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Abstract: We study in detail the transverse collective modes of simple holographic models

in presence of electromagnetic Coulomb interactions. We render the Maxwell gauge field

dynamical via mixed boundary conditions, corresponding to a double trace deformation

in the boundary field theory. We consider three different situations: (i) a holographic

plasma with conserved momentum, (ii) a holographic (dirty) plasma with finite momentum

relaxation and (iii) a holographic viscoelastic plasma with propagating transverse phonons.

We observe two interesting new features induced by the Coulomb interactions: a mode

repulsion between the shear mode and the photon mode at finite momentum relaxation,

and a propagation-to-diffusion crossover of the transverse collective modes induced by

the finite electromagnetic interactions. Finally, at large charge density, our results are

in agreement with the transverse collective mode spectrum of a charged Fermi liquid for

strong interaction between quasi-particles, but with an important difference: the gapped

photon mode is damped even at zero momentum. This property, usually referred to as

anomalous attenuation, is produced by the interaction with a quantum critical continuum

of states and might be experimentally observable in strongly correlated materials close to

quantum criticality, e.g. in strange metals.
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1 Introduction

Coulomb interactions play a fundamental rôle in the dynamics of condensed matter sys-

tems because of their long-range nature. Plasmons, which determine the optical properties

of metals and semiconductors, are the most dramatic manifestation of that [1]. Since the

introduction of the plasmon concept by Pines and Bohm [2] as quantized bulk plasma

oscillations in metallic solids, a lot has been done and several potential technological appli-

cations have been devised, e.g. optical devices for information technology, sensing, nonlinear

optics, optical nanotweezers, biomedical applications and renewable energy technologies [3].

In principle, the entirety of plasmon physics can be described and understood us-

ing Maxwell’s equations in a medium and introducing the idea of a dielectric function

ε(ω, k) [4], where ω is the frequency and k is the wave-vector. However, recent experiments

on unconventional, or “strange”, metals have posed new challenges to this theoretical

framework [5, 6]. In more specific terms, the quasi-particle nature of plasmons, and the

idea of the Lindhard continuum, are not manifest in these cases. These new exciting ex-

perimental results stimulated a lot of activity in the holographic community [7–15], driven

by the hope of describing these new phenomena within the framework of strongly coupled

theories and their gravitational duals. A first positive outcome of this program has been

the observation of an anomalous attenuation, or damping, of the plasmon mode at k = 0,

in contrast to the result from Fermi-liquid theory where the mode is protected from decay

by the absence of any available decay channel. This was first observed in [7], and later

elaborated on in [12]. The residual damping at k = 0 is natural in holographic models

– 1 –



J
H
E
P
0
4
(
2
0
2
0
)
1
0
6

due to the absence of quasi-particles, and the related appearance of an incoherent critical

continuum of excitations. This leads to the experimentally observed featureless spectrum

in strange metals [5, 6], where a highly damped plasmon is only visible at low momentum.

Furthermore, the possibility of having new dispersion relations, especially linked to the

k-gap phenomenon [16–21], has been discussed [9, 14].

Inspired by these questions, in this manuscript, we discuss the dynamics of the trans-

verse spectrum of charged holographic systems in presence of long-range Coulomb interac-

tions. It is a well-known fact [1] that the transverse collective modes of a charged system are

coupled to the electromagnetic waves. The dispersion relation for the coupled “electromag-

netic collective modes” can be obtained directly once we know the transverse conductivity,

using the following expression

c2 k2 = ω2 ε⊥(ω, k) = ω2 + 4π i ω σ⊥(ω, k) , (1.1)

where c is the speed of light. The transverse conductivity σ⊥(ω, k) is defined in terms of

the two-point function of the transverse current

σ⊥(ω, k) ≡ 〈Jy Jy〉(ω, k) (1.2)

upon assuming the momentum being aligned in the x direction. In this notation, σ⊥(ω, 0)

is the standard electric conductivity. It’s “only” a matter of solving one exercise proposed

in the book of Pines and Nozières [1] to verify that, in Fermi liquids, the transverse col-

lective mode only exists for strong repulsion between quasi-particles, namely when the

first Landau parameter F s1 > 6. From a physical perspective, the strong coupling, which

corresponds to a large renormalized mass, is necessary to separate the propagating trans-

verse collective mode from the particle-hole continuum living below ω = vFk, with vF the

Fermi velocity [22]. This situation can appear in systems close to criticality where the

effective mass m∗ diverges. Even more interestingly, this might be the case in the context

of strongly correlated metals such as those appearing in the experiments of [5, 6], where

weakly coupled Fermi liquid theory is likely not applicable.

