provided by Chalmers Research

THESIS FOR THE DEGREE OF LICENTIATE OF PHILOSOPHY

A Programming Language for Data

Privacy with Accuracy Estimations

ELiSABET LoBO VESGA

CHALMERS

UNIVERSITY OF TECHNOLOGY

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING
CHALMERS UNIVERSITY OF TECHNOLOGY

Goteborg, Sweden 2020

https://core.ac.uk/display/326728714?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

A Programming Language for Data Privacy with Accuracy Estimations
ErLisABET LOoBO VESGA

© 2020 Elisabet Lobo Vesga

Technical Report 214L

ISSN 1652-876X

Department of Computer Science and Engineering
Research group: Information Security

Department of Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY

SE-412 96 Goteborg

Sweden

Telephone +46 (0)31-772 1000

Printed at Chalmers
Goteborg, Sweden 2020

Abstract

Differential privacy offers a formal framework for reasoning about
privacy and accuracy of computations on private data. It also offers a
rich set of building blocks for constructing private data analyses. When
carefully calibrated, these analyses simultaneously guarantee the pri-
vacy of the individuals contributing their data, and the accuracy of the
data analyses results, inferring useful properties about the population.
The compositional nature of differential privacy has motivated the de-
sign and implementation of several programming languages aimed at
helping a data analyst in programming differentially private analyses.
However, most of the programming languages for differential privacy
proposed so far provide support for reasoning about privacy but not for
reasoning about the accuracy of data analyses. To overcome this limi-
tation, in this work we present DPella, a programming framework pro-
viding data analysts with support for reasoning about privacy, accuracy
and their trade-offs. The distinguishing feature of DPella is a novel com-
ponent which statically tracks the accuracy of different data analyses. In
order to make tighter accuracy estimations, this component leverages
taint analysis for automatically inferring statistical independence of the
different noise quantities added for guaranteeing privacy. We evaluate
our approach by implementing several classical queries from the litera-
ture and showing how data analysts can figure out the best manner to
calibrate privacy to meet the accuracy requirements.

Keywords: accuracy, concentration bounds, differential privacy, func-
tional programming, databases, haskell

111

Acknowledgments

First, I would like to express my sincere appreciation to Alejandro
Russo, my supervisor, for his patient guidance, inspiring enthusiasm, and
constant encouragement. I would also like to thank my co-supervisor
and collaborator, Marco Gaboardi, for his detailed lessons on probability
and invaluable mentorship.

My thanks are extended to my friends and colleagues for their fel-
lowship, the easy laughs, and insightful conversations. It is an honor to
share this experience with all of you.

I wish to acknowledge the support, prayers, and great love of my
family who set me off on this journey a long time ago. Last but not least,
a special recognition goes to my partner Alejandro Gomez for being my
rock from the very beginning. I will always be grateful to have you by
my side.

Contents

(1 DPellabyexample|...............................
|1.1 Basic aggregations|

2 Privacy|....... .. .
[2.1 Components of the APIl..........
[2.2 Transformations|

[2.4 Aggregations|.t
|2.5 Privacy budget and execution of queries|
[2.6 Implementation|...........

[3.1.2 Adding values|
[3.1.3 Detecting statistical independence|....................
[3.2 Implementation|...........

[3.2.1 Concentration Bounds|.

|4.1 DPella expressiveness| it
|4.2 Privacy and accuracy trade-off analysis|

VII

10
10
12
13
14
16
17

19
19
21
22
23
24
25

26
26
27
27
29
30
33
34
35

|4.3 K-way marginal queries on syntheticdatal..................

[5 Testing accuracy|............
[6 Limitations & Extensions|
7 _Relatedwork|l

51

54

58

Introduction

Motivation

Differential privacy (DP) [17] is emerging as a viable solution to release
statistical information about the population without compromising data
subjects’ privacy. A standard way to achieve DP is adding some statistical
noise to the result of a data analysis. If the noise is carefully calibrated, it
provides a privacy protection for the individuals contributing their data,
and at the same time it enables the inference of accurate information
about the population from which the data are drawn. Thanks to its
quantitative formulation quantifying privacy by means of the parameters
e and 0, DP provides a mathematical framework for rigorously reasoning
about the privacy-accuracy trade-offs. The accuracy requirement is not
baked in the definition of DP, rather it is a constraint that is made explicit
for a specific task at hand when a differentially private data analysis is
designed.

An important property of DP is composeability: multiple differen-
tially private data analyses can be composed with a graceful degradation
of the privacy parameters € and ¢. This property allows to reason about
privacy as a budget: a data analyst can decide how much privacy budget
(the € parameter) to assign to each of her analyses. The compositional-
ity aspects of DP motivated the design of several programming frame-
works (38 49} (48] [25] 21} 4, 5] [61}, 58| 31 [60} [62]] and tools [36] 42} [39] 23]
with built-in basic data analyses to help analysts to design their own dif-
ferentially private consults. At a high level, most of these programming
frameworks and tools are based on a similar idea for reasoning about
privacy: use some primitives for basic tasks in DP as building blocks,
and use composition properties to combine these building blocks mak-
ing sure that the privacy cost of each data analysis sum up and that the
total cost does not exceed the privacy budget. Programming frameworks
such as [38] 49, [48] 25| 21 [4] /5, [61}, 58] 31} [60} [62]] also provide general sup-
port to further combine, through programming techniques, the different
building blocks and the results of the different data analyses. Differently,

tools such as [36] 42} 39 23] are optimized for specific tasks at the price
of restricting the kinds of data analyses they can support.

Unfortunately, this simple approach for privacy cannot be directly
applied to accuracy. Reasoning about accuracy is less compositional than
reasoning about privacy, and it depends both on the specific task at hand
and on the specific accuracy measure that one is interested in offering
to data analysts. Despite this, when restricted to specific mechanisms
and specific forms of data analyses, one can measure accuracy through
estimates given as confidence intervals, or error bounds. As an example,
most of the standard mechanisms from the differential privacy literature
come with theoretical confidence intervals or error bounds that can
be exposed to data analysts in order to allow them to take informed
decisions about the consults they want to run. This approach has been
integrated in tools such as GUPT [42], PSI [23]], and Apex [24]. Users
of these tools, can specify the target confidence interval they want to
achieve, and the tools adjust accordingly the privacy parameters, when
sufficient budget is availableﬂ

In contrast, all the programming frameworks proposed so far [38] 49,
482511211 [41 5] 161,158 311 [601 62]] do not offer any support to programmers
or data analysts for tracking, and reasoning about, the accuracy of their
data analyses. This phenomenon is in large part due to the complex
nature of accuracy reasoning, with respect to privacy analyses, when
designing arbitrary data analyses that users of these frameworks may
want to program and run. In this work, we address this limitation by
building a programming framework for designing differentially private
analysis which also supports a compositional form of reasoning about
accuracy.

Background

We start by providing a brief background on the notions of privacy and
accuracy DPella considers. Differential privacy [17] is a quantitative
notion of privacy that bounds how much a single individual’s private
data can affect the result of a data analysis. More formally, we can

! Apex actually goes beyond this by also helping user by selecting the right differen-
tially private mechanism to achieve the required accuracy.

define differential privacy as a property of a randomized query Q()
representing the data analysis, as follow.

Definition 1. Differential Privacy (DP)[17]] A randomized query
Q(-) : db — R satisfies e-differential privacy if and only if for any two
datasets D1 and Dy in db, which differ in one row, and for every output

set S C R we have

Pr[Q(D;) € S] < e Pr[Q(Ds) € S (1)

In the definition above, the parameter € determines a bound on the
distance between the distributions induced by Q(-) when adding or
removing an individual from the dataset—the farther away they are,
the more at risk the privacy of an individual is, and vice versa. In other
words, € imposes a limit on the privacy loss that an individual can incur
in, as a result of running a data analysis.

A standard way to achieve e-differential privacy is adding some
carefully calibrated noise to the result of a query. To protect all the
different ways in which an individual’s data can affect the result of a
query, the noise needs to be calibrated to the maximal change that the
result of the query can have when changing an individual’s data. This is
formalized through the notion of sensitivity.

Definition 2. [17]] The (global) sensitivity of a query Q(-) : db — R is
the quantity Ag = max{|Q(D1) — Q(D2)| for D1, D5 differing in one

row

The sensitivity gives a measure of the amount of noise needed to
protect one individual’s data. Besides, in order to achieve differential
privacy, it is also important the choice of the kind of noise that one adds.
A standard approach is based on the addition of noise sampled from the
Laplace distribution.

Theorem 1. Laplace Mechanism [17] Let Q(-) : db — R be a de-
terministic query with sensitivity Ag. Let Q(-) : db — R be a random-
ized query defined as Q(D) = Q(D) + n, where 1 is sample from the
Laplace distribution with mean ;v = 0 and scaleb = Ag/e. Then Q is
e-differentially private.

Notice that in the theorem above, for a given query, the smaller the
e is, the more noise)(+) needs to inject in order to hide the contribution

of one individual’s data to the result—this protects privacy but degrades
how meaningful the result of the query is—and vice versa. In general,
the notion of accuracy can be defined more formally as follows.

Definition 3. Accuracy, see e.g.[15] Given an e-differentiallly private
query Q(-), a target query Q(-), a distance function d(-), a bound «, and
the probability 3, we say that Q(-) is (d(-), o, B)-accurate with respect to
Q(-) if and only if for all dataset D:

Prld(Q(D) — Q(D)) > a] < 8 (2)

This definition allows one to express data independent error state-
ments such as: with probability at least 1 — /3 the query Q (D) diverge
from Q(D), in terms of the distance d(-), for less than «. Then, we will
refer to « as the error and 1 — 3 as the confidence probability or simply
confidence. In general, the lower the [is, i.e., the higher the confidence
probability is, the higher the error « is.

As previously discussed, an important property of differential privacy
is composeability.

Theorem 2. Sequential Composition [17] Let Q1 (-) and Q2(-) be two
queries which are €1 - and eo-differentially private, respectively. Then, their
sequential composition Q(-) = (Q1(-), Q2(-)) is (e1 + €2)-differentially
private.

Theorem 3. Parallel Composition [38] Let Q(-) be a e-differentially
private query. and data;, datay be a partition of the set of data. Then,
the query Q1(D) = (Q(D N datay), Q(D N datay)) is e-differentially
private. Thanks to the composition properties of differential privacy, we

can think about € as a privacy budget that one can spend on a given data
before compromising the privacy of individuals’ contributions to that
data. The global € for a given program can be seen as the privacy budget
for the entire data. This budget can be consumed by selecting the local € to
“spend” in each intermediate query. Thanks to the composition properties,
by tracking the local € that are consumed, one can guarantee that a data
analysis will not consume more than the allocated privacy budget.
Given an €, DPella gives data analysts the possibility to explore how
to spend it on different queries and analyze the impact on accuracy. For
instance, data analysts might decide to spend “more” epsilon on sub-
queries which results are required to be more accurate, while spending

“less” on the others. The next examples (inspired by the use of DP in
network trace analyses [37]) show how DPella helps to quantify what
“more” and “less” means.

Contribution

The main contribution of this thesis is showing how programming frame-
works can internalize the use of probabilistic bounds [14] for compos-
ing different confidence intervals or error bounds, in an automated way.
Probabilistic bounds are part of the classical toolbox for the analysis of
randomized algorithms, and are the tools that differential privacy algo-
rithms designers usually employ for the accuracy analysis of classical
mechanisms [[15] [18]]. Two important probabilistic bounds are the union
bound, that can be used to compose errors with no assumption on the way
the random noise is generated, and Chernoff bound, which applies to the
sum of random noise when the different random variables characterizing
noise generation are statistically independent (see Section[3). When appli-
cable, and when the number of random variables grows, Chernoff bound
usually gives a much “tighter” error estimation than the union bound.

Barthe et. al [[8] have shown how the union bound can be internal-
ized in a Hoare-style logic for reasoning about probabilistic imperative
programs, and how this logic can be used to reason in a mechanized
way about the accuracy of probabilistic programs, and in particular of
programs implementing differentially private primitives.

Building on this idea, this thesis proposes a programming framework
where this kind of reasoning is automated, and can be combined with
reasoning about privacy. The aim of such framework is to offer program-
mers the tools that they need for implementing differentially private
data analyses and explore their privacy-accuracy trade-offs, in a composi-
tional way. This framework supports not only the use of union bound as
a reasoning principle, but also the use of the Chernoff bound. The insight
is that probabilistic bounds relying on probabilistic independence of ran-
dom variables can be smoothly integrated in a programming framework
by using techniques from information-flow control [52] (in the form of
taint analysis [53]]). While these probabilistic bounds are not enough to
express every accuracy guarantee one wants to express for arbitrary data
analyses, they allow the analysis of a large class of user-designed pro-
grams. The approach to be presented in this thesis allows programmers
to exploit the compositional nature of both privacy and utility, comple-

menting in this way the support provided by tools such as GUPT [42]],
PSI [23]], which yield confidence intervals estimate only at the level of in-
dividual queries, and by Apex [24]], which issue confidence intervals esti-
mate only at the level of a query workload for queries of the same type.

The described tool is materialized as a programming framework
called DPella —an acronym for Differential Privacy in Haskell with
accuracy— where data analysts can explore the privacy-accuracy trade-
off while writing their differentially private data analyses. DPella pro-
vides several basic differentially private building blocks and composition
techniques, which can be used by a programmer to design complex dif-
ferentially private data analyses. The analyses that can be expressed in
DPella are data independent and can be built using primitives for count-
ing, average, max as well as any aggregation of their results.

DPella supports both pure-DP, with parameter €, and approximate-
DP, with parameters € and J. Accordingly, it supports the use of both
Laplace and Gaussian noise, and the use of sequential or advanced [15]]
composition, respectively, together with parallel composition for both
notions. For clarity, this thesis will mainly focus on e-DP and will present
the use of the Laplace mechanism, however other variants will be dis-
cussed briefly (see Section[3.3). DPella is implemented as a library in the
general purpose language Haskell; a programming language that is well-
known to easily support information-flow analyses [34] [50]. Further-
more, DPella is designed to be extensible through the addition of new
primitives (see Section [6).

