
Hybrid2: Combining Caching and Migration in Hybrid Memory Systems

Downloaded from: https://research.chalmers.se, 2020-07-11 06:27 UTC

Citation for the original published paper (version of record):
Vasilakis, E., Papaefstathiou, V., Petersen Moura Trancoso, P. et al (2020)
Hybrid2: Combining Caching and Migration in Hybrid Memory Systems
Proceedings - International Symposium on High-Performance Computer Architecture: 649-662
http://dx.doi.org/10.1109/HPCA47549.2020.00059

N.B. When citing this work, cite the original published paper.

research.chalmers.se offers the possibility of retrieving research publications produced at Chalmers University of Technology.
It covers all kind of research output: articles, dissertations, conference papers, reports etc. since 2004.
research.chalmers.se is administrated and maintained by Chalmers Library

(article starts on next page)

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Chalmers Research

https://core.ac.uk/display/326728666?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Hybrid2: Combining Caching and Migration in
Hybrid Memory Systems

Evangelos Vasilakis
Chalmers University of Technology

evavas@chalmers.se

Vassilis Papaefstathiou
Foundation for Research and Technology Hellas

papaef@ics.forth.gr

Pedro Trancoso
Chalmers University of Technology

ppedro@chalmers.se

Ioannis Sourdis
Chalmers University of Technology

sourdis@chalmers.se

ABSTRACT
This paper considers a hybrid memory system composed of
memory technologies with different characteristics; in par-
ticular a small, near memory exhibiting high bandwidth, i.e.,
3D-stacked DRAM, and a larger, far memory offering ca-
pacity at lower bandwidth, i.e., off-chip DRAM. In the past,
the near memory of such a system has been used either as a
DRAM cache or as part of a flat address space combined with
a migration mechanism. Caches and migration offer different
tradeoffs (between performance, main memory capacity, data
transfer costs, etc.) and share similar challenges related to
data-transfer granularity and metadata management. This
paper proposes Hybrid2, a new hybrid memory system ar-
chitecture that combines a DRAM cache with a migration
scheme. Hybrid2 does not deny valuable capacity from the
memory system because it uses only a small fraction of the
near memory as a DRAM cache; 64MB in our experiments.
It further leverages the DRAM cache as a staging area to
select the data most suitable for migration. Finally, Hybrid2

alleviates the metadata overheads of both DRAM caches
and migration using a common mechanism. Using near to
far memory ratios of 1:16, 1:8 and 1:4 in our experiments,
Hybrid2 on average outperforms current state-of-the-art mi-
gration schemes by 7.9%, 9.1% and 6.4%, respectively. In
the same system configurations, compared to DRAM caches
Hybrid2 gives away on average only 0.3%, 1.2%, and 5.3%
of performance offering 5.9%, 12.1%, and 24.6% more main
memory capacity, respectively.

1. INTRODUCTION
The performance of computer systems is largely dominated

by their memory hierarchy [1]. Besides latency, memory
bandwidth can be a limiting factor for many workloads run-
ning on Chip Multiprocessors (CMPs) [2–5]. On one hand,
data intensive applications as well as the large number of
cores and specialized accelerators integrated on a chip in-
crease the demand for higher data rates. On the other hand,
memory bandwidth is pin limited [2, 6] and is therefore more
difficult to scale [5].

3D-stacking technology can be used to increase memory
bandwidth. In particular, 3D-stacked DRAM can be placed
near the processor die offering substantially higher bandwidth.
This near memory (NM) has limited capacity and often needs
to be complemented with a larger far memory (FM) such
as an off-chip DRAM that has however lower bandwidth.
How to best exploit the NM bandwidth and the FM capacity
to maximize system performance is still an open problem.
Currently, there are two dominant approaches: the first one
uses NM and FM as a hybrid, flat address-space memory
system supporting migration between the two [7–12]; the
second one uses NM as DRAM cache and FM as the main
memory [13–28].

In general, DRAM caches copy data from FM to NM, as
opposed to migration schemes that swap data between NM
and FM. This results in a number of differences between
the two approaches. Firstly, caching takes the NM capacity
away from the memory system, as opposed to migration
where NM capacity is part of a flat address space; this may
have a significant impact on capacity limited workloads [29].
Secondly, swapping incurs double the overheads of copying.
To amortize the overheads of swapping, migration schemes
try to migrate only data with potential for future reuse. To
detect this potential, migration schemes need to observe the
data access patterns over time and predict which data are
more beneficial to migrate to NM. This makes migration
slower to adapt to changes in the working set of applications
compared to caches that always bring in requested data.

Despite their differences, caching and migration share
some common challenges. One of them is the trade-off be-
tween data granularity and metadata overheads. The smaller
the cachelines the larger the tag array and vice versa; simi-
larly, the smaller the size of a migration block the larger the
metadata required to keep track of the remapping. In effect,
the size of the tag-array and remapping metadata impacts their
management overheads and as a consequence performance.
Another trade-off, common for caching and migration, is that
coarser granularity of cachelines and migration blocks can
benefit workloads with high spatial locality, but may hurt
workloads with poor spatial locality due to over-fetching.

Finer data granularity has lower over-fetching risk, but may
not exploit equally well spatial locality.

In this work we propose Hybrid2, a new approach for uti-
lizing a 3D-stacked DRAM that aims to preserve the advan-
tages of both caching and migration as well as at minimizing
their overheads. Hybrid2 employs a small portion of the
3D-stacked DRAM to implement a DRAM cache and offers
the rest of its capacity to main memory. Besides preserv-
ing most of the NM capacity, the small DRAM cache size
allows its tag array to fit entirely on-chip, thereby reducing
access latency. The on-chip tag array is extended to include
the remapping metadata required for data migration. This
minimizes both the DRAM cache and migration metadata
overheads. The DRAM cache quickly adjusts to the working
set of the workload by fetching all requested data to the NM.
Migrations are decided upon eviction from the DRAM cache
which allows observing the access patterns in the DRAM
cache in order to make informed migration decisions. Finally,
the data of the DRAM cache can be located anywhere in the
NM through the use of indirection, therefore, data selected
to be kept in the NM after eviction from the cache do not
require relocation within NM, avoiding unnecessary traffic.

Concisely, Hybrid2 makes the following contributions:

• proposes a new hybrid memory architecture that com-
bines caching and migration in the 3D stacked DRAM.

• Alleviates the latency and traffic overheads of both
DRAM cache tag lookups and data migration address
remapping by using the same mechanism.

• outperforms state-of-the-art migration schemes by us-
ing a small part of the 3D-stacked DRAM as a cache
which quickly adapts to working set changes.

• closely matches the performance of state-of-the-art DRAM
caches and in memory-intensive workloads outperforms
them, while offering almost all of the 3D-stacked DRAM
capacity to the flat memory address space.

The remainder of this paper is organized as follows: Sec-
tion 2 presents related work and some motivating results for
our proposed design. Section 3 describes the Hybrid2 archi-
tecture. Section 4 explains our experimental setup. Section 5
offers our evaluation results and comparison. Finally, Section
6 summarizes our conclusions.

2. RELATED WORK AND MOTIVATION
Various memory technologies exhibiting different trade-

offs in terms of capacity, bandwidth, access latency, and
cost [30–35]. A promising direction towards a more efficient
memory system design is to combine multiple technologies
with complimenting characteristics in a hybrid memory sys-
tem. One common hybrid approach is to put together a high-
bandwidth 3D-stacked DRAM and a high-capacity conven-
tional, off-chip DRAM, the first one denoted as near memory
(NM) and the second as far memory (FM). Recent advances
in 3D-stacking made it possible to place 3D-stacked DRAM
close to the processor and thus provide substantially higher
bandwidth than traditional DDR busses [30, 31]. Although
the latest 3D-stacked DRAM memories can offer capacities
that reach up to 24GB per stack (i.e. HBM2E with 12-High
stack) they have very high-cost. Therefore, conventional,
off-chip, lower bandwidth DRAM is added to provide the

missing capacity. Currently, there are two dominant research
directions for best exploiting the high bandwidth of an NM
and the capacity of an FM. The first approach uses the NM as
a DRAM cache and FM as the main memory; the second one
combines NM and FM in a flat address space and supports
migration between them.

2.1 Related work on DRAM caches
Most work on DRAM caches focuses on minimizing the

tag lookup overheads and on achieving a good balance be-
tween cache line size and tag management complexity. Loh
and Hill proposed storing tags in DRAM and using compound
accesses so the data access is always a row buffer hit, they
use 64 Byte cache lines and adjust associativity to fit a set in
a single DRAM row [13]. Alloy cache uses a direct mapped
design with 64 Byte cache lines and collocates the tag along
with the data to access with a single burst [26]. The Tag-
less DRAM Cache is on the other side of the cache line size
spectrum, it uses 4 KByte cache lines and minimizes the tag
lookup overheads by using the OS page tables and TLBs to
track the DRAM cache contents [22]. These approaches are
scalable but limit the design options of DRAM caches [24].