Before proceeding to the model and the results, let us briefly summarize what is ex-

pected from a quasi-particle point of view. A transverse deformation in a material produces

a polarization, which itself interacts with the electromagnetic field. The EM response pro-

vides a feedback mechanism in the sample and together this gives rise to the transverse

collective modes. The full spectrum of modes can be obtained by solving (1.1); here, we

comment only on the most salient features shown in figure 1. First, let us consider the

large frequency regime ω � vF k, away from the particle-hole continuum which in figure 1

is indicated by the shaded region. There, the dielectric function can be well approximated

by the simple form

ε⊥(ω, k) = 1 −
ω2
P

ω2
(1.3)

where ωP is the plasma frequency, which is microscopically given by

ω2
P ≡

ne e
2

ε0m∗
, (1.4)
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Figure 1. The dynamics of the transverse modes. The shaded region represents the continuum of

single-pair excitations. The black dot indicates the point at which the transverse collective mode

disappear into the continuum. The Fermi velocity is indicated with vF . Figure adapted from [1].

with ne the electron density, e the EM coupling, ε0 the dielectric constant of the vacuum

and m∗ the effective mass. Plugging (1.3) into the master equation (1.1), the solution

becomes

ω2 = ω2
P + c2 k2 , (1.5)

which is the standard dispersion relation for a plasma oscillation with a mass gap given by

the plasma frequency ωP . At large momentum compared to the plasma frequency, i.e. c k �
ωP , the coupling between the EM waves and the electrons is very weak and the dispersion

relation of the modes is not modified. In that regime, we have a photon root ω = c k and

a propagating “electronic shear sound mode” ω = vs k, where the speed of sound is given

by the elastic properties of the electronic liquid, namely the Landau parameters [23]. The

major effects of the EM interactions occur in the so-called strongly coupled region at low

momentum c k � ωP . In that regime, the “photon root” becomes gapped. The same is

true for the transverse collective mode which at low momentum is repelled by the photon

root and disappears in the continuum, as shown in figure 1 for k < ωP /c.

Interestingly, the transverse collective mode should be present in a large class of in-

teracting charged and neutral Fermi liquids especially those in proximity to critical points

where the quasiparticle mass diverges [22]. Recently, a viable experimental setup for its

detection has been proposed [24]. According to the results of that paper, “the shear sound

is responsible for the appearance of sharp dips in the AC conductance of narrow channels

at resonant frequencies matching its dispersion. Ultra-clean 2D materials that can be tuned

towards the Wigner crystallization transition such as Silicon MOSFETs, MgZnO/ZnO,

p-GaAs and AlAs quantum wells are promising platforms to experimentally discover the

shear sound.”

Finally, transverse collective modes have been discussed in dusty (dirty) plasmas and

Yukawa fluids both in simulations [25, 26] and experiments [27]. Interestingly enough, the

appearance of a k-gap in the dispersion relation of the transverse modes has been identified,

in good agreement with the holographic results.
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2 The model

We consider the holographic bottom-up model introduced in [28, 29] and described by the

following action

S =

∫
d4x
√
−g
[
R

2
+

3

`2
− 1

4
m2 V (X) − 1

4
F 2

]
. (2.1)

The model consists of the standard Einstein-Maxwell terms plus an additional scalar sector

defined in terms of an arbitrary potential of the quantity X ≡ ∂µφ
I∂µφI , where φI =

αxI , with I = x, y. This system admits a simple asymptotic AdS black-brane solution with

metric

ds2 =
1

z2

[
−f(z) dt2 +

dz2

f(z)
+ dx2 + dy2

]
, (2.2)

with the holographic z coordinate spanning between the AdS boundary z = 0 and the

black hole horizon z = zh (defined as f(zh) = 0). The bulk profiles of the gauge and scalar

fields have simple solutions,

At(z) = Q (1− z) , φI = αxI , (2.3)

where Q and α parameterize the background, and the emblackening factor f is defined as

f(z) = z3
∫ zh

z
dv

[
3

v4
− m2

4 v4
V (v2) − Q2

2z4h

]
. (2.4)

