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Abstract 
 
Introduction: Safe vehicle automation can be achieved through a detailed 
understanding of drivers’ ability to respond to a safety-relevant event after a period of 
automated driving. For instance, there is a need to understand in which scenarios 
automation effects are present (e.g. delayed response, degraded driving performance, 
crashing). Further, there is a need to identify specific factors (e.g. test environment, 
system-prompts, hands-on-wheel requirement, automation duration) that contribute to 
or prevent these automation effects. Objectives: The aim of this thesis is to investigate 
factors that influence: (a) automation effects in a non-prompted (i.e. absence of 
warning/notification) safety-relevant event during assisted driving and (b) automation 
aftereffects (i.e. automation effects specifically occurring after automation has been 
deactivated) in a prompted safety-relevant event during unsupervised automation. 
Method: Two Wizard-of-Oz test-track experiments were performed in order to 
investigate the driver response process in safety-relevant events. In experiment 1, the 
drivers were required to supervise (with or without a hands-on-wheel requirement) an 
assisted driving system, and then respond to a safety-relevant event that was not 
prompted by the system. In experiment 2, the drivers drove manually (baseline) and 
with an unsupervised automation system (a short and a long duration) before 
encountering a safety-relevant event. The automation system prompted (issued a take-
over request) the driver to resume manual driving shortly before the safety-relevant 
event became visible. Results: In experiment 1, one third of the drivers responded late, 
or did not act at all, and crashed in the non-prompted safety-relevant event. In fact, the 
drivers crashed to the same extent and responded similarly independent of if they 
supervised the assisted driving system with or without hands on the wheel. In 
experiment 2, all drivers resumed manual control and did not collide in the safety-
relevant event, both after a short and a long automation duration. All drivers showed a 
similar response and driving performance in the safety-relevant event for both long and 
short automation duration as well as in the manual baseline. Discussion: A hands-on-
wheel requirement was not found to prevent late response or crashing in a non-
prompted safety-relevant event encountered during assisted driving. More work is 
needed to understand the potential safety-benefits of a hands-on-wheel requirement in 
other types of conflicts and for driver distractions. The finding of minor automation 
aftereffects in experiment 2 contrasts to previous driving simulator studies. The reason 
may be the different test environments but is more likely due to different timings for 
prompting the drivers to resume manual control in relation to when the safety-relevant 
event became visible. Conclusions: Safe vehicle automation, including both assisted 
and unsupervised automation, can be achieved in a realistic environment (test track) for 
most drivers. However, assisted driving in combination with a non-prompted safety-
relevant event, can be detrimental for safety, since some drivers may not understand 
the need to respond to avoid a crash. In fact, a hands-on-wheel requirement did not 
result in earlier steering responses nor did it prevent drivers from crashing. Thus, more 
work is needed to understand how to make sure drivers understand the need to respond 
in non-prompted safety-relevant events during assisted driving. In fact, it seems that 
when automation has matured to a level when it can prompt the drivers (i.e. 
unsupervised automation that can issue a take-over request) prior to a safety-relevant 
event becomes visible, drivers are able to safely resume manual control and perform 
similar as after an extended period of manual driving. Such safe driving performance 
seems to be independent of automation durations below 15 minutes. 
Key words: automated driving, driver behaviour, driver response, driving 
performance, take over, test track, response process, automation 
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1 Introduction  
At the time of writing this thesis, 1.35 million human lives are lost every year in road 
traffic (World Health Organization [WHO], 2018). In addition, WHO (2018) reports 
that road-traffic crashes are the leading cause of death for young people between 5 and 
29 years. Vehicle automation — technologies introduced to automate parts of the 
driving task in a passenger car — seems promising to have a positive impact on road 
safety by reducing the number of road-traffic deaths. The reason is that automated 
vehicles are expected to perform better than the human driver, potentially avoiding 94% 
of the crashes that are related to driver-related critical reasons such as recognition 
errors, decision errors, and performance errors (National Highway Traffic Safety 
Administration, [NHTSA], 2015).  
 
