then
36: E∗XY ← EX + EY
37: VX ← TX (WX)(1)
38: VY ← TY (WY)(1)
39: TXY (WXY)← [E∗XY , VX ∪ VY]

40: end if
41: end for
42: end for
43: return TXY
44: end function

4. Experimental methodology

We evaluate the proposed RMA using a simulation method
based on SimPoint analysis [32] and Sniper [3] plus McPAT [20]
simulations. In Section 4.1 we present the default architecture
model that is used to derive the experimental results. Then,
in Section 4.2, we describe the simulation framework. Finally,

M. Nejat, M. Manivannan, M. Pericàs et al. / Journal of Parallel and Distributed Computing 144 (2020) 246–259 251

Fig. 4. Overview of the simulation method.

Section 4.3 introduces the workloads used in the simulations
followed by evaluation metrics in 4.4.

4.1. Base configuration

In order to have a more accurate simulation, especially for
studying the impact of memory-level parallelism on performance,
the ROB core model in Sniper-7.2 (released 2019) [35] is used.
Table 1 summarizes the architectural parameters used in our
simulations. The processor model is a 4-way out-of-order core.
A more aggressive core would shift the workloads toward being
more memory intensive. This would make cache partitioning
alone and our proposed combined scheme more effective as it
would give more headroom for trading a smaller cache partition
size for a higher frequency. The baseline system consists of four
cores. However, we present results also for eight-core systems.

4.2. Simulation framework

In order to reduce the simulation time, we base our sim-
ulations on the SimPoint methodology. However, to accurately
model the invocations of the RMA at each interval, we need to
create a version of each benchmark application that captures its
phase changes. Moreover, as our simulations use workload mixes
composed of multiple programs, we must create workload mixes
that accurately model the phase changes of a multiprogrammed
workload.

We have adopted a method based on the idea presented by
Van Biesbrouck et al. in [36] as follows. A phase trace of each
benchmark program is created using SimPoint analysis. The phase
trace consists of the sequences of phases that a program will
visit, given that the program execution is divided into instruction
sequences, denoted intervals, of a fixed length. We make the sim-
plifying assumption that the program behavior in all the intervals
of a phase is exactly the same as the representative interval of
that phase selected by SimPoint. Hence, the phase trace aims at
mimicking the phase changes of each benchmark program.

Fig. 4 shows an overview of the simulation steps. The SPEC
CPU2006 whole program Pinballs from the Sniper website [27] are
used as input to the process. SimPoint then generates the repre-
sentative program intervals. In the next step, Sniper plus McPAT
simulations are performed for representative regions of bench-
mark phases with 100M warm-up and 100M detailed instruction
windows. These simulations are repeated over all possible VF
settings, and LLC allocations (see Table 1 for more details). The
simulation results, including detailed performance and power
estimations, are collected in a database for each program phase.

In the second part of the simulation process, the RMA Simulator
regenerates the execution of a multi-programmed workload in
a multi-core scenario with an RMA. It uses the program-phase
traces and the simulation results database for each program in the
workload mix. Fig. 5 shows an example scenario of a simulation

Fig. 5. Run-time behavior of the RMA simulator. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version
of this article.)

run-time behavior. The simulation starts in the first program
interval (I1) in each application. Using the average time-per-
instruction (TPI) collected from the simulation database for each
application at the baseline setting, the next global event (t1)
is found. It is the time when the application with lowest TPI
finishes one interval. The RMA is invoked on the core running
that application to find a new resource setting. After updating
the statistics for each core with the overhead imposed by the
RMA (marked in red in Fig. 5), the next global event (t2) is found
in a similar fashion with the new resource settings. This process
continues until the end of simulation.

During this repetitive process, other statistics, such as energy
consumption, are collected. Unlike the energy model described
in Section 3.3, the simulator collects energy consumption of the
components that are shared (LLC and network-on-chip) as well as
private to each core (L1 and L2 private caches), plus the dynamic
energy of the main memory.

4.3. Workloads

We use SPEC CPU2006 for our experiments. We categorize the
applications based on two important criteria: Memory Intensity
and Cache Sensitivity. We define these criteria by considering
the MPKI curve of each application for different LLC partition-
sizes around the per-core baseline partition size (see Table 1).
We consider an application with a high base MPKI (more than
5) as memory intensive. On the other hand, to determine cache
sensitivity, we measure the variation in MPKI around the baseline
partition size. Specifically, if the difference in MPKI between 50%
smaller to 50% larger LLC allocation is beyond a threshold (20%
of the baseline MPKI) while the baseline MPKI is not too small
(more than 0.2), the application is counted as cache sensitive.
Table 2 shows the benchmarks that belong to each category. For
two of the SPEC CPU2006 applications (calculix, milc), the Sniper
simulations did not finish properly in some phases.1 Therefore,
they are excluded from this study.

We create a list of different combinations of application types
to model a wide range of 4 and 8 core workload mixes. We then
use the python function random.choice() to select benchmarks
from each category for each workload. This process is repeated
until each application is selected at least once across all the
workloads. The result is listed in Table 3. For each 4-core mix,
two workloads are randomly generated. For each 8-core mix,
however, only one workload is studied due to a limited number
of applications in each category as well as longer simulation time.

The total number of instructions varies significantly across
benchmark applications. Therefore, in order to have a fair com-
parison, the simulations are run until each application in the
workload has executed the same number of instructions. This
number is set according to the longest benchmark which consists
of 4146B instructions. Once an application reaches the end of its
execution, it is re-started until the end of simulation.