With the holographic dictionary, the chemical potential µ and the charge density ρ of the

dual field theory can be read off as

µ =
Q√
λ zh

, ρ =

√
λQ

z2h
, (2.5)

where we have introduced λ, a relative coupling strength for the electromagnetic field

between the bulk and boundary theories as in [7],

Fboundary =
1√
λ
Fbulk|∂M , Jboundary =

√
λ ∂zAbulk|∂M , (2.6)

i.e. increasing λ means a smaller EM-field on the boundary and a larger charge. Finally,

the temperature of the dual field theory is given by

T = −f
′(zh)

4π
=

12−m2 V
(
z2h
)
− 2Q2

16π zh
. (2.7)

In this manuscript, we consider the transverse sector of the fluctuations (see details

in appendix A). Importantly, following the prescription given in [8], we get the mixed

boundary conditions (
ω2 − k2

)
δA(0)

y + λ δA(1)
y = 0 (2.8)

for the gauge field perturbation, whose asymptotic behaviour turns out to be

δAµ = δA(0)
µ + δA(1)

µ z + O(z2) . (2.9)

– 4 –



J
H
E
P
0
4
(
2
0
2
0
)
1
0
6

The mixed boundary conditions in (2.8), which are equivalent to a double-trace deforma-

tion [7, 11], make the gauge field dynamical in the boundary field theory1 and implement

the effects of the electromagnetic Coulomb interaction. In this sense, the parameter λ

can indeed be associated with the strength of Coulomb interactions. The speed of light c

in (1.1) has here been set to unity (as a choice of convention).

In the following, we will keep λ finite (unless otherwise mentioned we set λ = 1) and

we will consider three different situations

(I): m2 = 0. This is the simple Einstein-Maxwell model. The dual field theory represents

a charged relativistic plasma with Coulomb interactions.

(II): m2 6= 0 and V (X) = X. This is the famous linear axion model [30]. The dual

field theory represents a charged relativistic plasma with Coulomb interactions and

momentum relaxation. The momentum dissipation rate will be determined by the

value of the dimensionless quantity α/T .

(III): m2 6= 0 and V (X) = X3. This model breaks translations spontaneously and displays

the presence of transverse (and longitudinal) propagating phonons [31, 32]. The dual

field theory represents a charged relativistic plasma with Coulomb interactions and

finite elastic moduli. The rigidity of the system is parameterized by the dimensionless

quantity α3/T .

3 Transverse collective modes

3.1 A relativistic charged plasma with Coulomb interactions

We start by considering a relativistic charged plasma with finite EM interactions. The

gravitational dual picture is a charged Reissner-Nordström (RN) black hole with modified

boundary conditions as in (2.8), i.e. at finite λ, for the gauge field perturbations. The

numerical results for the two modes with lowest energy are shown in figure 2.

At zero charge, µ = 0, the gravitational and the Maxwell sectors are decoupled.

The dynamics of the gravitational sector is simply that of a shear diffusive mode ω =

−iD k2 [33], where, as usual, the diffusion constant is set by the universal value of the

shear viscosity D = η/sT = 1/4πT [34, 35]. The dynamics of the Maxwell sector displays

a typical k-gap dispersion relation (see [20] for a recent review) which can be understood

directly from the master equation (1.1). Because of the absence of Galilean invariance, the

resistivity is non-zero even at zero charge density, where it is governed by the so-called

incoherent conductivity σ(ω) = σ0 [36].2 Inserting a constant value for the conductivity

1Using the holographic dictionary, it follows that, under standard boundary conditions, considering a

local U(1) gauge symmetry in the bulk corresponds to having a global U(1) symmetry in the dual field theory.

In this sense, there are no EM interactions in the boundary theory since there is no dynamical photon.
2Galilean invariance constraints the momentum density T ti to be proportional to the electric current

J i. This requires that σ0 = 0. Physically, a non-zero σ0 corresponds to the possibility of creating electron-

hole pairs moving in different directions. The pairs would not transport momentum, but they would carry

charge and therefore contribute to the conductivity. This also explains why Galilean invariance is broken

in our model as the number of electrons is not a conserved quantity, due to the creation/annihilation of the

electron-hole pairs.
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in formula (1.1), one recovers immediately the k-gap behaviour shown in figure 2. To the

best of our knowledge this feature first appeared in [37], and was then re-discovered in the

context of global symmetries in [38].