However, in order to obtain this safety-benefit, vehicle automation needs to be designed 
to be safe, by accommodating the human factors challenges that comes with introducing 
automation to a human-machine system (Bainbridge, 1983; Lee, Wickens, Liu & 
Boyle, 2017; Seppelt & Victor, 2016). In practice, introducing automation may result 
in safer driving in some sense (e.g. by reducing driver workload; De Winter, Happee, 
Martens & Stanton, 2014), but automation may also induce possibilities for new driver 
behaviours that may be safety-critical in different ways (e.g. drivers that devote less 
attention to the forward road; Morando, 2019). In fact, on-market vehicles equipped 
with automated technologies have already been involved in crashes with deadly 
outcome (National Transportation Safety Board [NTSB], 2017, 2018, 2019). A 
common factor in these reports is the lack of driver engagement (e.g. long durations 
hands-off-wheel times) prior to crashing and that the safety-relevant events were not 
avoided by the automated systems (i.e. the driver needed to act to avoid crashing 
because the vehicle could not handle the safety-relevant event).  
 
For the scope of this thesis, safety will be measured through investigations of the 
drivers’ ability to start to drive manually and respond to a safety-relevant event after a 
period of automated driving. This ability will be assessed through investigations of the 
driver response process in the safety-relevant event. The response process consists of 
a response preparation phase (i.e. including actions that needs to be performed before 
the driver can start to drive manually e.g. put hands on the steering wheel) and a manual 
intervention and stabilization phase (i.e. including the manual intervention and driving 
performance that takes place after the drivers have started driving manually). 
Automation effects are present when parts of the driver response process are unsafe (e.g. 
delayed response, a degraded driving performance, or crash involvement). Therefore,  
to achieve safe vehicle automation, these effects need to be mitigated or prevented.  
 

1.1 Human collaboration with automation: potential and 
challenges 

Today, automation is increasingly present in technology. Recent advances in software 
and hardware enable machines to perform tasks that were traditionally performed by a 
human operator. Introducing automation to a human-machine system comes with both 
potential and challenges, which have received attention from human factors researchers 
within the past four decades (Bainbridge, 1983; Lee, et al., 2017; Onnasch, Wickens, 
Li, & Manzey, 2014; Parasuraman & Riley, 1997; Seppelt & Victor, 2016). On one 
hand, automation has the potential to increase human safety and comfort (Lee et al., 
2017). Machines can efficiently and with high accuracy handle routine tasks that may 
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either be difficult or even dangerous for humans to perform. On the other hand,  
automation can also decrease human safety and comfort. The reason is that automation 
may fail at times, either due to a software or hardware failure or because the automated 
system is used in a way that was not intended (i.e. beyond system limitations). When 
automation fails the consequences can be catastrophic.   
 
A catastrophic outcome may stem from the limitations of a human operator to step in 
as a problem solver when automation fails (often unexpectedly and silently) after 
having performed well for a long period (Bainbridge, 1983; Wickens, Hooey, Gore, 
Sebok, & Koenicke, 2009). The reason is that automation alters the tasks performed by 
the human operator. That is, instead of being actively engaged in operational control 
the human operator is often left to passively monitor the automated system which 
performs the tasks previously performed by the human. Consequently, operators may 
enter an out-of-the-loop state, which in turn is linked to a reduced situation awareness 
(i.e. a reduced awareness of the system and processes) and a loss of manual skills 
(Endsley, 1995, 2015; Endsley & Kiris, 1995). In addition, the higher the degree of 
automation the less fit humans may be to perform manual operation when needed (e.g. 
due to automation failure), after automation have performed some of the tasks for a 
longer period (Onnasch et al., 2014). To conclude, knowing that humans may have 
difficulties performing manual operation after automation has performed the tasks, may 
help in solving the new challenges that are presented when drivers are required to drive 
manually after some period of automated driving in increasingly automated vehicles  
(Seppelt & Victor, 2016). 

