
Thesis for The Degree of Doctor of Philosophy

Requirements Engineering that Balances Agility of
Teams and System-level Information Needs at Scale

Rashidah Kasauli Namisanvu

Division of Software Engineering
Department of Computer Science & Engineering

Chalmers University of Technology and Gothenburg University
Gothenburg, Sweden, 2020

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Chalmers Research

https://core.ac.uk/display/326728756?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Requirements Engineering that Balances Agility of Teams and System-
level Information Needs at Scale

Rashidah Kasauli Namisanvu

Copyright ©2020 Rashidah Kasauli Namisanvu
except where otherwise stated.
All rights reserved.

ISBN 978-91-7905-331-4
Doktorsavhandlingar vid Chalmers tekniska högskola, Ny serie nr 4798.
ISSN 0346-718X

Technical Report No 184D
Department of Computer Science & Engineering
Division of Software Engineering
Chalmers University of Technology and University of Gothenburg
Gothenburg, Sweden

This thesis has been prepared using LATEX.
Printed by Chalmers Reproservice,
Gothenburg, Sweden 2020.

ii

To my children.
May you be inspired!

iv

Abstract

Context: Motivated by their success in software development, large-scale
systems development companies are increasingly adopting agile methods and
their practices. Such companies need to accommodate different development
cycles of hardware and software and are usually subject to regulation and safety
concerns. Also, for such companies, requirements engineering is an essential
activity that involves upfront and detailed analysis which can be at odds with
agile development methods.

Objective: The overall aim of this thesis is to investigate the challenges and
solution candidates of performing effective requirements engineering in an agile
environment, based on empirical evidence. Illustrated with studies on safety
and system-level information needs, we explore RE challenges and solutions in
large-scale agile development, both in general and from the teams’ perspectives.

Method: To meet our aim, we performed a secondary study and a series of
empirical studies based on case studies. We collected qualitative data using
interviews, focus groups and workshops to derive challenges and potential
solutions from industry.

Findings: Our findings show that there are numerous challenges of conducting
requirements engineering in agile development especially where systems devel-
opment is concerned. The challenges discovered sprout from an integration
problem of working with agile methods while relying on established plan-driven
processes for the overall system. We highlight the communication challenge
of crossing the boundary of agile methods and system-level (or plan-driven)
development, which also proves the coexistence of both methods.

Conclusions: Our results highlight the painful areas of requirements engineer-
ing in agile development and propose solutions that can be explored further.
This thesis contributes to future research, by establishing a holistic map of
challenges and candidate solutions that can be further developed to make RE
more efficient within agile environments.

Keywords

Requirements Engineering, Systems Development, Coordination, Large-scale
Agile, Plan-driven, Empirical Research, Methods Co-existence, Safety-critical
System Development

Acknowledgment

Working between two separate environments, Uganda and Sweden, the last
four years have been quite an experience for me. I have interacted with many
interesting, supportive and knowledgeable people that I would like to convey
my gratitude to.

My heartfelt gratitude goes to my main supervisor Eric Knauss for the
exceptional supervision that has changed my life in ways I had never envisioned.
Through your positive attitude, rigor and confidence in my abilities, I have
experienced the true spirit of research. Thank you!

To my co-supervisor Benjamin Kanagwa, I appreciate the encouragement,
and calming sentiments that kept me strong. My examiner Ivica Crnkovic,
thank you for guiding my research in a great and supportive way.

Special gratitude goes to all my 16 co-authors including Grischa Liebel,
Jennifer Horkoff, Francisco Gomes, Rebekka Wohlrab, Jan-Philip Steghöfer,
Salome Maro, Agneta Nilsson, Gul Calikli. It has been loads of fun working
among you. Thank you for always sharing insightful thoughts and giving
constructive feedback whenever asked.

Michel Chaudron, Engineer Bainomugisha and the SIDA BRIGHT project
team in Uganda and Sweden. Thank you for making my PhD dream a reality.
Special gratitude goes to Pär Meiling for always ensuring we have housing in
Sweden. Thank you Pär.

To all colleagues and administrative staff at the software engineering division
of Chalmers CSE department, thank you for the friendly environment. Léuson
Mario Pedro da Silva, thank you for the relaxing jokes. Alessia Knauss, thank
you for helping me stay healthy and sane.

My fellow PhD students on BRIGHT especially Hawa Nyende, Micheal
Kizito, Dragule Swaib, David Bamutura and Grace Kobusinge. I have enjoyed
the shared frustrations :) and happiness in travelling together.

Colleagues at Makerere SCIT especially Joseph Balikuddembe, Mary Ns-
abagwa, Jacob Katende, Hasifa Namatovu, Moses Ntanda, Joyce Nakatumba.
Thank you for your motivation and support.

My father Hajji M.Z. Kasauli and mothers Cornety Kivumbi, and Rahma
Makumbi. Thank you for your constant prayers. I know you are my miracle!
My brothers Yasin, Shakie, Umar, Zed, and sisters Madiina, Aisha, Sharifah,
Shamirah, Rukia, and Shakirah. The Kasaulis. The onus is now on you. :D

To my husband Bashir Mwebe, thank you for encouraging and supporting
me to pursue this degree. You showed me that I could endure and never allowed
me to give up. To my children: Nushin, Rahma, Rabiib, Rithwana, and Raihan,
thank you for your prayers and endurance.

vii

viii

Alhamdulillah! Alhamdulillah! Alhamdulillah! None of this would be
possible without your might Allah. Thank you Allah for putting me in the
company of those wonderful and supportive people these last four years. May
you continue to bless them all!

Funding: This research was funded in part by the Swedish International
Development Cooperation Agency (Sida) and Makerere University under Sida
contribution No: 51180060; Project No. 317; Building Research Capacity
in Innovative Information and Communication Technologies for Development
(ICT4D) for Sustainable Socio-economic Growth in Uganda (BRIGHT).

List of Publications

Appended publications

This thesis is based on the following publications:

[A] R. Kasauli, G. Liebel, E. Knauss, S. Gopakumar and B. Kanagwa,
“Requirements Engineering Challenges in Large-Scale Agile System Devel-
opment”
In IEEE 25th International Requirements Engineering Conference (RE’17),
Lisbon, Portugal, September 4–8, 2017.

[B] R. Kasauli, E. Knauss, B. Kanagwa, A. Nilsson, G. Calikli, “Safety-
Critical Systems and Agile Development: A Mapping Study”
In 44th Euromicro Conference on Software Engineering and Advanced
Applications (SEAA), Praque, Czech Republic, August 29–31 2018.

[C] R. Kasauli, E. Knauss, J. Nakatumba-Nabende, B. Kanagwa, “Agile
Islands in a Waterfall Environment: Challenges and Strategies in Auto-
motive”
In Evaluation and Assessment in Software Engineering (EASE’20), Trond-
heim, Norway, April 15–17, 2020.

[D] R. Kasauli, E. Knauss, J. Horkoff, G. Liebel, F. Gomes, “Requirements
Engineering Challenges and Practices in Large-Scale Agile Systems De-
velopment”
Journal submission: In the process of requested minor revision.

[E] R. Kasauli, R. Wohlrab, E. Knauss, J.P. Steghöfer, J. Horkoff, S. Maro,
“Charting Coordination Needs in Large-Scale Agile Organisations with
Boundary Objects and Methodological Islands”
Accepted In International Conference on Software and System Processes
(ICSSP2020), Seoul, South Korea, 2020.

[F] R. Kasauli and E. Knauss. “A Simplified Guide to the use of T-Reqs”
Technical report Extending
E. Knauss, G. Liebel, J. Horkoff, R. Wohlrab, R. Kasauli, F. Lange,
and P. Gildert. “T-Reqs: Tool Support for Managing Requirements in
Large-Scale Agile System Development.”
In IEEE 26th International Requirements Engineering Conference (RE’18),
Banff, Alberta, Canada, August 20–24, 2018.

ix

x

Other publications

The following publications were published during my PhD studies. However,
they are not appended to this thesis, due to contents not related to the thesis.

[a] R. Kasauli. “Requirements Engineering for Large Scale Agile Systems
Development.”
In Requirements Engineering: Foundation for Software Quality (REFSQ)
Workshops (Doctoral Symposium), Essen, Germany, February 26 – March
2, 2017.

[b] R. Kasauli, E. Knauss, A. Nilsson, S. Klug. “Adding Value Every Sprint:
A Case Study on Large-Scale Continuous Requirements Engineering”
In 3rd Workshop on Continuous Requirements Engineering, REFSQ
Workshops, Essen, Germany, February 26–March 2, 2017.

[c] E. Knauss, G. Liebel, K. Schneider, J. Horkoff, and R. Kasauli. “Quality
Requirements in Agile as a Knowledge Management Problem: More than
Just-in-Time.”
In IEEE 25th International Requirements Engineering Conference Work-
shops (REW), Lisbon, Portugal, September 4–8, 2017.

[d] F.G. de Oliveira Neto, J. Horkoff, E. Knauss, R. Kasauli, and G. Liebel.
“Challenges of Aligning Requirements Engineering and System Testing in
Large-Scale Agile: A Multiple Case Study.”
In IEEE 25th International Requirements Engineering Conference Work-
shops (REW), Lisbon, Portugal, September 4–8, 2017.

[e] R. Kasauli. “Requirements Engineering Challenges of Supporting Agile
Teams in System Development.”
Licentiate Thesis, Technical Report No 190L, ISSN 1652-876X, De-
partment of Computer Science & Engineering, Chalmers University of
Technology and Göteborg University, 2018.

[f] R. Kasauli, G. Liebel, E. Knauss, S. Gopakumar, B. Kanagwa, “Require-
ments Engineering Challenges in Large-Scale Agile System Development.”
Multikonferenz Software Engineering & Management (SE), 2018

Research Contribution

All the included papers were published with collaborations from colleagues. I
am the main author of five of the six included papers and as such responsible
for the research design, dividing the work between co-authors and performing
most of the writing. In particular, I have participated in the included papers
as follows:

In papers A–C, the planning, design, execution of the research and writing
were mostly done by me. For paper D and E, I participated in part of the data
collection, participated and coordinated the writing of the papers. Paper F is
a tool paper which I extend with a technical report expanding on the 2 paged
document that was published. Here I, therefore, improve my contribution to
include formal documentation of the tool.

xii

Contents

Abstract v

Acknowledgement vii

List of Publications ix

Personal Contribution xi

1 Introduction 1
1.1 Background and Related Work 2

1.1.1 RE in Systems’ Software Development 3
1.1.2 Traditional Waterfall Process Vs. Agile Development in

Systems Engineering . 4
1.1.3 Large-scale Agile Systems Development 7
1.1.4 RE in Large-scale Agile Environments 8
1.1.5 System Understanding in the Large 9
1.1.6 Cross-cutting concerns in Development 10

1.2 Research Focus . 11
1.2.1 Gain insight in current state of RE 12
1.2.2 Exploring solution space 12

1.3 Research Methodology . 12
1.3.1 Research Approach . 13
1.3.2 Case Study Method . 14
1.3.3 Secondary Study . 17
1.3.4 Threats to validity . 17

1.3.4.1 Construct validity 17
1.3.4.2 Internal validity 18
1.3.4.3 External validity 18
1.3.4.4 Reliability . 19

1.4 Research Synthesis . 19
1.4.1 Paper A: RE Challenges in Large-Scale Agile 19
1.4.2 Paper B: Safety-Critical Systems in Agile 21
1.4.3 Paper C: Agile Islands in a Waterfall 22
1.4.4 Paper D: RE practices in large-scale Agile 23
1.4.5 Paper E: Charting coordination needs 26
1.4.6 Paper F: Tool support for managing requirements . . . 27

1.5 Summary of Results . 28
1.5.1 Current status of RE (G1) 28

xiii

xiv CONTENTS

1.5.2 Exploring solution space (G2) 30
1.6 Discussion . 30
1.7 Conclusions and Future Work 33

2 Paper A 35
2.1 Introduction . 36
2.2 Background and Related Work 36
2.3 Research Methodology . 38
2.4 Findings . 41

2.4.1 What are possible scopes of applying agile methods in
large-scale system development? (RQ 1) 42
2.4.1.1 Context of Case Companies 42
2.4.1.2 Agile Scope in Large-Scale System Development 43

2.4.2 How is the role of requirements characterized in large-
scale agile system development? (RQ 2) 45

2.4.3 Which requirements related challenges exist in large-scale
agile system development? (RQ 3) 46
2.4.3.1 Shared Understanding of Value 46
2.4.3.2 Build and Maintain System Understanding . . 48

2.5 Discussion and Implications . 51
2.6 Conclusion and Outlook . 53

3 Paper B 55
3.1 Introduction . 56
3.2 Methodology . 57

3.2.1 Search strategy . 58
3.2.2 Inclusion and Exclusion criteria 59
3.2.3 Data extraction and Synthesis 60
3.2.4 Limitations and Threats to Validity 60

3.3 Findings . 61
3.3.1 RQ1: Existing research about agile development of SCS 61
3.3.2 RQ2: Key benefits of applying agile methods to SCS . . 61
3.3.3 RQ3: Challenges with agile development of SCS 63
3.3.4 RQ4: Solution candidates (e.g. principles and practices)

for challenges with respect to agile development of SCS 64
3.3.5 Synthesis of Findings . 67

3.4 Discussion and Conclusion . 69

4 Paper C 71
4.1 Introduction . 72
4.2 Related Work . 73
4.3 Research Method . 74

4.3.1 Data Collection . 74
4.3.2 Data Analysis . 75
4.3.3 Threats to Validity . 76

4.4 The Case Study . 77
4.4.1 Roles in the Departments 77
4.4.2 Requirements Model in the Departments 78

4.5 Challenges and Strategies . 79

CONTENTS xv

4.5.1 Challenges in Departments A and B 79
4.5.2 Challenges Unique to Department A 82
4.5.3 Challenges Unique to Department B 83

4.6 Discussion . 84
4.7 Conclusion . 85

5 Paper D 87
5.1 Introduction . 88
5.2 Background and Related Work 89

5.2.1 Large-Scale Agile . 89
5.2.2 RE and Agile . 90

5.3 Research Methodology . 91
5.3.1 Case Companies . 91
5.3.2 Sampling and Data Collection 93
5.3.3 Data Analysis . 96
5.3.4 Threats to Validity . 97

5.4 Pervasiveness of Agile development (RQ1) 98
5.5 Challenges and Potential solutions (RQ2 and RQ3) 101

5.5.1 Build and Maintain Shared Understanding of Customer
Value . 101
5.5.1.1 C1.a: Bridge gap to customer 101
5.5.1.2 C1.b: Building long-lasting customer knowledge 104

5.5.2 Support Change and Evolution 104
5.5.2.1 C2.a: Managing experimental requirements . . 104
5.5.2.2 C2.b: Synchronization of development 105
5.5.2.3 C2.c: Avoid re-specifying, encourage re-use . . 106
5.5.2.4 C2.d: Updating requirements 107

5.5.3 Build and Maintain Shared Understanding about System 108
5.5.3.1 C3.a: Documentation to complement tests and

stories . 108
5.5.3.2 C3.b: System vs component thinking 110
5.5.3.3 C3.c: Creating and Maintaining Traces 111
5.5.3.4 C3.d: Learning and long-term knowledge . . . 112
5.5.3.5 C3.e: Backward compatibility 113

5.5.4 Representation of Requirements Knowledge 113
5.5.4.1 C4.a: Manage levels vs. decomposition 114
5.5.4.2 C4.b: Quality requirements as thresholds . . . 115
5.5.4.3 C4.c: Tooling not fit for purpose 116
5.5.4.4 C4.d: Accommodate different representations . 117
5.5.4.5 C4.e: Consistent requirements quality 117

5.5.5 Process Aspects . 118
5.5.5.1 C5.a: Prioritization of distributed functionality 118
5.5.5.2 C5.b: Manage completeness 119
5.5.5.3 C5.c: Consistent requirements processes 120
5.5.5.4 C5.d: Quality vs time-to-market: 120

5.5.6 Organizational Aspects 122
5.5.6.1 C6.a: Bridge Plan-Driven and Agile 122
5.5.6.2 C6.b: Plan V & V based on requirements . . . 123
5.5.6.3 C6.c: Time for invention and planning 124

xvi CONTENTS

5.5.6.4 C6.d: Impact on infrastructure 125
5.6 Discussion and Implications . 126

5.6.1 Build and Maintain Shared Understanding of Customer
Value . 126

5.6.2 Support Change and Evolution 127
5.6.3 Build and Maintain Shared Understanding about System 128
5.6.4 Representation of requirements knowledge 130
5.6.5 Process aspects . 131
5.6.6 Organization aspects . 132
5.6.7 Challenges beyond the scope of this study 132

5.7 Conclusion and Outlook . 133

6 Paper E 139
6.1 Introduction . 140
6.2 Background . 141

6.2.1 Agile Islands . 141
6.2.2 Boundary Objects . 142

6.3 Research Method . 142
6.3.1 Focus Group . 142
6.3.2 Individual Company Workshops 144
6.3.3 Data Analysis . 144
6.3.4 Threats to Validity . 146

6.4 Frequently Encountered Agile Islands 147
6.4.1 Methodological Islands 147

6.4.1.1 Groups of teams 147
6.4.1.2 Teams (individual teams) 148
6.4.1.3 Organizations 149

6.4.2 Drivers of Methodological Islands 149
6.4.2.1 Business-related drivers 149
6.4.2.2 Process-related drivers 150
6.4.2.3 Technology drivers 150

6.5 Boundary Objects in Large-Scale Agile 151
6.6 Discussion and Conclusion . 154

6.6.1 Methodological Islands 154
6.6.2 Boundary Objects . 154
6.6.3 Implications for practitioners 155
6.6.4 Implications for research 155

7 Paper F 157
7.1 Introduction . 158
7.2 Industrial Context . 158
7.3 T-Reqs vs. Challenges and Requirements 159
7.4 Discussion and Outlook . 161
7.5 Towards Agile Tooling for RE 164
7.6 Overview . 164
7.7 Example elaboration . 165

7.7.1 Updating requirements 165
7.7.2 Tooling not fit for purpose 166

7.8 Demonstration . 166

CONTENTS xvii

7.9 Limitations and future work . 169

Bibliography 171

xviii CONTENTS

Chapter 1

Introduction

“It isn’t just that businesses use more software, but that, increasingly, a business
is defined in software. That is, the core processes a business executes–from how
it produces a product, to how it interacts with customers, to how it delivers
services–are increasingly specified, monitored, and executed in software. This
is . . . a transition that is spreading to all kinds of companies, regardless of the
product or service they provide.’ –Jay Kreps CEO of Confluent

Software has pervaded our lives and is continuously gaining importance.
Seen as a driver for innovation, even the formally hardware-based systems
like automobiles are becoming more software-oriented than before [1, 2]. This
increased use of software has led to more software-intensive systems, i.e. systems
that consist of software, hardware and possibly mechatronic parts defining the
context in which they are used. Such systems include, e.g., telecommunications
and automotive systems. At the large-scale, for such software-intensive systems
requirements engineering is the key to success [3, 4].