After introducing a finite chemical potential, the two sectors are not decoupled any-

more and they start interact with a strength proportional to the charge density itself. The

effect on the shear mode is not dramatic and simply leads to a rescaling of the diffusion

constant D [39]. The dynamics in the Maxwell sector is more interesting. A finite charge

density leads to several consequences for the k-gap dynamics: firstly, the hydrodynamic

charge diffusion mode is given a finite damping at k = 0, and therefore ceases to be a

hydrodynamic mode in the strict sense. The situation is analogous to what happens in the

spectrum of the linear axion model [30] once translations are broken [18, 19]. Secondly,

the position of the momentum gap moves towards lower momenta, until approaching the

origin and being converted to a real frequency/energy gap (a mass) (see [40] for a field

theory analysis). Thirdly, the separation between the two colliding modes decreases with

increasing charge density and it eventually shrinks to zero at the point where the momen-

tum gap closes. At that specific point, one recovers a linear and massless propagating

photon mode, Re[ω] = c k. Increasing the chemical potential further, the charge density

produces a gapped mode whose mass is determined by the plasma frequency3 ωP . At this

point, the spectrum displays a typical quadratic dispersion ω2 = ω2
P + c2 k2, since the effi-

cient screening from the large charge density results in weaker long-range correlations, and

therefore physics resembling that of conventional Fermi-Landau theory. Increasing the rel-

ative coupling λ, which corresponds to increasing the charge density, makes the gap larger

(right panel of figure 2). Note, however, that this mode is strongly damped, even at zero

momentum k = 0. This implies the presence of an extra damping mechanism in addition

to the common Landau damping, as already discussed for the longitudinal case in [7, 12],

which is sometimes called an anomalous attenuation. Its origin lies in the presence of

a quantum critical continuum of states, which holographically can be understood by the

mode originating from the collision of two highly damped non-hydrodynamical modes [9],

and has potentially been experimentally observed in [5, 6].

Let us spend a few words on the diffusion-to-sound crossover, usually referred to as the

k−gap phenomenon [20]. The appearance of a relaxation time responsible for this effect

can be understood directly from the master equation (1.1) as it can be rewritten as

ω2 + i
ω

τ
= c2 k2 + . . . (3.1)

which gives rise to the aforementioned collision at k = 1/(2cτ),

ω± = − i

2 τ
±
√
c2 k2 − 1

4 τ2
. (3.2)

Writing the master equation as

ε(ω, k)ω2 = c2 k2 , ε(ω, k) ≡ 1 + 4π i σ⊥(ω, k) (3.3)

3To be precise, there is also a contribution to the mass gap from the momentum relaxation rate Γ, which

becomes subdominant in the limit of large charge density.
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Figure 2. The transverse collective modes in absence of the scalar sector. Solid lines are the real

parts of the modes,4 and dashed lines the imaginary parts. Left: the modes at different values of

the dimensionless chemical potential µ/T . Note especially that the imaginary part (here mostly

horizontal) of the mode with non-zero real part breaks apart into two purely imaginary modes at

small k and µ. Right: the mode in the Maxwell sector at µ/T = 3 as a function of the EM coupling λ.

it is clear that the existence of a finite relaxation time is due to the polarization of the

material, as encoded in a non-trivial dielectric function. It is tempting to associate this

relaxation time with how long it takes for the material to lose its polarization — the

dielectric relaxation time.

3.2 A dirty plasma with Coulomb interactions

In this second case, we add momentum relaxation to our initial plasma by coupling it to a

scalar sector. Momentum relaxation will make the plasma “dirty” and closer to the realistic

situation in dusty plasma, as in [25–27].

The relaxation of momentum produces a finite damping for the shear mode, whose

dispersion relation now becomes

ω = − iΓ − iD k2 + . . . (3.4)

where Γ is the momentum relaxation rate, governed in our case by the dimensionless factor

α/T , which is proportional to the mass of the graviton. In absence of interactions with the

EM sector, increasing the momentum relaxation rate ∼ α/T , this mode will move down

the imaginary axis, becoming overdamped and extremely short-lived.