Some less restrictive designs handle the tag management
using resources on the processor die. ATCache, uses a small
on-chip cache for the DRAM cache tags, which are located
in DRAM, to absorb most tag lookups [20]. The Decoupled
Fused Cache also keeps the DRAM cache tags in DRAM
and re-organizes the tag array of the on-chip LLC to store
information about the contents of the DRAM cache [24].
These designs are more generic and allow various cache line
sizes, however selecting the right cache line size for a DRAM
cache comes with its own tradeoffs.

In general, small cache lines come with higher tag over-
heads, but use cache space more efficiently. Large cache
lines reduce the tag lookup overheads but may lead to over-
fetching. Footprint cache tackles the overfetching problem of
large cache lines with on-chip tags fetching only the blocks
that are predicted to be used [25]. Unison Cache follows the
same approach, but stores the tags in DRAM for scalability
to larger cache sizes [15]. Finally, Footprint Tagless DRAM
Cache combines the Tagless with the footprint design [21].
The above approaches achieve a good balance between tag
lookups and over-fetching. However, they may underutilize
the DRAM cache space when only small parts of each cache
line are fetched.

Another issue of DRAM caches is the unbalanced use of
memory bandwidth. Off-chip DRAM bandwidth is only used
for serving cache misses and writebacks rather than processor
memory accesses. Banshee uses the TLBs to track DRAM
cache contents and proposes a bandwidth-aware frequency-
based replacement policy [36] to balance bandwidth utiliza-
tion. BATMAN monitors the number of accesses to both
3D stacked DRAM and conventional DRAM and regulates
data movement [37]. Finally, BEAR proposes mechanisms to
limit the bandwidth used by secondary operations of DRAM
caches [23].

Intel’s Knights Landing provides the option to split the MC-
DRAM (NM) between DRAM cache and flat address space,
however, it does not support transparent data migration in
HW. Instead it moves the burden to the software to explicitly

2

allocate data to NM through the hbw_malloc() function [38].

2.2 Related work on data migration
As opposed to DRAM caches, data migration makes 3D-

stacked DRAM capacity available to the system. Moreover,
it has the potential to utilize the bandwidth of all memo-
ries for serving memory requests. As such, data migration
can potentially reap the benefits of both higher aggregate
bandwidth and capacity by migrating data between the 3D-
stacked DRAM and conventional DRAM dynamically. Data
migration schemes come in different flavors when it comes
to granularity of migrated data, flexibility, and data selection.

Some early work utilizes the OS, with some hardware
support, to select the data that would be more beneficial to
migrate to 3D-stacked DRAM [39]. On one hand, involving
the OS improves the selection of data to migrate and allows
the use of page tables for tracking the remapped data. On the
other hand, OS-schemes have slow response to working set
changes, incur high overheads, and limit the granularity of
migrating data to that of an OS page.

As an alternative, hardware mechanisms can respond faster
and support more migration granularities, but need to handle
the address remapping in hardware in order to remain trans-
parent from the OS. The migration granularity affects the
address remapping overheads. A way to alleviate the remap-
ping overheads is to divide memory in congruence groups and
allow migration only within a group, like in CAMEO [29].
PoM follows the same group approach with 2 KByte granu-
larity segments. It further uses competing counters in every
segment group and a sampling approach to dynamically ad-
just migration thresholds [7]. Chameleon is based on PoM
with the added option to economize on migration bandwidth
when the software does not use some memory space [8].
Chameleon requires changes to the operating system and in
the Instruction Set Architecture (ISA). Although group-based
approaches support fine-granularity at lower cost, they do
not perform well for lower ratios of 3D-stacked to off-chip
DRAM.

To overcome the limitations of the group-based approaches,
some designs choose to offer more flexibility at coarser mi-
gration granularity. Mempod opts for all-to-all migration
for higher flexibility [9]. It uses the Majority Element Algo-
rithm to identify 2 KByte blocks to migrate to 3D-stacked
DRAM in short time intervals [40]. LGM leverages the spa-
tial locality of data in the LLC to select 2 KByte segments
for migration, additionally, it economizes migration band-
width by not migrating cache lines that are present in the
LLC, instead they are marked as dirty and written back on
eviction. PageSeer proposed using the Memory Management
Unit (MMU) to prefetch pages from Non Volatile Memory to
conventional DRAM [12]. SILC-FM presents a more flexible
group approach [11], it uses set-associative swap-groups and
migrates 2 KByte blocks, but allows sub-blocks to interleave
data in the 3D-stacked DRAM.

2.3 Motivation
As described above, both DRAM caches and data migra-

tion schemes come with their own advantages and limita-
tions. The key difference between DRAM caches and data
migration comes from the fact that data migration, contrary

0% 6% 10% 15% 19% 22% 26%

0%

10%

20%

30%

64 128 256 512 1024 2048 4096

P
er

ce
n

ta
g
e

o
f

w
as

te
d

 d
at

a

DRAM cache line Size (Bytes)

Figure 1: Average percentage of data brought in DRAM
cache, but remained unused, with respect to cache line size.

to caches, preserves all memory in the address space. To
preserve the memory space, data migration must swap data
instead of just copying as caches. Swapping however, incurs
double the overheads of copying and so migration selection
has to be targeted to data with potential for future reuse. To
detect this potential, data migration selection mechanisms
observe the memory behaviour before making a decision to
migrate data. This can make data migration schemes less re-
active than caches to working set changes since caches fetch
all accessed data to the 3D-stacked DRAM.

DRAM caches and migration schemes face some similar
issues. One issue is the trade-offs associated with data move-
ment granularity. The cache line size for DRAM caches and
the migration granularity are critical for performance. Coarse
granularity favors spatial locality by effectively pre-fetching
data and requires less metadata. However, coarse granularity
may consume overly high bandwidth by over-fetching which
can be detrimental to workloads with poor spatial locality.
Finer granularity on the other hand, utilizes bandwidth more
efficiently, however, it requires more metadata and does not
reap the benefits of pre-fetching. Figure 1 shows that the
amount of data that was fetched by a DRAM cache but not
used increases with cache line size and can be as high as
26% on average1. For migration schemes similar trade-offs
appear with regard to the migration aggressiveness. Overly
aggressive migration schemes can generate excessive traffic
while less aggressive ones can miss opportunities to migrate
data in time. Another common issue for both DRAM caches
and data migration is the metadata overhead. Caches require
tag lookups while data migration requires address translation
mechanisms to locate data in the memory hierarchy. These
are always in the critical memory access path of every mem-
ory request and can hinder performance.

Figure 2 summarizes our findings from studying both
DRAM caches and migration schemes. The graph shows
the minimum, maximum and geometric mean speedup with 1
GByte of 3D-stacked DRAM, used as either part of a flat ad-
dress space with migration or as a DRAM cache, over a base-
line without 3D-stacked DRAM. For migration we studied
Mempod (MPOD) [9], LGM [10] and Chameleon (CHA) [8]
and for caches we show the results for DFC [24], Tagless [22],
and an ideal DRAM cache that has no tag lookup overheads
(IDEAL). The results show that caches in general can achieve
higher average performance than migration designs2. The
maximum performance shows how small cache line sizes can
miss opportunities for higher performance. Large cache lines,
on the other hand, can capitalize on spatial locality and have a
beneficial pre-fetching effect. The minimum performance on
the other hand shows how large cache line sizes can severely

1Average results with 1GB DRAM cache for the benchmarks de-
scribed in Section 4.
2We do not account for page faults in this evaluation.

3

1.32 1.37 1.43 1.42
1.09 1.25 1.44 1.55 1.54 1.40 1.31 1.41 1.48 1.61 1.66 1.58 1.42

0

1

2

3

4

5

Mpod CHA LGM Tagless 128 256 512 1024 2048 4096 64 128 256 512 1024 2048 4096

S
p

ee
d

u
p

Min Max GEOMEAN

DFC- Cache line sizeMigration IDEAL - Cache line size

Figure 2: Min, Max, and Geometric mean speedup of migration and DRAM cache designs.

degrade performance due to overfetching. On the contrary,
migration schemes do not have that risk as they do not bring
in all data eagerly. Moreover, the overheads of tag lookups
for caches are apparent when comparing the IDEAL DRAM
cache with a realistic one (DFC) at the same cache line size;
these overheads are more profound in smaller cache lines.

The above observations motivate our design choice as fol-
lows. Using most of the 3D-stacked DRAM for migration
keeps most NM capacity for the flat address space of the
system and in addition prevents the negative performance
effects of caches with large cache lines. Using a small part
of the 3D-stacked DRAM as a cache is expected to yield
some of the caching performance benefits, responding faster
to changes of the working data set. As this cache is small, it
can afford to have small cache lines and still require a small
tag-array that fits on the processor die offering short access
latency. Moreover, our choice to use a sectored cache and
migrate data at sector granularity allows us to reduce the
metadata overheads and at the same time not waste precious
far memory bandwidth by only fetching the requested cache-
lines on cache misses. In order to put together caching and
migration efficiently, our design needs to efficiently address
some challenges. Firstly, moving data between the caching
and migration space should be done without requiring to re-
locate data within the 3D-stacked DRAM; this is achieved
using indirection as explained in the next section. In addition,
a unified mechanism to manage metadata both for caching
and migration reduces the associated overheads.