Requirements Engineering (RE) is traditionally a sequential process where
the execution of, for instance, software development requires indisputable
completion of the requirements specification phase [3, 5]. This traditional
approach to RE has formed the foundation on which many large-scale systems
companies are built. These companies often have to deal with standards and
regulations [6], along with parallel development of hardware and software. With
advancement in software, and new players coming into the market, competition
has increased and customer demands are evolving much faster, making reliance
on traditional (plan-driven) methods, with their long lead times and lack of
flexibility, less of an option. Thus large-scale systems development companies
are seeking better approaches that allow flexibility, a characteristic of agile
development methods.

Although initially meant for development at a small scale [7], agile devel-
opment methods are increasingly adopted by large-scale systems development
companies [8–10]. On top of the flexibility that agile methods provide, their
adoption at scale is driven by reported success in handling changing customer
demands, achieving shorter time-to-market and improved quality outputs [11].
However, their adoption at scale is challenging, not only because of the scale
but also the foundation on which many of these companies are built that calls
for a sequential adoption [12–14].

1

2 CHAPTER 1. INTRODUCTION

Agile development promotes customer collaboration which is in line with RE.
Thus, RE and Agile development seem to support each other. However, long
upfront analysis–a phase in RE commonly leading to extensive documentation–
is considered anti-agile creating some friction between RE and agile methods.
Existing work on this friction has addressed practices and their challenges
[15,16] while also commenting on synergies and conflicts of traditional RE with
agile [17], without focusing on RE in large-scale agile systems development.
This research attempts to address that friction while focusing on large systems’
development.

We approach the problem through a series of empirical studies that discover
the information needs and related knowledge, pertinent to systems develop-
ment. The overall aim of this thesis is to investigate the challenges and solution
candidates of performing effective RE in an agile environment, based on em-
pirical evidence. We explore RE challenges and solutions in large-scale agile
systems development, both in the general and the teams’ perspectives. The
new knowledge and methods presented in this thesis can be used to inform
process and tool design in large-scale agile system development. Once the gap
between agile and traditional methods is addressed, many challenges relating to
coordination and knowledge management will have been combated. Ultimately,
large-scale companies have met their agile adoption goals.

The thesis is composed of two parts, the introduction part (Chapter 1)
and the second part is an attachment of the included papers. The rest of
this chapter is structured as follows: Section 1.1 presents the background and
related work of the research presented in this thesis. Section 1.2 presents our
research questions. The research methodology is described in Section 1.3 while
Section 1.4 provides a synthesis of our research outputs. In Section 1.5, we
give conclusions and future work. For the second part, we have Chapter 2 to
Chapter 7 with Papers A–F respectively.

1.1 Background and Related Work

The adoption of agile methods has changed the way RE is interpreted in
development. According to Leffingwell, “No matter the specific method, agile’s
treatment of requirements is fundamentally different” [18]. Whereas some argue
that RE can be viewed from two different angles; 1) as a formal and structured
transformation of information [17] (e.g. traditionalists) or 2) as a collaborative
effort relying on the creativity and competence of the involved engineers [19]
(e.g. the agilists), others seem to imply that RE ceased to exist with the
introduction of agile methods (e.g. ‘architecturalists’). The dispute on agile
methods and RE existence is not something to argue for. In fact, as noted by
Paetsch et al. [17], the RE process phases of elicitation, analysis, and validation
are present in all agile processes. Thus in this thesis, we take the view that RE
is a collaborative effort of which agile methods are an example.

This section discusses the background of RE and agile development in the
systems development context. We start by detailing the RE process in systems
development in which we describe the traditional RE process and fundamental
RE terminology. We then review the literature on traditional methods and
agile software development while discussing the documented comparison of the

1.1. BACKGROUND AND RELATED WORK 3

two methods. A discussion on large-scale agile systems development comes
next followed by a discussion on RE in large-scale agile development. Since RE
is a communication problem, we discuss the knowledge management literature
before concluding the section with a discussion on safety as a cross-cutting
concern in development. Safety systems’ development is dependent on effective
RE. Safety is used as a maximum formality example for performing RE in an
agile development environment.

1.1.1 RE in Systems’ Software Development

Systems development or engineering was initially about configuring hardware
components into physical systems like ships or railroads [20]. The component
parts would be produced once the configuration and the requirements specifi-
cation are done. The production was thus a sequential process. As technology
advanced and software began to appear in such systems, the same sequential
process of development was naturally followed [20]. Over the years, even as
software in systems (e.g. automotive [1,21]) increased, such sequential processes
formed the basis for development. The dependence on software has led to
software-intensive systems–systems that depend on software, hardware and the
context in which they are operating for correct operations. It is important to
note that for such software-intensive systems, software failures are commonly
associated with RE challenges [4].

RE is defined as “a systematic and disciplined approach to the specification
and management of requirements with the goal to:

[a] Know the relevant requirements, achieve a consensus among the stakehold-
ers about these requirements, document them according to given standards,
and manage them systematically

[b] Understand and document stakeholders’ desires and needs

[c] Specify and manage requirements to minimize the risk of delivering a
system that does not meet the stakeholders’ desires and needs

All of which address important facets of RE: (1) process orientation, (2)
stakeholder focus, and (3) importance of risk and value considerations [22].”
RE activities typically include elicitation, analysis, specification, validation and
management, with requirements prioritisation coming in to support elicitation
and analysis by identifying the most valuable requirements [23].

Requirements elicitation process includes users getting involved in gath-
ering requirements [15]. During elicitation, the initial information regarding
requirements and context is gathered. The requirements analysis phase then
follows to check for consistency, completeness, necessity and feasibility of the
requirements, thus creating an understanding of the requirements. The next
activity is the requirements specification where the requirements are defined in
terms of system behaviour, decomposing the problem into component parts and
serving as input to design specification. The end of this process is marked with
a requirements specification document where the agreed requirements are docu-
mented for communication with stakeholders and developers. The requirements
validation is important for confirming customers’ needs and correcting errors
in the specifications to avoid rework which could be expensive. Requirements

4 CHAPTER 1. INTRODUCTION

Feasibility
study

Requirements
elicitation and

analysis

System models

Requirements
specification

Requirements
validation

Requirements
document

User and system
requirements

Figure 1.1: Requirements Engineering process flow. Adopted from [5]

management aims to keep the requirements’ quality whenever there are updates
or newly added requirements during the system implementation. The updating
of requirements also means dependencies and relationships of different require-
ments documents must be managed, and all the requirements should also be
traceable, which helps to investigate the impact of the changes [5]. The flow of
the processes is as represented in Figure 1.1. The requirements flow through a
sequential process similar to that followed in the waterfall or V-model methods
that have existed in system engineering for many generations.

With increased emphasis on user value as well as increased pace of change,
more strain has been put on the traditional, sequential approach. The strain
came from the realization that requirements were more emergent with use than
pre-specifiable, and thus traditional methods were not suitable for producing
user valued products [20]. Alternative methods, like agile methods, were then
devised and adopted.

1.1.2 Traditional Waterfall Process Vs. Agile Develop-
ment in Systems Engineering

The traditional waterfall process is a classical systems engineering process that
follows a sequential flow of activities, as shown in Figure 1.2. The phases are
cascaded one after another with former processes being frozen when work is
continued to later stages. As can be seen in Figure 1.2, once inconsistencies are
noticed at the testing phase, then software requirements are revisited, which
has proved expensive in the fast-paced change of today. As demonstrated
in Figure 1.1, RE also follows a sequential process similar to the waterfall
methods.

On the contrary, agile development is both iterative and continuous. Ac-
cording to the agile alliance [25],

“Agile is the ability to create and respond to change in order to
succeed in an uncertain and turbulent environment.”

1.1. BACKGROUND AND RELATED WORK 5

1. Complete program design before
analysis and coding begins

2. Documentation must be current
and complete

3. Do the job twice if possible
4. Testing must be planned,

controlled and monitored
5. Involve the customer

System
requirements

Software
requirements

Analysis

Design

Coding

Testing

Figure 1.2: Waterfall process. Adopted from [24]

Concerning agile software development, Beck [26] notes that:

“Agile software development is an umbrella term for a set of methods
and practices based on the values and principles expressed in the
Agile Manifesto [26].”

The agile manifesto identifies four values for agile development as shown in
Table 1.1

Table 1.1: The four values for agile development

1. Individuals and interactions over processes and tools.
2. Working software over comprehensive documentation.
3. Customer collaboration over contract negotiation.
4. Responding to change over following a plan.

While the agile advocates acknowledged the items on the right as having
value, they valued the items on the left more. The agile manifesto also connects
12 principles that attempt to make the agile values more concrete and deliver
solid guidance for software development teams and their projects. The original
agile principles are as presented in Table 1.2. These have been reviewed by
William [27] but the basic concepts remain the same.

Agile methods like Scrum [28] and XP [29] are based on the above values and
principles and encourage flexible, light-weight software development with short
iterations [30] thus creating the ability to deal with changing requirements and
fast time-to-market. In agile software development, requirements are allowed
to evolve through collaboration between self-organizing, cross-functional teams
utilizing the appropriate practices for their context.

In agile development, instead of fixing all plans at the project start, the
project is broken into smaller sub-tasks which are implemented in short time-
boxed iterations [18], commonly referred to as sprints. Sprint duration is also an
agile variable with differing recommendations from the different agile methods
but typically spans 2–4 weeks. The goal of each sprint is to produce shippable
code incrementally. Sprints have the same pattern, which has three common
phases illustrated in Figure 1.3).

6 CHAPTER 1. INTRODUCTION

Table 1.2: The 12 Agile Principles [25]

No. Principle

1. Our highest priority is to satisfy the customer through early and
continuous delivery of valuable software.

2. Welcome changing requirements, even late in development. Agile
processes harness change for the customer’s competitive advantage.

3. Deliver working software frequently, from a couple of weeks to a
couple of months, with a preference to the shorter timescale.

4. Business people and developers must work together daily
throughout the project.

5. Build projects around motivated individuals. Give them the
environment and support they need, and trust them to get the job
done.

6. The most efficient and effective method of conveying information
to and within a development team is face-to-face conversation.

7. Working software is the primary measure of progress.
8. Agile processes promote sustainable development. The sponsors,

developers, and users should be able to maintain a constant pace
indefinitely.

9. Continuous attention to technical excellence and good design
enhances agility.

10. Simplicity – the art of maximizing the amount of work not done –
is essential.

11. The best architectures, requirements, and designs emerge from
self-organizing teams.

12. At regular intervals, the team reflects on how to become more
effective, then tunes and adjusts its behavior accordingly.

The first phase is a planning phase that includes a review of the sprint
backlog that is later (re-)prioritized and estimation of the work to be done
established [31]. The team–usually 5-9 people–then commits to the work. The
second phase is the development phase in which the team takes responsibility
for the requirements and elaborates them. Then the code implementation,
building, and testing are done. The last phase is the delivery of the increment
and assessment of the sprint [31], sprint review in Fig. 1.3.

For effective development in agile methods, communication, and collabora-
tion among the team members are crucial. Thus the practice of face-to-face
communication with team members is recommended [15], together with an
on-site customer so that the developers will get quick clarifications on require-
ments. Most agile methods, such as scrum, have the practice of a daily stand-up
meeting for the team. At this meeting, the team members give a report of what
has been done, and what they plan to do, including the challenges that they
could be facing. In this way, the sprint progress is tracked, and the problems
are reported in time.

De Lucia and Qusef [32] state that the main difference between traditional
and agile development is not whether, but when to do RE. In the traditional
approach, RE is done only at the beginning of development (see Figure 1.2)

1.1. BACKGROUND AND RELATED WORK 7

Code

Build

Test

Elaborate
Requirements

Design
Sprint Planning Sprint

Backlog
Deliver

(Start Next Sprint)

Prioritize

Estimate
tasks

Assess

Sprint review

Figure 1.3: Typical sprint in an agile process. Adopted from [31])

while in agile development, RE is as continuous and incremental as the prod-
uct being developed. Research on agile and traditional methods has varied
considerably, starting from comparing characteristics of agile with those of
traditional methods [33–35] to uncovering challenges of hybrid development in
organisations [36].

The hybrid methods come from the fact that many large organisations are
only still transitioning to agile and thus have both traditional and agile methods
in operation. Also, many have safety concerns that call for a well-streamlined
process and documentation that would otherwise be ignored in a fully agile
process. Theocharis et al. [37] conducted a study to find out whether agility
accelerated the extinction of traditional methods. They, however, found a
mixed application of methods and concluded that hybrid approaches formed
the standard of today’s development. Research in this field has advanced
to the point that researchers study how the methods have been combined
in development [38], the challenges of having such combinations [39] and
potential solutions to such challenges [40]. It should be noted that in large-scale
organisations in practice, adoptions start with the software development teams
using agile methods while the rest of the organisation works with traditional
methods [41]. Whereas these studies are partially empirical, they lack the
RE perspective, which gives a more general focus on communication and
coordination in such environments.

1.1.3 Large-scale Agile Systems Development

Although initially meant for small collocated teams, the reported success
of agile methods has led to their adoption at scale [8, 9, 42] and in systems
development [9,10,43]. Large-scale companies are characterised by long lead
times, many stakeholders with varying backgrounds and needs during (and
probably after) the systems’ development. Also being in the context of systems
development, large-scale companies are also characterised by stable sequential
processes [44]. Because of these characteristics, agile adoption at scale was
received with skepticism, with most adoptions starting in software development

8 CHAPTER 1. INTRODUCTION

teams. This selective adoption created pockets of agile teams within a larger
ecosystem of plan-driven culture. We term these pockets of agile teams as agile
islands (Paper A and C).

Large-scale agile development is a complex term that has been interpreted
in various ways [6]. It has been used to refer to varying contexts starting from
one large team in a project to large multi-team projects [45]. Dingsoyr et
al. [46] provide a taxonomy of scale and categorise large-scale as a company
or project with 2–9 development teams. We use the term “large-scale agile
system development” to refer to large-scale agile development in the context of
systems engineering and define it as follows:

Large-scale agile system development is the development of a prod-
uct consisting of software, hardware, and potentially mechatronic
components that include more than 6 development teams and is
aligned with agile principles.

Large-scale agile development has received considerable attention from the
research community with many reporting successful adoption [9, 13, 42, 47]
although challenges remain. Several challenges relating to e.g. coordination in
a multiple team environment with hierarchical management and organisational
boundaries [8] and coordinating work between agile teams [43] have been
identified. As such, large-scale agile frameworks are being adopted to overcome
the challenges [48].

SAFe framework has been reported by the state of agile report [49] as
the most popular with 30% of the companies in the survey using it. These
frameworks have received considerable attention from the research community
recently, with some studies exploring how these frameworks have been adopted
(e.g. SAFe [50]) and recommended guidance for clear adoption [51]. Others have
explored the benefits and challenges of adopting these frameworks [52,53]. It,
however, remains unclear whether these frameworks do address the challenges
identified by the introduction of agile methods at scale.