When turning on a finite, but small, charge density something interesting happens. At

zero momentum relaxation, i.e. α/T=0, and finite but small charge density, we have the

4It should be noted that due to symmetry, there are also modes with negative real parts, but as they

are symmetric around the k/T -axis, they are omitted to reduce clutter in the graph.
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Figure 3. Dispersion relations of collective modes at fixed momentum relaxation rate Γ, encoded in

the dimensionless parameter α/T = 3 (more precisely Γ = α2/2πT ). Solid lines are the real parts,

dashed lines imaginary. Similarly colored dashed and solid lines correspond to the same mode. Left

panel: for small chemical potential, µ/T = 0.1. Central panel: for intermediate chemical potential,

µ/T = 1. Right panel: for large chemical potential, µ/T = 2.

following set of modes:

shear mode (gravitational sector) → ω = − iD k2 :

k

Im[ω]

(3.5)

photon mode (Maxwell sector) → damped k-gap :

k

Im[ω]

(3.6)

Increasing momentum relaxation, the mode in (3.5) moves down and approaches the

top mode in (3.6). When they get close to each other, they mix, and then they repel each

other as shown in the left panel of figure 3. This avoided crossing mechanism is quite

natural in interacting condensed matter systems (see for example the dispersion relation

of polaritons [41, 42]), but to the best of our knowledge it has never been mentioned in the

context of transverse collective modes before.

At larger charge density, the EM branch shown in (3.6) moves down the imaginary

plane and it has less chance to interact with the shear mode (see central panel of figure 3).

The repulsion mechanism which we are discussing happens only in the regime of parameters

where the two modes are close to each other and potentially crossing. At very large charge

density, compared to temperature and to the momentum relaxing parameter α, the system

does behave as if momentum was conserved. In simple terms, the strong repulsion between

the modes pushes the pseudo-diffusive shear mode towards the origin making its damping

term vanish. A gapped mode appears, as in the right panel of figure 3, which has also a

finite damping because of momentum relaxation. At exactly zero chemical potential, the

equations of motion decouple, and there is a crossing rather than a repulsion, and a well

defined point where the modes cross. These points are shown as a curve in the left panel

of figure 4, and the gaps produced at some specific values of the momentum relaxation

and small chemical potential are shown in the right panel. We find that the position of

the repulsion point as a function of the same parameter α/T moves farther away from the

origin (larger ω/T and k/T ) with increasing momentum relaxation. This is quite expected
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Figure 4. The mode repulsion at different α/T . Left: the repulsion point (kr, ωr) for different α/T

at µ/T � 1. Similar behaviour appears for different µ/T . Right: dispersion relations highlighting

gap opening at µ/T = 0.1 near some repulsion points of the left panel.

Figure 5. Zoom on the dispersion relations at α/T = 3. Left: the opening of the gap at different

values of µ/T at fixed λ = 1. Right: the gap for different strengths of EM coupling λ, at µ/T = 0.1.

The dashed line indicates the decoupled mode found at µ/T = 0 (independent of λ).

as, to zeroth order, the position of the repulsion point is proportional to the gap Γ of (3.4).

Additionally, we find that when α � µ 6= 0, the size of the gap scales with α, and for

α� µ, the gap becomes the same as indicated in (3.6), near k = 0.

The dependence on the EM interactions, determined by µ/T and λ, is shown in figure 5.

In the left panel we show the dynamics of the repulsion as a function of µ/T . By increasing

the chemical potential of the system, the repulsion between the two modes becomes stronger

and the damped shear mode is pushed towards the origin. At the same time, the other

modes acquires a bigger imaginary part and the gap between the two becomes larger.

Instead, tuning λ and keeping fixed µ/T , the size of the gap is kept fairly constant, but

moves the position of the gap horizontally, as shown in the right panel of figure 5. Note

however, that this analysis is made specifically at constant µ/T and varying ρ/T . The

dictionary takes into account the EM coupling λ, see (2.5). This means that the effect

on the gap from increasing λ is primarily the resulting effect from the change in chemical

potential, and not from the change in charge density. This analysis confirms that the

repulsion mechanism between the shear mode and the charge one is driven by the EM

interactions, specifically, the chemical potential.