1.2 Manual driving and event-response during assisted 
driving and after unsupervised automation  

Driving relies on the human ability to sense and gather information about the driving 
environment, attend to and process the relevant or important information, and respond 
to the numerous possible driving situations, both during routine driving and in safety-
relevant events (Bolstad, Cuevas, Wang-Costello, Endsley, & Angell, 2010; Macadam, 
2003). The driving task consists of three hierarchical levels of skills and control 
(Michon, 1985). At the top level (the strategic level) the general planning of the trip is 
executed (e.g. decisions on where to go and how to go there, if an automated function 
should be used or not). At the middle level (the tactical level) decisions are made 
regarding the manoeuvring control related to the present circumstances (e.g. speed 
selection, avoiding obstacles, turning, overtaking). Finally, at the lowest level (the 
operational level) the continuous control of the vehicle is performed (e.g. steering, 
braking, accelerating).  

1.2.1 Assisted driving and unsupervised automation  
When automation is introduced to a vehicle, the human activities on the operational, 
tactical and strategic levels may change. Automation is not necessarily “all or none” 
but exists to different degrees, often called levels of automation, and these degrees may 
change the human activities in different ways (Parasuraman, Sheridan & Wickens, 
2000). There are several definitions of the degree or levels of automation, ranging from 
complete manual control up to full automation when no human input is required (SAE, 
2018; Seppelt & Victor, 2016; Thatcham Research, 2018).  
 
For the scope of this thesis, the focus will be on two types of automation, namely 
assisted driving and unsupervised automation. The reason behind the choice of these 
two definitions is the clear distinction of driver roles and responsibilities, i.e. that the 
driving is either shared when the driver is fully responsible for the driving or delegated 
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when the vehicle is fully responsible for the driving (Seppelt & Victor, 2016). Two 
motivations behind the need for such a clear distinction is: (a) the observed public 
confusion about the actual capabilities of current on-market systems (Thatcham 
Research, 2019) and (b) concerns about the human ability to be prepared to 
act/intervene when automation fails (Seppelt & Victor, 2016). Another motivation for 
focusing on assisted driving and unsupervised automation are that these definitions are 
being adopted by safety rating organisations and insurance institutes (Euro NCAP, 
2018; Thatcham Research, 2019) and will therefore likely guide the design of future 
automated systems.  
 
The most mature automated driving systems on the market today (year 2020) are 
assisted driving systems, while the next type unsupervised automation systems are 
currently being developed. For assisted driving, the vehicle can support the driver with 
the longitudinal control (accelerating and braking) and the lateral control (steering) by 
combining Adaptive Cruise Control (ACC) with Lane Centering (LC). However, the 
driver is always responsible for the driving and is expected to keep the hands on the 
steering wheel (United Nations Economic Commission for Europe [UNECE], 2017), 
eyes on the road, and to be prepared to respond to conflict objects and events that can 
appear at any time (Seppelt & Victor, 2016; Thatcham Research, 2018). The reason 
why the driver is the main responsible at all times, is the limitations current systems 
have which require driver action. For example, so-called “cut-in” (i.e. another vehicle 
enters the lane between the subject vehicle and a lead vehicle) and “cut-out” (i.e. 
another vehicle leaves the lane of the subject vehicle to avoid a conflict object on the 
road) scenarios are challenging for current on-market systems (Euro NCAP, 2018). 
These types of safety-relevant events occur with high frequency in everyday traffic, but 
still occur rare enough to surprise drivers, especially when critical. Further, these events 
generally require the driver to act to avoid the crash by steering and/or braking (Euro 
NCAP, 2018).   
 