3. HYBRID CACHING AND MIGRATION
This section presents Hybrid2, our hybrid memory system

architecture which combines a DRAM cache with a flat ad-
dress space migration scheme. Our approach is to use a small
portion of the NM as the data array of a sectored DRAM
cache and combine the remaining portion of the NM with the
FM to form a flat address space.

3.1 Hybrid2 System Overview
Hybrid2 tries to exploit the best-of-both-worlds and pro-

poses architectural support to combine a DRAM Cache with
a migration scheme. The idea is to have a relatively small
sectored DRAM Cache whose tags can be kept on-chip with
reasonable cost, while the data part of the DRAM Cache is
kept in NM by utilizing a relatively small portion of NM.

Data is fetched to the DRAM cache at cacheline granularity
(e.g. 64 Bytes) while DRAM cache tags are kept at sector
granularity (e.g 2 KBytes). Upon memory accesses, the
DRAM Cache tags are checked first and in case of a miss, a
new entry for the sector is allocated in the DRAM Cache tags.
The actual data of the requested sector may reside either in
NM or FM and our scheme allocates new space in NM only

3D-stacked DRAM

Memory Controllers

Cores and private caches

LLC

D
D

R
4
 D

IM
M

s

DRAM Cache Migration Controller

Processor package

Figure 3: System Overview.

if the requested data are currently located in FM; Section 3.4
describes the details.

The NM is only logically, and not physically, split between
DRAM cache and the flat address space by using pointers
located in the DRAM cache tags. This permits a sector that is
already in NM to be simply linked to the DRAM cache tags
but also, more importantly, FM sectors that have been cached
can be migrated into NM without moving the cachelines that
have already been fetched. When a sector is evicted from the
DRAM cache then the migration mechanism decides whether
to migrate it into NM or evict it back to FM. The migration
decision is based on the cost of migrating in terms of FM
traffic as well as the number of accesses to that sector while
in the DRAM cache. Moving the migration decision to the
time when a sector is evicted from the cache removes the
migration related metadata management off the critical path,
minimizing their impact on performance. Furthermore, the
FM traffic incurred by migrations is dynamically adjusted to
the workload behaviour.

A small DRAM cache combined with coarse granularity
sectors allows the tags to be kept entirely on-chip. On-chip
tags induce only minimal latency to the critical memory ac-
cess path as all memory requests go through the DRAM cache
tag array. The tag array of the DRAM cache also stores the
remapped addresses of memory segments, acting as a cache
of the full remap tables which are stored in the NM, thus
minimizing the address translation and tag lookup overheads.
Section 3.2 details the eXtended Tag Array structure which
implements the above functionality. Several techniques and
optimizations like footprint caching and advanced prefetch-
ing, are directly applicable to Hybrid2, however such options
are mostly orthogonal and we opted not to include them in
our base design in order to clearly attribute the performance
gains to the proposed techniques.

Figure 3 presents an overview of the system we are con-
sidering in this work. The system consists of the processor,
3D-stacked DRAM and conventional DRAM. In this sys-
tem, the conventional DRAM is the FM and the 3D-stacked
DRAM is the NM. The shaded box is the DRAM Cache

4

Tag Cache State
FM

Pointer

NM

Pointer

Access

counter

Valid flag

vector

Dirty flag

vector

LRU

...

Figure 4: eXtended Tag Array Entry (XTA).

Migration Controller (DCMC). DCMC is a DRAM cache
controller which we augment with some additional structures
in order to support the migration along with the DRAM cache
functionality. The DCMC is responsible for managing the
contents of the DRAM cache, translating the addresses of
remapped sectors, selecting which sectors to migrate to NM,
and orchestrating the migrations. Our design is implemented
in the DCMC.

3.2 eXtended Tag Array
The eXtended Tag Array (XTA) is the basic component

of the DCMC. The XTA is an on-chip tag array which holds
all the tags for the DRAM cache. It is set-associative and
each set holds entries for multiple sectors with valid and dirty
flags for every cache line of each sector. The individual fields
of each entry of the XTA are shown in Figure 4. The white
fields are the conventional fields needed for a sectored cache,
these are from left to right: the tag for the sector and the
state bits for that sector which include valid and dirty bits for
every cache line. The shaded fields are additions required
for our design, these are a counter and two pointers, one to a
NM location and one to a FM location. The counter tracks
the number of accesses to the sector, and it is used to decide
whether to migrate a sector to NM when it is evicted from the
DRAM cache. The pointers facilitate the address translation
from the processor physical address of a sector to the actual
location of that sector in the memory system. Specifically,
the NM pointer points to the NM location which is allocated
to this set/way of the DRAM cache. This pointer allows us to
decouple the set and way of the DRAM cache from the phys-
ical location of the data in the NM. This indirection enables
our design to migrate data in the NM when evicted from the
DRAM cache without copying data from one NM location
to another. The FM pointer points to the physical location of
the sector in the FM when that sector is not migrated to NM
in order to avoid remap table lookups.

Figure 5 shows an example of the use of XTA entries. The
top entry corresponds to a sector that is partially present in
the DRAM cache and thus not migrated to the NM, as such,
some cache lines of that sector have been fetched to the NM,
as denoted by the valid flag vector of the XTA entry. The
dirty flag vector marks the cache lines of the sector that have
been written while in the DRAM cache. The location of that
sector in the NM is shown by the NM pointer while the FM
pointer indicates the location of the sector in FM. The bottom
entry corresponds to a sector that has been migrated entirely
to the NM and the NM pointer indicates its location. In the
latter case the FM pointer is not used and as a convention we
set all valid and dirty bits.

3.3 Memory space layout and metadata
Figure 6a shows the layout of the NM and FM, the coloured

Tag

Tag

Tag
NM

Pointer

Near Memory

FM

Pointer

eXtended Tag Array

NM Sector

FM Sector

Tag
NM

Pointer

FM

Pointer

X

Access counter Valid flag vector Dirty flag vector

1 1

1

1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

Far Memory

Figure 5: Hybrid2 XTA example.

Remap table Inverted remap table
DRAM cache Available flat address space

Flat address space

Free FM stack

Physical memory

Near Memory Far Memory

(a) Memory system logical address space layout.

Near Memory eXtended Tag Array

NM Pointers

(b) Near Memory Layout and XTA use.
Figure 6: Memory layout and reserved memory.

areas are reserved and the uncoloured area is available as a
flat address space. Note that the sectors that correspond to
each XTA entry can be located anywhere in the lined area
of NM. Figure 6b shows an example of how the DRAM
cache sectors can be spread over the NM address space and
accessed through the XTA NM pointers.

Our design allows for all-to-all address remapping for
pages in NM and FM. For this purpose we keep a remap table
and an inverted remap table stored in the NM. The remap
table stores the mappings from processor physical address to
the actual location in NM or FM where each sector is located.
The inverted remap table holds the processor physical address
for all locations in NM; this is used upon migration of blocks
out of the NM and more details are provided in Section 3.5.
The XTA also acts as a cache for the remap table entries of
FM sectors that are currently (partly or fully) in the DRAM
cache through the FM pointers shown in Figure 6b.

In addition to the remap and inverted remap table, we keep
a stack of all FM locations that currently hold no valid data
(Free-FM-Stack), this means that these sectors have been
migrated to NM but they have not been overwritten by other
data yet. The size of this stack is bound to the number of
sectors that can fit in the DRAM cache. The stack pointer as
well as a number of top entries of the Free-FM-Stack are kept
on-chip in the DCMC to avoid accessing NM. Overall, the
space required for the remapping data structures is 3.5% of
the NM capacity.

3.4 Memory access path
In Hybrid2 all memory requests go through the DCMC

which communicates with the memory controllers to access
the NM and FM. Where each request is served from depends
on the current location of the data. Since our design sup-
ports all-to-all address remapping, the data can be located
anywhere in NM or FM. Sectors that are located in the FM

5

XTA Lookup

Allocate in XTA

XTA Hit

Use NM pointer to read from NM Use FM pointer to read from FM

Use NM pointer to write to NM

Read remap table

XTA Miss

Sector in NM Sector in FM

Allocate in NMRead cache line from NM

Update XTA entry to new

Sector already in NM

Update XTA entry to new Sector

Read cache line from FM

Write cache line to NM

2

2b2b2a2a

1

1.b1.b1.a1.a

Cache line missCache line hit

Figure 7: Memory access path.

can be (partially or fully) present in the DRAM cache with
a corresponding entry in the XTA. Sectors that are located
in the NM can be either fully in the DRAM cache (there
exists an entry in the XTA for them) or not. When a request
arrives in the DCMC, the address is used to index the XTA
to determine if the sector and specific cache line is available
in the DRAM cache. There are four possible outcomes as
shown in Figure 7, these are:

1 XTA Hit: In this case, the XTA contains an entry that
matches with the requested sector. Even though there is an
entry for the sector in the XTA, the cache line requested might
be in NM 1a or not 1b.

1a XTA hit/Cache line hit: In this case the requested cache
line is located in the NM. The sector can be located either in
the NM or in the FM, either way, the requested cache line is
available in NM through the NM pointer of the XTA entry.