– 9 –
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Figure 6. The transverse collective modes in presence of transverse phonons. Dispersion relations

as functions of the shear elastic modulus of the system G, encoded in the dimensionless parameter

α3/T . Solid lines are the real parts, dashed lines the imaginary parts. Similarly colored dashed

and solid lines correspond to the same mode. Left: intermediate chemical potential, µ/T = 1,

and α3/T = 1. Center: large chemical potential, µ/T = 3, and α3/T = 3. Right: zoom on the

transverse phonon mode in the center panel.

3.3 An elastic plasma with Coulomb interactions

Let us now consider a different situation, namely a plasma where translations are not broken

explicitly but instead spontaneously. This case can be considered by changing the potential

in the scalar sector [31]. The appearance of transverse phonon modes is guaranteed by the

SSB pattern and has been checked and studied in several works [14, 32, 43–48]. Here, we

are interested in analyzing the interaction between the transverse collective sound mode

and the transverse EM waves in presence of Coulomb interactions. As explained in the

introduction, it is clear that the phonons and photons will interact, leading to the existence

of non-trivial collective modes.

At small chemical potential, the mixing between the two sectors is not very strong, and

the modes are rather unaffected by the presence of each other (see left panel of figure 6).

The situation is different in presence of a large chemical potential as shown in the center

panel of figure 6 (additionally, increasing the interaction strength λ has a similar effect,

producing a similar behaviour to figure 2). The photon mode becomes massive, with a finite

plasma frequency ωP related to the charge density and the EM interactions strength λ. The

transverse sound becomes strongly modified at small momentum, k/T < 1, because of the

interaction with the photon mode, and instead displays a quadratic behaviour, highlighted

in the right panel of figure 6. The photon mode repels the sound mode as explained in the

introduction. In contrast, at large momentum k/T � 1, the interaction between the two

modes is very weak and the modes follow their natural dispersion relations

ω = c k , ω = vsound k , (3.7)

where vsound is determined by the rigidity of the system and therefore depends on the

dimensionless parameter α3/T .

The larger the parameter α3/T , the larger the shear elastic modulus (computed as

introduced in [29, 49]) and therefore also the speed of transverse phonons. The real part

of the dispersion relation of the modes is in agreement with the expectations from Fermi

liquid theory at strong coupling, shown in figure 1, but there is a crucial difference in the

imaginary part. There is an anomalous damping mechanism which is active even at zero

– 10 –
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Figure 7. The dynamics of the hydrodynamic modes in the case of an elastic plasma, with the

diffusive charge mode omitted. Left: at zero chemical potential and zero elasticity, the diffusion

modes of the transverse collective excitations superimpose each other. Center: at finite chemical

potential and small elasticity, the two diffusion constants become different and smaller than the

µ = 0 value (dashed line). Right: increasing the rigidity of the system, the two modes collide and

produce a propagating sound mode in a k-gap fashion. The higher the rigidity, parameterized by

α3/T , the more the momentum gap moves towards the origin and eventually disappears. In this

sense, the physics in the central and right panels is qualitative the same. See figure 8 for a detailed

analysis of the recombination point as a function of α3/T .

momentum k = 0 (where the standard Landau damping is “frozen”). This is the analogue

of the anomalous attenuation already discussed for longitudinal plasmons in [7, 12], and

potentially observed in strange metal experiments in [5, 6].

In this last case, i.e. in presence of propagating transverse modes, we observe another

interesting feature which reflects the non-trivial effects of the EM interactions. At finite

charge density (or equivalently chemical potential), the interactions, whose strength are

controlled by the parameter λ, induce a propagation-to-diffusion crossover and the trans-

verse collective modes become diffusive at low momenta. The diffusion constants of the

two modes are not equal (central panel of figure 7) but exhibit a small splitting. At large

enough momentum, these two diffusive modes collide in a k-gap fashion and they pro-

duce the propagating transverse sound mode, with speed determined by the rigidity of the

system (right panel of figure 7).

The dynamics is shown in figure 7. At zero chemical potential, and zero elasticity

α3/T = 0, the two diffusion modes superimpose with the same diffusion constant D =

1/(4πT ) (see the left panel of figure 7). Increasing the chemical potential, the diffusion

constants of the transverse collective modes become smaller and take on different values.