1.1.4 RE in Large-scale Agile Environments

“No matter the specific method, agile’s treatment of requirements is fundamentally
different [18]

Since many systems development companies are adopting agile methods,
the existing techniques are proving inadequate. As a result, RE becomes an
even more significant challenge for agile development companies, especially at
scale and in systems development. The research on RE in agile development
environments has thus attracted much attention from both research and practice,
leading to a need for more empirical studies that devise working solutions
collectively.

The process of doing RE in an agile development environment has been
coined Agile RE, although it has no unanimously accepted definition [16].
Agile RE can however be weakly defined as the agile way of performing RE.
Some of the existing research on agile RE has explored the benefits and
challenges [16, 23, 54], together with the practices used in development [15, 19].
The challenges identified include, e.g. neglect of non-functional requirements,
customer availability and minimal documentation. The consensus in all the

1.1. BACKGROUND AND RELATED WORK 9

studies is that agile RE addresses some of the classical RE challenges, e.g.
communication gaps, while it also causes new challenges which call for new
techniques.

Identified practices that apply to agile RE include; face-to-face commu-
nication, customer involvement, requirements prioritization, review meetings
and retrospectives, iterative/incremental development, user stories, test-driven
development, acceptance tests, change management and code refactoring. The
practices adopted by teams vary depending on the agile method of development
that is chosen. For instance, in XP, the planning game is used and begins with
an on-site customer who writes the requirements. These are later prioritized
by the development team together with the customer. However, experience
with practitioners has shown that practices and methods have been adopted
randomly according to the development needs.

Other researchers have compared the use of traditional RE and agile RE [17]
while also identifying how agile development can benefit from traditional
methods. Paetsch [17] note that the major difference is in the amount of
documentation carried out in the development process. In summary, there is
substantial amount of existing work on the use of agile RE and its practices.
However, we notice a lack of empirical evidence in terms of large-scale agile
systems development.

1.1.5 System Understanding in the Large

Software engineering is a knowledge-intensive endeavour [55, 56] with activities
from requirements elicitation to the project coordination and management. It
is unlikely for the team members to have all the knowledge obtained from those
activities [56]. Agile development adds to the challenge with the idea of breaking
down the system requirements into features to be developed every sprint,
thus making the bigger picture of system understanding unclear. However,
in order to deliver a quality product, the development team has to have a
clear understanding of the system. Effective communication and knowledge
management become an essential part of their development [6].

Knowledge management is crucial for proper system understanding and
ensuring effective communication helps to transfer knowledge [57]. However,
few existing works explicitly address communication in agile development [58].
Communication in agile projects has mainly focused on the impact of the
agile practices on communication [59]. In a systematic review, Hummel et
al. found reports that agile methods lead to improved communications in large-
scale development projects. They also found that the informal communication
on which agile methods depend may be problematic for large projects with
many stakeholders and a lot of shared information. The studies present a
broad understanding of the communication concept without focusing on the
social interaction and behavior of teams [58]. Studies suggest synchronous and
asynchronous communication means e.g. wikis and group e-mails in order to
establish the multiplicity of social links between team members and to provide
continual access to project information in large-scale settings [58]. While
investigating inter-team coordination mechanisms, Nyrud and Stray [60] find
ad-hoc conversations more beneficial than daily stand-up meetings that agile
methods recommend. These were found to be the most time-consuming and

10 CHAPTER 1. INTRODUCTION

involved less coordination. Such coordination can be tagged in artefacts which
also could come from both agile and traditional methods [61].

For large-scale development, such artefacts are shared within the team
and also across different teams. Some high-level artefacts, e.g. architectural
models [62], and tools [63] are used as boundary objects . Boundary objects
are defined by Star and Griesemer is as follows:

Boundary objects are objects which are both plastic enough to adapt
to local needs and the constraints of the several parties employing
them, yet robust enough to maintain a common identity across
sites [64].

Boundary objects are shared between several teams and each team can access
what they need from it and thus helping in knowledge management across
the system development. As Rolland et al. [6] state “We believe there is a
need to emphasize the boundary work and boundary infrastructures that are
required for working across contexts resolving and coordinating complex socio–
technical interdependencies.” This thesis explores the use of boundary objects
in development.

Tools are essential to ensure effective communication and collaboration
in large-scale development companies. In this thesis, the focus is on tools
that help in effective communication of software requirements. Through a
survey subjected to requirements tool vendors, de Gea et al. [65] provide
an insight into the degree of support offered by requirements tools and the
capabilities of these tools in supporting the RE process. They find a substantial
number of tools supporting requirements elicitation but a poor representation
of tools for requirements management. de Gea et al. argue that RE tools are
traditionally oriented towards textual requirements and thus the reason for
fewer modeling tools. These textual requirements tools are, however, used for
elicitation processes. This thesis also explores the use of a text-based tool for
requirements management.

1.1.6 Cross-cutting concerns in Development

We use the term cross-cutting concerns to mean the development concerns that
are driven by RE and require system understanding. These are usually quality
concerns or non-functional requirements of any software development. Existing
research conducted in agile software development identifies challenges of dealing
with non-functional requirements [66]. For the context of this thesis, the cross-
cutting concern that raises interest is safety since it gives us a maximum
formality example.

Safety raises concern since agile methods tend to have less favour for
documentation and processes [67,68] yet safety requires a well-defined process
with extra documentation for certification [69]. Glinz [22] defines safety as the
capability of a system to operate without resulting in harming people, property,
or the environment [22].

Safety systems or Safety-critical systems (SCS) are becoming more prevalent
in use with the advance of the digital era [70]. Many software applications are
highly critical for safety, and are found in, for example, the avionics, medical,
railway, and automotive sectors. Examples of such systems include flight

1.2. RESEARCH FOCUS 11

control systems in avionics [71], automatic braking systems in automotive [72],
Train Control Management System (TCMS) for a high-speed train in railway
systems [73].

Requirements for the development of SCS (Safety requirements) are com-
monly stated as quality requirements and in some cases also stated in terms of
functional requirements and thus usually follow the same development path as
all other requirements. However, since these safety requirements have more
stringent rules on the testing and validation, extra checks are put in place.
With this extra effort demonstrated in safety development, using safety as a
comparison gives us a maximum formality example to ensure we do not miss
critical elements of RE in system development.

1.2 Research Focus

The overall goal of this thesis is to investigate the challenges and solution can-
didates of performing effective RE in an agile environment, based on empirical
evidence. Considering that the use of agile methods suffers most at scale, we
focus on large-scale systems development companies to achieve our goal.

The main goal is broken down to two sub-goals as follows:

• G.1: To gain insight in the current state of RE in large-scale agile systems
development.

• G.2: To recommend solutions for addressing critical cross-cutting chal-
lenges of RE in large-scale agile system development.

To meet the set goals while scoping the thesis, research objectives (RO)
were defined for each of the goals and addressed as presented in Table 1.3. The
connection between the goals and objectives is further illustrated in Figure 1.4.

Table 1.3: Research questions for the respective aims

G.1: Gain insight in current state of Requirements Engineering

RO.1A Identify the Requirements Engineering
challenges of using agile methods in
large-scale systems development.

Paper A, D

RO.1B To explore the state of the art on
challenges of developing Safety-Critical
Systems in agile environment.

Paper B

RO.1C To identify challenges of using agile
methods in structured environments.

Paper C

G.2: Explore solution space

RO.2A Examine and critique existing popular
frameworks for managing scaled system
development.

Paper D

RO.2B To propose techniques to solve or overcome
some of the identified challenges

Paper E, F

12 CHAPTER 1. INTRODUCTION

1.2.1 Gain insight in current state of RE

The first sub-goal G.1 was set to gain insight into the current RE challenges
in the agile industry. The topic for RO.1A explores general challenges of
performing RE in large-scale agile systems organisations. This topic was
selected with request from participating companies that were in the process of
adopting agile methods and thus formed the basis for the subsequent objectives.

Through RO.1A, the role of RE in large-scale agile development was re-
emphasised and a range of challenges discovered. Since we aimed for empirical
research, it was essential to perform relevant research while also keeping the
practitioners interested. Thus, while RO.1A gave a broad scope of challenges,
we explored the ones that geared interest for the participating companies and
also proved less explored by academia. Without wanting to miss important RE
related issues, we explored research on safety in agile development. In so doing,
a study on the challenges related to safety-critical and agile development led to
the second objective RO.1B. RO.1B aimed to find out which challenges have
been identified in research that relate to safety systems in agile environments.

RO.1A also found different scopes of agile adoption in practice giving a hint
of coexistence of both agile and plan-driven methods. This finding created a
need to investigate the challenge of having both methods in industry. RO.1C
based on one case company to explore the coexistence phenomenon. Challenges
in this context were sought from the perspectives of the development teams.

1.2.2 Exploring solution space

After gaining insight and understanding our problem space, we aimed to explore
the solution space as well. We explored the solution space in three separate
ways which aimed to meet two objectives. RO.2A was set to explore the already
designed frameworks and find out how, or if at all, they are addressing the
identified challenges. Understanding which practices the scaled frameworks
recommend for addressing the identified challenges also helped us to understand
the challenges a bit more. With views from the practitioners, we also sought
to understand whether the frameworks are helping and how it is that the
challenges continue to surface.

RO.2B explored available techniques for overcoming (any of) the identified
challenges. Through RO.2B, we identified other possible interventions that
could be used to address some of the identified challenges. We started with a
design and implementation of a tool that showed promising results for addressing
some of the challenges. We also started to derive on a taxonomy that could
help address coordination concerns in large-scale agile systems’ development.

1.3 Research Methodology

This thesis builds on six studies (Papers A–E), i.e. four empirical studies that
adopt a case study approach (Papers A, C, D and E), one secondary study
(Paper B), and one tool study (Paper F). The work in this thesis follows an
empirical research methodology. It collected, analyzed and evaluated empirical
evidence on the phenomena of interest. This section describes the overall

1.3. RESEARCH METHODOLOGY 13

RO.2A
Scaled frameworks

RO.2B
Tools & Techniques

Multi-case
study

Multi-case
studyTool paper

Paper D

Paper EPaper F

T-Reqs BOMI

G.2: Solution ExplorationG.1: Current Status

RO.1A
RE challenges

RO.1B
SCS and agile

RO.1C
Agile Islands

Multi-case
study

Mapping
study

Single-case
study

Paper A
& D

Paper
B

Paper C

Figure 1.4: Research process of thesis

research approach of the thesis, followed by a description of the methods used,
namely; a secondary study through mapping study, and case studies.

1.3.1 Research Approach

The overall research of this thesis was motivated by our industrial partners’
enthusiasm to improve their RE management process. For this reason, the
majority of the work was performed as qualitative empirical studies. The
collaboration with industry partners allowed us to base our findings on empirical
data from practitioners and also validate the relevance of our research questions.

Since software development is carried out by persons or groups in organ-
isations [74], this makes it a multi-disciplinary area that also includes social
boundaries. Thus, for this research, we investigate not only the tools and
processes used by the development teams but also their social and cognitive
processes [75]. For studying these real-life situations of practitioners in our
partner organisations, the use of qualitative approaches became necessary.

The qualitative studies allowed us to get insight into the RE challenges
that our industry partners encounter and also derive solution candidates. We
also include a literature or secondary study paper that allows us to zoom out
of RE to relate to the bigger context of safety, with which many large-scale
system development companies are concerned. We elaborate on the qualitative
methods used and the secondary study in the next sections.

14 CHAPTER 1. INTRODUCTION

1.3.2 Case Study Method

This thesis bases on a case study definition given by Runeson et al. [76].
According to Runeson et al., a case study is an empirical inquiry that draws
on multiple sources of evidence to investigate one instance (or a small number
of instances) of a contemporary software engineering phenomenon within its
real-life context, especially when the boundary between phenomenon and context
cannot be clearly specified [76]. Furthermore, case studies provide an in-depth
understanding of why and how given phenomenon occur [75], thus giving
opportunities to describe, explore and explain the studied phenomenon. This
thesis includes studies that are mainly exploratory (especially Paper A and
C), in that they seek new insights [76] and identify useful distinctions that
clarify our understanding [75] about agile development and RE processes
in industry. Paper C and D endeavour to describe the reasoning behind
the identified challenges and identify solution candidates from literature and
practitioners. Paper E also uses a case study approach and attempts to derive a
taxonomy aimed towards improving the current situation. Paper F introduces
and describes a Text-based Requirements system (T-Reqs) that was fronted
as a solution to some of the identified challenges. T-Reqs is the open-source
version we created based on a working tool at one case company.

Runeson and Host [74] present five steps to performing case study research
and these include: (i) designing case study objectives and plan (ii) Defining data
collection procedures and protocols (iii) Collecting data on the studied case,
(iv) analysing the data and (v) reporting the data. The researcher participated
actively in all these steps for the appended studies. For the first step, we had
our research questions prepared before starting the study and purposely [77]
identified the cases to use in our studies. For all the studies, we chose large-scale
systems development companies that have agile development teams. While
identifying the companies, we also discussed with the contacts in the different
companies on the acceptable data collection procedures.

Case studies can be (i) holistic–with single or multiple case studies is the
unit(s) of analysis, (ii) embedded–where one can either have a single case study
with many units of analysis or multiple case studies each with multiple units of
analysis. This thesis used two of those four described settings; holistic multiple
case study for papers A, D and E, and one embedded single case study for
paper C. Each setting was used to satisfy the aims we had in each study. For
instance, in Paper A the aim was to find out the general challenges of doing
RE in agile development companies and thus a multiple case study approach,
with four cases of study, was chosen. The cases were all from different domains.
This setting allowed us to discover as many challenges as there were, and we
could attempt to generalise when we find challenges reoccurring in different
domains. The findings of Paper A inspired the study that led to Paper B and
C. For paper C, we used a single case study with two units of analysis as we
aimed to find the challenges that individual agile teams faced working in a
structured environment. The single case was viable since we needed to focus
on the same environment setting and the two units of analysis shed more light
on the actual situation enabling us to explain the phenomenon. For each of
these case studies data was collected through interviews, focus group meetings
and workshops where necessary.

1.3. RESEARCH METHODOLOGY 15

Focus Groups and Workshops We used workshops as initial data collec-
tion instruments for most of our studies (Papers A, B and D) and backed
them up with focus group meetings to get more detailed understanding and
explanation. We differentiate between workshops and focus groups in that
for a workshop, a group of practitioners–generally knowledgeable about agile
development and RE–meets to work on creating a defined result jointly while
focus groups involved representative stakeholders or experts that were invited
to discuss the specific topic under investigation from all relevant perspectives.
For instance, in Paper A, the workshops involved company contacts from all
participating companies whereas focus groups were conducted at company
sites with the representative practitioners of RE and agile development. Focus
groups allowed us to dig deeper focusing on one company while workshops
allowed us to triangulate our findings. In general, a total of 13 workshops with
79 participants and 7 focus group sessions with 26 participants were conducted.
The totals are distributed in the different studies as shown in Table 1.4.

For all the workshops, at least three (3) researchers were always present
whereas focus groups sessions were attended by at least two (2) researchers. The
researcher was always one of those present and participating in workshops and
focus group sessions. Prior to workshops and focus group sessions, a tentative
agenda was shared with agreed participants. In many instances, the agenda
included a presentation from the practitioners, detailing their experience with
RE and agile development (Paper A, C and D), with safety (Paper B) or with
islands and boundary-objects (Paper E). We would then present work related
to the topic of discussion to ensure a common understanding of the topic. In
most cases, this would raise discussion points for which notes would be taken.
The researcher would present at some sessions (Paper A, B) and actively take
notes while seeking clarifications where necessary at other sessions (e.g. Paper
D, E). Follow-up questions and discussions were kept welcome and open. The
sessions lasted three (3) hours in most cases (e.g. in Paper A, B, E) and
full-day, at Chalmers university premises, in one paper (Paper D). We would
summarise the session on one or more slides as a way to ensure we understood
the participants’ input correctly.

Interviews The researcher was actively involved in 18 of the 29 (unique,
see Table 1.4) interviews that were conducted in this thesis. Interviews were
used in studies leading to papers A, C and D. For Paper C, interviews were
the primary source of data since it targeted development teams in particular.
Semi-structured interviews, where one or more interviewers interacted with one
interviewee based on an interview guide, were also used to collect data. For each
interview study, an interview instrument with a structured set of questions was
designed prior to the interviews. The interview instrument was created with
recommendations from the contact persons in the respective companies. These
recommendations allowed the researcher(s) to ask questions that interviewees
would understand in their context.

The interviews started with an explanation to the interviewee about the
focus of the study to ensure that the same topic was being discussed. During
the interviews, the instrument acted as a guide and was kept open in such a way
that there was no strict adherence to the structure and flow of the questions.
Both the interviewer and the interviewee were free to ask for clarification and

16 CHAPTER 1. INTRODUCTION

follow-on questions which allowed wide and deep inquiries into the reality of
software development for the specific topics of interest. All interviews were
audio-recorded with interviewee consent and later transcribed leading to textual
analysis.