To reason about privacy and accuracy, DPella provides two primi-
tives responsible to symbolically interpret programs (which implement
data analyses). DPella’s symbolic interpretation for privacy consists on
decreasing the privacy budget of a query by deducing the required bud-
get of its sub-parts. On the other hand, the accuracy interpretation uses
as abstraction the inverse Cumulative Distribution Function (iCDF) rep-
resenting an upper bound on the (theoretical) error that the program
incurs when guaranteeing DP. The iCDF of a query is build out of the
iCDFs of the different components, by using as a basic composition prin-
ciple the union bound. These interpretations provide overestimates of
the corresponding quantities that they track. In order to make these esti-
mates as precise as possible, DPella uses taint analysis to track the use
of noise to identify which variables are statistically independent. This in-
formation is used by DPella to soundly replace, when needed, the union
bound with the Chernoff bound, something that to the best of our knowl-

edge other program logics or program analyses also focusing on accu-
racy, such as [8] and [54]], do not consider. We envision DPella’s accu-
racy estimations to be used in scenarios which align with those consid-
ered by tools like GUPT, PSI, and Apex.

In summary, this thesis contributions are:

» Present DPella, a programming framework that allows data analysts
to reason compositionaly about privacy-accuracy trade-off.

» Show how to use taint analysis to detect statistical independence of
the noise that different primitives add, and how to use this information
to achieve better error estimates.

» Inspect DPella’s expressiveness and error estimations by implement-
ing PINQ-like queries from previous work [37, 38| [3] and workloads
from the matrix mechanism [33} 28] 59]).

Thesis structure

This thesis is an extended version of the work “A Programming Frame-
work for Differential Privacy with Accuracy Concentration Bounds” to
be published in The 41st IEEE Symposium on Security and Privacy (S&P
2020), San Francisco, USA, May 2020. The referred paper was created in
collaboration with Alejandro Russo and Marco Gaboardi.

This document is structured as follows. Section [l introduces DPella
by showcasing its main features though simple examples. Section
presents each of DPella’s primitives for the construction and execution of
queries. Section [3| explains how do we calculate accuracy concentration
bounds and the accuracy-aware primitives that can be used by the data
analysts. On Section [4| we implement case studies from the literature
revealing DPella’s advantages and limitations. Section[5|introduces a new
primitive that allows data analysts to test DPella’s accuracy estimations.
Following, on Section [6| we discuss DPella’s limitations in detail together
with possible extensions to the framework. Lastly, Section 7] puts DPella
in context while contrasting it with other approaches and frameworks.

This work was initiated by a STINT Initiation grant (IB 2017-77023)
and supported by the Swedish Foundation for Strategic Research (SSF)
under the project Octopi (Ref. RIT17-0023) and WebSec (Ref. RIT17-0011)
as well as the Swedish research agency Vetenskapsradet.

DPella by example

DPella’s model considers two kind of actors: data curators, owners
of the private dataset that decide the global privacy budget and split
it among the data analysts, the ones who write queries to mine useful
information from the data and spend the budget they received. Analysts
are not allowed to directly query the database, instead, they need to
implement their analyses and send them to the curator which will execute
them and give the results back.

From an implementation standpoint, it

project means that the analyses and their run func-
SchemaDB.hs tions are provided in different files, with dif-
analysts ferent privileges. More specifically, Figure
|_Queries.hs depicts a common file structure for the us-
curator age of DPella. File SchemaDB . hs contains

hExecution -hs the schema of the database own by the cu-
dataset.csv rator, it does not contain private data, only
the names of the tables and their respective
attributes as a Haskell record type. For ex-
ample, a database containing just one table
called Ages with two attributes name (a String value) and age (an Int
value), will be encoded in SchemaDB. hs as follows, where (::) is used to
describe the type of a term in Haskell:

Figure 1: File structure

data Ages = AgeRow {name :: String, age :: Int }

Since the structure of the database is not considered sensitive informa-
tion, SchemaDB. hs can be accessed by both, the data owners and data
analysts.

File Queries.hs contains the analyses that have being implemented
by the data analysts, all of these queries should be parameterized by
the dataset in which they will be later executed. Analysts will only

1. DPella by example

have access to their implementations and the database schema. Lastly,
file Execution.hs implements the run functions for the analyses at
Queries.hs, this file is own by the curator and has access to all other
files in the directory, in particular, it has access to the real data—stored
in dataset.csv.

1.1 Basic aggregations

For the following examples, we consider a dataset representing a tcpdumyp
trace of packets where each row contains the information indicated by
its schema:

data Tcpdump = TCPRow {id :: Integer
, timestamp :: Double
, STC : IP
,dest o IP
,protocol :: Integer
, 8ize :: Integer

,payload ::ByteString

}

1.1.1 Counting

An analyst wanting to know the number of packets sent to WikiLeaks,
with IP address 195.35.109.53, can do so by writing a simple eps-
differentially private query as follows:

import SchemaDB
import AnalystLP

wikileaks :: € — Data 1 Tcpdump — Query (Value Double)
wikileaks eps dataset = do
byIP < dpWhere ((= 195.35.109.53) o dest) dataset
dpCount eps byIP

First, we import file SchemaDB where Tcpdump’s description (previ-
ously presented) is stored. Then, we import DPella’s interface for ana-
lysts called AnalystLP, where LP indicates that we will use the Lapla-
cian mechanism. Subsequently, we implement query wikileaks which

10

1.1. Basic aggregations

takes as input the amount of privacy budget eps (of type €) to be spent
by the query and the dataset (of type Data 1 Tcpdump) where it
will be computed; when executed, this query will yield results of type
Query (Value Double), that is, DPella computations of type Double—a
more detailed explanation of DPella’s types could be found in the follow-
ing sections. In query wikileaks, we use the primitive transformatiorﬂ
dpWhere to filter all rows whose dest attribute has a value equal to
195.35.109.53, this operation returns a transformed dataset that we
have called byIP. We proceed to perform the noisy count using primi-
tive dpCount over the filtered dataset byIP while spending eps amount
of privacy budget. The value of eps will—internally—determine the mag-
nitude of noise to be added to the real count.

Having this general implementation, an analyst can write specific
queries fixing the value of eps, for instance:

analysisl = wikileaks 0.5
analysis2 = wikileaks 1
analysis3 = wikileaks 5

To execute these analyses the data owner needs to implement a
function that loads the required dataset and execute analysts’ queries,
such a function will look like:

import SchemaDB
import CuratorLP (loadDS, dpEval)
import Queries

runAnalysis :: (Data 1 Tcpdump — Query (Value Double))
— € — I0 Double
runAnalysis query bud = do
ds < loadDS "hotspot.csv"
dpEval query ds bud

Function runAnalysis takes as inputs the function to be executed, called
query, and the global privacy budget bud; returning the randomized
count as an I0 Double. This function calls an auxiliar function 1oadDS
(provided by DPella’s interface for curators) to read file hotspot.csv

? Anticipating on Section in our code we will usually use the red color for trans-
formations, the blue color for aggregate operations, and the green color for combinators
for privacy and accuracy.

11

1. DPella by example

which is then saved as a DPella’s dataset in variable ds. Next, it uses
DPella’s primitive dpEval indicating which analysis will be perform,
over which dataset, and what’s the tolerance for the privacy loss.

Let’s assume hotspot . csv have the information of 10, 000 packets
and 7 of them where directed to wikileaks’ IP address. Then, when the
data owner executes the analysis she would get results such as:

>runAnalisis analysisl 20
Value = 15.3

>runAnalisis analysis2 20
Value = 4.8

>runAnalisis analysis3 20
Value =6.7

Which clearly exemplifies the effects of the selection of eps on the
queries’ results. Intuitively, the greater the eps, the closer we are to the
real count of packets.

1.1.2 Sums

Suppose we are now interested in computing the amount of transmit-
ted data. This is, we want to sum up the value of size column which
indicates the length of the packets in bytes.

In DPella, to compute a sum, we need to determine first the range of
the values—our framework supports only natural numbers’ ranges, e.g.,
[1,10], [5, 10], etc. This information is needed to automatically calculate
the sensitivity of sum queries at compile time, i.e., if every value is in the
range [a, b, the sensitivity is b — a. The way to specify ranges in DPella
is via the primitive range.

range :: (Nat a,Nat b,Nat (b-a),a < b) = Rangeab

This function receives no arguments since the range is indicated
at the type-level (with type constraints of the form Nat n). To create
ranges, we need to use type applications, e.g.,

rangel = range Q@1 Q10
range2 = range @5 Q10

For our specific case, the data curator indicates that the range of the
size of packets go from 40 to 35, 000 bytes, then we define our query as
follows:

12

1.2. Cumulative Distribution Function

totalBytes eps dataset = do
dpSum eps (range @40 ©35000) size dataset

Function totalBytes uses primitive dpSum to compute the noisy sum
of size attribute—whose values are ranging from 40 to 35000 bytes—
over the indicated dataset. The way this query should be executed
does not vary from the execution of the analyses derived from function
wikileaks, thus is omitted.

Changing the question to focus on an specific protocol might require
an adjustment on the range to be specified. For instance, if instead we
want to inspect the total amount of data transmitted through Kerberos’
authentication protocol, which uses port 88, we should use the fact that
this port transmits packets of at most of 1465 bytes. Hence, we will need
to update our query accordingly

totalBytesKerberos eps dataset = do
kerberos < dpWhere ((= 88) o protocol) dataset
dpSum eps (range 040 ©1465) size kerberos

In function totalBytesKerberos we will first filter the dataset to obtain
the information regarding port 88, then we perform the noisy sum over
the filtered data. Observe that we are defining a query with less global
sensitivity than the one implemented in function totalBytes, thus, if
given the same eps, less noise will be added to the results of the analyses
deriving from function totalBytesKerberos.

Having a notion of the order of magnitude in which the result of a
sum ranges becomes handy when reasoning about the accuracy of the
query.

In the following examples we depict how an analyst can use DPella
to inspect the error of her queries, check out for miscalculations on the
consumption of the privacy budget, and more.

1.2 Cumulative Distribution Function

Considering the same dataset Tcpdump we would like to inspect—in a
differentially private manner—the packet’s length distribution by com-
puting its Cumulative Distribution function (CDF), defined as CDF(z) =
number of records with value < x. Hence, we are just interested in the
values of the attribute size.

13

1. DPella by example

1 cdfl bins eps dataset = do

2 sizes < dpSelect size dataset

3 counts « sequence [do elems < dpWhere (< bin) sizes
4 dpCount localEps elems

5 | bin < bins]

6 return (norm. counts)

7 where localEps = eps / (1length bins)

(a) Sequential approach

8 cdf2 bins eps dataset = do
9 sizes < dpSelect ((< max bins) o size) dataset

10 -- parts :: Map Integer (Value Double)

11 parts « dpPartRepeat (dpCount eps) bins assignBin
12 sizes

13 let counts — Map.elems parts

14 cumulCounts = [add (take i counts)

15 | i + [1.length counts]]

16 return (norm.. cumulCounts)

(b) Parallel approach

Figure 2: CDF’s implementations

McSherry and Mahajan [37] proposed three different ways to ap-
proximate (due to the injected noise) CDFs with DP, and they argued for
their different levels of accuracy. For simplicity, we revise two of these
approximations to show how DPella can assist in showing the accuracy
of these analyses.

1.2.1 Sequential CDF

A simple approach to compute the CDF consists in splitting the range
of lengths into bins and, for each bin, count the number of records
that are < bin. A natural way to make this computation differentially
private is to add independent Laplace noise to each count.

We show how to do this using DPella in Figure We define a
function cdf1 which takes as input the list of bins describing size
ranges, the amount of budget eps to be spent by the entire query, and
the dataset where it will be computed. For now, we assume that we
have a fixed list of bins for packets’ length. cdf1 uses the primitive
transformation dpSelect to obtain from the dataset the length of each

14

1.2. Cumulative Distribution Function

packet via a selector function, in this case it is just the column of interest
size. This computation results in a new dataset sizes. Then, we create
a counting query for each bin using the primitive dpWhere. This filters
all records that are less than the bin under consideration (< bin). Finally,
we perform a noisy count using primitive dpCount. The noise injected
by the primitive dpCount is calibrated so that the execution of dpCount
is localEps-DP (line 7E[). The function sequence then takes the list of
queries and compute them sequentially collecting their results in a list—
to create a list of noisy counts. We then return this list. The combinator
normy, in line 6 is used to mark where we want the accuracy information
to be collected, but it does not have any impact on the actual result of
the cdf.

To ensure that cdf1 is eps-differential privacy, we distributed the
given budget eps evenly among the sub-queries (this is done in lines 4
and 7). However, a data analyst may forget to do so, e.g., she can define
localEps = eps, and in this case the final query is (length bins)*eps-
DP, which is a significant change in the query’s privacy price. To pre-
vent such budget miscalculations or unintended expenditure of privacy
budget, DPella provides the analyst with the function budget (see Sec-
tion [2) that, given a query, statically computes an upper bound on how
much budget it will spend. To see how to use this function, consider the
function cdf1 and a its modified version cdf1’ with localEps = eps.
Suppose that we want to compute how much budget will be consumed
by running it on a list of bins of size 10 (identified as bins;o) and a sym-
bolic dataset symDataset. Then, the data analyst can ask this as follows:

>budget (cdfl binsjg 1 symDataset)

e=1
>budget (cdfl’ binsjo 1 symDataset)
€e=10

The function budget will not execute the query, it simply performs an
static analysis on the code of the query by symbolically interpreting it.
The static analysis uses information encoded by the fype of symDataset
(explained in Section[2), that, in this particular case, will be provided by
Tcpdump’s schema.