Unsupervised automation, on the other hand, can take full responsibility of the driving 
task (e.g. accelerating, braking, steering and event detection- and response) for certain 
periods of time. For example, unsupervised automation would need to safely handle the 
Euro NCAP cut-in- and cut-out scenarios above without driver intervention. The driver 
is then allowed to disengage from driving (hands off the steering wheel and eyes off 
the road) and engage in non-driving related activates (NDRA; e.g. playing games). In 
fact, a United Nations (UN) vehicle regulation for a future low speed unsupervised 
automation system (referred to as “Automated Lane Keeping System”) is currently 
being developed by the Working Party on Automated/autonomous and Connected 
Vehicles (GRVA; UNECE, 2020). In the current version, when a driver needs to resume 
manual control these systems are required to issue a so-called transition demand to 
notify the driver beforehand for both planned events (events known at system 
activation) and unplanned events (unknown at system activation, but assumed likely to 
happen during driving, e.g. encountering a road-work zone). In addition, for cases when 
the driver do not respond to this demand by deactivating automation, the system should 
start a minimum risk manoeuvre (“a procedure aimed at minimising risks in traffic, 
which is automatically performed by the system after a transition demand”) earliest 10 
s after the transition demand was issued. That is, the vehicle is required to take 
responsibility for safe driving when the driver is not fit to do so. However, this 
regulation also assumes that systems can detect and notify the driver about an upcoming 
safety-relevant event more than 10 s beforehand.  
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1.2.2 Terminiology and examples regarding the need for manual 
driving during assisted driving and after unsupervised 
automation  

The process of resuming manual control from unsupervised automation is referred to 
as a transition in the UN vehicle regulation (UNECE, 2020) as well as in the ISO 21959 
for human performance and state in the context of automated driving (ISO, 2018). This 
thesis will foremost use the definitions in the ISO 21959 because: (a) the specific 
emphasis on terms related to driver performance in the context of automated driving 
and (b) the schematic models for the transition processes for driver-initiated and 
system-initiated transitions. In fact, these models have inspired Figure 1 below. The 
purpose of Figure 1 is to introduce necessary terminology and to put this terminology 
into the context of two examples of safety-relevant events that may occur during 
assisted driving (Scenario 1) and unsupervised automation (Scenario 2).  
  
ISO 21959 uses the word transition for both assisted driving and unsupervised 
automation, even if these processes may be fundamentally different. In unsupervised 
automation, the automated driving system (ADS) prompts the driver to resume manual 
control (the need to resume manual control is ADS-prompted) through a salient 
notification when needed. Such a notification (referred to as a Request to Intervene in 
the ISO 21959, but the most common term in the literature is a take-over request or a 
TOR), takes place for situations when the limitations of the system is well known. The 
TOR is marked in Figure 1 (Scenario 2) as the prompt (TOR). As shown in Figure 1, 
this prompt triggers a driver state transition which is defined as the “process of 
transforming the actual driver state (possibly determined by Non-Driving-Related-
Activity) to a target driver state suitable to effectively take-over manual control” (ISO, 
2018).  
 
In unsupervised automation, this driver state transition means that the driver goes from 
having no responsibility for safe driving to full responsibility for safe driving (at 
automation deactivated; Figure 1). In contrast, in assisted driving the driving task is 
shared between the assisted driving system and the driver, since the driver is fully 
responsible for the driving task but is supported by the assisted driving system. This is 
shown in Figure 1 (Scenario 1) as a grey bar which is shared between the driver and the 
system. Thus, a well-defined transition of control does not exist. The driver can either 
deactivate the system (e.g. by pressing buttons) and drive in manual mode but can also 
apply steering wheel torque in order to change the vehicle’s path while the driver 
assistance system remains active. However, in both cases the driver is always fully 
responsible for safe driving.  
 
The need for manual control input during assisted driving can either be ADS-non-
prompted or ADS-prompted. The manual control need is ADS-non-prompted when 
there is no notification given by the system, but the driver detects the need to respond 
to a safety-relevant event when a system limitation occurs (e.g. an unexpected object in 
lane which the system does not detect, or a steering system torque limitation in a curve). 
Further, the manual control need is ADS-prompted when the driver receives a 
disengagement notification, or a forward collision warning. System limitations (i.e. a 
system that does not detect an object, because the system was not designed to detect it, 
and if known it is declared in the user manual) should be differentiated from a silent-
failure event where the system is not working as intended (e.g. a system that silently 
fails in a situation it was designed to handle). The need for starting to drive manually 
and act in a safety-relevant event during assisted driving when no prompt is present 
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(ADS-non-prompted) and during unsupervised automation when a prompt (TOR) is 
present (ADS-prompted) are exemplified with Scenario 1 and 2 in Figure 1, 
respectively.  
 