Data analysis For the data analysis, since we were dealing with qualitative
data, we relied on a thematic coding approach [78]. Since we worked in groups,
we had at least two researchers at each study to familiarize themselves with the
data collected while highlighting noteworthy statements and assigning codes or
labels to each. The researcher was always one of the two researchers at each
coding phase. For the interview data, the researcher transcribed the data and
performed the initial coding. The codes would then be discussed as a group
and iteratively agree on the themes which we would discuss through workshops
(Paper A, D, E) or through email and telephone calls (Paper B and C) for
validation with the participating cases. Paper F describes T-Reqs which was
inspired by a tool already in use in one of the companies as their in-house
solution. Together with support from the pioneers of that in-house solution,
we created an open-source version of T-Reqs through defining simple templates
and scripts. For T-Reqs, we relied on feedback from the company contact to
verify and improve its usefulness.

Table 1.4: Summary of Research Methods

Paper Data Collection Analysis
Method

Type No.of
participants

Paper A Holistic
multi-case

5 focus groups
2 workshops
22 interviews

14
11
22

Thematic
analysis

Paper B Mapping
Study

Mapping
study

Paper C Embedded
single

1 focus group
18 interviews

9
181

Thematic
analysis

Paper D2 Holistic
multi-case

5 focus groups
11 workshops
22 interviews

14
63
22

Thematic
analysis

Paper E Holistic
multiple

1 focus group
2 workshops

4
16

Member
checking

Paper F Holistic
single

Tool design

1 11 of the 18 interviews were used in Paper A.
2 Paper D shares focus group, interview and 11 workshop participants with
paper A.

1.3. RESEARCH METHODOLOGY 17

1.3.3 Secondary Study

With the growing number of empirical studies in software engineering comes a
necessity to construct an objective summary of the available research evidence
to aid in decision making and formulation of research questions [79]. Using a
systematic literature review is one way of obtaining the objective summary.
Much as each study included in this thesis has a literature review section, a
systematic review provides guidelines to follow while reviewing literature in
order to avoid bias and ensure replicability [80]. Systematic literature reviews,
however, require a considerable amount of effort [81].

A systematic mapping study provides a map of the results reported in
literature, usually a more coarse overview thus often requires less effort than a
systematic literature review [80]. The process followed in a mapping study is
also systematic but more coarse than a systematic literature review, allowing
to process larger numbers of papers.

System development companies are usually subject to standards and regu-
lations, thus they aim for a transparent RE process. Also, with the increased
digitalisation and interconnectedness of devices, safety becomes a concern in
development. Following the findings from Paper A that identified challenges
with safety, a mapping study (Paper B) was conducted to help us draw a map
on the current state of affairs in as far as agile development and safety-critical
systems development are concerned. The researcher performed the initial
document search that gave 1986 documents and was able to reduce them to 69
documents when following the inclusion and exclusion criteria that were defined.
Together with two of the other researchers, more studies were excluded giving a
final total of 34 documents whose data was analysed and findings presented in
Paper D. We aimed to classify and synthesize our findings from industry with
those in published empirical studies. With this, we derived a viable research
direction for managing requirements in large-scale agile development.

1.3.4 Threats to validity

For this thesis, as with many empirical studies, there are validity threats worth
discussing. We consider the four perspectives of validity threats as presented
in Runeson and Host [74]and in Easterbrook et al. [75].

1.3.4.1 Construct validity

Threats to construct validity refer to the relations between the research method
and the observations from the study [74]. With these threats, the question to
answer is: Are the theoretical constructs interpreted and measured correctly?
There is a threat that the interpretation of the questions asked at the interviews
may be different for the researcher and the interviewees due to the use of different
or abstract terms. To minimise this threat, we relied on our company contacts
and selected participants who are knowledgeable in the subject of study. On
the general scope, participants had to have knowledge on the constructs of
agile development and RE. We collected data from multiple sources, including
existing literature and different companies in varying domains. This diversity
of sources helped us to ensure we got correct results. For the interviews, we
shared and discussed the interview guide with the company contact persons in

18 CHAPTER 1. INTRODUCTION

order to agree on the commonly understood/used terms at the company and
also used literature to provide a link between our understanding and that of the
interviewees. In cases where the interviewee did not understand the question,
we endeavoured to rephrase and give explanations. We also asked interviewees
for elaborations in case we got an ambiguous answer. Most of the data collected
in interviews was validated in workshops and focus group meetings. These
meetings always began with presentations from the company participants and
also from one of the researchers. Judging from the presentations that were
given by practitioners, we were always confident that the concepts were clearly
understood. We also ensured that we had more than one researcher for data
collection and analysis in all the studies. To combat the practitioners’ fear to
answer asked questions with honesty, we guaranteed anonymity and raw data
was only to be used by the researchers. For Paper B in particular, we also
calculated inter-rater agreement where there seemed to be some disagreements.
This calculation was then followed with discussions, among the researchers, to
resolve the disagreements.

1.3.4.2 Internal validity

Internal validity focuses on the research design and whether the results really
do follow from the data [75]. For internal validity the question to answer
is: Could external factors impact the results of the investigated factors? To
minimise this risk, and with permission from the interviewee, we recorded all
our interview sessions in order to ensure that each researcher gets the same
message at data analysis phase. We also used data triangulation between
interviews (Paper A and D), between the units of analysis (Paper C), and
between the case companies (Paper A and E). Furthermore, the results of our
case studies were discussed in workshops (Paper A, D and E) and at focus group
meetings (Paper C). The workshops and focus groups included practitioners
from these companies that were already involved in the respective studies.
These practitioners were always allowed to discuss their (sometimes different)
perspectives on the data we collected, thus increasing our confidence in the
data. Through sufficient numbers of interviews and member checking, we made
sure that we captured all important concepts in the scope of our inquiries.
To avoid a too restricted view on smaller parts of a project or a product, we
selected interviewees from different parts of the development. There might,
however, still be a selection bias as the interviewees were selected through a
convenience sample through our company contacts.

1.3.4.3 External validity

External validity relates to the ability to generalise the results beyond our
case studies. By design, the external validity of our studies is low. Hence,
generalisation of our findings to different domains or companies might not be
possible. Easterbrook [75] notes that qualitative studies aim to understand
and explain a given phenomenon rather than generalising. Understanding
the investigated phenomenon in one setting may help to understand other
situations. For instance, in Paper A, we designed our study to identify common
challenges across participating companies. Thus, our research method does not
support any deep reasoning about differences between companies, domains, and

1.4. RESEARCH SYNTHESIS 19

market positions. However, given that we found similar themes in all cases, we
expect that these apply similarly to other companies or projects in large-scale
systems engineering. By analysing data gathered from different companies
with different characteristics, we believe that we have got results that can be
extended in the future and were able to identify relevant categories that are
applicable in other contexts.

1.3.4.4 Reliability

Threats to reliability refer to level to which the study results are dependent
on specific researchers. We limit reliability threats by improving the interview
instruments in multiple iterations and by conducting interviews in pairs of two
researchers. Also, at least two researchers were involved in the focus groups and
workshops in order to reduce the impact of subjectivity. We have continued
involvement with our case companies and therefore a mutual trust among
the parties exists. The data analysis was discussed and refined among the
authors in several iterations. The results were discussed with the participating
companies and also compared results obtained to available literature. We also
tried to describe our data collection and analysis procedures and shared the
instruments used for data collection in the studies conducted. The potential
solutions proposed are based on our reasoning, claims in related work (that
these solutions help with a specific challenge), and on discussions with the
case companies. We have not applied the solutions from the literature in the
case companies, or solutions suggested by one company in further companies.
Further validation of the collected solutions is needed.

1.4 Research Synthesis

We summarise the main results and contributions of this thesis per research
objective and reported study. The detailed descriptions of the results for each
study can be found in the respective paper (Chapter 2–7).

1.4.1 Paper A: RE Challenges in Large-Scale Agile

RO.1A: To identify the RE challenges of using agile methods in
large-scale systems development.

There is a substantial amount of research on agile methods from their definition
to their adoption, even at scale. Research on RE in agile environments is,
however, limited. Although there is available literature exploring challenges
of agile RE, none has the context of scaled system development companies.
Motivated by the limited empirical studies on RE challenges particular to
large-scale agile systems development, we conducted the study leading to Paper
A which also formed the basis for the subsequent studies. Paper A contributes
to our first goal (G.1 – establishing the current use of RE) while meeting our
first objective RO.1A, based on the following research questions:

RQ1A.a.: What are possible scopes of applying agile methods in large-scale
system development?

20 CHAPTER 1. INTRODUCTION

RQ1A.b.: How is the role of requirements characterized in large-scale agile
system development?

RQ1A.c.: Which requirements related challenges exist in large-scale agile
system development?

Main findings: With the first question, RQ.1A.a, we aimed to establish
the level to which our four case companies were agile. We found that the
participating companies were in the process of adopting agility and thus had
adopted agility in differing levels. Whereas one had adopted agile methods for
the whole product development process, several of the companies had agile
adoption only in the agile teams. This finding meant that the system-level was
still following a plan-driven approach, which also gave slight differences in the
challenges faced.

RQ.1A.b helped us confirm the importance of requirements, even in the
face of agile methods development. We find that requirements are seen as an
order while the teams prefer to work with user stories that are portrayed as
goals and give them more autonomy. RE is still crucial for system development,
and the study revealed that large-scale systems companies are struggling to
perform RE in agile development to the level they are used to while they were
using waterfall/traditional methods.

However, irrespective of the level of adoption, all companies exhibited
challenges (RQ.1A.c) that were put under two particular groups: Shared under-
standing of User Value and Building and Maintaining System understanding.
In regard to user value, most challenges were coming from teams struggling to
understand customer value, writing meaningful user stories and feedback and
requirements clarification from the user stories or features they develop. For
system understanding, the challenges faced relate to informing and synchronis-
ing between teams, creating and maintaining traces, insufficient tests and user
stories, agile tool chain establishment and, coming more from the traditional
foundation, there was a gap between plan-driven development and agile devel-
opment. Generally, findings demonstrate how system development is struggling
with RE, and this has now become an essential topic for practitioners and
researchers alike. Existing literature concerning RE in agile development does
not provide approaches for both user and system requirements specification in
an agile environment.

Potential application of the results: Paper A contributes a map of RE
related challenges in scaled agile system development. Practitioners find this
map useful to plan their adoption of agile methods as well as check their
process improvement since it allows to avoid over-optimizing one aspect while
negatively affecting another aspect. We hope that researchers benefit from
our overview of challenges when conducting related studies. To follow up on
this study, we conducted an independent study on challenges specific to safety
(Paper B), since the companies having to deal with safety requirements seemed
to show some differences and one following up on the teams being agile while
system-level is not (Paper C).

1.4. RESEARCH SYNTHESIS 21

1.4.2 Paper B: Safety-Critical Systems in Agile

RO.1B: To explore the state of art on the challenges of developing
SCS in an agile environment.

Agile methods have been criticised for neglecting upfront requirements and
extensive documentation [30] which are some of the defining features of safety
systems’ development. This criticism has thus created thinking that agile
methods are not suitable for Safety-Critical Systems (SCS) development. Upon
finding a challenge of developing SCS in agile development among companies
dealing with safety systems in Paper A, we sought to understand what challenges
have been identified from published empirical studies. Since we did not find
a study with a comprehensive and recent overview to help us understand the
context, we ventured to explore the domain through a mapping study. We
included only published empirical studies from 2001 to 2017. Paper B meets
this objective by answering the following research questions:

RQ1B.a.: What research exists about agile development of Safety-Critical
Systems?

RQ1B.b.: What are the key benefits of applying agile methods and practices
in SCS development?

RQ1B.c.: What challenges exist with agile development of SCS?

RQ1B.d.: What solution candidates (e.g. principles and practices) promise
to address challenges with respect to agile development of SCS?

Main findings: The results obtained showed that the focus on SCS has
changed considerably over the years from being positive in the beginning,
i.e. identifying benefits, to the recent papers discussing more of solutions to
overcome identified challenges. The reported benefits were in agreement with
the ones reported in the non-safety development domains, for instance better
test cases, improved quality and improved safety culture.

Apart from not trusting agile methods for safety development, the challenges
faced in development of SCS using agile methods are more geared towards
the certification and assurance requirements of safety systems. Assurance
requirements, for instance, involve many stakeholders who come from different
domains. Managing communication between such numbers proved challenging
in the agile context where documentation is not used for communication or
even given that much attention. Also, standards were written with a waterfall
mindset which favour effectiveness of waterfall methods over the flexibility of
agile methods. Obviously there were challenges with upfront planning, lack
of documentation focus and the trade-off of flexibility vs safety which have
always been a cause for the skepticism. Generally, safety requirements call
for well-structured processes, and heavy documentation that is not clearly
supported by agile development and agile teams find it hard and cumbersome
to balance speed and flexibility with the need for documentation.

The solutions proposed relate to using much the same practices as in the
non-safety development case but also include discussions relating to safety for
instance in the daily meetings and sprint reviews. It was also encouraged to

22 CHAPTER 1. INTRODUCTION

have safety experts as part of the team so that teams always have safety in
their mindset(s). We also notice that some practices that have existed even
in the traditional methods are highly recommended, e.g. setting high coding
standards and relying on standard operating procedures to improve quality
management.

Potential application of results: The results provide for potential general-
isation to other areas. We know the research that exists and that allows us and
the companies to systematically search for a setup on being large-scale agile
using a map of these challenges. The results also indicate that the challenges
faced in SCS development come from the need for structured processes that
the standards impose. With the standards in mind, it becomes necessary for
companies adopting agile methods to work on a coexistence plan that should
have both practices in proper use. Results also provide a starting point for
enabling us to accumulate more knowledge on which solutions could help. So
future research can build on it rather than replicate it.

1.4.3 Paper C: Agile Islands in a Waterfall

RO.1C: To identify the challenges of using agile methods in struc-
tured environments.

Findings from paper A (and partly from paper B) show that there is a challenge
of dealing with the gap between plan-driven and agile development and having
‘agile islands in a waterfall’ organisation. Paper A findings also indicate that
some companies have agile adoption only in the development teams an occurring
commonly noted in some studies but not yet explored further. Paper C sought
to follow-up on that finding to reveal the challenges that agile teams in such
traditional structures were facing. We explore the challenges from perspectives
of two of the agile teams in one large-scale company. The research objective
RO.1C was met by answering the following research questions:

RQ1C.a.: What are the perceived challenges when combining plan-driven
and agile paradigms in large-scale systems engineering?

RQ1C.b.: What mitigation strategies exist for the challenges identified?

Main findings: The findings of this paper indicate a variation in challenges
(RQ1C.a) faced for departments of the same company. The difference in
challenges stems from the departments’ different ways of working with agile
development methods. We find that whereas both departments have adopted
agile methods relating to Scrum, they have customised them to their specific
needs and thus modified a few roles and practices that bring in the difference.
In one department for instance, the role of product owner was not defined
although requirement prioritisation and coordination seemed to be going on
well. Also, the requirements management tools used in both departments
differed considerably although for both departments developers had no access
to the high-level or system requirements. In that context, we found challenges
common to both departments, e.g. development teams not being aware of
the high-level requirements, function owners over exposed to change requests

1.4. RESEARCH SYNTHESIS 23

and traceability issues mostly stemming from difference in tools and unclear
responsibilities in such environments.

We also found challenges unique to each department. At one department,
there was less focus on control and more ambition to facilitate autonomy of
agile teams. This resulted in practices where, for example, anyone on the team
could write a user story to the backlog. It was found that this could lead to
temporal inconsistencies, between the user stories and implementation, that
surfaced and had to be fixed during testing. At the other department, such
challenges were not as evident as the challenge of not knowing what effects a
change in one requirement could have on dependent units. Since developers in
this department were working with a central platform that is the foundation for
the work of several other departments, they felt the lack the complete picture
of the function was a more pressing challenge.

Strategies to mitigate the identified challenges were obtained both from
the participants and also from literature. On the one hand, participants felt it
necessary to have (system) testers as part of the team, update requirements
based on learning from sprint, create proper channels for writing user stories
while also explicitly stating which user story must be traced. Literature, on
the other hand, recommends cross-functional teams to manage requirements
updates, increasing understanding of processes and roles in development and
bringing testers closer to the requirement owner. However, these strategies
remain abstract and empirical research on their effectiveness is currently lacking.

Potential application of results: The results suggest a need for a holistic
company-wide approach to agile adoption and development to overcome some
of the challenges. Although there exist studies that mention the possibility of
different ways of working for sections of the same company, this is the only
study, that we are aware of, that clearly documents it while providing the
proof of what challenges could ensue. From this study, we also observe that
while it might not be possible to have all parts of the company agile nor be
desirable to have all parts of the company plan-driven, if different approaches
must co-exist, one should find a way to integrate them. Future research may
need to show how this integration can be achieved.

1.4.4 Paper D: RE practices in large-scale Agile

RO.1A: To identify the RE challenges of using agile methods in large-
scale systems development and
RO.2A: Examine existing scaled frameworks

Many frameworks have been proposed to try to overcome the challenge of
agile development at scale. However, their usefulness or ability to solve the
challenges has not been explored as elaborated in Section 1.1.3. With Paper
D, we explore what solutions two of the popular frameworks, SAFe and LeSS,
offer in relation to our identified challenges. Paper D contributes to research
objective RO.1A and satisfies RO.2A by answering the following questions:

RQ.2A.a: How pervasive are agile methods in large-scale system develop-
ment?