1 The simulation was aborted in the middle due an error caused by SIFT
reader.

252 M. Nejat, M. Manivannan, M. Pericàs et al. / Journal of Parallel and Distributed Computing 144 (2020) 246–259

Table 1
Baseline configuration.
Core 4-wide, out-of-order, 128 entry reorder buffer, 64 entry reservation station, Pentium M type branch predictor, Load-Queue

size of 32 and Store-Queue size of 32
L1-I & L1-D 32 KB, 64 B block size, 4-way associative, LRU replacement, 10 outstanding misses, core DVFS domain
L2 Private, 256 KB, 64 B block size, 8-way associative, LRU replacement, core DVFS domain
L3 Shared, uniform access, 8-way (2 MB) per core, 64 B block size, LRU replacement policy, global DVFS domain
DRAM 100 ns base latency, 5 GB/s bandwidth per core, contention queue model
DVFS core frequency range: 1 up to 3.25 GHz, core voltage range: 0.8 up to 1.25 V, global frequency-voltage: (2 GHz, 1V)

Table 2
Application categories.
Type Attributes Benchmarks

A Memory Intensive & Cache Sensitive mcf, omnetpp, sphinx3, xalancbmk, soplex
B Memory Intensive & Cache Insensitive leslie3d, lbm, bwaves, GemsFDTD, wrf, astar, libquantum
C Compute Intensive & Cache Sensitive gobmk, gcc, h264ref, gromacs, bzip2, hmmer, tonto
D Compute Intensive & Cache Insensitive dealII, namd, povray, perlbench, cactusADM, gamess, sjeng , zeusmp

Table 3
Workload mixes.
Label Mix Applications

4-Core

W1 2A2A omnetpp, mcf, soplex, sphinx3
W2 2A2A mcf, omnetpp, soplex, xalancbmk
W3 2B2B lbm, astar, bwaves, lbm
W4 2B2B libquantum, leslie3d, astar, leslie3d
W5 2C2C bzip2, gcc, gobmk, tonto
W6 2C2C h264ref, h264ref, h264ref, gobmk
W7 2D2D perlbench, perlbench, gamess, perlbench
W8 2D2D sjeng, cactusADM, dealII, gamess
W9 2A2B sphinx3, sphinx3, GemsFDTD, leslie3d
W10 2A2B soplex, xalancbmk, wrf, lbm
W11 2A2C xalancbmk, mcf, gobmk, gobmk
W12 2A2C omnetpp, xalancbmk, bzip2, hmmer
W13 2A2D soplex, sphinx3, zeusmp, povray
W14 2A2D mcf, sphinx3, zeusmp, gamess
W15 2B2C GemsFDTD, astar, gromacs, gromacs
W16 2B2C GemsFDTD, leslie3d, bzip2, gcc
W17 2B2D GemsFDTD, wrf, povray, cactusADM
W18 2B2D GemsFDTD, bwaves, perlbench, namd
W19 2C2D gcc, h264ref, namd, namd
W20 2C2D gromacs, tonto, sjeng, zeusmp

8-Core

W1 4A4A xalancbmk, omnetpp, mcf, omnetpp, sphinx3, xalancbmk, soplex, xalancbmk
W2 4B4B wrf, bwaves, bwaves, lbm, leslie3d, GemsFDTD, wrf, bwaves
W3 4C4C bzip2, gobmk, h264ref, gcc, gromacs, tonto, gobmk, h264ref
W4 4D4D sjeng, cactusADM, perlbench, namd, zeusmp, perlbench, cactusADM, namd
W5 4A4B omnetpp, xalancbmk, omnetpp, sphinx3, GemsFDTD, libquantum, lbm, libquantum
W6 4A4C mcf, sphinx3, xalancbmk, xalancbmk, bzip2, hmmer, tonto, gobmk
W7 4A4D xalancbmk, omnetpp, soplex, soplex, gamess, zeusmp, cactusADM, dealII
W8 4B4C GemsFDTD, astar, astar, libquantum, h264ref, gobmk, h264ref, gromacs
W9 4B4D libquantum, leslie3d, bwaves, astar, gamess, sjeng, povray, cactusADM
W10 4C4D hmmer, hmmer, gcc, bzip2, gamess, namd, zeusmp, gamess

4.4. Evaluation metrics

This section describes the main metrics used for evaluation,
namely energy savings (Section 4.4.1) and QoS violations
(Section 4.4.2).

4.4.1. Energy saving
The energy consumption is calculated as the sum of the total

core energy (including L1 and L2 caches) and the dynamic energy
of LLC and DRAM for every application in the workload. For each
application, only the energy for the execution of the predefined
number (4146B) of instructions is accounted for. The static energy
of the shared components (LLC and network-on-chip) is added
to the results until the end of simulation for all applications. We

compare against the energy of the baseline system corresponding
to an idle RMA that keeps the baseline system setting until
the end of simulation. The same three RMAs are evaluated as
mentioned in Section 2.

4.4.2. QoS violations
When the RMA is invoked at the end of each execution interval

i, it attempts to find a target resource setting for the upcoming
interval i + 1 that satisfies QoS according to Eq. (4). This needs
performance modeling of both the target setting and the baseline
setting. However, due to modeling error, the RMA may select a
setting that violates QoS for the next interval (i+ 1). We denote
this as a short-term QoS violation. Short-term here refers to the
fact that a single interval violation is often compensated for by

M. Nejat, M. Manivannan, M. Pericàs et al. / Journal of Parallel and Distributed Computing 144 (2020) 246–259 253

faster runs in other intervals and hence it will not frequently
result in QoS violations in the long-term.

We perform an extensive analysis to estimate the probability
and expected value of short-term QoS violations over all bench-
mark applications as follows. For the upcoming execution interval
(i+ 1), the short-term QoS is violated if the RMA selects a target
resource setting (f, w) that meets two conditions:

1. The actual IPS with the target setting is smaller compared
to the baseline setting (fb,wb):

IPSAct.i+1(f ,w) < IPSAct.i+1(fb,wb) (8)

2. The analytical performance model predicts the IPS with
the target setting to be greater or equal compared to the
baseline setting:

IPSi+1(f ,w) = IPSAct.i+1(f ,w)+ errf, w ≥ IPSAct.i+1(fb,wb)+ errb
= IPSi+1(fb,wb)

(9)

Here we assume a strict QoS target with α = 1.0 (see Eq. (4)).
The modeling of interval i + 1 is performed using the statistics
collected at interval i. The probability of QoS violation is evaluated
by iterating over all phases of all applications, all possible current
settings (during interval i), and all possible target settings (for
interval i + 1) and checking the above conditions. The phase
weights generated by SimPoint are used as the probability of each
program phase. Within each phase, all current and target settings
are assumed to be equally probable. In case of a short-term QoS
violation, the amount of violation is calculated as follows:

Violation =
TAct.(f, w)− TAct.(fb,wb)

TAct.(fb,wb)
(10)

Here, TAct. denotes the actual execution time of the interval
i + 1. These values are used to calculate the expected value
and standard deviation of short-term QoS violations which are
reported in Section 5.3.