Increasing the rigidity of the system, parameterized by α3/T , the two diffusive modes

collide at a certain critical momentum (see panel c of figure 7). At momenta larger than

the critical value, a propagating transverse phonon with Re(ω) 6= 0 appears. Moreover, we

find that the k-gap becomes smaller by increasing the rigidity of the system. The details of

this mechanism are shown in figure 8. Importantly, we observe that this collision is a result

of the Coulomb interaction. As shown in the right panel of figure 8, this feature disappears

in absence of Coulomb interactions, λ→ 0, and it becomes more and more pronounced at

large EM coupling λ ∼ 1. Therefore, the effects of the EM interactions is to inhibit the

propagation of the transverse collective modes at large distances, which is natural given

the dissipative dynamics present even at k = 0 as a result of the absence of quasi-particles,

and hence an incoherent continuum of available excitations.

– 11 –
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Figure 8. The pole collision at µ/T = 3. Left: zoom on the dispersion relations before the mode

collision for different values of the elasticity α3/T . Right: zoom on the dispersion relations before

the mode collision for different values of the EM coupling λ, at α/T = 0.2.
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Figure 9. Zoom on the photon mode near the origin at large rigidity, α3/T = 3. The mode

transition from ordinary sound, to sound with a k-gap, to sound with a quadratic modulation at

small k when increasing µ/T is shown. In particular, an intermediary “exotic” dispersion is obtained

for µ/T = 1.5. At large k, they all exhibit the same vsound.

As a result, at large rigidity, this mode collision moves towards the origin and it creates

the standard propagating sound mode ω ∼ vsound k. Further increasing the rigidity beyond

this point produces a different strong modulation at small k, the quadratic dispersion seen

on the right panel of figure 6. At small chemical potential, such a strong rigidity leads

to non-trivial interactions between the phonon mode and the overdamped photon mode,

resulting in a three-pole interaction similar to the one observed in [9]. At large µ/T , the

hydrodynamic mode becomes quadratic, Re(ω) ∼ k2, as discussed already in [50]. This

transition is shown in figure 9.

4 Conclusions

In this work, motivated by the puzzling experimental results of [5, 6] and by the results

of [25–27], we have analyzed in detail the spectrum of transverse collective modes in charged

holographic systems taking Coulomb interactions into account. Our most interesting find-

ings can be summarized as follows:
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• We observe a new mode repulsion mechanism in the presence of finite momentum

relaxation, where the damped shear mode and the photon mode repel each other.

• We observe a propagation-to-diffusion crossover of the transverse collective modes at

finite elasticity. This mechanism becomes more evident the stronger the electromag-

netic interaction is.

• At large charge density, we observe a low frequency repulsion between the transverse

collective mode and the photon mode. The spectrum of the modes has strong simi-

larities with that of a charged Fermi liquid in the strongly interacting regime, F s1 > 6

(see figure 1), but with a crucial difference: the presence of an anomalous attenuation.

The gapped photon mode is indeed damped also at zero momentum k = 0 because of

the interaction with a quantum critical continuum of states, as previously observed in

holographic models for longitudinal collective modes [7, 12]. This feature might po-

tentially be experimentally observed in strongly correlated materials in the quantum

critical region, e.g. in strange metals [5, 6]. Recently, there have appeared concrete

proposals for how to experimentally detect the transverse collective mode [24], and

it will be interesting to see if this leads to experimental results against which these

holographic results can be compared.

From a theoretical point of view, there are several future directions which can be

pursued with our methods. First, a more detailed comparison with the generalized global

symmetry framework [38, 51] could be helpful in the direction of a unified theoretical

understanding. Second, one could add a finite magnetic field to the framework including

Coulomb interactions [7, 8, 11] to study magnetic screening. It should be straightforward

to study spontaneous magnetization in holography and the emergence of magnons. We

plan to consider some of these ideas in the near future.
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A Equations of motion and numerical methods

We treat the system in linear response and consider the transverse sector, that is we add

small perturbations to the background of section 2 of the form

gty → gty(z) + ε e−iωt+ikx δgty(z) , (A.1)

gxy → gxy(z) + ε e−iωt+ikx δgxy(z) , (A.2)

Ay → Ay(z) + ε e−iωt+ikx δAy(z) , (A.3)

Φy → Φy(z) + ε e−iωt+ikx δΦy(z) , (A.4)
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where the equations of motion at order zero in ε are already solved by the background. At

order one the equations of motion for the linear axions are presented in section A.2 and

for the spontaneous symmetry breaking potential in section A.3.

