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Abstract
The bandwidth of traditional DRAM is pin limited and so does not scale well with
the increasing demand of data intensive workloads. 3D-stacked DRAM can alleviate
this problem providing substantially higher bandwidth to a processor chip. However,
the capacity of 3D-stacked DRAM is not enough to replace the bulk of the memory
and therefore it is used together with off-chip DRAM in a hybrid memory system,
either as a DRAM cache or as part of a flat address space with support for data
migration. The performance of both above alternative designs is limited by their
particular overheads. This thesis proposes new designs that improve the performance
of hybrid memory systems. It does so first by alleviating the overheads of current
approaches and second, by proposing a new design that combines the best attributes
of DRAM caching and data migration while addressing their respective weaknesses.
The first part of this thesis focuses on improving the performance of DRAM caches.
Besides the unavoidable DRAM access to fetch the requested data, tag access is in the
critical path adding significant latency and energy costs. Existing approaches are not
able to remove these overheads and in some cases limit DRAM cache design options.
To alleviate the tag access overheads of DRAM caches this thesis proposes Decoupled
Fused Cache (DFC), a DRAM cache design that fuses DRAM cache tags with the
tags of the on-chip Last Level Cache (LLC) to access the DRAM cache data directly
on LLC misses. Compared to current state-of-the-art DRAM caches, DFC improves
system performance by 11% on average. Finally, DFC reduces DRAM cache traffic
by 25% and DRAM cache energy consumption by 24.5%. The second part of this
thesis focuses on improving the performance of data migration. Data migration has
significant performance potential, but also entails overheads which may diminish its
benefits or even degrade performance. These overheads are mainly due to the high
cost of swapping data between memories which also makes selecting which data to
migrate critical to performance. To address these challenges of data migration this
thesis proposes LLC guided Data Migration (LGM). LGM uses the LLC to predict
future reuse and select memory segments for migration. Furthermore, LGM reduces
the data migration traffic overheads by not migrating the cache lines of memory
segments which are present in the LLC. LGM outperforms current state-of-the art data
migration, improving system performance by 12.1% and reducing memory system
dynamic energy by 13.2%. DRAM caches and data migration offer different tradeoffs
for the utilization of 3D-stacked DRAM but also share some similar challenges. The
third part of this thesis aims to provide an alternative approach to the utilization of
3D-stacked DRAM combining the strengths of both DRAM caches and data migration
while eliminating their weaknesses. To that end, this thesis proposes Hybrid2, a hybrid
memory system design which uses only a small fraction of the 3D-stacked DRAM
as a cache and thus does not deny valuable capacity from the memory system. It
further leverages the DRAM cache as a staging area to select the data most suitable for
migration. Finally, Hybrid2 alleviates the metadata overheads of both DRAM caches
and migration using a common mechanism. Depending on the system configuration,
Hybrid2 on average outperforms state-of-the-art migration schemes by 6.4% to 9.1%,
compared to DRAM caches Hybrid2 gives away on average only 0.3%, to 5.3% of
performance offering up to 24.6% more main memory capacity.
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Chapter 1

Introduction

The performance of computer systems is largely dominated by their memory hier-
archy [1]. Besides latency, memory bandwidth can be a limiting factor for many
workloads [2–5]. On one hand, data intensive applications as well as the large number
of cores and specialized accelerators integrated on a chip increase the demand for
higher data rates. On the other hand, memory bandwidth is pin limited [2, 6] and is
therefore more difficult to scale [5].

3D-stacking technology can be used to increase memory bandwidth. In particular,
3D-stacked DRAM can be placed near the processor die offering substantially higher
bandwidth than off-chip DRAM. 3D-stacked DRAM though has limited capacity and
often needs to be complemented with a larger off-chip DRAM that has however lower
bandwidth. Currently, there are two approaches to integrate both 3D-stacked DRAM
and off-chip DRAM to form a hybrid memory system: the first one is a flat address-
space memory system supporting migration between the two types of DRAM [7–11];
the second one is to use 3D-stacked DRAM as a cache [12–26].

DRAM caches have shown excellent potential in capturing the spatial and temporal
data locality of applications. By copying the most recently accessed data to the 3D-
stacked DRAM, they faithfully follow the working set of applications. Due to the
size of DRAM caches, traditional (on-chip) cache architectures are sub-optimal for
organizing DRAM caches, making their performance far from ideal.

As opposed to DRAM caches, data migration keeps 3D-stacked DRAM capacity
available to the system. This means that data cannot be just copied to 3D-stacked
DRAM as in caches, but instead has to be swapped which incurs double the overhead
of copying. To amortize the overheads of swapping, it is important to select for
migration only a subset of the accessed data; preferably the ones with the highest
potential for future reuse. Reducing the swapping overheads as well as selecting the
most promising data to migrate are critical factors for the performance of systems that
support data migration.

This thesis addresses the overheads and limitations of hybrid memory systems
by proposing more efficient designs for systems that utilize 3D-stacked DRAM in
addition to conventional off-chip DRAM.

The rest of this introductory Chapter is organized as follows: The problem state-
ment is presented in Section 1.1 followed by a discussion of the objectives and
contributions of this thesis in Chapter 1.2.

1
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Figure 1.1: Potential performance of DRAM caches and Data migration.

1.1 Problem Statement

Existing hybrid memory systems have significant overheads that limit their perfor-
mance. DRAM caches suffer mainly from the tag lookup overheads while data
migration suffers most performance losses because of the more expensive data move-
ment it requires. Tag management of DRAM caches and data movement overheads in
data migration are the first two problems addressed in the thesis as they are the leading
causes of inefficiencies in these approaches.

Furthermore, both DRAM caches and data migration offer fixed tradeoffs in the
design of hybrid memory systems. DRAM caches waste the 3D-stacked DRAM
capacity to allow data replication, which in turn reduces the bandwidth overhead of
transferring data. Migration does not waste capacity, but this forces data swapping
between the memories wasting bandwidth. The third problem addressed in this thesis
is the lack of an alternative design that combines the benefits of DRAM caches and
data migration and reduces their overheads.

More details about each problem addressed in this thesis are provided bellow.

1.1.1 Tag Lookups in DRAM Caches

The DRAM cache tag access latency affects performance and depends on the tag
organization and management. Different design choices come with different tradeoffs
that are tightly related to the DRAM cache line size. Smaller DRAM cache lines offer
more flexibility and more efficient use of the cache bandwidth and capacity when the
application is characterized by low spatial locality. Larger DRAM cache lines offer
better prefetching and overall better performance when the workloads exhibit spatial
locality. On the other hand, smaller DRAM cache lines require more tag storage than
larger ones for the same cache size making it infeasible to store them on chip. Even
for larger DRAM cache lines, the cost of storing the tags on chip is not negligible and
it could otherwise be utilized for a larger on-chip Last Level Cache (LLC). Storing
the DRAM cache tags in DRAM is more space efficient and also allows for smaller
DRAM cache lines but results in substantially higher tag access latency as well as
increased 3D-stacked DRAM traffic.
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Figure 1.1a shows the performance overhead of tag lookups in ATCache, a current
state-of-the-art DRAM cache design [19]. An ideal DRAM cache that performs tag
lookups with zero latency would have 19% better performance. This performance gap
presents an opportunity for improving existing DRAM cache designs.

1.1.2 Data Migration Overheads and Inefficiencies

Data migration differs from caching in that it does not waste the capacity of the 3D-
stacked DRAM from the memory system. To achieve that, data migration schemes
need to swap data from off-chip to 3D-stacked DRAM instead of just copying as
caches. Swapping however, requires double the memory traffic of copying. Migration
traffic competes directly with processor memory requests for bandwidth and increases
the queuing latency, especially in off-chip DRAM, which is the memory system
bottleneck. To increase the performance of data migration it is important to reduce
the migration traffic overheads as well as to select data with good potential for future
reuse.

Figure 1.1b shows that an ideal system where all data are always found (with
zero overheads) in the high bandwidth 3D-stacked DRAM could achieve 1.8× better
performance than a current state-of-the-art data migration scheme, MemPod [9]. This
significant gap in performance is due to the migration overheads as well as due to
sub-optimal data selection of existing data migration schemes. This thesis aims to
bridge this gap by improving these aspects of data migration.

1.1.3 Copying Costs Capacity, Swapping Costs Traffic

On one hand, DRAM caches achieve high performance because they react fast to
changes in the working set, but need to waste 3D-stacked DRAM capacity to copy
data. On the other hand, migration schemes allow 3D-stacked DRAM space to be part
of the main memory, but suffer more expensive data transfers as they need to swap
data between the two parts of the hybrid memory system. As a consequence, migration
schemes need to be more selective in transferring data and become less reactive giving
away performance.

This thesis aims to propose a memory system design that reacts to working set
changes like DRAM caches while at the same time does not deny much capacity.

1.2 Thesis Objectives and Contributions

The primary objective of this thesis is to improve the performance of a hybrid memory
system that consists of 3D-stacked and off-chip DRAM. We first aim to improve
DRAM cache designs, subsequently we try to improve data migration and finally we
attempt to combine the advantages of both approaches.

1.2.1 Minimizing the Tag lookup Overheads in DRAM Caches

The first thesis objective is to improve the performance of systems that use 3D-stacked
DRAM as a cache by minimizing their tag lookup overheads. The main idea behind
this is to:
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Store information about the location of DRAM cache lines in the tag array of
the on-chip Last Level Cache (LLC) so as to access the data in the DRAM cache
directly after LLC misses.

Related Work: Several designs have been proposed aiming to reduce the DRAM
cache tag access latency, however they are not able to nullify it and some of them
introduce significant constraints to the system. One such design employs an on-chip
SRAM cache of the DRAM cache tags [19]. This reduces the average DRAM cache
tag lookup latency however it adds a constant delay to every DRAM cache access
for accessing the tag-cache and more on-chip resources are occupied for caching the
DRAM cache tags. Another technique places the DRAM cache data addresses directly
in the TLB entries [21]. Every TLB entry would then have information about the
location of the respective page in the DRAM cache. However, this requires fixing
the DRAM cache line size to the Operating System (OS) page size, which can be
inefficient for applications with low spatial locality and wasteful in terms of off-chip
bandwidth and DRAM cache space. The inefficiencies of this approach would be even
more evident in systems that use super-pages/huge-pages [27–29]. Other techniques
such as Alloy Cache and Compound Access Scheduling collocate DRAM cache data
and tags in the same DRAM row to allow faster accesses [13,24]. These designs either
require a direct mapped cache organization or customizing the cache associativity and
cacheline size to the DRAM row size. Such restrictions can impact the hit rate or
waste DRAM cache capacity.

In summary, although existing DRAM cache designs reduce the tag lookup latency,
they do so by either introducing a constant latency to all accesses, as in the case of
tag-caches, or by severely limiting critical DRAM cache parameters such as cache line
size and associativity, ultimately limiting the performance of DRAM caches.
Thesis Approach: To minimize the tag lookup overheads for DRAM caches this
thesis proposes Decoupled Fused Cache (DFC), described in Chapter 2 of this thesis.
DFC is a new DRAM cache architecture that mitigates the cost of accessing the
DRAM cache tags while enforcing minimal design restrictions. Figure 1.2 provides
a conceptual overview of our proposal. DFC takes advantage of the redundancy in
the tags within the LLC as well as across the LLC and DRAM cache tag arrays and
uses the LLC tag-array to store information about the location of data in the DRAM
cache. In the common case, this allows DFC to access the DRAM cache data array
without looking up its tags which are stored in 3D-stacked DRAM. DFC decouples
the location of LLC tags from the location of the LLC lines in the LLC data array
in a way that resembles Decoupled Sector Caches [30]. In a nutshell, an LLC tag is
associated with a DRAM cache line, which consists of several LLC lines, while the
LLC management (validity, dirty, etc.) is performed (and related information is stored)
at LLC line granularity. DFC can support a configurable (at boot time) DRAM cache
line size, which is a power-of-two multiple of the LLC line size. In essence the only
limitation of DFC is that the DRAM cache lines needs to be at least twice as large as
an LLC line.

Contrary to existing work, DFC mitigates the DRAM cache tag access overheads
without imposing significant design restrictions. More precisely, DFC does not require
any OS support, it does not limit DRAM cache associativity, it does not impose
additional overheads in every access, and does not affect LLC performance. Still, DFC
offers zero tag access overhead in the common case, and can dynamically (at boot
time) support variable DRAM cache line sizes.
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Figure 1.2: Decoupled Fused Cache (DFC) overview.

Contributions: For DRAM caches this thesis proposes Decoupled Fused Cache [31],
a new cache hierarchy which:

• Stores information about the contents of the DRAM cache in the LLC to avoid
DRAM cache tag lookups for most LLC misses.

• Supports any DRAM cache line size power-of-two multiple of a LLC cache line
(up to 4KB in our experiments), which is configurable at boot time.

• Improves performance by an average of 11% compared to a state-of-the-art
DRAM cache [19].

• Reduces DRAM cache traffic by 25% and DRAM cache energy by 24.5% versus
the current state-of-the-art.

1.2.2 Minimizing Migration Overheads and Improving Data Se-
lection

The second objective of this thesis is to improve the performance of systems that use
3D-stacked DRAM as part of a flat address space with data migration. It does so by
reducing the migration traffic overheads and improving the selection of data that are
migrated. The ideas behind this objective are to:

Use the on-chip LLC to guide data selection for migration based on the observed
spatial locality.

Reduce migration traffic by not migrating cache lines already present in the
LLC, as they can be written to their new location upon eviction.
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Figure 1.3: LLC-guided data migration (LGM) overview.

Related Work: There exists a large body of prior work on data migration for hybrid
memory systems. The core component of every data migration strategy, is the way
a memory segment is selected for migration. Most approaches use counters to keep
track of accesses to memory segments [32] or counters for every segment within a
group [7, 10]. So far, the most promising approach has been the activity tracking
mechanism proposed by Mempod [9], which uses the Majority Element Algorithm
(MEA) [33]. MEA has been shown to predict the hottest pages within an interval with
high accuracy and at minimal hardware cost.

Different approaches trigger migrations in different ways. Many of them do it on
time intervals [9, 32], while others do it on an event, e.g. CAMEO migrates at every
memory access that is not in the 3D-stacked DRAM [34]. Some approaches trigger
migrations when the values of selection counters go beyond some threshold [7, 10].

Another aspect that characterizes the different approaches is whether the migration
mechanism is based on software or hardware, or a combination of the two. Some
migration mechanisms rely on the Operating System (OS) with some hardware support
to identify the working set and orchestrate the migration [32], others only involve the
hardware and are transparent to the OS [7, 9, 10, 34].

Overall, current approaches to data migration are far from their ideal performance.
Their performance is limited partly due to the increased overheads of data migration
and also because of the difficulty to select data to migrate with good potential for
future reuse.

Thesis Approach: For data migration between off-chip and 3D-stacked DRAM, this
thesis proposes LLC-guided Migration (LGM), a novel scheme for data migration in
hybrid memory systems aiming both at improving the selection of migrated data as
well as at reducing their traffic overheads. Figure 1.3 provides a conceptual overview of
our proposed design, described in Chapter 3 of this thesis. Improving the selection of
migrated data is achieved by using the LLC to guide the selection of memory segments
to be migrated by detecting high spatial and temporal locality. More precisely, the
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LLC is used to identify memory segments that have a large number of cachelines
on-chip. This is an indication for potential future reuse, which gets stronger when these
cachelines are dirty. Employing the LLC to select segments for migration ensures that
these segments are at that moment –at least partly– present in LLC. This can be used
for reducing migration traffic. This is because when a fraction of a memory segment
is located in the LLC, it can be omitted from the migration to reduce the migration
traffic, as long as the LLC writes it back to memory when evicted.

The main novelty of our approach is the following: Firstly, the migration overheads
are reduced by avoiding traffic for cache lines already present in the LLC. Secondly,
the quality of selecting of data for migration is improved. Even more important is that
segments are selected for migrations when a large fraction of them resides in the LLC,
this timing further reduces the migration traffic.

Contributions: For data migration this thesis proposes LLC-guided Data Migration
(LGM) [35], a data migration scheme which:

• Employs the LLC to detect locality and leverages it for selecting data with
higher potential for reuse to migrate.

• Reduces the migration traffic overhead by avoiding to migrate data that already
reside in the LLC.

• Increases the benefits of the above migration traffic reduction because the
selected data are more likely to be in the LLC when migrated.

• Reduces migration traffic to almost half and enables more data to be migrated
therefore increasing the ratio of memory requests serviced by the 3D-stacked
DRAM.

• Improves performance by 12.1% and reduces memory system dynamic energy
by 13.2% compared to the current state-of-the-art [9].

1.2.3 Combining Caching and Data Migration
The third objective of this thesis is to define a new memory system design that
combines the strengths of DRAM caches and data migration while reducing their
respective weaknesses. The main idea behind this objective is to:

Use a small part of the 3D-stacked DRAM as a cache to retain the reactiveness
of caches with minimal capacity waste and use the rest of the 3D-stacked DRAM
for data migration.

Design a unified mechanism that seamlessly manages both DRAM cache and
data migration metadata and reduces their respective overheads.

Related Work: DRAM caches, as described above, present one solution to the
utilization of 3D-stacked DRAM which trades capacity for less wasted bandwidth
[13,19,21,24]. Data migration designs present a different tradeoff, preserving capacity
for more expensive swapping operations between the conventional and 3D-stacked
DRAM [7, 9, 10, 32, 34]. Furthermore, there are two designs that strike a different
balance. Chameleon is based on PoM with the added option to economize on migration
bandwidth when the software does not use some memory space [7] [8]. Chameleon
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does so by involving the Operating System and adding new instructions to the instruc-
tion set, this enables the underlying PoM migration mechanism to safely overwrite
memory that is not in use, therefore alleviating some of the migration traffic overheads.
Intel’s Knights Landing provides the option to split the MCDRAM between DRAM
cache and flat address space, however, it does not support transparent data migration
in hardware. Instead it moves the burden to the software to explicitly allocate data to
the 3D-stacked DRAM through the hbw malloc() function [36, 37].

Thesis Approach: In order to combine caching and migration in the same memory
system this thesis proposes Hybrid2. Hybrid2 aims to preserve the advantages of both
caching and migration as well as to minimize their overheads. A conceptual overview
of this design is presented in Figure 1.4. Hybrid2 employs a small portion of the
3D-stacked DRAM to implement a DRAM cache and offers the rest of its capacity to
main memory. The DRAM cache quickly adjusts to the working set of the workload
by fetching to the 3D-stacked DRAM all the data that is requested by the processor.
Besides preserving most of the 3D-stacked DRAM capacity, the small DRAM cache
size allows its tag array to fit entirely on-chip, thereby reducing access latency. The
on-chip tag array is additionally extended to act as a cache for the remapping metadata
required for data migration. Migrations are decided upon eviction from the DRAM
cache which allows observing the access patterns in the DRAM cache and make
informed migration decisions. Finally, the data of the DRAM cache can be located
anywhere in the 3D-stacked DRAM through the use of indirection, therefore, data
selected to be kept after eviction from the cache do not require relocation within the
3D-stacked DRAM, this avoids unnecessary traffic.
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Contributions: To combine the benefits of DRAM caches and data migration this
thesis proposes [38], a memory system design which:

• Uses a small part of the 3D-stacked DRAM as a cache and utilizes the rest for
data migration.

• Employs a small on-chip tag array which eliminates DRAM cache tag lookup
overheads and also to alleviate the data migration remapping metadata over-
heads.

• Utilizes the DRAM cache as a staging area to select the data with most potential
for future reuse and selectively migrates data when evicted from the DRAM
cache.

• Avoids unnecessary data movement in the 3D-stacked DRAM by employing
indirection in the DRAM cache tag array.

• Improves performance on average by 6.4-9.1% compared to migration mecha-
nisms.

• Offers 5.9-24.6% more main memory capacity than caches while giving away
only 0.3-5.1% of performance on average.

1.3 Thesis Outline
The remainder of this thesis is organized as follows. Chapter 2 presents the design and
evaluation of Decoupled Fused Cache, A DRAM cache design that uses the LLC tag
array to store information about the contents of the DRAM cache. Chapter 3 presents
the design and evaluation of LLC-guided Data Migration in Hybrid Memory Systems, a
data migration scheme that uses the LLC to select memory segments to migrate based
on their observed spatial locality and to reduce the migration traffic overheads. Chapter
4 presents the design and evaluation of Hybrid2: Combining Caching and Migration
in Hybrid Memory Systems, a memory system design that combines the benefits of
caching and migration in the same memory system while tackling their respective
overheads. Finally, The conclusions of this thesis are presented in Chapter 5.
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Chapter 2

Decoupled Fused Cache:
Fusing a Decoupled LLC with a
DRAM Cache

As 3D-stacking technology becomes more widely used, DRAM and processor can be
integrated in the same package sustaining higher memory bandwidth and substantially
lower energy per transferred bit [39]. Compared to the narrower-channels of traditional
off-chip DRAM, 3D-stacked DRAM achieves 2-4 times higher bandwidth [40]. This
in turn alleviates the queuing latency and contention effects that traditional DRAM
channels suffer from leading to lower average memory access time. Currently, 3D-
stacked DRAM falls short in meeting the main memory capacity requirements of
high-end systems, but it is orders of magnitude larger than on-chip SRAM caches.
Their capacity and high bandwidth makes 3D-stacked DRAMs a suitable building
block for an off-chip (off the processor die) cache. DRAM caches (DC) exploit the
coarse grain spatial locality of applications and reduce the number of accesses to main
memory, however they are still far from their ideal access latency [16]. This, in turn,
may negatively impact system performance as it adds delay to all memory requests
that miss in the on-chip caches.