In addition to short-term QoS, we consider full execution
times of each benchmark in each workload. As mentioned ear-
lier, during a full simulation, benchmarks are re-started multiple
times. Hence, the average execution time of each benchmark is
measured. This value is compared for each RMA to an idle RMA
that keeps the baseline system setting until the end of simulation.
An average execution time longer than the baseline is counted as
a long-term QoS violation. The result of long-term QoS violations
is reported in Section 5.3 for all the workloads.

5. Experimental results

The experimental results are reported and discussed in this
section. We first perform an experiment to evaluate the energy
savings with the proposed scheme in a wide range of work-
loads with strict performance constraints (Section 5.1). The ef-
fects of modeling errors on energy saving results are studied in
Section 5.2. Modeling errors may also lead to a small QoS viola-
tion in a few cases. These QoS violations are extensively analyzed
and evaluated in Section 5.3 for all workloads. The achievable
energy savings, using the proposed RMA, are limited with strict
performance constraints. But, if the users can tolerate a bounded
reduction in performance, energy savings can improve substan-
tially. We perform a series of experiments to study the trade-off
between relaxed QoS targets and energy savings in Sections 5.4
and 5.5. In the last experiment, we evaluate the sensitivity of the
proposed scheme to the baseline VF setting (Section 5.6). Finally,
the impact of overheads is reported in Section 5.7.

5.1. Energy savings with strict QoS targets

We perform the experiments on 4 and 8 core workloads
(see Section 4.3) with strict performance constraints; i.e., no
performance degradation is allowed on any application, which
corresponds to α = 1 in Eq. (4). We consider two RMAs: (i) Cache
partitioning only and (ii) the proposed RMA with coordinated
control of DVFS and cache partitioning, called Combined. The
Partitioning RMA controls only the LLC partitioning without af-
fecting the core frequencies. Its goal is to minimize system energy
without violating the performance constraints. It uses the same
optimization algorithm described in Section 3.5. The DVFS-only
RMA is not relevant in this scenario because it cannot affect a
system with strict performance targets.

Two sets of simulations are done for each RMA: One with
idealistic assumptions to show the potential with perfect perfor-
mance and energy modeling and neglecting the RMA overheads
and the other for a realistic system that uses the analytical perfor-
mance and energy models described in Section 3 with overheads
added to the simulations. The impact of overhead will be analyzed
in detail later.

Fig. 6 shows the energy savings of the two RMAs relative to the
baseline. For each workload mix, we show four bars correspond-
ing to, from left to right, the Partitioning with perfect models, the
Partitioning with analytical models and overheads, the Combined
with perfect models, and the Combined with analytical models
and overheads.

Overall, we can see that there is a huge potential of the
Combined scheme. Compared to Partitioning, Combined manages
to save substantially more energy on a realistic system, with
the performance and energy models proposed. On a four-core
system the saving is, on average, 6.2% versus 1.3% whereas on an
eight-core system it is 6.4% versus 2.4%.

We now analyze the findings in more detail. First, the energy
savings offered by Partitioning are mostly limited to workloads
that are a mix of cache sensitive (A or C) and cache insensitive
(B or D) applications. This is not the case for the Combined RMA
because it has a secondary dimension of flexibility; frequency
variation. In the workloads that are all cache sensitive, i.e., mixes
of A or C, the Combined scheme shows a significant advantage
over the Partitioning RMA. Second, in the workloads that are all
cache insensitive, i.e. mixes of B or D, none of the RMAs are very
effective since any re-distribution of cache resources does neither
improve the performance nor energy of any application. In fact,
with limited modeling accuracy and considering the overheads,
this may even lead to a small increase in the energy consumption.

5.2. Effect of modeling accuracy

We now evaluate the effect of modeling errors on energy
savings by comparing the results with perfect models to those
with realistic analytical models. As Fig. 6 shows, in most of the
cases the modeling errors reduce the energy savings.

In the 4-core results, this leads to a substantial reduction of
energy savings with the Partitioning RMA, especially for W9, W10,
and W16. In these workloads, the cache insensitive applications
(B) can give up a portion of their LLC share to other applications
that benefit from it. However, the error in performance modeling
prevents the RMA from exploiting this trade-off in order to meet
the QoS target. The Combined RMA, on the other hand, is not
affected as much since it can search a larger configuration space
with the second dimension (i.e. DVFS) to achieve energy savings
even in the presence of modeling error.

The 8-core results show a different trend. On average, the
modeling error has smaller impact on Partitioning compared to
Combined. With the larger number of applications in the work-
load, it is more likely that cache-sensitive applications can get a

254 M. Nejat, M. Manivannan, M. Pericàs et al. / Journal of Parallel and Distributed Computing 144 (2020) 246–259

Fig. 6. 4-core (top) and 8-core (bottom) simulation results with strict QoS targets. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

larger LLC share by finding unused LLC ways in cache-insensitive
applications. Therefore, the results for Partitioning RMA are not
affected by modeling error as much as 4-core workloads. The
effect of error on the Combined RMA is on average similar in both
4-core and 8-core workloads.

There are a few cases in which modeling errors lead to a negli-
gible increase in energy saving (W11, and W19 in 4-core plus W3,
W6, and W8 in 8-core). With a low probability, a performance
modeling error can lead to QoS violation which is discussed in
Section 5.3. In that case, the RMA may select a resource setting
that further reduces system energy, at the expense of a small
reduction in performance. This setting, however, is never selected
if perfect models are used.

5.3. QoS evaluation

As mentioned in Section 4.4.2, we study two forms of QoS:
(i) long-term that considers full execution of each benchmark
during the simulation and (ii) short-term that focuses on each
execution interval (100M instructions).

We first analyze the effect of modeling error on short-term
QoS. This analysis is performed according to the methodology
explained in Section 4.4.2. The analysis over all phases of all
benchmark applications, shows a probability of 4.3% for a short-
term QoS violation in the up-coming interval. Considering only
the violating cases, the expected value of violation (see Eq. (10))
is 3.4% with a standard deviation of 14.9%. This comprehensive
analysis is independent of the RMA and assumes equal proba-
bility for any target resource setting. However, during program
execution, many of these settings are never selected by the RMA.
Furthermore, the selected resource setting for many intervals
may result in faster execution compared to the baseline. This will
cancel a part of the short-term violations in the long-term run.