24 CHAPTER 1. INTRODUCTION

RQ.2A.b: Which requirements-related challenges exist in large-scale agile
system development?

RQ.2A.c: Which approaches have been proposed in popular literature and
which approaches are used by practitioners to address the challenges identified
in RQ.2A.b?

Main findings: Paper D reports on a three-year exploration that extends
Paper A with an almost exhaustive catalogue of RE challenges from the
participation of seven companies. Thus RQ.2A.a re-affirms that agile adoption
still exists in different phases in large-scaled systems development companies,
with the three more companies in perspective. We identify new challenges
(RQ.2A.b) to those identified in Paper A and rearrange them to six categories
which we briefly elaborate in the following:

1) The first category, Build and maintain shared understanding of customer
value, comes from the core strength of agile methods – managing customer
value. Challenges here include bridging gap to customer and building long-
lasting customer knowledge. For these large-scale companies, the distance
between customers and development is large, and it is difficult to break the
features into meaningful packages that have customer value and can be delivered
incrementally. The distance also makes the customer role unclear at scale.

2) For the second category, support change and evolution, we find challenges
relating to managing requirements updates, management of experimental
requirements, synchronisation of development and requirements re-use. We find
that updates are manually done, leading to inconsistencies which are expensive
to remove. This indicates that facilities for updating system requirements
based on agile learning are currently missing.

3) Build and maintain shared understanding about system is our third cate-
gory. With agile methods’ focus on value, the system requirements knowledge
is underrepresented. We find the need for documentation to complement test
cases and user stories, which are common practices in agile development, as
they are not sufficient for system understanding. Furthermore, the big picture
of the system is not captured since teams focus more on features or components
and thus, the creation and maintenance of traces becomes complex as well.

4) The fourth category Representation of Requirements Knowledge, denotes
the shared responsibility of requirements knowledge. In particular, it is hard to
manage the various levels of development in large-scale while giving meaningful
decomposition of requirements in agile development. We also find that the
current tools being used are not fit for agile development as they do not provide
the flexibility needed to accommodate different representations of requirements
that teams or individuals could have. Additionally, it is difficult to establish
consistent requirements quality and also align or establish thresholds for quality
requirements.

5) Our fifth challenge category, process aspects, relates to the process of
working with requirements. We find challenges relating to prioritisation of
distributed functionality, managing requirements completeness and consistency.
We also find the common challenge of balancing between time-to-market and
quality of the product.

6) Organizational Aspects formed our sixth and final category. For these

1.4. RESEARCH SYNTHESIS 25

large-scale systems engineering companies, the overall organisation in which
RE is practiced plays a vital role as well. Inherently, these companies perform
(some) long-term planning, especially for facilities. Our challenges in this
category relate to bridging between such system-level planning and agile work
in software teams, planning of integrated system testing, managing research
and pre-development, and identifying impacts on critical infrastructure in good
time.

Practitioners made suggestions towards solutions for some of the identified
challenges (RQ.2A.c). For instance, many of the practitioners agreed that it is
a good practice to have the teams and PO update the requirements. In this
way, the gap between plan-driven and agile development would be bridged,
and the tooling not fit for purpose challenge addressed. They also shared a
recommendation to move from project-focused development to product-focused
development in order to create and maintain traces as well as encourage re-use of
requirements. Here, practitioners also mentioned the Text-based Requirements
system (T-Reqs) as a useful tool for updating and managing experimental
requirements. Paper D gives more details on these challenges and solutions,
while we expend on TReqs in Paper F.

A mapping of the challenges to the solutions provided by SAFe and LeSS
frameworks (RQ.2A.c) revealed that these frameworks have in some cases
concrete practices while in other cases, there is none. In relation to Build
and maintain shared understanding of customer value category, we find that
several practices have been proposed. We find solutions relating to concrete
practices, (e.g. frequent demos, sprint review bazars, use models, continuous
improvement, retrospectives). We also find more abstract guidelines. For
instance SAFe describes techniques such as combining “weighted shortest job
first”, “portfolio backlog”, and “program kan-ban” to support cross-cutting
initiatives towards prioritization. It also advocates for a combination of other
practices as elaborated in Paper D. However, there are no clear guidelines on
how to combine all these suggestions into one coordinated process. The same
can be said about many of the recommendations from LeSS framework. It is
our understanding that such combinations would require specialised tools, or
even just customised tools which do not yet exist.

Results from analysis of popular frameworks show a lack of concrete ad-
vice to manage some of the challenges (coming from the different categories)
while for many others, the solutions from these frameworks are relatively
underrepresented.

Potential application of results: The Paper presents a catalogue of RE
challenges and their potential solutions both from practitioners and also rec-
ommendations from popular frameworks. This catalogue would help inform
practitioners on which solutions they already have available through the scaled
frameworks and what practitioners in similar settings have used to manage
their situations. Additionally, in order to mitigate the identified challenges, we
encourage future research to not only focus on producing further practices but
also evaluate the existing and proposed solutions in large-scale agile settings.

26 CHAPTER 1. INTRODUCTION

1.4.5 Paper E: Charting coordination needs

RO.2B: To propose techniques to solve or overcome some of the
identified challenges

Current research explored hybrid development in terms of how development
methods are combined by teams during development, for instance, using a
mixture of traditional methods with agile methods [38]. What does that mean
for large-scale companies working on different projects with dependencies? Our
previous studies showed issues with communication and documentation, which
were affecting coordination between teams and high-level development. While
motivated by the results of paper C and those leading to Paper D, in paper
E we set out to search for solutions for identified challenges. We started with
generalising the problem of agile islands to the whole system development and
thus the whole organisation. We contribute to research objective RO.2B by
answering the following research questions in paper E:

RQ2B.a: Which agile islands are repeatedly encountered in large-scale agile
contexts?

RQ2B.b: Which boundary objects are repeatedly encountered in large-scale
agile contexts?

Main findings: Our findings to RQ2B.a show that there are occurrences of
varying methods being used in the companies but not only among those using
agile methods but also non-agile teams. We thus started to think in terms of
methodological islands. While evaluating which islands do exist, we realised
that the level of abstraction for the island differed and these abstractions were
extracted and grouped to give the drivers for methodological islands.

We identified three groups of methodological islands which occur on different
levels in the company. At the very high level, we identified external organisations
that companies have to work with. These include, for instance, suppliers,
regulators and customers, all of which come with different ways of working
that have to be accommodated. The next two groups come from within the
companies. For companies using SAFe framework, agile release trains (teams of
agile teams) exist, and companies have to coordinate tasks between the different
release trains. Similarly, for companies without SAFe, departments still exist
each with its teams. As has always been, product development can span several
departments (e.g. marketing, hardware, software departments) and thus several
disciplines in the company. Since departments and release trains, for instance,
are a group of different teams, at the intermediate level we identified groups
of teams as another category of methodological islands. At the lowest level in
the company, we have the individual teams, for instance, component teams or
integration teams, which also display different methodologies.

We identified drivers for such methodological islands as process-, business-
and technology-related factors. Companies are business-oriented and thus have
to watch different factors which are best addressed through having departments.
For the large scale, some companies or departments are also distributed to
different geographical zones which brings in time and cultural differences.
This distribution creates different methods for the affected departments, thus
the business-related drivers. Process-related drivers describe a mixture of

1.4. RESEARCH SYNTHESIS 27

development methods (SAFe [82], V-Model [83], Scrum [28]) and whether a
company mainly works based on projects, or whether significant workflows
in the continuous development of a platform. The technology-related drivers
come from the systems being developed. Here, methodological islands will
emerge depending on whether they are dealing with the same architectural
decomposition, systems disciplines, platform and product-line, and the required
time-scale of commitment.

The boundary objects related to the methodological islands were also identi-
fied and categorised depending on different viewpoints of the islands. Typically,
for large-scale, before development commences, contracts, roadmaps and plans
are created for proper project or product management. We categorised these as
planning boundary objects. We further identified boundary objects that relate
to tasks in the development effort, e.g. user stories and other backlog items as
task boundary objects. Those that are concerned with technological aspects (e.g.
tests or architectural objects) of the system being developed were categorised
as technology boundary objects. Regulation and standards boundary objects
are used to ensure that the company complies with regulations and standards
through safety cases for instance. The regulations come with a demand for
process definition and thus documentation which is achieved through process
boundary objects like SAFe documentation. Boundary objects relating to the
final customers’ product were categorised as product description boundary
objects and include, e.g., the technical documentation for the customer and
the variability model. Trace links are a special category, as they represent the
relationships between artefacts.

Potential application of results: Paper E presents a catalogue of method-
ological islands and the boundary objects between them. Our catalogue proved
useful when discussing potential process improvements with companies as it
gives them a mindset of planning their coordination efforts in relation to their
distances and particular needs. So, this catalogue comes in as a starting point
for a technique that can be used to identify gaps or distance in islands and
also plan for possible intervention before it becomes costly. This catalogue for
boundary objects is not exhaustive and future research could pursue creating
a model or taxonomy that defines this technique fully. Also, thinking about
tools as boundary objects is a viable next step.

1.4.6 Paper F: Tool support for managing requirements

RO.2B:To propose techniques to solve or overcome some of the iden-
tified challenges

We approached the other part of research objective RO.2B through developing
the T-Reqs tool. The tool design was motivated by Paper A, C, D that reflect
findings on the challenge of agile teams not being aware of or able to update
the system requirements. Agile methods provide recommended practices which
also need tools support to make them effective. To this end, requirements tools
are abundant. However, most existing tools for requirements management do
not support the autonomy of development teams, e.g., giving developers ability
to view, and possibly update the requirements at system-level. We recommend

28 CHAPTER 1. INTRODUCTION

Table 1.5: Summary of challenges relating to the ‘gap’

Category Related Challenge
Organisational
issues

Lack of trust in agile methods
No time for invention and planning
Hard to plan tests based on requirements

Process issues Prioritisation of distributed functionality
Managing different representations
Tooling not fit for purpose

Technology issues Lack of overall system knowledge
Managing traceability
Updating requirements
Synchronisation of development

customisable tooling to address the gap between system-level and agile teams.
With paper F, a new tooling concept is illustrated.

T-Reqs is a tool solution that gives the developers autonomy and ability
to make changes to the system requirements when needed. It is text-based
and works with Git version control system to enable agile teams to propose
changes to the high-level requirements at system level. This tool is presented
in Chapter 7 where it is further elaborated in a technical report.

Potential application The tool is applied in the development in one com-
pany with a few modifications. The tool works well with reviews and allows
the developers to use it within their usual development environments and yet
still maintain traceability. It, however, still has artefact (requirement, test
case or user story) Identity (ID) generation and more ideas to enhance it with
sophisticated capabilities such as models that will not make it more complicated
are welcome. The tool highlights the text-based view on requirements and
future research could explore which domains such specification works best and
if it can be generalised.

1.5 Summary of Results

The appended papers each contribute incrementally to the thesis goal of
providing an empirical investigation into the challenges and solution candidates
of performing effective RE at scale and in systems development. In this section,
we summarise the contributions of this thesis as per the sub-goals of the thesis.

1.5.1 Current status of RE (G1)

Findings re-affirm that RE in system development is still as important as in
agile development as it is or has been in traditional development. However,
the team focus on user stories that come with agile development has added
on to the challenges of RE in systems development despite solving, e.g. a few
previously known challenges. We explored the challenges of developing in a
large-scale agile environment from three ‘angles’ in order to meet this goal. We
began with the general large-scale organisation (RO.1A) that reveals challenges

1.5. SUMMARY OF RESULTS 29

relating to user value and system understanding (Paper A). These findings in
paper A are later expanded into six categories in Paper D. This thesis focuses on
challenges that relate to system understanding. The studies addressing RO.1B
and RO.1C explore system understanding yet further. The second ‘angle’ is the
safety-critical domain, RO.1B. This research (Paper B) reveals that challenges
in the safety domain stem from the recommendations provided by the standards
and regulations, that companies have to fulfil. We find challenges relating
to upfront, just-in-time, and long term or infrastructural aspects. However,
the trade-off between upfront analysis and just-in-time development is still
much of a pain point that is under researched. The third and final setting
is the agile teams in a waterfall environment, RO.1C. This study (Paper C)
highlights the challenge of the gap between system-level requirements and agile
teams development. At the system-level, requirements are more plan-driven
while in the development teams, the pace of change of requirements is easily
accommodated. It is a challenge to balance the agility of teams and system-level
information needs in large-scale agile system development. This challenge is
a reoccurring challenge in all the studies and appears to be affected by the
entire process of the organisation including business, process and technological
aspects. Here we denote the challenges in those categories that also relate to or
sprout from that major challenge and are also reported in our studies. Table
1.5 presents the visualisation.

Organisational issues In this category, challenges relating to organisational
discipline are discussed. Agile at scale was received with skepticism from many
project and/or product managers as they lacked the trust in agile methods since
agile methods do not give clear guidelines for project monitoring and control.
Also, large-scale organisations commonly invest much time for inventions and
planning. However, with the introduction of sprints, it is not clear at what level
to do it as it would slow down development if given to developers yet at system-
level it would mean extensive documentation and handover not recommended
in agile development. Test planning (plan V & V based on requirements) is
another organisational issue that is affected by agility at scale. The agile teams
with their product owners do not perform validation plans which are done by
the system managers. This introduces a gap between the agile and system
testing team. Also the rate of change of requirements could warrant an update
to the testing infrastructure. However, the current setting does not give testers
the ability to monitor changes and thus have a head-start in improving the test
environment.

Process issues Here, we group challenges from the development process that
relate to the gap. Prioritisation of distributed functionality is suffering at the
gap since teams choose to work with simple tasks leaving out the high priority
tasks with the excuse of not enough time to implement. This act frustrates
system development as it becomes hard to follow development. Additionally,
teams want to tailor requirements to their contexts but there is no support for
managing different representations of requirements. At the same time, system-
level development aims to keep artefacts consistent and manageable. This also
brings in the tooling not fit for purpose challenge. Current tools limit developers’
access to system-level requirements making updating of requirements slow and

30 CHAPTER 1. INTRODUCTION

cumbersome. Also, since requirements are usually defined at the beginning of
development, there is no obvious way to update them.

Technology issues In this category, both process and organisational aspects
are at play, thus issues relating to technologies used. At the higher end,
the organisations choose the technologies to use and at the lower end, the
processes depend on (are driven by) the technologies used. Teams develop
components that must fit into the full system but lack the overall system
knowledge. They thus might sub-optimise with regard to the bigger system as
they are thinking of component quality. This challenge can be motivated by the
organisation improving its structures which should help the developers become
more proactive than before. It is hard to trace user stories on development level
to requirements on system-level since developers are also not motivated to create
such traces. This challenge is also deepened by the usage of different tools at
the development and system level. In the end, the update to requirements also
suffers developers work with tools different from those at the system level. With
large-scale development, there are usually many levels of requirements as they
are decomposed making synchronisation of development hard as channelling
the right information from system level down to the developers becomes time
consuming and difficult.

1.5.2 Exploring solution space (G2)

The solution space is explored in three ways as well. First, we analyse two
popular frameworks (SAFe and LeSS) to identify the solutions they offer for
the identified challenges. In relation to balancing team agility and system-level
information, scaled frameworks have recommended practices. However, there
is no empirical proof of which we are aware. We find a lack of guidance on
the tools to use, and the proposed practices are not concrete per se. With this
finding, we explore alternatives for solutions. Second we start to recommend
with a textual tool (T-Reqs) based on Git that allows the developers to propose
changes to the high-level requirements. Lastly, we come up with a catalogue of
methodological islands and boundary object types that practitioners should
recognise in their organisations to help them try to address the coordination
challenges between teams and system-level works. The proposed solution relies
on artefacts, specifically boundary objects. In view of this aspect, T-Reqs is
a boundary object that can also address the coordination needs of teams in
large-systems’ development. We recognise process, organisational and technical
issues which relate to RE at scale both in the problem space and in the solution
space. Our findings in the solution space imply that large-scale companies’ RE
needs for agile system development are driven by choices made at all those
(process, organisation, and technical) levels. Thus, understanding the factors
at play in each of the levels could help address the ‘gap’ challenge.

1.6 Discussion

Just as the technology-, process- and business-related (or organisational) as-
pects drive the occurrence of methodological islands, the current state of RE

1.6. DISCUSSION 31

challenges has also been grouped in these categories allowing us to under-
stand the challenges better in relation to the solution space. For organisations
that have a set organisation structure and defined standards and processes
to follow within the organisation, this grouping starts to appear at different
levels. At the highest level is the business-related aspects, with processes- and
technology-related aspects as subsets. The processes and technologies used are
determined by the organisation and thus differences of methods used in teams
are easily identified. In this way, organisations only take up processes if they
have explored the different ways such processes can be applied to their contexts
and thus expect less surprising challenges. In line with recommendations to
tailor agile methods to their contexts [84], we further emphasis a company
driven adoption.