A significant factor of DC latency, as in any cache, is the tag lookup time, which
is added to the memory access time for both hits and misses and can be as costly as
the data access. As shown in Figure 2.1, a simple DRAM cache (DC) gives away
an average 37% of system performance compared to using an ideal DC with zero
tag access latency. Designs that try to mitigate the tag access overhead, such as
Fusioncache (FC) [41], which uses the LLC tags to access the DRAM cache, and
ATCache, which is a DRAM Cache with an on-chip Tag-Cache (DCTC) [19] bridge
that performance gap significantly, however there is still ample room for improvement,
16% for the DCTC and 11% for the FC on average.

The DC tag access latency depends on the tag management. Each design choice
comes with tradeoffs that are tightly related to the DC-cacheline size. Since DCs are in
the order of hundreds of MB in size, the options for the DC-cacheline size range from
the conventional cacheline size of on-chip caches (often 64 Bytes) to a full Operating
System (OS) page (4KB). Various designs have been proposed advocating particular
DC-cacheline sizes and as also shown in our evaluation there is no single size that

11
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Figure 2.1: Performance normalized to DRAM cache without tag access overhead.
The depicted results are the average performance results retrieved for the SPEC and
NAS benchmarks used in our evaluation section.

fits all applications [12, 21, 24]. Smaller DC-cachelines offer more flexibility and
more efficient use of the cache bandwidth when the application is characterized by
low spatial locality. Larger DC-cacheline offer better prefetching and overall better
performance when the workloads exhibit spatial locality [20, 23]. On the other hand,
smaller DC-cachelines require more tag storage than larger ones for the same cache
size making it infeasible to store them on chip. Even for larger cachelines, the cost
of storing the tags on chip is not negligible and it could otherwise be utilized for a
larger on-chip Last Level Cache (LLC). Storing the DRAM cache tags in DRAM is
more space efficient and as such allows for smaller DC-cachelines but it results in
substantially higher tag access latency as well as increased DRAM cache traffic [22].

Several designs have been proposed aiming to reduce the DC tag access latency,
however they are not able to nullify it and some of them introduce significant con-
straints to the system. One such design employs an on-chip SRAM cache of the DC
tags [19]. This reduces the average DC tag lookup latency however it adds a constant
delay to every DC access for accessing the tag-cache and more on-chip resources are
occupied for caching the DC-tags. Another technique places the DC addresses directly
in the TLB entries [21]. Every TLB entry would then have information about the
location of the respective page in the DRAM cache. However, this requires fixing the
DC-cacheline size to the OS page size, which can be inefficient for applications with
low spatial locality and wasteful in terms of off-chip bandwidth and DC space. The
inefficiencies of this approach would be even more evident in systems that use super-
pages/huge-pages [27–29]. Other techniques such as Alloy Cache and Compound
Access Scheduling collocate DC data and tags in the same DRAM row to allow faster
accesses [13, 24]. These designs either require a direct mapped cache organization
or customizing the cache associativity and cacheline size to the DRAM row size.
Such restrictions can impact the hit rate or waste DC capacity. In summary, although
existing DC designs reduce the DC tag lookup latency, they do so by either introducing
a constant latency to all accesses, as in the case of Tag-cache, or by severely limiting
critical DRAM cache parameters such as DC-cacheline size and associativity. As a
consequence, minimizing the tag lookup latency remains an open challenge in the
design of a DC.

In this thesis we propose Decoupled Fused Cache (DFC). DFC is a new DRAM
cache architecture that mitigates the cost of accessing the DRAM cache tags while
enforcing minimal design restrictions. Our design achieves zero tag access latency in
the common case by storing information about the location of DC cachelines in the tag
array of the on-chip LLC. DFC can support a configurable (at boot time) DC cacheline
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size, which is a power-of-two multiple of the LLC-cachelines. In essence the only
limitation of our proposal is that the DC-cachelines needs to be at least twice as large as
an LLC-cacheline. Then, considering an inclusive cache model, each cacheline stored
in the LLC is always part of a DC-cacheline stored in the DC. Our work builds upon
our initial work on DRAM caches, Fusioncache, which used the LLC tags to access
the DC reducing its latency [41]. Our previous design required LLC cachelines that
belong to the same DC-cacheline to be placed on the same LLC set. Decoupled Fused
Cache overcomes this limitation by decoupling the LLC tag in a way that resembles
Decoupled Sectored Caches [30] yielding significant performance improvements – up
to 100% for particular benchmarks and design points. In a nutshell, an LLC tag is
associated with a DC-cacheline, which consists of several LLC cachelines, while the
LLC management (validity, dirty, etc.) is performed (and related information is stored)
at LLC cacheline granularity.
Concisely, the contributions of Decoupled Fused Cache are the following:

• A new cache hierarchy is proposed that fuses the on-chip LLC and DRAM cache
tags to achieve zero-latency DC access without affecting LLC performance;

• The proposed solution supports any DC-cacheline size power of two multiple of
the LLC-cachelines;

• An evaluation and comparison against related approaches showing that Decou-
pled Fused Cache achieves better performance and energy efficiency.

The remainder of this Chapter is structured as follows: Section 2.1 uses a mo-
tivating example to introduce background information and highlight the challenges
addressed in this work. In Section 2.2 the proposed Decoupled Fused Cache design is
presented. Section 2.3 offers the evaluation and comparison of our work. Section 2.4
discusses in more detail related work on DRAM caches and in particular on designs
that aim at reducing DC tag lookup latency. Finally, Section 2.5 summarizes our
conclusions.

2.1 Background and Motivation
Considering a system as the one illustrated in Figure 2.2 with an inclusive DRAM
cache (DC) placed between the on-chip Last Level Cache (LLC) and main memory,
we present a motivating example highlighting the challenges addressed in this work.
We discuss first the functionality of a DC and LLC when organized in a conventional
way and subsequently contrast it with our previous Fusioncache (FC) design pointing
to its advantages and drawbacks addressed by Decoupled Fused Cache (DFC).

A conventional system with a DRAM cache (DC) would function as illustrated in
the example of Figure 2.3a. Both the LLC and the DC use the upper part of an address
as a tag and the remaining bits before the byte-offset for selecting a set as shown in
Figure 2.3b (Figure 2.5 shows the addresses and fields of the LLC- and DC- cachelines
used for the examples in Figures 2.3, 2.4 and 2.6).

Let us consider that the DC uses for its tags equal or fewer address bits than
the LLC assuming it has equal or larger cachelines and number of sets. Then, in
an inclusive cache hierarchy, a cacheline stored in the LLC will be also stored in
the DC as part of a DC-cacheline. As a consequence, (part of) an LLC tag would
identify a DC-cacheline and would be stored in the DC tag-array, too. For example,
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in Figure 2.3a, we can observe that the upper part of the tag of an LLC-cacheline
(i.e., 011 for LLC-cacheline B.0) is the same with the DC-tag of the respective DC-
cacheline (i.e.,01 for DC-cacheline B). Moreover, considering some spatial locality, it
is reasonable for a cache to host consecutive cachelines which would have the same
tag. Then, the tag of such cachelines would be repeated in multiple (consecutive)
sets of the tag array as shown in the LLC of Figure 2.3a. For instance, consecutive
LLC-cachelines A.0 and A.1, which belong to the same DC-cacheline (A), store their
identical LLC-tag (000) twice in the LLC tag array in different sets. In summary, we
can observe that: firstly, (parts of) the LLC tags are also stored in the DC tag-array,
and secondly, the LLC tags for consecutive LLC-cachelines are duplicated in multiple
sets of the LLC tag array.

Fusioncache is based on the first above observation to reduce the DC tag access
latency. It appends LLC tag array entries with information for accessing their respec-
tive DC-cacheline. Thereby, LLC accesses that would miss in the LLC, i.e., B.1 in the
above example, but their tags are stored in the LLC tag-array would need no further
DC-tag access. However, an LLC access that falls to a particular DC-cacheline may
hit one of several LLC sets as observed in Figure 2.3a. In this example, an access to
DC-cacheline A may go through the LLC set that stores either A.0 or A.1. In order
to ensure that a single LLC access can provide a definite answer about the DC tags,
Fusioncache restricts all LLC-cachelines that belong to the same DC-cacheline to
be placed in the same LLC set as shown in Figure 2.4a. Our second above obser-
vation, that the LLC tags for consecutive LLC-cachelines are duplicated in multiple
sets of the LLC tag array, also comes to Fusioncache’s advantage, as the tag for
these LLC-cachelines is then stored only once saving space in the LLC tag array and
increasing the number of DC tags that can be stored in the LLC. For example, the
tag of DC-cacheline C is stored in the LLC of Fusioncache of Figure 2.4a without
a corresponding LLC-cacheline and can be used for accessing the DC. In order to
enforce this LLC-cacheline placement Fusioncache uses higher order address bits for
indexing LLC as depicted in Figures 2.4b and 2.5. As explained in our previous work,
this design choice restricts the effective LLC associativity and limits performance for
particular memory access patterns especially in large DC-cacheline sizes [41].

Taking a closer look to the Fusioncache example of Figure 2.4a, an LLC-tag array
entry stores the DC-tag and, besides the standard fields needed for the management
of the two caches (validity, dirty, etc), it also stores the DC-way of the corresponding
DC-cacheline, the offset of the stored LLC cacheline, and a pointer to the way of the
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LLC tag-array that stores the corresponding LLC-tag. In our example, LLC cachelines
A.0 and A.1 have their tag stored in only one entry of the LLC-tag array (way-1 of
the corresponding set). The same tag (00) is used for accessing the DC in way 1 as
indicated by the DC-way field. The LLC cacheline offset is 1 and 0 for the LLC-
cachelines A.1 and A.0, respectively. Finally, the field pointing to the way that stores
the tag for these two LLC-cachelines is 1 for both entries as their tag (00) is stored
in way-1 of the LLC-tag array. Accessing the LLC requires matching each tag, as
indicated by the LLC-way pointer, and each LLC-cacheline offset. When a DC-tag
is matched but the requested LLC-cacheline is not present in the LLC, the DC data
array can be accessed directly by use of the DC-way information, otherwise a DRAM
access for the DC-tag is required before accessing the DC data array.

Effectively, Fusioncache indexes the LLC as if it was a cache with a DC-cacheline
size and uses an offset to identify the particular LLC-cacheline. Thereby, the LLC
tag array acts like a cache of DC-tags storing DC-tags used in previous LLC accesses,
even if all corresponding LLC-cachelines have been evicted. However, the modified
indexing of the LLC and the placement restriction of all LLC-cachelines that belong
to the same DC-cacheline to reside on the same LLC set affects performance. When
the number of LLC-cachelines per DC-cacheline is higher than the LLC associativity,
sequential accesses to the same DC-cacheline would exhaust the LLC set and result in
unwanted evictions. On the contrary, in a conventional LLC, the LLC-cachelines of
the same DC-cacheline map to different LLC sets.

As explained in the next section, Decoupled Fused Cache addresses this problem
allowing the LLC of a fused cache to operate as in the conventional way, using lower
order address bits for indexing and still storing DC-tags in the LLC-tag array.

2.2 Decoupled Fused Cache design
The Decoupled Fused Cache (DFC) is based on the same two observations exploited
by the Fusioncache. It takes advantage of the redundancy in the tags within the LLC
as well as across the LLC and DC tag arrays and uses the LLC tag-array to store
information about the location of data in the DRAM cache (DC). In the common
case, this allows DFC to access the DC data array without looking up its tag array.
As opposed to Fusioncache, DFC does not restrict LLC-cachelines of the same DC-
cacheline to sit on the same LLC set. This is achieved by decoupling the location of
LLC tags from the location of the LLC-cachelines in the LLC data array in a way that
resembles Decoupled Sector Caches [30].

In DFC, tags in the LLC are stored in a tag-array, which is indexed as if it were a
DC-tag array. Then, a second, Back Pointer Array (BPA), which follows the indexing
of the LLC data array, is used to store the information for the LLC management
(valid, dirty, LRU bits of the corresponding LLC data entry). In addition, each entry
of the BPA points to the tag array entry, which stores the tag of the corresponding
LLC cacheline. As explained below, pointing from the BPA to the tag-array requires
information about the correct way of the tag-array as well as the LLC tag suffix1. Note
that both the tag and back pointer arrays have equal number of sets and ways as the
LLC data-array.

Using the above indirection, DFC decouples the location of tags and data in the
LLC. In doing so, it allows the LLC-cachelines to be placed as in a conventional LLC

1That is the address bits that need to be appended to the DC-tag in order to form the LLC-tag.
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Figure 2.6: Decoupled Fused Cache example and address breakdown.

and its tags to be organized as in a DC tag array. Then, each entry of the tag array can
store information for the DC-cacheline associated with the stored tag. In particular,
the location of the corresponding DC-cacheline and some DC management fields. As
a consequence, the DFC avoids DC-tag accesses for all the tags stored in the LLC
without restricting LLC-cacheline placement and hence without affecting the LLC
performance.

Figure 2.6a illustrates the DFC functionality for the same example used in the
previous section to demonstrate the FC and conventional cache. Figure 2.5 shows the
addresses as well as the respective address fields used for indexing and tag-matching
for the LLC- and DC-cachelines used in the examples in Figures 2.3a, 2.4a, and 2.6a
for a conventional cache, Fusioncache, and Decoupled Fused Cache, respectively.
Notice that DFC keeps the same data placement in the LLC as in the conventional
cache of Figure 2.3a. As opposed to FC, LLC-cachelines that belong to the same
DC-cacheline are placed in different sets in DFC (e.g A.0 and A.1). At the same time,
DFC keeps only one tag for all cachelines that belong to the same DC-cacheline in
the LLC, economizing space and ensuring that DRAM cache information is retrieved
with a single LLC lookup.

Next, the details of DFC are discussed, explaining first the organization of the
tag arrays, then, the indexing and tag matching mechanism and finally analyzing the
hardware cost of the DFC design.

2.2.1 DFC tag arrays:
DFC splits the tag array of the LLC in two parts which are indexed by different parts
of the cacheline address, the resulting two arrays are:

• The Tag Array which holds the tags for the DC-cachelines.

• The Back Pointer Array (BPA) which holds pointers that associate every LLC-
cacheline with a tag by specifying the set and way in the tag array in which it is
located.
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DFC introduces some extra fields in the tag arrays beyond those in a conventional
cache. These extra fields facilitate locating the LLC-cachelines using DC-cacheline
granularity tags and additionally they store the information needed to access the
DRAM cache (DC). These extra fields are shaded in Figures 2.7a and 2.7b for the tag
array and the Back Pointer Array (BPA), respectively. These fields are:

• Tag Array:

– Tag valid, Tag LRU: Additional valid and replacement policy fields for
the tags, since each tag can be associated with several LLC-cachelines, the
tag array must handle validity and replacement independently of the LLC
data array.

– DC way: The way in the DRAM cache set in which the DC-cacheline
identified by this tag resides.

– DC dirty: Dirty bit for the DC-cacheline in the DRAM cache, since
LLC-cacheline evictions are directly forwarded to the DRAM cache, a
dirty bit is needed to keep track of written blocks locally in the LLC tag
array. This also allows to update the DRAM cache tags (in DRAM) only
when a tag is evicted from the LLC tag array.

– count: A counter to keep track of the number of LLC-cachelines that
reference a tag. This field is optional as DFC can operate correctly without
it, however, as we explain later in our evaluation in Section 2.3, it helps
avoid unnecessary BPA lookups when a tag has to be evicted from the tag
array.

• Back Pointer Array:

– Tag suffix: Since each tag can be associated with multiple LLC-cachelines,
each cacheline can potentially belong to any tag in a subset of the sets
of the tag array. That subset is identified by the tag-suffix part of the
address (Figure 2.6b) and must be stored in the back pointer array for
every LLC-cacheline.

– Tag way: To fully identify the correct tag for an LLC-cacheline in the
tag array the way in the set must also be stored in the BPA.

2.2.2 DFC Indexing:
Figure 2.6b shows the breakdown of an address and the bit fields used to index the tag
array and the Back Pointer Array (BPA) in the Decoupled Fused Cache LLC.

• BPA Set: The BPA is indexed using the same indexing bits as conventional
caches, these are the Least Significant (LS) bits after the byte offset of the
address.
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• Tag array set: The tag array is indexed by the same bits of the address that
would index a cache with a cacheline size equal to the DC-cacheline size. These
are the LS bits right after the byte offset and LLC-cacheline offset (CL Offset)
parts of the address. The CL Offset depends on the ratio of LLC-cachelines per
DC-cacheline and can be 2 to 6 bits for 128 Byte to 4KB DC-cacheline sizes,
respectively.

With this indexing, the LLC-cachelines are placed in the LLC data array in the same
sets as they would be placed in a conventional LLC. Just like conventional caches,
consecutive LLC-cachelines that are parts of the same DC-cacheline will be placed in
consecutive sets. In contrast to FC, the LLC-cachelines of the same DC-cacheline are
not forced into the same set and thus the set conflicts introduced by FC are avoided.

The tag that identifies an LLC-cacheline can only reside in a subset of the sets
in the tag array, the size of this subset depends on the ratio of LLC-cachelines per
DC-cacheline. For 64-Byte LLC-cachelines and 4KB DC-cachelines the DC-tag for an
LLC-cacheline can reside 64 different sets, for 128-Byte DC-cachelines it can reside
in two different sets. As demonstrated by Figure 2.6b, the tag array set is comprised
of the Most Significant (MS) bits of the BPA Set and the LLC tag suffix parts of the
address. In the DFC example in Figure 2.6a, the tag for a cacheline located in set
110 can only be located in sets 011 and 111 depending on the LLC tag suffix. For
cacheline A.0 the LLC tag suffix is 0 (as shown in Figure 2.5) and so the tag is located
in set 011 of the tag array. This indexing allows DFC to decouple the tags from the
LLC-cachelines that reference them in order to (a) save space in the tag array of the
LLC to store additional information about the location of DC-cachelines in the DRAM
cache and (b) to access that information with a single lookup.

2.2.3 DFC tag matching:

Figure 2.8 depicts the block diagram of the DFC LLC showing the address parts used
for indexing the individual arrays as well as for matching the tag-array and BPA. In
addition, Figure 2.9 offers a flowchart showing the steps of a DFC access for every
possible case: LLC hit ( A ), DC hit without tag lookup ( B ), DC hit with tag lookup
( C ), and DC miss ( D ). When a request is made to the LLC, particular parts of the
address are used separately as shown in Figure 2.6b. The Tag array set part of the
address is used to index the tag array and at the same time, the BPA is indexed with the
BPA Set field of the address. After both arrays have been indexed and the respective
sets have been read, their contents must be matched to determine a cache hit or miss.

The matching consists of three steps:

• Tag match: The tags in the tag array set are compared against the tag field of
the address for a match (Figures 2.8 and 2.9 1 ).

• Suffix Match: The tag suffix field of the set of the BPA are compared with the
corresponding part of the address (tag suffix) for a match (Figures 2.8 and 2.9
2 ).

• Way Match: The way of the matching tag in the Tag array is compared with
the Tag way field of each matching suffix in the BPA (Figures 2.8 and 2.9 3 ).
In case of a match at this stage then this is an LLC hit A , otherwise an LLC
miss (Figure 2.9 B , C , D ).
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Figure 2.8: DFC address breakdown, indexing and tag matching process.

The Tag match 1 and Suffix Match 2 can be performed in parallel as they are
independent of each other. The Way Match 3 step however can start only when the
previous two steps have completed. If the requested LLC-cacheline is located in the
LLC then there is a LLC hit as shown in Figure 2.9 A . Otherwise, an LLC miss will
be handled in one of the following two ways depending on whether the tag of the
requested address is in the tag array of the LLC:

[a] In case the tag is located in the tag array (there was a match at the Tag match 1
stage) but there were no LLC-cachelines pointing to that tag (Suffix match 2
or Way match 3 failed), then the DC data array can be accessed directly ( B )
using the DC-way field of the tag array entry that matched in the Tag Match 1
stage. The physical address of the LLC-cacheline in the DC data array can be
calculated from the set and way of the DC-cacheline in the DC. The set can be
directly inferred from the physical address of the DC-cacheline and the DC-way
is stored in the LLC tag array. The new LLC-cacheline read from the DC is
subsequently stored in the LLC data array and its corresponding BPA entry is
updated to point to the tag in the LLC tag array. Additionally, the respective
fields of the tag entry are updated, in this case, only the replacement (LRU)
and count bits. The LRU of the tag is updated to show that this was the most
recently accessed tag in the set. The count field is incremented to show that one
additional LLC-cacheline is now associated with this tag.