Next, we report the long-term QoS results for the simulations
in Section 5.1. With the Combined RMA that uses the analytical
models, in 13 cases out of 80 applications in the 4-core workloads,
modeling errors lead to an average execution time longer than the

baseline by more than 1%. The average value of violation among
these 13 cases is 3.0% with a maximum of 9.3%. Considering
the 8-core results with the Combined RMA, 15 violations are
detected out of 80 applications. The average violation is 2.7% with
a maximum of 6.8%. Modeling errors do not lead to a consider-
able long-term violation with the Partitioning RMA as it has low
flexibility compared to Combined RMA.

5.4. Energy performance trade-off

Even though there are energy-saving possibilities by opti-
mizing the resource trade-offs between applications, the total
amount of saving is limited without trading off performance.
If the user can tolerate a bounded reduction of performance,
further energy savings become possible. To evaluate this effect,
we gradually relax the performance constraint of all applications
in 4-core workloads, using the α parameter in Eq. (4). Fig. 7
shows the resulting trends in energy savings for three different
RMAs. In addition to the Partitioning and Combined, a RMA that
performs only per-core DVFS is also present. The DVFS RMA can
save energy if the performance constraint is relaxed. In order to
study the trends in potential energy savings in the absence of
modeling error and QoS violations, perfect models are used in this
experiment. For each workload, three curves are presented that
correspond to each RMA. The points on each curve, from left to
right, represent α values that correspond to 0%, 20%, 40%, 60% and
80% longer execution time, i.e. α = { 1

1.0 ,
1
1.2 ,

1
1.4 ,

1
1.6 ,

1
1.8 }.

An important observation in this experiment is that energy
savings usually saturate after a certain amount of relaxation in
performance constraints. In a few cases (W3, W5, W6, and W15)
there is even a small reduction in energy saving after a certain
point. This is a result of larger LLC leakage energy, a component
that is not accounted for in the RMA. In the case of W6, the
additional energy savings when reducing α from 1

1.4 to 1
1.6 are

not as high as the increase in LLC leakage. But a further decrease
of α to 1

1.8 opens a new resource trade-off that improves energy
savings beyond the increase in LLC leakage. The saturation usually

M. Nejat, M. Manivannan, M. Pericàs et al. / Journal of Parallel and Distributed Computing 144 (2020) 246–259 255

Fig. 7. Energy savings for different levels of QoS relaxation.

occurs earlier for Partitioning compared to the other two RMAs.
This shows that a limited relaxation of constraints enables the
most efficient distribution of LLC resources to minimize system
energy at a fixed core VF. However, DVFS, in general, has a
stronger impact on energy consumption except for workloads
with memory-intensive and cache-sensitive applications (A) and
one case with compute-intensive and cache-sensitive applica-
tions (W5). The Combined RMA, outperforms the other two in
all the workloads and substantially improves energy savings. It
can potentially save up to 29% of system energy with only a 40%
relaxation of the performance target (W9). On average, it can save
up to 18% of energy compared to 11% with DVFS and 8% with
Partitioning.

5.5. Mixed QoS workloads

In the previous experiment in Section 5.4, the QoS target
is relaxed for all applications in each benchmark. However, it
may not be possible for all the users that share the system to
tolerate a performance degradation. Even if only a subset of the
users can tolerate a bounded reduction in performance, energy
savings may improve considerably. The ability to select a subset
of the workload as a victim for bounded performance degradation
increases the flexibility of the service provider to make trade-offs
between the QoS delivered to each individual user and the system
energy consumption. In that case, an important question is to find
out which subset should be selected as a victim to achieve the
highest energy saving. Therefore, in this experiment, we evaluate
two scenarios in 4-core workloads.

In one scenario the QoS target is relaxed only for the first half
of the applications in the workload, whereas in the other scenario
it is relaxed only for the second half. The results are depicted
in Fig. 8 for three different RMAs. Similar to Section 5.4, perfect
models are used in this experiment. There are four sets of bars in
each figure that correspond to, from left to right, strict targets for
all applications, relaxed targets for the first half, relaxed targets
for the second half, and relaxed targets for all applications. In all
these cases, a relaxed target corresponds to an α value of 1

1.4 . This
value is selected based on the observations in Section 5.4.

According to Fig. 8 (top), with the DVFS RMA, relaxing the
target for memory-intensive applications (A and B) can be more
beneficial compared to compute-intensive applications (C and D).
This is evident in workloads W11 to W18. Due to the reduced
effect of DVFS on the performance of memory-intensive applica-
tions, a limited relaxation of the QoS targets enables a substantial
reduction in core VF and energy consumption.

On the other hand, the Partitioning RMA (Fig. 8 — middle)
shows a different result. In most of the workloads that are mixes
of memory-intensive and cache-sensitive applications (A) with
compute-intensive applications (C and D), the highest energy sav-
ing is achieved if the target is relaxed only for the latter subset. In
this case, the relaxation enables compute-intensive applications

to give up their LLC share to type A applications that benefit
more from it. In the case of W12, the type A applications are
omnetpp and xalancbmk. Even though the baseline MPKI is high
for these applications and the MPKI variation is above the cache
sensitivity threshold (see Section 4.3), their MPKI does not reduce
as much as bzip2 (one of the C applications) when receiving a
larger LLC share. Therefore, in this case, it is more beneficial to
relax the target for the first half of the workload. In general, with
the Partitioning RMA, if the target is relaxed for only half the
workload, the energy saving is comparable to the case where all
the targets are relaxed.

Using the Combined RMA (Fig. 8 — bottom), the energy savings
increase substantially in all the cases compared to the other two
RMAs. This RMA has a higher level of flexibility with two differ-
ent resources. Therefore, in most of the cases, both half-relaxed
workload scenarios lead to comparable energy savings. In general,
the energy saving in these two scenarios are near the arithmetic
average between fully-strict and fully-relaxed workloads.

5.6. Sensitivity to baseline setting

Throughout this study, we assumed a mid-range baseline VF.
In the last experiment, we evaluate the sensitivity of the proposed
Combined RMA to different baseline VF settings. This experiment
also uses perfect models to exclude the effect of modeling error
and QoS violations. Fig. 9 shows the results of this experiment
on 4-core workloads. The bars, from left to right, correspond
to baseline VF1, VF3, VF5, VF7, and VF9 out of 10 available VF
settings.