This thesis expounds on the challenge of a gap between development and
system-level requirements. The gap between agile teams and system-level
development has been addressed through hybrid development in recent studies.
Hybrid development in the most straightforward form consists of practices
from different agile methods and also from traditional development methods.
We have seen that this form of development has become the current norm for
many companies, big and small alike [36]. For large-scale system development,
however, hybrid development goes beyond the combination of different methods
for development to having two separate sections in the organisation, one working
in a plan-driven (traditional) and another working in an agile manner.

Results on the challenges arising from coexistence of traditional and agile
methods reveal,e.g., inconsistencies between the implemented requirements
and the requirements being tested (test planning), which comes from the
development teams not being aware of the high-level requirements. These
results are in agreement with, e.g., Kusters et al. [39] who identify a ‘lack
of linkage of the iterative development process to the test process’. This
thesis identifies many challenges in this gap (see Section 1.5. In light of such
challenges, the success of agile development at scale becomes questionable.
Rolland et al. [6] while challenging assumptions of agile development at scale,
posed the same question when they examined the concept of self-organising
teams at scale. Although not focused on RE in system development, they pose
this question “Are there models of organizing the development process that can
grant team-level autonomy and still ensure efficient inter-team coordination?”
Dealing with safety-critical components of the software and a solid foundation
on waterfall methods limits the autonomy that teams can have at scale. We
question how far team autonomy can be stretched in that context.

Additionally, our findings show that requirements change so fast during
development that it is hard to track the change in dependencies between re-
quirements among teams. At scale these challenges change form and become
essential to address [6]. In the systems engineering context with parallel devel-
opment of hardware and software, these challenges become critical, especially
when we add the RE context as then the documentation and entire validation
process could be terribly slowed. Struggles to find solutions for such challenges
are still on-going.

Kuusinen et al. [40] recommend strategies that include convincing manage-
ment to change their mindset about agile methods. Relating to our discussions
in interviews and workshops, managers seem to be convinced but still challenges

32 CHAPTER 1. INTRODUCTION

exist since, given the scale and related constraints, it is hard to be fully agile.
We believe that buy-in to agile development at scale has to span to the known
‘non-agile’ departments like hardware departments as well. This thesis presents
two fundamental attempts to solving the identified challenges. Coming from
an RE perspective, development is turned into a communication problem and
eventually into a coordination problem when we talk of software development
among 6 or more teams. At that level, good strategies for coordination of
development need to be devised. T-Reqs and the concept of Boundary Objects
and Methodological Islands (BOMI) introduced in this thesis present ideas
towards potentially working solutions.

With T-Reqs, the organisations do not change their infrastructure as such.
The known rules and standards of development still apply with the flexibil-
ity of allowing the developers propose changes and work directly with the
requirements. In this way, requirements updating challenges are reduced. Some
studies have proposed having cross-functional teams [54,85] to help in updating
requirements across the ‘gap’. These solutions are applicable for intra-team
coordination and communication, and become problematic across teams. T-
Reqs ensures coordination across teams, and requirements are always to the
most recent version across teams. In addition, the BOMI concept allows
for an agile or autonomous way of identifying communication need and thus
creating it. This suggestion relates to the practice of ad-hoc meetings [60]
which was found effective. Boundary objects as artefacts can come up whenever
they are needed and depending on the development aims, can be maintained
or discarded afterwards. We, however, aim for reusable boundary objects to
reduce workload and also carry over knowledge from previous development.

In short, T-Reqs and BOMI potentally address some of the identified chal-
lenges. T-Reqs potentially addresses the challenge of lack of agile tooling
(tooling not fit for purpose), managing requirements updates during devel-
opment and traceability management. BOMI concept is good for advising
processes to synchrnonise development, managing different representations and
traceability management. It is almost impossible to define a generic solution
and thus we propose these two concepts as they can be customised to the
particular company needs. Although they may appear constraining, these
solution candidates offer teams an opportunity to be autonomous and efficient
while working with system-level information that is process-driven. These two
solution proposals call for a full organisational buy-in to agile development.

In the context of RE in large-scale agile systems development, whereas
agile RE aims at using agile practices to do RE, we argue for RE for agile
development (RE4Agile) where we perform RE to support agile development.
This means that the known methods of doing RE would still hold. However,
they would not be done one off as before and would also be done incrementally
and concurrent to development. This thesis argues that, for large-scale systems
development organisations, an approach that takes advantage of the speed and
change handling of agile development while also building on the coordination
provided by traditional methods would be more adequate. We thus recommend
that such large-systems companies to aim for an informed hybrid approach
that takes the best of both worlds.

1.7. CONCLUSIONS AND FUTURE WORK 33

1.7 Conclusions and Future Work

This research aimed to uncover RE challenges and solution candidates for the use
of agile development in systems development companies. Through use of a series
of qualitative empirical studies, we contribute a catalogue of RE challenges
in large-scale agile systems development. We found challenges relating to
maintenance and long-term product support which agile methods tend to
ignore. Future research could explore that direction a bit more. This thesis
dwells on the challenge of system understanding to highlight the challenges
of interaction between agile teams and system-level requirements. While
companies continue to struggle with the gap, we see a need for future research
specifically aiming at investigation of trade-offs between effort done upfront
and just-in-time. We also advocate for guidelines on how to shift more effort
into just-in-time analysis as we aim towards RE for Agile development.

Through exploration of solution candidates, this thesis also provides a
first attempt to skip the divide between upfront and just-in-time analysis.
While uncovering the solution candidates, we noticed practices recommended in
literature but did not yet find empirical evidence confirming their usefulness for
large-scale systems development. We thus encourage future research to not only
produce more practices to solve open challenges, but also focus on evaluation
of existing large-scale agile system proposals from a requirements perspective.
We also explored solutions offered by two of the popular large-scale frameworks,
SAFe and LeSS. We found that whereas they have recommended practices, these
are still abstract and not concrete enough for the practitioners to implement
with certainty. Perhaps studies detailing the successful implementation of these
frameworks while elaborating how the proposed practices were met could help
in that aspect.

We introduce, T-Reqs, a custom made solution in one of the companies which
we, together with its pioneers, created an open-source version of. Although the
tool has not yet been tried in other environments or contexts, it is a first step
towards addressing many of the identified challenges for large-scale systems
development. We aim to continue adding functionality and exploring its usage
and thus welcome contributions towards making the open source tool more
usable.

We started to explore practical ways to address knowledge management
in large-scale agile systems development. For that, we charted a landscape
of methodological islands and boundary objects (BOMI) which practitioners
found useful for discussing potential process and tool improvements. We
are currently working on translating the landscape into a model that can
benefit practitioners. Future research could use our landscape to prioritise and
scope knowledge management needs. Additionally, a quantitative survey could
provide information on which boundary objects and methodological islands are
most frequent. With these contributions in the solution space, we provide a
sketch of promising approaches, e.g. through agile tools and BOMIs, on how
these challenges could be approached.

 CHAPTER 2 - Papers A - F omitted

Bibliography

[1] U. Eliasson, R. Heldal, E. Knauss, and P. Pelliccione, “The need of
complementing plan-driven requirements engineering with emerging com-
munication: Experiences from volvo car group,” in RE Conf. IEEE,
2015, pp. 372–381.

[2] J. Pernst̊al, T. Gorschek, R. Feldt, and D. Florén, “Requirements com-
munication and balancing in large-scale software-intensive product de-
velopment,” Information and Software Technology, vol. 67, pp. 44–64,
2015.

[3] K. Pohl, Requirements engineering: fundamentals, principles, and tech-
niques. Springer Publishing Company, Incorporated, 2010.

[4] T. Clancy, “The standish group chaos report,” Project Smart, 2014.

[5] I. Sommerville and P. Sawyer, Requirements engineering: a good practice
guide. John Wiley & Sons, Inc., 1997.

[6] K. Rolland, T. Dingsoyr, B. Fitzgerald, and K.-J. Stol, “Problema-
tizing agile in the large: alternative assumptions for large-scale agile
development,” in 39th International Conference on Information Systems.
Association for Information Systems (AIS), 2016.

[7] M. Paasivaara and C. Lassenius, “Challenges and success factors for
large-scale agile transformations: A research proposal and a pilot study,”
in Proc. of the Scientific WS Proc. of XP2016. ACM, 2016, p. 9.

[8] K. Dikert, M. Paasivaara, and C. Lassenius, “Challenges and success
factors for large-scale agile transformations: A systematic literature
review,” Journal of Systems and Software, 2016.

[9] L. Lagerberg, T. Skude, P. Emanuelsson, K. Sandahl, and D. St̊ahl,
“The impact of agile principles and practices on large-scale software
development projects: A multiple-case study of two projects at ericsson,”
in ACM / IEEE Int. Symposium on Empirical Software Engineering and
Measurement, 2013, pp. 348–356.

[10] C. Berger and U. Eklund, “Expectations and challenges from scaling
agile in mechatronics-driven companies – a comparative case study,” in
Proc. of 16th Int. Conf. on Agile Processes in Software Engineering and
Extreme Programming (XP ’15), 2015, pp. 15–26.

171

172 BIBLIOGRAPHY

[11] T. Dyb̊a and T. Dingsøyr, “Empirical studies of agile software develop-
ment: A systematic review,” Information and software technology, vol. 50,
no. 9, pp. 833–859, 2008.

[12] V. Vinekar, C. W. Slinkman, and S. Nerur, “Can agile and traditional
systems development approaches coexist? an ambidextrous view,” Infor-
mation systems management, vol. 23, no. 3, pp. 31–42, 2006.

[13] M. Lindvall, D. Muthig, A. Dagnino, C. Wallin, M. Stupperich, D. Kiefer,
J. May, and T. Kahkonen, “Agile software development in large organi-
zations,” Computer, vol. 37, no. 12, pp. 26–34, 2004.

[14] M. Laanti, O. Salo, and P. Abrahamsson, “Agile methods rapidly re-
placing traditional methods at nokia: A survey of opinions on agile
transformation,” Information and Softw. Techn., vol. 53, no. 3, pp. 276–
290, 2011.

[15] I. Inayat, S. S. Salim, S. Marczak, M. Daneva, and S. Shamshirband, “A
systematic literature review on agile requirements engineering practices
and challenges,” Computers in human behavior, vol. 51, pp. 915–929,
2015.

[16] V. T. Heikkila, D. Damian, C. Lassenius, and M. Paasivaara, “A mapping
study on requirements engineering in agile software development,” in
41st Euromicro Conf. on Softw. Eng. and Advanced Applications (SEAA
’15), 2015, pp. 199–207.

[17] F. Paetsch, A. Eberlein, and F. Maurer, “Requirements engineering and
agile software development.” in WETICE, vol. 3, 2003, p. 308.

[18] D. Leffingwell, Scaling Software Agility: Best Practices for Large Enter-
prises. Addison-Wesley Professional, 2011.

[19] B. Ramesh, L. Cao, and R. Baskerville, “Agile requirements engineering
practices and challenges: an empirical study,” Information Systems
Journal, vol. 20, no. 5, pp. 449–480, 2010.

[20] B. Boehm, “Some future trends and implications for systems and software
engineering processes,” Systems Engineering, vol. 9, no. 1, pp. 1–19, 2006.

[21] J. Mössinger, “Software in automotive systems,” IEEE software, vol. 27,
no. 2, 2010.

[22] M. Glinz, “A glossary of requirements engineering terminology,” Stan-
dard Glossary of the Certified Professional for Requirements Engineering
(CPRE) Studies and Exam, Version, vol. 1, 2011.

[23] V. T. Heikkilä, M. Paasivaara, C. Lasssenius, D. Damian, and C. En-
gblom, “Managing the requirements flow from strategy to release in
large-scale agile development: a case study at ericsson,” Empirical Soft-
ware Engineering, pp. 1–45, 2017.

[24] W. W. Royce, “Managing the development of large software systems: con-
cepts and techniques,” in Proceedings of the 9th international conference
on Software Engineering, 1987, pp. 328–338.

BIBLIOGRAPHY 173

[25] A. Alliance, “Home: http://www. agilealliance. org,” Accessed 14th
November 2018.

[26] K. Beck, M. Beedle, A. van Bennekum, A. Cockburn, W. Cunningham,
M. Fowler, J. Grenning, J. Highsmith, A. Hunt, R. Jeffries, J. Kern,
B. Marick, R. C. Martin, S. Mellor, K. Schwaber, J. Sutherland, and
D. Thomas, “Manifesto for agile software development,” 2001.

[27] L. Williams, “What agile teams think of agile principles,” Communica-
tions of the ACM, vol. 55, no. 4, pp. 71–76, 2012.

[28] K. Schwaber and M. Beedle, Agile software development with Scrum.
Prentice Hall Upper Saddle River, 2002, vol. 1.

[29] K. Beck, Extreme programming explained: embrace change. Addison-
Wesley, 1999.

[30] B. Meyer, Agile! The Good, the Hype and the Ugly. Springer, 2014.

[31] D. Leffingwell, “Mastering the iteration: An agile white paper,” Rally
Software Development Corporation, 2007.

[32] A. De Lucia and A. Qusef, “Requirements engineering in agile software
development,” Journal of emerging technologies in web intelligence, vol. 2,
no. 3, pp. 212–220, 2010.

[33] B. Boehm and R. Turner, “Management challenges to implementing
agile processes in traditional development organizations,” IEEE software,
vol. 22, no. 5, pp. 30–39, 2005.

[34] A. Sillitti and G. Succi, “Requirements engineering for agile methods,”
in Engineering and Managing Software Requirements. Springer, 2005,
pp. 309–326.

[35] R. S. Carson, “4.2. 1 can systems engineering be agile? development
lifecycles for systems, hardware, and software,” in INCOSE International
Symposium, vol. 23, no. 1. Wiley Online Library, 2013, pp. 16–28.

[36] M. Kuhrmann, P. Diebold, J. Münch, P. Tell, V. Garousi, M. Felderer,
K. Trektere, F. McCaffery, O. Linssen, E. Hanser et al., “Hybrid software
and system development in practice: waterfall, scrum, and beyond,” in
Proceedings of International Confonference on Software System Process
(ICSSP). ACM, 2017, pp. 30–39.

[37] G. Theocharis, M. Kuhrmann, J. Münch, and P. Diebold, “Is water-scrum-
fall reality? on the use of agile and traditional development practices,”
in Int. Conf. on Product-Focused Software Process Improvement, 2015,
pp. 149–166.

[38] P. Tell, J. Klünder, S. Küpper, D. Raffo, S. G. MacDonell, J. Münch,
D. Pfahl, O. Linssen, and M. Kuhrmann, “What are hybrid development
methods made of? an evidence-based characterization,” in Proceedings
of the International Conference on Software and System Processes, ser.
ICSSP ’19. Montreal, Quebec, Canada: IEEE Press, 2019, pp. 105–114.

174 BIBLIOGRAPHY

[39] R. J. Kusters, Y. van de Leur, W. G. Rutten, and J. J. Trienekens,
“When agile meets waterfall - investigating risks and problems on the
interface between agile and traditional software development in a hybrid
development organization.” in Int. Conf. on Enterprise Information
Systems (ICEIS), vol. 2, 2017, pp. 271–278.

[40] K. Kuusinen, P. Gregory, H. Sharp, and L. Barroca, “Strategies for doing
agile in a non-agile environment,” in ESEM. ACM, 2016, p. 5.

[41] D. West, M. Gilpin, T. Grant, and A. Anderson, “Water-scrum-fall is the
reality of agile for most organizations today,” Forrester Research, vol. 26,
2011.

[42] O. Salo and P. Abrahamsson, “Agile methods in european embedded
software development organisations: a survey on the actual use and
usefulness of extreme programming and scrum,” IET software, vol. 2,
no. 1, pp. 58–64, 2008.

[43] U. Eklund, H. Holmström Olsson, and N. J. Strøm, “Industrial challenges
of scaling agile in mass-produced embedded systems,” in Proc. of Int. WS
on Agile Methods. Large-Scale Dev., Refactoring, Testing, and Estimation,
2014, pp. 30–42.

[44] J. Pernst̊al, A. Magazinius, and T. Gorschek, “A study investigating chal-
lenges in the interface between product development and manufacturing
in the development of software-intensive automotive systems,” Inter-
national Journal of Software Engineering and Knowledge Engineering
(IJSEKE), vol. 22, no. 07, pp. 965–1004, 2012.

[45] T. Dingsøyr, N. B. Moe, T. E. Fægri, and E. A. Seim, “Exploring software
development at the very large-scale: a revelatory case study and research
agenda for agile method adaptation,” Empirical Software Engineering,
vol. 23, no. 1, pp. 490–520, 2018.

[46] T. Dingsøyr, T. E. Fægri, and J. Itkonen, “What is large in large-scale?
a taxonomy of scale for agile software development,” in Proceedings
of 15th International Conference on Product-Focused Software Process
Improvement (PROFES ’14), A. Jedlitschka, P. Kuvaja, M. Kuhrmann,
T. Männistö, J. Münch, and M. Raatikainen, Eds., 2014, pp. 273–276.

[47] M. Jørgensen, “Do agile methods work for large software projects?”
in Agile Processes in Software Engineering and Extreme Programming,
J. Garbajosa, X. Wang, and A. Aguiar, Eds. Cham: Springer Interna-
tional Publishing, 2018, pp. 179–190.