[b] In case the tag is not located in the LLC tag array (no match in the Tag match
1 stage), then the DC tag-array stored in DRAM needs to be accessed (Figure
2.9 4 ). Thereby, it is determined whether the DC-cacheline is located in the
DC ( C ) or there is a DC miss and the requested cacheline should be read from
the main memory ( D ). In case of a DC miss, a suitable victim DC-cacheline
is selected from the DC set using LRU replacement policy and written back
to main memory if dirty. The DC-way of the DC-cacheline is then stored in
the LLC tag array along with its tag (Figure 2.9 5 ). All subsequent misses of
LLC-cachelines that belong to this DC-cacheline can be fetched from the DC
directly without accessing the DC tags in DRAM (Figure 2.9 B ).
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Figure 2.9: Decoupled Fused Cache access flowchart.

2.2.4 DFC Tag Evictions:

When a tag is evicted from the DFC tag array any LLC-cachelines that reference
that tag must be evicted from the LLC as well, otherwise they will be orphaned and
their Tag-suffix and tag-way fields in the BPA will point to a stale tag in the tag array.
Considering a ratio of N LLC-cachelines per DC-cacheline, in the worst case there
might be as many as N LLC-cachelines that must be evicted in N different LLC data
array sets. To avoid looking up all the sets that could potentially hold an LLC-cacheline
that is associated with a tag, we introduce a counter for every tag to account for the
number of these LLC-cachelines, this counter is updated whenever an LLC-cacheline
is fetched to or evicted from the LLC. Introducing this counter makes evictions more
efficient and, as shown in our experiments, more than 99.5% of the time, with LRU
replacement policy for the tags, the counter for the victim tag is zero. A counter equal
to zero means that no LLC-cachelines need to be evicted from the LLC because of a
tag eviction but also that the corresponding sets in the BPA need not be searched for
such LLC-cachelines at all.

Furthermore, when a tag is evicted from the DFC tag array the DC tag array must
be updated. The dirty status of the DC-cacheline that corresponds to the evicted tag is
copied and the LRU of the DC set is updated. This is necessary since by design all
LLC-cacheline writebacks from the LLC to the DC do not need to access the DC tags.
Subsequently, the dirty state of the DC-cacheline is stored along with the tag in the tag
array (DC dirty in Figure 2.7a) and the DC tags are updated only when a tag is evicted
from the DFC tag array.
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2.2.5 Configurable DC-cacheline size
As shown in our evaluation (Section 2.3) different workloads achieve their best per-
formance with different DC-cacheline sizes. DFC can be configured (at boot time) to
accommodate different DC-cacheline sizes ranging from 128 Bytes (two times the
LLC-cacheline size) to 4KB (OS page size)2. This requires the additional DFC related
fields on the LLC tag array and BPA to be provisioned for the worst case size, as
shown in the next paragraph. Supporting variable DC-cacheline sizes allows DFC to
better fit the needs of a particular workload and maximize performance.

2.2.6 DFC Hardware Overhead:
DFC re-organizes the LLC tag array and changes the indexing and tag matching
mechanisms of the LLC. Furthermore, DFC requires the addition of some extra fields
in the LLC tag array and splitting it into two separate arrays, these are the tag array
and the BPA. In this Section we discuss the hardware cost of DFC and in particular its
overhead in the LLC tag array.

When calculating the overhead of DFC we must take into account the characteris-
tics of the DC and also the ratio of LLC-cachelines per DC-cacheline. Let the ratio of
LLC-cachelines per DC-cacheline be R ∈ [2−64], the LLC associativity be A, and the
DC-associativity be B for the rest of our analysis.

The extra fields needed in the LLC tag arrays are:

• DC-Tag Array:

– DC dirty: One bit for the dirty state of the DC-cacheline.

– DC way: Log2B bits for the DC way where the DC-cacheline is located.

– count: Log2R+1 bits for the counter of LLC-cachelines that reference
this tag (from 0 to R LLC-cachelines).

– Tag valid: Valid bit for the tag.

– Tag LRU: Log2A LRU bits for Tag replacement.

• Back Pointer Array:

– Tag suffix: Log2R bits that identify the set in which the tag of the LLC-
cacheline is located.

– Tag way: Log2A bits to identify the way in which the tag of the LLC-
cacheline is located in its set.

The above listed fields account for an total of 2× log2 R+2× log2 A+Log2B+3
bits per LLC-cacheline. However we can further reduce the cost by one bit per LLC-
cacheline by using the valid bit as a part of the counter and offsetting the count by
one. Additionally, the tag in a DFC is log2 R bits smaller than a conventional LLC tag.
Thus, the additional space overhead of DFC is: log2 R+2× log2 A+Log2B+2. To
support different DC-cacheline sizes, we must account for the worst case overhead of
the fields in the Tag Array and the BPA, this is the overhead for the 4KB DC-cacheline.

To quantitatively present the hardware cost in the LLC we use a realistic example
that matches our experimental setup configuration. Lets consider a system with 48

2Larger DC-cacheline sizes can be supported at little additional cost but we consider up to 4KB DC-
cacheline size to keep within the granularities considered in competing designs.
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Table 2.1: DFC SRAM overhead.

DC-cacheline size DC-cacheline /
LLC-cacheline ratio

Added Bits per
Entry

LLC extra cost
%

128 Byte 2 15 224KB (2.5%)
256 Byte 4 16 240KB (2.9%)
512 Byte 8 17 256KB (3.1%)
1024 Byte 16 18 272KB (3.3%)
2048 Byte 32 19 288KB (3.5%)
4096 Byte 64 20 320KB (3.7%)
configurable (128
Byte-4KB)

2-64 20 320KB (3.7%)

bit physical addresses, 64-Byte LLC-cachelines and a 16-way LLC with 8192 sets
(total LLC capacity of 8MB). The 6 Least Significant (LS) bits are the byte offset
in an LLC-cacheline and are not used for accessing the cache since it operates at
LLC-cacheline granularity. The next 13 bits are used to index the 8192 sets of the
cache (213 sets). This means that each tag in the tag array is 29 bits long. For a 16 way
LLC we also need 4 bits for LRU replacement policy and 2 more bits for valid and
dirty flags. The total size for an entry in a tag array of a 8MB 16-way cache is thus 35
bits and the total size of the tag array is 560KB. We also assume a 512MB, 16-way set
associative DC as in our evaluation.

Table 2.1 Shows the overhead of DFC in terms of additional storage required in
the DFC tag array for every different supported DC-cacheline size. The worst case
overhead of the DFC design is 320KB for a 8MB LLC which accounts for a 3.7% area
overhead.

The hardware overhead of DFCs indexing and tag-matching mechanisms is very
small compared to a conventional LLC in terms of additional space required in the
LLC tag array. As far as lookup latency is concerned, the modified indexing and
tag-matching mechanisms do not impose extra latency to the cache access compared
to a conventional LLC. Steps 1 and 2 in Figure 2.8 are faster than a traditional LLC
tag lookup because the number of compared bits is smaller. Step 3 , which adds to the
latency of steps 1 and 2 in practice adds a 32-bit product of sums logic delay. This
delay does not add a cycle to the LLC access time as it is within the available slack
estimated by Cacti [42] after accounting for its logic latency in the same technology
node.

2.3 Evaluation

In this section we present the evaluation of the proposed Decoupled Fused Cache and
compare with state-of-the-art designs that target the tag access cost for DRAM caches.
We first present our experimental setup followed by the results of our evaluation in
terms of performance and energy consumption for a series of single- and multi-threaded
benchmarks for different DC-cacheline sizes.
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Table 2.2: System configuration.

Cores 4 cores, out-of-order, 4-way issue/commit 3.2 GHz
L1 Cache Private, 64 KB, 4-way, 1 cycle access latency
L2 Cache Private, 256 KB, 8-way, 9 cycles access latency
L3 Cache Shared 8MB, 16-way, 14 cycles access latency
DRAM Cache 512 MB, 16-way, 2 128-bit channels, 8ns tRCD, 10ns

tCAS, 1.6 GHz (DDR 3.2GHz)
Tag cache 256 KB (272KB including its tag array), 8-way, 5 cycles

access latency
Main DRAM 8 GB, 2 channels, 64 bit bus, 14ns tRCD, 14ns tCAS, 800

MHz (DDR 1.6GHz)

Table 2.3: Main DRAM and 3D-DRAM energy consumption.

Parameter 3D-DRAM Main Memory DRAM
RD/WR + I/O energy 6.4pJ/bit 33pJ/bit
ACT/PRE DRAM Row 15nJ 15nJ

2.3.1 Experimental Setup

Our evaluation is performed using an in-house simulator based on Pin [43] following
the interval-based simulation methodology [44] for the processor and cycle-accurate
modelling of the cache and memory system. We simulate a four core processor with
private L1 and L2 caches, a shared on-chip last level cache (LLC) and a DRAM
cache (DC). Table 2.2 presents the configuration of our system3. We use Cacti v6.5 to
determine the access times for the caches and tag arrays [42]. For the main DRAM
and 3D-DRAM timing and energy consumption we use the parameters provided
by [21]. The DRAM energy parameters are shown in Table 2.3. To estimate the energy
consumption of the processor cores we use McPAT [45].

We evaluate our design with both single- and multi-threaded workloads. For
single-threaded workloads, we selected a representative subset of the SPEC2006 [46]
benchmarks following the guidelines of Phansalkar et al. [47]. For multi-threaded
workloads we used the OpenMP version of the NAS Parallel Benchmark suite [48, 49].

We simulate one billion instructions for every thread after a warmup period of 100
million instructions. For the NAS benchmarks we select the simulated portion immedi-
ately after the initialization phase of each benchmark, while for the SPEC benchmarks
we use simpoints to select a representative slice of one billion instructions [50]. The
benchmarks used and their memory footprint are shown in Table 2.4.
Finally, our evaluation considers the following design points:

• Baseline: A system with no DRAM cache.
• DRAM Cache (DC): A system with a DRAM cache and tags-in-DRAM.
• DRAM Cache with Tag-Cache (DCTC): a DRAM cache system with tags in

DRAM and an on-chip SRAM cache of the DC-tags similar to ATCache [19].
The size of the DCTC SRAM tag cache is equal to the size of the SRAM
overhead incurred by DFC.

3All latencies reported in cycles concern processor clock cycles
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• Fusioncache (FC): a system with Fusioncache [41].
• Decoupled Fused Cache (DFC): a system with the proposed Decoupled Fused

Cache.
• Zero Tag Overhead DC: a system with a DC for which the DC-tag access

comes for free without any latency or traffic cost (after the LLC tags have been
accessed to determine an LLC miss).

DC, DCTC, and FC are the most relevant competing designs as they are able to
support various DC-cacheline sizes. A DC with zero tag overhead is our reference
point showing the theoretical limits of the potential performance gain of our approach.
Other techniques are not directly included in our comparison because they pose
particular design restrictions as described in Section 2.4.

2.3.2 Performance
The performance improvement over the baseline of four above systems that utilize a
DRAM cache is first measured per DC cacheline size. Then, the best cacheline size
of these four systems is selected per benchmark and compared. Finally, we compare
for DCTC, FC and DFC the percentage of DC accesses that did not require a DC tag
access in DRAM, as well as their generated DC traffic.

Figure 2.10 shows the performance improvement in terms of Instructions per Cycle
(IPC) for each design over the Baseline (without DRAM cache). For this part of our
evaluation we consider DC-cacheline sizes ranging from 128 Bytes to 4KB; smaller
sizes are not supported by the FC and DFC as they require the DC-cacheline to be at
least twice the size of the LLC-cacheline, which is 64 Bytes. Each graph also presents
the average performance improvement for all benchmarks as well as for the SPEC and
NAS benchmarks separately (AVG-ALL, AVG-SPEC, and AVG-NAS). Each different
plot in Figure 2.10 represents a different DC-cacheline size (128 Bytes to 4KB).

Table 2.4: Benchmarks and their memory footprint (in MB).

Bechmark Footprint(GB)
SPEC (single-threaded)
leslie3d 80

libquantum 32
mcf 1315

omnetpp 146
lbm 402
NAS (multi-threaded)
bt.C 720
cg.C 440
dc.A 520
ft.C 510
is.C 1100
lu.C 350

mg.C 2550
sp.C 770
ua.C 360
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(b) 256 Byte DC-cacheline
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(c) 512 Byte DC-cacheline
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(d) 1024 Byte DC-cacheline
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(e) 2048 Byte DC-cacheline
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(f) 4096 Byte DC-cacheline
Figure 2.10: Performance improvement over the baseline of the DFC and related DC
designs utilizing different DC-cacheline sizes.
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Compared to DC with equal DC-cacheline size, DFC offers 19% to 73% (55% on
average) better performance across all benchmarks; the performance gap increases
with the DC-cacheline size. Furthermore, DFC compared to a DCTC with the same
cacheline size yields 6% to 16% (11% on average) better performance. Compared to
FC, DFC is 6% better on average. In particular, DFC shows similar performance for
DC-cacheline sizes up to 1KB, but for larger DC-cacheline sizes, where FC performed
poorly for some benchmarks, DFC is 16% to 18% faster. Focusing on cacheline sizes
of 2KB and 4KB, it can be observed that DFC overcomes the limitations of FC in
larger DC-cacheline sizes. For example, in cg and ft NAS benchmarks it is obvious that
while FC does not perform well for large DC-cacheline sizes, DFC clearly mitigates
the effect of increased LLC evictions introduced by the FC LLC indexing scheme.
Finally, DFC achieves 80% to 99% (93% on average) the performance of a theoretical
DC with zero tag-access overheads and equal cacheline size.

Figure 2.11 compares DFC to the competing designs (DC, DCTC, and FC) at
the DC-cacheline size for which each design achieves its best performance. It also
compares it to the DC with zero tag lookup overheads that uses DC cachelines of
4KB, which would be the best performance a Tagless DRAM Cache would possibly
achieve [21]. Still, a Tagless DC design would introduce OS modifications and fix the
DC-cacheline size to the OS page size as explained in Section 2.4. At the horizontal
axis of each plot the name of each benchmark can be found and in brackets the DC-
cacheline sizes of which each design achieves its best performance. For example, in
Figure 2.11a leslie3d[256-2048] means that DC achieves its best performance using
DC-cachelines of 256 Bytes while DFC maximizes performance using 2048 Byte
cachelines. These results verify our initial statement in Section 2 that DC-based designs
maximize their performance using different cacheline sizes for different benchmarks.
This further highlights the importance of a design that is able to support different
DC-cacheline sizes.

Figure 2.11a shows that DFC is a clear winner compared to DC, the only case
where DC seems better that DFC is for the ft.C for which none of the DRAM cache
designs showed any significant performance improvement compared to the baseline
because of its streaming nature and little data reuse. Figure 2.11b shows the same
trend when comparing DFC with DCTC where the performance difference can be as
high as 19.9% in favour of DFC and on average 10.3% and 6.8% for the SPEC and
NAS benchmarks, respectively. Figure 2.11c compares the best achieved speedup of
DFC and FC. Although in some cases the performance of DFC is marginally lower
than FC (up to -3.1% for lu.C), on average DFC performs better than FC and at best
10.8% for cg.C. Surprisingly, DFC achieves on average slightly better performance
compared to a DC with zero tag lookup overhead using 4KB cacheline as shown in
Figure 2.11d. This is because for some benchmarks DC-cacheline sizes other than
the 4KB achieve better performance. This result shows that DFC is able to match
the performance of a Tagless DC without any OS overheads and without fixing its
granularity to the OS page size [21].

Figure 2.12 shows the average percentage of accesses that do not require a DRAM
Cache tag lookup, this is equivalent to the tag-cache hit rate of DCTC. The average for
all benchmarks per DC-cacheline size as well as the average across all DC-cacheline
sizes for the SPEC and NAS benchmarks is shown. DFC can on average service 88%
and 86% of the LLC misses directly for the NAS and SPEC benchmarks, respectively.
This is similar to the respective FC results. On the other hand, the hit rate of the
tag-cache in the DCTC design is 65% for the SPEC and 69% for the NAS benchmarks
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(d) Performance improvement of DFC at best DC-cacheline size compared to Zero tag
overhead at 4096B DC-cacheline size

Figure 2.11: Performance benefit of DFC compared to other designs at the best DC-
cacheline size for each (the first number in the brackets after the benchmark name
is the best DC-cacheline size for each competing design and the second is the best
DC-cacheline size for DFC).
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Figure 2.13: Average normalized DRAM Cache traffic.

respectively. This clearly shows the advantage of DFC over DCTC. Note, that the Tag
cache size of the DCTC is similar to the SRAM overhead imposed by DFC as shown
in Table 2.1. As explained below, a direct effect of the fewer DC-tag lookups is the
reduced DFC traffic in the DRAM cache. In turn, the reduced DFC traffic alleviates
the contention in the 3D-DRAM channels and as consequence offers lower overall
DRAM cache latency and energy cost.

Figure 2.13 shows the average normalized DRAM cache traffic per DC-cacheline
size of every design point in our evaluation for the SPEC and NAS benchmarks,
respectively, as well as the average for each benchmark suite separately. DFC requires
32% and 28% (average 25%) less DRAM cache traffic compared to DCTC for the
SPEC and NAS benchmarks, respectively. Compared to FC, DFC has on average
7,2% less DRAM cache traffic for the SPEC and 26% for the NAS benchmarks (18%
on average). It is worth noting that in our experiments we observe that the latency
overhead of DC-tag accesses is, besides the actual DRAM latency, also due to the
increased contention in the DC channels. Reducing the DC traffic is further improving
performance and in addition leads to lower energy consumption as explained below.

2.3.3 Energy efficiency
The energy consumption of the systems and its breakdown to cores, 3D-DRAM, and
main DRAM energy cost is depicted per benchmark in Figure 2.14. The energy results
are organized per DC-cacheline size and normalized to the energy consumption of
the baseline system (without a DC). Considering designs with the same DC-cacheline
sizes, DFC achieves 53% to 65% lower 3D-DRAM energy consumption (62% on
average) than DC, 3.2% to 32.5% (24.5% on average) lower than DCTC, and 0.7% to
13% (7% on average) lower than FC. DFC’s lower 3D DRAM energy cost is mainly
due to its reduced DC traffic and improved system performance. A similar trend holds
for the core energy cost, which is inversely proportionally to the performance of each
design. Main memory energy consumption is similar across the designs and mostly
negligible compared to core and 3d-stacked DRAM energy due to the use of a DRAM
cache, which avoids most accesses to main memory. Overall, the total system energy
consumption of DFC is 0.2% to 10.6% (4.1% on average) lower compared to FC,
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4.5% to 16% (12.3% on average) lower compared to DCTC and 25% to 45% (39% on
average) lower than the simple DC design, considering equal cacheline size. Note that
the energy overhead of (i) the BPA in the DFC, (ii) the tag-cache in the DCTC, and
(iii) the larger LLC tag array in the FC are in general negligible and always less than
0.5% of the total energy consumption and thus cannot be depicted separately in the
energy figures, however they are included in the cores’ energy consumption.

2.4 Related Work

There are several existing DRAM cache (DC) designs that try to reduce their tag
access overheads. Several choose to store DC tags only in the DRAM and employ
various DRAM access and placement approaches to minimize the tag access latency.
Others use various cache designs to keep a subset of the DC tags on chip. Another
alternative is to utilize the page table mechanism to access the DRAM cache. One
more technique reuses the LLC tag array to locate data in DRAM cache. Each of the
above has its own strengths and weaknesses as explained below.

Alloy Cache attempts to reduce the tag access latency by proposing a direct mapped
DRAM cache where the tag is placed along the data in DRAM [24]. This way, both
tag and data are accessed in a single DRAM burst and since the cache is direct mapped
the data can only reside in one location. This approach reduces the access overhead for
DC hits as it avoids a DRAM row activation, but still imposes an unnecessary DRAM
access when DC misses. To reduce the effect of this disadvantage, Alloy Cache uses
a Memory Access Predictor for cache misses. Alloy Cache forces a direct mapped
DRAM cache, which is very sensitive to conflicts and the tags still have to be read
from DRAM in every access. This increases the overall DRAM cache traffic and
energy consumption. Another proposed solution that combines tag and data accesses
is to co-locate the tags for an associative DC in the same DRAM row as the data. This
technique keeps the DRAM row open after the tag read and subsequently reads the
data using Compound Access Scheduling. In this case, the data can be read without
requiring a second DRAM row activation in case of a hit [12]. Co-locating the tags
for each DRAM cache set in the same row and accessing them with compound access
scheduling can be used with set-associative caches, however it still imposes higher
DRAM traffic and high overhead for DRAM cache misses. Additionally, this design
is limited to small cache line sizes because the tags and data of an entire set must fit
in the same DRAM row (2KB-4KB). This causes considerable space waste for cache
line sizes bigger than 64 - 128 Bytes. Co-locating tags and data has been utilized as a
means to minimize the overhead of DC tag lookups in several other works, usually
coupled with various predictors that aim to avoid tag lookups altogether [14, 25, 51].

ATCache uses a small SRAM cache for the DC tags [19]. In case of a tag-cache
hit the access latency for the tags is in par with tags in SRAM while not incurring
high area overhead on the processor chip. As the tag-cache access latency is in the
critical path of any DRAM cache access, the tag-cache needs to be small. Chou et
al. proposed a Neighboring Tag Cache, which buffers the tags of recently accessed
adjacent cache lines as a means to reduce the DRAM cache traffic [22]. Hameed
et al. propose a small and low latency SRAM/DRAM Tag-Cache structure that can
quickly determine whether an access to the large L3/L4 caches is a hit or miss [52].
Another Tag-cache technique is presented by Meza et al. for Hybrid main memories
composed of DRAM as a cache to non-volatile memories [53]. ATCache and other
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Tag-cache solutions are limited by the temporal locality of DRAM cache set accesses
and very sensitive to the tag-cache latency as it is always added to the critical path
of every access. Micro-Sector cache [54] uses a Decoupled-Sectored [30] cache tag
organization for the DC along with a new allocation and replacement unit called micro
sector and a spatial locality aware replacement algorithm to improve space utilization
in sectored DRAM caches. Decoupling the DC tags also improves the space utilization
of the tag-cache this design utilizes.

For DRAM caches with page-granularity cachelines, the most prevalent work
is the Tagless DRAM Cache. This work proposes a fully associative DRAM cache
that is addressed directly without any tag access. This is done by changing the OS
page tables and the TLBs to support DRAM cache addresses instead of main memory
addresses [21]. The Tagless DRAM Cache design is effective but it only works for
page based cache designs and requires big data transfers and awareness of data locality
to support systems with big-pages. Additionally, it requires significant operating
system (OS) support. Banshee [55] is another system which utilizes the TLBs and
OS page-tables to locate data in a DC in its effort to optimize for both in-package and
off-package DRAM bandwidth efficiency.

For multi-node systems storing a coherence directory on-chip would be pro-
hibitively expensive. CANDY [18] re-purposes the existing on-die coherence directory
as a DC coherence buffer to cache recently accessed directory entries similar to how
our design re-purposes the LLC tag array. C3D [17] attacks the same problem as
CANDY by keeping DRAM caches clean to avoid the need to ever access remote
DRAM caches on reads and by using a non-inclusive on-chip directory.

Finally, FusionCache presents a technique that utilizes the redundancy in the
LLC tags to store information about the location of DC-cachelines in the LLC tag
array. FusionCache achieves this by changing the LLC cache indexing to force LLC-
cachelines that belong to the same DC-cacheline to be mapped to the same LLC set.
This approach increases the number of distinct tags stored in the LLC tags array by
splitting the LLC tags in upper (DC-cacheline tag) and lower tags (LLC-cacheline
offset in the DC-cacheline) and by de-duplicating the LLC upper tags with the use of
way-pointers [41]. FusionCache exploits the spatial locality of cache accesses well but
degrades performance in some cases for large DC-cacheline sizes (over 1KB) because
of the modified indexing in the LLC which causes more set conflicts.

Contrary to existing work, DFC mitigates the DC tag access overheads without
imposing significant design restrictions. More precisely, DFC does not require any OS
support, it does not limit DC associativity, it does not impose additional overheads in
every access, and does not affect LLC performance. Still DFC offers zero tag access
overhead in the common case, and can dynamically (at boot time) support variable
DC-cacheline sizes.

2.5 Conclusions

In this Chapter, Decoupled Fused Cache (DFC) was presented, a design that stores
information about the contents of the DRAM cache in the LLC. DRAM cache tag
lookups are then avoided for most LLC misses. Decoupled Fused Cache overcomes
the limitations of our initial Fusioncache design implementing a decoupled LLC
tag array so to not penalize LLC performance for large DC-cacheline sizes. DFC
supports any DC-cacheline size power-of-two multiple of a LLC-cacheline (up to 4KB
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in our experiments), which is configurable at boot time. Our evaluation shows that
DFC improves performance by an average of 55% and 11% compared to a simple
DRAM cache (DC) and a DRAM cache with on-chip tag-cache (DCTC), respectively.
Compared to our initial Fusioncache design, DFC is on average 6% faster and in large
DC cacheline sizes 16-18% faster, because, as opposed to the FC, it does not affect the
LLC efficiency. DFC increases the number of accesses to the DRAM cache that do not
require a tag lookup from 67% for DCTC to 87%. DFC further reduces DRAM cache
traffic, by 7% in the SPEC benchmarks and 26% in NAS benchmarks compared to
FC, and by one and two thirds compared to DCTC and simple DC, respectively. This
traffic reduction as well as its improved performance allows DFC to reduce DRAM
cache energy by 7% compared to FC, by 24.5% versus DCTC, and by 62% compared
to the simple DC.
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Chapter 3

LLC-guided Data Migration in
Hybrid Memory Systems

Various memory technologies can be considered in the design of multicore memory
systems, each having different performance tradeoffs. Conventional DRAM offers
good capacity, decent memory latency, but low bandwidth [56]. Emerging non-volatile
technologies provide higher capacity but limited bandwidth and very high access
latency [57, 58]. Finally, 3D-stacked DRAM is a promising solution against the
bandwidth wall [59] as it delivers higher bandwidth, but falls short on the capacity
aspect [60, 61]. As a consequence, it is more difficult to build a memory system based
exclusively on 3D-stacked DRAM technology.

Many architectures suggest the use of 3D-stacked DRAM as a cache layer between
the last level SRAM cache and the main memory [12, 14, 23, 24]. DRAM caches
have been very effective in improving the performance of latency-sensitive workloads.
However, they deny considerable main memory capacity, which could otherwise be
utilized by capacity limited workloads [34]. Furthermore, DRAM caches come with
their own design challenges as the conventional design choices of SRAM caches need
to be re-considered for Giga-scale DRAM caches, especially in terms of granularity
and metadata placement [19–22, 26, 51].

Another way to exploit the bandwidth advantage of 3D-stacked DRAM without
wasting the capacity is to include it in a flat address space, hybrid memory system
combined with conventional DDR memory. Adding data migration support between
the two types of memories is critical for capitalizing a significant performance gain
[7, 9, 10, 32, 62–64]. Then, the memory system is composed of a 3D-stacked Near
Memory (NM), placed above the processor die, and a conventional DDR, Far Memory
(FM), located off-chip. The design of such a hybrid memory system is also challenging.
The performance impact of migration relies on the accuracy of identifying hot memory
segments to migrate as well as on balancing the introduced overheads. Data migration
requires address remapping which is in the critical path of a memory request. Moreover,
it introduces additional traffic which competes directly with the processor memory
accesses.

In this work, we propose LLC-guided Migration (LGM), a novel scheme for
data migration in hybrid memory systems aiming both at improving the selection
of migrated data as well as at reducing their traffic overheads. The first objective is
achieved by using the LLC to guide the selection of memory segments to be migrated

35
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Figure 3.1: A hybrid memory system.

by detecting high spatial and temporal locality. More precisely, the LLC is used to
identify memory segments that have a large number of cachelines on-chip. This is an
indication for potential future reuse, which gets stronger when these cachelines are
dirty. Employing the LLC to select segments for migration ensures that these segments
are at that moment –at least partly– present in the last level cache (LLC). This can be
used for achieving the second objective of reducing migration traffic. We observe that
when a fraction of a memory segment is located in the LLC, it can be omitted from the
migration to reduce the migration traffic, as long as the LLC evicts it back to memory.

Concisely, the contribution of this Chapter is a novel data-migration scheme for
hybrid memory systems that:

• Employs the LLC to detect locality and leverages it for migrating data with
higher potential for reuse;

• Reduces the migration traffic overhead by avoiding to migrate data that reside
in the LLC;

• Increases the benefits of the above migration traffic reduction because LGM
makes more likely the selected data to be in the LLC when they migrate.

The rest of the Chapter is organized as follows: Section 3.1 discusses some back-
ground and the motivation behind this work. Section 3.2 describes the proposed
migration scheme. Section 3.3 presents our experimental setup and system configura-
tion. Section 3.4 offers our evaluation results and comparison and finally Section 3.5
draws our concluding remarks.

3.1 Background and Motivation
This section presents related work on data migration for flat address space hybrid
memory systems as well as some motivating results to identify overheads and potential
for improving performance over the current state-of-the-art. Before that we first give a
general description of the system considered and the data migration problem.

Figure 3.1 shows a hybrid memory system comprised of Near Memory (NM) and
Far Memory (FM). NM can be 3D-stacked DRAM located either on top of the pro-
cessor die, or in the same package through an interposer or any other high-bandwidth
channel. FM can be conventional DDR DRAM connected to the processor chip through
a DDR bus. The 3D-stacked DRAM offers substantially higher bandwidth, but has
limited capacity, therefore it is complemented with off-chip DDR DRAM which adds
more capacity (in our experiments 16× more than the NM) but at a much lower
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Table 3.1: Categorization of existing works with respect to various aspects.

Design Flexi-
bility
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Trigger

Driver
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All

OS Page OS page ta-
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HW
and
SW

PoM [7] Congr.
groups

Segment Table in
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groups
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On
access

HW
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Segment/
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MemPod
[9]

All to
All

Segment Table in
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MEA Time In-
terval

HW

LGM All to
All

Segment Table in
NM +
cache

LLC-
guided

Threshold HW

bandwidth (8× lower than NM in our evaluation). Such hybrid organization of the two
technologies has the potential to compose a better memory system [7, 9, 10, 32, 62, 63]
provided that data can migrate between the FM and the NM. Additionally, support for
address remapping is needed to redirect memory requests to the actual location of the
segment as well as a mechanism for orchestrating the movement of migrating data.

3.1.1 Related Work

There exists a large body of prior work on data migration for hybrid memory systems.
We hereby attempt to identify the main features that differentiate these works and
point out our design decisions and novelty with respect to these features. The most
representative works are categorized in Table 3.1.

An important categorization of existing works is with respect to the flexibility
of remapping data between the FM and the NM. This design choice is also tightly
associated with the remap table size and complexity. Some allow all-to-all remapping
[9, 32], while others consider congruence groups [7, 10, 34] restricting the migration
as they may create conflicts when there is spatial locality [10, 34]. We consider an
all-to-all approach more interesting, as it allows any page to migrate between the two
memories increasing the migration options. In addition, congruence groups do not
scale well when the ratio between FM size and NM size increases [10,34]; in our work
we consider memory systems where the FM is substantially larger than NM, i.e., 16:1.

Another important component is the granularity of the migratable memory segment.
Previous works have considered various options such as: OS pages [7], large memory
segments [9, 32], and single cachelines [10, 34]. Dynamic granularity has been also
considered in [65]. As expected, coarser granularities are simpler to manage but require
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careful selection of “dense” data to avoid memory waste, while finer granularities
can fit “sparse” data more efficiently but are more expensive to implement. As in
Mempod [9], we consider half an OS page (2KB) as the size of a memory segment
that can migrate.

Various mechanisms have been used for address remapping in order to keep track
of the migrated data. Some techniques involve the OS page tables to keep track of
the remapping [32]. Most approaches use a remap table stored in NM and rely on
predictors [10, 34] or caching [7, 9] to reduce the memory accesses for remapped
address lookups. We opt for using a remap table and an on-chip cache for it as it is
less intrusive and flexible to support all-to-all remapping.

The core component of every strategy, is the way a memory segment is selected
for migration. Most approaches use counters to keep track of accesses to memory
segments [32] or counters for every segment within a group [7, 10]. So far, the
most promising approach has been the activity tracking mechanism proposed by
Mempod [9], which uses the Majority Element Algorithm (MEA) [33]. MEA has
been shown to predict the hottest pages within an interval with high accuracy and at
minimal hardware cost. In this work, we propose a new selection mechanism which
is based on the LLC state to select segments with good potential for future reuse. In
addition, our approach offers an excellent timing for selecting memory segments to
migrate, which contributes significantly to reducing migration overheads.

Different approaches trigger migrations in different ways. Many of them do it on
time intervals [9, 32], while others do it on an event, e.g. CAMEO migrates at every
memory access that is in a far memory [34]. Some approaches trigger migrations when
the values of selection counters go beyond some threshold [7, 10]. Our mechanism
also uses thresholds that are compared with the number of valid and dirty cachelines
per memory segment stored in the LLC.

Finally, another aspect that characterizes the different approaches is whether the
migration mechanism is based on software or hardware, or a combination of the two.
Some migration mechanisms rely on the OS with some hardware support to identify
the working set and orchestrate the migration [32], others only involve the hardware
and are transparent to the OS [7, 9, 10, 34]. Our approach is transparent to software
avoiding OS modifications and more complex and slower software-based techniques.

The best performing related works are MemPod [9] and SILC-FM [10]. Attempting
to compare them with each other, it can be observed that MemPod achieves higher
speedup than SLIC-FM versus the same competing techniques. Moreover, MemPod
offers an all-to-all remapping flexibility, while SILC-FM is restricted by congruence
groups which do not scale well when the size of the FM increases versus the NM size.
Consequently, we model and compare against Mempod considering it the best current
state-of-the-art competing design.

The main novelty of our approach is the following: Firstly, the migration overheads
are reduced by avoiding traffic for cachelines already present in the LLC. Secondly,
the quality of selecting of data for migration is improved. Even more important is that
segments are selected for migrations when a large fraction of them resides in the LLC,
this timing further reduces the migration traffic.
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3.1.2 Motivation
Here, we attempt to quantify the performance potential of data migration schemes as
well as to study various migration overheads. We identify and analyze the following
overheads:

• The latency cost of looking-up remapped addresses, and

• The migration traffic between the processor and the NM as well as between the
processor and the FM.

The migration approach used in this “limit study” is the current state-of-the-art
Mempod approach with 2KB granularity of memory segments applied in a system
like the one described in the beginning of this section, in which the FM is 16× larger
than the NM and has 8× lower bandwidth. The detailed experimental setup as well as
the benchmarks used here are the same as in our final evaluation and are described in
Section 3.3.

The first metric considered is the average speedup across the benchmarks listed in
Table 3.3. We evaluate the design points listed below and normalize the results to a
baseline system without data migration support:

• Mempod [9],

• Mempod with zero overhead remapped address lookup (ZO-Remap),

• Mempod with zero migration traffic for NM (ZMT-NM),

• Mempod with zero migration traffic for FM (ZMT-FM),

• Mempod with zero migration traffic to both NM and FM (ZMT),

• Mempod with zero overheads for address remap lookup and for migration traffic
(ZO-All),

• A system with a 3D stacked DRAM large enough to host the entire main memory
(Ideal).

As shown in Figure 3.2, Mempod offers a speedup of 1.3× on average, but
an Ideal memory system would reach a speedup over the baseline of 2.35×. This
indicates an upper limit in improving performance with data migration and shows
opportunity for improvements over the current state-of-the-art. Looking closer in the
migration overheads, it can be observed that removing the latency of remapped address
lookups from Mempod (ZO-Remap) would increase its speedup over the baseline to
1.38×. Furthermore, removing the migration traffic in the NM (ZMT-NM) would have
negligible performance impact because NM offers high bandwidth and parallelism. On
the contrary, removing the migration traffic from the FM (ZMT-FM) would improve
Mempod’s speedup to 1.39×. Moreover, removing all overheads of migration traffic
(ZMT) offers a speedup of 1.41×. Finally, removing all overheads, both for remapping
and for data traffic (ZO-All) would offer a speedup of 1.5×.

In order to understand better the impact of the migration traffic we measure and
analyze the traffic break-down. Figure 3.3 shows the NM, FM and total traffic, average
for all benchmarks, in a system with Mempod. The traffic is categorized as follows:
Processor traffic (PT), Migration traffic (MT), Remapped Address lookup traffic (RT).
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Figure 3.3: Average Traffic Breakdown in a Mempod system [9].

The traffic induced by migration (MT and RT) is significant and about 28% of the
total traffic. This traffic is almost evenly divided between RT and MT traffic, but it
is important to note that all RT goes exclusively to the NM, which has 8× higher
bandwidth than the FM. More precisely, 22% of NM traffic is due to migration of data
and 20% due to the lookup of the remapped addresses. FM does not suffer from RT
and its MT overhead is 16%. In conclusion, the traffic overhead of data migration
is significant and has an impact in performance as discussed above and presented in
Figure 3.2.

In summary, this “limit study” offers the following motivating conclusions: There
is significant potential for improving performance of hybrid memory systems with data
migration beyond the current state-of-the-art (up to about 1.8×). To a large extend,
this is due to the method for selecting data to migrate; to a lesser but significant extent
(by about 1.15×), it is due to reducing the migration overheads.

3.2 LLC-guided Migration

This section presents our scheme for LLC-guided data migration (LGM) for hybrid
memory systems. Our proposed approach is based on the observation that there is
significant amount of state and content in the last-level cache (LLC) to be exploited
for performing efficient data migration between the Near and the Far memories (NM
and FM) in a hybrid memory system.

Section 3.2.1 describes our proposed technique for identifying segments that are
good candidates for migration to the NM. Section 3.2.2 illustrates how to reuse data
segments that reside entirely or partially in the LLC to avoid unnecessary accesses to
the NM and FM. In Section 3.2.3 we present the details of our LGM architecture and
propose some changes in the LLC to efficiently support our migration scheme.
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3.2.1 Segment selection for migration

The NM offers high bandwidth but is a scarce resource while the FM which provides
the bulk of the memory capacity has limited bandwidth. Therefore, the migration
selection algorithm is of crucial importance for the performance of a hybrid memory
system. The ultimate goal of all migration algorithms is to select the memory segments
with the highest degree of spatial and temporal locality and place them to the NM in
order to facilitate faster data reuse and at lower energy cost. In analogy, the on-chip
cache hierarchies utilize sophisticated cache replacement algorithms to identify data
reuse at the cacheline granularity. It is apparent that both types of algorithms have
overlapping goals, however they are currently operating in isolation. Driven by this
observation we advocate that there is significant amount of state and data in the LLC to
be exploited by migration algorithms and take informed decisions about the memory
segments that should be placed in NM.

The most important difference between cache replacement and data migration
algorithms stems from the granularity of operation. The caches operate at the cacheline
granularity (typically 64-bytes) while data migration schemes operate at the segment
granularity which involves a plethora of cachelines (typically a power-of-two number);
the segments in our system consist of 32 cachelines (2KB). The coarser granularity of
segments poses a major challenge to the migration mechanisms which necessitates
the selection of segments with very high degrees of spatial locality. Moreover, the
migration traffic, i.e. the swapping of memory segments between FM and NM, puts
an additional burden to the bandwidth-limited FM and calls for techniques to alleviate
the extra bandwidth pressure.

To this end, we propose an LLC-guided data migration (LGM) scheme that mi-
grates memory segments, from the FM to the NM, based on the number of cachelines
present in the LLC and their state. The number of a segment’s cachelines that are
present (valid) in the LLC provides an indication about the degree of spatial and tem-
poral locality for the segment. Moreover, segments that have several dirty cachelines
are of particular interest because they indicate further traffic (write-backs) to memory
in the future.

Migration Selection:

Our proposed migration selection algorithm monitors the number of valid and dirty
cachelines and maintains a Valid Counter and a Dirty Counter for each FM segment
that resides in the LLC. In order to trigger migrations of memory segments from
FM to NM we introduce two thresholds: (a) Valid Threshold: the minimum number
of present cachelines of an FM segment in the LLC and (b) Dirty Threshold: the
minimum number of modified cachelines of an FM segment in the LLC.

The number of LLC cachelines that belong to an FM segment is constantly chang-
ing as a result of processor cache misses and LLC cache replacement decisions. The
Valid Counter of each FM segment is incremented upon LLC insertions and decre-
mented upon LLC evictions of associated cachelines. The Dirty Counter of each FM
segment is incremented upon write-backs to the LLC from the cache levels above and
decremented upon LLC evictions of associated cachelines. When the Valid Counter
exceeds the Valid Threshold or the Dirty Counter exceeds the Dirty Threshold then a
migration request is submitted to the Migration Controller (MIC) that performs the
required operations in the background; after this point the associated segment is not
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monitored. The detailed hardware support for tracking and migrating segments is
described in Section 3.2.3.

Adaptive Thresholds:

The use of a Valid Threshold and a Dirty Threshold to select FM segments and trigger
migrations is intuitive, however, deciding the actual values for these thresholds is a
subtle issue. Setting the thresholds to high values, i.e. close to the number of cachelines
in the segment (32 in our design), suggests migration only when the segments are
almost entirely present in the LLC and this may lead to very conservative or late
decisions. On the other hand, setting very low threshold values suggests aggressive
decisions which may cause excessive migrations of segments without sufficient spatial
locality. To balance between these two extremes and guard against excessive migration
traffic, our proposed design is adaptive, i.e. adjusts the thresholds dynamically, and
as such it can accommodate the behaviors of different applications and of different
phases within an application.

Our adaptive threshold mechanism monitors the number of migrations within a
fixed time interval and changes the threshold values only at interval boundaries. At the
beginning, both thresholds start at the highest value MAX (32 in our design) to request
migrations only for segments that have ideal spatial locality. If no migrations happen
in an interval, then the thresholds are lowered to relax the previous requirement. To
avoid overly relaxed thresholds, we set a low limit MIN (4 in our design) to filter out
segments with a small amount of spatial locality However, several threshold values
in the [MIN,MAX] range can be very optimistic, leading to excessive migrations and
in effect congestion that negatively impacts performance. To guard against excessive
migrations, we define a high-watermark as the highest acceptable number of migrations
during an interval and use it for throttling. This high-watermark does not limit the
actual number of migrations within an interval but is instead used at interval boundaries
to raise the thresholds if they become aggressively low; effectively the high-watermark
controls bandwidth allocation for migrations.

Our mechanism lowers the thresholds in a conservative way, always by one,
when the number of migrations within an interval is zero. The two thresholds
Valid Threshold and Dirty Threshold are handled separately. We favor migrations
of dirty FM segments over the clean ones, because we certainly know that they will
perform accesses in memory. The Dirty Threshold has the highest priority and gets
decremented until the lower limit MIN before the Valid Threshold starts being decre-
mented. On the other hand, we follow an aggressive policy to raise the thresholds
when the number of migrations exceeds the high-watermark, i.e. very high migra-
tion rate. Our mechanism disables all migrations for valid segments by setting the
Valid Threshold to MAX+1 (OFF) and permits migrations only for dirty segments with
ideal spatial locality by setting the Dirty Threshold to MAX. We take the decision to
effectively “pause” migrations and allow the memory system to “recover” in order to
avoid the adverse effects of congestion. After the recovery period, the algorithm will
eventually lower the thresholds and permit migrations in future intervals. Listing 3.1
outlines our algorithm for adjusting the migration thresholds based on the number of
migrations and the high-watermark.
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1 i f ( num−m i g r a t i o n s > high−watermark ) {
2 V a l i d t h r e s h o l d = MAX+1; / / OFF
3 D i r t y t h r e s h o l d = MAX;
4 } e l s e i f ( num−m i g r a t i o n s == 0 ) {
5 i f ( D i r t y t h r e s h o l d > MIN)
6 D i r t y t h r e s h o l d −−;
7 e l s e i f ( V a l i d t h r e s h o l d > MIN )
8 V a l i d t h r e s h o l d −−;
9 }

Listing 3.1: Adaptive migration threshold adjustment.

3.2.2 Reducing Migration Traffic
Segments that are currently located in FM and have several dirty cachelines in the
LLC are particularly interesting because they can have lower migration cost in terms
of memory traffic and energy. We observe that the migration process for such FM
segments can be optimized because: (a) there is no need to read the “stale” subset
of cachelines (those modified in the LLC) from the FM and (b) there is no need to
update the complete segment in the NM immediately – the NM contents will become
fully up-to-date when eventually these dirty cachelines are evicted from the LLC
and written back to memory (in this case NM). For “dense” segments that have ideal
spatial locality the migration traffic and energy are effectively halved. For “sparse”
segments the migration traffic and energy are lowered proportionally to the number
dirty cachelines of that segment in the LLC.

We also observe that the latter optimization can be applied to the valid but clean
cachelines of a FM segment that resides in the LLC and is selected for migration.
To implement this optimization and ensure correctness we merely need to mark the
associated cachelines with an “always-write-back” flag in the LLC and use it during
the eviction process.

The optimizations proposed above reduce the migration memory traffic and relieve
the bandwidth pressure on both the bandwidth-limited FM and the high-bandwidth
NM. However, the “always-write-back” optimization puts additional pressure on the
LLC since it disables “silent evictions” of “clean” cachelines for FM segments that
have been migrated. In spite of that, LLCs can handle additional accesses since they are
typically multi-banked and have significantly higher bandwidth than the NM and the
FM. In addition, reusing the cachelines present in the LLC constitutes a significantly
more energy efficient option than reading from off-chip memory; off-chip memory
accesses cost at least an order of magnitude higher energy than on-chip cache accesses.
The detailed hardware support for these optimizations is described next.

3.2.3 Architecture
The architecture of our LGM approach is illustrated in Figure 3.4. The LGM migration
mechanism is implemented between the LLC and the memory controllers. The LLC is
designed to keep track of data at the granularity of a memory segment in addition to the
LLC cacheline granularity. In doing so, the LLC keeps track of information about the
number of (valid and dirty) cachelines in a segment. This information is then used by
an LLC Migration Agent (LMA), which is the core module of our migration scheme
and implements the proposed LGM selection algorithm, described in Section 3.2.1.
The memory segments selected by the LMA for migration are sent to the Migration
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Figure 3.4: Block diagram of the LGM-based architecture.

Controller (MIC) module which is responsible for performing the data movement. It
further manages the contents of the Remap Table, which is located in the NM and
stores the address (re)mappings of memory segments. Next to the MIC, a cache of the
remap table, the Remap Cache, is used to avoid excessive NM accesses to the full size
table. Below, each of these modules is described. The MIC communicates with the
LMA located in the LLC and with all the NM and FM memory controllers.

Last Level Cache (LLC):

There are many design options for an LLC, however a design that lends itself naturally
for the basic functionality required by LGM is a Decoupled Sectored Cache (DSC) [30]
as it keeps track of data both at the granularity of a cacheline and that of a segment,
composed of multiple cachelines. DSCs, first introduced to prevent space waste in
sectored caches [30], decouple the indexing of their tag array (TA) from the one of
their data array allowing the first to handle tags at the granularity of a segment and
the latter to handle data at the granularity of a cacheline. This decoupling is achieved
via an indirection supported by a Back Pointer Array (BPA). Then, all cachelines that
belong to the same segment reference the same tag through the use of back-pointers as
depicted in Figure 3.5. The figure further illustrates that the BPA is indexed like the
data array, using the lower address bits after the byte offset; however, for the tag array,
higher order bits are used skipping the bits of the cacheline offset within the segment.
Figures 3.6a and 3.6b show in white boxes the basic fields of the DSC TA entries and
BPA entries, respectively. For every cacheline, the BPA stores its state (valid, dirty,
replacement bits) and the back-pointers which associate it with a (segment) tag in the
TA. The TA stores segment tags along with their accompanying state. To fully support
the LMA functionality we augment the DSC with additional state as described in the
following paragraphs.

LLC Migration Agent (LMA):

The LMA is an extension of the LLC controler. It selects FM segments to migrate to
NM by monitoring the number of their valid and dirty cachelines using counters in
the tag array. When these counters surpass their respective thresholds, LMA forwards
the segment address to the MIC along with a bit-vector of all present cachelines of
the segment in the LLC. At the same time, the LMA marks as “always write-back”
all present cachelines of the segment so that they are written-back to main memory
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Figure 3.5: DSC address breakdown and indexing.
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Figure 3.6: DSC changes to BPA and TA entries.

when evicted from the LLC. In order to support the above LMA functionality, the LLC
design is required to provide the following functionality:

1. Keep track of the state of FM segments that reside in the LLC (i.e. the number
of valid and dirty cachelines)

2. Mark all LLC cachelines of a migrating segment which are skipped during
migration as “always write-back” so that they are eventually written-back to
memory when evicted from the LLC.

3. Provide MIC with a bit-vector of the cachelines present at the LLC when a
segment is selected for migration.

For the first above LMA functionality, the LMA only needs to monitor changes
in the state of FM segments. For that purpose we add a Far-bit in the LLC, which
indicates that a particular segment is located in FM and should be monitored for state
changes that might lead to migration. The Far-bit, shown as F in Figure 3.6a, is placed
along with the segment tag in every TA entry. The location, either NM or FM, of a
segment is piggy-backed in the response packet from the memory system and if the
cache miss was served from FM then the Far-bit is set. The Far-bit is cleared when a
segment is selected for migration to NM and thus it does not need to be monitored any
further.
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To track the state of FM segments in the LLC we add two counters that hold the
number of valid and dirty cachelines for every segment. The Valid Counter and the
Dirty Counter are placed in every TA entry, as shown in Figure 3.6a. These counters
change as a result of processor cache misses, write-backs from the cache levels above,
and LLC replacement decisions. Upon changes, the values of the Valid Counter
and the Dirty Counter are compared with the Valid Threshold and Dirty Threshold
respectively to select FM segments for migration. The size of the Valid Counter and
the Dirty Counter is proportional to the number of cachelines per segment. For N
cachelines per segment each counter is logN +1 bits wide.

The second functionality of LMA is marking in the LLC all present cachelines of a
segment when it is selected for migration. These cachelines are not transferred during
migration of that segment and we must ensure that they are eventually updated in
memory. For this purpose, we add an Always Write-back (AW) bit in every BPA entry
as shown in Figure 3.6b. The AW bit is checked by the LLC controller whenever a
cacheline is replaced and if set the cacheline will be written-back to memory regardless
if it is dirty or not. We add this new bit instead of using already existing state bits,
e.g. “dirty”, to avoid interfering with coherence state bits and their complex transient
states. Furthermore, we assume a Non-inclusive/Non-exclusive LLC for our design.
Therefore, if the AW bit is set, a cacheline is always written back to memory when
evicted from the LLC regardless of whether there exists a copy of that cacheline in
lower cache levels. This approach simplifies the design, although it may lead to some
unnecessary memory updates when the latest copy of a cacheline is not in the LLC.

The third functionality of LMA is to provide a bit-vector of all cachelines of
a segment that are present in the LLC to the MIC when a segment is selected for
migration. This is achieved by looking up the subset of the BPA that can potentially
host cachelines of a segment1. Looking up the valid cachelines of a segment in the BPA
and setting their AW bit is accomplished with a single pass when a segment is selected
for migration. Furthermore, the BPA is significantly smaller than a conventional tag
array, accesses to it are fast and consume little energy, and thus they do not impose
significant overheads. Additionally, the search of BPA for cachelines of a segment
terminates when LMA has located as many as indicated by the Valid Counter of the
particular segment.

To summarize, the changes we introduce to the Decoupled LLC for our migration
mechanism are:

• The LLC Migration Agent (LMA) which consists of some additional logic in
the LLC controller.

• A Far-bit to every TA entry (Figure 3.6a), which is used to indicate that a
segment is currently in FM,

• A Valid Counter and a Dirty Counter to every TA entry (Figure 3.6a) that count
valid and dirty cachelines for every segment and,

• An Always Write-back bit to every BPA entry (Figure 3.6b) which ensures that
the cachelines of a segment that were skipped during migration to NM are
eventually updated in memory.

1In the worst case, LMA needs to probe as many BPA sets as the number of cachelines that belong to a
segment (32 in our case).
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When considering a 16-way, 8MB LLC with 64-byte cachelines, 2KB segments,
and 48 bits of physical address space we find that our modifications require only 4.3%
additional area over a conventional LLC with the same characteristics.

LGM with a conventional LLC:

Using a DSC is the most cost effective option to support the functionality LGM
requires. However, LGM can be implemented on top of a traditional LLC, albeit
with higher area and energy cost. To do so, we must include a DSC-like tag-array in
addition to the conventional LLC in order to keep track of the segments that reside
in the LLC. This additional tag-array must store tags at segment granularity and also
maintain a valid and dirty bit-vector for the cachelines of each segment in the LLC. The
always-writeback bits should also be stored in the added tag-array for every cacheline
in a segment. Besides the additional area overhead, the extra tag array also incurs
energy costs as it needs to be accessed and updated in parallel to the LLC. Furthermore,
the LLC controller must consult the always-writeback bits of the DSC-tag array on
LLC evictions.

Banked DSCs:

A DSC still allows for a banked implementation. Banked caches interleave their sets
across multiple banks for better access parallelism and throughput. In a DSC, this
interleaving can be achieved by selecting the LSbits of the tag to identify the bank.
Although the tag array and BPA are indexed by different parts of the address (Tag array
set and BPA set in Figure 3.5, respectively), these address parts have an overlap. Using
this overlapping address part as the most significant bits for indexing the tag-array and
BPA ensures that the tag of a segment and its cachelines fall on the same group of
consecutive sets (subset) of the cache.

The number of sets in a subset is equal to the number of cachelines per segment,
and for our design it is 32. Thereby, a DSC can be split into multiple banks as long as
a subset does not span multiple banks.

Migration controller (MIC):

The MIC is responsible for implementing migration decisions. It includes swap buffers
to facilitate the migrations of segments between NM and FM. It also manages the
address remapping mechanism which consists of a “remap table” stored in NM and
cached on-chip in the Remap Cache. Moreover, it has an “inverted remap table”, also
stored in NM, which is used to find the physical address of any remapped segment.
The “remap table” is indexed by the segment address and provides the physical address
for each segment in the address space. The “inverted remap table” is indexed by a
physical address and provides the address of the segment that currently resides there.
The entry size in both tables is 4 bytes in our evaluated system and they are both stored
in the lowest addresses of the NM. When the MIC receives a segment address from
the LMA to migrate to NM it performs the following steps:

1. Selects a NM segment to be swapped-out (victim) using a First-In-First-Out
(FIFO) policy.

2. Finds the physical address of the victim segment via the Inverted Remap Table
which resides in NM.
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3. Finds the location of the segment to be migrated to NM (hot) through the Remap
Table also located in NM.

4. Issues memory requests to swap the two segments using the bit-vector.

5. Updates the Remap Table and the Inverted Remap Table.

6. Stalls any incoming processor requests to the “pending” segments while they
are being swapped.

Periodically, at fixed time-interval, the MIC compares the number of migrations to the
high-watermark and adapts the Valid Threshold and Dirty Threshold for the LMA.

To support the above functionality, the MIC requires simple hardware mechanisms
such as: Migration buffers to store cachelines of segments undergoing migration,
logical shifters to access the proper remap table indexes given an address, logic to
issue memory requests, a small structure that keeps track of outstanding migrations,
comparators for identifying requests to segments that are being currently swapped, a
comparator for adjusting the migration thresholds and a simple interface to communi-
cate these thresholds to the LMA.

3.3 Experimental Setup
In this Section we provide the details of the experimental setup and the benchmarks
used for our evaluation.
System configuration: As shown in Table 3.2, our system configuration considers
an eight core processor with private L1 and L2 caches and a shared last level cache
(LLC). The memory system consists of 1GB of HBM and 16GB of DDR4, all 17GB
of memory are available as a continuous flat physical address space. The memory is
organized similar to Mempod [9] having two pods, each pod with one DDR4 channel
(8GB) and four HBM channels (512MB). Each pod operates independently and there
is no data movement across pods. The NM is mapped to the lower addresses of
the physical address space. The addresses are interleaved across channels at a page
granularity (4KB). We allocate the remap table and the inverted remap table to the
NM.

Table 3.2: System configuration.

Cores 8 cores, out-of-order, 4-way issue/commit, 3.2 GHz
L1 Cache Private, 64 KB, 4-way, 1 cycle access latency
L2 Cache Private, 256 KB, 8-way, 9 cycles access latency
L3 Cache Shared 8MB, 16-way, 14 cycles access latency, non-

inclusive, non-exclusive
3D-DRAM HBM2 2GHz, 1 GB, 8 128-bit channels, 16 banks,

tCAS-tRCD-tRP-tRAS: 7-7-7-17, RD/WR+I/O energy:
6.4pJ/bit, ACT/PRE energy: 15nJ

Main DRAM DDR4-1600, 16 GB, 2 64-bit channels, 16 banks,
tCAS-tRCD-tRP-tRAS: 11-11-11-28, RD/WR+I/O en-
ergy: 33pJ/bit, ACT/PRE energy: 15nJ

Remap Cache 64 KB per Pod, 4-way, 1 cycle access latency
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Table 3.3: Benchmark characteristics.

High MPKI
Bechmark Footprint(GB) MPKI

libquantum (MP) 0.3 24.8
milc (MP) 4.6 25.6
lu.D (MT) 3 25.9
lbm (MP) 3.2 30.2
bt.D (MT) 10.7 30.2
sp.D (MT) 11.2 30.2
gcc (MP) 0.7 31.3

soplex (MP) 0.5 31.4
mcf (MP) 9.5 72.9
cg.D (MT) 7.9 90.4

Medium MPKI
Bechmark Footprint(GB) MPKI
ua.D (MT) 3.1 7.8

leslie3d (MP) 0.6 8.2
dc.B (MT) 4 8.5

bwaves (MP) 3.4 9
is.C (MT) 1.1 9.1

GemsFDTD (MP) 5.3 10.3
sphinx3 (MP) 0.2 12.1
mg.C (MT) 2.8 14.3
astar (MP) 1.5 15.4

omnetpp (MP) 1.2 19.2
Low MPKI

Bechmark Footprint(GB) MPKI
calculix (MP) 0.3 1.3

h264 (MP) 0.1 1.4
xalancbmk (MP) 1.4 2.2

hmmer (MP) 0.1 2.3
dealII (MP) 0.4 2.9
ft.C (MT) 0.9 3.2

bzip2 (MP) 0.1 3.9
cactus (MP) 1.2 4.9

wrf (MP) 0.7 6.4
zeusmp (MP) 1.7 7.3

Simulator:

Our evaluation is performed using an in-house simulator based on Pin [43] following
the interval-based simulation methodology [44] for the processor and cycle-accurate
modelling of the memory system using DRAMSim2 [66]. We use Cacti to determine
the access times for the caches [42]. The DRAM energy parameters are shown in
Table 2.2. Through all of our experiments the memory is allocated randomly in the
HBM or DDR4 proportionally to their capacity.
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Workloads:

We evaluate our design with both multi-programmed (MP) and multi-threaded (MT)
workloads. For the multi-programmed workloads we use benchmarks from SPEC2006
[46]. For the multi-threaded workloads we use the OpenMP version of the NAS
parallel benchmarks [48] [67]. For each of the NAS benchmarks we used the biggest
class that we could run in our simulator. In both cases we use all benchmarks from
each suite with more than one LLC miss per 1000 instructions (MPKI). For the multi-
programmed workloads we run eight instances of the same benchmark at the same
time ensuring they do not share the same address space. Overall we run 21 SPEC
and 9 NAS benchmarks for a total of 30 workloads. For the SPEC benchmarks we
use simpoints to select a representative slice of one billion instructions [50] while for
the NAS benchmarks we simulate one billion instructions for each thread after the
initialization phase. Table 3.3 shows the average LLC MPKI and the memory footprint
for the simulated portion of each benchmark.

3.4 Evaluation
In this Section we present the results of our evaluation in terms of performance and
energy efficiency. Our evaluation considers the following design points:

• Baseline: No migration mechanism.

• Mempod (Mpod): Mempod [9] migration using the Majority Elements Algo-
rithm (MEA).

• LLC Guided Migration (LGM): Our proposed migration scheme described
in Section 3.2.

Throughout our evaluation we present results for every workload separately as
well as the average over all workloads and the averages for High, Medium, and Low
MPKI workload groups as defined in Table 3.3.

3.4.1 Design space exploration
Figure 3.7 shows the average performance results of our design space exploration for
Mempod (3.7a) and LGM (3.7b). For Mempod we evaluate configurations for 12.5
up to 100µs intervals and 16 to 128 MEA counters. The best result for Mempod is
achieved with 16 MEA counters and 25µs intervals. For LGM we examine intervals
from 12.5 to 100µs and high-watermark ranging from 16 to 128 migrations. The best
result is achieved for the configuration with 64 migrations high-watermark and 25µs
interval. From this design space exploration we observe that Mempod is more sensitive
to its parameters than our LGM design. This is because the number of counters in
Mempod sets an upper limit on the number of migrations per interval as opposed to our
flexible high-watermark approach which dynamically adapts the number of migrations
without limiting them.
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Figure 3.7: Design space exploration, average performance improvement over Base-
line.

3.4.2 Performance
Figure 3.8a shows the performance of LGM and Mempod normalized to the Baseline.
We can see that LGM outperforms the Baseline in all workloads except dc.B for
which it degrades performance by 4% while Mempod degrades performance for seven
workloads (up to 14% for dc.B). LGM improves performance on average by 43% over
the baseline for all workloads, and by up to 77% on average for the most memory
intensive workloads (AVG H). Figure 3.8b shows the performance improvement of
LGM over Mempod. Our scheme can almost double performance (1.94× speedup) for
one of the most memory intensive workloads (lbm). LGM only shows slightly worse
performance than Mempod for two workloads: mcf and libquantum by 2% and 5%
respectively. However, these two workloads already achieve very high performance
improvement over the baseline for both Mempod and LGM. For workloads with large
memory footprints and little data reuse (e.g. sp.D, bt.D, and Gems), Mempod degrades
performance because of the significant overheads of data migration which are not
justified by the reuse of migrated segments in NM. LGM on the other hand significantly
increases performance because of the reduced migration overheads. Overall, the
average performance improvement of LGM over Mempod is 12.1% for all workloads.
For the memory intensive workloads the improvement is higher reaching 15% on
average while for less memory intensive workloads improvement is smaller, 8% on
average.

An interesting question arises regarding the individual performance benefits of
each of the two main contributions of LGM, namely the selection of data to migrate
and the reduction of migration traffic for data in the LLC. Although we do not present
the detailed results here due to space limitations, we have answered the above question.
A Mempod design with our idea of avoiding migrations when data are in the LLC
achieves up to 7% and on average 2.3% speedup over Mempod. Moreover, an LGM
with no support for avoiding migration of data that are stored in the LLC achieves
up to 23% speedup and on average is 2% better than Mempod. The fact that the
combination of the two gives LGM 12.1% better performance over Mempod indicates
that our selection approach migrates data when they are available in the LLC reducing
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(b) Performance improvement of LGM over Mempod.

Figure 3.8: Performance improvement of (a) Mempod and LGM over Baseline and (b)
LGM over Mempod.

significantly their traffic cost. Actually, on average 29 cachelines out of 32 in a segment
are present in the LLC when the segment is migrating. This saves almost entirely the
traffic overhead for bringing a segment to the NM and the only overhead that remains
is the one of evicting a segment from the NM to the FM.

Sensitivity to remap cache size:

Figure 3.9 shows the impact of the remap cache size on Mempod and LGM perfor-
mance (normalized over baseline). Both Mempod and LGM show a similar perfor-
mance improvement as the size of the remap cache increases. For the rest of our
evaluation we assume a 64KB remap cache as in Mempod [9].

Sensitivity to DRAM latency:

Figure 3.10 shows the impact of different DRAM latency characteristics on the per-
formance of Mempod and LGM and an Ideal design where all data are present in the
NM, the performance is normalized over the Baseline. From left to right we show the
average speedup of the different designs for:

• DDR4: Both NM and FM having the same latency characteristics as the Main
Memory in table 3.2.

• HBM: Both NM and FM having the same latency characteristics as the 3D-
DRAM in table 3.2 and,

• DDR4 + HBM: Each memory with different latency characteristics as in table
3.2.
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Figure 3.9: Average performance improvement over Baseline for Mempod and LGM
for different remap cache sizes.
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Figure 3.10: Average speedup over baseline for Mempod, LGM and Ideal design for
different DRAM latency characteristics.

From these results we see that in all cases the performance advantage of LGM over
Mempod remains similar regardless of the latency difference between NM and FM.

3.4.3 Traffic
To understand the reasons behind our LGM’s better performance we need to examine
the ratio of processor memory requests that are served by the NM over FM. Figure
3.11 shows the ratio of requests to NM over FM for Mempod and LGM. LGM serves
on average 4.9 NM requests for every request served from FM, more than three
times higher than the ratio achieved by Mempod. This is a clear indication that
LGM’s migrations are more effective. This effect is more pronounced in Lower MPKI
workloads where LGM serves on average 9.1 requests from NM for every FM request,
which is more than five times the ratio for Mempod. This is due to the fact that LGM,
in contrast to Mempod, does not limit the number of migrations per interval. It is
worth noting that for all workloads LGM always shows a ratio higher or equal to
Mempod. Even in the cases where the ratio is not improved significantly, LGM still
outperforms Mempod because of the more efficient data migrations overall.

Figure 3.12 shows the traffic for Mempod and LGM normalized to the baseline
traffic. The traffic is separated in NM and FM Processor Traffic (PT), which concerns
the memory requests coming from the processor, Remap Traffic (RT), which is the
traffic imposed by the remap cache misses, and Migration Traffic (MT). For some
workloads such as milc and ua.D the sum of NM and FM PT for LGM exceeds the
traffic of the Baseline system, this happens when our migration mechanism marks as
dirty, cachelines that would have not been dirty otherwise. These cases are just a few
and with little impact on the performance of our design. As mentioned before, when
comparing just NM and FM traffic between Mempod and LGM, for all workloads
our design is able to “convert” more FM traffic into NM traffic. Nevertheless, the
total traffic for LGM is not always less than Mempod. For example, for lu.D, ua.D,
and especially for dc.B where the total traffic for LGM is up to 1.4 times the total
traffic for Mempod. This is due to higher migration traffic. However, LGM migrates
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Figure 3.11: NM to FM processor request ratio of Mpod and LGM.
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Figure 3.12: Memory traffic breakdown for Mempod and LGM in Processor Traffic
in NM (NM PT) and FM (FM PT), Migration Traffic (MT) and remap traffic (RT)
normalized to Baseline traffic
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Figure 3.13: LGM Traffic vs. Mempod for processor traffic (PT) in NM/FM, migration
traffic (MT), remap cache traffic (RT).

substantially more data to NM than the increase of its migration traffic due to imposing
lower overheads. These additional migrations are then reused effectively resulting in
an overall performance improvement over Mempod.

Figure 3.13 shows the average difference between LGM and Mempod for all of
the above traffic classes and for the total traffic in NM (NM Total), FM (NM Total) and
both (Total) for all workloads, as well as the average for each workload group. LGM
increases the processor traffic to the NM by 72% while it decreases the processor traffic
to the FM by 31%. Migration Traffic is increased by 10%, this increase in migration
traffic is however small when considering that LGM performs on average two times
more migrations than Mempod. This shows that migrations in our design come at
almost half the cost compared to Mempod. We also notice a significant increase in the
remap cache traffic. This is a direct consequence of the larger number of migrations
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Figure 3.14: Memory dynamic energy consumption for NM and FM normalized to
Baseline.
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Figure 3.15: Difference in DRAM Dynamic energy consumption of LGM over Mem-
pod.

since the remap tables are updated more often, leading to more remap cache writebacks
and misses. LGM increases the overall system traffic by 4%, however note that this
increase concerns only the fast and energy efficient NM for which the traffic increases
by 40% on average while for the slower, more energy demanding FM the total traffic
is reduced by 24% on average.

3.4.4 Energy Consumption

Figure 3.14 shows the dynamic energy consumption of NM and FM for all workloads
for Mempod and LGM normalized to the baseline system. For most workloads both
designs achieve lower total energy consumption than the baseline. The total dynamic
memory consumption of LGM is lower than Mempod for all workloads except dc.B.
The largest energy gain of LGM is 40% for hmmer. For dc.B, LGM performs more
migrations to NM than Mempod resulting in a 2× increase in NM dynamic energy
compared to Mempod however, it achieves a significant reduction in FM energy and
the net effect is only 4% higher enegry than Mempod; note that here LGM offers 11%
higher performance. For all other workloads, the fact that LGM moves more data to
NM results in an increase in the NM dynamic energy, however, this decreases requests
to FM. Since FM is more energy demanding than NM, the net effect is an important
reduction in the total dynamic memory consumption. Figure 3.15 shows the difference
in DRAM dynamic energy consumption of LGM over Mempod for NM, FM and total
for both memories. Looking at the results for NM and FM separately we observe
the same trends as the traffic served by each memory. The NM energy consumption
increases by 40% on average while FM decreases by 24%. This behaviour is due to
the substantially higher ratio of memory requests served by NM in our design and
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because of the additional migration and remap cache traffic. Overall, this redistribution
of traffic towards the more energy efficient NM results in a reduction of the memory
system energy by 13.2% on average.

3.5 Conclusions
This Chapter presented LGM, an LLC-guided Migration scheme for flat address
space hybrid memory systems. LGM employs the LLC to select memory segments
for migration between the low-bandwidth far memory and the high-bandwidth near
memory. Segments with large number of cachelines in the LLC indicate higher
potential for reuse, especially if their cachelines are dirty. Letting the LLC select
segments for migration achieves a convenient timing as a fraction of these segments is
present in the LLC. Then, data under migration that are available in the LLC do not
need to be read from the far memory and also do not need to be written to the near
memory immediately, thereby, reducing migration traffic. Our experiments show that
LGM reduces migration traffic to almost half and enables more data to be migrated
more efficiently. This results in a three-fold increase on the ratio of memory requests
serviced by the near memory. Overall, LGM improves performance by 12.1% and
reduces memory system dynamic energy by 13.2% compared to the state-of-the-art.



Chapter 4

Hybrid2: Combining Caching
and Migration in Hybrid
Memory Systems

The performance of computer systems is largely dominated by their memory hierarchy
[1]. Besides latency, memory bandwidth can be a limiting factor for many workloads
[2–5]. On one hand, data intensive applications as well as the large number of cores
and specialized accelerators integrated on a chip increase the demand for higher data
rates. On the other hand, memory bandwidth is pin limited [2,6] and is therefore more
difficult to scale [5].

3D-stacking technology can be used to increase memory bandwidth. In particular,
3D-stacked DRAM can be placed near the processor die offering substantially higher
bandwidth. This near memory (NM) has limited capacity and often needs to be
complemented with a larger far memory (FM) such as an off-chip DRAM that has
however lower bandwidth. How to best exploit the NM bandwidth and the FM capacity
to maximize system performance is still an open problem. Currently, there are two
dominant approaches: the first one uses NM and FM as a hybrid, flat address-space
memory system supporting migration between the two [7–11,35]; the second one uses
NM as DRAM cache and FM as the main memory [12–26, 31].

In general, DRAM caches copy data from FM to NM, as opposed to migration
schemes that swap data between NM and FM. This results in a number of differences
between the two approaches. Firstly, caching takes the NM capacity away from
the memory system, as opposed to migration where NM capacity is part of a flat
address space; this may have a significant impact on capacity limited workloads [34].
Secondly, swapping incurs double the overheads of copying. To amortize the overheads
of swapping, migration schemes try to migrate only data with potential for future reuse.
To detect this potential, migration schemes need to observe the data access patterns
over time and predict which data are more beneficial to migrate to NM. This makes
migration slower to adapt to changes in the working set of applications compared to
caches that always bring in requested data.

Despite their differences, caching and migration share some common challenges.
One of them is the trade-off between data granularity and metadata overheads. The
smaller the cachelines the larger the tag array and vice versa; similarly, the smaller

57
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the size of a migration block the larger the metadata required to keep track of the
remapping. In effect, the size of the tag-array and remapping metadata impacts
their management overheads and as a consequence performance. Another trade-
off, common for caching and migration, is that coarser granularity of cachelines
and migration blocks can benefit workloads with high spatial locality, but may hurt
workloads with poor spatial locality due to over-fetching. Finer data granularity has
lower over-fetching risk, but may not exploit equally well spatial locality.

In this work we propose Hybrid2, a new approach for utilizing a 3D-stacked
DRAM that aims to preserve the advantages of both caching and migration as well as
at minimizing their overheads. Hybrid2 employs a small portion of the 3D-stacked
DRAM to implement a DRAM cache and offers the rest of its capacity to main memory.
Besides preserving most of the NM capacity, the small DRAM cache size allows its
tag array to fit entirely on-chip, thereby reducing access latency. The on-chip tag array
is extended to act as a cache for the remapping metadata required for data migration.
This minimizes both the DRAM cache and migration metadata overheads. The DRAM
cache quickly adjusts to the working set of the workload by fetching all requested data
to the NM. Migrations are decided upon eviction from the DRAM cache which allows
observing the access patterns in the DRAM cache in order to make informed migration
decisions. Finally, the data of the DRAM cache can be located anywhere in the NM
through the use of indirection, therefore, data selected to be kept in the NM after
eviction from the cache do not require relocation within NM, avoiding unnecessary
traffic.

Concisely, Hybrid2 makes the following contributions:

• Proposes a new hybrid memory architecture that combines caching and migra-
tion in the 3D stacked DRAM.

• Alleviates the latency and traffic overheads of both DRAM cache tag lookups
and data migration address remapping by using the same mechanism.

• Outperforms state-of-the-art migration schemes by using a small part of the
3D-stacked DRAM as a cache which quickly adapts to working set changes.

• Closely matches the performance of state-of-the-art DRAM caches and in
memory-intensive workloads outperforms them, while offering almost all of the
3D-stacked DRAM capacity to the flat memory address space.

The remainder of this Chapter is organized as follows: Section 4.1 presents related
work and some motivating results for our proposed design. Section 4.2 describes the
Hybrid2 architecture. Section 4.3 explains our experimental setup. Section 4.4 offers
our evaluation results. Finally, Section 4.5 summarizes our conclusions.

4.1 Related Work and Motivation
Various memory technologies exhibit different trade-offs in terms of capacity, band-
width, access latency, and cost [57, 58, 60, 61, 68, 69]. A promising direction towards a
more efficient memory system design is to combine memory technologies with comple-
mentary characteristics in a hybrid memory system. One common hybrid approach is
to put together a high-bandwidth 3D-stacked DRAM and a high-capacity conventional,
off-chip DRAM, the first one denoted as near memory (NM) and the second as far
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memory (FM). Recent advances in 3D-stacking made it possible to place 3D-stacked
DRAM close to the processor and thus provide substantially higher bandwidth than
traditional DDR busses [60, 61]. Although the latest 3D-stacked DRAM memories
can offer capacities that reach up to 24GB per stack (i.e. HBM2 with 12-High stack)
they have very high-cost. Therefore, conventional, off-chip, lower bandwidth DRAM
is added to provide the missing capacity. Currently, there are two dominant research
directions for best exploiting the high bandwidth of NM and the capacity of FM. The
first approach uses the NM as a DRAM cache and the FM as the main memory; the
second one combines NM and FM in a flat address space and supports migration
between them.

4.1.1 Related work on DRAM caches

Most work on DRAM caches focuses on minimizing the tag lookup overheads and on
achieving a good balance between cache line size and tag management complexity.
Loh and Hill proposed storing tags in DRAM and using compound accesses so the data
access is always a row buffer hit, they use 64 Byte cache lines and adjust associativity
to fit a set in a single DRAM row [12]. Alloy cache uses a direct mapped design with
64 Byte cache lines and collocates the tag along with the data to access with a single
DRAM access [24]. The Tagless DRAM Cache is on the other side of the cache line
size spectrum, it uses 4 KByte cache lines and minimizes the tag lookup overheads by
using the OS page tables and TLBs to track the DRAM cache contents [21]. These
approaches are scalable but limit the design options of DRAM caches [31].

Some less restrictive designs handle the tag management using resources on the
processor die. ATCache, uses a small on-chip cache for the DRAM cache tags, which
are located in DRAM, to absorb most tag lookups [19]. The Decoupled Fused Cache
(DFC) also keeps the DRAM cache tags in DRAM and re-organizes the tag array of
the on-chip LLC to store information about the contents of the DRAM cache [31].
These designs are more generic and allow various cache line sizes, however selecting
the right cache line size for a DRAM cache comes with its own tradeoffs.

In general, small cache lines come with higher tag overheads, but use cache space
more efficiently. Large cache lines reduce the tag lookup overheads but may lead to
over-fetching. Footprint cache tackles the overfetching problem of large cache lines
with on-chip tags fetching only the blocks that are predicted to be used [23]. Unison
Cache follows the same approach, but stores the tags in DRAM for scalability to larger
cache sizes [14]. Finally, Footprint Tagless DRAM Cache combines the Tagless with
the footprint design [20]. The above approaches achieve a good balance between tag
lookups and over-fetching. However, they may underutilize the DRAM cache space
when only small parts of each cache line are fetched.

Another issue of DRAM caches is the unbalanced use of memory bandwidth.
Off-chip DRAM bandwidth is only used for serving cache misses and writebacks
rather than processor memory accesses. Banshee uses the TLBs to track DRAM cache
contents and proposes a bandwidth-aware frequency-based replacement policy [55] to
balance bandwidth utilization. BATMAN monitors the number of accesses to both 3D
stacked DRAM and conventional DRAM and regulates data movement [70]. Finally,
BEAR proposes mechanisms to limit the bandwidth used by secondary operations of
DRAM caches [22].

Intel’s Knights Landing provides the option to split the MCDRAM (NM) between
DRAM cache and flat address space, however, it does not support transparent data
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migration in HW. Instead it moves the burden to the software to explicitly allocate
data to NM through the hbw malloc() function [37].

4.1.2 Related work on data migration
As opposed to DRAM caches, data migration makes 3D-stacked DRAM capacity
available to the system. Moreover, it has the potential to utilize the bandwidth of
all memories for serving memory requests. As such, data migration can potentially
reap the benefits of both higher aggregate bandwidth and capacity by migrating
data between the 3D-stacked DRAM and conventional DRAM dynamically. Data
migration schemes come in different flavors when it comes to granularity of migrated
data, flexibility, and data selection.

Some early work utilizes the OS, with some hardware support, to select the data
that would be more beneficial to migrate to 3D-stacked DRAM [32]. On one hand,
involving the OS improves the selection of data to migrate and allows the use of page
tables for tracking the remapped data. On the other hand, OS-schemes have slow
response to working set changes, incur high overheads, and limit the granularity of
migrating data to that of an OS page.

As an alternative, hardware mechanisms can respond faster and support more
migration granularities, but need to handle the address remapping in hardware in
order to remain transparent to the OS. The migration granularity affects the address
remapping overheads. A way to alleviate the remapping overheads is to divide memory
in congruence groups and allow migration only within a group, like in CAMEO
[34]. PoM follows the same group approach with 2 KByte granularity segments. It
further uses competing counters in every segment group and a sampling approach to
dynamically adjust migration thresholds [7]. Chameleon is based on PoM with the
added option to economize on migration bandwidth when the software does not use
some memory space [8]. Chameleon requires changes to the operating system and
in the Instruction Set Architecture (ISA). Although group-based approaches support
fine-granularity at lower cost, they do not perform well for lower ratios of 3D-stacked
to off-chip DRAM.

To overcome the limitations of the group-based approaches, some designs choose
to offer more flexibility at coarser migration granularity. Mempod opts for all-to-
all migration for higher flexibility [9]. It uses the Majority Element Algorithm to
identify 2 KByte blocks to migrate to 3D-stacked DRAM in short time intervals [33].
LGM leverages the spatial locality of data in the LLC to select 2 KByte segments for
migration, additionally, it economizes migration bandwidth by not migrating cache
lines that are present in the LLC, instead they are marked as dirty and written back
upon eviction. PageSeer proposes using the Memory Management Unit (MMU) to
prefetch pages from Non Volatile Memory to conventional DRAM [11]. SILC-FM
presents a more flexible group approach [10], it uses set-associative swap-groups and
migrates 2 KByte blocks, but allows sub-blocks to interleave data in the 3D-stacked
DRAM.

4.1.3 Motivation
As described above, both DRAM caches and data migration schemes come with their
own advantages and limitations. The key difference between DRAM caches and data
migration comes from the fact that data migration, contrary to caches, preserves all
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Figure 4.1: Average percentage of data brought in DRAM cache, but remained unused,
with respect to cache line size.

memory in the address space. To preserve the memory space, data migration must
swap data instead of just copying them like a cache. Swapping however, incurs double
the overheads of copying and so migration selection has to be targeted to data with
potential for future reuse. To detect this potential, data migration selection mechanisms
observe the memory behaviour before making a decision to migrate data. This can
make data migration schemes less reactive than caches to working set changes since
caches fetch all accessed data to the 3D-stacked DRAM.

DRAM caches and migration schemes face some similar issues. One such issue
is the trade-offs associated with data movement granularity. The cache line size for
DRAM caches and the migration granularity are critical for performance.

Coarse granularity favors spatial locality by effectively pre-fetching data and
requires less metadata. However, coarse granularity may consume excessive bandwidth
due to over-fetching which can be detrimental to workloads with poor spatial locality.
Finer granularity on the other hand, utilizes bandwidth more efficiently, however,
it requires more metadata and does not reap the benefits of pre-fetching. Figure
4.1 shows that the amount of data that was fetched by a DRAM cache but not used
increases with cache line size and can be as high as 26% on average1.

Migration schemes exhibit similar trade-offs with regard to migration aggressive-
ness and granularity of migrated data. Overly aggressive migration schemes can
generate excessive traffic while less aggressive ones can miss opportunities to migrate
data in time. Another common issue for both DRAM caches and data migration is the
metadata overhead. Caches require tag lookups while data migration requires address
translation mechanisms to locate data in the memory hierarchy. These are always in
the critical memory access path of every memory request and can hinder performance.

Figure 4.2 summarizes our findings from studying both DRAM caches and mi-
gration schemes. The graph shows the minimum, maximum and geometric mean
speedup with 1 GByte of 3D-stacked DRAM, used as either part of a flat address space
with migration or as a DRAM cache, over a baseline without 3D-stacked DRAM. For
migration we studied Mempod (MPOD) [9], LGM [35] and Chameleon (CHA) [8]
and for caches we show the results for DFC [31], Tagless [21], and an ideal DRAM
cache that has no tag lookup overheads (IDEAL). The results show that caches in
general can achieve higher average performance than migration designs. The maxi-
mum performance shows how small cache line sizes can miss opportunities for higher
performance. Large cache lines, on the other hand, can capitalize on spatial locality
and have a beneficial pre-fetching effect. The minimum performance on the other
hand shows how large cache line sizes can severely degrade performance due to over-
fetching. On the contrary, migration schemes do not have that risk as they do not bring

1Average results with 1GB DRAM cache for the benchmarks described in Section 4.3.
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in all data eagerly. Moreover, the overheads of tag lookups for caches are apparent
when comparing the IDEAL DRAM cache with a realistic one (DFC) at the same
cache line size; these overheads are greater for smaller cache line sizes.

The above observations motivate our design choice as follows. Using most of the
3D-stacked DRAM for migration keeps most NM capacity for the flat address space
of the system. Using a small part of the 3D-stacked DRAM as a cache is expected
to yield some of the caching performance benefits, responding faster to changes of
the working data set. As this cache is small, it can afford to have small cache lines
and still require a small tag-array that fits entirely on the processor die offering short
access latency, in addition it prevents the negative performance effects of large cache
lines. Moreover, we choose our DRAM cache to be sectored and migrate data at
sector granularity, this allows us to reduce the metadata overheads and at the same
time not waste precious far memory bandwidth by only fetching the requested cache
lines on cache misses. In order to put together caching and migration efficiently, our
design needs to address some challenges. Firstly, moving data between the caching
and migration space should be done without requiring to relocate data within the
3D-stacked DRAM; this is achieved using indirection as explained in the next section.
In addition, a unified mechanism to manage metadata both for caching and migration
reduces the associated overheads.

4.2 Hybrid Caching and Migration

Hybrid2 is a hybrid memory system architecture that combines a DRAM cache with
a flat address space migration scheme. It uses a small portion of the NM as the data
array of a sectored DRAM cache and combine the remaining portion of the NM with
the FM to form a flat address space.

4.2.1 Hybrid2 System Overview

Hybrid2 exploits the best-of-both-worlds and proposes architectural support to com-
bine a DRAM Cache with a migration scheme. The idea is to have a relatively small
sectored DRAM Cache whose tags can be kept on-chip with reasonable area cost,
while the data part of the DRAM Cache is kept in NM occupying a relatively small
portion of it.

Data is fetched to the DRAM cache at cacheline granularity (e.g. 64 Bytes)
while DRAM cache tags are kept at sector granularity (e.g 2 KBytes). Upon memory
accesses, the DRAM Cache tags are checked first and in case of a miss, a new entry
for the sector is allocated in the DRAM Cache tags. The actual data of the requested
sector may reside either in NM or FM and our scheme allocates new space in NM only
if the requested data are currently located in FM; Section 4.2.4 describes the details.

The NM is only logically, and not physically, split between DRAM cache and the
flat address space by using pointers located in the DRAM cache tags. This permits
a sector that is already in NM to be simply linked to the DRAM cache tags but also,
more importantly, FM sectors that have been cached can be migrated into NM without
moving the cachelines that have already been fetched. When a sector is evicted from
the DRAM cache then the migration mechanism decides whether to migrate it into
NM or evict it back to FM. The migration decision is based on the cost of migrating
in terms of FM traffic as well as the number of accesses to that sector while in the
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Figure 4.3: System Overview.

DRAM cache. Moving the migration decision to the time when a sector is evicted
from the cache removes the migration related metadata management off the critical
path, reducing their impact on performance. Furthermore, the FM traffic incurred by
migrations is dynamically adjusted to the workload behaviour.

A small DRAM cache combined with coarse granularity sectors allows the tags
to be kept entirely on-chip. On-chip tags induce only minimal latency to the critical
memory access path as all memory requests go through the DRAM cache tag array. The
tag array of the DRAM cache also stores the remapped addresses of memory segments,
acting as a cache of the full remap tables which are stored in the NM, thus reducing
the address translation and tag lookup overheads. Section 4.2.2 details the eXtended
Tag Array structure which implements the above functionality. Several techniques and
optimizations like footprint caching and advanced prefetching, are directly applicable
to Hybrid2, however such options are mostly orthogonal and we opted not to include
them in our base design in order to clearly attribute the performance gains to the
proposed techniques.

Figure 4.3 presents an overview of the system considered in this work. It consists
of the processor, 3D-stacked DRAM and conventional DRAM. The conventional
DRAM is the FM and the 3D-stacked DRAM is the NM. The shaded box is the
DRAM Cache Migration Controller (DCMC). DCMC is a DRAM cache controller
which we augment with some additional structures in order to support the migration
along with the DRAM cache functionality. The DCMC is responsible for managing the
contents of the DRAM cache, translating the addresses of remapped sectors, selecting
which sectors to migrate to NM, and orchestrating the migrations. Our design is
implemented in the DCMC.

4.2.2 eXtended Tag Array

The eXtended Tag Array (XTA) is the basic component of the DCMC. The XTA is an
on-chip tag array which holds all the tags for the DRAM cache. It is set-associative
and each set holds entries for multiple sectors with valid and dirty flags for every cache
line of each sector. The individual fields of each entry of the XTA are shown in Figure
4.4. The white fields are the conventional fields needed for a sectored cache, these are
from left to right: the tag for the sector and the state bits for that sector which include
valid and dirty bits for every cache line. The shaded fields are additions required for
our design, these are a counter and two pointers, one to a NM location and one to a
FM location. The counter tracks the number of accesses to the sector, and it is used to
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Figure 4.4: eXtended Tag Array Entry (XTA).
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Figure 4.5: Hybrid2 XTA example.

decide whether to migrate a sector to NM when it is evicted from the DRAM cache.
The pointers facilitate the address translation from the processor physical address of a
sector to the actual location of that sector in the memory system. Specifically, the NM
pointer points to the NM location, which is allocated to this set/way of the DRAM
cache. This pointer allows us to decouple the set and way of the DRAM cache from
the physical location of the data in the NM. This indirection enables our design to
migrate data in the NM when evicted from the DRAM cache without copying data
from one NM location to another. The FM pointer points to the physical location of
the sector in the FM when that sector is not migrated to NM in order to avoid remap
table lookups.

Figure 4.5 shows an example use of the XTA entries. The top entry corresponds to
a sector that is partially present in the DRAM cache and thus not migrated to the NM,
as such, some cache lines of that sector have been fetched to the NM, as denoted by
the valid flag vector of the XTA entry. The dirty flag vector marks the cache lines of
the sector that have been written while in the DRAM cache. The location of that sector
in the NM is shown by the NM pointer while the FM pointer indicates the location
of the sector in FM. The bottom entry corresponds to a sector that has been migrated
entirely to the NM and the NM pointer indicates its location. In the latter case the FM
pointer is not used and as a convention we set all valid and dirty bits.

4.2.3 Memory space layout and metadata

Figure 4.6a shows the layout of the NM and FM, the coloured areas are reserved and
the uncoloured area is available as a flat address space. Note that the sectors that
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Figure 4.6: Memory layout and reserved memory.

correspond to each XTA entry can be located anywhere in the lined area of NM. Figure
4.6b shows an example of how the DRAM cache sectors can be spread over the NM
address space and accessed through the XTA NM pointers.

Our design allows for all-to-all address remapping for pages in NM and FM. For
this purpose we keep a remap table and an inverted remap table stored in the NM.
The remap table stores the mappings from processor physical address to the actual
location in NM or FM where each sector is located. The inverted remap table holds
the processor physical address for all locations in NM; this is used upon migration of
sectors out of the NM and more details are provided in Section 4.2.5. The XTA also
acts as a cache for the remap table entries of FM sectors that are currently (partly or
fully) in the DRAM cache through the FM pointers shown in Figure 4.5.

In addition to the remap and inverted remap table, we keep a stack of all FM
locations that currently hold no valid data (Free-FM-Stack), this means that the sectors
of these locations have been migrated to NM but they have not been overwritten by
other data yet. The size of this stack is bound to the number of sectors that can fit in
the DRAM cache. The stack pointer as well as a number of top entries of the Free-FM-
Stack are kept on-chip in the DCMC to avoid accessing NM. In our implemetnation,
each entry of the remap table, inverted remap table, and Free-FM-Stack is 4 bytes.
Overall, the space required for the remapping data structures is at most 3.5% of the
NM capacity.

4.2.4 Memory access path

In Hybrid2 all memory requests go through the DCMC which communicates with the
memory controllers to access the NM and FM. Where each request is served from
depends on the current location of the data. Since our design supports all-to-all address
remapping, the data can be located anywhere in NM or FM. Sectors that are located in
the FM can be (partially or fully) present in the DRAM cache with a corresponding
entry in the XTA. Sectors that are located in the NM can either be fully in the DRAM
cache (there exists an entry in the XTA for them) or not at all. When a request arrives
in the DCMC, the address is used to index the XTA to determine if the sector and
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specific cache line is available in the DRAM cache. There are four possible outcomes
as shown in Figure 4.7, these are:

1 XTA Hit: In this case, the XTA contains an entry that matches with the requested
sector. Even though there is an entry for the sector in the XTA, the cache line requested
might be in NM 1a or not 1b.

1a XTA hit/Cache line hit: In this case the requested cache line is located in
the NM. The sector can be located either in the NM or in the FM, in both cases the
requested cache line is available in NM through the NM pointer of the XTA entry.

1b XTA hit/Cache line miss: In this case there is an entry for the sector in the
XTA but the specific cache line is not valid; this means the sector is located in the
FM and only some cache lines have been fetched to the DRAM cache. Then, the FM
pointer is used to read the cache line from the FM and the NM pointer is used to write
it to the appropriate location in NM.

2 XTA Miss: In this case, the XTA does not contain an entry that matches with
the requested sector. The requested sector can be located either in the NM 2a or in the
FM 2b. To find the location of the sector in the memory system, the remap-table in
NM is accessed using the processor physical sector address as an index. Regardless of
whether the sector is located in NM or FM, an entry is allocated in the XTA for that
sector.

2a XTA Miss/ Sector in NM: If the sector is located in NM then all cachelines
of that sector are already in NM and the XTA entry is updated accordingly; the NM
pointer is set to the NM location of the sector and all cachelines are marked as valid
and dirty. The FM pointer of the XTA entry is set to zero to indicate that this sector is
in NM.

2b XTA Miss/ Sector in FM: If the sector is located in FM then we need to allocate
space in the NM for the sector and fetch the requested cache line from FM to the
newly allocated location in NM (details about the allocation process in the NM follow
in Section 4.2.5). Subsequently, the XTA is updated with the new sector; the NM
pointer is set to the newly allocated NM location; the FM pointer is set to the FM
location of the sector; the valid flag is set only for the fetched cache line and the
dirty flag depending on the request type. Furthermore, the inverted remap table in
NM is updated with the sector processor physical address even though this sector is
not migrated to NM yet. We do this to ensure correctness when allocating in NM as
explained in detail below. This case requires several metadata operations, however,
on average only 9.3% of accesses to the memory system require such handling and
our evaluation shows that metadata management has minimal impact on performance
(Figure 4.14 – No Remap).

4.2.5 Allocating NM

In case of an XTA miss where the requested sector is in FM (2b in Figure 4.7) a new
sector must be allocated in the NM. In order to make space for this new sector another
sector must be migrated to FM2 For this purpose we need to first identify the victim
sector in the NM, second, find a free sector in FM, third, copy the data from the NM
sector to the FM sector, and finally, update the remapping structures with the new
location. The process is illustrated in Figure 4.8.

2This is the common case. At boot the cache is empty so we use a simple counter for the initially
allocated NM space to the cache.
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Figure 4.8: Allocating a sector in NM.

To find a victim sector in NM we use a FIFO policy similar to LGM and Mempod,
to do this we need a counter (NM-counter) which wraps around all available NM
locations (lined part of NM in Figure 4.6a) and is incremented every time we require a
new location in NM. However, the victim NM sector might be currently assigned to
the DRAM cache (an XTA entry NM pointer points to it). For this reason we need
to lookup the XTA for that sector’s processor physical address. To get the processor
physical address we index the inverted remap table with the location of the sector. In
case the sector is in the XTA, we proceed with the next one until we find one that
is available. This ensures correctness as a sector that is in the DRAM cache must
not be migrated to FM. Moreover, it provides a better replacement decision than just
FIFO, because often accessed sectors will probably reside in DRAM cache and thus
not considered as victim sectors.

To find a free sector in FM we use the Free-FM-stack which is stored in NM,
and partially in the DCMC. Every time a sector is migrated from FM to NM, the
original FM location is pushed on that stack. That FM location is then available to be
overwritten.

After identifying the NM victim sector location and the FM free sector location,
the DCMC copies all cache lines from the victim sector in NM to the free sector in
FM and updates the remap table accordingly.

4.2.6 DRAM cache evictions
The DRAM cache eviction logic is illustrated in Figure 4.9. It uses a standard LRU
algorithm to decide which sector to evict. The DRAM cache can contain sectors that
have already been migrated to the NM or sectors that are located in FM where some
(or all) of their associated cache lines have been fetched to NM.

When an already migrated sector has to be evicted from the DRAM cache, all
cache lines of that sector are located in NM, therefore no data movement is required
within the NM or between NM and FM. The remap table is already updated with the
location of the evicted sector when it was migrated to NM. The inverted remap table
was updated for the evicted sector when it was first fetched in the DRAM cache. So,
we can simply re-assign the XTA entry of the evicted sector to the newly allocated
sector.

When a sector that resides in the FM has to be evicted from the DRAM cache,
the DCMC decides whether to migrate the sector to the NM or to evict it back to FM.
Migrating a sector requires fetching the cache lines not already present in NM and
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Figure 4.9: Eviction from DRAM cache.

updating the remap table and inverted remap table accordingly. Evicting a sector to
FM requires all dirty cache lines to be written back to FM while no remapping data
structures need to be altered. Below, we present the algorithm for deciding between
evicting a sector to FM or migrating it in NM.

4.2.7 Migration Decision
Figure 4.10 illustrates the algorithm used for deciding whether to migrate a sector to
NM when evicted from the DRAM cache. First, it is checked whether the overhead of
FM accesses caused by the migration in question can be afforded 1 . This is performed
with the help of a counter, which is incremented upon processor FM accesses and
decremented upon migration FM accesses. If the counter value is larger than the
additional FM accesses needed for migrating the sector, then the sector is considered
further, otherwise it is evicted to its existing FM location. In practice, this first check
regulates migration traffic overheads and ensures a balance between processor and
migration traffic. If this first check is successful, then it is checked whether the sector
is (one of) the most accessed in the DRAM cache set 2 . If so, the sector is migrated,
otherwise it is evicted to its existing FM location. Bellow we describe in detail the
mechanism used for regulating migration traffic overheads as well as how the most
accessed sector in a DRAM cache set is determined.

Migration traffic overheads:

There are two alternatives when evicting from the DRAM cache a sector which is
not already migrated to NM: (i) either evict it back to FM, which requires all dirty
cachelines to be written-back to FM, or (ii) migrate the sector to NM by fetching the
remaining cache lines of the sector to NM. The overheads of migrating a sector in
terms of FM accesses is the difference between the FM accesses required in each of
the two above cases and is calculated based on the number of valid and dirty cache
lines of the sector in the DRAM cache. Specifically, just evicting the sector to FM
requires a number of FM accesses (Ecost) equal to the number of dirty cache lines
which have to be written back to FM (Ndirty):

Ecost = Ndirty
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Figure 4.10: Migration decision.

If migrated to NM, the sector needs a number of FM accesses (Mcost ) described by the
following equation:

Mcost = Nall−Nvalid +Nall = 2∗Nall−Nvalid

That is equal to the total number of cache lines in the sector (Nall) minus the valid
ones already in the DRAM cache (Nvalid), plus the cost of swapping out from NM a
victim sector, which requires Nall write-backs to FM. Then, migrating a sector has an
overhead of FM accesses (MOcost ) equal to:

MOcost = Mcost −Ecost +1 = 2∗Nall−Nvalid−Ndirty +1

where the constant “1” is added as a minimum migration cost. Then, the MOcost can
vary from 1 when all cache lines of a sector are valid and dirty, to 2∗Nall when only
one cache line of a sector is valid and clean when evicted from the DRAM cache.

Balancing Migration and Processor traffic:

A single counter (called FM access counter) is employed to regulate migration accesses
to FM with respect to processor FM accesses. This counter is incremented for every
DRAM cache miss which must be fetched from FM. When a sector is migrated, the
counter is decremented by its migration overhead (MOcost). When deciding for a
sector migration, its MOcost is compared with the counter value and if it is smaller
then the sector is considered further for migration. In essence, this counter sets an
upper bound to the number of FM accesses spent for migration and is reset periodically
(every 100K cycles) to adjust to workload phase changes.

Most Accessed Sector in the Set:

For every sector in the DRAM cache, a counter is maintained in the XTA which is
incremented on every access to that sector (Figure 4.4). Upon eviction, the value
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of the counter for the victim sector is compared against the counters of the other
sectors in the cache set. This comparison concerns counters of a few bits (9 bits in
our implementation) and happens during eviction so it is not in the critical path of
a memory access. In case the counter value of the sector is greater or equal to all
other counters in the set, then the sector is migrated. In case there is another sector in
the set with a counter value greater than the evicted sector counter then the sector is
evicted without migration. The counter is only incremented for sectors that have not
been migrated to ensure there is no starvation in a set by NM sectors that have many
accesses and therefore not evicted from the XTA. Furthermore, to prevent starvation
from FM sectors that remain in the cache for very long periods, we ignore the sectors
whose counters have reached the maximum value.

4.2.8 Using more free space

Hybrid2 uses only a small part of the NM as a DRAM cache, this is enough to reap the
benefits of caches while keeping most of the memory capacity available to the software
so as not to affect capacity limited workloads negatively. However, Chameleon [8]
has shown that not all memory is always used by the OS. This unused memory can be
utilized by a migration mechanism to avoid unnecessary swaps and has shown to be
quite effective for Chameleon.

Although we do not consider it here, Hybrid2 could support using more free space
with the help of the OS. Using the same mechanisms as proposed by Chameleon
(ISA-Alloc and ISA-free instructions), Hybrid2 could utilize that space and avoid
copying unused sectors from NM to FM when allocating NM (Section 4.2.5). To
support this functionality, we need to add more information in our remap table and
inverted remap table to indicate unused sectors. Furthermore, the dirty state of sectors
in the DRAM cache must be saved to the respective remap tables when a sector is
migrated in NM so that, if/when the sector is eventually migrated back to FM, it is
only written back if dirty. Finally, since “valid” copies of a sector could exist in both
FM or NM, the remap table, or some other data structure, must be able to locate both.

Table 4.1: System configuration.

Cores 8 cores, out-of-order, 4-way issue/commit, 3.2 GHz
L1 Cache Private, 64 KB, 4-way, 1 cycle access latency
L2 Cache Private, 256 KB, 8-way, 9 cycles access latency
L3 Cache Shared 8MB, 16-way, 14 cycles access latency, non-

inclusive, non-exclusive
Near Memory HBM2 2GHz, 1,2,4 GB, 8 128-bit channels, 8 banks,

tCAS-tRCD-tRP: 7-7-7, RD/WR+I/O energy: 6.4pJ/bit,
ACT/PRE energy: 15nJ

Far Memory [71] DDR4-3200, 16 GB, 2 64-bit channels, 8 banks, tCAS-
tRCD-tRP: 22-22-22, RD/WR+I/O energy: 33pJ/bit, AC-
T/PRE energy: 15nJ
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4.3 Experimental Setup

In this Section we provide the details of the experimental setup and the benchmarks
used for our evaluation.
System configuration: As shown in Table 4.1, our system configuration considers
an eight core processor with private L1 and L2 caches and a shared last level cache
(LLC). We evaluate memory systems that consist of 16GB DDR4 FM and NM of
1GB, 2GB, and 4GB; that is NM to FM ratios of 1:16, 1:8 and 1:4.
Simulator: Our evaluation is performed using a Pin-based in-house simulator [43]
following the interval-based simulation methodology [44] for the processor and cycle-
accurate modelling of the memory system using DRAMSim2 [66]. We use Cacti to
determine the access times for the caches [42]. Through all of our experiments the
memory pages are allocated randomly in the HBM or DDR4 proportionally to their
capacity, for example for 1:4 NM:FM ratio, 1/5 are allocated to NM and 4/5 to FM. The
migration-based schemes offer larger system memory capacity, compared to cache-
based systems, and can accommodate applications with larger memory footprints.
When executing applications with large memory footprints the cache-based systems
would suffer more from page-faults and disk swaps compared to migration-based
schemes. In our simulations we do not model page-faults which favors cache-based
schemes.

Workloads: We evaluate our design with both multiprogrammed (MP) and multi-
threaded (MT) workloads. For the multi-programmed workloads we use the SPEC2017
benchmark suite [72]. For the multi-threaded workloads we use the OpenMP version
of the NAS parallel benchmarks [48] [67]. For each of the NAS benchmarks we use the
biggest class that we could run in our simulator. In both cases we use all benchmarks
from each suite with memory footprint, for the simulated portion, higher than the Last
Level Cache (LLC) capacity (8 MBytes). For the multi-programmed workloads we
run eight instances of the same benchmark at the same time ensuring they do not share
the same address space. Overall we run 21 SPEC and 9 NAS benchmarks for a total of
30 workloads. For the SPEC benchmarks we use simpoints to select a representative
slice of one billion instructions [50] while for the NAS benchmarks we simulate one
billion instructions for each thread after the initialization phase. Table 4.2 shows the
average LLC Misses per Kilo Instructions (MPKI), the memory footprint, and the total
memory traffic for the simulated portion of each benchmark. For our evaluation in
Section 4.4 we group our 30 benchmarks in three categories of 10 workloads each
based on MPKI (high, medium, and low). While the low MPKI benchmarks do not
stress the memory system much, we choose to include all benchmarks from both suites
for completeness.

4.4 Evaluation

In this Section we present the evaluation of Hybrid2. For our evaluation we compare
against three state-of-the art migration designs and two cache designs. These are:

• Mempod (MPOD) [9]. For Mempod we performed a design space exploration
on the number of MEA counters and found the best value for our system to be
64 MEA counters with 50µs intervals.
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• Chameleon (CHA) [8]. For Chameleon the K parameter value for our memory
system characteristics is 14. Additionally, we allow the same NM capacity our
design uses as a DRAM cache to be used in Chameleon’s cache mode for a fair
comparison. As described in Section 4.2.8 Hybrid2 could also use more free
space in the same way as Chameleon.

• LLC-guided data migration (LGM) [35]. For LGM we performed a design
space exploration on the migration high Watermark and found that the best
performance is achieved at 256 with 50µs intervals.

• Tagless DRAM cache (TAGLESS) [21]. For the Tagless DRAM cache, we
optimistically do not model any operating system overheads like the extra
memory accesses on TLB misses or page-faults.

• Decoupled Fused Cache (DFC) [31]. For DFC we found the best performance
is achieved at a cacheline size of 1 KByte and compare against this configuration.

For Mempod, LGM, and Chameleon we adjust the size of their respective remap
cache to be equal to that of the XTA in Hybrid2 for a fair comparison. All our results
are normalized to a Baseline system without 3D-stacked DRAM.

4.4.1 Design space exploration.
Hybrid2 can be configured with any size of DRAM cache, sector size, and cache line
size. These design choices affect performance as well as the size of the XTA. To have
a design proportional to the evaluated system, we limit the XTA size to 512 KBytes
and explore all possible configurations within this limit. A bigger XTA or a bigger
remap cache for the migration designs would incur higher access latency. Furtermore,
a 512 KByte remap cache has been shown to avert most remap table accesses for
Mempod and LGM [35]. We examine DRAM cache sizes of 64 MBytes and 128
MBytes, sectors of 2 Kbytes and 4KBytes, and cache lines of 64,128, 256, and 512
Bytes all with 16-way associativity.

Figure 4.11 shows the results of our design space exploration for all combinations
of the above mentioned parameters. Through this design space exploration we find that
the best performance is achieved with 256 Byte cache lines. Smaller cachelines miss
the opportunity to exploit spatial locality and pre-fetching. Larger cache lines over-
fetch and decrease performance. So, a cache line of 256 Bytes is a good compromise
between spatial locality and bandwidth waste as 90% of the data fetched are used
on average (Figure 4.1). For the same DRAM cache size and cache line size, 2
KByte sectors perform better than 4 KByte sectors. Larger sectors decrease address
translation overheads while smaller ones use NM space better. Our design achieves
its best performance at 64 MBytes DRAM cache with 2 KByte sectors and 256 Byte
cache lines. For the rest of this evaluation we present our results for 64 MByte cache
with 2 KByte sectors and 256 Byte cache lines.

4.4.2 Performance
Figures 4.12a, 4.12b, and 4.12c show the geometric mean of the speedup over a
baseline without NM for each MPKI class as well as for all benchmarks, for three
different NM to FM ratios (1:16, 1:8, 1:4). From the results we see that all designs
benefit from larger NM:FM ratios.
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Table 4.2: Benchmark characteristics.

High MPKI
Bechmark MPKI Footprint(GB) Traffic(GB)
cg.D (MT) 90.6 7.8 43.3
sp.D (MT) 30.1 11.2 21.6
bt.D (MT) 30.1 10.7 21.3

fotonik3d (MP) 28.1 6.4 19.9
lbm (MP) 27.4 3.1 21.7

bwaves (MP) 26.8 3.3 13.8
lu.D (MT) 25.8 2.9 19.1
mcf (MP) 25.8 0.1 12.6
gcc (MP) 21.2 1.6 13.0

roms (MP) 15.5 2.3 9.7
Medium MPKI

Bechmark MPKI Footprint(GB) Traffic(GB)
mg.C (MT) 14.2 2.8 8.9

omnetpp (MP) 9.8 1.5 6.9
is.C (MT) 9.0 1.0 5.4
dc.B (MT) 8.4 4.0 8.0
ua.D (MT) 7.8 3.1 4.9

xz (MP) 5.6 0.7 4.3
parest (MP) 4.3 0.2 2.2
cactus (MP) 3.4 0.8 2.0
ft.C (MT) 3.1 0.9 2.6

cam4 (MP) 2.2 0.3 1.6
Low MPKI

Bechmark MPKI Footprint(GB) Traffic(GB)
wrf (MP) 1.4 0.4 1.1

xalanc (MP) 1.1 0.1 1.0
imagick (MP) 1.1 0.4 0.9

x264 (MP) 0.9 0.3 0.6
perlbench (MP) 0.7 0.2 0.4
blender (MP) 0.7 0.2 0.3

deepsjeng (MP) 0.3 3.4 0.2
nab (MP) 0.2 0.2 0.1
leela (MP) 0.1 0.1 0.1
namd (MP) 0.13 0.1 0.1

For high MPKI benchmarks Hybrid2 outperforms all other designs by at least
6.8% on average for the 1GB NM case (1:16 ratio), outperforms all other designs by at
least 8.6% on average for the 2GB NM case (2:16 ratio), matches the best performing
cache scheme (TAGLESS) for the 4GB NM case (4:16 ratio). For all NM:FM ratios,
Hybrid2 outperforms migration schemes by at least 8.4% on average.

For medium MPKI benchmarks, Hybrid2 again clearly outperforms all migration
schemes, however, caches gain a performance advantage as a larger portion of the
memory footprint of the benchmarks fits in the cache space. This effect is even more
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Figure 4.11: Design space exploration: Geometric mean of the speedup over baseline
for different Hybrid2 configurations.

pronounced in bigger NM sizes.
For low MPKI benchmarks, all designs perform similarly except for the TAGLESS

cache which suffers at benchmarks with low spatial locality like deepsjeng.
Overall, for all benchmarks classes and NM:FM ratios, Hybrid2 outperforms

the competing migration schemes and performs similarly to caches even though our
comparison is conservative since we do not take page-faults into account which would
degrade the performance of caches more severely than migration schemes.

For the rest of this Section, we present detailed results for the 1:16 NM:FM ratio
as it stresses all designs more due to the smaller NM size which is smaller than the
memory footprint of most benchmarks.

Figure 4.13 shows the speedup achieved over a baseline without NM for Hybrid2

and all migration and cache designs for the 1:16 NM to FM ratio. The benchmarks are
sorted by MPKI. Hybrid2 performs consistently well for benchmarks with high MPKI
and big memory footprints like cg.D, sp.D, cg.D and fotonik3d. For medium MPKI
benchmarks Hybrid2 achieves 6.5% lower speedup than the best DRAM cache while
outperforming all other competing designs. For low MPKI workloads all designs
achieve similarly low speedups as there is not enough room for improvement because
of their small memory footprint. Notice how large cache line sizes can severely
degrade performance for benchmarks with limited spatial locality. For example, the
Tagless DRAM cache degrades the performance of omntepp and deepsjeng to 1/5
of the baseline. Hybrid2 only shows minimal performance degradation for dc.B and
deepsjeng. For dc.B all designs show little difference from the Baseline performance
because of the streaming nature of its memory accesses which provide little potential
for data reuse. For deepsjeng none of the evaluated designs surpassed the Baseline as
it is characterized by low memory intensity with a wide memory footprint and very
limited spatial locality, still Hybrid2 does not degrade performance significantly.

Overall, Hybrid2 outperforms other migration schemes and matches -or surpasses
for high MPKI workloads- cache performance without wasting NM capacity.

Performance breakdown:

The performance of Hybrid2 can be attributed to both the DRAM cache and the
migration components as well as the elimination of address translation overheads. To
show the effects of each factor above we conducted a series of experiments. Figure 4.14
shows the geometric mean of the speedup achieved for a number of different designs.
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(a) Geometric mean of the speedup over baseline for 1GB NM (5.9% more available memory
than caches).
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(b) Geometric mean of the speedup over baseline for 2GB NM (12.1% more available memory
than caches).
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(c) Geometric mean of the speedup over baseline for 4GB NM (24.6% more available memory
than caches).

Figure 4.12: Geometric mean of the speedup over baseline for high, medium, low
MPKI, and all benchmarks for NM sizes of 1GB, 2GB and 4GB.

From left to right are: Cache-only shows the performance of a 64 MByte sectored
DRAM cache alone, without any data migration or address translation overheads.
Migr-All and Mirg-None show the performance of Hybrid2 if we choose to migrate
All data when evicted from the DRAM cache, or None, respectively. No-Remap shows
the effects of removing all address translation overheads from our design. The DRAM
cache alone (Cache-Only), achieves a significant speedup overall, equal to the best
migration design in our evaluation (LGM). This shows that even a small DRAM
cache can be very beneficial to performance. Hybrid2 however performs better than
Cache-Only and both Migr-None and Mirg-All. This quantifies the contribution of
our migration selection criteria to performance improvement. Furthermore, Hybrid2

performs only marginally lower (2.5%) than No-Remap, this shows that our design
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Figure 4.14: Hybrid2 Performance factors breakdown.
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Figure 4.15: Geometric mean of normalized processor requests served from NM for
benchmarks with high, medium, and low MPKI.
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Figure 4.16: Geometric mean of normalized FM traffic for benchmarks with high,
medium, and low MPKI.

effectively tackles the address translation overheads. Overall the address remaping
structures in NM account for only 4.1% of the high-bandwidth NM traffic and 3.5% of
NM space. This point is also shown by the small difference in performance between
Cache-Only and Migr-None, the difference between these two points is solely the
overheads imposed by address translation.

NM Utilization:

Figure4.15 shows the geometric mean of the percentage of processor memory requests
that were served by the NM for high, medium, and low MPKI benchmark groups.
A higher percentage does not necessarily correlate with higher performance, for
example we see that the Tagless DRAM cache shows the highest percentage of all
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Figure 4.17: Geometric mean of normalized NM traffic for benchmarks with high,
medium, and low MPKI.

designs at 90% while its performance is considerably lower. On average, 84% of
processor requests in Hybrid2 are served from NM; this percentage is even higher for
High and Medium MPKI workloads. DFC achieves a slightly higher ratio at 85%.
Hybrid2 achieves higher rates than other migration designs in almost all benchmarks.
Mempod achieves the worst ratio with 40% on average, LGM comes next with 54%
as its bandwidth saving mechanism allows it to migrate more aggressively, finally,
Chameleon achieves the best of all migration designs at 69% on average.

4.4.3 Traffic
Figure 4.16 shows the FM traffic normalized to the baseline for each benchmark
group. The advantage of caches over migration is visible from the overall lower
traffic in FM. This comes from the intrinsically lower cost of copying comapred to
swapping. Hybrid2 incurs lower FM traffic compared to Mempod and Chameleon but
higher compared to LGM. LGM however, is optimized to economize bandwidth as its
migration decisions are based on the observed spatial locality of memory segments.
For high MPKI workloads LGM produces FM traffic similar to the caches. Overall
Hybrid2 produces 67% of the FM traffic of the baseline.

Figure 4.17 shows the geometric mean of NM traffic, normalized to the memory
traffic of the baseline system for our benchmark groups. Hybrid2 produces slightly
higher NM traffic than the caches although the percentage of requests served from NM
is lower. This is because the NM traffic includes the accesses to the address translation
data structures. Even though these accesses have minimal impact on performance in
Hybrid2, they still incur some traffic to the NM. The low values of NM traffic for
Mempod and LGM are explained by the fewer processor requests that are served from
NM (Figure 4.15).

4.4.4 Energy consumption
Figure 4.18 shows the normalized geometric mean of the dynamic memory system
energy consumption. Hybrid2 consumes 2.3% less dynamic energy than Chameleon
and about 30% higher than the other migration schemes, mostly due to higher NM
traffic, which is however capitalized in better performance. Compared to DRAM
caches, Hybrid2 consumes about 6.3-14.2% more dynamic memory energy mostly
due to higher FM traffic, which is a reasonable price to pay for larger memory capacity.
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Figure 4.18: Geometric mean of normalized dynamic memory energy for benchmarks
with high, medium, and low MPKI.

We do not report processor energy consumption or memory static energy consumption
(refresh energy) as these are mostly proportional to the runtime, which is in general
better for Hybrid2.

4.5 Conclusions
This Chapter presented Hybrid2, a hybrid memory system that combines caching and
migration. Hybrid2 considers a high bandwidth near memory complemented with a
larger, lower bandwidth, far memory. A small fraction of the near memory is reserved
to host a sectored DRAM cache. The remaining near memory capacity is available to
the flat address space of the memory system and implements transparent data migration
in hardware. The small DRAM cache is used to select candidate data for migration in
NM and permits efficient migration via indirection that avoids copying data between
the cache and the flat address space. The metadata required for caching and migration
is supported by a common mechanism which alleviates the corresponding overheads.
Compared to migration schemes, Hybrid2 performs 6.4-9.1% better and, compared
to DRAM caches, it offers 5.9-24.6% more main memory capacity giving away only
0.3-5.1% of performance without taking into account the impact of page faults.



82 CHAPTER 4. HYBRID2: COMBINING CACHING AND MIGRATION IN HYBRID MEMORY SYSTEMS



Chapter 5

Conclusions

This thesis considered the design of hybrid memory systems that consist of 3D-stacked
and conventional off-chip DRAM. Conventional DRAM offers limited bandwidth at
high capacity while 3D-stacked DRAM offers high bandwidth with limited capacity.
The main question in the design of such systems is how to best utilize the 3D-stacked
DRAM. Existing approaches use the 3D-stacked DRAM either as a cache or as part of
a flat address space with data migration. Each of the two existing approaches comes
with its own tradeoffs and inefficiencies.

DRAM caches suffer mainly from the tag lookup overheads as, because of their
size, they require large tag arrays which cannot be stored on-chip. DRAM cache
tags are most commonly stored along with the DRAM cache data in the 3D-stacked
DRAM. Storing the tags in the 3D-stacked DRAM however incurs high access latency
compared to on-chip tags. Furthermore, accessing the tags causes traffic which in
turn increases the queuing latency as it competes for bandwidth with data accesses.
Decreasing the tag lookup overheads can improve the performance of DRAM caches.

Data migration designs use the 3D-stacked DRAM capacity as part of the address
space, because of this, data has to be swapped between the two memories in order
to utilize the 3D-stacked DRAM. Swapping however, comes at a much higher traffic
overhead compared to simply copying as in the case of caches. This traffic overhead
presents a major performance bottleneck factor for data migration as it burdens both
the 3D-stacked and conventional DRAM channels. Additionally, because of the high
migration traffic overheads, data migration schemes have to be selective about which
data to migrate to 3D-stacked DRAM. Ideally, only data with the best potential for
future reuse must be migrated, spatial and temporal locality can be good indications
for future reuse. Only limiting the migration bandwidth can substantially improve
the performance of data migration designs, combining it with better migration data
selection can compound the effects and lead to overall better system performance.

Both DRAM caches and data migration offer promising alternatives to utilizing
the 3D-stacked DRAM, however, they represent two extremes in the design space.
DRAM caches are more bandwidth efficient than data migration but they sacrifice
the 3D-stacked DRAM capacity to achieve that, rendering it transparent to the rest of
the system. Data migration preserves the 3D-stacked DRAM capacity at the cost of
elevated traffic overheads and a dependence on the efficiency of the migration selection
algorithm. Until recently, a memory system design that could bridge the gap between
these two extremes had not been proposed.

83



84 CHAPTER 5. CONCLUSIONS

5.1 Summary

Chapter 2 proposes Decoupled Fused Cache (DFC), a DRAM cache design that
alleviates the cost of tag accesses by fusing DRAM cache tags with the tags of the on-
chip LLC [31]. DFC proposes an LLC organization that resembles decoupled sectored
caches [30] and adds a few extra fields that store information about the contents of
the DRAM cache. One tag in the LLC corresponds to a DRAM cache line and at the
same tag can be associated with several LLC cache lines. This way, after the first LLC
miss for a cache line which belongs to a bigger DRAM cache line, the way of the
DRAM cache line is stored in the LLC tag array. This allows accessing the DRAM
cache directly after most LLC misses and for all writebacks. In essence, DFC relies in
most cases on the LLC tag access to retrieve the required information for accessing
the DRAM cache avoiding most tag lookups. DFC can support a configurable (at boot
time) DRAM cache line size, which is a power-of-two multiple of the LLC cache lines.
The only limitation of DFC lies in that the DRAM cache lines must be at least twice
the size of LLC cache lines. DFC is based on our previous work, FusionCache [41],
which was our first attempt to mitigate the tag lookup overhead for DRAM caches and
overcomes its limitations.

Chapter 3 proposes LLC-guided Data Migration (LGM), a new data migration
scheme for hybrid memory systems that improves data migration efficiency [35]. LGM
improves data migration by using the LLC to achieve two complementary goals. The
first goal is to lower the migration traffic overheads, this is achieved by skipping the
cache lines of a data segment when it is migrated, if they are present at the LLC at
the time of migration. To ensure correctness, the skipped cache lines are marked in
the LLC so that they are always copied back to the 3D-stacked DRAM when evicted.
The second goal is to improve the selection algorithm for selecting data to migrate to
3D-stacked DRAM. This goal is also facilitated by the LLC which we use to detect
the spatial locality of data and their potential for future reuse. The locality and future
reuse potential of coarse granularity segments is inferred based on the number of cache
lines of each segment in the LLC and their state (dirty or not). Furthermore, to make
the migration algorithm adapt to different workloads and workload phases, we employ
a mechanism that changes the migration criteria at short time intervals based on the
number of migrations during the previous interval. LGM is implemented in hardware
and uses a decoupled sectored organization for the LLC in order to track data at the
coarser (segment) granularity required for data migration. LGM supports all to all
migration, which means that every memory segment can be located anywhere in the
memory system without any mapping restrictions.

Chapter 4 proposes Hybrid2, a new hybrid memory system architecture that
combines a DRAM cache with a migration scheme [38]. Hybrid2 does not deny
valuable capacity from the memory system because it uses only a small fraction of
the near memory as a DRAM cache. The small DRAM cache faithfully follows the
working set of workloads, fetching data as they are requested by the processor, just
like a larger cache would do, giving the benefits of caching to the memory system.
At the same time, data is selectively migrated to the rest of the 3D-stacked DRAM
space when evicted from the DRAM cache. The DRAM cache is sectored to allow
for cheaper on-chip tag-storage, while fetching at cache line granularity to avoid
over-fetching. Migration is managed at larger (sector) granularity which matches the
DRAM cache sector size. To manage both caching and migration, Hybrid2 uses a
small, on-chip, tag array which completely covers the DRAM cache contents and also
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uses indirection to facilitate the address translation that is required for data migration.
Additionally, indirection allows to avoid relocating data within the 3D-stacked DRAM
on migration. To enable this, the 3D-stacked DRAM is split logically between cache
and migration space, this allows the DRAM cache data to be placed anywhere in the
3D-stacked DRAM. To make more informed migration decisions, the DRAM cache is
used as a staging area to select the data most suitable for migration. To decide which
sectors to migrate when they are evicted from the DRAM cache, DFC uses an access
counter for every sector in the DRAM cache to find the most accessed sectors in each
cache set. Furthermore, the migration decision takes into account the spatial locality
of each sector as well as the overall required traffic for migration.

5.2 Contributions
In order to improve the performance of hybrid memory systems that use the 3D-stacked
DRAM as a cache, this thesis proposes Decoupled Fused Cache, a new DRAM cache
architecture which:

• Mitigates the cost of accessing the DRAM cache tags while enforcing minimal
design restrictions

• Supports a configurable (at boot time) DRAM cache line size, which is a power-
of-two multiple of the LLC cache lines

• Compared to DRAM cache designs of the same cacheline size, improves system
performance by 11% and reduces DRAM cache traffic by 25% and DRAM
cache energy consumption by 24.5% on average.

When the 3D-stacked DRAM is used as a part of a flat address space with hardware
data migration, this thesis proposes LLC-guided Data Migration, a data migration
design which:

• Uses the on-chip LLC to guide the selection of data to be migrated to 3D-stacked
DRAM.

• Reduces the migration traffic overheads by skipping cache lines already in the
LLC.

• Outperforms current state-of-the art migration designs improving system perfor-
mance by 12.1% and reducing memory system dynamic energy by 13.2%.

In order to combine the benefits of caching and migration, this thesis proposes
Hybrid2, a hybrid memory system design that:

• Uses a small part of the 3D-stacked DRAM as a cache so as not to waste most
of the capacity.

• Supports migration for data when evicted from the DRAM cache.

• Depending on the capacity ratio of 3D-stacked DRAM to conventional DRAM,
outperforms current state-of-the-art migration schemes by 6.4 to 9.1% on av-
erage and compared to caches, gives away only 0.3 to 5.3% of performance
offering 5.9 to 24.6% more main memory capacity.
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5.3 Future Work
There are several directions for future research that can improve and complement the
work presented here. In the following, we identify and list some of them:

Involving the software in hybrid memory system management: All the designs pro-
posed in this thesis are implementable in hardware and are transparent to the software
layer. Being transparent to the software means that programmers and OS developers
need not worry about the underlying architecture which enables easier adoption of
new designs. However, this means that the hardware must infer any information about
the software from the memory access patterns. Actively co-designing hardware and
software to achieve better performance could lead to overall more efficient systems.

Non-volatile memories: It would be interesting to evaluate the impact of the
designs and ideas proposed in this thesis on other memory technologies such as Non-
Volatile Memories as these have radically different access characteristics to DRAMs.
Furthermore, there are other factors that might affect design decisions such as wearing
in flash-based memories and/or heat dissipation and peak power consumption for write
operations for ReRAMs and STT-RAMs.

Non-Uniform memory systems: Another interesting research direction would be
the design of hybrid memory systems for multi-node systems. With the emergence
of chiplet-based designs the memory system strays from the single-point, monolithic
abstraction. New hardware and software mechanisms might be required to provide a
familiar programming paradigm for more distributed systems, even within the same
chip.

Blurring the lines between memory and storage: Another possible research direc-
tion is to try to change the conventional views about memory and storage. Traditionally
these two are managed in different ways by the software due to their different access
characteristics. Storage is slow and managed explicitly by the operating system while
memory is an integral part of computation and is managed mostly by the hardware.
The emergence of non volatile memories with much better bandwidth and latency,
combined with the vast capacity they can offer opens up new directions. To fully
utilize this technology we have to re-visit the traditional abstractions, programming
models, and operating systems. Hardware memory/storage architectures will have
to provide new primitives which will enable managing such systems and make the
software transition easier.
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