1b XTA hit/Cache line miss: In this case there is an entry
for the sector in the XTA but the specific cache line is not
valid; this means the sector is located in the FM and only
some cache lines have been fetched to the DRAM cache.
Then, the FM pointer is used to read the cache line from the
FM and the NM pointer is used to write it to the appropriate
location in NM.

2 XTA Miss: In this case, the XTA does not contain an
entry that matches with the requested sector. The requested
sector can be located either in the NM 2a or in the FM 2b.
To find the location of the sector in the memory system, the
remap-table is accessed using the processor physical sector
address as an index. Regardless of whether the sector is
located in NM or FM, an entry is allocated in the XTA for
that sector.

2a XTA Miss/ Sector in NM: If the sector is located in NM
then all cachelines of that sector are already in NM and the
XTA entry is updated accordingly; the NM pointer is set to
the NM location of the sector and all cachelines are marked
as valid and dirty. The FM pointer of the XTA entry is set to
zero to indicate that this sector is in NM.

2b XTA Miss/ Sector in FM: If the sector is located in
FM then we need to allocate space in the NM for the sector
and fetch the requested cache line from FM to the newly
allocated location in NM (details about the allocation process
in the NM follow in Section 3.5). Subsequently, the XTA
is updated with the new sector; the NM pointer is set to the

Increment NM counter

Yes

Lookup inverted remap

table

Lookup XTA

Pop from FM-free-stack

In DRAM cache?

Copy from NM to FM

Update remap table

No

Figure 8: Allocating a sector in NM.

newly allocated NM location; the FM pointer is set to the
FM location of the sector; the valid flag is set only for the
fetched cache line and the dirty flag depending on the request
type. Furthermore, the inverted remap table is updated with
the sector processor physical address even though this sector
is not migrated to NM yet. We do this to ensure correctness
when allocating in NM as explained in detail below. This case
requires several metadata operations, however, on average
only 9.3% of accesses to the memory system require such
handling and our evaluation shows that metadata manage-
ment has minimal impact on performance (Figure 14 – No
Remap).

3.5 Allocating NM
In case of an XTA miss where the requested sector is in

FM (2b in Figure 7) a new sector must be allocated in the
NM. In order to make space for this new sector another sector
must be migrated to FM3. For this purpose we need to first
identify the victim sector in the NM, second, find a free sector
in FM, third, copy the data from the NM sector to the FM
sector, and finally, update the remapping structures with the
new location. The process is illustrated in Figure 8.

To find a victim sector in NM we use a FIFO policy similar
to LGM and Mempod, to do this we need a counter (NM-
counter) which wraps around all available NM locations
(lined part of NM in Figure 6a) and is incremented every
time we require a new location in NM. However, the victim
NM sector might be currently assigned to the DRAM cache

3This is the common case. At boot the cache is empty so we use
a simple counter for the initially allocated NM space to the cache
(shown in Figure 6a)

6

Find LRU way

DoneMigration Decision

Sector in FM Sector in NM

Writeback dirty cache

lines to FM

Fetch non valid cache

lines from FM

Evict Migrate to NM

Update remap Table

Figure 9: Eviction from DRAM cache.

(an XTA entry NM pointer points to it). For this reason we
need to lookup the XTA for that sector’s processor physical
address. To get the processor physical address we index the
inverted remap table with the sector’s location. In case the
sector is in the XTA, we proceed with the next one until
we find one that is available. This ensures correctness as a
sector that is in the DRAM cache must not be migrated to FM.
Additionally, this provides a better replacement decision than
just FIFO, sectors that are accessed often will most probably
reside in the DRAM cache and thus not migrated to FM.

To find a free sector in FM we use the Free-FM-stack
which is stored in NM, and partially in the DCMC. Every
time a sector is migrated from FM to NM, the original FM
location is pushed on that stack. That FM location is then
available to be overwritten. After identifying the NM victim
sector location and the FM free sector location, the DCMC
copies all cache lines from the victim sector in NM to the
free sector in FM and updates the remap table accordingly.

3.6 DRAM cache evictions
The DRAM cache eviction logic is illustrated in Figure 9.

It uses a standard LRU algorithm to decide which sector to
evict. The DRAM cache can contain (1) sectors that have
already been migrated to the NM or (2) sectors that are lo-
cated in FM where some (or all) of their associated cache
lines have been fetched to NM.

When an already migrated sector has to be evicted from
the DRAM cache (case 1), all cache lines of that sector are
located in NM, therefore no data movement is required within
the NM or between NM and FM. The remap table is already
updated with the location of the evicted sector when it was
migrated to NM. The inverted remap table was updated with
the processor physical address of the evicted sector when it
was first fetched in the DRAM cache. So, we can simply
re-assign the XTA entry of the evicted sector to the newly
allocated sector.

When a sector that resides in the FM has to be evicted from
the DRAM cache (case 2), the DCMC decides whether to mi-
grate the sector to the NM or to evict it back to FM. Migrating
a sector requires fetching the cache lines not already present
in NM and updating the remap table and inverted remap ta-
ble accordingly. Evicting a sector to FM requires all dirty
cache lines to be written back to FM while no remapping data
structures need to be altered. We present the algorithm for
deciding between evicting and migrating in detail below.

Victim in FM

Comapare access

counter of sector to

the rest of the set

Lower

Migrate to NM

Calculate net cost from

number of valid and

dirty cache lines

Compare net cost to

FM access counter

Evict to FM

Higher

Lower

Higher or equal

Figure 10: Migration decision.

3.7 Migration Decision
Figure 10 illustrates the algorithm used to decide whether

to migrate a sector into NM when evicted from the DRAM
cache. It is based on the following three factors: (i) An access
counter, (ii) A cost function, (iii) The available migration
bandwidth. When a FM sector is evicted from the DRAM
cache these three factors are taken into account. The details
of each factor are explained below.

3.7.1 Access counter
For every sector in the DRAM cache we keep a counter

in the XTA which is incremented on every access to that
sector (Figure 4). On evictions, the value of the counter of
the victim sector is compared against the counters of the rest
of the sectors of the cache set. This comparison concerns
counters of few bits (9 bits for our design were enough) and
happens on evictions from the DRAM cache so it is not in
the critical path of memory accesses. In case the value of
the counter is greater or equal to all other sectors in the set,
then the sector is considered for migration. In case there is
another sector in the set with a counter value greater than the
victim sector counter then the victim sector is evicted and not
migrated. The counter is only incremented for sectors that
have not been migrated to ensure there is no starvation in a
set from NM sectors that have many accesses and therefore
not evicted from the XTA. Furthemore, to prevent starvation
from FM sectors that remain in the cache for very long peri-
ods, we ignore the sectors whose counters have reached the
maximum value.

3.7.2 Cost Function
The cost function calculates the cost of migrating a sector

to NM. The inputs to the cost function are the number of
valid and dirty cache lines of a sector. When evicting a sector
which is not migrated to NM from the DRAM cache there are
two options; either migrate the sector to NM by fetching the
rest cache lines of the sector to NM, or evict it back to FM
which requires all dirty cachelines be written-back to FM. The
number of FM accesses for each case depends on the number
of valid and dirty cachelines. Specifically, the eviction cost
(Ecost) is equal to the number of dirty cachelines which have
to be written back to FM (Ndirty). The migration cost (Mcost)

7

is equal to the total number of cache lines per sector (Nall)
minus the number of valid cachelines already in the DRAM
cache (Nvalid). Furthermore, the (Mcost) includes the cost of
swapping out a sector from NM to make room for the new
one, this cost is equal to Nall as all cache lines of the swapped-
out sector have to be written back to FM. Additionally we add
a fixed factor of one access to all migration costs to account
for the cost of updating the remap tables. Concisely, the
cost function facilitates the decision from migrating a sector
to NM by calculating the net cost (Netcost) of migration by
subtracting the eviction cost from the migration cost:

Mcost = Nall −Nvalid +Nall +1 = 2∗Nall −Nvalid +1

Ecost = Ndirty

Netcost = Mcost −Ecost = 2∗Nall −Nvalid −Ndirty +1

The Netcost can vary from 1 when all cache lines of a sector
are valid and dirty, to 2∗Nall when only one cacheline of a
sector is valid and clean when evicted from the DRAM cache.

3.7.3 Migration bandwidth
We keep a single counter (FM access counter) for all ac-

cesses to FM that are a result of processor memory requests.
This counter is incremented for every DRAM cache miss
which must be fetched from FM. The cost of migrating a
sector to NM is compared to this counter, if the migration
cost (Netcost) is smaller than the counter value then the sector
is considered for migration and the Netcost is subtracted from
the counter. In essence, it sets the upper limit to the number
of FM accesses that are allowed for migration and is reset
periodically (every 100K Cycles) to adjust to workload phase
changes.

3.8 Using more free space
Hybrid2 uses only a small part of the NM as a DRAM

cache, this is enough to reap the benefits of caches while
keeping most of the memory capacity available to the soft-
ware so as not to affect capacity limited workloads negatively.
However, Chameleon [8] has shown that not all memory is
always used by the OS. This unused memory can be utilized
by a migration mechanism to avoid unnecessary swaps and
has shown to be quite effective for Chameleon.