[48] C. Ebert and M. Paasivaara, “Scaling agile,” IEEE Software, vol. 34,
no. 6, pp. 98–103, 2017.

[49] V. One and C. Net, “13th annual state of agile survey,” Survey. Accessed
online, vol. 15, 2019.

[50] M. Paasivaara, “Adopting safe to scale agile in a globally distributed
organization,” in 2017 IEEE 12th International Conference on Global
Software Engineering (ICGSE), 2017, pp. 36–40.

BIBLIOGRAPHY 175

[51] O. Turetken, I. Stojanov, and J. J. Trienekens, “Assessing the adoption
level of scaled agile development: a maturity model for scaled agile
framework,” Journal of Software: Evolution and process, vol. 29, no. 6,
p. e1796, 2017.

[52] K. Conboy and N. Carroll, “Implementing large-scale agile frameworks:
Challenges and recommendations,” IEEE Software, vol. 36, no. 2, pp.
44–50, 2019.

[53] M. Laanti and P. Kettunen, “Safe adoptions in finland: a survey research,”
in International Conference on Agile Software Development. Springer,
2019, pp. 81–87.

[54] E. Bjarnason, K. Wnuk, and B. Regnell, “A case study on benefits and
side-effects of agile practices in large-scale requirements engineering,” in
Proc. of 1st WS on Agile Reqts. Eng., 2011.

[55] K. Schneider, Experience and knowledge management in software engi-
neering. Springer Science & Business Media, 2009.

[56] T. Chau, F. Maurer, and G. Melnik, “Knowledge sharing: Agile methods
vs. tayloristic methods,” in Enabling Technologies: Infrastructure for
Collaborative Enterprises, 2003. WET ICE 2003. Proceedings. Twelfth
IEEE International Workshops on. IEEE, 2003, pp. 302–307.

[57] K. Petersen and C. Wohlin, “The effect of moving from a plan-driven
to an incremental software development approach with agile practices,”
Empirical Software Engineering, vol. 15, no. 6, pp. 654–693, 2010.

[58] M. Hummel, C. Rosenkranz, and R. Holten, “The role of communica-
tion in agile systems development,” Business & Information Systems
Engineering, vol. 5, no. 5, pp. 343–355, 2013.

[59] M. Pikkarainen, J. Haikara, O. Salo, P. Abrahamsson, and J. Still, “The
impact of agile practices on communication in software development,”
Empirical Software Engineering, vol. 13, no. 3, pp. 303–337, 2008.

[60] H. Nyrud and V. Stray, “Inter-team coordination mechanisms in
large-scale agile,” in Proceedings of the XP2017 Scientific Workshops, ser.
XP ’17. New York, NY, USA: Association for Computing Machinery,
2017. [Online]. Available: https://doi.org/10.1145/3120459.3120476

[61] G. Wagenaar, S. Overbeek, G. Lucassen, S. Brinkkemper, and K. Schnei-
der, “Working software over comprehensive documentation–rationales
of agile teams for artefacts usage,” Journal of Software Engineering
Research and Development, vol. 6, no. 1, p. 7, 2018.

[62] R. Wohlrab, P. Pelliccione, E. Knauss, and M. Larsson, “Boundary
objects and their use in agile systems engineering,” Journal of Software:
Evolution and Process, vol. 31, no. 5, p. e2166, 2019.

[63] M. Barrett and E. Oborn, “Boundary object use in cross-cultural software
development teams,” Human Relations, vol. 63, no. 8, pp. 1199–1221,
2010.

https://doi.org/10.1145/3120459.3120476

176 BIBLIOGRAPHY

[64] S. L. Star and J. R. Griesemer, “Institutional ecology,translations’ and
boundary objects: Amateurs and professionals in berkeley’s museum of
vertebrate zoology, 1907-39,” Social studies of science, vol. 19, no. 3, pp.
387–420, 1989.

[65] J. M. C. De Gea, J. Nicolás, J. L. F. Alemán, A. Toval, C. Ebert, and
A. Vizcáıno, “Requirements engineering tools: Capabilities, survey and
assessment,” Information and Software Technology, vol. 54, no. 10, pp.
1142–1157, 2012.

[66] W. Alsaqaf, M. Daneva, and R. Wieringa, “Quality requirements in
large-scale distributed agile projects–a systematic literature review,” in
International Working Conference on Requirements Engineering: Foun-
dation for Software Quality. Springer, 2017, pp. 219–234.

[67] B. Fitzgerald, K.-J. Stol, R. O’Sullivan, and D. O’Brien, “Scaling agile
methods to regulated environments: An industry case study,” in Proc.
of 35th Int. Conf. on Software Engineering (ICSE), 2013, pp. 863–872.

[68] G. K. Hanssen, B. Haugset, T. St̊alhane, T. Myklebust, and I. Kulbrand-
stad, “Quality assurance in scrum applied to safety critical software,”
in Proc. of Int. Conf. on Agile Software Development (XP), Edinburgh,
Scotland, UK, 2016, pp. 92–103.

[69] ISO, “Road vehicles – Functional safety,” 2011.

[70] L. T. Heeager and P. A. Nielsen, “A conceptual model of agile software
development in a safety-critical context: A systematic literature review,”
Information and Software Technology, vol. 103, pp. 22–39, 2018.

[71] E. S. Grant, “Requirements engineering for safety critical systems: An
approach for avionic systems,” in 2nd Int. Conf. on Computer and
Communications (ICCC), 2016. IEEE, 2016, pp. 991–995.

[72] F. McCaffery, M. Pikkarainen, and I. Richardson, “Ahaa –agile, hybrid
assessment method for automotive, safety critical smes,” in Proceedings
of the 30th International Conference on Software Engineering, ser. ICSE
’08. New York, NY, USA: Association for Computing Machinery, 2008,
p. 551–560.

[73] L. Provenzano and K. Hänninen, “Specifying software requirements for
safety-critical railway systems: An experience report,” in Int. Working
Conf. on Requirements Engineering: Foundation for Software Quality.
Springer, 2017, pp. 363–369.

[74] P. Runeson and M. Höst, “Guidelines for conducting and reporting case
study research in software engineering,” Empirical software engineering,
vol. 14, no. 2, pp. 131–164, 2009.

[75] S. Easterbrook, J. Singer, M.-A. Storey, and D. Damian, “Selecting em-
pirical methods for software engineering research,” in Guide to advanced
empirical software engineering. Springer, 2008, pp. 285–311.

BIBLIOGRAPHY 177

[76] P. Runeson, M. Höst, A. Rainer, and B. Regnell, Case study research in
software engineering: Guidelines and examples, 1st ed. Hokoben, New
Jersey: John Wiley & Sons, 2012.

[77] L. A. Palinkas, S. M. Horwitz, C. A. Green, J. P. Wisdom, N. Duan,
and K. Hoagwood, “Purposeful sampling for qualitative data collection
and analysis in mixed method implementation research,” APM&MHSR,
vol. 42, no. 5, pp. 533–544, 2015.

[78] G. R. Gibbs, Analysing qualitative data. Sage, 2008.

[79] D. Budgen and P. Brereton, “Performing systematic literature reviews in
software engineering,” in Proceedings of the 28th international conference
on Software engineering. ACM, 2006, pp. 1051–1052.

[80] K. Petersen, R. Feldt, S. Mujtaba, and M. Mattsson, “Systematic mapping
studies in software engineering.” in EASE, vol. 8, 2008, pp. 68–77.

[81] B. Kitchenham, “Procedures for performing systematic reviews,” Keele,
UK, Keele University, vol. 33, no. 2004, pp. 1–26, 2004.

[82] D. Leffingwell et al., “Scaled agile framework 3.0,” 2014.

[83] K. Forsberg and H. Mooz, “The relationship of system engineering to
the project cycle,” in INCOSE International Symposium, vol. 1, no. 1.
Wiley Online Library, 1991, pp. 57–65.

[84] A. S. Campanelli and F. S. Parreiras, “Agile methods tailoring – a
systematic literature review,” Journal of Systems and Software, vol. 110,
pp. 85 – 100, 2015.

[85] G. Liebel, M. Tichy, E. Knauss, O. Ljungkrantz, and G. Stieglbauer,
“Organisation and communication problems in automotive requirements
engineering,” Requirements Engineering, vol. 23, no. 1, pp. 145–167, 2018.

[86] T. Kahkonen, “Agile methods for large organizations-building communi-
ties of practice,” in Agile Dev. Conf., 2004, 2004, pp. 2–10.

[87] K. Beck, Extreme programming explained: embrace change. addison-
wesley professional, 2000.

[88] J. Savolainen, J. Kuusela, and A. Vilavaara, “Transition to agile
development-rediscovery of important requirements engineering prac-
tices,” in 18th Int. Req. Eng. Conf. IEEE, 2010, pp. 289–294.

[89] K. Wiklund, D. Sundmark, S. Eldh, and K. Lundqvist, “Impediments
in agile software development: An empirical investigation,” in Proc of
Product-Focused SW Process Impr., 2013, pp. 35–49.

[90] T. Chow and D.-B. Cao, “A survey study of critical success factors in
agile software projects,” Journal of Systems and Software, vol. 81, no. 6,
pp. 961–971, 2008.

178 BIBLIOGRAPHY

[91] D. Stahl and J. Bosch, “Modelling continuous integration practice differ-
ences in industry software development,” Systems and Software, vol. 87,
pp. 48–59, 2014.

[92] R. Hoda, J. Noble, and S. Marshall, “Self-organizing roles on agile software
development teams,” IEEE Transactions on Software Engineering, vol. 39,
no. 3, pp. 422–444, 2013.

[93] F. Evbota, E. Knauss, and A. Sandberg, “Scaling up the planning game:
Collaboration challenges in large-scale agile product development,” in
Proc. of 17th Int’l Conf. on Agile Softw. Dev. (XP), Edinburgh, UK,
2016.

[94] R. Kasauli, E. Knauss, A. Nilsson, and S. Klug, “Adding value every
sprint: A case study on large-scale continuous requirements engineering,”
in Proc. of 3rd WS on Cont. Reqts. Eng., Essen, Germany, 2017.

[95] E. Bjarnason, M. Unterkalmsteiner, M. Borg, and E. Engström, “A multi-
case study of agile requirements engineering and the use of test cases as
requirements,” Information and Software Technology, vol. 77, pp. 61–79,
2016.

[96] R. Wohlrab, J.-P. Steghöfer, E. Knauss, S. Maro, and A. Anjorin, “Col-
laborative traceability management: Challenges and opportunities,” in
Proc. of 24th Int. Reqts. Eng. Conf. (RE), 2016, pp. 216–225.

[97] P. A. Laplante and J. F. DeFranco, “Software engineering of safety-critical
systems: Themes from practitioners,” IEEE Transactions on Reliability,
vol. 66, no. 3, pp. 825–836, 2017.

[98] J. Hatcliff, A. Wassyng, T. Kelly, C. Comar, and P. Jones, “Certifiably safe
software-dependent systems: challenges and directions,” in Proceedings
of the on Future of Software Engineering. ACM, 2014, pp. 182–200.

[99] M. Vuori, “Agile development of safety-critical software,” Tampere Uni-
versity of Technology, vol. 14, 2011.

[100] J. P. Notander, M. Höst, and P. Runeson, “Challenges in flexible safety-
critical software development – an industrial qualitative survey,” in
Proc. of Int. Conf. on Product Focused Software Process Improvement
(PROFES), Paphos, Cyprus, 2013, pp. 283–297.

[101] X. Ge, R. F. Paige, and J. A. McDermid, “An iterative approach for
development of safety-critical software and safety arguments,” in Proc.
of AGILE Conf. Nashville, TN, USA: IEEE, 2010, pp. 35–43.

[102] P. Pelliccione, E. Knauss, and et al., “Automotive architecture framework:
the experience of volvo cars,” Journal of systems architecture, 2017.

[103] M. Kaisti, V. Rantala, T. Mujunen, S. Hyrynsalmi, K. Könnölä, T. Mäkilä,
and T. Lehtonen, “Agile methods for embedded systems development-a
literature review and a mapping study,” EURASIP Journal on Embedded
Systems, vol. 2013, no. 1, p. 15, 2013.

BIBLIOGRAPHY 179

[104] O. Cawley, X. Wang, and I. Richardson, “Lean/agile software development
methodologies in regulated environments–state of the art,” in Proc. of
Conf. on Lean Enterprise Software and Systems (LESS), Helsinki, Finland,
2010, pp. 31–36.

[105] B. Kitchenham and S. Charters, “Guidelines for performing systematic
literature reviews in software engineering,” in Technical report, Ver. 2.3.
EBSE. sn, 2007.

[106] P. Diebold and M. Dahlem, “Agile practices in practice: A mapping
study,” in Proc. of the 18th Int. Conf. on Evaluation and Assessment in
Software Engineering, ser. EASE ’14, 2014, pp. 30:1–30:10.

[107] C. Wohlin, “Guidelines for snowballing in systematic literature studies
and a replication in software engineering,” in Proceedings of the 18th inter-
national conference on evaluation and assessment in software engineering.
ACM, 2014, p. 38.

[108] K. Lukasiewicz and J. Górski, “Agilesafe - a method of introducing
agile practices into safety-critical software development processes,” in
Proc. of Federated Conf. on Computer Science and Information Systems
(FedCSIS), Gdansk, Poland, 2016, pp. 1549–1552.

[109] T. St̊alhane and T. Myklebust, “Early safety analysis,” in Proceedings of
the Scientific Workshop Proceedings of XP2016. ACM, 2016, p. 19.

[110] J. Schmidt and K. Weyrauch, “Getting agile with medical device devel-
opment,” Biomedical Instrumentation & Technology, vol. 47, no. 3, pp.
221–223, 2013.

[111] Y. Wang and S. Wagner, “Toward integrating a system theoretic safety
analysis in an agile development process.” in Proc. of Software Engineering
(Workshops), Wien, Austria, 2016, pp. 156–159.

[112] T. Myklebust, T. St̊alhane, and N. Lyngby, “An agile development
process for petrochemical safety conformant software,” in Proc. of Annual
Reliability and Maintainability Symposium (RAMS), Tucson, AZ, USA,
2016.

[113] G. K. Hanssen, G. Wedzinga, and M. Stuip, “An assessment of avionics
software development practice: Justifications for an agile development
process,” in Proc. of Int. Conf. on Agile Software Dev. (XP), Cologne,
Germany, 2017, pp. 217–231.

[114] L. T. Heeager, “How can agile and documentation-driven methods be
meshed in practice?” in (XP), Rome, Italy, 2014, pp. 62–77.

[115] R. Rasmussen, T. Hughes, J. Jenks, and J. Skach, “Adopting agile in an
fda regulated environment,” in Proc. of AGILE Conf., Chicago, IL, USA,
2009, pp. 151–155.

[116] T. St̊alhane, G. K. Hanssen, T. Myklebust, and B. Haugset, “Agile change
impact analysis of safety critical software,” in Proc. of Int. Conf. on
Computer Safety, Reliability, and Security (SAFECOMP), Firenze, Italy,
2014, pp. 444–454.

180 BIBLIOGRAPHY

[117] S. Vost and S. Wagner, “Keeping continuous deliveries safe,” in Proc. of
39th Int. Conf. on SW Eng. (ICSE), Buenos Aires, Argentina, 2017.

[118] M. McHugh, F. McCaffery, and G. Coady, “An agile implementation
within a medical device software organisation,” in (SPICE), Vilnius,
Lithuania, 2014, pp. 190–201.

[119] J. Górski and K. Lukasiewicz, “Assessment of risks introduced to safety
critical software by agile practices-a software engineer’s perspective,”
Computer Science (CSCI), vol. 13, no. 4, pp. 165–182, 2012.

[120] P. A. Rottier and V. Rodrigues, “Agile development in a medical device
company,” in Proc. of AGILE Conf., Toronto, ON, Canada, 2008, pp.
218–223.

[121] S. Wolff, “Scrum goes formal: Agile methods for safety-critical systems,”
in Formal Methods in Software Engineering: Rigorous and Agile Ap-
proaches (FormSERA), Zurich, Switzerland, 2012, pp. 23–29.

[122] R. F. Paige, A. Galloway, R. Charalambous, X. Ge, and P. J. Brooke,
“High-integrity agile processes for the development of safety critical soft-
ware,” Int. Journal of Critical Computer-Based Systems (IJCCBS), vol. 2,
no. 2, pp. 181–216, 2011.

[123] Y. Wang, J. Ramadani, and S. Wagner, “An exploratory study on
applying a scrum development process for safety-critical systems,” in
Proc. of Int. Conf. on Product-Focused Software Process Improvement
(PROFES), 2017, pp. 324–340.

[124] Y. Wang, I. Bogicevic, and S. Wagner, “A study of safety documentation
in a scrum development process,” in Proc. of XP Scientific Workshops
(XP WS), Cologne, Germany, 2017.

[125] H. Jonsson, S. Larsson, and S. Punnekkat, “Agile practices in regulated
railway software development,” in Proc. of 23rd Int. Symp. on Software
Reliability Engineering, Workshops (ISSREW WS), Dallas, TX, USA,
2012, pp. 355–360.