The figure shows two contradicting trends when increasing
the baseline VF. This is a result of two opposite effects:

1. When the LLC allocation is increased for a cache-sensitive
application, it enables a reduction in core VF. This reduction
leads to a larger energy saving if the baseline is at higher VF
levels, due to the quadratic relation between voltage and
energy.

2. When selecting a cache-sensitive application as a victim to
reduce its LLC allocation, its core VF must be increased. This
imposes an energy cost which is higher for larger baseline
VF settings. Furthermore, if the baseline is as high as VF9,
with only one more higher VF level, it may considerably
limit the scope for redistribution of cache resources under
performance constraints.

According to Fig. 9, the first effect dominates in most of the
cases. This means the proposed RMA is likely to save a higher
percentage of system energy with a higher performance target.
However, in a few workloads, the second effect dominates which
leads to a reduction in percentage of energy savings as the base-
line VF increases. This effect is mostly dominant when the victim
application is cache sensitive which corresponds to a mix of A or
C applications.

256 M. Nejat, M. Manivannan, M. Pericàs et al. / Journal of Parallel and Distributed Computing 144 (2020) 246–259

Fig. 8. Energy Savings for mixed QoS scenarios with DVFS alone (top), LLC partitioning alone (middle), and combined (bottom) RMAs when using perfect models.
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 9. Energy savings for different baseline VF settings using the combined RM. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

In W1 and W2, a big drop in energy saving occurs when the
baseline VF setting increases from VF7 to VF9. In these work-
loads, victims are selected from type A applications. The VF must
be increased by several steps in these applications in order to
compensate the performance degradation with additional cache
misses. But, there is only one higher VF level available if the
baseline is set to VF9. This significantly limits the scope for
optimizing the LLC distribution. The second effect also dominates
in W12 which is also a mix of cache-sensitive applications. This
is, however, not the case in W11. While bzip2 (type C) in W12
is highly sensitive to LLC allocation with a baseline MPKI around
5 in the dominant phase, gobmk (type C) in W11 is very close
to the cache sensitivity threshold. Therefore the second effect is
not considerable in W11. In some other workloads, including W5,

W6, W8, W10, W19, and W20, the second effect dominates only
at the lowest baseline VF.

5.7. Impact of overheads

The discussed resource management schemes add overheads
to the system in three steps: (i) collecting the required statistics,
(ii) finding the optimal configuration and (iii) enforcing the new
configuration.

Reading the performance counter values has negligible over-
head in an execution interval of 100M instructions. However, the
additional instructions that need to be executed for each RMA
impose timing and energy overheads. The exact values of these
overheads depend on the system configuration at each point

M. Nejat, M. Manivannan, M. Pericàs et al. / Journal of Parallel and Distributed Computing 144 (2020) 246–259 257

of time. Therefore, we evaluate the overhead as a fraction of
instruction count to the program execution.

In order to evaluate the instruction count overheads, we im-
plement the proposed RMA as presented in Section 3 in the
C programming language. We then compiled and executed this
software implementation and measured the number of executed
instructions. The number of executed instructions is less than
40K which is 0.04% of each interval. However, this overhead is
accounted for during simulations.

Finally, when the RMA decides to change the system con-
figuration, there is the overhead of performing DVFS and re-
partitioning the LLC. For the DVFS overhead, we assume 15 µs
and 3 µJ as reported in [26] for the Samsung Exynos 4210.
The impact of the DVFS overhead is minimal. For example, if
the clock frequency is set to 2 GHz and the average IPC is 2, a
100M instruction interval takes 25 ms. In this case, even if the
frequency is scaled at every interval, it will add 0.06% to the
timing overhead. Both the timing and energy overheads of DVFS
are added to the simulation results whenever the RMA chooses
a new frequency for each core. Re-partitioning of LLC is limited
to modifying a few bit-masks for each core and has negligible
overhead.

After re-partitioning, the data movement in LLC happens ac-
cording to the memory access patterns of applications. The ap-
plication that receives an additional cache way will gradually
replace the data of the previous owner during execution. In our
case study, each LLC way contains 256 KB which consists of 4K
cache blocks (See Table 1). Assuming that all of these blocks will
be filled with new data by the new owner – probably a memory
intensive application – over an interval of 100M instructions, it
will cause an additional MPKI of 0.04 which is negligible com-
pared to the MPKI of memory-intensive applications. Many of
these misses may overlap with other misses and do not cause
a timing overhead. In reality, a re-configuration happens after
several intervals when the program experiences a phase change
which further diminishes these overheads.

6. Related work

Previous attempts to control on-chip resources to enforce QoS
constraints on applications include a wide range of types of
resources and configuration methods. Adding QoS requirements
for the applications has a profound impact on the resource-
management approach compared to works that do not take QoS
into account [1,14,37,38]. A common QoS workload usually con-
sists of a mix of one latency critical (LC) application with strict
performance constraints and other best effort (BE) applications
[4,9,13,21–23]. In such cases, the focus is typically to improve the
performance of BE applications while providing guaranteed min-
imum resources for the LC applications. Therefore, the number
of LC applications that can run on such a system is very limited
and resource optimization is fundamentally dependent of the BE
applications. On the other hand, when using DVFS to enforce
QoS, energy efficiency can be improved for the LC application
[5,6,12,28,30,33]. However, this prior art does not consider cache
partitioning among multiple applications as we do in this paper.
Intel Speed-Shift technology [31] is an example of recent DVFS
techniques implemented in the Skylake architecture. Compared
to the previous Speed-Step technology, which is managed in
software, Speed-Shift is managed by the processor, which enables
fast and fine-grained control over its voltage–frequency states.
Unlike our work, Speed-shift is oblivious to QoS requirements,
taking into account only processor utilization. Adding QoS to
Speed-shift is an interesting direction to be considered in future
work.