DPella also provides primitives to statically explore the accuracy of a
query. The function accuracy takes a noisy query Q(-) and a probability

*The casting operation fromIntegral is omitted for clarity

15

1. DPella by example

[and returns an estimate of the (theoretical) error that can be achieved
with confidence probability 1 — 8. Suppose that we want to estimate the
error we will incur in by running cdf1 with a budget of € = 1 with the
same list of bins and symbolic dataset as above, and we want to have this
estimate for 5 = 0.05 and 8 = 0.2, respectively. Then, the data analyst
can ask this as follow:

>accuracy (cdfl binsjo 1 symDataset) 0.05
a =53

>accuracy (cdf1 binsjo 1 symDataset) 0.2
o =40

Since the result of the query is a vector of counts, we measure the
error « in terms of /, distance with respect to the CDF without noise.
This is the max difference that we can have in a bin due to the noise. The
way to read the information provided by DPella is that with confidence
95% and 80%, we have errors 53 and 40, respectively. These error bounds
can be used by a data analyst to figure out the exact set of parameters
that would be useful for her task.

1.2.2 Parallel CDF

Another way to compute a CDF is by first generating an histogram of the
data according to the bins, and then building a cumulative sum for each
bin. To make this function private, an approach could be to add noise at
the different bins of the histogram, rather than to the cumulative sums
themselves, so that we could use the parallel composition, rather than
the sequential one [37], which we show how to implement in DPella
in Figure [2b| —where double-dashes are used to introduce single-line
comments.

In cdf2, we first select all the packages whose length is smaller than
the maximum bin, and then we partition the data accordingly to the given
list of bins. To do this, we use dpPartRepeat operator to create as many
(disjoint) datasets as given bins, where each record in each partition be-
longs to the range determined by an specific bin—where the record be-
longs is determined by the function assignBin:: Integer — Integer.
After creating all partitions, the primitive dpPartRepeat computes the
given query dpCount eps in each partition—the name dpPartRepeat
comes from repetitively calling dpCount eps as many times as parti-
tions we have. As a result, dpPartRepeat returns a finite map where

16

1.2. Cumulative Distribution Function

the keys are the bins and the elements are the noisy count of the records
per partition—i.e., the histogram. In what follows (lines 14-16), we com-
pute the cumulative sums of the noisy counts using the DPella primitive
add, and finally we build and return the list of values denoting the CDF.

The privacy analysis of cdf2 is similar to the one of cdf1. The ac-
curacy analysis, however, is more interesting: first it gets error bounds
for each cumulative sum, then these are used to give an error bound on
the maximum error of the vector. For the error bounds on the cumula-
tive sums DPella uses either the union bound or the Chernoff bound,
depending on which one gives the lowest error. For the maximum error
of the vector, DPella uses the union bound, similarly to what happens in
cdfl. A data analyst can explore the accuracy of cdf2.

>accuracy (cdf2 binsjo 1 symDataset) 0.05

o =22
>accuracy (cdf2 binsjo 1 symDataset) 0.2
a =20

1.2.3 Exploring the privacy-accuracy trade-off

Let us assume that a data analyst is interested in running a CDF with
an error bounded with 90% confidence, i.e., with 8 = 0.1, having three
bins (named binss), and € = 1. With those assumptions in mind, which
implementation should she use? To answer that question, the data analyst
can ask DPella:

>accuracy (cdfl binsz 1 symDataset) 0.1

oa=11
>accuracy (cdf2 binsz 1 symDataset) 0.1
o =12

So, the analyst would know that using cdf1 in this case would give,
likely, a lower error. Suppose further that the data analyst realize that
she prefers to have a finer granularity and have 10 bins, instead of only
3. Which implementation should she use? Again, she can compute:

>accuracy (cdf1 binsjo 1 symDataset) 0.1

o =46
>accuracy (cdf2 binsjo 1 symDataset) 0.1
o =20

17

1. DPella by example

«
— cdf1 Empiric
— cdf1 Theoretic
2,000 - - - cdf2 Empiric
- - cdf2 Theoretic
1,000 |-
0 [@ =Z e i-c====z=z===zZ=zZZ=------SSSTSS------°~°
| | | |

| | |
0 50 100 150 200 250 300
Sub-queries

Figure 3: Error comparison (95% confidence)

So, the data analyst would know that using cdf2 in this case would
give, likely, a lower error. One can also use DPella to show a comparison
between cdfl and cdf2 in terms of error when we keep the privacy
parameter fixed and we change the number of bins, where cdf2 gives
a better error when the number of bins is large [37] as illustrated in
Figure (3] In the figure, we also show the empirical error to confirm that
our estimate is tight—the oscillations on the empirical cdf1 are given
by the relative small (300) number of experimental runs we consider.

Now, what if the data analyst choose to use cdf2 because of what
we discussed before but she realizes that she can afford an error o < 50;
what would be then the epsilon that gives such a? One of the feature
of DPella is that the analyst can write a simple program that finds it by
repetitively calling accuracy with different epsilons—this is one of the
advantages of providing a programming framework. These different use
cases shows the flexibility of DPella for different tasks in private data
analyses.

18

Privacy

DPella is designed to help data analysts to have an informed deci-
sion about how to spend their budget based on exploring the trade-offs
between privacy and accuracy. In this section, we introduce DPella’s
primitives and design principles responsible to ensure differential pri-
vacy of queries written by data analysts.

2.1 Components of the API

Figure [4|shows part of DPella APIL DPella introduces two abstract data
types to respectively denote datasets and queries:

data Data s r -- datasets
data Query a -- queries

The attentive reader might have observed that the API also introduces
the data type Value a. This type is used to capture values resulting
from data aggregations. However, we defer its explanation for Section 3]
since it is only used for accuracy calculations—for this section, readers
can consider the type Value a as isomorphic to the type a. It is also
worth noticing that the API enforces an invariant by construction: it is
not possible to branch on results produced by aggregations—observe that
there is no primitive capable to destruct a value of type Value a. While
it might seem restrictive, it enables to write counting queries, which are
the bread and butter of statistical analysis and have been the focus of
the majority of the work in DP. Section@ discusses, however, how to lift
this limitation for specific analyses.

Values of type Data s r represent sensitive datasets with accumu-
lated stability s, where each row is of type r. Accumulated stability, on
the other hand, is instantiated to type-level positive natural numbers,

19

2. Privacy

-- Transformations (data analyst)
dpWhere : (r — Bool) — Data s r — Query (Data s r)
dpGroupBy :: Eqk = (r - k) > Datasr
— Query (Data (2%s) (k, [r]))
dpIntersect :: Eqr = Datas; r —+Datasasr
— Query (Data (si+s2) r)
dpSelect : (r = ') — Data s r — Query (Datas ')
dpUnion :: Datas; r - Datassor
— Query (Data (si+s2) r)
dpPart 2 0rdk = (r - k) - Datasr
— Map k (Data s r) — Query (Value a))
— Query (Map k (Value a))

-- Aggregations (data analyst)
dpCount :: Stbs = e — Datasr — Query (Value Double)

dpSum :: Stbs = ¢— Rangeab — (r — Double) — Datasr
— Query (Value Double)

dpAvg :: Stbs = € — Rangeab — (r — Double) — Datasr
— Query (Value Double)

dpMax :: Eqa=-¢—>Responsesa— (r > a) »Datalr
— Query (Value a)

-- Budget
budget :: Querya — e

-- Execution (data curator)
dpEval :: (Data 1 r — Query (Value a)) = [r] > ¢ — I0a

Figure 4: DPella API: Part I

ie, 1, 2, etc. Stability is a measure that captures the number of rows
in the dataset that could have been affected by transformations like se-
lection or grouping of rows. In DP research, stability is associated with
dataset transformations rather than with datasets themselves. In order
to simplify type signatures, DPella uses the type parameter s in datasets
to represent the accumulated stability of the transformations for which
datasets have gone through—as done in [19]. Different than, e.g., PINQ
[38], one novelty of DPella is that it computes stability statically using
Haskell’s type-system.

Values of type Query a represent computations, or queries, that yield
values of type a. Type Query a is a monad [41]], and because of this,
computations of type Query a are built by two fundamental operations:

return: a — Query a
(>=) :Querya— (a— Queryb)— Queryb

20

2.2. Transformations

The operation return x outputs a query that just produces the value
x without causing side-effects, i.e., without touching any dataset. The
function (>=)—called bind—is used to sequence queries and their as-
sociated side-effects. Specifically, qp >= f executes the query qp, takes
its result, and passes it to the function f, which then returns a second
query to run. Some languages, like Haskell, provide syntactic sugar for
monadic computations known as do-notation. For instance, the program
qp; >= (Ax1 — qpy, >= (Axy — return (x1,Xy))), which performs
queries qp; and qp, and returns their results in a pair, can be written
as do x; < Qp;; X2 ¢ gp,;return (xi1,xs) which gives a more “im-
perative” feeling to programs. We split the API in four parts: transfor-
mations, aggregations, budget prediction, and execution of queries—see
next section for the description of API’s accuracy components. The first
three parts are intended to be used by data analysts, while the last one
is intended to be only used by data curatorsﬂ

2.2 Transformations

The primitive dpWhere filters rows in datasets based on a predicate
functions (r — Bool). The created query (of type Query (Data s r))
produces a dataset with the same row type r and accumulated stability s
as the dataset given as argument (Data s r). Observe that if we consider
two datasets which differ in s rows in two given executions, and we apply
dpWhere to both of them, we will obtain datasets that will still differ in
s rows—thus, the accumulated stability remains the same. The primitive
dpGroupBy returns a dataset where rows with the same key are grouped
together. The functional argument (of type r — k) maps rows to keys
of type k. The rows in the return dataset (Data (2+s) (k, [r])) consist
of key-rows pairs of type (k, [r])—syntax [r] denotes the type of lists of
elements of type r. What appears on the left-hand side of the symbol =
are type constraints. They can be seen as static demands for the types
appearing on the right-hand side of =. Type constraint Eq k demands
type k, denoting keys, to support equality; otherwise grouping rows
with the same keys is not possible. The accumulated stability of the new
dataset is multiplied by 2 in accordance with stability calculations for
transformations [38] [19]—observe that 2*s is a type-level multiplication
done by a type-level function (or type family [20]) *. Our API also
considers transformations similar to those found in SQL like intersection

*A separation that can be enforced via Haskell modules [[55]

21

2. Privacy

(dpIntersect), union (dpUnion), and selection (dpSelect) of datasets,
where the accumulated stability is updated accordingly. Providing a
general join transformation is known to be challenging [38] [43] [9] 30]].
The output of a join may contain duplicates of sensitive rows, which
makes difficult to bound the accumulated stability of datasets. However,
and similar to PINQ, DPella supports a limited form of joins, where a
limit gets imposed on the number of output records mapped under each
key in order to obtain stability. For brevity, we skip its presentation and
assume that all the considered information is contained by the rows of
given datasets.

2.3 Partition

Primitive dpPart deserves special attention. This primitive is a mixture
of a transformation and aggregations since it partitions the data (transfor-
mation) to subsequently apply aggregations on each of them. More specif-
ically, it splits the given dataset (Data s r) based on a row-to-key map-
ping (r — k). Then, it takes each partition for a given key k and applies
it to the corresponding function Data s r — Query (Value a), which
is given as an element of a key-query mapping (Map k ((Data s r) —
Query (Value a))). Subsequently, it returns the values produced at ev-
ery partition as a key-value mapping (Query (Map k (Value a))). The
primitive dpPartRepeat, used by the examples in Section (1} is imple-
mented as a special case of dpPart and thus we do not discuss it further.

Partition is one of the most important operators to save privacy
budget. It allows to run the same query on a dataset’s partitions but only
paying for one of them—recall Theorem [3| The essential assumption
that makes this possible is that every query runs on disjoint datasets.
Unfortunately, data analysts could ignore this assumption when writing
queries.

To illustrate this point, we present the code in Figure 5| Query ¢ pro-
duces an e-DP histogram of the colors found in the argument dataset,
which rows are of type Color and variable bins enumerates all the pos-
sible values of such type. The code partitions the dataset by using the
function id :: Color — Color (line 2) and executes the aggregation
counting query (dpCount) in each partition (line 3)—function fromList
creates a map from a list of pairs. The attentive reader could notice that
dpCount is applied to the original dataset rather than the partitions.
This type of errors could lead to break privacy as well as inconsistencies

22

2.4. Aggregations

1 g::€ — [Color] — Data 1 Double — Query (Map Color Double)
2 q eps bins dataset = dpPart id dataset dps

3 where dps = fromList [(c, Ads — dpCount eps dataset)

4 -- dps = fromList [(c, Ads — dpCount eps ds

5 | ¢ « bins]

Figure 5: DP-histograms by using dpPart

when estimating the required privacy budget. A correct implementation
consists on executing dpCount on the corresponding partition as shown
in the commented line 4.

To catch coding errors as the one shown above, DPella deploys an
static information-flow control (IFC) analysis similar to that provided
by MAC [51]]. IFC ensures that queries run by dpPart do not perform
queries on shared datasets by attaching provenance labels to datasets
Data s r indicating to which part of the query they are associated with
and propagates that information accordingly.

Coming back to our previous example (see Figure[5), the IFC analysis
will assign the provenance of dataset in ¢ to the top-level fragment
of the query rather than to sub-queries executed in each partition—and
DPella will raise an error at compile time when ds is accessed by the
sub-queries! Instead, if we comment line 3 and uncomment line 4, the
query q will be successfully run by DPella (when there is enough privacy
budget) since every partition is only accessing their own partitioned
data (denoted by variable ds).

The implemented IFC mechanism is transparent to data analysts and
curators, i.e., they do not need to understand how it works. Analysts and
curators only need to know that, when the IFC analysis raises an alarm,
is due to a possibly access to non-disjoint datasets when using dpPart.

2.4 Aggregations

DPella presents primitives to count (dpCount), sum (dpSum), and aver-
age (dpAvg) rows in datasets. These primitives take an argument eps :: €,
a dataset, and build a Laplace mechanism which is eps-differentially pri-
vate from which a noisy result gets return as a term of type Value Double.
The purpose of data type Value a is two fold: to encapsulate noisy val-
ues of type a originating from aggregations of data, and to store informa-

23

2. Privacy

tion about its accuracy—intuitively, how “noisy” the value is (explained
in Section [3). The injected noise of these queries gets adjusted depend-
ing on three parameters: the value of type ¢, the accumulated stability of
the dataset s, and the sensitivity of the query (recall Definition[2). More
specifically, the Laplace mechanism used by DPella uses accumulated sta-
bility s to scale the noise, i.e., it consider b from Theoremas b=s- A?Q.
The sensitivity of DPella’s aggregations are either hard-coded into the
implementation—similar to what PINQ does—or calculated statically.
The sensitivities of dpSum and dpAvg are determined by the range of
the values under consideration e.i., for the indicated Range a b, the sen-
sitivity is computed as b-a. This is enforced by applying a clipping func-
tion (r — Double). This function ensures that the values under scrutiny
fall into the interval [a, b] before (and, for dpAvg, after) executing the
query. The sensitivity of dpCount and dpMax is set to 1. To implement
the Laplace mechanism, the type constrain Stb s in dpCount, dpSum,
and dpAvg demands the accumulated stability parameter s to be a type-
level natural number in order to obtain a term-level representation when
injecting noise. Finally, primitive dpMax implements report-noisy-max
[15]). This query takes a list of possible responses (Responses a is a type
synonym for [a]) and a function of type r — a to be applied to every
row. The implementation of dpMax adds uniform noise to every score—
in this case, the amount of rows voting for a response—and returns the
response with the highest noisy score. This primitive becomes relevant
to obtain the winner option in elections without singling out any voter.
However, it requires that the accumulated stability of the dataset to be 1
in order to be sound [[8]]. DPella guarantees such requirement by typing:
the type of the given dataset as argument is Data 1 r.

2.5 Privacy budget and execution of queries

The primitive budget statically computes how much privacy budget
is required to run a query. It is worth notice that DPella returns an
upper bound of the required privacy budget rather than the exact one—
an expected consequence of using a type-system to compute it and
provide early feedback to data analysts. Finally, the primitive dpEval
is used by data curators to run queries (Query a) under given privacy
budgets (¢), where datasets are just lists of rows ([r]). It assumes that
the initial accumulated stability as 1 (Data 1 r) since the dataset has
not yet gone through any transformation, and DPella will automatically

24

2.6. Implementation

calculate the accumulated stability for datasets affected by subsequent
transformations via the Haskell’s type system. This primitive returns a
computation of type I0 a, which in Haskell are computations responsible
to perform side-effects—in this case, obtaining randomness from the
system in order to implement the Laplace mechanism.

2.6 Implementation

DPella is implemented as a deep embedded domain-specific language
(EDSL) in Haskell. Due to such design choice, data analysts can piggyback
on Haskell’s infrastructure to build queries in a creative way. For instance,
itis possible to leverage on any of Haskell’s pure functions. The following
one-liner (of type Query [Value Double]) shows how to write a query
that generates possibly non-disjoint datasets from ds :: Data s r based
on different criteria for then performing a counting.

mapM (f1lip dpSelect ds>=>dpCount eps) fs

Variable eps is the epsilon to spend in each counting while fs :: [r —
Bool] is the criteria list. The high-order functions £1ip, mapM, and (>=>)
are standard in Haskell and represent a function who switches arguments,
the monadic versions of map, and the Kleisli arrow, respectively. Despite
DPella being a first-order interface, data analysts can use Haskell’s high-
order functions to compactly describe queries.

25

Accuracy

DPella uses the data type Value a responsible to store a result of
type a as well as information about its accuracy. For instance, a term of
type Value Double stores a noisy number (e.g., coming from executing
dpCount) together with its accuracy in terms of a bound on the noise
introduced to protect privacy.

DPella provides an static analysis capable to compute the accuracy
of queries via the following function

accuracy :: Query (Value a) - f — «

which takes as an argument a query and returns a function, called inverse
Cumulative Distribution Function (iCDF), capturing the theoretical error
« for a given confidence 1-{. Function accuracy does not execute
queries but rather symbolically interpret all of its components in order
to compute the accuracy of the result based on the sub-queries and
how data gets aggregated. DPella follows the principle of improving
accuracy calculations by detecting statistical independence. For that, it
implements taint analysis [53] in order to track if values were drawn
from statistically independent distributions.

3.1 Accuracy calculations

DPella starts by generating iCDFs at the time of running aggregations
based on the following known result of the Laplace mechanism:

Definition 3.1.1 (Accuracy for the Laplace mechanism). Given a
randomized query Q(-) : db — R implemented with the Laplace mecha-
nism as in Theorem[1, we have that

Pr [1Q(D) ~ Q(D)| > lox(/8) - 2] < 8)

26

3.1. Accuracy calculations

-- Accuracy analysis (data analyst)
accuracy :: Query (Value a) » 8 — «
-- Norms (data analyst)
norm. :: [Value Double] — Value [Double]
norm, ::[Value Double] — Value [Double]
norm; :: [Value Double| — Value [Double]
]

rmsd :: [Value Double] — Value [Double
-- Accuracy combinators (data analyst)

add ::[Value Double] — Value Double

neg ::Value Double — Value Double

Figure 6: DPella API: Part II

Recall that the Laplace mechanism used by DPella utilizes accumu-
lated stability s to scale the noise, i.e., it consider b from Theorem as
b=s- %. Consequently, DPella stores the iCDF A\§ — log(1/3) - s- %
for the values of type Value Double returned by aggregation primi-
tives like dpCount, dpSum, and dpAvg. However, queries are often more
complex than just calling aggregation primitives—as shown by CDF2 in
Figure [2b] In this light, DPella provides combinators responsible to ag-
gregate noisy values, while computing its iCDFs based on the iCDFs of
the arguments. Figure [6| shows DPella API when dealing with accuracy.

3.1.1 Norms

DPella exposes primitives to aggregate the magnitudes of several er-
rors predictions into a single measure—a useful tool when dealing with
vectors. Primitives norm.,, norm,, and norm; take a list of values of
type Value Double, where each of them carries accuracy information,
and produces a single value (or vector) that contains a list of elements
(Value [Double]) whose accuracy is set to be the well-known £-, £2-,
{1-norms, respectively. Finally, primitive rmsd implements root-mean-
square deviation among the elements given as arguments. In our exam-
ples, we focus on using norm.,, but other norms are available for the
taste, and preference, of data analysts.

3.1.2 Adding values

The primitive add aggregates values and, in order to compute accuracy
of the addition, it tries to apply the Chernoff bound if all the values are

27

3. Accuracy

o
27000 — Union
— Chernoff
1,000
135
0 | | | | | -\
0 20 40 60 80 100

Sub-queries

Figure 7: Union vs. Chernoff bounds

statistically independent; otherwise, it applies the union bound. More
precisely, for the next definitions we assume that primitive add receives
n terms v4 :: Value Double, vy ::Value Double, ..., v, :: Value Double.
Importantly, since we are calculating the theoretical error, we should
consider random variables rather than specific numbers. The next defi-
nition specifies how add behaves when applying union bound.

Definition 3.1.2 (add using union bound). Given n > 2 random
variables V; with their respective iCDF ;, where j € 1...n, and aj =
zCDFJ(g) then the addition Z = 3 "7_, V; has the following accuracy:

Pr(|Z] > 30 o] < B 4)

Observe that to compute the iCDF of Z, the formula uses the i«CDFs
from the operands applied to g Union bound makes no assumption
about the distribution of the random variables V.

In contrast, the Chernoff bound often provides a tighter error estima-
tion than the commonly used union bound when adding several statisti-
cally independent queries sampled from a Laplace distribution. To illus-
trate this point, Figure|7| shows that difference for the cdf2 function we
presented in Section[1|with € = 0.5 (for each DP sub-query) and 3 = 0.1.
Clearly, the Chernoff bound is asymptotically much better when estimat-
ing accuracy, while the union bound works best with a reduced number
of sub-queries—observe how lines get crossed in Figure|7] In this light,
and when possible, DPella computes both union bound and Chernoff
bound and selects the tighter error estimation. However, to apply Cher-
noff bound, DPella needs to be certain that the events are independent.
Before explaining how DPella detects that, we give an specification of
the formula we use for Chernoff.

28

3.1. Accuracy calculations

Definition 3.1.3 (add using Chernoff bound [[12]). Given n > 2 in-
dependent random variables V; ~ Lap(0,b;), where j € 1...n, by =
max {bj}j=1..n, andv > max{\/zyzl b?, bM\/ln %} then the addi-
tion Z = Z;LZI Vi has the following accuracy:

Pr[|Z|>1/-,/81n%]<ﬁ (5)

DPella uses the value v = maz{,/>7_, J,bM1 /In B}+0 00001 to

satisfy the conditions of the definition above when applying the Chernoff
bound—any other positive increment to the computed maximum works
as welll

Lastly, to support subtraction, DPella provides primitive neg respon-
sible to change the sign of a given value. We next explain how DPella
checks that values come from statistically independent sampled vari-

ables.

3.1.3 Detecting statistical independence

To detect statistical independence, we apply taint analysis when con-
sidering terms of type Value a. Specifically, every time a result of type
Value Double gets generated by an aggregation query in DPella’s API
(i.e., dpCount, dpSum, etc.), it gets assigned a label indicating that it is
untainted and thus statistically independent. The label also carries in-
formation about the scale of the Laplace distribution from which it was
sampled—a useful information when applying Definition When
the primitive add receives all untainted values as arguments, the ac-
curacy of the aggregation is determined by the best estimation pro-
vided by either the union bound (Definition or the Chernoff bound
(Definition [3.1.3). Importantly, values produced by add are considered
tainted since they depend on other results. When add receives any
tainted argument, it proceeds to estimate the error of the addition by
just using union bound. As an example, Figure 8| presents the query plan
totalCount which adds the results of hundred dpCount queries over
different datasets, namely ds, dso, ..., dsjgo. (The ... denotes code
intentionally left unspecified.) The code calls the primitive add with

® There are perhaps other ways to compute the Chernoff bound for the sum of
independent Laplace distributions, changing this equation in DPella does not require
major work.

29

3. Accuracy

1 totalCount :: Query (Value Double)
2 totalCount = do

3 vy < dpCount 0.3 ds;

vy < dpCount 0.25 ds2

V100 <— dpCount 0.5 dsigo

4
5
6
7 return (add [vy, V2, ..., v100])

Figure 8: Combination of sub-queries results

the results of calling dpCount. (We use [z1, 22, x3] to denote the list
with elements x1, x2, and x3.) What would it be then the theoretical er-
ror of totalCount? The accuracy calculation depends on whether all
the values are untainted in line 7. When no dependencies are detected
between v, Vo, ..., v100, namely all the values are untainted, DPella
applies Chernoff bound in order to give a tighter error estimation. In-
stead, for instance, if v3 was computed as an aggregation of v; and vy,
e.g., let v3 = add [vy, v5], then line 7 applies union bound since v is a
tainted value. With taint analysis, DPella is capable to detect dependen-
cies among terms of type Value Double, and leverages that information
to apply different concentrations bounds.

In the next Section, we proceed to formally define our accuracy
analysis.

3.2 Implementation

The accuracy analysis consists on symbolically interpreting a given
query, calculating the accuracy of individual parts, and then combining
them using our taint analysis. We introduce two polymorphic symbolic
values: D :: Data s r and S[iCDF, s, ts| :: Value a. Symbolic dataset
D represents concrete datasets arising from data transformations. A
symbolic value S[iCDF, s, ts] represents concrete values with tags ts
and a iCDF which is computed assuming a noise scale s. Tags are used
to detect the provenance of symbolic values and when they arise from
different noisy sources.

Function accuracy takes queries producing results of type Value a.
Such queries are essentially built by performing data aggregation queries
(e.g., dpCount) preceded by a (possibly empty) sequence of other primi-

30

3.2. Implementation

tives like data transformationsﬂ Figures |§| and |10/ show the interesting
parts of our analysis. Given a well-typed query q :: Query (Value a),
accuracy q = iCDF where q > S[iCDF, s, ts] for some s and ts. The
rules in[9are mainly split into two cases: considering data aggregation
queries and sequences of primitives glued together with (>=).

DPCountT .
1
dataset ::Datasr iCDF = A\ — log(B) .g. = t fresh
€
1
dpCount € dataset > S[iCDF,s - —, {t}]
€
DPMax A
1 th
dataset::Datalr iCDF = \3 — — - log(w)
€

dpMax € res vote ds > S[iCDF, 0,)]

(a) DP-queries

SEQ-TRANS
k D ~J next next > S[iCDF, s, ts]

transform >= k > S[iCDF, s, ts]

SEQ-QUERY
query > S[iCDFy, sq, tsq]
k (S[iCDFg, sq, tsq]) ~ next next > S[iCDF, s, ts]
query =k > S[iCDF, s, ts]

(b) Sequential traversal

SEQ-PART
(m j D~ next;) cdom(m)
(nextj > S[iCDF]’, Sj, tsj])jedmn(m) m’ = (j — S[iCDFj, Sj, tsj})jedom(m)
km’ ~ next next > S[iCDF, s, ts]
dpPart sel dataset m >=k > S[iCDF, s, ts]

(c) Accuracy calculation when partitioning data

Figure 9: Accuracy analysis implemented by accuracy

SWe ignore the case of return val :: Query (Value a) since the definition of
accuracy is trivial for such case.

31

3. Accuracy

The symbolic interpretation of dpCount is captured by rule DP-
Count—see Figure 9a] This rule populates the iCDF of the return sym-
bolic value with the corresponding error calculations for Laplace as pre-
sented in Definition [3.3.2] (with the scale adjusted with the accumulated
stability). Observe that it extracts the stability information from the type
of the considered dataset (ds :: Data s r) and attaches a fresh tag indi-
cating an independently generated noisy value. The symbolic interpre-
tation of dpSum and dpAvg proceeds similarly to dpCount and we thus
omit them for brevity.

Rule DPMax shows the symbolic interpretation of dpMax whose
iCDF aligns with the one appearing in [8]. Observe that the return value
is tainted. The reason for that relies in the fact that the result, which is
one of the responses in res, contains no noise—it is rather the process
that lead to determining the winning response which has been “noisy.”
In this light, no scale of noise nor distribution can be associated to the
response—as we did, for instance, with dpCount.

To symbolically interpret a sequence of primitives, the analysis gets
further split into two cases depending if the first operation to interpret
is a transformation or an aggregation, respectively—see Figure [9b] Rule
SEQ-TRANS considers the former, where transform can be any of the
transformation operations in Figure |4} It simply uses the symbolic value
D to pass it to the continuation k. It can happen that k D does not match
(yet) any part of DPella’s API required for our analysis to continue
However, the EDSL nature of DPella makes Haskell’s to reduce k D to the
next primitive to be considered, which we capture ask D ~¥ next—and
we know that it will occur thanks to type preservation. We represent ~~
(~+™) to pure reduction(s) in the host language like function application,
pair projections, list comprehension, etc. The analysis then continues
symbolically interpreting the next yield instruction. Rule SEQ-QUERY
computes the corresponding symbolic value for the aggregation query.
The symbolic value is then passed to the continuation, and the analysis
continues with the next yield instruction.

Rule SEQ-PART shows the symbolic interpretation of dpPart. The
argument m :: Map k (Data s r — Query (Value a)) describes the
queries to execute once given the corresponding bins. Since these queries
produce values, we need to symbolically interpret each of them to obtain
their accuracy estimations. The rule applies each of those queries to a

"For instance, k D = (Az — dpCount 1 z) D, and thus ((Az —
dpCount 1 z) D) ~¥ dpCount 1 D.

32

3.2. Implementation

symbolic dataset (m j D) [l The symbolic values yield by each bin are
collected into the mapping m’, which is then passed to continuation k
in order to continue the analysis on the next yield instruction.

3.2.1 Concentration Bounds

Figure [10|shows the part of our analysis responsible to apply concentra-
tion bounds. Rules UN1oN-BouND and CHERNOFF-BOUND define pure
functions (reduction ~~) which produce the concentration bounds as
described in Definitions and [3.1.3] respectively. We define the func-
tion add based on two cases. Rule Abp-UNION produces a symbolic
value with a iCDF generated by the union bound (ub [vy,va, . . ., vy]).
The symbolic value is tainted, which is denoted by the empty tags (().
The scale 0 denotes that the scale of the noise and its distribution is
unknown—adding Laplace distributions do not yield a Laplace distribu-
tion. (However, the situation is different with Gaussians, see Section 3.3

UNION-BoUND

b n
vj = S[iCDF;,s;,t55] a5 =iCDF;(~) iCDF =Af — > ay

=1
ub [vi, Vo, ..., Vo] ~» iCDF
CHERNOFF-BOUND
vy = S[iCDFj,Sj,tSJ‘] vy = max {Sj}jzlmn
v =maz{|/3 1, 53, Vuy /ln%} +0.0001 iCDF =X\ = v - 1/SIn%
cb [vi,va, ..., Va] ~> iCDF
ApD-UNION
(Fjts; =0) Vo, t8 #0
add [v1, Vo, ..., Va] ~ S[ub [vi, V2, ..., V4], 0, 0]

ADD-CHERNOFF-UNION
vy = S[iCDFy,s5,t85] (Vji-ts; #0) ;o ,ts, =0
iCDF = A8 — min (ub [vi, V2, ..., va] B) (cb [vi,va, ..., V0] B)
add [v1,V2, ..., Va] ~ S[iCDF, 0, 0]

Figure 10: Calculation of concentration bounds

8For simplicity, we assume that maps are implemented as functions

33

3. Accuracy

NorwMm-INF
v; = S[iCDFj, sy, ts;] iCDF = A\ — mazx {|iCDFj(é)|}j:1_,_n
n

normes [vi,Va, ..., Vs] ~ S[iCDFy, 0, 0]

NorM-1
< B
v; = S[iCDF;,s;,ts;] iCDF = A3 — Zl |iCDF; ()|
=
norm; [vi,Va, ...,Va] ~ S[iCDF, 0, (]

Figure 11: Calculation of norms

This rule gets exercised when either the list of symbolic values con-
tains a tainted one (35 - ts; = ()) or have not been independently gener-
ated (_, ,, ts; # 0). Differently, ADD-CHERNOFF-UNION produces a
symbolic value with a iCDF which chooses the minimum error estima-
tion between union and Chernoff bound for a given f—sometimes union
bound provides tighter estimations when aggregating few noisy-values
(recall Figure [7). This rule triggers when all the values are untainted
(V5 - ts; # 0) and independently generated (ﬂjzlmn ts; = (). Ata
first glance, one could believe that it would be enough to use the scale of
the noise to track when values are untainted, i.e., if the scale is different
from 0, then the value is untainted. Unfortunately, this design choice is
unsound: it will classify adding a variable twice as an independent sum:
do = <+ dpCount € ds;return (add [z, x]). It is also possible to con-
sider various ways to add symbolic values to boost accuracy. We could
easily write a pre-processing function which, for instance, firstly parti-
tions the arguments into subset of independently generated values, ap-
plies add to them (thus triggering ADD-CHERNOFF-UNION), and finally
applies add to the obtained results (thus triggering App-UNION). The
implementation of DPella enables to write such functions in a few lines
of code.

3.2.2 Norms calculation

Figure|11|shows our static analysis when computing norm., and norm,
respectively. There is nothing special about the rules except to note that
the results are symbolic values which are tainted. The reason for that
is that norms are designed to condense (in one measure) the error of

34

3.3. Accuracy of Gaussian mechanism

the list of the arguments. By doing so, it is hard to assign an specific
Laplace distribution with sensitivity s to the overall given vector. We
simply say that the return symbolic values are tainted—thus they can
only be aggregated by App-UNION in Figure

3.3 Accuracy of Gaussian mechanism

As aforementioned, DPella supports other notions of differential privacy—
such as approximate differential privacy—together with the use of the
Gaussian mechanism. Specifically, DPella supports a relaxation of the
notion of differential privacy known as (¢, §)-DP, formally defined as
follow.

Definition 3.3.1 ((¢, 6)-Differential Privacy[17]]). A randomized query
Q(:) : db — R satisfies (e, §)-differential privacy, withe,0 > 0, if and
only if for any two datasets D1 and D5 in db, which differ in one row, and

for every output set S C R we have

Pr[Q(D1) € 5] < e Pr[Q(Ds) € S] + 6 (6)

The main difference between this notion of privacy and the one
described in Theorem [l]is that (¢, §)-DP introduces the probability mass
0 that, intuitively, offers a probabilistic notion of privacy loss. More
concretely, (¢, §)-DP ensures that for all adjacent datasets, the absolute
value of the privacy loss will be bounded by e with probability 1 — 6.
Observe that when J = 0, an (¢, 0)-DP query satisfies pure e-DP.

A standard implementation of (¢, §)-DP queries is based on the addi-
tion of noise sampled from the Gauss distribution, this is, for @ : db — R
an arbitrary function with sensitivity A¢ (as described in Deﬁnition
the Gaussian mechanism with parameter o adds noise scaled to A/ (0, 0%)
to its output. When the noise to be added is calibrated in terms of ¢, 6,
and Ag, the Gaussian mechanism satisfies (¢,)-DP as stated on the fol-
lowing theorem.

Theorem 3.3.1 (Gaussian Mechanism [2]). For any ¢,§ € (0,1),
the Gaussian output perturbation mechanism with standard deviation

o = Agy/2log(122)/e is (e, §)-differentially private

Similarly as with the Laplace mechanism, to provide bound estimates
on the errors caused by the addition of Gaussian noise, DPella keeps track
of Gauss’ inverse Cummulative Distribution Function (iCDF). By following
the general form of accuracy introduced in Definition [2| we have that:

35

3. Accuracy

DPCounT
dataset ::Datasr

oc=s-1-4/2-10g(1.25/4)/€ iCDF = A8 — o - /2 - log(2/5) t fresh

dpCount € dataset > S[iCDF, o, {t }]

(a) Aggregations

CHERNOFF-BOUND-GAUSS
v; = S[iCDF;,s;,ts;] iCDF = A8 — \/2 Y, 85 - log (1/5)

cb [vi, V2, ..., Vs] ~ iCDF

ADD-CHERNOFF-UNION
v; = S[iCDFy,s5,ts5] (Vji-ts; #0) ;o ,ts, =0
iCDF = A8 — min (ub [vi,v2, ..., va] B) (cb [vi,v2, ..., Va] B)
add [vi,va, ..., Vo] ~ S[LCDF, 370, 55, , s3]

(b) Concentration bounds

Figure 12: Accuracy analysis for Gaussian mechanism

Definition 3.3.2 (Accuracy for the Gaussian mechanism). Given

a randomized query Q() : db — R implemented with the Gaussian
mechanism as previously described, then

Pr[|Q(D) - Q(D)| > /2108 (9/)] < 5 7)

where the iCDF to be stored by DPella refers to the function A\ —
ov/2log (2/0).

From an implementation standpoint, adding the Gaussian mecha-
nism to our framework does not alter significantly the presented prim-
itives, and, in particular, privacy’s preservation remains (almost) un-
changed. The most significant changes can be seen when calculating the
accuracy of aggregations and their combinations.

The symbolic interpretation of aggregations is updated accordingly
to keep track of Gauss’ iCDF, as well as, its respective noise scale de-
termined by o2 as depicted in Figure for the case of dpCount. Ad-
ditionally, Figure shows how concentration bounds are applied for
the case of the Gaussian mechanism—UNION-BouND and App-UNION
are omitted since they are the same as the ones in Figure[10| In general,
the accuracy analysis for addition of aggregations follows the one pre-
sented previously for the Laplace mechanism. The main difference is seen

36

3.3. Accuracy of Gaussian mechanism

1 totalCountG :: Query (Value Double)
2 totalCountG = do
3 wvi < dpCount (0.3 ,1le-5)dsy

4 vy < dpCount (0.25,1e-5) dsz
5 .

6 Vio ¢ dpCount (0.5 ,1e-3) dsig0
7 let h1:add [Vl7 V2, ...,Vso }

8 let hy = add [vsi, Vs, . . ., V100]

9

return (add [hi,ha])
Figure 13: Combining sub-queries under Gaussian mechanism

when adding independent values. In this case, we use the well-known
fact the addition of independent normally distributed random variables
is also normally distributed. This means that after executing the ApD-
CHERNOFF-UNION we do not lose information about the distribution of
our result as we used to do under the Laplacian setting. This effect can
be seen in the generated symbolic value S[iCDF, > 7, 55, U=y, ts;]
where Z;;l s; indicates that the variance of the new value is calculated
as the addition of the variances of the components being added, and
U i—1..n ts; indicates that the new value is statistically dependent of
the involved values.

This is an useful feature when combining queries in batches, for in-
stance, Figure [13|shows the query plan totalCountG that adds the re-
sults of hundred queries—using Gaussian dpCount that takes as input the
tuple (e, ¢) and the dataset—similar to the one presented in Figure 8] but
it does so by adding the first half of the queries (line 9), then the second
half (line 10), and finally returning the addition of the two halves (line
12). How will DPella calculate the theoretical error of totalCountG?

Observe that h; and hy are constructed as combinations of untainted
values, meaning that when performing the additions at lines 7-8, the
Chernoff bound could be triggered. More importantly, DPella still have
information about their distribution. Furthermore, h; and hy are statis-
tically independent (they do not share sub-queries), so when comput-
ing their addition at line 9, Chernoff bound could also be triggered, this
could not have been possible under the Laplace mechanism, since once
a value is calculated as a combination of values, their distribution be-
comes unknown and only union bound could be applied. In this sense,
the Gaussian mechanism might yield tighter error bounds when dealing

37

3. Accuracy

with queries that are created in batches, specially when the number of
batches is big enough to trigger the use of the Chernoff bound.

38

Case studies

In this section, we will discuss the advantages and limitations of
our programming framework. Moreover, we will go in-depth into using
DPella to analyze the interplay of privacy and accuracy parameters in
hierarchical histograms.

4.1 DPella expressiveness

First, we start by exploring the expressiveness of DPella. For this, we
have built several analyses found in the DP literature—see Table
which we classify into two categories, PINQ-like queries and counting
queries. The former class allows us to compare DPella expressivity with
the one of PINQ, while the latter with APEx.

PINQ-like queries We have implemented most of PINQ’s examples [38]
37], such as, different versions of CDFs (sequential, parallel, and hybrid)
and network tracing-like analyses (such as determining the frequency
a term or several terms have been searched by the users, and comput-
ing port’s and packets’ size distribution); additionally, we considered
analyses of cumulative sums [3]—which are queries that share some
commonalities with CDFs. The interest over differentially private CDFs
and cumulative partial sums applications rely on the existing several ap-
proaches to inject noise, such choices will directly impact the accuracy
of our results, and therefore, are ideal to be tested and analyzed in DPella.
The structures of these examples follow closely the ones of the CDFs pre-
sented in previous sections, which are straightforward implementations.
DPella supports these queries naturally since its expressiveness relies on
its primitives and, by construction, they follow PINQ’s ones very closely.
However, as stated in previous sections, our framework goes a step fur-
ther and exposes to data analysts the accuracy bound achieved by the

39

4. Case studies

Category Application Programs
cdfi, cdf2,
CDFs [37] cdfSmart
Term fre- queryFreq,
quency [38] queriesFreq
PINQ-like Network packetSize,
analysis [37] portSize
Cumulative cumulSuml
sums [3] cumulSum2
cumulSumSmart
. Range queries via Identity, i_n
Count .
S;Jrrilelsng Histograms [28], and h_n
4 Wavelet [59] y_n

Table 1: Implemented literature examples

specific implementation. This feature allows data analyst to reason about
accuracy of the results—without actually executing the query—by vary-
ing i) the strategy of the implementation ii) the parameters of the query.
For instance, in Section |1} we have shown how an analyst can inspect the
error of a sequential and parallel strategy to compute the CDF of packet
lengths. Furthermore, the data analyst can take advantage of DPella being
an embedded DSL and write a Haskell function that takes any of the ap-
proaches (cdf1 or cdf2) and varies epsilon aiming to certain error toler-
ance (for a fixed confidence interval), or vice versa. Such a function can be
as simple as a brute force analysis or as complex as an heuristic algorithm.

Counting queries To compare our approach with the tool APEx [24]], we
consider range queries analyses—an specific subclass of counting queries.
APEx uses the matrix mechanism [33]] to compute counting queries. This
algorithm answers a set of linear queries (called the workload) by cali-
brating the noise to specific properties of the workload while preserving
differential privacy. More in detail, the matrix mechanism uses some
query strategies as an intermediate device to answer a workload; return-
ing a DP version of the query strategies (obtained using the Laplace or
Gaussian mechanism), from which noisy answers of the workload are
derived. The matrix mechanism achieves an almost optimal error on
counting queries. To achieve such error, the algorithm uses several non-
trivial transformations which cannot be implemented easily in terms of
other components. APEx implements it as a black-box and we could do
the same in DPella (see Section @ Instead, in this section we show how

40

4.1. DPella expressiveness

oo o

o O = O

o= OO

= o O O
CO O RO
OO OO
O OO~ O
_ o oo~ O

O = =

I

S = ==

— O

— O~

O R FH R OMKRRKFOO
H =, O, OO, OOO

SO OO OO
OO R R, HKFERFRRFRO

Wr,

Figure 14: Workload of all range queries and query strategies for 4
ranges

DPella can be directly used to answer sets of counting queries using
some of the ideas behind the design of the matrix mechanism, and how
these answers improve with respect to answering the queries naively,
thanks to the use of partition and the Chernoff bound.

To do this, we have implemented several strategies to answer an spe-
cific workload WR: the set of all range queries over a domain. Figure
illustrates the workload that would be answer for a frequency count of
four ranges. The identity strategy 14, represents 4 queries (number of
rows) computing the noisy count of each range (number of columns).
The hierarchical strategy H4 contains seven queries representing a bi-
nary hierarchy of sums, while the wavelet strategy Y4 contains four
queries representing the Haar wavelet matrix.

Our implementation generates noisy counts and any possible com-
bination of them will yield (at least) the same error as using strategy
14. In other words, the more accurate answer for Wg will be yield by
the identity strategy. This is not unexpected, since in order to use the
other queries strategies more efficiently we would need transformations
similar to the ones used in the matrix mechanism.

Figure|15|exposes the error of answering each range query (i.e., each
row) in Wg with strategy I, and n = 512. While we use the same kind
of plot, this error cannot be directly compared with the one shown in
Figure 7 of [33], since we use a different error metrics: (o, 3)-accuracy vs
MSE. Nonetheless, we share the tendency of having lower error on small
ranges and significant error on large ranges. Now, since the noisy values
that will be added (using the function add) are statistically independent,

41

4. Case studies

Right Bound

192 320 384

256
Left Bound

Figure 15: Error of each range query in Wy using strategy I,, with
n=>512,e =1,and § = 0.05

we can use the Chernoff bound to show that the error is approximately
O(y/n) for each range query, and a maximum error of O(y/nlogn)
for answering any query in Wg. If we compare our maximum error
O(y/nlog n) with the one of the matrix mechanism based on the identity
strategy O(n/€?), it becomes evident how Chernoff bound is useful to
provide tighter accuracy bounds. Unfortunately, as previously stated, the
error of strategies H,, and Y}, in DPella is not better than the one of the
strategy I,, so we cannot reach the same accuracy the matrix mechanism
achieves with these strategies (see Figure 7 of [33]). This limitation
can be addressed by leveraging the fact that DPella is a programming
framerwork that could be extended by adding the matrix mechanism—
and some other features—as black-box primitives.

4.2 Privacy and accuracy trade-off analysis

We study histograms with certain hierarchical structure (commonly seen
in Census Bureaus analyses) where different accuracy requirements are
imposed per level and where varying one privacy or accuracy parameter
can have a cascade impact on the privacy or accuracy of others. We con-
sider the scenario where we would like to generate histograms from the
Adult databaseﬂ to perform studies on gender balance. The information
that we need to mine is not only an histogram of the genders (for sim-
plicity, just male and female) but also how the gender distributes over
age, and within that, how age distributes over nationality—thus expos-
ing a hierarchical structure of three levels.

’https://archive.ics.uci.edu/ml/datasets/adult

42

https://archive.ics.uci.edu/ml/datasets/adult

4.2. Privacy and accuracy trade-off analysis

1 hierarchical; [ey,eo, e3] dat = do

-- hy :: Map Gen (Value Double)

--hy :: Map (Gen, Age) (Value Double)

-- hs :: Map (Gen, Age, Nationality) (Value Double)

h; < byGen e; dat
hy < byGenAge e, dat
hs < byGenAgeNat ez dat
return (hy, hy, h3)

0 U WD

(a) Hierarchical histogram I: distribute budget among the levels

9 hierarchicals e dat = do
10 hz < byGenAgeNat e dat
11 hy < levels h3
12 h; < level; hs3
13 return (hi, ho, h3)

(b) Hierarchical histogram II: spend budget only on the most detailed histogram

Figure 16: Implementation of hierarchical histograms

Our first approach is depicted in Figure where hierarchical;
generates three histograms with different levels of details. This query
puts together the results produced by queries byGen, byGenAge, and
byGenAgeNationality where each query generates an histogram of
the specified set of attributes. Observe that these sub-queries are called
with potentially different epsilons, namely e, e5, and ez, then under
sequential composition, we expect hierarchical; to be e;+ey+es-
differentially private.

We proceed to explore the possibilities to tune the privacy and accu-
racy parameters to our needs. In this case, we want a confidence of 95%
for accuracy, i.e., f = 0.05, with a total budget of 3 (¢ = 3). We could
manually try to take the budget ¢ = 3 and distribute it to the different
histograms in many different ways and analyze the implication for accu-
racy by calling accuracy on each sub-query. Instead, we write a small
(simple, brute force) optimizer in Haskell that splits the budget uniformly
among the queries, i.e., e; = 1, e5 = 1, and e3 = 1, and tries to find the
minimum epsilon that meets the accuracy demands per histogram. In
other words, we are interested in minimizing the privacy loss at each
level bounding the maximum accepted error. The optimizer essentially

43

4. Case studies

Histogram a tolerance Status € o

byGen 100 v 0.06 61.48
byGenAge 100 v 0.0696.13
byGenAgeNat 100 v 0.11 85.74
byGen 10 v 0.41 8.99
byGenAge 50 v 0.16 36.05
byGenAgeNat 5 X MaxBud 1 9.43
byGen 5 v 0.76 4.85
byGenAge 5 x MaxBud 1 5.76
byGenAgeNat 10 v 0.96 9.82

Table 2: Budgeting with « tolerances, § = 0.05, & total € = 3

adjusts the different epsilons and calls accuracy during the minimiza-
tion process. To ensure termination, the optimizer aborts after a fixed
number of calls to accuracy, or when the local budget e; is exhausted.

Table [2| shows some of our findings. The first row shows what hap-
pens when we impose an error of 100 at every level of detail, i.e., each bar
in all the histograms could be at most 4/ — 100 off. Then, we only need
to spend a little part of our budget—the optimizer finds the minimum ep-
silons that adheres to the accuracy constrains. Instead, the second row
shows that if we ask to be gradually more accurate on more detailed
histograms, then the optimizer could fulfill the first two demands and
aborted on the most detailed histogram (byGenAgeNat) since it could
not find an epsilon that fulfills that requirement—the best we can do is
spending all the budget and obtain and error bound of 9.43. Finally, the
last row shows what happens if we want gradually tighter error bounds
on the less detailed histograms. In this case, the middle layer can be “al-
most” fulfilled by expending all the budget and obtaining an error bound
of 5.76 instead of 5. While the results from Table [2| could be acceptable
for some data analysts, they might not be for others.

We propose an alternative manner to implement the same query
which consists on spending privacy budget only for the most detailed
histogram. As shown in Figure[16b] this new approach spends all the bud-
get e on calling h; <— byGenAgeNat e dat. Subsequently, the algorithm
builds the other histograms based on the information extracted from the
most detailed one. For that, we add the noisy values of hs (using helper
functions levels and level;) creating the rest of the histograms repre-
senting the Cartesian products of gender and age, and gender, respec-
tively. These methodology will use add and norm,, to compute the de-

44

4.3. K-way marginal queries on synthetic data

105

100

o hierarchical;
o hierarchicals

50

hi-e1 h2-€1 h3-€1 hi1-€3 h2-€3 h3-€3
h; = byGen, hy = byGenAge,h; = byGenAgeNat

Figure 17: hierarchical; vs. hierarchicaly

rived histograms, and therefore will not consume more privacy budget.
Observe that the query proceeds in a bottom-up fashion, i.e., it starts with
the most detailed histogram and finishes with the less detailed one. Now
that we have two implementations, which one is better? Which one yields
the better trade-offs between privacy and accuracy? Figure[17|shows the
accuracy of the different level of histograms, i.e., hy, hy, and h3, when
fixing 8 = 0.05 and a global budget of € = 1 (h1-€1, h2-€2, and h3-€3)
and € = 3 (h1-€3, h2-€3, and h3-¢3)—we obtained all this information by
running repetitively the function accuracy. Form the graphics, we can
infer that the splitting of the privacy budget per level often gives rise to
more accurate histograms. However, observe the exception when € = 3
for hierarchicals: in this case, hierarchical; willuseane = 1 in
that histogram so it will receive a more noisy count than using € = 3.

4.3 K-way marginal queries on synthetic data

When compared with (non-compositional) approaches for estimating ac-
curacy based on synthetic or public data, such as [29], the static analysis
of DPella can be used in a complimentary manner to quickly (and pre-
cisely) estimate privacy and accuracy for a wide range of simple queries.
There are certain kind of queries where it is more convenient to use our
static analysis than synthetic data for high-dimensional datasets.

As an example, we focus on the problem of releasing, in a differ-
entially private manner, the k-way marginals of a binary dataset D €
(0, 1%)™. This is a classical learning problem that has been extensively
studied in the DP literature, see [56| 22} [13] among others. A k-marginal
query, also called a k-conjunction, returns the count of how many in-

45

4. Case studies

1 -- Perform all 3-way combinations up to attribute dim

2 allChecks :: € — Int — Data s BinR — [Query (Value Double)]
3 allChecks localEps dim db = do

4 (i,j,k) < combinatory (dim-1) 3

5 letallOner=(r!li)=(r!"j)=("k) =1
6 return (do tab < dpWhere allOne db

7 dpCount localEps tab

8)

9 -- Compute k-way marginals

10 threeMarginal :: ¢ — Int — Data s BinR — Query (Value [Double])
11 threeMarginal localEps dim db = do

12 checks sequence (allChecks localEps dim db)

13 return (norm. checks)

Figure 18: K-way marginal implementation

dividual records in D have k < d attributes set to certain values. For
simplicity, we will work with 3-way marginal queries to compare perfor-
mance between DPella and using synthetic data. The goal of our analy-
sis is to release all the 3-way marginals of a dataset. This is implemented
through the functions depicted in Figure

Function allChecks counts how many records have 3-attributes
set to 1. Auxiliary function combinatory d k generates k-tuples aris-
ing from the combination of indexes 0,1, ..., d taken k at the time. In
our example, the number of generated tuples is (dém). For each tuple,
allChecks filters the rows which have attributes i, j, and k set to 1
(implemented as dpWhere allOne db) for then making a noisy count
(dpCount localEps tab). Lastly, function threeMarginal collects the
counts for the different considered attributes and places them into a vec-
tor (norm., checks).

We run threeMarginal considering a synthetic dataset (db) which
has only 1 row with all the attributes set to zeros. Setting all the attributes
to zero produces that all the counts are 0, thus we are able to measure the
noisy on each run and accuracy accordingly. We run threeMarginal
approx. 1000 times for each dimension to measure the noisy magnitude,
where we took the 1-0 percentile with § = 0.05 (as we did in many
of our case studies). Observe that we have (dém) queries and so (dém)
independent sources of noise, which need an high number of runs to

46

4.3. K-way marginal queries on synthetic data

Time(seconds)

10% |- /////

1072 |
//accu;cy
— synthetic
1076 - | | | | | | | T T

2 4 6 8 10 12 14 16 18 20

Dimension (dim)

Figure 19: Performance comparison between accuracy (DPella) and
estimating errors using synthetic analysis

be well-represented. In general, for this kind of task one is interested
in bounding the max error that can occur in one of the queries (the /
norm over the output). For this task, the empirical error is well aligned
with the theoretical one provided by DPella by calling the function
accuracy. The latter is computed by taking a union bound over the
error of each individual query. For each query we have a tight bound
and the union bound gives us a tight bound over the max. However, we
observe a significant different in performance.

Figure [19|shows (in log scale) the time difference when calculating
accuracy by DPella and on synthetic data when the dimension of the
dataset increases. Already in low dimension, the difference in perfor-
mance is many orders of magnitude in favor of DPella—a tendency that
does not change when the dimension goes above 20. The main reason
for that comes down to that DPella, as an static analysis, do not execute
the filtering dpWhere allOne db (as well as any other transformation,
recall Section [3.2) which an approach based on synthetic data should do
many times—in our case 1000 iterations for each dimension. We expect
that for more complex tasks this difference is even more evident.

47

Testing accuracy

In previous sections we have seen the usefulness of accuracy func-
tion to inspect queries’ error, reason about the trade-offs of privacy and
accuracy, among other perks. It is clear then that providing theoretical
bounds over the errors of the implemented queries becomes handy to
ease and assist data analysts’ tasks. However, one might argue that hav-
ing a theoretical bound is as important as producing a measurement of
the tightness of such calculations. In this section, we focus on the verifi-
cation of how close DPella’s accuracy calculations are to the real error
bounds.

Thanks to DPella’s data independence, we have been able to create
the primitive empiric that allows analysts to compare the theoretical
bound (provided by accuracy) against an empirical one. It offers a
quantification of how tight are DPella’s estimations for a query while
still preserving the privacy of the data subjects. The primitive empiric
is a follows:

empiric :: (¢ — Data 1 r — Query (Value a)) — Iter
—e—>pf—10p0

Given a query plan (of type ¢ — Data 1 r — Query (Value a)),
a number of iterations (where Iter is isomorphic to the type Int), a
fixed privacy loss € and confidence [y,; primitive empiric will return
the empirical confidence femp of the given query using the theoretical
error provided by accuracy with By,.

Ideally, Bemp should be significantly close to 3y,. In particular, since
accuracy yields an upper bound of the error, when empiric is run
multiple times we expect Bemp to be less or equal than 3y, most of the
time. The unsatisfiability of this condition indicates that the probability
of being above the theoretic error is higher than anticipated, from which
we can deduce that DPella’s error estimation is unsound and it does not

48

0.07

— B
0.06 | |— ﬂemp 1K iter
— Bemp 10K iter
0.05 |- /
0.04 |~
0.03 = \ I | I | I | \ I

2 4 6 8 10 12 14 16 18 20
Dimension (dim)

Figure 20: Results of empiric over 3-way marginals

actually yield an upper bound of the query’s accuracy. On the other hand,
if for most of the runs we observe that Semp < S, we can infer that
DPella’s estimations are loose, indicating that we could either increase
the confidence or decrease the error.

The procedure followed by empiric is fairly simple. Firstly, it exe-
cutes the given query as many times as indicated over an empty dataset,
this process clearly does not involve any sensitive information. However,
the attentive reader might have noticed that these executions will allow
us to inspect query’s noise since they will only return the perturbation
to be added, this is, we are sampling as many times as iterations from the
Laplace distribution (or Gauss, depending on the mechanism) scaled by
the sensitivity of the query under consideration. From the samples we
obtain the empirical errors. Secondly, it computes the theoretical error
oy, using primitive accuracy with confidence fSy,. Lastly, it computes
Bemp as the percentage of empirical errors that are above the theoreti-
cal one. Formally, let aimp be the i-th empirical error and z; be a binary
variable describing if azmp > oup, then we can calculate e as follow.

ﬁemp = Zi%tirl o
iter

In other words, femp describes the likelihood that the empirical error

Qcemp 18 grater than the theoretical one ay,, provided by DPella.

To illustrate how empiric could be used by an analyst, recall the
example of the 3-way marginal discussed in the previous section (see
Section [4.3). Previously, we claimed that the empirical error of func-
tion threeMarginal from Figure [18is well aligned with the theoreti-

cal one provided by DPella. This statement can be now verified using

49

5. Testing accuracy

empiric primitive. For localEps = 0.1 and dim ranging from 3 to 20,
Figure 20| shows the results of calculating the empirical confidence of
threeMarginal with Sy, set to 0.05 and iterating 1000 and 10000 times.
From these results we can conclude that increasing the number of it-
erations will stabilize the results, making the anlayses easier, and that,
the empirical error provided for DPella for function threeMarginal is
indeed very close tho the empirical error bound. Moreover, it depicts
DPella’s soundness, since in both cases (for 1K and 10K iterations), most
of the femp Where below (y,’s line.

50

Limitations & Extensions

We have discussed so far the use of DPella as an API allowing a
programmer to implement her own data analyses. However, we foreseen
DPella to also serve as a "glue" which enables a programmer to integrate
arbitrary DP-algorithms, as (black-box) building blocks while reasoning
about accuracy. In this light, our design supports the introduction of
new primitives when some analyses cannot be directly implemented
because either (i) the static analysis for accuracy provided by DPella is
too conservative, or (ii) DPella’s API building blocks are not enough to
express the desired analysis. Below, we describe several possible such
extensions.

The matrix mechanism (MM)

As we discussed in the previous section, in some situations DPella allows
to answer in an accurate way multiple counting queries in a way that is
similar to the MM. As an example, DPella estimates accuracy better then
MM for the strategy I—recall Section[4 However, for other workloads
and other strategies the accuracy provided by DPella is too conservative.
To consider other workloads and strategies, the MM can be incorporated
into DPella as a primitive for answering counting queries. The require-
ments for this are that the return values are tainted, and that we have
an iCDFs for it—this can be calculated as in [24]]. In general, it is sound
to add new primitives which permit a more precise accuracy analysis
as long as the return values are tainted, and an accuracy information
is provided—thus effectively allowing to further compose the primitive
with other analyses by means of the union bound.

51

6. Limitations & Extensions

Primitives with non-compositional privacy anal-
yses

Several DP-algorithms have a privacy analysis which does not follow
directly by composition. Some well-known examples are report-noisy-
max, the exponential mechanism, and the sparse-vector technique—see
[15]] and [[7] for more details. In their natural implementations, these
algorithms branch on the result of some noised query’s result, and the
privacy analyses use some properties of the noise distributions that are
not directly expressible in terms of composition of differentially private
components. Because DPella’s API does not allow to branch on the
results of noised queries, and because the privacy analyses that DPella
support are based on composition, we cannot implement these analyses
directly using the DPella API. However, we can provide them as (black-
box) primitives. We already discussed how to integrate report-noisy-max
through a primitive dpMax (Figure[4). The exponential mechanism (EM)
can be incorporated into DPella in a similar way. One subtleties that one
has to consider is the fact that the privacy guarantee of EM depends on a
bound of the sensitivity of the score function. We handle this by requiring
the score function’s output to be bound between 0 and 1, bounding the
sensitivity to be at most 1. As with dpMax, the output of EM is tainted. The
EM is an important mechanism which allows to implement many other
techniques. In particular, we can use EM to implement the offline version
of the sparse vector technique, as discussed in [15]. These components
allow DPella to support automated reasoning about accuracy for complex
algorithms such as the offline version of the MWEM algorithm [27]]
following an analysis similar to the one discussed in [8].

Online adaptive algorithms

Several DP-algorithms have different implementations depending if they
work offline—where all the decision are taken upfront before running
the program—or online—where some of the decision are taken while
running the program. Online algorithms usually have a more involved
control flow which depend on information that are available at runtime.
As an example, the online version of the sparse vector technique uses the
result of a DP query to decide whether to stop or not the computation
(or whether to stop or not giving meaningful answers). These kind of
algorithms usually are based on some re-use of a noised result which

52

correspond to a taint value in DPella. So, the current design of DPella
cannot support them. We plan to explore as future how to integrate
these algorithms in DPella.

Improving accuracy through post-processing

Several works have explored the use of post-processing techniques to
improve on accuracy, e.g. [28] 26| [45]]. Most of these works use accuracy
measure that differ from the one we consider here, and use some specific
properties of the particular problem at hand. As an example, the work
by Hay et al. [28] describes how to boost accuracy in terms of Mean
Squared Error (MSE) for DP hierarchical queries by post-processing
the DP results by means of some relatively simple optimization. This
improvement in accuracy relies among other things on the impact that
the optimization has on the MSE, which does not directly apply to the
a-f3 notion of accuracy we use here. We expect that, also for the notion
of a-f3 accuracy we use, it is possible to use post-processing for improve
accuracy. However, we leave this for future works. Moreover, the reason
for us to chose a-8 accuracy as the principal notion of accuracy in
DPella is because of its compositional nature expressible through the
use of probability bounds. It is an interesting future direction to design
a similar compositional theory also for other accuracy notions such as
MSE. We expect DPella to be extensible to incorporate such a theory,
once it is available.

53

Related work

Programming frameworks for DP

PINQ [38] uses dynamic tracking and sensitivity information to guaran-
tee privacy of computations. Among the frameworks and tools sharing
features with PINQ we highlight: Airavat [49] ; wPINQ [47]]; DJoin [43]};
Ektelo [60]; Flex [30]; and PrivateSQL [32]. In contrast to DPella, none of
these works keeps track of accuracy, nor static analysis for privacy or ac-
curacy. As discussed in Section[2] DPella supports a limited form of joins,
and it is still able to provide accuracy estimates. We leave as future work
to support more general join operations through techniques similar to the
ones proposed in Flex and PrivateSQL. While several of the components
from the frameworks discussed above are not supported in the current
implementation of DPella, these can be added as black-box primitives, as
we discussed in Section [6} All the programming frameworks discussed
above support reasoning about privacy for complex data analyses while
neglecting accuracy, whereas DPella supports accuracy, but restricts the
programming framework to rule out certain analysis (e.g., adaptive ones)
for which we do not have a general compositional theory, yet.

Tools for DP

In a way similar to DPella, there exist tools which support reasoning
about accuracy and restrict the kind of data analyses they support.
GUPT [42] is a tool based on the sample-and-aggregate framework for
differential privacy [46]]. GUPT allows analysts to specify the target accu-
racy of the output, and compute privacy from it—or vice versa. This ap-
proach has inspired several of the subsequent works and also our design.
The limitations of GUPT are that it supports only analyses that fit in the

54

sample-and-aggregate framework, and it supports only confidence inter-
vals estimates expressed at the level of individual queries. In contrast,
DPella supports analyses of a more general class, such as the ones we dis-
cussed in Section[1]and Section [4] and it also allows to reason about the
accuracy of combined queries, rather that just about the individual ones.
PSI [23] offers to the data analyst an interface for selecting either the level
of accuracy that she wants to reach, or the level of privacy she wants to
impose. The error estimates that PSI provides are similar to the ones that
are supported in DPella. However, similarly to GUPT, PSI supports only
a limited set of transformations and primitives, it supports only confi-
dence intervals at the level of individual queries, and in its current form
it does not allow analysts to submit their own (programmed) queries.
APEx [24]] has similar goals as DPella and it allows data analysts to
write queries as SQL-like statements. However, the model that APEx uses
is different from DPella’s. It supports three kind of queries: WCQ (count-
ing queries), ICQ (iceberg counting queries), and TCQ (top-k counting
queries). To answer WCQ queries, APEx uses the matrix mechanism (re-
call Section[d) and applies a Monte Carlo simulations to achieve accuracy
bounds in terms of a and 3, and to determine the least privacy parame-
ter () that fits those bounds. We have shown how DPella can be used to
answer queries based on the identity strategies using partition and con-
centration bounds. To answer effectively different workloads and strate-
gies as well as ICQ and TCQ queries, we would need to extend DPella
with the matrix mechanism as a black-box (recall Section|[6). While APEx
supports advanced query strategies, it does not provide means to rea-
son about combinations of analyses, e.g., it does not support reasoning
about the accuracy of a query using results from WCQs queries to per-
form TCQs ones. DPella instead has been designed specifically to sup-
port the combination of different queries. As we discussed in Section [6]
DPella can be seen as a programming environment that could be com-
bined with some of the analyses supported by tools similar to PSI, GUPT
or APEx in order to reason about the accuracy of the combined queries.

Formal Calculi for DP

There are several works on enforcing differential privacy relying on
different models and techniques. Within this group are Fuzz [48]—a
programming language which enforces (pure) differential privacy of
computations using a linear type system which keeps track of program

55

7. Related work

sensitivity—and its derivatives DFuzz [21]], Adaptive Fuzz [58]], Fuzzi [62]],
and Duet [44]). Hoare2 [4], a programming language which enforces (pure
or approximate) differential privacy using program verification, together
with its extension PrivInfer [5] supporting differentially private Bayesian
programming; and other systems using similar ideas [[7 [1} 61} 57].

Barthe et al. [3] devise a method for proving differential privacy using
Hoare logic. Their method uses accuracy bounds for the Laplace Mecha-
nism for proving privacy bounds of the Propose-Test-Release Mechanism,
but cannot be used to prove accuracy bounds of arbitrary computations.
Later, Barthe et al. [[8] develop a Hoare-style logic, named aHL, internal-
izing the use of the union bound for reasoning about probabilistic im-
perative programs. The authors show how to use aHL for reasoning in a
mechanized way about accuracy bounds of several basic techniques such
as report-noisy-max, sparse vector and MWEM. This work has largely in-
spired our design of DPella but with several differences. First, aHL mixes
the reasoning about accuracy with the more classical Hoare-style rea-
soning. This choice makes aHL very expressive but difficult to automate.
DPella instead favors automation over expressivity. As discussed before,
the use of DPella to derive accuracy bound is transparent to a program-
mer thanks to its automation. On the other hand, there are mechanisms
that can be analyzed using aHL and cannot be analyzed using DPella, e.g.
adaptive online algorithms. Second, aHL supports only reasoning about
accuracy but it does not support reasoning about privacy. This makes
it difficult to use aHL for reasoning about the privacy-accuracy trade-
offs. Finally, aHL supports only reasoning using the union bound and it
does not support reasoning based on the Chernoff bound. This makes
DPella more precise on the algorithms that can be analyzed using the
Chernoff Bound. Barthe et al [6]] use aHL, in combination with a logic
supporting reasoning by coupling, to verify differentially private algo-
rithms whose privacy guarantee depends on the accuracy guarantee of
some sub-component. We leave exploring this direction for future works.
More recently, Smith et al. [54]] propose an automated approach for com-
puting accuracy bounds of probabilistic imperative programs. This work
shares some similarities with our. However, it does not support reason-
ing about privacy, and it only uses the Union Bound and do not attempt
to reason about probabilistic independence to obtain tighter bounds.

56

Other works

In a recent work, Ligett et al. [35] propose a framework for developing
differentially private algorithms under accuracy constraints. This allows
one to chose a given level of accuracy first, and then finding the private
algorithm meeting this accuracy. This framework is so far limited to
empirical risk minimization problems and it is not supported by a system,

yet.

57

Conclusions

DPella is a programming framework for reasoning about privacy,
accuracy, and their trade-offs. DPella uses taint analysis to detect proba-
bilistic independence and derive tighter accuracy bounds using Cher-
noff bounds. We believe the principles behind DPella, i.e., the use of con-
centration bounds guided by taint analysis, could generalize for more
notions of privacy such as Renyi-DP [40], concentrated differential pri-
vacy [16]], zero concentrated differential privacy [[10], or truncated con-
centrated differential privacy [11] (as done with (e, d)-DP). As future
work, we envision lifting the restriction that programs should not branch
on query outputs.

58

[1]
[2]

[3]

[9]

Bibliography

Aws Albarghouthi and Justin Hsu. Synthesizing coupling proofs of
differential privacy. PACMPL, 2(POPL), 2018.

Borja Balle and Yu-Xiang Wang. Improving the gaussian mech-
anism for differential privacy: Analytical calibration and optimal
denoising. arXiv preprint arXiv:1805.06530, 2018.