 
Figure 1 - A representation of the process of driving manually after a period assisted driving 
(Scenario 1) and unsupervised automation (Scenario 2). The figure defines typical durations of 
interest for assessing the driver response process (e.g. the take-over time). In addition, the 
components building up the complete driver response process (the response preparation phase 
and the manual intervention and stabilization phase) are marked.  

Scenario 1 
A test vehicle is following a lead vehicle on a rural road. The test vehicle has the assisted 
driving system engaged which means that the driver is responsible for the driving task 
but is supported by the assisted driving system (driver & assistance system 
collaborates). Suddenly, a conflict object (garbage bag) becomes visible for a short 
moment (conflict object visible) and can be detected by an attentive driver. A little later, 
the lead vehicle performs a cut-out and fully reveals the conflict object to the driver 
(conflict onset) who needs to perform an evasive steering manoeuvre (driver action 
start marks the start of this driver intervention) to avoid crashing with the object since 
the assisted driving system did not detect the object and was not performing any evasive 
steering manoeuvre. Thus, for a successful driver response process the driver needs to: 
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(a) understand the need to act without being prompted by the system and, (b) complete 
the actions in the response preparation phase (e.g. put hands on wheel) to be able to 
start apply steering torque or deactivate the driver assistance system and, (c) act to avoid 
crashing. The phase from driver action start is referred to as the manual intervention 
and stabilization phase and includes both the driving performance needed to avoid 
crashing in case of a conflict object as well as a period of returning to normal (i.e. the 
driver either returns to collaborating with the system or deactivates the system) in case 
of normal non-critical driving. Note that the cut-out scenario is just one example of a 
system limitation requiring driver control and many others exist (e.g. see Euro NCAP, 
2018).   
 
Scenario 2 
A test vehicle is following a lead vehicle on a rural road. This time the test vehicle has 
the unsupervised automation system activated and the driver is engaged in playing a 
game on his/her tablet with hands off the wheel and eyes off the road. The unsupervised 
automation system detects an upcoming road-work zone while the lead vehicle is still 
in front and prompts the driver to deactivate automation and resume manual control by 
issuing a TOR. The driver needs to perform a driver state transition, i.e. perform some 
actions in the response preparation phase, for example stop playing the game, redirect 
his/her eyes from the tablet to the human-machine interface (HMI) and/or to the forward 
road, put the hands on the steering wheel and press two buttons in order to deactivate 
the unsupervised automation system (automation deactivated marks when this is 
achieved). After having deactivated automation, the lead vehicle changes lane (similar 
to a cut-out manoeuvre; the conflict onset) to avoid colliding with the first two 
upcoming cones which are part of the road-work zone (the conflict object). The driver 
who is now in manual driving mode needs to start steering (driver action start) and then 
complete the manual intervention and stabilization phase by carefully manoeuvring in 
the road-work zone not to collide with any of the cones and return to a stable manual 
driving performance (vehicle control stabilized marks when this is achieved). For some 
systems the driver action start may be used to deactivate automation and in such a case 
the driver intervention time would be zero. Note that any number of critical scenarios 
(anything that could be encountered in manual driving) may at any time occur shortly 
after the driver has resumed manual control. 
 