A.1 Numerical methods

The numerics were done in Mathematica, using the xAct [52] and xTras [53] packages.

The four coupled ordinary second order differential equations have four linearly inde-

pendent solutions. One can be found analytically as a pure gauge mode. The remaining

three are found numerically by imposing in-falling boundary conditions on the black hole

horizon, and correspond to the values of δAy, δgxy and δΦy on the horizon. To simplify the

numerics, an expansion was made to a small offset from both the horizon and the boundary.

To find physical modes, we consider the full boundary value problem, with additional

boundary conditions at the conformal boundary. There we impose Dirichlet boundary

conditions on all fields except δAy, on which we instead impose (2.8). As the system is

linear, requiring four boundary conditions on a linear combination of four independent

solutions can be rephrased as evaluating the determinant of the corresponding matrix of

boundary values, and find for what values of (ω, k) that the determinant,∣∣∣∣∣∣∣∣∣
δgty(z)1 δgxy(z)1 δΦy(z)1 [

(
ω2 − k2

)
δAy(z) + λ δA′y(z)]1

δgty(z)2 δgxy(z)2 δΦy(z)2 [
(
ω2 − k2

)
δAy(z) + λ δA′y(z)]2

δgty(z)3 δgxy(z)3 δΦy(z)3 [
(
ω2 − k2

)
δAy(z) + λ δA′y(z)]3

δgty(z)4 δgxy(z)4 δΦy(z)4 [
(
ω2 − k2

)
δAy(z) + λ δA′y(z)]4

∣∣∣∣∣∣∣∣∣
z→0

= 0 , (A.5)

is zero. Zero here being up to a numerically acceptable precision, which we chose to

be significantly higher than necessary, simply to eliminate possible numerical artifacts.

A.2 Linear axions

For the linear axions, V (X) = X, the equations of motion of the perturbations are:

δgty
(
−2zf ′+6f−k2z2+Q2z4−6

)
z2f

− kωδgxy
f

− iαωδΦ
y

f

−2Qz2δA′y−
2δg′ty
z

+δg′′ty = 0 , (A.6)

kωδgty
f2

+
δgxy

(
6f2−f

(
−z2f ′′+4zf ′+Q2z4+α2z2+6

)
+ω2z2

)
f2z2

+
iαkδΦy

f

+

(
f ′

f
− 2

z

)
δg′xy+δg′′xy = 0 , (A.7)

δAy
(
ω2−fk2

)
f2

+
f ′δA′y
f
−
Qδg′ty
f

+δA′′y = 0 , (A.8)

and
δΦy

(
ω2 − fk2

)
f2

− iαωδgty
f2

+

(
f ′

f
− 2

z

)
δΦy ′ − iαkδgxy

f
+ δΦy ′′ = 0 . (A.9)
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A.3 SSB model

In the spontaneous symmetry breaking case, V (X) = X3, the equations of motion of the

perturbations are similar, but altered slightly:

−
δgty

(
2zf ′ − 6f + k2z2 −Q2z4 + 8α6z6 + 6

)
fz2

− kωδgxy
f

− 12iα5ωz4δΦy

f

−2Qz2δA′y + δg′′ty −
2δg′ty
z

= 0 , (A.10)

kωδgty
f2

+
δgxy

(
6f2 − f

(
−z2f ′′ + 4zf ′ +Q2z4 + 20α6z6 + 6

)
+ ω2z2

)
f2z2

+
12iα5kz4δΦy

f
+

(
f ′

f
− 2

z

)
δg′xy + δg′′xy = 0 , (A.11)

δAy
(
ω2 − fk2

)
f2

+
f ′δA′y
f
−
Qδg′ty
f

+ δA′′y = 0 , (A.12)

and

δΦy
(
ω2 − fk2

)
f2

− iαωδgty
f2

+

(
f ′

f
+

2

z

)
δΦy ′ − iαkδgxy

f
+ δΦy ′′ = 0 . (A.13)
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