Gilles Barthe, Marco Gaboardi, Emilio Jesus Gallego Arias, Justin
Hsu, César Kunz, and Pierre-Yves Strub. Proving differential pri-
vacy in Hoare logic. In Proc. IEEE Computer Security Foundations
Symposium, 2014.

Gilles Barthe, Marco Gaboardi, Emilio Jesus Gallego Arias, Justin
Hsu, Aaron Roth, and Pierre-Yves Strub. Higher-order approximate
relational refinement types for mechanism design and differential
privacy. In POPL’15. ACM, 2015.

Gilles Barthe, Gian Pietro Farina, Marco Gaboardi, Emilio Jesus Gal-
lego Arias, Andy Gordon, Justin Hsu, and Pierre-Yves Strub. Dif-
ferentially private bayesian programming. In Proc. ACM SIGSAC
Conference on Computer and Communications Security, 2016.
Gilles Barthe, Noémie Fong, Marco Gaboardi, Benjamin Grégoire,
Justin Hsu, and Pierre-Yves Strub. Advanced probabilistic cou-
plings for differential privacy. In Proc. ACM SIGSAC Conference on
Computer and Communications Security, 2016.

Gilles Barthe, Marco Gaboardi, Benjamin Grégoire, Justin Hsu, and
Pierre-Yves Strub. Proving differential privacy via probabilistic
couplings. In Proc. ACM/IEEE Symposium on Logic in Computer
Science, 2016.

Gilles Barthe, Marco Gaboardi, Benjamin Grégoire, Justin Hsu, and
Pierre-Yves Strub. A program logic for union bounds. In Inter-
national Colloquium on Automata, Languages, and Programming,
ICALP, volume 55 of LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum
fuer Informatik, 2016.

Jeremiah Blocki, Avrim Blum, Anupam Datta, and Or Sheffet. Differ-
entially private data analysis of social networks via restricted sen-
sitivity. In Innovations in Theoretical Computer Science, ITCS, 2013.

59

Bibliography

[10]

[11]

(12]

[13]

[19]

[20]

[21]

Mark Bun and Thomas Steinke. Concentrated differential privacy:
Simplifications, extensions, and lower bounds. In Theory of Cryp-
tography Conference. Springer, 2016.

Mark Bun, Cynthia Dwork, Guy N Rothblum, and Thomas Steinke.
Composable and versatile privacy via truncated cdp. In Proceedings
of the 50th Annual ACM SIGACT Symposium on Theory of Comput-
ing, pages 74-86. ACM, 2018.

T-H Hubert Chan, Elaine Shi, and Dawn Song. Private and continual
release of statistics. ACM Transactions on Information and System
Security (TISSEC), 14(3):26, 2011.

Graham Cormode, Tejas Kulkarni, and Divesh Srivastava. Marginal
release under local differential privacy. In Proc. of International
Conference on Management of Data, SIGMOD, pages 131-146, 2018.
Devdatt P Dubhashi and Alessandro Panconesi. Concentration
of measure for the analysis of randomized algorithms. Cambridge
University Press, 2009.

Cynthia Dwork and Aaron Roth. The algorithmic foundations of
differential privacy. Foundations and Trends in Theoretical Computer
Science, 9(3-4):211-407, 2014.

Cynthia Dwork and Guy N Rothblum. Concentrated differential
privacy. arXiv preprint arXiv:1603.01887, 2016.

Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith.
Calibrating noise to sensitivity in private data analysis. In Proceed-
ings of the Third Conference on Theory of Cryptography, TCC’06,
pages 265-284, 2006. ISBN 3-540-32731-2, 978-3-540-32731-8.
Cynthia Dwork, Guy N. Rothblum, and Salil P. Vadhan. Boosting
and differential privacy. In 51th Annual IEEE Symposium on Foun-
dations of Computer Science, FOCS, pages 51-60, 2010.

Hamid Ebadi and David Sands. Featherweight PINQ. Privacy and
Confidentiality, 7(2), 2017.

Richard A. Eisenberg, Dimitrios Vytiniotis, Simon L. Peyton Jones,
and Stephanie Weirich. Closed type families with overlapping
equations. In The ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, 2014.

Marco Gaboardi, Andreas Haeberlen, Justin Hsu, Arjun Narayan,
and Benjamin C. Pierce. Linear dependent types for differential
privacy. In Proc. ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, 2013.

Marco Gaboardi, Emilio Jesus Gallego Arias, Justin Hsu, Aaron
Roth, and Zhiwei Steven Wu. Dual query: Practical private query

60

Bibliography

[23]

[24]

[25]

[33]

[34]

release for high dimensional data. In Proc. International Conference
on Machine Learning, ICML, 2014.

Marco Gaboardi, James Honaker, Gary King, Kobbi Nissim,
Jonathan Ullman, and Salil P. Vadhan. PSI (¥): a private data shar-
ing interface. CoRR, abs/1609.04340, 2016.

Chang Ge, Xi He, Ihab F. Ilyas, and Ashwin Machanavajjhala. APEx:
Accuracy-aware differentially private data exploration. In Proc.
International Conference on Management of Data, 2019.

Andreas Haeberlen, Benjamin C. Pierce, and Arjun Narayan. Dif-
ferential privacy under fire. In Proc. of USENIX Security Symposium,
2011.

Moritz Hardt and Kunal Talwar. On the geometry of differential
privacy. In Proc. of the 42nd ACM Symposium on Theory of Comput-
ing, STOC, 2010.

Moritz Hardt, Katrina Ligett, and Frank McSherry. A simple and
practical algorithm for differentially private data release. In Ad-
vances in Neural Information Processing Systems 25: 26th Annual
Conference on Neural Information Processing Systems, 2012.
Michael Hay, Vibhor Rastogi, Gerome Miklau, and Dan Suciu. Boost-
ing the accuracy of differentially private histograms through con-
sistency. PVLDB, 3(1), 2010.

Michael Hay, Ashwin Machanavajjhala, Gerome Miklau, Yan Chen,
and Dan Zhang. Principled evaluation of differentially private
algorithms using DPBench. In Proceedings of the 2016 International
Conference on Management of Data, SIGMOD Conference 2016, San
Francisco, CA, USA, June 26 - July 01, 2016, 2016.

Noah M. Johnson, Joseph P. Near, and Dawn Song. Towards practi-
cal differential privacy for SQL queries. PVLDB, 11(5), 2018.

Noah M. Johnson, Joseph P. Near, and Dawn Song. Towards practi-
cal differential privacy for SQL queries. PVLDB, 11(5), 2018.

Ios Kotsogiannis, Yuchao Tao, Xi He, Maryam Fanaeepour, Ashwin
Machanavajjhala, Michael Hay, and Gerome Miklau. PrivateSQL:
A differentially private SQL query engine. Proc. VLDB Endow., 12
(11):1371-1384, July 2019. ISSN 2150-8097.

Chao Li, Gerome Miklau, Michael Hay, Andrew McGregor, and
Vibhor Rastogi. The matrix mechanism: optimizing linear counting
queries under differential privacy. VLDB 7., 24(6), 2015.

P.Li and S. Zdancewic. Arrows for secure information flow. Theo-
retical Computer Science, 411(19):1974-1994, 2010.

61

Bibliography

[35]

[36]

[44]

[45]

[46]

Katrina Ligett, Seth Neel, Aaron Roth, Bo Waggoner, and Zhi-
wei Steven Wu. Accuracy first: Selecting a differential privacy level
for accuracy-constrained ERM. CoRR, abs/1705.10829, 2017.
Ashwin Machanavajjhala, Daniel Kifer, John M. Abowd, Johannes
Gehrke, and Lars Vilhuber. Privacy: Theory meets practice on the
map. In Proc. International Conference on Data Engineering, ICDE,
2008.

Frank McSherry and Ratul Mahajan. Differentially-private network
trace analysis. ACM SIGCOMM Computer Communication Review,
41(4):123-134, 2011.

Frank D. McSherry. Privacy integrated queries: an extensible plat-
form for privacy-preserving data analysis. In SIGMOD. ACM, 2009.
Darakhshan J. Mir, Sibren Isaacman, Ramén Céceres, Margaret
Martonosi, and Rebecca N. Wright. DP-WHERE: differentially
private modeling of human mobility. In Proc. IEEE International
Conference on Big Data, 2013.

Ilya Mironov. Rényi differential privacy. In 2017 IEEE 30th Computer
Security Foundations Symposium (CSF). IEEE, 2017.

Eugenio Moggi. Notions of computation and monads. Inf. Comput.,
93(1):55-92, 1991.

Prashanth Mohan, Abhradeep Thakurta, Elaine Shi, Dawn Song,
and David E. Culler. GUPT: privacy preserving data analysis made
easy. In Proc. ACM SIGMOD International Conference on Manage-
ment of Data, SIGMOD, 2012.

Arjun Narayan and Andreas Haeberlen. DJoin: Differentially pri-
vate join queries over distributed databases. In 10th USENIX Sym-
posium on Operating Systems Design and Implementation, OSDIL
USENIX Association, 2012.

Joseph P. Near, David Darais, Chike Abuah, Tim Stevens, Pranav
Gaddamadugu, Lun Wang, Neel Somani, Mu Zhang, Nikhil Sharma,
Alex Shan, and Dawn Song. Duet: An expressive higher-order
language and linear type system for statically enforcing differential
privacy. Proc. ACM Program. Lang., 3(OOPSLA), October 2019. ISSN
2475-1421.

Aleksandar Nikolov, Kunal Talwar, and Li Zhang. The geometry of
differential privacy: the sparse and approximate cases. In Sympo-
sium on Theory of Computing Conference, STOC’13, 2013.

Kobbi Nissim, Sofya Raskhodnikova, and Adam D. Smith. Smooth
sensitivity and sampling in private data analysis. In Proc. Annual
ACM Symposium on Theory of Computing, 2007.

62

Bibliography

[47]

[48]

[49]

[53]

[54]

[55]

[56]

[58]

Davide Proserpio, Sharon Goldberg, and Frank McSherry. Calibrat-
ing data to sensitivity in private data analysis. PVLDB, 7(8), 2014.

Jason Reed and Benjamin C. Pierce. Distance makes the types grow
stronger: a calculus for differential privacy. In Proc. ACM SIGPLAN
International Conference on Functional Programming, 2010.

Indrajit Roy, Srinath T. V. Setty, Ann Kilzer, Vitaly Shmatikov, and
Emmett Witchel. Airavat: Security and privacy for MapReduce. In
Proc. USENIX Symposium on Networked Systems Design and Imple-
mentation, NSDI, 2010.

A. Russo, K. Claessen, and J. Hughes. A library for light-weight
information-flow security in Haskell. In Proc. ACM SIGPLAN Symp.
on Haskell. ACM Press, 2008.

Alejandro Russo. Functional Pearl: Two Can Keep a Secret, if One
of Them Uses Haskell. In Proc. of the ACM SIGPLAN International
Conference on Functional Programming. ACM, 2015.

A. Sabelfeld and A. C. Myers. Language-Based Information-Flow
Security. IEEE j. Selected Areas in Communications, 21(1):5-19,
January 2003.

Daniel Schoepe, Musard Balliu, Benjamin C. Pierce, and Andrei
Sabelfeld. Explicit secrecy: A policy for taint tracking. In IEEE
European Symposium on Security and Privacy, pages 15-30, 2016.
Calvin Smith, Justin Hsu, and Aws Albarghouthi. Trace abstraction
modulo probability. PACMPL, 3(POPL), 2019.

David Terei, Simon Marlow, Simon L. Peyton Jones, and David Maz-
iéres. Safe Haskell. In Proceedings of the 5th ACM SIGPLAN Sympo-
sium on Haskell, Haskell 2012, Copenhagen, Denmark, 13 September
2012, pages 137-148, 2012.

Justin Thaler, Jonathan Ullman, and Salil P. Vadhan. Faster algo-
rithms for privately releasing marginals. In Automata, Languages,
and Programming - 39th International Colloquium, ICALP, pages
810-821, 2012.

Yuxin Wang, Zeyu Ding, Guanhong Wang, Daniel Kifer, and Dan-
feng Zhang. Proving differential privacy with shadow execution.
In Proc. ACM SIGPLAN Conference on Programming Language De-
sign and Implementation, 2019.

Daniel Winograd-Cort, Andreas Haeberlen, Aaron Roth, and Ben-
jamin C. Pierce. A framework for adaptive differential privacy.
PACMPL, 1(ICFP), 2017.

63

Bibliography

[59]

[60]

Xiaokui Xiao, Guozhang Wang, and Johannes Gehrke. Differential
privacy via wavelet transforms. IEEE Trans. Knowl. Data Eng., 23
(8), 2011.

Dan Zhang, Ryan McKenna, los Kotsogiannis, Michael Hay, Ashwin
Machanavajjhala, and Gerome Miklau. EKTELO: A framework for
defining differentially-private computations. In Proc. International
Conference on Management of Data, 2018.

Danfeng Zhang and Daniel Kifer. LightDP: towards automating
differential privacy proofs. In Proc. ACM SIGPLAN Symp. on Princi-
ples of Programming Languages, 2017.

Hengchu Zhang, Edo Roth, Andreas Haeberlen, Benjamin C. Pierce,
and Aaron Roth. Fuzzi: A three-level logic for differential privacy.
In Proc. ACM SIGPLAN International Conference on Functional Pro-
gramming (ICFP’19), 2019.

64

	Introduction
	DPella by example
	Basic aggregations
	Counting
	Sums

	Cumulative Distribution Function
	Sequential CDF
	Parallel CDF
	Exploring the privacy-accuracy trade-off

	Privacy
	Components of the API
	Transformations
	Partition
	Aggregations
	Privacy budget and execution of queries
	Implementation

	Accuracy
	Accuracy calculations
	Norms
	Adding values
	Detecting statistical independence

	Implementation
	Concentration Bounds
	Norms calculation

	Accuracy of Gaussian mechanism

	Case studies
	DPella expressiveness
	Privacy and accuracy trade-off analysis
	K-way marginal queries on synthetic data

	Testing accuracy
	Limitations & Extensions
	Related work
	Conclusions