1.3 State-of-the-art: automation effects, driver response 
process, and influencing factors   

A growing amount of litereature is concerned with understanding the scenarios (i.e. a 
combination of e.g. environment, automation type, event type) in which drivers may 
have a degraded ability to drive manually and respond to a safety-relevant event after a 
period of automated driving (i.e. when parts of the driver response process are unsafe), 
as well as the factors that influence this ability (Mole et al., 2019; Eriksson & Stanton, 
2017; McDonald et al., 2019; Zhang, De Winter, Varotto, Happee, & Martens, 2019). 
In other words, there is an interest in understanding in which scenarios automation 
effects are present, the type and size of the effects, as well as the factors that contribute 
to or can mitigate such effects. This understanding is important because it can be used 
to achieve safe vehicle automation by informing the development of, for example: (a) 
vehicle regulations, (b) countermeasures or system design principles, and (c) driver 
models to be used in computational simulations to estimate the benefit of those 
countermeasures (Bärgman, Boda, & Dozza, 2017; McDonald et al., 2019) and for 
driver monitoring systems (i.e. in-vehicle systems that can infer driver states and 
actions).  
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To begin with, understanding the scenarios that are associated with automation effects 
(i.e. a problem) is important because it gives information about which scenarios are 
problematic and should be focused on (e.g. a lead-vehicle cut-out scenario encountered 
in assisted driving). Secondly, understanding the type and size of the effects (e.g. 
crashing) is important because it informs how severe the problem is. Thirdly, when the 
scenario and the type of effects are identified, understanding the factors or mechanisms 
that contribute to these effects (e.g. humans expect automation to act) is needed in order 
to solve the problem. Finally, understanding the factors that can prevent automation 
effects (e.g. a hands-on-wheel requirement, restrictions on automation duration) is 
important because it may help in solving the problem by facilitating an appropriate and 
safe driver response process and thus prevent crashes.   
 
This Section will summarize what is currently known (the state-of-the-art) about driver 
response in automation in general, and automation effects (when this response is 
unsafe) in specific. In addition, this Section will present typical ways of assessing the 
driver response process in safety-relevant events in automation (to understand 
presence/absence of automation effects) as well as what is currently known about the 
influence of specific factors on the response process.    
 

1.3.1 Metrics used to assess the driver response process  
In order to understand the scenarios in which automation effects are present as well as 
the type and size of these effects, means of measuring the driver response process are 
needed. The driver response to safety-relevant events has traditionally been examined 
using reaction times (e.g. driver brake or steering reaction times;  Young & Stanton, 
2007). A reaction time is typically defined as the duration between the onset of a safety-
relevant event (e.g. a lead vehicle that starts to brake) and the driver action start (e.g. 
driver presses the brake pedal). For example, in Scenario 1 shown in Figure 1, the onset 
of the safety-relevant event could either be defined as the timing of conflict object 
visible for the first time or at the conflict onset when the lead vehicle performs the cut-
out.  
 
Up until now, the most frequently used metric to assess the driver response process in 
a safety-relevant event after automation is the so-called take-over time or in short TOT 
(Mole et al., 2019; Eriksson & Stanton, 2017; McDonald et al., 2019; Zhang et al., 
2019). The TOT is typically defined as the time between when a prompt (TOR) is issued 
and the time when the driver has deactivated automation by either a button press, or 
when a certain braking or steering threshold is met (automation deactivated or driver 
action start; see Figure 1, Scenario 2). As shown in Figure 1, the driver response process 
consists of more than only a TOT. Recently, it has been proposed that investigations of 
TOT and the response preparation phase needs to be combined with analyses of the 
manual driving performance that follows a period of assisted driving or unsupervised 
automation (Mole et al., 2019; Zeeb, Buchner, & Schrauf, 2016). This is because the 
factors influencing TOTs may not be the same that influence the driving performance 
that follows (Zeeb et al., 2016) and some of these factors may only be understood by 
considering the drivers’ steering behaviour after automation (e.g. a less calibrated 
perceptual-motor control; Mole et al., 2019).  
 