In [8,34] cache partitioning is used in the proposed solutions,
but only to minimize the number of cache misses independently

from the DVFS controller. The DVFS controller is responsible
for enforcing QoS constraints for workloads, where all applica-
tions have QoS constraints. Such an approach is sub-optimal and
may potentially lead to QoS violations, since the LLC partitioning
controller decides the distribution of LLC allocations without con-
sidering its effect on system energy and individual QoS targets.
A performance loss due to a reduced LLC allocation must be
compensated by an increase in core VF. This may come at a
significant energy cost. For some memory intensive applications,
it may even be impossible to compensate the performance loss
with any of the available VF levels.

A centralized controller to explore a multi-dimensional design
space of different resources is necessary to find the most efficient
system configuration. However, the complexity and overhead
of such a controller is a serious challenge for online resource
management. Many of the previous proposals avoid this issue by
breaking the control mechanism into independent controllers for
different resources [21,34] or different applications [9,37,38]. [8]
proposes independent controllers for different resources, appli-
cations, and even objectives. However, such methods cannot be
as efficient as a centralized controller managing several resources
because the configuration-space of each local controller is limited
under QoS constraints. There have been attempts to come up with
coordinated management of multiple resources based on ma-
chine learning [1,14]. The downside of such methods is that they
do not provide enough accuracy when applications enter new
computational phases. Furthermore, they depend on expensive
online learning-processes that are may not be fast enough to react
to frequent application phase-changes in multiple concurrently
executing applications.

In contrast, in this work, we present a solution to control mul-
tiple resources, different objectives, and different applications, in
a coordinated fashion, in a centralized controller to maximize the
efficiency. We significantly reduce the complexity by intelligently
pruning the sections of the design space that lead to inferior re-
sults. This method uses statistics from HW performance counters
and ATD to model a wide range of resource allocations in a single
interval. Such an approach is fast enough to deal with frequent
phase changes of applications and provides sufficient accuracy at
the new phases.

7. Conclusions and future work

This paper presents, for the first time, an online Resource Man-
agement Algorithm (RMA) that finds the most efficient resource
setting, at each program interval, to minimize two important pro-
cessor energy components, namely core energy-per-instruction
and DRAM memory access, using a coordinated controller for
DVFS and Last-Level Cache partitioning. It uses simple, yet accu-
rate enough, analytical models to establish the effect of different
resource allocations on both performance and energy by collect-
ing statistics from hardware performance counters with no need
for any profiling, training or prior knowledge about the detailed
run-time behavior of programs. The RMA is implemented in soft-
ware with appropriate hardware support and invoked at regular
program intervals. To keep the run-time overhead negligible, the
RMA uses a heuristic algorithm that performs configuration-space
exploration in polynomial time.

Our experimental evaluation shows that our combined ap-
proach, using coordinated DVFS and cache partitioning, is more
effective in saving energy than independent DVFS or cache par-
titioning RMAs. In addition, the overhead of invoking the RMA
at each interval has a negligible impact on the energy savings.
The energy savings, when the performance target is the same as
the baseline system, can be as high as 18% and on average 6%.
However, when the QoS target is relaxed to 40% longer execution

258 M. Nejat, M. Manivannan, M. Pericàs et al. / Journal of Parallel and Distributed Computing 144 (2020) 246–259

time compared to baseline, the proposed RMA can potentially
save up to 29% of system energy and on average 17%.

This paper is an extended version of Nejat et al. [25]. The
original paper did not address some important research questions
regarding the efficiency of the proposed scheme. Specifically,
an open issue from the original paper is a deeper analysis into
the trade-off between performance-target relaxation and saved
energy. This is of value to cloud service providers that sell com-
pute cycles, to trade-off energy cost and QoS for each user in a
predictable manner.

We study different scenarios where QoS is relaxed only for
a subset of the workload. While independent DVFS and cache
partitioning RMAs can be more effective when the QoS target is
relaxed for applications from specific categories, the energy sav-
ing with the proposed combined RMA is higher and less depen-
dent on application categories. We also evaluated energy savings
if different voltage–frequency levels are selected as the baseline
which corresponds to different performance targets. We show
that with a higher performance target, the proposed scheme can
save more system energy, in the majority of workloads.

As for future research, one interesting direction is how to ex-
tend the approach to a broader set of architectural mechanisms.
To this end, we just concluded a study [24] in which we not only
consider DVFS and cache partitioning, but also add core resizing
meaning cores that can adjust their micro-architectural resources
to vary the amount of instruction-level parallelism exploited, as
another dimension to achieve more energy savings. We show that
this can lead to significant energy savings especially for applica-
tions with significant amounts of memory-level parallelism that
can trade cache resources for micro-architectural resources.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Acknowledgments

This research has been funded by the European Research
Council, under the MECCA project, contract number ERC-2013-
AdG 340328. The simulations were performed on resources at
Chalmers Centre for Computational Science and Engineering
(C3SE) provided by the Swedish National Infrastructure for Com-
puting (SNIC).
References

[1] R. Bitirgen, E. Ipek, J.F. Martinez, Coordinated management of multiple in-
teracting resources in chip multiprocessors: A machine learning approach,
in: MICRO, 2008.

[2] B. Bowhill, B. Stackhouse, N. Nassif, Z. Yang, A. Raghavan, C. Morganti, C.
Houghton, D. Krueger, O. Franza, J. Desai, J. Crop, D. Bradley, C. Bostak, S.
Bhimji, M. Becker, 4.5 The Xeon processor E5-2600 v3: A 22 nm 18-core
product family, in: ISSCC Digest of Technical Papers, 2015.

[3] T.E. Carlson, W. Heirman, S. Eyerman, I. Hur, L. Eeckhout, An evaluation
of high-level mechanistic core models, ACM Trans. Archit. Code Optim.
(2014).

[4] J. Chen, L.K. John, Predictive coordination of multiple on-chip resources for
chip multiprocessors, in: ICS ’11, 2011.

[5] X. Chen, C. Xu, R.P. Dick, Memory access aware on-line voltage control for
performance and energy optimization, in: ICCAD, 2010.

[6] K. Choi, K. Dantu, W.-C. Cheng, M. Pedram, Frame-based dynamic voltage
and frequency scaling for a MPEG decoder, in: ICCAD ’02, 2002.

[7] H. Dybdahl, P. Stenstrom, An adaptive shared/private NUCA cache
partitioning scheme for chip multiprocessors, in: HPCA, 2007.