[126] W. Kuchinke, C. Krauth, and T. Karakoyun, “Agile software development
requires an agile approach for computer system validation of clinical trials
software products,” in Proc. of eChallenges Conf., Belfast, UK, 2014, pp.
1–8.

[127] M. McHugh, F. McCaffery, and V. Casey, “Barriers to adopting agile
practices when developing medical device software,” in Proc. of Int.
Conf. on SW Process Impr. and Capability Determ. (SPICE), Palma de
Mallorca, Spain, 2012, pp. 141–147.

[128] K. Trektere, F. McCaffery, M. Lepmets, and G. Barry, “Tailoring mde-
vspice ® for mobile medical apps,” in Software and System Processes
(ICSSP), Austin (TX), USA, 2016, pp. 106–110.

BIBLIOGRAPHY 181

[129] O. Doss and T. Kelly, “Addressing the 4+1 software assurance processes
within scrum,” in Proc. of XP Scientific Workshops, Edinburgh, Scotland,
UK, 2016, 5 pages.

[130] T. St̊alhane and T. Myklebust, “The agile safety case,” in Proc. of
Int. Conf. on Computer Safety, Reliability, and Security (SAFECOMP).
Trondheim, Norway: Springer, 2016, pp. 5–16.

[131] A. Wils, S. V. Baelen, T. Holvoet, and K. D. Vlaminck, “Agility in the
avionics software world,” in Proc. of (XP), Limerick, Ireland, 2006, pp.
123–132.

[132] O. Doss, T. Kelly, T. St̊alhane, B. Haugset, and M. Dixon, “Integration
of the 4+1 software safety assurance principles with scrum,” in Proc. of
European Conf. on Software Process Improvement (EuroSPI), Ostrava,
Czech Republic, 2017, pp. 72–82.

[133] A. Abdelaziz, Y. El-Tahir, and R. Osman, “Adaptive software develop-
ment for developing safety critical software,” in Proc. of Int. Conf. on
Computing, Control, Networking, Electronics and Embedded Systems Eng.
(ICCNEEE), Khartoum, Sudan, 2015, pp. 41–46.

[134] J. Górski and K. Lukasiewicz, “Towards agile development of critical
software,” in In Proc. of Int. Workshop on Software Engineering for
Resilient Systems (SERENE), 2013, pp. 48–55.

[135] P. E. McMahon, “Cmmi the agile way in constrained and regulated
environments,” Journal of Defense Software Engineering (Crosstalk), vol.
JulAug, pp. 10–15, 2016.

[136] K. Gary, A. Enquobahrie, L. Ibanez, P. Cheng, Z. Yaniv, K. Cleary,
S. Kokoori, B. Muffih, and J. Heidenreich, “Agile methods for open source
safety-critical software,” Journal of Software: Practice and Experience
(SPE), vol. 41, no. 9, pp. 945–962, 2011.

[137] G. Van Waardenburg and H. Van Vliet, “When agile meets the enterprise,”
Information and software technology, vol. 55, no. 12, pp. 2154–2171, 2013.

[138] R. Kasauli, G. Liebel, E. Knauss, S. Gopakumar, and B. Kanagwa,
“Requirements engineering challenges in large-scale agile system develop-
ment,” in 25th Int. Requirements Engineering Conference (RE). IEEE,
2017, pp. 352–361.

[139] R. Wohlrab, P. Pelliccione, E. Knauss, and S. C. Gregory, “The problem
of consolidating re practices at scale: An ethnographic study,” in REFSQ.
Springer, 2018, pp. 155–170.

[140] F. Almeida, “Challenges in migration from waterfall to agile environ-
ments,” World Journal of Computer Application and Technology, vol. 5,
no. 3, pp. 39–49, 2017.

[141] S. Bannink, “Challenges in the transition from waterfall to scrum–a cas-
estudy at portbase,” in 20th Twente Student Conference on Information
Technology, 2014.

182 BIBLIOGRAPHY

[142] S. Theobald and P. Diebold, “Interface problems of agile in a non-agile en-
vironment,” in International Conference on Agile Software Development.
Porto, Portugal: Springer, 2018, pp. 123–130.

[143] A. Bucaioni, A. Cicchetti, F. Ciccozzi, M. Kodali, and M. Sjödin, “Align-
ment of requirements and testing in agile: An industrial experience,”
in Information Technology - New Generations, S. Latifi, Ed. Cham:
Springer International Publishing, 2018, pp. 225–232.

[144] C. Khalil, “The state of the practice of agile and plan-driven approaches
in ict development projects: An exploratory research study,” in Digital
Technology and Organizational Change. Verona, Italy: Springer, 2018,
pp. 25–33.

[145] M. Kuhrmann, P. Diebold, J. Munch, P. Tell, K. Trektere, F. McCaffery,
V. Garousi, M. Felderer, O. Linssen, E. Hanser, and C. R. Prause, “Hybrid
software development approaches in practice: A european perspective,”
IEEE Software, vol. 36, no. 4, pp. 20–31, July 2019.

[146] R. K. Yin, “Case study research: Design and methods 4th ed,” in United
States: Library of Congress Cataloguing-in-Publication Data, vol. 2, 2009.

[147] A. Alliance, “Glossary: Scrum master,” 2019, last visit: 2019-
Oct-18. [Online]. Available: https://www.agilealliance.org/glossary/
scrum-master/

[148] E. Knauss, A. Andersson, M. Rybacki, and E. Israelsson, “Research
preview: Supporting requirements feedback flows in iterative system
development,” in Proceedings of 21st International Working Conference
on Requirements Engineering: Foundation for Software Quality (REFSQ?
15). Essen, Germany: Springer, Cham, 2015, pp. 277–283.

[149] S. Balaji and M. S. Murugaiyan, “Waterfall vs. v-model vs. agile: A com-
parative study on sdlc,” International Journal of Information Technology
and Business Management, vol. 2, no. 1, pp. 26–30, 2012.

[150] E. Knauss, G. Liebel, J. Horkoff, R. Wohlrab, R. Kasauli, F. Lange,
and P. Gildert, “T-reqs: Tool support for managing requirements in
large-scale agile system development,” in 2018 IEEE 26th International
Requirements Engineering Conference (RE). Banff, Alberta, Canada:
IEEE, 2018, pp. 502–503.

[151] E. J. Uusitalo, M. Komssi, M. Kauppinen, and A. M. Davis, “Linking
requirements and testing in practice,” in 16th RE Conf. IEEE, 2008,
pp. 265–270.

[152] F. G. de Oliveira Neto, J. Horkoff, E. Knauss, R. Kasauli, and G. Liebel,
“Challenges of aligning requirements engineering and system testing in
large-scale agile: A multiple case study,” in REW. IEEE, 2017, pp.
315–322.

[153] G. Kalus and M. Kuhrmann, “Criteria for software process tailoring: A
systematic review,” in Proceedings of the 2013 International Conference

https://www.agilealliance.org/glossary/scrum-master/
https://www.agilealliance.org/glossary/scrum-master/

BIBLIOGRAPHY 183

on Software and System Process, ser. ICSSP 2013. New York, NY, USA:
Association for Computing Machinery, 2013, p. 171–180.

[154] C. Larman and B. Vodde, Large-scale scrum: More with LeSS. Addison-
Wesley Professional, 2016.

[155] R. Knaster and D. Leffingwell, SAFe 4.0 Distilled: Applying the Scaled
Agile Framework for Lean Software and Systems Engineering. Addison-
Wesley Professional, 2017.

[156] Ö. Uludag, M. Kleehaus, C. Caprano, and F. Matthes, “Identifying
and structuring challenges in large-scale agile development based on a
structured literature review,” in IEEE 22nd International Enterprise
Distributed Object Computing Conference (EDOC), Oct 2018, pp. 191–
197.

[157] D. Leffingwell, Agile software requirements: lean requirements practices
for teams, programs, and the enterprise. Addison-Wesley Professional,
2010.

[158] Campbell-Pretty, Tribal Unity: Getting from Teams to Tribes by Creating
a One Team Culture. CreateSpace Independent Publishing Platform,
2016.

[159] M. Khurum, T. Gorschek, and M. Wilson, “The software value map—an
exhaustive collection of value aspects for the development of software
intensive products,” Journal of Software: Evolution and Process, vol. 25,
no. 7, pp. 711–741, 2013.

[160] J. Horkoff, J. Lindman, I. Hammouda, and E. Knauss, “Experiences
applying e3 value modeling in a cross-company study,” in Conceptual
Modeling, J. C. Trujillo, K. C. Davis, X. Du, Z. Li, T. W. Ling, G. Li,
and M. L. Lee, Eds. Cham: Springer International Publishing, 2018,
pp. 610–625.

[161] O. Batsaikhan and Y.-C. Lin, “Building a shared understanding of
customer value in a large-scale agile organization: A case study,” 2018,
master thesis, Chalmers | University of Gothenburg, Dept. of Computer
Science and Engineering.

[162] A. Cockburn, Agile software development: the cooperative game. Pearson
Education, 2006.

[163] I. Sommerville, Software Engineering, 10th ed. Pearson, 2015.

[164] S. Lauesen, Software Requirements. Pearson / Addison-Wesley, 2002.

[165] ——, Guide to Requirements SL-07: Problem-oriented requirements v5,
2017, the course book (Lau).

[166] S. Ambler, Agile modeling: effective practices for extreme programming
and the unified process. John Wiley & Sons, 2002.

184 BIBLIOGRAPHY

[167] B. Rumpe, “Agile modeling with the uml,” in Radical Innovations of
Software and Systems Engineering in the Future, M. Wirsing, A. Knapp,
and S. Balsamo, Eds. Berlin, Heidelberg: Springer, 2004, pp. 297–309.

[168] R. Wohlrab, P. Pelliccione, E. Knauss, and M. Larsson, “Boundary
objects and their use in agile systems engineering,” Journal of Software:
Evolution and Process, vol. 31, no. 5, p. e2166, 2019, e2166 smr.2166.

[169] J. Lindman, J. Horkoff, I. Hammouda, and E. Knauss, “Emerging per-
spectives of application programming interface strategy: A framework to
respond to business concerns,” IEEE Software, vol. 37, no. 2, pp. 52–59,
March 2020.

[170] R. Wohlrab, E. Knauss, and P. Pelliccione, “Why and how to balance
alignment and diversity of requirements engineering practices in automo-
tive,” Journal of Systems and Software, vol. 162, p. 110516, 2020.

[171] G. Lucassen, F. Dalpiaz, J. M. E. M. van der Werf, and S. Brinkkem-
per, “Forging high-quality user stories: Towards a discipline for agile
requirements,” in IEEE 23rd International Requirements Engineering
Conference (RE), Aug 2015, pp. 126–135.

[172] A. M. Davis, Just Enough Requirements Management: Where Software
Development Meets Marketing. Dorset House, 2005.

[173] E. Hadar and A. Hassanzadeh, “Big data analytics on cyber attack graphs
for prioritizing agile security requirements,” in IEEE 27th International
Requirements Engineering Conference (RE), Jeju Island, South Korea,
Sep. 2019, pp. 330–339.

[174] T. Sedano, P. Ralph, and C. Péraire, “The product backlog,” in
IEEE/ACM 41st International Conference on Software Engineering
(ICSE), Montreal, QC, Canada, May 2019, pp. 200–211.

[175] R. Kasauli, R. Wohlrab, E. Knauss, J.-P. Steghöfer, J. Horkoff, and
S. Maro, “Charting coordination needs in large-scale agile organisations
with boundary objects and methodological islands,” in In International
Conference on Software and System Processes (ICSSP ’20). Seoul,
Republic of Korea: ACM, New York, NY, USA, 2020.

[176] R. Kasauli, E. Knauss, B. Kanagwa, A. Nilsson, and G. Calikli, “Safety-
critical systems and agile development: A mapping study,” in 2018 44th
Euromicro Conference on Software Engineering and Advanced Applica-
tions (SEAA). IEEE, 2018, pp. 470–477.

[177] J.-P. Steghöfer, E. Knauss, J. Horkoff, and R. Wohlrab, “Challenges
of scaled agile for safety-critical systems,” in Product-Focused Software
Process Improvement, X. Franch, T. Männistö, and S. Mart́ınez-Fernández,
Eds. Cham: Springer International Publishing, 2019, pp. 350–366.

[178] M. Paasivaara, B. Behm, C. Lassenius, and M. Hallikainen, “Large-
scale agile transformation at ericsson: a case study,” Empirical Software
Engineering, vol. 23, no. 5, pp. 2550–2596, 2018.

BIBLIOGRAPHY 185

[179] A. Scheerer, T. Hildenbrand, and T. Kude, “Coordination in large-scale
agile software development: A multiteam systems perspective,” in 47th
Hawaii international conference on system sciences. Waikoloa, HI, USA:
IEEE, Jan 2014, pp. 4780–4788.

[180] A. Qumer and B. Henderson-Sellers, “A framework to support the evalu-
ation, adoption and improvement of agile methods in practice,” Journal
of Systems and Software, vol. 81, no. 11, pp. 1899–1919, 2008.

[181] L. R. Vijayasarathy and C. W. Butler, “Choice of software development
methodologies: Do organizational, project, and team characteristics
matter?” IEEE Software, vol. 33, no. 5, pp. 86–94, Sep. 2016.

[182] E. Bjarnason and H. Sharp, “The role of distances in requirements
communication: a case study,” Requirements Engineering, vol. 22, no. 1,
pp. 1–26, Mar 2017.

[183] R. Abraham, “Enterprise architecture artifacts as boundary objects - a
framework of properties,” in Proceedings of the 21st European Conference
on Information Systems (ECIS 2013). AIS Electronic Library (AISeL):
Association for Information Systems, June 2013, p. 120.

[184] A. Zaitsev, B. Tan, and U. Gal, “Collaboration amidst volatility: The
evolving nature of boundary objects in agile software development,” in
Proceedings of the 24th European Conference on Information Systems.
Istanbul, Turkey: AIS, 2016.

[185] J. K. Blomkvist, J. Persson, and J. Åberg, “Communication through
boundary objects in distributed agile teams,” in Proceedings of the 33rd
Annual ACM Conference on Human Factors in Computing Systems
(CHI’15). New York, NY, USA: ACM, 2015, pp. 1875–1884.

[186] R. K. Yin, Case Study Research: Design and Methods (Applied Social
Research Methods), 4th ed. Thousand Oaks: Sage Publications, 2008.

[187] P. Liamputtong, “Qualitative data analysis: conceptual and practical
considerations,” Health Promotion Journal of Australia, vol. 20, no. 2,
pp. 133–139, 2009.

[188] R. E. de Souza Santos, F. Q. B. da Silva, and C. V. C. de Magalhaes,
“Member checking in software engineering research: lessons learned from
an industrial case study,” in ACM/IEEE International Symposium on
Empirical Software Engineering and Measurement (ESEM). Toronto,
ON, Canada: IEEE, 2017, pp. 187–192.

[189] D. Yang, D. Wu, S. Koolmanojwong, A. W. Brown, and B. W. Boehm,
“Wikiwinwin: A wiki based system for collaborative requirements negotia-
tion,” in Proceedings of the 41st Annual Hawaii International Conference
on System Sciences. Waikoloa, HI, USA: IEEE, Jan 2008, pp. 24–24.

[190] R. Jain, L. Cao, K. Mohan, and B. Ramesh, “Situated boundary span-
ning: An empirical investigation of requirements engineering practices
in product family development,” ACM Transactions on Management
Information Systems, vol. 5, no. 3, pp. 1–29, dec 2014.

186 BIBLIOGRAPHY

[191] M. Hertzum, “Small-scale classification schemes: A field study of require-
ments engineering,” Computer Supported Cooperative Work (CSCW),
vol. 13, no. 1, pp. 35–61, 2004.

[192] G. C. Bowker and S. L. Star, Sorting things out: Classification and its
consequences. Cambridge, Mass.: MIT Press, 1999.

[193] M. Barrett and E. Oborn, “Boundary object use in cross-cultural software
development teams,” Human Relations, vol. 63, no. 8, pp. 1199–1221,
2010.

[194] M. Kalenda, P. Hyna, and B. Rossi, “Scaling agile in large organizations:
Practices, challenges, and success factors,” Journal of Software: Evolution
and Process, vol. 30, no. 10, p. e1954, 2018.

[195] R. Kasauli, E. Knauss, J. Nakatumba-Nabende, and B. Kanagwa, “Agile
islands in a waterfall environment: Challenges and strategies in auto-
motive,” in Proceedings of the Evaluation and Assessment in Software
Engineering, ser. EASE ’20. New York, NY, USA: Association for
Computing Machinery, 2020, p. 31–40.

[196] D. Fucci, C. Palomares, X. Franch, D. Costal, M. Raatikainen, M. Stet-
tinger, Z. Kurtanovic, T. Kojo, L. Koenig, A. Falkner et al., “Needs and
challenges for a platform to support large-scale requirements engineering:
A multiple-case study,” in Proceedings of the 12th ACM/IEEE Interna-
tional Symposium on Empirical Software Engineering and Measurement,
2018, pp. 1–10.

[197] M. G. Gebremichael, “Requirements engineering for large-scale agile
system development: A tooling perspective,” 2019.