Thus, the analyses of the response preparation phase should be enriched with 
investigations of the driving performance in the manual intervention and performance 
phase (Figure 1). However, up until now there is no well-defined way to assess the 
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success of this manual intervention and performance phase (McDonald et al., 2019; 
Mole et al., 2019), although it is identified as a control stabilization period in ISO (ISO, 
2018). Examples of metrics that have been used to assess the driving performane in the 
manual intervention and stabilization phase are: conflict outcome, minimum time-to-
collision (min TTC), as well as descriptive statistics (mean, maximum, minimum) of 
longitudinal and lateral accelerations (McDonald et al., 2019). 

1.3.2 Automation effects and aftereffects: the influence of 
automation on the driver response process  

It appears that some of the human factors concerns related to automation observed in 
other domains are also present in certain vehicle automation scenarios. Even lower 
degrees of automation (e.g. ACC) have  been shown to increase driver response times, 
such as  brake reaction times, to safety-relevant events when no prompt to the driver is 
present and when the response is compared to manual driving (Larsson, Kircher, & 
Hultgren, 2014; Bianchi Piccinini et al., 2019; Young & Stanton, 2007). Some evidence 
also indicates that the higher the degree of automation (ACC + Automated steering 
compared to ACC alone) the poorer the driver response to a safety-relevant event 
(Strand, Nilsson, Karlsson, & Nilsson, 2014), but evidence of no effect or minor effects 
of higher degree of assistance on the driver response to safety-relevant events also exist 
(Larsson et al., 2014; Young & Stanton, 2007). A recent test-track study by Victor et 
al. (2018) confirmed that drivers may have difficulties responding to a safety-relevant 
event (i.e. a longitudinal lead vehicle cut-out situation with a stationary conflict object 
not detected by automation, as previously exemplified in Scenario 1) during assisted 
driving. In fact, 28% of the drivers, all reporting high trust in automation to act in the 
conflict scenario, crashed with the stationary conflict object, which was either a garbage 
bag or a stationary balloon car. The drivers that crashed explained that they did not act, 
or they acted too late to avoid a crash, because they expected the assisted driving system 
to avoid the conflict object (Victor et al., 2018).  
 
Evidence of automation aftereffects (i.e. automation effects specifically occurring after 
automation has been deactivated) have also been shown just after unsupervised 
automation when a TOR is present (Gold, Damböck, Lorenz, & Bengler, 2013; Louw, 
Merat, & Jamson, 2015; Happee, Gold, Radlmayr, Hergeth, & Bengler, 2017). In 
addition, some evidence indicates that a longer exposure to automation (i.e. a longer 
automation duration), produces more severe automation aftereffects after a TOR 
(Bourrelly et al., 2019; Jarosch & Bengler, 2018), whereas at least one other study did 
not observe any significant automation aftereffects (Feldhütter, Gold, Schneider, & 
Bengler, 2017).  
 
Notably, few studies have directly investigated how the driver response process may 
differ between assisted driving and unsupervised automation (McDonald et al., 2019). 
Thus, little is currently known whether a period of assisted driving or unsupervised 
automation are associated with similar responses, especially in the same safety-relevant 
event. The literature gives us reason to be concerned by suggesting that the more we 
automate, the poorer the human ability to perform manual control after automation 
seem to become (Onnasch et al., 2014). However, since assisted driving and 
unsupervised automation differ in whether the drivers are prompted about the need to 
drive manually or not, this may not always be a general conclusion for both assisted 
driving and unsupervised automation. Notably, warnings have been found to elicit 
earlier responses if given well in advance compared to late warnings or no warnings 
(Lee, McGehee, Brown, & Reyes, 2002). Thus, comparisons of the driver response 
process between assisted driving and unsupervised automation may both be influenced 
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by the automation type and the presence of prompts to notify the driver about the need 
to drive manually.  
 
Finally, all studies mentioned in this Section were performed in driving simulators, 
except the study by Victor et al. (2018) that was performed on a test track. Thus, the 
question remains to what extent the above findings of automation effects and 
aftereffects can be generalised to more realistic contexts (e.g. similar studies but 
performed on test track or on public road).  

1.3.3 The influence of specific factors on the driver response process  
Many studies have investigated the influence of specific factors on the TOT. To begin 
with, TOTs have been found to range between 0.7 s up to 23.8 s (Eriksson & Stanton, 
2017; Zhang et al., 2019). The take-over time budget (Total time budget in Figure 1) 
has been pointed out as one of the main influencing factors on TOT: in general the 
longer the time given to drivers to resume manual control the longer time they seem to 
take (McDonald et al., 2019). The take-over time budget is typically defined as the TTC 
at event onset (Figure 1). Additional factors that have been found to influence the TOT 
are: if the transition-scenario is practiced beforehand, the presence of secondary tasks 
(especially hand-held tasks) and the presence of prompts to transition. In fact, it seems 
that TOTs decrease when a prompt (TOR) is present (Zhang et al., 2019), but the 
influence of prompts on the driver response to safety-relevant events after automation 
requires additional work (McDonald et al., 2019).  
 
The review by McDonald et al. (2019) concludes that the driving performance in the 
manual intervention and stabilization phase is significantly influenced by the take-over 
time budget, secondary task engagement, the modality of the TOR (e.g. visual, auditory, 
haptic), the driving environment, if a prompt is present or not, repeated exposure, 
fatigue, trust in automation, and alcohol impairment. Thus, many of these factors 
influencing driving performance in the manual intervention and stabilization phase are 
the same as the ones influencing the TOT. This could be because of the relation that 
exists between: (a) the response preparation phase and (b) the manual intervention and 
stabilization phase. As the illustrated Scenario 2 in Figure 1 shows: the longer the 
response preparation phase, the shorter remaining action time is available. 
Consequently, in critical scenarios drivers may be forced to act closer to a conflict 
object and therefore crash or perform an evasive manoeuvre to avoid crashing. This 
effect of degraded driving performance as a consequence of the time needed for drivers 
to prepare to act (e.g. positioning the hands to the steering wheel) can be called the 
preparation-action-time consequence. The extent to which the observed automation 
aftereffects (Section 1.3.2) may be influenced by the preparation-action-time 
consequence (a timing issue) rather than a human (cognitive) mechanism (e.g. drivers 
that are less aware of the surroundings because of automation) is currently unknown.  
 
Whereas factors such as the presence of secondary tasks and TOR modality have 
received a lot of attention (McDonald et al., 2019), some potentially influential factors 
have not been focused on to the same extent. One example of such a factor is the 
presence of a hands-on-wheel requirement (McDonald et al., 2019). For drivers to 
supervise an assisted driving system is today required by law in Europe (UNECE, 
2017), whereas future unsupervised automation system may allow drivers to remove 
their hands from the steering wheel and under some circumstances disengage from the 
driving task (UNECE, 2020). At least two studies have explicitly studied the influence 
of permitting hands-off intervals at either 10 s or 120 s on the driver response process 
during automated driving when a safety-relevant event was preceded by a TOR 
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(Naujoks et al., 2015, 2017). Naujoks et al. (2015) found that all drivers responded 
appropriately and with similar brake response times in a longitudinal scenario when 
encountering a suddenly appearing stationary vehicle for both permitted hands-off 
durations (10 s vs 120 s). Further, Naujoks et al. (2017) found that drivers also 
responded similarly independent on the permitted hands-off intervals in a lateral lane-
drift scenario. Notably, both studies mention that most drivers did keep hands on the 
steering wheel in both conditions even if allowed to have hands off, which may have 
explained the similar response. Another factor that have received little attention but 
may influence the driver response process is the conflict object type used in the safety-
relevant events (McDonald et al., 2019). The conflict object type may influence the 
driver response process because of different saliency that influences detection and 
perception (driver sees and is aware of conflict) which in turn is a necessity for response 
(Lee et al., 2017). Finally, the drivers’ trust in the automated system has been found to 
influence driver response to safety-relevant events during automation, but requires 
more work before the impact on the driver response process is fully understood 
(McDonald et al., 2019). