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Abstract
Developing programs for embedded systems presents quite a challenge; not only
should programs be resource efficient, as they operate under memory and timing
constraints, but they should also take full advantage of the hardware to achieve
maximum performance. Since performance is such a significant factor in the design
of embedded systems, modern systems typically incorporate more than one kind
of processing element to benefit from specialized processing capabilities. For such
heterogeneous systems the challenge in developing programs is even greater.

In this thesis we explore a functional approach to heterogeneous system devel-
opment as a means to address many of the modularity problems that are typically
found in the application of low-level imperative programming for embedded systems.
In particular, we explore a staged hardware software co-design language which we
name Co-Feldspar and embed in Haskell. The staged approach enables designers
to build their applications from reusable components and skeletons while retaining
control over much of the generated source code. Furthermore, by embedding the
language in Haskell we can exploit its type classes to write not only hardware and
software programs, but also generic programs with overloaded instructions and ex-
pressions. We demonstrate the usefulness of the functional approach for co-design
on a cryptographic example and signal processing filters, and benchmark software
and mixed hardware-software implementations.

Co-Feldspar currently adopts a monadic interface, which provides an imperative
functional programming style that is suitable for explicit memory management and
algorithms that rely on a certain evaluation order. For algorithms that are better
defined as pure functions operating on immutable values, we provide a signal and
array language which extends a monadic language, like Co-Feldspar. These extensions
permit a functional style of programming by composing high-level combinators. Our
compiler transforms such high-level code into efficient programs with mutating code.
In particular, we show how to execute an FFT safely in-place, and how to describe a
FIR and IIR filter efficiently as streams.

Co-Feldspar’s monadic interface is however quite invasive; not only is the burden
of explicit memory management quite heavy on the user, it is also quite easy to shoot
oneself in the foot. It is for these reasons that we also explore a dynamic memory
management discipline that is based on regions but predictable enough to be of use
for embedded systems. Specifically, this thesis introduces a program analysis which
annotates values with dynamically allocated memory regions. By limiting our efforts
to functional languages that target embedded software, we manage to define a region
inference algorithm that is considerably simpler than traditional approaches.

Keywords: Functional programming, signal processing, region inference, hard-
ware software co-design.
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Chapter 1

Introduction

An embedded system is any computer system that is part of a larger system but
relies on its own microprocessor. It is embedded to solve a particular task, and
often does so under memory and timing constraints with the cheapest hardware
that meets its performance requirements. Because performance is such a significant
factor in the design of embedded systems, certain systems incorporate more than
one kind of processor to benefit from various specialized processing capabilities.
Such dedicated processors are often referred to as accelerators, and systems that use
various accelerators are in turn referred to as heterogeneous systems.

Developing programs for embedded systems requires good knowledge about the
architecture that they are supposed to run on; not only should programs be resource
efficient, but they should also take full advantage of the hardware to achieve maximum
performance. Embedded systems are therefore predominantly developed using a
mixture of low-level, imperative languages and hardware description languages, which
have an abstraction level that is well suited to extract maximum performance from
the various accelerators and memory subsystems.

However, one of the main disadvantages of using low-level languages is that the
fine level of control they provide must be exercised at each step in the development of
a system; low-level languages force programmers to focus on implementation details
rather than functionality or how to best distribute a program over the available
accelerators. In particular, the problem of implementing an algorithm often becomes
a matter of essentially implementing an algorithm for a specific architecture. Design
exploration and code re-use are therefore quite hard to achieve, as the main processor
has one and accelerators another, usually very different, architecture.

The difficulty in re-using functionality across different architectures in low-level
languages is directly related to a lack of modularity. There are also other issues
where the relation to modularity is less obvious, especially for imperative low-level
languages. For instance, we would ideally like to treat the partitioning of code
over the available processors and accelerators as a modular problem with respect
to functionality. While imperative languages can certainly wrap code in run-time
conditional statements to switch between local and offloaded implementations, doing
so often requires that we first repartition the code into smaller pieces to isolate
functionality. Furthermore, such changes lead to extra control logic and can interfere
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4 1.1. Functional systems development

with optimizations or other design decisions.
I assert that the use of functional programming can address many of the issues

low-level languages face in the development of embedded systems, because it provides
all the necessary tools for abstraction, generalization and modularity that low-level
languages sorely lack. It would, however, be naive to suggest that the adoption
of functional programming can remedy all ills of embedded systems; one of the
fundamental problems with functional programming languages is that it is difficult
to give performance guarantees and resource bounds on their programs, a crucial
feature for embedded systems. Fortunately, there is a way to gain the productivity
and modularity benefits of writing functional programs without incurring the cost of
running them: use functional programming to define domain-specific languages for
embedded systems.

1.1 Functional systems development

Functional programming is a programming paradigm, a style of programming where
the fundamental operation is the application of functions to arguments. A functional
program is in fact written as a function that receives input as its argument and returns
the output as its result, typically through calling other functions, which themselves
are defined by smaller functions still or language primitives. The principal idea
behind a functional paradigm is then to treat such a computation as the evaluation
of ordinary mathematical functions; it is a declarative programming paradigm that
avoids assignment statements, so that variables, once given a value, never change.

One key benefit of functional programming is this focus on describing an al-
gorithm’s behaviour through functions and declarations rather than imperative
statements, which suffer side effects and have a tendency to get bogged down in
implementation details. Functional programs are therefore easier to understand, be-
cause they encapsulate state and provides the modularity that enables a programmer
to build larger applications by assembling smaller components.

While many different flavours of purely functional languages exist, we have
mainly considered Haskell (Peyton Jones et al. 2003). Its most important benefits
for embedded software are:

• Functions are free from side effects: Without observable side effects, a
function’s return value is only determined by its input values. This is similar
to how a mathematical function works and it means that a function call can be
replaced by its final value without changing any other values in the program,
which is great for equational reasoning.

• Functions are higher-order: The capacity of a higher-order function to
take one or more functions as arguments and to return another function as
its result means that a program can abstract over entire algorithms, not just
values; an expression can be written once and then re-used indefinitely.
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• Evaluation is lazy: As expressions are not evaluated when they are bound
to variables, but rather deferred until their results are needed by other compu-
tations, it is possible to avoid needless or intermediate values between most
functions. Laziness thus makes it viable to define potentially infinite recur-
sive patterns, which allow for more a straightforward implementation of some
streaming algorithms.

Despite these benefits, Haskell and other functional languages are rarely considered
in embedded systems development. A major reason for this disregard comes from
how difficult it is to predict the time and space costs of evaluating lazy and functional
programs (predictable performance is a crucial feature for embedded software because
it typically runs under time and memory constraints). Unfortunately, this problem is
fundamental to the declarative paradigm of purely functional programming languages,
because the amount of work a program needs done, and when it is done, depends on
its input values, which are only available at run-time.

As an example, consider the high-level function map in Haskell for mapping
another function across each element in a list:

map _ [] = []
map f (x:xs) = f x : map f xs

This recursion is fine in a mathematical setting because the stack (the memory
that local values are allocated in) is unlimited. Of course, on real hardware the
stack is very much finite and naively traversing a long list of values with recursion
can potentially result in a call stack that exceeds the stack bound. Being able to
express what a program should do, rather than how to do it, means that a functional
program over immutable values cannot match the model of a processor as well as
most imperative languages.

In contrast, if we were to implement an example of mapping a function across a
collection of values in C instead, then we would perhaps end up with the following:

void map(void ** src , void * dest , size_t n, size_t t
,void * (f)(void *, void*), void * args)

{
unsigned int i;
for(i = 0; i < n; i++)
{

void* val = f(src[i], args);
memcpy(dest , val , t);
dest = (char*)dest + t;
free(val);

}
}
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We can see from this example that C gives the programmer control over details
that were hidden in the Haskell function, such as the choice of data structure and
the memory allocation strategy. While the time and space usage is now apparent
from simply inspecting the code (provided that the cost model for memory access
is straightforward), the programmer is unfortunately also responsible for managing
those extra details.

Note that Haskell does include type classes for arbitrary collections, libraries
for mutable arrays and does supports a notation close to that of C’s imperative
programs. But the above example is not meant to compare the potential terseness of
functional programs, but rather to illustrates the usefulness of a declarative paradigm
for heterogeneous systems: by not explicitly telling the compiler how to do a task,
the compiler is free to interpret programs in ways that fit the targeted architecture,
whatever that may end up being. For example, the above C implementation is
simply one possible interpretation of the mapping function, and we could just as well
interpret map as a parallel hardware description for some programmable logic units.

In short, the fine level of control that C provides forces developers to make too
early design decisions that, once they are made, are difficult to change since they
are tightly coupled with each other through code. Functional programming, in
contrast, provides abstraction, generalization, and modularity through its higher-
order functions, rich type systems, and lazy evaluation, and thus does not exhibit
the same issues as low-level imperative languages. The concern with functional
programming is instead how one can benefit from its abstractions in a resource-aware
setting, where predictable performance and resource usage are important properties.

1.2 Resource awareness in functional languages

One of the more popular solutions to the issue of unpredictable costs in functional
programming is to adopt a domain-specific approach, for instance by embedding
a special-purpose language within a functional host that is tailored to a certain
problem domain. While domain specific languages are typically less comprehensive
than general-purpose languages, they are much more expressive in their domain;
well-designed domain-specific languages attempt to find a proper balance between
expressiveness and efficiency.

One example of a domain-specific language is Feldspar (Axelsson, Claessen, Dèvai,
et al. 2010; Axelsson, Claessen, Sheeran, et al. 2011), a functional language that is
embedded in Haskell and designed for embedded software development, specifically
in the domain of baseband signal processing. Feldspar takes full advantage of its
host’s functional features to provide a data-centric and modular style of programming
with vectors, while simultaneously limiting its own syntax and semantics to give the
programmer predictable performance. For example, an idiomatic implementation of
a dot product in Feldspar is written in a compositional style with high-level functions
from its vector library:
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dot :: (Type a, Numeric a)
⇒ Vec (Data a) → Vec (Data a) → Data a

dot xs ys = sum (zipWith (*) xs ys)

In the code above, the type Data represents a program fragment in Feldspar; an
expression with type Data Int32 produces a value of type Int32. Note that dot is
polymorphic in its element type, as it accepts any representable type a that belongs
to its Numeric type class. By providing a concrete type for a, Feldspar’s compiler is
able to translate dot into efficient C code by exploiting lazy evaluation to eagerly
in-line and fuse its vector operations.

The compositional style of a purely functional language like Feldspar not only
gives shorter, more succinct definitions than most imperative implementations, but
also raises the abstraction level at with the programmer works with algorithms.
Indeed, there is no mention of memory allocation or similar low-level details in dot.
Vectors and higher-order functions are instead used to capture generic patterns or
aspects of signal processing algorithms in a manner that is as close as possible to
the abstractions used by domain experts reasoning about a problem or solution.
It is the restrictiveness of the domain that permits the use of a rather specialised
domain specific language and also what makes it possible to achieve the necessary
performance.

We mention in particular the Feldspar language because it provided much of the
original motivation for this thesis. In fact, our efforts started out as an extension to
Feldspar with support for synchronous signal processing (Feldspar previously had a
rather low-level interface for dealing with streams and recurrence relations).

Working with Feldspar, however, we found that its purely functional approach
meant that programmers lost control of memory allocation and evaluation order,
which was left to the Feldspar compiler. For algorithms that relied on a particular
memory scheme, the problem manifested itself in both extra memory for storing
intermediate results and excessive copying. While Feldspar seeks to solve these issues
by embedding controlled side effects in its pure Data type, we instead instead took
part in the development of RAW-Feldspar (Axelsson et al. 2016), a derivative of
Feldspar that complements its data-centric computations with a functional imperative
programming paradigm where memory is managed explicitly.

However, as we noted previously, the domain of signal processing is large and the
data-centric style of vectors cannot comfortably describe every algorithm, nor can
every modern system be implemented wholly in software. For instance, a heteroge-
neous system’s compute elements may have different instruction set architectures
or interpretations of memory, both of which may lead to differences in development
choices like their preferred programming languages. Could a resource aware Feldspar
derivative be of use in such a heterogeneous setting as well? There is certainly
some overlap in the programming practices for embedded software and behavioural
hardware descriptions, but there are also crucial differences in their programming
practices that are necessary to fully exploit a system’s capabilities.
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1.3 Hardware software co-design with Co-Feldspar

In general, building software systems for embedded heterogeneous systems demands
that we generalise functionality and abstract away from particular architectures. For
example, design exploration and code re-use are both heavily reliant on platform-
independent abstractions, because any intrinsic operations of one architecture may
not be available on another. On the other hand, performance relies on the ability to
tailor designs and configurations to a particular environment, specifically to make
use of intrinsic or accelerated operations.

While the desire for performance seems to go against the above desire for modular
and generic programs, we note that such optimisations should primarily be considered
late in development; a strong focus on performance during the initial development of
a system is a kind of premature optimisation (Persson 2014). It is premature partly
because it forces developers to make early decisions that, once they are made, are
tightly coupled through the implementation and therefore difficult to change. After
all, a focus on low-level details throughout the entire development process is one of
the primary reasons for the low re-usability and modularity of algorithms written in
languages like C.

We would therefore argue that a functional domain specific language like Co-
Feldspar gives a compelling approach to developing embedded heterogeneous systems:
start with a modular, generic, functional algorithm; specialise its components as
needed for the targeted architecture. For it is functional features like higher-order
functions, lazy evaluation and a rich type system that enable programmers to build
applications by assembling smaller functions, while the restrictiveness of the domain
gives us hope of achieving the necessary performance. To be more specific, it is
the following features that we consider essential for functional language that target
embedded heterogeneous systems, and aim to explore with Co-Feldspar:

• Flexible interpretation and design: The presence of multiple processing
elements in general means that we cannot make broad assumptions about
the systems our programs will run on; Co-Feldspar must be modular in the
perspective of both its users and implementers.

• Intuitive behaviour: Both the syntax and semantics of Co-Feldspar should
accurately capture signal and vector algorithms in its problem domain and
reflect their performance characteristics; an application programmer should
be able to predict the resource bounds of their designs. We focus on memory
management in particular.

• Efficient and safe abstractions: Because predictable performance is such a
crucial feature for embedded systems, any extension of Co-Feldspar must also
be accompanied by an efficient elaboration into its simpler core language. In
general, it is not acceptable for a compiler to generate, for instance, excessive
copying and memory for intermediate values.
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Paper 2 gives a detailed introduction of the Co-Feldspar1 language, so named
because of its focus on co-design and predecessor Feldspar. Co-Feldspar is a staged
language, it is embedded in Haskell and capable of generating both C and VHDL
code, including code for connections between software and hardware components.
The staged approach makes it possible to postpone many of the implementation
decisions to later stages of the development process, and provides a reasonable degree
of control over the generated code.

Like Feldspar, we make extensive use of functional features in Co-Feldspar to
build combinator libraries, but we also make sure to abstract away software specific
types and operations. For example, the previous dot product can be re-implemented
in Co-Feldspar as:

dot :: (Type exp a, Vector exp , Num (exp a))
⇒ Vec exp a → Vec exp a → exp a

dot xs ys = sum (zipWith (*) xs ys)

Here, the interpretation of dot is constrained to any expression type exp that supports
vectors, rather than a software or hardware specific Data type; dot only contains
generic vector functions and can be compiled to both C and VHDL. In contrast
to Feldspar, however, the input vectors of dot must be explicitly declared by the
programmer through a monadic interface:

prog = do a ← initArr [1..5]
b ← initArr [5..9]
return (dot a b)

The generic dot enjoys the same functional benefits as its implementation in
Feldspar did, but the programmer now has full control over its memory use and
evaluation order. In a sense, the programmer also has control over the possible inter-
pretation of dot because type classes like Vector can be used to guarantee presence,
and absence, of functionality in exp. Software and Hardware specific types and
operations, and interfaces between the two, are available through similar type classes
or once exp has been instantiated. That is, Co-Feldspar enables programmers to
express the entire design process for applications on heterogeneous architectures with
embedded software and hardware components, including the necessary exploration
to decide where the boundary between components should be.

1.3.1 Synchronous data-flow
Signal processing is however more than just sequencing computations, it is also about
how to connect those computations in a network that operates on streaming data.
However, such signal networks are typically expressed as data-flow graphs over pure
stream transformers and where state is introduced explicitly through unit delays. A
question, then, is how one can efficiently express such signals on top of a monadic

1Available as open-source at: github.com/markus-git/co-feldspar.
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language like Co-Feldspar while still permitting a functional style of programming
with pure functions operating on immutable signals.

Paper 1 explores such a signal processing library2, which extends an existing
domain-specific language with support for synchronous data-flow programming.
Practically, the library provides a means to connect expressions in the underlying
language using a model of synchronous data-flow networks. The signal compiler
then reifies such networks into an imperative representation of the classical one for
co-iterative streams (Aronsson 2014; Axelsson, Persson, and Svenningsson 2014),
simplifying the compilation of signals into imperative programs.

From the user’s perspective, the signal library supports definitions in a traditional
functional programming style with high-level combinators, reducing the gap between
the mathematical description of signal processing algorithms and their implemen-
tation. This combinatorial style of programming, combined with support for unit
delays and recursively defined signals, provides a simple but powerful syntax that
allows programmers to express any kind of logic networks with memory and feedback
loops.

1.3.2 Virtual array copies
While monadic languages like Co-Feldspar can express in-place updates through
mutable arrays, Haskell’s type system is not strong enough to guarantee that doing
so is safe; it is easy to mistakenly overwrite some input data too early, especially
when computations are written in an imperative style. Such mutable updates are
not visible at the type level in Haskell, and its type system therefore provides no
help in avoiding such mistakes. Nevertheless, in-place updates are an essential part
of certain algorithms and we would like to provide some safety for the programmer.

Paper 3 explores an array programming library3 with support for virtual array
copies. A virtual copy of an array gives the illusion of being a real copy of the array,
and semantically it behaves as if it really were a copy. No such copy is however
made. Rather, the virtual copy makes an alias of the original array, a second pointer
to the same underlying values. The array library then enlists the help of a theorem
prover to verify that the illusion of any virtual copy is preserved in a whole, closed
program. Because the compiler checks that executing selected computations in-place
does not change their original semantics, users can freely use equational reasoning to
understand or implement their algorithms.

1.4 Automatic but predictable memory inference
Monadic interfaces like that of Co-Feldspar have been successfully applied to model
statefull programming in a number of domain-specific languages. One reason for their
success is perhaps that they offer the only really satisfactory solution to imperative
functional programming in Haskell (Peyton Jones and Wadler 1993). The monadic

2Available as open-source at: github.com/markus-git/signals.
3Implemented as part of Co-Feldspar.
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interface is however quite pervasive, and it can get in the way of implementations
that do not depend on a particular evaluation order or memory use.

As an example, consider the following program stub:

do x ← return (1 + 2)
y ← return (3 + 4)
return (x + y)

Here the ordering of the two statements is not the criterion for their evaluation;
although monads enforce a particular ordering of the two expressions, they could
really be evaluated in any order, even in parallel. Furthermore, a monadic program
is essentially a sequence of statements with pieces of pure expressions scattered
across each statement. These expressions are typically quite small, so high-level
optimizations are only performed for small parts of a program.

There are thus good reasons for programmers to every now and then prefer a
more traditional style of functional programming where memory is automatically
managed. Ideally, only when the compilation results in inefficient memory usage
would there be a need for programmers to step in and address the problem manually.

An alternative approach to monadic encapsulation of memory effects is the use
of a type-and-effect system (Talpin and Jouvelot 1994). These systems infer not only
the type of an expression, but also the computation effects that may happen during
its evaluation. Most interesting is perhaps that, while monads demand that users
manually merge values with computational descriptions, type-and-effect systems
typically require little to no user interaction or modification of their programs; they
automatically infer a safe approximation of the memory use in a program (Talpin
and Jouvelot 1992).

One of the more influential ideas to come out of type-and-effect systems is the
inference of regions (unbounded areas of memory intended to hold heap-allocated
values). Tofte and Talpin (1997; 1994) showed how a type-and-effect system could
be used to automatically assign a stack-like memory discipline to strict functional
programs. The memory store in this discipline is essentially a stack of regions, where
each region grows in size until it is removed in its entirety. A program analysis
then automatically identifies points at which entire regions can be allocated and
de-allocated, and it decides into which region each value should be put. All values,
including function closures, are put into regions.

1.4.1 Region inference based on qualified types

While regions provide a compelling approach to memory management, the type-and-
effect systems behind their inference are unfortunately quite complicated. Much
of this complexity comes from how difficult it is to perform an accurate lifetime
analysis for values in higher-order functions, particularly in those that call themselves
recursively (Tofte, Birkedal, Elsman, and Hallenberg 2004). In fact, most region-based
languages struggle with tail recursion and iteration in general.
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Fortunately, most languages that target embedded systems already refrain from
using unbounded recursion, because it is difficult to predict the time and space costs
of its evaluation. A functional language designed to be suitable for implementation
of embedded software can thus benefit from a simplified type-and-effect system that
avoids the difficulties of recursion while still permitting us to express interesting
programs. We explore such a restricted system for region inference, where the
inference rules are based on a notion of qualified types (Jones 2003) rather than effect
tracking.

The main benefits of the new system for qualified regions are:

• Tailored to embedded systems. By considering functional languages with-
out recursion, the region labelling of expressions can be simplified for an
important subset of languages.

• Functions without thunks. Without general recursion, thunks do not have
to be allocated. This simplification, combined with an approximation for when
a region can be de-referenced by a function, considerably limits the need for
tracking effects in types.

• Syntax-directed inference. We extend the type inference algorithm W (Mil-
ner 1978) such that a typing is an entailment from a term to its region annotated
form, where the context includes a set of allocated regions.

1.5 Research questions
We have argued that low-level imperative languages force implementers to focus on
non-functional details rather than functionality and how to best utilize the available
architecture. Furthermore, any decisions for such details will inevitably end up
tying their implementations to a particular system, leading to low re-use and low
modularity. The heterogeneity of modern embedded systems further aggravates these
issues, as processors and accelerators usually have very different architectures.

We assert that embedded, heterogeneous system development can benefit from
ideas in functional programming, because the functional paradigm provides the
necessary abstractions and modularity to build applications by assembling re-usable
and generic components. To narrow down our exploration, we have focussed our
efforts to a modern FPGA with embedded ARM cores. We consider in particular
the generation of behavioural VHDL descriptions for its programmable logic and C
for one of its embedded cores. However, if given an extensible model of hardware
and software, the step to support other accelerators with similar architectures should
be relatively small. To summarize, we formulate the following research questions:
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1. Can the embedded, heterogeneous system development for modern FPGAs
benefit from a functional hardware software co-design language? In particular:

(a) Can a low-level, core language be embedded within a functional host to
provide a model of the various imperative languages used to describe
heterogeneous systems that is both extensible and has a relatively small
semantic gap to C and VHDL?

(b) Can such an embedded core language exploit the higher-order functions
and rich type systems of its host to separate the syntax of its programs
from their semantics such that a program can be parameterised by the
functionality it requires and, once written, can be interpreted in a variety
of ways?

2. How can imperative functional programming be extended with support for
efficient, synchronous data-flow definitions, reducing the gap between streaming
algorithms and their implementation in an otherwise imperative language?

3. Can a functional array programming language offer safe, in-place array trans-
formations without neither weakening its transparency nor the ability to apply
equational reasoning?

4. Does a functional language without recursion permit the definition of a region-
based memory management scheme that is simpler than standard type-and-
effect systems for region inference?

The exploratory research questions regarding embedded languages, stream pro-
cessing and in-place updates are investigated by building the Co-Feldspar langauge,
a derivative of Feldspar for hardware software co-design with explicit memory man-
agement, and the signal and array programming libraries. More specifically, we will
build upon our core language on a deeply embedded model of imperative programs as
monads (Svenningsson and Svensson 2013; Apfelmus 2016), and employ a technique
similar to data types à la carte (Swierstra 2008; Axelsson 2019) to support extensible
definitions and interpretations. Practically, we aim to expand previous work in
RAW-Feldspar and its deep embedding of software programs (Aronsson, Axelsson,
et al. 2019) with support for hardware software co-design. We will then exploit
Haskell’s higher-order functions and rich type system to build shallowly embedded
combinator libraries on top of the monadic core that permit a more functional
programming style. The signal and array programming libraries will be built in
a similar fashion, but instead explore the use of co-iterative streams and theorem
provers in their respective domains.

Seeing as their definition is primarily a practical result, evaluation is carried out
by a variety of tests and benchmarks of real-world examples. On the other hand,
our work with the simplified system for region inference is mostly theoretical. We
therefore argue for the usefulness of our region system by proving that it is correct
and that its region labelling preserves the source program’s original meaning.
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1.6 Review and organisation of thesis
Chapter 1 and its subsections try to highlight the many interlocking issues in
developing embedded software and hardware code for heterogeneous systems with
low-level languages. In particular, the use of low-level languages makes it next to
impossible to write code that is re-usable, modular and high-performance at the
same time. Section 1.1 argues that functional programming languages provide the
necessary modularity and abstraction build applications by composing small and
re-usable functions, but instead suffer from unpredictable performance.

In response to these challenges, we are developing Co-Feldspar (Section 2.2 and
Paper 2), a functional hardware software co-design language with explicit memory
management. To complement the imperative functional programming paradigm
that Co-Feldspar is built on, we have developed libraries of high-level combinators
for signal processing (Section 2.4 and Paper 1) and safe, in-place array updates
(Section 2.5 and Paper 3). Finally, we have explored a memory management scheme
that is based on regions and specialised for embedded software (Section 2.6 and
Paper 4) as an alternative to the explicit memory management in Co-Feldspar.

Chapter 2 and its subsections introduce the design decisions behind Co-Feldspar,
the signal and array programming libraries, and the region inference system in
more detail and showcases some use cases through signal processing examples. In
particular, Section 2.2 introduces the core of Co-Feldspar, and Section 3 its design
decisions. Section 2.4 and 2.5 introduces the design decisions behind the signal and
array programming libraries together with various use cases. Section 2.6 gives the
intuition behind our region inference system.



Chapter 2

The Co-Feldspar language

Chapter 1 introduced heterogeneous computing as an interesting development in
the domain of embedded systems, but noted that its development is not without its
own challenges. As a more concrete example of these challenges, consider a modern
FPGA (Chung et al. 2010), a system that shows great promise as a prototypical
heterogeneous system with configurable computing capabilities. Despite their many
benefits, however, the adoption of FPGAs has been slowed by the fact that they are
difficult to program efficiently (Teich 2012).

The logic blocks of an FPGA are usually programmed in a hardware description
language like VHDL or Verilog, while its embedded processors and co-processors are
typically programmed in some low-level dialect of C or even assembler. This choice
of languages is motivated by a desire to extract maximum performance from the
FPGA’s hardware and software components, and these languages have constructs
that are well suited to fine-grained control over such components.

As mentioned previously, this control come at a cost—a programmer cannot ab-
stract away from the specific system architecture, but must keep the implementation
on a low level during the entire design process. Combined with the fact that programs
are often heavily optimized to fit their constraints, this means programmers inadver-
tently end up tying their code to whatever component it is running on. However,
our modern FPGA gained its performance by not just adding more processors of
the same kind, but by incorporating co-processors with specialized architectures and
exploiting its programmable logic to handle particular tasks. Low-level languages
provide little support for the design exploration necessary to find a good partitioning
of code on such systems.

Many of the aforementioned issues with low-level languages are related to lack of
modularity. Some are directly related, such as the architectural issues, and others are
indirectly related. For example, issues like parallelism would ideally be treated as a
modular and separate concept with respect to functionality. It is of course possible to
code for different architectures into a single function and use conditional statements
to switch between implementations. But it is often necessary to repartition code into
smaller conceptual pieces to exploit accelerators, which then leads to extra control
paths that can get in the way of efficient compilation.

In his seminal paper “Why functional programming matters” (Hughes 1989),

15
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Hughes argues that many of the problems with low-level languages can be addressed
using concepts from functional programming. In particular, the glue code that
functional programming languages offer, through higher-order functions and lazy
evaluation, greatly increases ones ability to modularise a problem conceptually. The
benefits of functional programming are, however, not limited to describing software,
as Sheeran argues in her paper “Hardware Design and Functional Programming: a
Perfect Match” (Sheeran 2005). Sheeran exemplifies how a functional language can
make it easy to explore and analyse hardware designs in a way that would have been
difficult, if not impossible, in traditional hardware description languages.

The question, then, is how to benefit from functional concepts in heterogeneous
systems, where predictable performance is a crucial feature and functional languages
are rarely considered. Indeed, the lack of predictable memory use and performance is
a fundamental problem to the declarative paradigm behind functional programming;
when pure functions are defined by composing high-level combinators, the programmer
loses control over “how” and “when” their code is executed.

Fortunately, there is a way of retaining the productivity benefits of writing
programs in a functional style without incurring the cost of running them: use
functional programming languages to design and embed domain-specific languages.
Such languages can not only enjoy the abstractions and modularity of their functional
host, but can also limit themselves to features that can be represented efficiently
as source code in its targeted domain (Hudak et al. 1996). The restricted domain
permits the use of a rather specialised language, while also giving hope in achieving
the necessary performance.

2.1 Benefits of a domain-specific approach
A domain-specific language is a special-purpose language, tailored to a certain
problem and captures the concepts and operations in its domain (Hudak et al. 1996).
Domain-specific languages represent a popular means to improve productivity for a
certain domain of problems (Fowler 2010). For instance, a hardware designer might
write in VHDL, while a web-designer who wants to create an interactive web-page
would use JavaScript. The general idea is that the constructs of domain-specific
languages should be as close as possible to the concepts used by domain experts
when reasoning about a problem or its solution.

Domain-specific languages come in two fundamentally different forms: external
and internal, where VHDL and JavaScript are both examples of the former. Internal
languages, on the other hand, are embedded in a host language, and are often
referred to as embedded domain-specific languages. The advantage of the embedded
approach is that a domain-specific language inherits the “look and feel” of its host
language, and its generic features such as modules, type classes, abstract data types
and higher-order functions. Haskell, with its static type system, flexible overloading
and lazy semantics, has come to host a range of embedded languages (C. Elliott et al.
2003). For instance, popular libraries for parsing (Leijen and Meijer 2002), pretty
printing (Hughes 1995), and hardware design (Bjesse et al. 1998; Gill et al. 2010;
Bachrach et al. 2012a; Baaij et al. 2010) have all been embedded in Haskell.
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Embedded languages in Haskell are typically further divided into a shallow or
deep style of embedding. Conceptually, a shallow embedding captures the semantics
of the data in a domain, whereas a deep embedding captures the semantics of the
operations in a domain. Both kinds of embeddings have their own benefits and
drawbacks. For example, it is easy to add new functionality to shallowly-embedded
types, whereas a deeply embedded type is static but facilitates interpretation in
different domains. While the implementations of deep and shallow embeddings are
usually at odds, there has been work done to combine their benefits (Svenningsson
and Axelsson 2012). A mixture of shallow and deep embeddings ensures that the
core is easy to interpret while simultaneously allowing user facing libraries to provide
a terse and extensible syntax (Axelsson, Claessen, Sheeran, et al. 2011).

2.2 Embedding Co-Feldspar
Co-Feldspar, our hardware software co-design language, is implemented as an embed-
ded language in Haskell with a mixture of shallow and deep embedding techniques,
which means that primitive language constructs are provided as ordinary Haskell
functions. These functions do not perform any actual computation, but instead build
data structures that represent the corresponding imperative program that makes
out the core of Co-Feldspar. A variety of shallow embeddings then complement this
core with combinator libraries. For example, a hierarchy of type classes for common
and language specific types and operations is used to provide an extensible and
structured way of controlling the overloading in programs.

In general, the main characteristics of Co-Feldspar’s embedding are:

• Imperative functional programming: Imperative programs are shallowly
embedded into Co-Feldspar through its monadic interface; a program inherits
the scope of its monadic generator, and if the generator is well-typed, then so is
the embedded program. Furthermore, the monadic interface makes it possible
to describe algorithms that, for performance, rely on destructive updates, or
on a specific evaluation order or access pattern.

• Overloaded instructions: Programs in Co-Feldspar with purely computa-
tional instructions are distinguished only by types. The boundary between
software and hardware for generic programs can be moved simply by instantia-
tion; no additional syntactic annotations are required.

• Extensible interpretation and data-types: Co-Feldspar’s model of im-
perative programs is parameterised by its instructions, expressions and type
predicates, which means that hardware and software programs share a com-
mon core. This polymorphism, combined with an extensible core, means that
different interpretations and extensions can be introduced separately.

A user interface structured with the help of Haskell’s type classes has two
big advantages: it is a powerful modelling tool, because it gives a concise and
precise description of languages, and it helps in factoring out shared operations and
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abstractions between languages. For instance, Co-Feldspar defines a type class that
captures the fact that both C and VHDL support a similar notion of variables:

class Monad m ⇒ References m where
type Ref m :: * → *
newRef :: SyntaxM m a ⇒ m (Ref m a)
getRef :: SyntaxM m a ⇒ Ref m a → m a
setRef :: SyntaxM m a ⇒ Ref m a → a → m ()

This class, which we named References, introduces shared instructions and an
abstraction Ref for variables in the monadic program type m. Further, note that
each instruction constrains its element type a by SyntaxM m, as it ensures that a is
representable in m.

Practically, a type class like References provides a means to reason about the
presence, and absence, of certain instructions in a program. For example, the
following function is only allowed to use variable instructions:

updateRef :: (Monad m, References m, SyntaxM m a)
⇒ Ref m a → (a → a) → m ()

updateRef r f = do v ← getRef r
setRef r (f v)

Not all instructions need to be part of the core language. In fact, one benefit
of a deeply embedded language is the ability to use the host language to generate
programs. This allows us to define type classes that provide complex language
constructs as generators that translate into more primitive constructs. For example,
consider Co-Feldspar’s type class for let-bindings:

class Share exp where
share :: (Syntax exp a, Syntax exp b)

⇒ a → (a → b) → b

share accepts any type a and b that are internally represented as expressions of type
exp (Syntax is a non-monadic version of SyntaxM), and allows us to, for instance,
avoid duplicating a heavy computation:

fun :: (Monad m, Share (Exp m), SyntaxM m Int32)
⇒ Exp m Int32 → Exp m Int32

fun ref = share (heavy) (λx → x + x)

where Exp is a type family that gives us the expression type associated with m. While
we cannot translate fun directly to either C or VHDL, as neither language has a
primitive construct for let-bindings, we can elaborate share into a program stub
with references:
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fun :: (Monad m, References m, SyntaxM m Int32)
⇒ Ref m Int32 → m (Exp m Int32)

fun ref = do r ← initRef (heavy)
v ← getRef r
return (v + v)

Translation fun into C and VHDL is now straightforward. In fact, Co-Feldspar’s
compiler is expressed as a series of such program transformations, turning high-level
constructs into equivalent, but still efficient, program stubs with simpler instructions.
In this sense, our approach to code generation is similar to previously published
methods (Sculthorpe et al. 2013; Svenningsson and Svensson 2013; Axelsson 2016),
and the design of Co-Feldspar is reminiscent of the light weight modular staging in
Scala (Rompf and Odersky 2015; George et al. 2013b) or the Habit project (Jones
2013) and its intermediate language MIL (Jones et al. 2018).

2.3 Programming with Co-Feldspar

Programming in a monadic language like Co-Feldspar is similar to programming in
an imperative language like C but also not quite the same. As an example of the
differences between the two styles, and to showcase the co-design language, consider
a finite impulse response (FIR) filter, one of the two primary types of digital filters
used in digital signal processing applications (Oppenheim et al. 1989). A FIR filter
is, in short, a filter whose impulse response settles to zero in finite time. For a causal
discrete-time FIR filter of rank N , each value of the output sequence is a weighted
sum of the N +1 most recent input values and the filter is typically defined as follows:

yn = b0xn + b1xn−1 + · · ·+ bNxn−N =
N∑
i=0

bixn−i

where x and y are the input and output signals, respectively, and bi is the value of
the impulse response at time instant i (and an N ’th-rank filter has N + 1 terms on
the right-hand side). The FIR filter can be implemented in C as:
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void fir(
double *x, size_t L, double *b, size_t N, double *y)

{
size_t n, j, min , max;
for (n = 0; n < L+N-1; n++)
{

min = (n >= N-1) ? n-(N-1) : 0;
max = (n+1 < L) ? n+1 : L;
y[n] = 0;
for (j = min; j < max; j++) y[n] += x[j] * b[n-j];

}
}

where L is the length of the input, N is the filter rank, and b, x, and y are pointers
to the filter’s coefficients, input, and output, respectively.

At first glance, the C code seems to be a good representation of the FIR filter,
but there are a few modularity problems with its implementation. For instance, the
inner for-loop calculates a shifted dot product of the arrays b and x inline, a fairly
common operation in signal processing. We would like to define it once and then
re-use whenever needed. It is of course possible to move the operation to a stand
alone function:

double dot(
size_t min , size_t max , size_t n, double *x, double *b)

{
size_t j;
double sum = 0;
for (j = min; j < max; j++) sum += x[j] * b[n-j];
return sum;

}

However, the function is restricted to values of type double, it assumes that b and x
both have elements in the range between min and max, and it is not compositional
in the sense that it cannot be merged with the producers of b and x without looking
at their implementation.

The same shifted dot product can be implemented in Co-Feldspar as a software
expression using a similar, although not idiomatic, style:

dot :: SExp Length → SExp Length → SExp Index
→ SIArr Float → SIArr Float → SExp Float

dot min max n x b =
loop min max 0 (λj s → s + x!j * b!(n-j))

SIArr and SExp are software types and represent immutable arrays and expressions,



Chapter 2. The Co-Feldspar language 21

respectively. In general, we use an S prefix for software types and H for hardware
types. The iteration scheme used to compute the dot product is captured by loop, a
high-level combinator with the following type signature when instantiated to software
expressions:

loop :: SExp Length → SExp Length → SExp a
→ (SExp Index → SExp a → SExp a) → SExp a

The first and second parameters of loop are the iteration range, the third is the
initial loop state and the fourth parameter is the iteration step function, which
calculates a new state from the current loop index and the previous state.

The above implementation is not without its own faults. We can improve it by,
for instance, making it polymorphic in its element type and thus able to accept more
types than just Double. But more importantly, its implementation is also limited by
its use of the software specific types and operations, because hardware languages also
support the iteration, arrays and numerical operations used by dot. We can therefore
improve the function even further by replacing its types and operations with generic
ones. Actually, every operation in dot already comes from one of Co-Feldspar’s type
classes and we have simply instantatied them to software. So we need only update
its type signature to turn dot into a generic program:

dot :: (Common exp a, Finite exp arr)
→ exp Length → exp Length → exp Index
⇒ arr a → arr a → exp a

dot min max n x b =
loop min max 0 (λj sum → sum + x!j * b!(n-j))

Here, Finite ensures arr supports indexing, and Common is a short-hand for expres-
sions commonly found in both software and hardware, like loop:

type Common exp a = (Iterate exp , Num (exp a), ...)

The final dot can be interpreted as both software and hardware by simply
instantiating its monadic type m as the program type in either language. That
is, the use of type classes enabled the separation of an operation’s interface from
its implementation, which gives Co-Feldspar some freedom when interpreting the
meaning of such functions.

2.3.1 Offloading computations to hardware
The more interesting use of Co-Feldspar is perhaps when we offload a generic function
like dot to hardware and then call it from a FIR filter in software. Thanks to the
previous generalisation, interpreting dot as a hardware function is straightforward:
simply instantiate it as a hardware program. But to reach a hardware program from
software one must first set up a communication channel to that program.
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An isolated hardware dot is, however, of little use on its own; we must also give
it an interface that allows software programs to cooperate with it. The construction
of such interfaces is typically guided by a set of rules that, in our co-design example,
would translate a single hardware type into a single software type. Such a simple
approach can however be quite limiting as, for instance, a signal of bits is typically
used in hardware to represent a variety of values. For this reason, we employ a
small language of programmable signatures (Axelsson and Persson 2015) that lets
the programmer describe the mapping of each argument.

This little language of mappings is mostly an assortment of functions for requesting
various types of inputs and a few return statements to finalize the signature with its
output. For example, we can define a straightforward mapping of arguments to dot
as follows:

dotC :: HSig (
Signal Length → Signal Length → Signal Index

→ SArr Int32 → SArr Int32 → Signal Int32
→ ())

dotC =
input $ λmin → input $ λmax → input $ λn →
inputIArr 20 $ λx → inputIArr 20 $ λb →
retExpr $ dot min max n x b

where input asks for a scalar value, SArr for an array of some known length, which
we have set to 20, and retExpr finalises the signature by returning a pure expression.
Note that () marks the end of the signature, and that we have swapped the floating
point numbers for fixed point arithmetic to simplify the hardware interface.

Such a straightforward mapping is however not the only choice we have at our
disposal, because signatures are wrappers to hardware programs and therefore give
access to both generic and hardware specific instructions. For instance, to ensure
that dotC can be synthesised, we could introduce a few instructions into the interface
that limit dot to a static interval, slicing the input arrays to their interesting ranges.
Such a modification leaves the signature and inputs intact; only retExpr and its
body needs to been updated on account of the additional instructions:

dotC = ... $ ret $ do
x’ ← initArr (replicate 20 0)
y’ ← initArr (replicate 20 0)
copyArr (x’, min) (x, min) (max -min)
copyArr (b’, min) (b, min) (max -min)
return $ dot 0 20 n x’ b’

where copyArr copies a slice of one array to another, and ret finalises the signature
with a hardware program. The interface ends up in the generated hardware as a
wrapper for dot.
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A signature like dotC can already be used to describe interface by which hardware
components communicate. However, before we can call docC from software, we must
connect its signature to an interconnect. For this reason, Co-Feldspar provides an
axi_lite combinator that implements an AXI4-lite interconnect, a channel that
provides a simple, low-throughput memory-mapped communication between hard-
ware and software. The type signature of this combinator is given in Figure 2.1, and
compiles to a hardware component with a similar interface that should immediately
be recognised as an AXI4-lite interconnect by a synthesiser like Vivado (Feist 2012).
Further, with the help of a synthesis tool like Vivado, we can turn these wrapped
designs into physical ones and offload them to hardware. In our case, that piece of
hardware is the programmable logic on a Xilinx Zynq (Xilinx 2018).

It is through the physical address of an offloaded design and memory mapped
I/O that software programs in Co-Feldspar are finally able to call a hardware
component. As we run our examples on a processor with a variant of Linux installed,
communication between hardware and software is done through mmap: a function
that maps kernel address space to a user address. Co-Feldspar implements its own
mmap function, which wraps the one Linux provides and computes the addresses of
each input and output in a signature. Assuming we have offloaded dot at an address
of “0x83C00000”, we can set up a software interface that calls dot as follows:

dotS :: SRef Length → SRef Length → SExp Index
→ SArray Int32 → SArray Int32
→ Software (SExp Int32)

dotS min max n x b = do
dot ← mmap "0 x83C00000" dotC
res ← newRef
nr ← initRef n
call dot (min >: max >: nr >: x >> : b >> : res >: nil)
getRef res

where (>>:), (>:) and nil are used to construct a list of software arguments that
matches the signature of dotC.

dotS is a software program like any other, and could be used in place of the
generic dot in a software implementation of a FIR filter. To give an example of this,
we first define a mostly imperative FIR filter in Co-Feldspar using nonidiomatic code:
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fir :: (Comp m, Common (Expr m))
⇒ IArr m Int32 → IArr m Int32 → m (Arr m Int32)

fir x b = do
let xl = length x

bl = length b
ys ← newArr (xl+bl -1)
for 0 1 (xl+bl -1) $ λn → do

min ← shareM (n ≥ xl -1 ? n-xl -1 $ 0)
max ← shareM (n+1 < bl ? n+1 $ bl)
setArr y n (dot min max n x b)

return y

where shareM is a monadic version of share, and Comp is a short-hand for purely
computational instructions:

type Comp m = (Monad m, References m, Share (Exp m), . . . )

Nevertheless, given such an implementation of the filter, we need only instantiate m
as the software monad and swap out the generic dot for its offloaded variant dotS:

fir :: SIArr Int32 → SIArr Int32 → S (SArr Int32)
fir x b = do . . .

for - 1 (xl+bl -1) $ λn → do
min ← initRef (n ≥ xl -1 ? n-xl -1 $ 0)
max ← initRef (n+1 < bl ? n+1 $ bl)
v ← dotS min max n x b
setArr y n v

As you might imagine, running the FIR filter with an offloaded dot does not
yield particularly good performance; the updated filter in fact performs worse than
running fir solely in software. Figure 2.2 shows the avrage execution time for
various hardware software partitionings of the FIR filter. One source of inefficiencies
is certainly the direct mapping of inputs to arguments in dotS, because it ends up
sending over the entire arrays x and b each time dotS is called, only to process a
small part of them in all but one call. While we could perhaps improve dotC to
operate on array segments, the ratio between computations and communication
would be skewed regardless. A better solution is simply to offload the entire fir
filter.

To offload the FIR filter, we can either re-instantiate its program type m as the
hardware monad and then substitute dotS for a port-map to dotC, or simply revert
to its generic implementation. Regardless of the approach we take, we will need to
create a new signature for the filter:
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axi_lite :: HSig sig → HSig (
Signal (Bits 32) -- Write address

→ Signal (Bits 3) -- Write protection type
→ Signal Bit -- Write address valid
→ Signal Bit -- Write address ready
→ Signal (Bits 32) -- Write data
→ Signal (Bits 4) -- Write strobes
→ Signal Bit -- Write valid
→ Signal Bit -- Write ready
→ Signal (Bits 2) -- Write response
→ Signal Bit -- Write response valid
→ Signal Bit -- Response ready
→ Signal (Bits 32) -- Read address
→ Signal (Bits 3) -- Protection type
→ Signal Bit -- Read address valid
→ Signal Bit -- Read address ready
→ Signal (Bits 32) -- Read data
→ Signal (Bits 2) -- Read response
→ Signal Bit -- Read valid
→ Signal Bit -- Read ready
→ ()

)

Figure 2.1: Type signature of the AXI4-lite wrapper.
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Figure 2.2: Execution time of offloaded functions in microseconds.
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firC :: HSig (
SArr Int32 → SArr Int32 → SArr Int32 → ())

firC = inputIArr 20 $ λx →
inputIArr 20 $ λb →
retVArr 39 $ fir x b

Even though the filter is quite small, it performs roughly as well as one running
entirely in software.

This example shows the general design philosophy behind our approach to co-
design. Start with a clear, generic implementation of an algorithm and then establish
a hardware software partitioning by setting up the required interfaces. Language
specific operations and optimisation can then be introduced once a satisfactory
partitioning has been found. With this approach, the amount of code that has to be
rewritten during initial exploration is limited to the hardware software interfaces.
Note that these interfaces are the aforementioned programmable signatures or some
other type-guided translation and not the full interconnect; Co-Feldspar is capable of
automatically generating the glue code that allows hardware and software components
to communicate.

2.3.2 Data-centric vector computations

The sequential implementations of dot and fir in Section 2.3 are however not
idiomatic Co-Feldspar and the code is quite fragile. For instance, the manual
indexing of the arrays x and b is a source of concern that cannot be addressed in
the sequential approach; what if the programmer accidentally indexed x twice? The
program would still type check, but it would not behave correctly. Furthermore,
the caller has to assert that both arrays are of the same length. Also, dot is not
compositional, because it cannot merge with the producers of x and b without
creating any intermediate arrays.

In order to support a higher-order and compositional style of array programming—
with less opportunity to shoot oneself in the foot—Co-Feldspar provides an im-
plementation of pull arrays, an abstraction built on top of the mutable arrays in
Co-Feldspar. As their name implies, pull arrays excel at pulling out values from
an array and provide a rich set of combinators and functions to work with flat, or
possibly nested, arrays. Implementation wise, a pull array consists of a length and a
function from indices to values:

data Vec exp a where
Pull :: exp Length → (exp Index → a) → Vec exp a

Pull arrays are notable for their non-recursive definition, which enables aggressive
fusion; the composition of two pull arrays will not allocate any intermediate memory
at run-time. As an example, consider the following vector functions that we have
instantiated to software:
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zipWith :: (a → b → c) → SVec a → SVec b → SVec c
zipWith f xs ys = Pull (length xs ‘min ‘ length ys)

(λi → f (xs!i) (ys!i))

fold :: (a → a → a) → a → SVec a → a
fold f init xs = iter (length xs) init

(λi st → f (xs!i) st)

zipWith constructs a new pull array by “pulling” values from both xs and ys at the
same time, and fold is defined in terms of iter.

We introduced these three functions in particular because we can use them to
define a dot product in more idiomatic Co-Feldspar code. That is, a dot product is
calculated by first multiplying the vectors xs and ys element-wise using zipWith,
and then reducing the result with fold (+):

dot :: Num (SExp a) ⇒ SVec a → SVec a → SExp a
dot xs ys = fold (+) 0 (zipWith (*) xs ys)

This definition is certainly terser and closer to the original mathematical specification
than the sequential one. It is also easier to reason about and sturdier, in the sense
that many of the implementation details a user could get wrong (such as indices and
lengths) are now hidden. Furthermore, the composition of zipWith and fold results
in a function that, once evaluated, returns a single array where all intermediate
values have been eliminated:

dot xs@(Pull lx fx) ys@(Pull ly fy)
= fold (+) 0 $ zipWith (*) xs ys
= fold (+) 0 $ Pull (lx ‘min ‘ ly) (λi → fx i * fy i)
= iter (lx ‘min ‘ ly) 0 (λi st → (fx i * fy i) + st)

That is, by the time the compiler is called, pull arrays are all but evaluated away
and only leave behind low-level programs with optimized loops.

Vectors can comfortably describe the regular array transformation that is a dot
product, but they can also describe some of the more irregular transformations, like
the recurrence relation of a FIR filter. Also, the fact that all inputs are present at
once when they are contained by a vector makes it possible to interpret the FIR
filter in a way that can be expressed with vectors:

fir :: Num (SExp a) ⇒ SVec a → SVec a → SVec a
fir coeff = map (dot coeff . reverse) . tail . inits

The new vector functions behave in the same manner as their similarly named list
functions.

By wrapping the filter in a small software program that connects the filter’s
arguments to inputs read from standard input and result to standard output, we
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can compile the filter to C. For instance, using connectStdIO, we can automatically
connect a function like fir to standard input and output:

prog = connectStdIO $ manifestFresh . uncurry fir

Compiling prog to software yields the code in Figure 2.3 (where imports, some
variable declarations and initialisation code for the second input array have been
omitted for brevity).

Inspecting the generated code, we find that fusion has ensured that no intermediate
arrays are created for the initial segment of inits. What remains are instead bits of
control logic that set up the indexing bounds, which is followed by a now in-lined
dot product. Its biggest flaw is perhaps that some control logic has fused its way
into the inner for-loop. Co-Feldspar does however provide combinators for managing
the sharing of values, for example to pre-compute the b16 index if it gets in the way
of performance. Even then, the above vector implementation only ran ∼3% slower
than the original implementation in C1 (for filters up to 10000 elements and a similar
amount of coefficients).

2.4 Synchronous data-flow networks

Admittedly, a FIR filter is a fairly regular computation in the sense that each output
depends on an ordered segment of previous inputs. In general, however, the output of
a truly irregular recurrence relation may rely on any previous or current inputs. Such
relations cannot be implemented efficiently as a sequence of array transformations,
for doing so requires that we hold onto all previous inputs. For the more irregular
computations, idiomatic Co-Feldspar code instead uses the signal processing library
developed in this thesis.

The signal library is based around the concept of signals: possibly infinite
sequences of values in some pure expression language. These signals are connected in
a network that operates on streaming data, using a model of synchronous data-flow
that is largely inspired by Lucid Synchrone (Caspi, Hamon, et al. 2008; Colaço
et al. 2004), a member of the family of synchronous languages (Halbwachs 1993).
The synchronous model offers high-level combinators for expressing signal-based
algorithms, most of which are similar to the previous combinators for vectors.
However, signals also support unit delays and their sequencing therefore carries a
notion of time that is discrete and non-negative.

Internally, the signal library is a domain specific language that is embedded in
Haskell and intended to extend an existing language, like Co-Feldspar, with support
for synchronous data-flow. In particular, the underlying language is used to represent
pure functions that, of course, can be arbitrarily complicated. The signal library then
gives a means to connect such functions using a synchronous data-flow programming
style.

1Benchmark available at: github.com/markus-git/co-feldspar/blob/master/examples/Vectors.hs
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int main()
{

fscanf(stdin , "%u", &v0);
int32_t _a1[v0];
int32_t *a1 = _a1;
for (v2 = 0; v2 <= v0 - 1; v2++) {

fscanf(stdin , "%d", &v3);
a1[v2] = v3;

}
...
for (v9 = 0; v9 <= v0 - 1; v9++) {

if (v0 <= v9 + 1) { b11 = v0; }
else { b11 = v9 + 1; }
if (v0 <= b11) { b10 = v0; }
else {

if (v0 <= v9 + 1) { b12 = v0; }
else { b12 = v9 + 1; }
b10 = b12;

}
state13 = 0;
for (v14 = 0; v14 < b10; v14++) {

if (v0 <= v9 + 1) { b16 = v0; }
else { b16 = v9 + 1; }
state13 += a1[v14] * a5[b16 - v14 - 1];

}
a8[v9] = state13;

}
fprintf(stdout , "%u", v0);
for (v18 = 0; v18 <= v0 - 1; v18++) {

fprintf(stdout , "%d", a8[v18]);
fprintf(stdout , " ");

}
return 0;

}

Figure 2.3: Code listing for compilation of vector filter.
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As an example of signals and their use in a synchronous paradigm, consider a
function for merging a list of signals over hardware expressions by element-wise
addition:

sums :: Num (HExp a) ⇒ [HSig a] → HSig a
sums as = L.foldr1 (+) as

Note that sums is defined in terms of the common list function foldr1 (we prefix
list functions by L to differentiate them from signal or vector functions with similar
names), which reduces the list of signals using element-wise addition from right to
left. Lists are only present in the definition of a function like sums to structure a
signal computation and will get evaluated away before compilation.

Figure 2.4: A direct form discrete-time FIR filter of order N

The summation of signals is one of the three major components making up the
FIR filter. The other two are multiplication of signals with some coefficients and
a number of successive unit delays of the input to tap into previous values (see
Figure 2.4 for a graphical representation of a FIR filter). These two additional
components can be described with standard list functions as well:

muls :: Num (HExp a) ⇒ [HExp a] → [HSig a] → [HSig a]
muls es as = L.zipWith (*) (L.map repeat es) as

dels :: Num (HExp a) ⇒ HExp a → HSig a → [HSig a]
dels e a = L.iterate (delay e) a

where repeat introduces a constant signal and delay a unit delay. These three
functions together allow us to implement the full filter as follows:

fir :: Num (HExp a) ⇒ [HExp a] → HSig a → HSig a
fir es = sums . muls es . dels 0

From a hardware perspective, the above filter is arguably closer to the original
specification than the vector implementation was. Furthermore, the high-level and
combinatorial approach of signals provides a similarly robust programming interface.
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However, in contrast to the chunking of inputs that vectors relied on, signals instead
made use of potentially infinite patterns to describe the filter. For example, dels is
implemented with iterate, a list function that is typically defined recursively as:

iterate :: (a → a) → a → [a]
iterate f x = x : iterate f (f x)

That is, for an initial signal s, iterate (delay 0) s describes a list of incrementally
delayed signals [s, delay 0 s, delay 0 (delay 0 s), ...]. While this list is
potentially infinite, its composition with muls es ensures that we will only end up
using as many delayed signals as there are elements in es. More specifically, it is
the zipWith in muls that only requests as many signals from dels as there are
coefficients in es. Lazy evaluation then ensures that only the list parts that we do
end up using will be evaluated and form part of the generated network.

The above signal functions are all flat in the sense that they compile to networks
without any feedback loops: sums, muls and dels only use recursion in their de-
scriptions as lists, which leads to unfolding of the signal graph rather than feedback.
Some interesting signal programs are however defined as a collection of mutually
recursive signal functions, each built from static values or other signals. For such
functions, the recursion is defined in very much the same way as recursion in common
list functions. For instance, a clock pulse can be implemented as a recursive signal
function, flipping its output at each instant:

clock :: Syntax exp Bool ⇒ Sig exp Bool
clock = true ‘delay ‘ (inv clock)

Circular definitions like this are possible because of the delay applied to the recursive
call.

Having defined our signal computations, we would like to peel them off and
compile their synchronous data-flow graphs into efficient, imperative programs in Co-
Feldspar. Signals are, however, a deeply embedded data type and their compilation
is therefore not a simple de-sugaring, like it was for the shallowly embedded vectors
in Section 2.3.2. To compile a signal function, we must not only translate its internal
representation as signal graphs into programs, but also observe any cyclic definitions
and shared signals in said graphs. This sub-problem is commonly referred to as
observable sharing.

The solution to this observable sharing problem that we use is inspired by the
techniques proposed by Gill (2009) and Claessen (1999), and relies on GHC-specifics
to provide an IO function capable of directly exposing any sharing in a signal
network (Aronsson and Ploeg 2013). Compilation is then fairly straightforward for
shared values, as any traversal of the network can then identify the “back-edges”
that it encounters.

However, for efficiency reasons, signals are not translated directly into program.
Instead, a function is provided that turns signals into an imperative representation
of co-iterative streams (Caspi and Pouzet 1998):
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compile :: (HSig a → HSig b) → IO (HStr a → HStr b)

This version of streams breaks away from the classical one slightly and builds on a
stack of two Program monads. The outer program is used to initialize the stream
and returns the inner program, which can be executed repeatedly to produce a
stream of values. As programs support stateful computations, the initial state can
be updated while running; state is handled implicitly by the program monad and
stream transformers are free to consume the input streams in any way they see fit.
Fusion of streams is therefore achieved by construction, and even infinite streams
can be handled in a strict and efficient way.

For example, consider a stream transformer that only outputs every other value:

odd :: HStr a → HStr a
odd (Str init) = Str $ do

next ← init
return $ do

val ← next
_ ← next
return val

The new stream is initialised by running the argument’s init function, which returns
the step function next. A new step function is then constructed, calling next twice
to read two inputs from the initial stream and discarding the second value. Finally,
the saved input is returned as the stream’s result.

As the translation of signals to imperative streams goes through the IO monad,
signal computations should either be declared at the top level, and then threaded
through a program, or in-place with the help of a “back door” into the IO monad.
Although observable sharing in general is unsafe, the reification performed by compile
can be used safely even with unsafePerformIO if some simple conditions are met. In
the case of fir, the whole program is self-contained and it is fine to stay inside the
IO monad and pipe its result to Co-Feldspar’s interactive compiler icompileSigH
for hardware signals:

design = icompileSigH =<< compile (fir [1 ,2])

Running design yields the description in Figure 2.5. While we limited the filter
rank to keep the generated design short, we note that it follows a specific pattern
where one process is generated for the combinational logic and one for managing the
memory elements (Gaisler 2011).

2.5 In-place array updates
Vectors and signals provide two useful abstractions for implementing combinatorial
and sequential algorithms. Both extensions define their computations as pure
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ARCHITECTURE behav OF comp0 IS
SIGNAL state2 : unsigned (7 DOWNTO 0) ;
SIGNAL state2_d : unsigned (7 DOWNTO 0) :=

"00000000" ;
BEGIN

l8 :
PROCESS (in0) IS

VARIABLE v3, v4, v5 : unsigned (7 DOWNTO 0) ;
VARIABLE v6, v7 : unsigned (7 DOWNTO 0) ;

BEGIN
v3 := "00000001" ;
v4 := "00000010" ;
v5 := resize (v3 * in0 , 8) ;
v6 := resize (v4 * state2_d , 8) ;
v7 := resize (v5 + v6, 8) ;
state2 <== in0 ;
out1 <== v7 ;

END PROCESS l8 ;
l9 :

PROCESS (clk) IS
BEGIN

IF rising_edge (clk) THEN
state2_d <== state2 ;

END IF ;
END PROCESS l9 ;

END ARCHITECTURE behav ;

Figure 2.5: Code listing for compilation of signal filter.
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functions operating on immutable values, and both provide libraries of high-level
combinators that facilitate a compositional programming style. A compiler then
transforms their high-level code into efficient imperative programs with mutating
code. While this compositional style suits some algorithms, there are also those that
rely on features that are difficult, if not impossible, to express in a combinatorial
style. In particular, algorithms that rely on destructive updates of data structures
can be described by neither the vector nor the signal extension.

Co-Feldspar and its functional imperative programming style supports a primitive
representation of mutable arrays for which it is already possible to define in-place
updates. However, the correctness of such updates is left to the designer and neither
the compiler nor the type system helps prevent mistakes. The idiomatic approach for
such algorithms in Co-Feldspar is therefore to employ the new array programming
language developed in this thesis. The new arrays offer safe, purely functional and
crash-free in-place array transformations. The array library not only supports a
functional imperative programming style, but also provides a collection of high-level
combinators and abstractions for pure and efficient array computations that fully
supports equational reasoning.

Code written using the new array library differs slightly from the previous vector-
and signal-based approaches, for the programmer is now in control over features
that were previously left to the compiler. In particular, the array library provides
a primitive vcopy instruction for creating virtual copies of arrays. Virtual copying
is the mechanism that allows users to express safe re-use of arrays, as it gives the
illusion of having copied a value. However, no such copy is ever made: vcopy only
makes a safe alias of the array.

The combinator library that comes with the new arrays provides a number of
convenient functions for creating virtual arrays, most of which are based on functions
for creating mutable arrays in Co-Feldspar. This means that modifying computations
to run in-place is straightforward: The programmer first writes their algorithm in
a pure and functional style, they then specify what computations should be done
in-place by swapping a fresh array or copy for a virtual one.

As an example of programming with virtual copies, consider a short software
program that multiplies two vectors:

mul :: SVec Int32 → SVec Int32 → S (SVec Int32)
mul arr brr = manifestFresh (zipWith (*) arr brr)

The manifestFresh combinator evaluates its vector argument and stores the result
into a freshly-allocated array. In order to make this function run in-place, for instance
by writing its result back into arr, we only need to replace manifestFresh for a
combinator that instead produces a virtual copy of arr. We modify mul as:

mul :: SVec32 → SVec32 → S (SVec32)
mul arr brr = manifestReuse arr (zipWith (*) arr brr)

The manifestReuse combinator evaluates its second argument and stores the result
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into the array given in the first argument, effectively re-using the arr array instead
of allocating fresh storage. The compiler checks that this storage re-use is safe, that
is, it checks that the program behaves as if a fresh array had been allocated.

Internally, both manifestFresh and manifestReuse are implemented with the
same manifest combinator for storing vectors into arrays:

manifest :: Comp m ⇒ Arr m a → Vec (Exp m) a
→ m (Arr m a)

manifest arr (Pull len f) =
for (0, 1, min (length arr) len)

(λi → setArr arr i (f i))

manifestFresh pull = do
arr ← newArray (length pull)
manifest arr pull

manifestReuse arr pull = do
assert (length arr == length pull)
copiedArr ← vcopy arr
manifest copiedArr pull

There is however one crucial difference between the two functions: manifestReuse
creates a virtual copy of arr with its vcopy statement. Given an array a, vcopy a
creates an array b that gives the illusion of being a copy of a. Semantically, it
behaves as if we had created a fresh array b and copied the values of a into b; users
can mentally replace all occurrences of manifestReuse with manifestFresh when
reasoning about the program.

For regular computations that consume their input in order, such as mul, the
virtual arrays can be reused without much worry. Computations that are not as
regular require some care because they run the risk of overwriting values that will
be read later on, which would break the illusion of a virtual copy. For instance,
it is not possible to reverse a vector in-place if it is traversed in the usual way. A
common solution is instead to traverse the array up to its half-way point, updating
elements at both the current index and the mirrored index at the opposite side
simultaneously. This pattern is actually quite common, and Co-Feldspar therefore
provides a pairwise combinator that implements it:



36 2.6. Memory management with regions

pairwise :: Comp m ⇒ Exp m Index
→ (Exp m Index , Exp m Index)
→ Vec (Exp m) a → Push m a

pairwise ixs vec = Push (length vec) $ λwrite →
for 1 (length vec) $ λi → do

let (ix1 , ix2) = ixs (i-1)
iff (ix1 ≥ ix2) (return) $ do

x ← shareM (vec ! ix1)
y ← shareM (vec ! ix2)
write ix1 x
write ix2 y

where Push is a vector type that encodes its own iteration scheme (Claessen, Sheeran,
et al. 2012), and can conceptually be thought of as a program that writes an array
to memory using a given write-function.

We can use pairwise implement a reverse in software as follows:

reverse :: SArr Int → S (SArr Int)
reverse arr = manifestReuse arr (rev arr)

where len = length arr
rev = pairwise (λix → (ix , len -ix -1))

Please note that Co-Feldspar does not attempt to check the safety of programs at
the target or source level. Instead, it first elaborates away any high-level instructions
and introduces its safety assertions; it then verifies the safety of this intermediate code.
The principal idea is that correctness is ensured by using an off-the-shelf-theorem
prover to discharge the safety conditions introduced during this elaboration. This
step is performed before compilation, so if the prover is able to show correctness
then no assertions end up in the generated code.

2.6 Memory management with regions
Co-Feldspar adopted a monadic interface to combine explicit memory management
with its otherwise pure semantics; pure expressions alone cannot efficiently express
algorithms that, for performance, rely on a particular evaluation order or in-place
updates. This separation into pure and impure parts is, however, a bit crude and
imposes a fairly low-level style of programming to describe only a select class of
algorithms. While this problem is alleviated by the aforementioned vector, signal and
array libraries, imperative programs and explicit memory management still make up
the core of Co-Feldspar.

Even with explicit allocation, it can be difficult for users to know the exact
lifetime of their values. Consider as an example the following code snippet, which
introduces and returns a reference from within a local statement:
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escape :: Software (SRef Int32)
escape = when (true) (do r ← newRef; return r)

To compile escape in a stack-based memory management discipline (like that of
Co-Feldspar) we must move the allocation of r to the outer scope. This movement
can lead to references ending up in larger blocks in the source code than expected,
and if the outer block is especially large, that memory may outlive its usefulness by
some margin

It is because of the aforementioned issues that we explore the use of a memory
management discipline based on regions for embedded software.

The beauty of the region discipline is that it both relieves users of explicit memory
management and has the potential for excellent runtime space usage, even without
other forms of garbage collection. A region discipline uses a memory model where
the store can be thought of as a stack of regions, where regions themselves are like
stacks of unbounded size. Each region grows in size as more values are allocated in
it, until it is popped off the region stack in its entirety. These regions are allocated
and de-allocated at inferred points, and every value-producing expression is labelled
with the region its result should be stored in.

Unfortunately, however, labelling values with as small as possible regions is a
rather complicated process. Much of the complexity comes from how difficult it is to
perform an accurate lifetime analysis for values in higher-order functions, particularly
in those that call themselves recursively. But a region labelling is only as effective as
its lifetime analysis allows, so languages that implement regions typically rely on
elaborate type systems to track values in expressions. Indeed, region inference as
first presented by Tofte and Talpin (1994) used ideas from effect inference to build a
type-and-effect system for inferring regions.

The accuracy that type-and-effect systems offer comes at a cost of additional
kinds for regions and effects at the type level, as types are labelled with the regions
they touch. For example, the successor function succ x = x+ 1 can be assigned the
following type scheme after region inference:

∀ρ1, ρ2. (Int, ρ1) {get ρ1,put ρ2}−−−−−−−−−→ (Int, ρ2)

The effect that succ is “getting” the argument from region ρ1 and “putting” the
result into region ρ2 is recorded by the get and put constraints, respectively. In
general, a computation that accesses a region ρ adds get ρ to its associated effect set;
conversely, any computation that stores values into region ρ adds put ρ. Even with
the help of effects, however, region inference struggles with recursion in the special
cases of tail recursion and iteration (Tofte, Birkedal, Elsman, and Hallenberg 2004).

There are however domains that reject the use of recursion because it is difficult
to predict the time and space costs of its evaluation. For example, predictable
performance is a crucial feature for embedded software, since it typically runs on
resource constrained devices. We therefore believe that a region inference that
specifically targets embedded software could avoid most of the complexities in
traditional type-and-effect systems and still permit us to express interesting programs.
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We explore a region inference that is limited to first-order values and inspired by
qualified types (Jones 2003) rather than type-and-effect systems.

The essential idea behind a system of qualified types is to include a language
of predicates that restricts the instantiation of types. For example, if we define a
predicate Put ρ on regions that is true if ρ is allocated, then we can construct a type
scheme ∀ρ, τ.Put ρ⇒ τ to represent the set of types:

{τ | τ is a type and ρ is an allocated region}

An object that has been assigned the above type can then only be used as an object
of type τ if it is also supplied with suitable evidence that ρ is indeed allocated. Such
witnesses are provided by a language of evidence expressions with their own kind of
abstraction and application. For instance, a term E : Put ρ⇒ τ can be generalised
as λw.E, where w : Put ρ is an evidence variable.

Note that a qualified type Put ρ ⇒ τ in a sense captures the effect of an
expression “putting” values into region ρ. It then follows naturally that evidence
for such predicates would be a fresh location in memory, which the labelled object
can then store its value in. A complete region labelling is then formed by simply
marking each value-producing object with such a qualified type. More specifically,
we formulate our region labelling as a translation from a well-typed source language
into a mostly similar target language, except for certain region annotations. Two
annotations in particular are introduced for terms:

E atw and letregionw inF

The first is used whenever E directly produces a value, and indicates that its value
should be stored in the region bound to w. The second creates a region corresponding
to w before F is entered, and values can be allocated within that region for the
duration of the expression; the region is reclaimed once F is evaluated.

Annotations are also introduced at the type level, where value types are tagged
with a region ρ and named predicate w : Put ρ, binding ρ to an object’s place
tag w. For example, a pair of integers (1, 1) is translated into a labelled pair
(1, 1) atw : (Int, Int)ρ and a predicate w : Put ρ. These predicates are collected in a
context during inference, and record the effects of an expression as a whole rather
than its individual components.

While convenient for type checking, collecting region predicates in a context
makes it difficult to check what regions a particular term manipulates. So, how can
we tell whether the introduction of a local region is premature or not? Surely, if an
expression is given a primitive type like Int in a strict language, then all memory
allocated during the computation of the integer could be de-allocated once the result
has been computed (except for the memory that holds the integer) and thus stored
in local regions.

A first-order type τ similarly represents a fully computed value in the sense that
it is assigned to objects that do not include any closures. If such an object E has
produced a predicate Put ρ, where ρ cannot be reached from either the type τ or
from the context of variable assignments, then we could hypothetically generalise
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it as λw.E : ∀ρ.Put ρ ⇒ τ . Substitutions could certainly introduce higher-order
types (and inject closures into E), but it is obvious that any such types have no
opportunity to refer to the universally quantified region ρ (just as no closures in the
context can refer to its associated witness w). As a result, any memory associated
with w could safely be de-allocated once the result of E has been computed.

We should note that the above hypothetical type scheme of ∀ρ.Put ρ ⇒ τ is
ambiguous according to Jones’ terminology for qualified types, since ρ does not
appear in τ and cannot therefore be determined by the context. Systems that
implement qualified types generally attempt to apply defaulting for such cases, in
order to produce a deterministic witness for the predicate if possible. But in the
proposed region system, there is only one way of creating evidence variables (by
allocating new memory), so defaulting is always possible. In fact, the inference of
a local region can be done by creating a suitable witness w for a predicate Put ρ
such that the above type scheme can immediately be instantiated. The result then
becomes an object of type τ , but where the witness w is given by a letregion and
no longer bound.

As an example, consider a pair of integer values that we have labelled with
regions as (α, β) atw : (Int, Int)ρ and given a predicate w : Put ρ. If we take the 2nd
projection of such a pair, the result is simply an integer β : Int with no mention
of its internal region ρ. In fact, no reference to ρ can escape β since Int is also a
first-order type. We could therefore resolve the predicate w : Put ρ and introduce a
local region to the expression as letregionw in snd(α, β) : Int. Future substitutions
may change both α and β as well as their types, but regardless of how these changes
are done they cannot depend on the local region.

According to the above reasoning, the first-order restriction is really too strong; it
is enough that a term’s principal type is first-order for the system to draw conclusions
about what region links it carries. In fact, even this restriction is too strong. It is
the principal type in an abstract context (where every parameter is mapped to a
type variable) that is the most interesting one.

However, the cost of limiting regions to first-order terms is not as severe a
restriction on the kind of programs that we can efficiently label as it might first appear,
especially since the restriction primarily affects those programs that deliberately
keep memory-heavy objects in scope. As an example, consider the following code:

f = (let p = (λx. x, Heavy) in fst p)

Here, the memory heavy computation Heavy, is deliberately hidden behind a higher-
order function and paired up with another value so that it cannot be discarded. As
a result, any program that mentions f would be forced to keep Heavy around in
memory until f is completely evaluated, which could potentially take some time.

Whether this new region inference struggles with labelling certain kinds of
programs remains to be seen, but we nevertheless feel that region inference based
on qualified types provides a succinct account of region-based memory management
for embedded systems. The restriction to languages without recursion also provides
some benefits that cannot be implemented in the original system. For example, we
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are able determine the size of regions statically. An implementation of the current
inference system is available as open source2.

2.7 Related work
Sheeran pioneered the use of functional languages in hardware design with µFP (Sheeran
1984), a language that uses functional combinators to describe complex hardware
from a set of smaller circuits and gates. The Lava family (Bjesse et al. 1998; Gill
et al. 2010; Naylor 2009) of functional languages have since expanded upon the ideas
of muFP and introduced modern functional features. For instance, Lava exploits
monads and type classes to provide multiple interpretations of circuit descriptions,
such as simulation, formal verification and generation of netlists. Polymorphism
and higher-order functions provide general descriptions of hardware designs. In
a sense, Co-Feldspar and the signal library have further extended this family to
heterogeneous systems, where control logic is typically implemented in software
rather than hardware.

Outside of the Lava family, there is Bluespec (Nikhil 2004), a hardware description
language that is influenced by functional languages and includes, for instance, higher-
order functions and polymorphism. In contrast to Lava, Bluespec can describe
both software and hardware. Nevertheless, Bluespec descriptions are written at a
clock-cycle granularity and therefore provide a lower level of abstraction than most
functional languages. A third example is Chisel (Bachrach et al. 2012b), a hardware
description language embedded in Scala, which, like Bluespec, supports both cycle-
accurate software simulation and hardware generation from its descriptions.

Compiling an ordinary C program to a hardware description has great appeal, but
finding a translation between the two has however proven to be difficult. Tools like
Catapult C (Mentor Graphics 2008) are able to generate register transfer level code
from ordinary C descriptions, but its sequential programs are often a bad fit for the
parallelism inherent to most hardware architectures. Additional C based attempts
includes the creation of SystemC (Ghenassia et al. 2005), a set of classes and macros
that provide an even-driven simulation interface in C++. Although strictly a C++
library, SystemC is often viewed as a language of its own that simply reuses C++
syntax. Semantically, it has quite a few similarities to VHDL and Verilog.

Cryptol (Browning and Weaver 2010) is a DSL for the specification of crypto-
graphic algorithms, and can generate both C and VHDL/Verilog from the same
description. While not an embedded language, Cryptol has similar ambitions to the
co-design language, in particular the ability to do rapid development and design
exploration—although the latest versions of Cryptol no longer support hardware
generation. Cryptol is however a standalone language, so any extension to it cannot
benefit from the ecosystem of tools available in the host language. Another language
outside the domain of HLS is Microsoft’s Accelerator (Tarditi et al. 2005), for pro-
gramming GPUs and various other platforms. Accelerators provides a high-level
data-parallel programming model as a library that is available from a conventional

2Available at: github.com/markus-git/regions
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imperative programming language like C. However, the project seems, unfortunately,
to be no longer active.

There exist several methods that aid in the embedding of languages in Haskell.
Among these different approaches is finally tagless (Carette et al. 2009), which
associates each group of language constructs with a type class, and each interpretation
with a semantic domain type. The result is an expressive and compositional way of
embedding languages. This does, however, come at a cost of awkward types—the
type of an embedded language is simply a qualified type variable—and it tends to
expose implementation details to users. The abstract types of Co-Feldspar hides such
details, but are fixed at the level of arrays, variables and signals. Another interesting
embedding technique to consider for adoption is thus high-level views on low-level
representations (Diatchki et al. 2005), which provides bit-level views of data types in
functional languages.

For Scala, the Delite (Sujeeth et al. 2014) library provides a framework of reusable
components for embedded languages, like optimizations, and code generators. Delite
produces an intermediate representation of user programs that is similar to the
model used by the co-design language, but targets a combination of CPU and
GPU systems. Lightweight Modular Staging (LMS) has also been explored as an
option to ease the construction of a domain-specific High Level Synthesis (HLS)
system (George et al. 2013a) in Scala. The argument is that LMS eases the reuse of
modules between different HLS flows, and makes it easier to link to existing tools,
such as the C compilers that are able to produce register transfer level descriptions.
Though the language-specific challenges for LMS are different from those faced by
the co-design language, the two approaches are comparable in terms of capability.
The way that code generation of programs is built upon the translation of monads
to imperative programs is also reminiscent of Sunroof (Bracker and Gill 2014), a
DSL for generating JavaScript, and MIL (Jones et al. 2018), a monadic intermediate
language for implementing functional languages.

The signal library presented in this thesis is based on the synchronous data-flow
paradigm and is inspired by other languages from this domain. Of the synchronous
languages, Lucid Synchrone (Caspi, Hamon, et al. 2008; Colaço et al. 2004) is
perhaps our biggest source of inspiration and provides a synchronous functional
programming for reactive systems. Initially, the language was introduced as an
extension of LUSTRE (Halbwachs 1993), and extended the language with new and
powerful features. For instance, automatic clock and type inference were introduced
and a limited form of higher-order functions was added. Lucid Synchrone is however
a standalone language, and thus cannot be easily integrated with the co-design
language. Zélus (Bourke and Pouzet 2013), a successor of Lucid Synchrone, has
shown that synchronous languages can be extended to model hybrid systems as well,
that is, systems that consist of both continuous and discrete components.

The array library is similar, in a sense, to Futhark (Henriksen et al. 2017), a
purely functional data-parallel array language that excels at GPU programming.
Futhark employs a simple type system with uniqueness labels that, together with a
restricted language of primitives, facilitates in-place updates of arrays. The futhark
compiler verifies that a copied array and its aliases are not used on any execution
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path following the in-place update. Virtual array copies, in contrast, only required
that the original array is not used in a way that could break the illusion of the copy.

Ivory (T. Elliott et al. 2015) is functional language that is embedded in Haskell
and has support for model-checking, theorem proving and property-based testing.
Ivory uses these features to enforce memory safety for its programs, and tries to
avoid most undefined behaviour while still providing low-level memory control. In
particular, a sort of type-level region labels are used to ensure that memory references
do not persist beyond the scope of their containing monadic computation.

Another “safe-C” language with a similar goal is Copilot (Pike et al. 2010), a hard
real-time and data-flow language that generates small and efficient C programs with
embedded runtime monitors and their own scheduler. However, Copilot focuses on
expressing pure computations, and does not provide as convenient support for defining
new data-structures or manipulating memory as Ivory or Co-Feldspar. Timber (Black
et al. 2002) is an imperative object-oriented and purely functional language that is
also designed for real-time embedded systems, but offers message passing primitives
for both synchronous and asynchronous communication between concurrent and
reactive objects.

Another common approach to handling in-place updates is to employ various
type systems. One such system is linear types (Wadler 1990), where values belonging
to a linear type must be used exactly once; linear types cannot be duplicated or
discarded. Such values can safely admit in-place updates. Another approach is
adopted by Rust (Matsakis and Klock II 2014), a safe C language for developing
reliable and efficient programs. Rust’s static and affine type system is safe and
expressive and prevents pointer aliasing errors as well as providing strong guarantees
about isolation, concurrency, and memory safety. Rust has a framework for property
based testing, but lacks support for verification and static analysis of its programs.
Spark/Ada (Barnes 2003) is a language similar to Rust and provides high-assurance
embedded programming, with a contract language and verification tools to prove
invariants. While the language is programmed at a higher-level than C, it is also
more restrictive than Rust; in particular, there are no references in Spark.

Safe languages are not exclusively functional, and the Cyclone project (Jim et al.
2002) has done pioneering work to create a safe dialect of C. Cyclone is designed from
the ground up to prevent the buffer overflows and memory management errors that are
common in C programs, while retaining C’s syntax and semantics. Most of Cyclone’s
language design indeed comes directly from C; Cyclone uses the C pre-processor,
and, with few exceptions, follows C’s lexical conventions and grammar. However,
Cyclone does not provide macro-programming facilities beyond its C pre-processor.

Another interesting feature of Cyclone is its use of region-based memory manage-
ment (Grossman et al. 2002). Specifically, Cyclone provides three kinds of regions:
a single heap region, stack regions, which correspond to local definitions in C, and
dynamic regions, which binds the lifetime of a region to the execution of a statement.
The region discipline provided by Cyclone is a variation of the region typing discipline
introduced by Tofte and Talpin (1997) for C, and relies on a novel type-and-effect
system for tracking region links. Cyclone requires that users write some region
annotations, but attempts to reduce this burden by providing default annotations
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and a simplified treatment of region effects.
ML Kit (Tofte, Birkedal, Elsman, Hallenberg, et al. 2001), a version of Standard

ML, is a functional language that also uses automatic region inference in place of
traditional garbage collection. ML Kit has operations for allocating, de-allocating
and extending regions, but also provides an explicit operation for resetting an existing
region by reclaiming its memory without removing it from the region stack. The latter
annotation was introduced in part to help users address the inefficient memory usage
that occurred in some recursive programs (Tofte, Birkedal, Elsman, and Hallenberg
2004). ML Kit has also been extended with a garbage collector to further improve
its region pruning.

2.8 Discussion
Heterogeneous computing represents an interesting development in the domain of
embedded systems, as these systems incorporate more than one kind of processor
to handle particular tasks. The performance of these systems comes at a cost of
increased programming complexity, as the level of heterogeneity can introduce non-
uniformity in both development and overall system capabilities. Heterogeneity in
such a system, combined with the use of low-level languages, leads to designs with
low re-usability and modularity; it is difficult to provide useful abstractions when
types are limited to scalar values, composite data type structures and pointers or
signals.

Many of the aforementioned issues with low-level languages are related to lack of
modularity. Some are directly related, like reusable functionality and architecture,
others only indirectly. We assert that many of these problems can be addressed
by features from functional programming and therefore developed the Co-Feldspar
language, a functional and domain-specific language for hardware software co-design.

The Co-Feldspar language presented in this thesis represents our efforts to
create a functional language that allows modular and generic implementations of
heterogeneous programs for embedded systems, while still providing a syntax and
semantics that are designed to give predictable performance. In particular, Co-
Feldspar makes extensive use of higher-order functions to build reusable combinator
libraries and type classes to support programs with overloaded instructions that can
be interpreted as both software and hardware programs. Exploiting these functional
features makes it possible to define Co-Feldspar, a staged language with a compiler
that is capable of generating both C and VHDL functions, which can deployed on
different processing elements that communicate via AXI interconnects.

At its core, Co-Feldspar is an imperative language with a monadic interface that
provides simple instructions, expressions and explicit memory management. However,
the use of a mixed shallow and deep embedding approach makes it straightforward
to add new features and interpretations. For example, both the signal and array
libraries were added to Co-Feldspar without changing its internal representation of
programs or its compiler. Both libraries provide a comfortable syntax for problems
in their respective domains, and support an efficient translation into the relatively
simpler programs in Co-Feldspar. The signal library allows users to build their
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programs by composing high-level combinators, and its compiler then transforms
this high-level code into efficient, low-level, imperative streams. Similarly, the array
library provides high-level combinators that enable a functional approach to defining
in-place array algorithms.

An interesting extension for Co-Feldspar lies in the definition of a systems
description layer. This layer would provides a means of tailoring programs to
a particular embedded system at compile time by, for instance, distributing and
orchestrating a function on a heterogeneous multi-core accelerator.

While powerful, Co-Feldspar’s monadic interface for mutable references and arrays
is a rather low-level interface with explicit indexing. This thesis therefore explores a
more automatic memory management discipline with regions, which we have tailored
specifically to embedded systems. The region labelling is intended to augment the
current stack-based memory allocation of Co-Feldspar so that users only need to
worry about memory management in algorithms that rely on heap allocation or
in-place updates. However, the beauty of our new region labelling lies in its simplicity,
as regions are inferred by a system of qualified types rather than a type-and-effects
system.

Work is currently ongoing to define a practical implementation of a compiler for
programs labelled by our new region system. Having such an implementation will
clearly make a strong argument for the usefulness of a restricted approach for region
labelling, and provide what we believe to be a useful alternative to the monadic
interface of Co-Feldspar.

2.9 Summary of contributions
Recall that we originally set out to explore the benefits of functional programming in
the development of heterogeneous embedded systems, in particular the necessity of
an extensible core, flexible interpretation, and intuitive and efficient abstractions. A
natural question, then, is how successful the presented techniques are in addressing
these points? We repeat the research questions here:

1. Can the embedded, heterogeneous system development for modern FPGAs
benefit from a functional hardware software co-design language? In particular:

(a) Can a low-level, core language be embedded within a functional host to
provide a model of the various imperative languages used to describe
heterogeneous systems that is both extensible and has a relatively small
semantic gap to C and VHDL?

(b) Can such an embedded core language exploit the higher-order functions
and rich type systems of its host to separate the syntax of its programs
from their semantics such that a program can be parameterised by the
functionality it requires and, once written, can be interpreted in a variety
of ways?
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2. How can imperative functional programming be extended with support for
efficient, synchronous data-flow definitions, reducing the gap between streaming
algorithms and their implementation in an otherwise imperative language?

3. Can a functional array programming language offer safe, in-place array trans-
formations without neither weakening its transparency nor the ability to apply
equational reasoning?

4. Does a functional language without recursion permit the definition of a region-
based memory management scheme that is simpler than standard type-and-
effect systems for region inference?

Hardware software co-design In order to address Research Question 1, Co-
Feldspar was designed to be modular in the perspectives of both an implementer (1a)
and a user (1b).

From the language implementer’s perspective, the mixture of shallow and deep
embeddings in Co-Feldspar’s core makes it easy to extend its programs with new
primitives and interpretations. For example, Papers 1 and 3 managed to add
support for synchronous streams and virtual array copies without having to change
the Co-Feldspar language or compiler. The performance of such abstractions and
other, sophisticated instructions was ensured by having them be accompanied by a
translation into programs with only simpler instructions. This compilation scheme
not only safeguards against common errors (Axelsson 2016), but also provides
language implementers with a great deal of control over the code generation processes;
compilation and elaboration are explicit operations, independent of running the
compiled code.

From the users’ perspective, it is possible to write modular and generic code
through Co-Feldspar’s costless abstractions and hierarchy of type classes, which
defines overloaded types and instructions that can be used in both hardware and soft-
ware programs. Practically, these type classes provides an extensible and structured
way of controlling the interpretation of user defined programs; type classes enable us
to reason about the presence, and absence, of certain instructions in a program. For
example, in Section 2.3.2, the FIR filter was constructed using generic expressions
and combinators from the vector library. Since the vector library guarantees fusion
of its operations, the use of combinators incurred neither any intermediate arrays,
nor any extra traversals.

The above points mostly touch on the construction of generic and hardware or
software specific programs. In the case that programs cross the software hardware
boundary, the user must first establish an interface between the offloaded program
and its external environment. These interfaces are currently given by a small language
of programmable signatures that lets the programmer describe the mapping of each
argument to a program. While this approach gives the programmer a great deal of
control over the communication, such an interface must be defined manually for each
communication channel. Once defined, however, a signature can be automatically
fitted to an AXI4-lite interconnect and synthesised.
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Practically, we have tested the usefulness of Co-feldspar by implementing FIR,
IIR and FFT filters, as well as a larger cryptographic example (Moriarty 2017). In
general, we found that Co-Feldspar’s monadic interface and vector library do provide
predictable performance; fusion of vectors ensures that functions are aggressively
in-lined and that generated loop structure is satisfactory with a shape that is easy
to influence. Further, explicit memory management avoids unnecessary copying.

Signal processing In regards to Research Question 2, we have found that the
signal library provides a comfortable syntax for synchronous data-flow. Furthermore,
the representation of signals as imperative, co-iterative streams yields an intuitive
semantics that can be efficiently represented as programs in Co-Feldspar. In particular,
the mixture of deeply embedded signals and reification allowed the library to provide
combinators that retain much of the original elegance and modularity of a purely
functional programming style and still support efficient compilation.

During testing we found that a signal implementation of the FIR and IIR filters
preformed slightly better than their reference implementations in C, at least up to
filter ranks of fifty. The drop off in performance at that point can be explained
in part by the construction of the filter: using lists to describe a filter, like in
Section 2.4, results in unrolling of the entire signal graph, which in turn can result
in loop structures that are too big to run efficiently. A different trade-off between
time and space could have resulted in a more manageable code size at the cost of
some latency. Such trade-offs are already supported by the signal library, as we can
replace the recursion in Haskell lists by recursively defined signals.

Safe in-place updates The array programming library explored Research Ques-
tion 3 and offers safe, purely functional and crash-free in-place array transformations.
It manages to do so by adding one crucial feature: virtual copying.

Virtual copying is the mechanism that allows the array programming library to
provide a high-level, functional approach to defining an array algorithm that can
execute selected parts of its computation safely in-place; users define computations
as normal and then substitute certain arrays for virtual copies. Since the compiler
checks that performing these in-place updates does not change the behaviour of the
computation, it is still pure. Users can therefore freely use equational reasoning to
understand and develop their programs.

In order to evaluate the usefulness of virtual array coping, we compared the
implementation of an in-place FFT with virtual array copies against a previous
implementation that relied on unsafe functions to express its in-place updates (not
checked by a compiler). The combinators from our new array programming library
allowed us to re-implement the in-place FFT and verify its safety, all without having
to disable any safety checks in the compiler. In fact, the verifier was able to discharge
all but the assertion that the input had length a power of two. The combination of
in-place updates and bounds check removal increased performance by 30% in some
cases. A similar performance could only be achieved in the previous implementation
by compiler directives to disable the generation of internal safety and bounds checks.
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Memory management with regions In the final part of this thesis we explored
a region inference for embedded systems that attempt to solve Research Question 4.
In particular, we developed a simplified, region-based memory management scheme
by taking inspiration from qualified type systems.

Because our new region inference is restricted to languages without recursion,
much of the standard complexity in inferring regions with type-and-effect systems
(such as polymorphic recursion in regions) could be avoided altogether. And by
approximating the condition on which a region is referenced by higher-order functions,
we can further simplify the inference rules by avoiding most of the labelling of
functions with their latent effects. These restrictions are not as severe as one might
think, and even introduce some new benefits. For instance, we can always derive
a total memory cost of an expression from its annotations. This allows users to
make informed decisions about how they need to structure programs for memory
efficiency, and if at all necessary to do so. While the restructuring of programs to be
more region friendly usually requires some familiarity with the inference systems,
we would argue that doing so should be considerably easier with a system based on
qualified types than with a type-and-effect system.
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