[8] X. Fu, K. Kabir, X. Wang, Cache-Aware utilization control for energy
efficiency in multi-core real-time systems, in: 23rd Euromicro Conference
on Real-Time Systems, 2011.

[9] L. Funaro, O.A. Ben-Yehuda, A. Schuster, Ginseng: Market-Driven LLC
allocation, in: USENIX ATC 16, 2016.

[10] M.S. Gupta, G.-Y. Wei, D. Brooks, System level analysis of fast, per-core
DVFS using on-chip switching regulators, in: HPCA, 2008.

[11] A. Herdrich, E. Verplanke, P. Autee, R. Illikkal, C. Gianos, R. Singhal, R. Iyer,
Cache QoS: From concept to reality in the Intel R⃝ Xeon R⃝ processor E5-
2600 v3 product family, in: HPCA, 2016.

[12] C. Hughes, J. Srinivasan, S. Adve, Saving energy with architectural and
frequency adaptations for multimedia applications, in: MICRO-34, 2001.

[13] R. Iyer, L. Zhao, F. Guo, R. Illikkal, S. Makineni, D. Newell, Y. Solihin, L.
Hsu, S. Reinhardt, QoS policies and architecture for cache/memory in CMP
platforms, ACM SIGMETRICS Perform. Eval. Rev. (2007).

[14] R. Jain, P.R. Panda, S. Subramoney, Cooperative multi-agent reinforcement
learning-based Co-optimization of cores, caches, and on-chip network,
ACM Trans. Archit. Code Optim. (TACO) (2017).

[15] R. Jevtic, H.-P. Le, M. Blagojevic, S. Bailey, K. Asanovic, E. Alon, B. Nikolic,
Per-core dvfs with switched-capacitor converters for energy efficiency in
manycore processors, IEEE Trans. Very Large Scale Integr. (VLSI) Syst.
(2015).

[16] M.J. Junokas, G. Kohlburn, S. Kumar, B. Lane, W.T. Fu, R. Lindgren, CALOREE:
Learning control for predictable latency and low energy, in: ASPLOS ’18,
2018.

[17] T.S. Karkhanis, J.E. Smith, T.S. Karkhanis, J.E. Smith, A first-order superscalar
processor model, ACM SIGARCH Comput. Archit. News (2004).

[18] H. Kasture, D.B. Bartolini, N. Beckmann, D. Sanchez, Rubik: fast analytical
power management for latency-critical systems, in: MICRO-48, 2015.

[19] H. Kasture, D. Sanchez, H. Kasture, D. Sanchez, H. Kasture, D. Sanchez,
Ubik: efficient cache sharing with strict qos for latency-critical workloads,
in: ASPLOS ’14, 2014.

[20] S. Li, J.H. Ahn, R.D. Strong, J.B. Brockman, D.M. Tullsen, N.P. Jouppi,
McPAT 1.0: An integrated power, area, and timing modeling framework
for multicore architectures, in: Micro-42.

[21] D. Lo, L. Cheng, R. Govindaraju, P. Ranganathan, C. Kozyrakis, Heracles:
Improving resource efficiency at scale, in: ISCA ’15, 2015.

[22] R. Manikantan, K. Rajan, R. Govindarajan, Probabilistic shared cache
management (PriSM), in: ISCA, 2012.

[23] M. Moreto, F.J. Cazorla, A. Ramirez, R. Sakellariou, M. Valero, FlexDCP: a
QoS framework for CMP architectures, Oper. Syst. Rev. (2009).

[24] M. Nejat, M. Manivannan, M. Pericas, P. Stenstrom, Coordinated manage-
ment of processor configuration and cache partitioning to optimize energy
under QoS constraints, in: IPDPS, 2020.

[25] M. Nejat, M. Pericas, P. Stenstrom, QoS-Driven coordinated management
of resources to save energy in multi-core systems, in: IPDPS, 2019.

[26] S. Park, J. Park, D. Shin, Y. Wang, Q. Xie, M. Pedram, N. Chang, Accurate
modeling of the delay and energy overhead of dynamic voltage and
frequency scaling in modern microprocessors, IEEE Trans. Comput.-Aided
Des. Integr. Circuits Syst. (2013).

[27] Pinballs, last modified: Sep 2014, http://snipersim.org/w/Pinballs.
[28] R.P. Pothukuchi, A. Ansari, P. Voulgaris, J. Torrellas, Using multiple in-

put, multiple output formal control to maximize resource efficiency in
architectures, in: ISCA, 2016.

[29] M. Qureshi, Y. Patt, Utility-based cache partitioning: A low-overhead, high-
performance, runtime mechanism to partition shared caches, in: MICRO’06,
2006.

[30] A.M. Rahmani, B. Donyanavard, T. Müch, K. Moazzemi, A. Jantsch, O.
Mutlu, N. Dutt, SPECTR: Formal supervisory control and coordination for
many-core systems resource management, in: ASPLOS ’18, 2018.

[31] E. Rotem, Intel architecture, code name Skylake deep dive: A new ar-
chitecture to manage power performance and energy efficiency, in: Intel
Developer Forum, 2015.

[32] T. Sherwood, E. Perelman, G. Hamerly, B. Calder, Automatically character-
izing large scale program behavior, ACM SIGARCH Comput. Archit. News
(2002).

[33] J. Suh, C.-T. Huang, M. Dubois, Dynamic MIPS rate stabilization for complex
processors, ACM Trans. Archit. Code Optim. (TACO) (2015).

[34] N. Takagi, H. Sasaki, M. Kondo, H. Nakamura, Cooperative shared resource
access control for low-power chip multiprocessors, in: ISLPED ’09, 2009.

[35] The sniper multi-core simulator, last modified: Feb 2019, http://snipersim.
org.

[36] M. Van Biesbrouck, T. Sherwood, B. Calder, A co-phase matrix to guide
simultaneous multithreading simulation, in: ISPASS, 2004.

[37] X. Wang, J.F. Martinez, XChange: A market-based approach to scalable
dynamic multi-resource allocation in multicore architectures, in: HPCA,
2015.

http://refhub.elsevier.com/S0743-7315(20)30285-9/sb3
http://refhub.elsevier.com/S0743-7315(20)30285-9/sb3
http://refhub.elsevier.com/S0743-7315(20)30285-9/sb3
http://refhub.elsevier.com/S0743-7315(20)30285-9/sb3
http://refhub.elsevier.com/S0743-7315(20)30285-9/sb3
http://refhub.elsevier.com/S0743-7315(20)30285-9/sb13
http://refhub.elsevier.com/S0743-7315(20)30285-9/sb13
http://refhub.elsevier.com/S0743-7315(20)30285-9/sb13
http://refhub.elsevier.com/S0743-7315(20)30285-9/sb13
http://refhub.elsevier.com/S0743-7315(20)30285-9/sb13
http://refhub.elsevier.com/S0743-7315(20)30285-9/sb14
http://refhub.elsevier.com/S0743-7315(20)30285-9/sb14
http://refhub.elsevier.com/S0743-7315(20)30285-9/sb14
http://refhub.elsevier.com/S0743-7315(20)30285-9/sb14
http://refhub.elsevier.com/S0743-7315(20)30285-9/sb14
http://refhub.elsevier.com/S0743-7315(20)30285-9/sb15
http://refhub.elsevier.com/S0743-7315(20)30285-9/sb15
http://refhub.elsevier.com/S0743-7315(20)30285-9/sb15
http://refhub.elsevier.com/S0743-7315(20)30285-9/sb15
http://refhub.elsevier.com/S0743-7315(20)30285-9/sb15
http://refhub.elsevier.com/S0743-7315(20)30285-9/sb15
http://refhub.elsevier.com/S0743-7315(20)30285-9/sb15
http://refhub.elsevier.com/S0743-7315(20)30285-9/sb17
http://refhub.elsevier.com/S0743-7315(20)30285-9/sb17
http://refhub.elsevier.com/S0743-7315(20)30285-9/sb17
http://refhub.elsevier.com/S0743-7315(20)30285-9/sb23
http://refhub.elsevier.com/S0743-7315(20)30285-9/sb23
http://refhub.elsevier.com/S0743-7315(20)30285-9/sb23
http://refhub.elsevier.com/S0743-7315(20)30285-9/sb26
http://refhub.elsevier.com/S0743-7315(20)30285-9/sb26
http://refhub.elsevier.com/S0743-7315(20)30285-9/sb26
http://refhub.elsevier.com/S0743-7315(20)30285-9/sb26
http://refhub.elsevier.com/S0743-7315(20)30285-9/sb26
http://refhub.elsevier.com/S0743-7315(20)30285-9/sb26
http://refhub.elsevier.com/S0743-7315(20)30285-9/sb26
http://snipersim.org/w/Pinballs
http://refhub.elsevier.com/S0743-7315(20)30285-9/sb32
http://refhub.elsevier.com/S0743-7315(20)30285-9/sb32
http://refhub.elsevier.com/S0743-7315(20)30285-9/sb32
http://refhub.elsevier.com/S0743-7315(20)30285-9/sb32
http://refhub.elsevier.com/S0743-7315(20)30285-9/sb32
http://refhub.elsevier.com/S0743-7315(20)30285-9/sb33
http://refhub.elsevier.com/S0743-7315(20)30285-9/sb33
http://refhub.elsevier.com/S0743-7315(20)30285-9/sb33
http://snipersim.org
http://snipersim.org
http://snipersim.org

M. Nejat, M. Manivannan, M. Pericàs et al. / Journal of Parallel and Distributed Computing 144 (2020) 246–259 259

[38] X. Wang, J.F. Martínez, ReBudget: Trading off efficiency vs. fairness
in market-based multicore resource allocation via runtime budget
reassignment, in: ASPLOS ’16, 2016.

[39] B. Wolford, T. Speier, D. Bhandarkar, ‘‘Qualcomm Centriq 2400 processor,
in: Hot Chips: A Symposium on High Performance Chips, HC29, 2017.

Mehrzad Nejat is a Ph.D. student at Chalmers Univer-
sity of Technology. He received his M.Sc. degree from
University of Tehran in 2014 in electronics — circuits
and systems, and his B.Sc. degree from Ferdowsi Uni-
versity of Mashhad in 2011 in electrical engineering.
His research focus is on low power and energy effi-
cient computing systems, computer architecture, and
processor resource management.

Madhavan Manivannan is a post-doctoral researcher
at Chalmers University of Technology. He received
his PhD degree from Chalmers in 2016. His interests
include parallel computer architecture, performance
modeling and simulation, workload characterization,
parallel programming models, runtime systems and
social entrepreneurship.

Miquel Pericàs is an associate professor in the De-
partment for Computer Science and Engineering at
Chalmers University of Technology. He received his
Ph.D. from Universitat Politècnica de Catalunya ·
BarcelonaTech (UPC) in 2008. He was a senior re-
searcher at the Barcelona Supercomputing Center and a
postdoctoral fellow at the Tokyo Institute of Technology
before joining Chalmers in 2014. His research interests
include high performance computer architecture, paral-
lel programming models and scalable runtime systems.
He is the main author of the XiTAO research runtime

system.

Per Stenström is professor at Chalmers University
of Technology. His research interests are in parallel
computer architecture. He has authored or co-authored
four textbooks, more than 150 publications and ten
patents in this area. He has been program chairman
of several top-tier IEEE and ACM conferences including
IEEE/ACM Symposium on Computer Architecture and
acts as Associate Editor of ACM TACO, IEEE Trans-
action on Computers and Associate Editor-in-Chief of
JPDC. He is a Fellow of the ACM and the IEEE and
a member of Academia Europaea, the Royal Swedish

Academy of Engineering Sciences and the Royal Spanish Academy of Engineering
Science.

	Coordinated management of DVFS and cache partitioning under QoS constraints to save energy in multi-core systems
	Introduction
	Motivation
	The proposed scheme
	Hardware support and software integration
	Performance model
	Energy model
	Resource management algorithm (RMA)
	Optimization algorithm

	Experimental methodology
	Base configuration
	Simulation framework
	Workloads
	Evaluation metrics
	Energy saving
	QoS violations

	Experimental results
	Energy savings with strict QoS targets
	Effect of modeling accuracy
	QoS evaluation
	Energy performance trade-off
	Mixed QoS workloads
	Sensitivity to baseline setting
	Impact of overheads

	Related work
	Conclusions and future work
	Declaration of competing interest
	Acknowledgments
	References