Although we do not consider it in this paper, Hybrid2 could
support using more free space with the help of the OS. Using
the same mechanisms as proposed by Chameleon (ISA-Alloc
and ISA-free instructions), Hybrid2 could utilize that space
and avoid copying unused sectors from NM to FM when
allocating NM (Section 3.5). To support this functionality,
we need to add more information in our remap table and
inverted remap table to indicate unused sectors. Furthermore,
the dirty state of sectors in the DRAM cache must be saved to
the respective remap tables when a sector is migrated in NM
so that, if/when the sector is eventually migrated back to FM,
it is only written back if dirty. Finally, since “valid” copies
of a sector could exist in both FM or NM, the remap table, or
some other data structure, must be able to locate both.

4. EXPERIMENTAL SETUP

In this Section we provide the details of the experimental
setup and the benchmarks used for our evaluation.
System configuration: As shown in Table 1, our system
configuration considers an eight core processor with private
L1 and L2 caches and a shared last level cache (LLC). We
evaluate memory systems that consist of 16GB DDR4 FM
and NM of 1GB, 2GB, and 4GB; that is NM to FM ratios of
1:16, 2:16 and 4:16.
Simulator: Our evaluation is performed using an in-house
simulator based on Pin [42] following the interval-based
simulation methodology [43] for the processor and cycle-
accurate modelling of the memory system using DRAM-
Sim2 [44]. We use Cacti to determine the access times for
the caches [45]. Through all of our experiments the memory
pages are allocated randomly in the HBM or DDR4 propor-
tionally to their capacity. The migration-based schemes offer
larger system memory capacity, compared to cache-based sys-
tems, and can accommodate applications with larger memory
footprints. When executing applications with large memory
footprints the cache-based systems would suffer more from
page-faults and disk swaps compared to migration-based
schemes. In our simulations we do not model page-faults
which favors cache-based schemes.
Workloads: We evaluate our design with both multipro-
grammed (MP) and multithreaded (MT) workloads. For the
multi-programmed workloads we use the SPEC2017 bench-
mark suite [46]. For the multi-threaded workloads we use the
OpenMP version of the NAS parallel benchmarks [47] [48].
For each of the NAS benchmarks we used the biggest class
that we could run in our simulator. In both cases we use
all benchmarks from each suite with memory footprint, for
the simulated portion, higher than the LLC capacity (8MB).
For the multi-programmed workloads we run eight instances
of the same benchmark at the same time ensuring they do
not share the same address space. Overall we run 21 SPEC
and 9 NAS benchmarks for a total of 30 workloads. For the
SPEC benchmarks we use simpoints to select a representative
slice of one billion instructions [49] while for the NAS bench-
marks we simulate one billion instructions for each thread
after the initialization phase. Table 2 shows the average Last
Level Cache (LLC) Misses per Kilo Instructions (MPKI),
the memory footprint, and the total memory traffic for the
simulated portion of each benchmark. For our evaluation in
Section 5 we group our 30 benchmarks in three categories of
10 workloads each based on MPKI (high, medium, and low).
While the low MPKI benchmarks do not stress the memory
system much, we choose to include all benchmarks from both
suites for completeness.

5. EVALUATION

Table 1: System configuration.
Cores 8 cores, out-of-order, 4-way issue/commit, 3.2 GHz
L1 Cache Private, 64 KB, 4-way, 1 cycle access latency
L2 Cache Private, 256 KB, 8-way, 9 cycles access latency
L3 Cache Shared 8MB, 16-way, 14 cycles access latency, non-inclusive,

non-exclusive
Near
Memory

HBM2 2GHz, 1,2,4 GB, 8 128-bit channels, 8 banks, tCAS-
tRCD-tRP: 7-7-7, RD/WR+I/O energy: 6.4pJ/bit, ACT/PRE en-
ergy: 15nJ

Far Memory
[41]

DDR4-3200, 16 GB, 2 64-bit channels, 8 banks, tCAS-tRCD-tRP:
22-22-22, RD/WR+I/O energy: 33pJ/bit, ACT/PRE energy: 15nJ

8

Table 2: Benchmark characteristics.
High MPKI

Bechmark MPKI Footprint(GB) Traffic(GB)
cg.D (MT) 90.6 7.8 43.3
sp.D (MT) 30.1 11.2 21.6
bt.D (MT) 30.1 10.7 21.3

fotonik3d (MP) 28.1 6.4 19.9
lbm (MP) 27.4 3.1 21.7

bwaves (MP) 26.8 3.3 13.8
lu.D (MT) 25.8 2.9 19.1
mcf (MP) 25.8 0.1 12.6
gcc (MP) 21.2 1.6 13.0

roms (MP) 15.5 2.3 9.7
Medium MPKI

Bechmark MPKI Footprint(GB) Traffic(GB)
mg.C (MT) 14.2 2.8 8.9

omnetpp (MP) 9.8 1.5 6.9
is.C (MT) 9.0 1.0 5.4
dc.B (MT) 8.4 4.0 8.0
ua.D (MT) 7.8 3.1 4.9

xz (MP) 5.6 0.7 4.3
parest (MP) 4.3 0.2 2.2
cactus (MP) 3.4 0.8 2.0
ft.C (MT) 3.1 0.9 2.6

cam4 (MP) 2.2 0.3 1.6
Low MPKI

Bechmark MPKI Footprint(GB) Traffic(GB)
wrf (MP) 1.4 0.4 1.1

xalanc (MP) 1.1 0.1 1.0
imagick (MP) 1.1 0.4 0.9

x264 (MP) 0.9 0.3 0.6
perlbench (MP) 0.7 0.2 0.4
blender (MP) 0.7 0.2 0.3

deepsjeng (MP) 0.3 3.4 0.2
nab (MP) 0.2 0.2 0.1
leela (MP) 0.1 0.1 0.1
namd (MP) 0.13 0.1 0.1

In this Section we present the evaluation of Hybrid2. For
our evaluation we compare against three state-of-the art mi-
gration designs and two cache designs. These are:
- Mempod (MPOD) [9]. For Mempod we performed a de-
sign space exploration on the number of MEA counters and
found the best value for our system to be 64 MEA counters
with 50µs intervals.
- Chameleon (CHA) [8]. For Chameleon the K parameter
value for our memory system characteristics is 14. Addition-
ally, we allow the same NM capacity our design uses as a
DRAM cache to be used in Chameleon’s cache mode.
- LLC-guided data migration (LGM) [10]. For LGM we
performed a design space exploration on the migration high
Watermark and found that the best performance is achieved
at 256 with 50µs intervals.
- Tagless DRAM cache (TAGLESS) [22]. For the Tagless
DRAM cache, we optimistically do not model any operating
system overheads.
- Decoupled Fused Cache (DFC) [24]. For DFC we found
the best performance is achieved at a cacheline size of 1
KByte and compare against this configuration.

For Mempod, LGM, and Chameleon we adjust the size of
their respective remap cache to be equal to that of the XTA in
Hybrid2 for a fair comparison. All our results are normalized
to a Baseline system without 3D-stacked DRAM.

5.1 Design space exploration.
Hybrid2 can be configured with any size of DRAM cache,

sector size, and cache line size. These design choices affect

1.06
1.34

1.54 1.48

1.02
1.29

1.49 1.44 1.35
1.54 1.50

0.0

0.5

1.0

1.5

2.0

G
eo

m
ea

n
 S

p
ee

d
u

p

Figure 11: Design space exploration, Geometric mean
speedup over baseline for different Hybrid2 configurations.

performance as well as the size of the XTA. To have a design
proportional to the evaluated system, we limit the XTA size
to 512 KBytes and explore all possible configurations within
this limit. A bigger XTA or a bigger remap cache for the
migration designs would incur higher access latency. Furter-
more, a 512 KByte remap cache has been shown to avert
most remap table accesses for Mempod and LGM [10]. We
examine DRAM cache sizes of 64 MBytes and 128 MBytes,
sectors of 2 Kbytes and 4KBytes, and cache lines of 64,128,
256, and 512 Bytes all with 16-way associativity.

Figure 11 shows the results of our design space explo-
ration for all combinations of the above mentioned param-
eters. Through this design space exploration we find that
the best performance is achieved with 256 Byte cache lines.
Smaller cachelines miss the opportunity to exploit spatial
locality and pre-fetching. Larger cache lines over-fetch and
decrease performance. So, a cache line of 256 Bytes is a good
compromise between spatial locality and bandwidth waste
as 90% of the data fetched are used on average (Figure 1).
For the same DRAM cache size and cache line size, 2 KByte
sectors perform better than 4 KByte sectors. Bigger sectors
decrease address translation overheads while smaller ones use
NM space better. Our design achieves its best performance
at 64 MBytes DRAM cache with 2 KByte sectors and 256
Byte cache lines. For the rest of this evaluation we present
our results for 64 MByte cache with 2 KByte sectors and 256
Byte cache lines.

5.2 Performance
Figures 12a, 12b, and 12c show the geometric mean

speedup for all MPKI classes as well as the geometric mean
of all benchmarks for three different NM to FM ratios (1:16 ,
2:16 , 4:16) over a baseline without NM. From the results we
see that all designs benefit from larger NM:FM ratios.

For High MPKI benchmarks Hybrid2 outperforms all other
designs by at least 6.8% on average for the 1GB NM case
(1:16 ratio), outperforms all other designs by at least 8.6%
on average for the 2GB NM case (2:16 ratio), matches the
best performing cache scheme (TAGLESS) for the 4GB NM
case (4:16 ratio). For all NM:FM ratios, Hybrid2 outperforms
migration schemes by at least 8.4% on average.

For Medium MPKI benchmarks, Hybrid2 again clearly
outperforms all migration schemes, however, caches gain
a performance advantage as a larger portion of the memory
footprint of the benchmarks fits in the cache space. This effect
is even more pronounced in bigger NM sizes.

0

1
.7

0

1
.3

3

1
.0

1 1
.3

1
8

1
.7

3

1
.4

2

1
.0

5 1
.3

7
1

1
.9

9

1
.4

1

1
.0

4 1
.4

2
9

2
.0

5

1
.4

7

0
.9

5 1
.4

1
7

2
.0

2

1
.7

0

1
.0

8 1
.5

4
7

2
.1

9

1
.5

9

1
.0

5 1
.5

4
2

0.0

0.5

1.0

1.5

2.0

2.5

High Medium Low All

G
eo

m
ea

n
 S

p
ee

d
u

p

MPKI

MPOD CHA LGM TAGLESS DFC HYBRID2

(a) Geometric mean speedup over baseline for 1GB NM (5.9% more avail-
able memory than caches).

1
.8

3

1
.3

7

1
.0

2 1
.3

6
6

1
.9

1

1
.5

1

1
.0

6 1
.4

4
9

2
.0

8

1
.4

5

1
.0

5 1
.4

6
8

2
.1

9

1
.9

9

0
.9

8

1
.6

2
4

2
.0

4

1
.7

7

1
.0

8 1
.5

4
8

2
.3

8

1
.6

4

1
.0

6

1
.6

0
3

0.0

0.5

1.0

1.5

2.0

2.5

High Medium Low All

G
eo

m
ea

n
 S

p
ee

d
u

p

MPKI

MPOD CHA LGM TAGLESS DFC HYBRID2

(b) Geometric mean of the speedup over baseline for 2GB NM (12.1% more
available memory than caches).

1
.9

5

1
.4

3

1
.0

3 1
.4

2
1

2
.1

5

1
.5

8

1
.0

7 1
.5

3
4

2
.2

6

1
.5

5

1
.0

6 1
.5

4
5

2
.4

4

2
.0

8

1
.0

3

1
.7

3
62

.0
5

1
.7

9

1
.0

7

1
.5

7
4

2
.4

5

1
.7

0

1
.0

7

1
.6

4
4

0.0

0.5

1.0

1.5

2.0

2.5

High Medium Low All

G
eo

m
ea

n
 S

p
ee

d
u

p

MPKI

MPOD CHA LGM TAGLESS DFC HYBRID2

(c) Geometric mean of the speedup over baseline for 4GB NM (24.6% more
available memory than caches).

Figure 12: Geometric mean of the speedup over baseline for
high, medium, low MPKI, and all benchmarks for NM sizes
of 1GB, 2GB and 4GB.

For Low MPKI benchmarks, all designs perform similarly
except for the TAGLESS cache which suffers at benchmarks
with low spatial locality like deepsjeng.

-Overall, for all benchmarks classes and NM:FM ratios,
Hybrid2 outperforms the competing migration schemes and
performs similarly to caches even though our comparison is
conservative since we do not take page-faults into account
that would degrade the performance of caches more severely
than migration schemes.

For the rest of this Section we present detailed results for
the 1:16 NM:FM ratio as it stresses all designs more due
to the smaller NM size which is smaller than the memory
footprint of most benchmarks.

Figure 13 shows the speedup achieved over a baseline with-
out NM for Hybrid2 and all migration and cache designs for
the 1:16 NM to FM ratio. The benchmarks are sorted by
MPKI. Hybrid2 performs consistently well for benchmakrs
with high MPKI and big memory footprints like cg.D, sp.D,
cg.D and fotonik3d. For Medium MPKI benchmarks Hybrid2

achieves 6.5% lower speedup than the best DRAM cache
while outperforming all other competing designs. For low
MPKI workloads all designs achieve similarly low speedups
as there is not enough room for improvement. Notice how

large cacheline sizes can severely degrade performance for
benchmarks with limited spatial locality. For example, the
Tagless DRAM cache degrades the performance of omntepp
and deepsjeng to 1/5 of the baseline. Hybrid2 only shows
minimal performance degradation for dc.B and deepsjeng.
For dc.B all designs show little difference from the Baseline
performance because of the streaming nature of its memory
accesses which provide little potential for data reuse. For
deepsjeng none of the evaluated designs surpassed the Base-
line as it is characterized by low memory intensity with a
wide memory footprint and very limited spatial locality, still
Hybrid2 does not degrade performance significantly.

5.2.1 Performance breakdown
The performance of Hybrid2 can be attributed to both the

DRAM cache and the migration components as well as the
elimination of address translation overheads. To show the
effects of each factor above we conducted a series of ex-
periments. Figure 14 shows the geometric mean speedup
achieved for a number of different alternatives for Hybrid2.
From left to right are: Cache-only shows the performance
of a 64 MByte sectored DRAM cache alone, without any
data migration or address translation overheads. Migr-All and
Mirg-None show the performance of Hybrid2 if we choose
to migrate All data when evicted from the DRAM cache, or
None, respectively. No-Remap shows the effects of removing
all address translation overheads from our design, that is we
assume all accesses to the remap table, inverted remap table,
and Free-FM-Stack complete instantly. The DRAM cache
alone (Cache-Only), achieves a significant speedup overall,
equal to the best migration design in our evaluation (LGM).
This shows that even a small DRAM cache can be very bene-
ficial to performance. Hybrid2 however performs better than
Cache-Only and both Migr-None and Mirg-All. This quan-
tifies the contribution of our migration selection criteria to
performance improvement. Furthermore, Hybrid2 performs
only marginally lower (2.5%) than No-Remap, this shows
that our design effectively tackles the address translation
overheads of data migration. Overall the address remaping
structures in NM account for only 4.1% of the high-band-
width NM traffic and 3.5% of NM space. This point is also
shown by the small difference in performance between Cache-
Only and Migr-None, the difference between these two points
is solely the overheads imposed by address translation.

5.3 NM Utilization
Figure15 shows the geometric mean of the percentage of

processor memory requests that were served by the NM for
high, medium, and low MPKI benchmark groups. A higher
percentage does not necessarily correlate with higher perfor-
mance, for example we see that the Tagless DRAM cache
shows the highest percentage of all designs with 90% of all re-
quests served from NM while its performance is considerably
lower. Hybrid2 achieves an average of 84% of processor re-
quests served from NM with higher percentages for High and
Medium MPKI workloads. DFC achieves a slightly higher
ratio, with 85% of requests served from NM on average for
all benchmarks. Hybrid2 achieves higher rates than other mi-
gration designs in almost all benchmarks. Mempod achieves
the worst ratio with 40% on average, LGM comes next with

1

0

1

2

3

4

5

cg
.D

sp
.D

b
t.

D

fo
to

n
ik

3
d

lb
m

b
w

av
e
s

lu
.D

m
cf

g
cc

ro
m

s

m
g
.C

o
m

n
et

p
p

is
.C

d
c.

B

u
a.

D x
z

p
ar

es
t

ca
c
tu

s

ft
.C

ca
m

4

w
rf

x
al

an
c

im
ag

ic
k

x
2
6
4

p
er

lb
en

ch

b
le

n
d
er

d
ee

p
sj

en
g

n
ab

le
el

a

n
am

d

S
p

ee
d

u
p

Benchmark

MPOD CHA LGM TAGLESS DFC HYBRID2

High MPKI Low MPKIMedium MPKI

Figure 13: Speedup over baseline.

1.43 1.41 1.39
1.58 1.54

0.0

0.5

1.0

1.5

G
eo

m
ea

n
 S

p
ee

d
u

p

Figure 14: Hybrid2 Performance factors breakdown.

4
2
%

3
9
%

3
9
%

4
0
%

7
7
%

7
3
%

5
9
% 6

9
%

5
7
%

5
3
%

5
3
%

5
4
%

9
3
%

9
0
%

8
8
%

9
0
%

8
8
%

8
5
%

8
4
%

8
5
%

8
8
%

8
8
%

7
6
% 8
4
%

0.0

0.2

0.4

0.6

0.8

1.0

High Medium Low All

S
er

v
ed

 f
ro

m
 N

M
 %

MPKI

MPOD CHA LGM TAGLESS DFC HYBRID2

Figure 15: Geometric mean of normalized processor requests
served from NM for benchmarks with high, medium, and low
MPKI.

0
.6

1 0
.7

5

1
.1

9

0
.8

1

0
.7

9

0
.7

2

0
.9

7

0
.8

2

0
.4

0

0
.6

3 0
.8

1

0
.5

9

0
.4

1

0
.4

7

0
.7

6

0
.5

3

0
.3

5

0
.3

5 0
.5

3

0
.4

00
.5

7

0
.6

3

0
.8

4

0
.6

7

0.0

0.5

1.0

High Medium Low All

G
eo

m
ea

n
 F

M
 t

ra
ff

ic

MPKI

MPOD CHA LGM TAGLESS DFC HYBRID2

Figure 16: Geometric mean of normalized FM traffic for
benchmarks with high, medium, and low MPKI.

0
.7

4

0
.7

8

1
.3

0

0
.9

1

1
.4

6

1
.4

0

1
.5

6

1
.4

7

0
.7

9

0
.8

8 1
.1

4

0
.9

2

1
.5

4

1
.5

8

2
.0

7

1
.7

2

1
.5

9

1
.5

1 1
.7

1

1
.6

0

1
.5

5

1
.6

8 1
.8

6

1
.6

9

0.0

0.5

1.0

1.5

2.0

High Medium Low All

G
eo

m
ea

n
 N

M
 t

ra
ff

ic

MPKI

MPOD CHA LGM TAGLESS DFC HYBRID2

Figure 17: Geometric mean of normalized NM traffic for
benchmarks with high, medium, and low MPKI.
54% because its bandwidth saving mechanism allows it to
migrate more aggressively, and finally Chameleon achieves
the best of all migration designs at 69% on average.

5.4 Traffic
Figure 16 shows the FM traffic normalized to the base-

line for each benchmark group. The advantage of caches
over migration is visible from the overall lower traffic in
FM. This comes from the intrinsically lower cost of copying

1
.1

0

1
.2

3

1
.7

6

1
.3

3

1
.6

8

1
.6

3 1
.8

9

1
.7

3

1
.0

5 1
.2

6 1
.5

4

1
.2

7

1
.3

9

1
.4

6

1
.9

8

1
.5

9

1
.4

6

1
.3

8 1
.6

2

1
.4

8

1
.5

0 1
.6

8 1
.9

1

1
.6

9

0.0

1.0

2.0

High Medium Low All

G
eo

m
ea

n
 M

em
o
ry

D
y
n

am
ic

 E
n

er
g
y

MPKI

MPOD CHA LGM TAGLESS DFC HYBRID2

Figure 18: Geometric mean of normalized dynamic memory
energy consumption for benchmarks with high, medium, and
low MPKI.

against swapping. Hybrid2 incurs lower FM traffic compared
to Mempod and Chameleon but higher compared to LGM.
LGM however, is optimized to economize bandwidth as its
migration decisions are based on the observed spatial local-
ity of memory segments. For high MPKI workloads LGM
produces FM traffic similar to the caches. Overall Hybrid2

produces 67% of the FM traffic compared to the baseline.
Figure 17 shows the geometric mean of NM traffic, nor-

malized to the memory traffic of the baseline system for our
benchmark groups. Hybrid2 produces slightly higher NM
traffic than the caches although the percentage of requests
served from NM is lower. This is because the NM traffic
includes the accesses to the address translation data struc-
tures. Even though these accesses have minimal impact on
performance in Hybrid2, they still incur some traffic to the
NM. The low values of NM traffic for Mempod and LGM
are explained by the few processor requests that are served
from NM (Figure 15).

5.5 Energy consumption
Figure 18 shows the normalized geometric mean of the

dynamic memory system energy consumption. Hybrid2 con-
sumes 2.3% less dynamic energy than Chameleon and about
30% higher than the other migration schemes, mostly due to
higher NM traffic, which is however capitalized in better per-
formance. Compared to DRAM caches, Hybrid2 consumes
about 6.3-14.2% more dynamic memory energy mostly due
to higher FM traffic, which is a reasonable price to pay for
larger memory capacity. We do not report processor energy
consumption or memory static energy consumption (refresh
energy) as these are mostly proportional to the runtime, which
is in general better for Hybrid2.

6. CONCLUSIONS
This paper presented Hybrid2, a hybrid memory system

that combines caching and migration. Hybrid2 considers a

2

high bandwidth near memory complemented with a larger,
lower bandwidth, far memory. A small fraction of the near
memory is reserved to host a sectored DRAM cache. The re-
maining near memory capacity is available to the flat address
space of memory system and implements transparent data
migration in HW. The small DRAM cache is used to select
candidate data for migration in NM and permits efficient mi-
gration via indirection that avoids copying data between the
cache and the flat address space. The metadata required for
caching and migration is supported by a common mechanism
which alleviates the corresponding overheads. Compared to
migration schemes, Hybrid2 performs 6.4-9.1% better and,
compared to DRAM caches, it offers 5.9-24.6% more main
memory capacity giving away only 0.3-5.1% of performance
without taking into account the impact of page faults.

7. REFERENCES
[1] Wm. A. Wulf and Sally A. McKee. Hitting the memory wall:

Implications of the obvious. SIGARCH C.A. News, 23(1):20–24, 1995.

[2] Junwhan Ahn, Sungjoo Yoo, Onur Mutlu, and Kiyoung Choi.
Pim-enabled instructions: a low-overhead, locality-aware
processing-in-memory architecture. In ISCA-42, pages 336–348, 2015.

[3] J. Ahn, S. Hong, S. Yoo, O. Mutlu, and K. Choi. A scalable
processing-in-memory accelerator for parallel graph processing. In
ISCA-42, pages 105–117, 2015.

[4] Milan Pavlovic, Yoav Etsion, and Alex Ramirez. On the memory
system requirements of future scientific applications: Four
case-studies. In IISWC, pages 159–170, 2011.

[5] Brian M. Rogers, Anil Krishna, Gordon B. Bell, Ken Vu, Xiaowei
Jiang, and Yan Solihin. Scaling the bandwidth wall: Challenges in and
avenues for cmp scaling. In ISCA-36, pages 371–382, 2009.

[6] Y. Zhou and D. Wentzlaff. Mitts: Memory inter-arrival time traffic
shaping. In ISCA-43, pages 532–544, 2016.

[7] J. Sim, A. R. Alameldeen, Z. Chishti, C. Wilkerson, and H. Kim.
Transparent hardware management of stacked dram as part of memory.
In 2014 47th Annual IEEE/ACM International Symposium on
Microarchitecture, pages 13–24, Dec 2014.

[8] J. B. Kotra, H. Zhang, A. R. Alameldeen, C. Wilkerson, and M. T.
Kandemir. Chameleon: A dynamically reconfigurable heterogeneous
memory system. In 2018 51st Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO), pages 533–545, Oct 2018.

[9] A. Prodromou, M. Meswani, N. Jayasena, G. Loh, and D. M. Tullsen.
Mempod: A clustered architecture for efficient and scalable migration
in flat address space multi-level memories. In 2017 IEEE International
Symposium on High Performance Computer Architecture (HPCA),
pages 433–444, Feb 2017.

[10] Evangelos Vasilakis, Vassilis Papaefstathiou, Pedro Trancoso, and
Ioannis Sourdis. LLC-guided data migration in hybrid memory
systems. In 2019 IEEE International Parallel and Distributed
Processing Symposium (IPDPS), May 2019.

[11] J. H. Ryoo, M. R. Meswani, A. Prodromou, and L. K. John. Silc-fm:
Subblocked interleaved cache-like flat memory organization. In 2017
IEEE International Symposium on High Performance Computer
Architecture (HPCA), pages 349–360, Feb 2017.

[12] A. Kokolis, D. Skarlatos, and J. Torrellas. Pageseer: Using page walks
to trigger page swaps in hybrid memory systems. In 2019 IEEE
International Symposium on High Performance Computer Architecture
(HPCA), pages 596–608, Feb 2019.

[13] G. H. Loh and M. D. Hill. Efficiently enabling conventional block
sizes for very large die-stacked dram caches. In 2011 44th Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO),
pages 454–464, Dec 2011.

[14] G. Loh and M. D. Hill. Supporting very large dram caches with
compound-access scheduling and missmap. IEEE Micro, 32(3):70–78,
May 2012.

[15] D. Jevdjic, G. H. Loh, C. Kaynak, and B. Falsafi. Unison cache: A
scalable and effective die-stacked dram cache. In 2014 47th Annual
IEEE/ACM International Symposium on Microarchitecture, pages
25–37, Dec 2014.

[16] L. Zhao, R. Iyer, R. Illikkal, and D. Newell. Exploring dram cache
architectures for cmp server platforms. In 2007 25th International
Conference on Computer Design, pages 55–62, Oct 2007.

[17] S. Mittal and J. S. Vetter. A survey of techniques for architecting dram
caches. IEEE Transactions on Parallel and Distributed Systems,
27(6):1852–1863, June 2016.

[18] Cheng-Chieh Huang, Rakesh Kumar, Marco Elver, Boris Grot, and
Vijay Nagarajan. C3d: Mitigating the numa bottleneck via coherent
dram caches. In The 49th Annual IEEE/ACM International Symposium
on Microarchitecture, MICRO-49, pages 36:1–36:12, Piscataway, NJ,
USA, 2016. IEEE Press.

[19] C. Chou, A. Jaleel, and M. K. Qureshi. Candy: Enabling coherent
dram caches for multi-node systems. In 2016 49th Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO), pages 1–13,
Oct 2016.

[20] C. Huang and V. Nagarajan. Atcache: Reducing dram cache latency
via a small sram tag cache. In 2014 23rd International Conference on

3

Parallel Architecture and Compilation Techniques (PACT), pages
51–60, Aug 2014.

[21] H. Jang, Y. Lee, J. Kim, Y. Kim, J. Kim, J. Jeong, and J. W. Lee.
Efficient footprint caching for tagless dram caches. In 2016 IEEE
International Symposium on High Performance Computer Architecture
(HPCA), pages 237–248, March 2016.

[22] Y. Lee, J. Kim, H. Jang, H. Yang, J. Kim, J. Jeong, and J. W. Lee. A
fully associative, tagless dram cache. In 2015 ACM/IEEE 42nd Annual
International Symposium on Computer Architecture (ISCA), pages
211–222, June 2015.

[23] C. Chou, A. Jaleel, and M. K. Qureshi. Bear: Techniques for
mitigating bandwidth bloat in gigascale dram caches. In 2015
ACM/IEEE 42nd Annual International Symposium on Computer
Architecture (ISCA), pages 198–210, June 2015.

[24] Evangelos Vasilakis, Vassilis Papaefstathiou, Pedro Trancoso, and
Ioannis Sourdis. Decoupled fused cache: Fusing a decoupled llc with a
dram cache. ACM Trans. Archit. Code Optim., 15(4):65:1–65:23,
January 2019.

[25] Djordje Jevdjic, Stavros Volos, and Babak Falsafi. Die-stacked dram
caches for servers: Hit ratio, latency, or bandwidth? have it all with
footprint cache. In Proceedings of the 40th Annual International
Symposium on Computer Architecture, ISCA ’13, pages 404–415,
New York, NY, USA, 2013. ACM.

[26] M. K. Qureshi and G. H. Loh. Fundamental latency trade-off in
architecting dram caches: Outperforming impractical sram-tags with a
simple and practical design. In 2012 45th Annual IEEE/ACM
International Symposium on Microarchitecture, pages 235–246, Dec
2012.

[27] Nagendra Gulur, Mahesh Mehendale, R. Manikantan, and
R. Govindarajan. Bi-modal dram cache: A scalable and effective
die-stacked dram cache. In Proceedings of the 47th Annual IEEE/ACM
International Symposium on Microarchitecture, MICRO-47, pages
38–50, Washington, DC, USA, 2014. IEEE Computer Society.

[28] S. Franey and M. Lipasti. Tag tables. In 2015 IEEE 21st International
Symposium on High Performance Computer Architecture (HPCA),
pages 514–525, Feb 2015.

[29] C. C. Chou, A. Jaleel, and M. K. Qureshi. Cameo: A two-level
memory organization with capacity of main memory and flexibility of
hardware-managed cache. In 2014 47th Annual IEEE/ACM
International Symposium on Microarchitecture, pages 1–12, Dec 2014.

[30] Hybrid Memory Cube Consortium. Hybrid Memory Cube
Specification 2.1. http://hybridmemorycube.org/. [Online].

[31] H. Jun, J. Cho, K. Lee, H. Son, K. Kim, H. Jin, and K. Kim. Hbm
(high bandwidth memory) dram technology and architecture. In 2017
IEEE International Memory Workshop (IMW), pages 1–4, May 2017.

[32] JEDEC. Wide I/O Single Data Rate (Wide I/O SDR). https:
//www.jedec.org/standards-documents/docs/jesd229.
[Online].

[33] Micron. NVDIMM.
https://www.micron.com/products/dram-modules/nvdimm.
[Online].

[34] H. . P. Wong, S. Raoux, S. Kim, J. Liang, J. P. Reifenberg,
B. Rajendran, M. Asheghi, and K. E. Goodson. Phase change memory.
Proceedings of the IEEE, 98(12):2201–2227, Dec 2010.

[35] F. T. Hady, A. Foong, B. Veal, and D. Williams. Platform storage
performance with 3d xpoint technology. Proceedings of the IEEE,
105(9):1822–1833, Sep. 2017.

[36] Xiangyao Yu, Christopher J. Hughes, Nadathur Satish, Onur Mutlu,
and Srinivas Devadas. Banshee: Bandwidth-efficient dram caching via
software/hardware cooperation. In Proceedings of the 50th Annual
IEEE/ACM International Symposium on Microarchitecture,
MICRO-50 ’17, pages 1–14, New York, NY, USA, 2017. ACM.

[37] Chiachen Chou, Aamer Jaleel, and Moinuddin Qureshi. Batman:
Techniques for maximizing system bandwidth of memory systems
with stacked-dram. In Proceedings of the International Symposium on
Memory Systems, MEMSYS ’17, pages 268–280, New York, NY,
USA, 2017. ACM.

[38] Intel. Allocate Memory Efficiently on an Intel Xeon Phi Processor.
https://software.intel.com/sites/default/files/
managed/5f/5e/MCDRAM_Tutorial.pdf.

[39] M. R. Meswani, S. Blagodurov, D. Roberts, J. Slice, M. Ignatowski,
and G. H. Loh. Heterogeneous memory architectures: A hw/sw
approach for mixing die-stacked and off-package memories. In 2015
IEEE 21st International Symposium on High Performance Computer
Architecture (HPCA), pages 126–136, Feb 2015.

[40] Richard M. Karp, Scott Shenker, and Christos H. Papadimitriou. A
simple algorithm for finding frequent elements in streams and bags.
ACM Trans. Database Syst., 28(1):51–55, March 2003.

[41] Micron. DDR4 SDRAM datasheet MT40A1G8SA-062E.
https://www.micron.com/products/dram/ddr4-
sdram/part-catalog/mt40a1g8sa-062e.

[42] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur
Klauser, Geoff Lowney, Steven Wallace, Vijay Janapa Reddi, and Kim
Hazelwood. Pin: Building customized program analysis tools with
dynamic instrumentation. In Proceedings of the 2005 ACM SIGPLAN
Conference on Programming Language Design and Implementation,
PLDI ’05, pages 190–200, New York, NY, USA, 2005. ACM.

[43] D. Genbrugge, S. Eyerman, and L. Eeckhout. Interval simulation:
Raising the level of abstraction in architectural simulation. In HPCA -
16 2010 The Sixteenth International Symposium on High-Performance
Computer Architecture, pages 1–12, Jan 2010.

[44] P. Rosenfeld, E. Cooper-Balis, and B. Jacob. Dramsim2: A cycle
accurate memory system simulator. IEEE Computer Architecture
Letters, 10(1):16–19, Jan 2011.

[45] S. J. E. Wilton and N. P. Jouppi. Cacti: an enhanced cache access and
cycle time model. IEEE Journal of Solid-State Circuits,
31(5):677–688, May 1996.

[46] R. Panda, S. Song, J. Dean, and L. K. John. Wait of a decade: Did spec
cpu 2017 broaden the performance horizon? In 2018 IEEE
International Symposium on High Performance Computer Architecture
(HPCA), pages 271–282, Feb 2018.

[47] D. H. Bailey, E. Barszcz, J. T. Barton, D. S. Browning, R. L. Carter,
L. Dagum, R. A. Fatoohi, P. O. Frederickson, T. A. Lasinski, R. S.
Schreiber, H. D. Simon, V. Venkatakrishnan, and S. K. Weeratunga.
The nas parallel benchmarks—summary and preliminary results.
In Proceedings of the 1991 ACM/IEEE Conference on
Supercomputing, Supercomputing ’91, pages 158–165, New York, NY,
USA, 1991. ACM.

[48] SNU. SNU NPB Suite.
http://aces.snu.ac.kr/software/snu-npb/.

[49] Timothy Sherwood, Erez Perelman, Greg Hamerly, and Brad Calder.
Automatically characterizing large scale program behavior. In
Proceedings of the 10th International Conference on Architectural
Support for Programming Languages and Operating Systems,

ASPLOS X, pages 45–57, New York, NY, USA, 2002. ACM.

4

http://hybridmemorycube.org/
https://www.jedec.org/standards-documents/docs/jesd229
https://www.jedec.org/standards-documents/docs/jesd229
https://www.micron.com/products/dram-modules/nvdimm
https://software.intel.com/sites/default/files/managed/5f/5e/MCDRAM_Tutorial.pdf
https://software.intel.com/sites/default/files/managed/5f/5e/MCDRAM_Tutorial.pdf
https://www.micron.com /products/dram/ddr4-sdram/ part-catalog/mt40a1g8sa-062e
https://www.micron.com /products/dram/ddr4-sdram/ part-catalog/mt40a1g8sa-062e
http:// aces.snu.ac.kr /software/snu-npb/

	Introduction
	Related Work and Motivation
	Related work on DRAM caches
	Related work on data migration
	Motivation

	Hybrid Caching and Migration
	Hybrid2 System Overview
	eXtended Tag Array
	Memory space layout and metadata
	Memory access path
	Allocating NM
	DRAM cache evictions
	Migration Decision
	Access counter
	Cost Function
	Migration bandwidth

	Using more free space

	Experimental Setup
	Evaluation
	Design space exploration.
	Performance
	Performance breakdown

	NM Utilization
	Traffic
	Energy consumption

	Conclusions
	References

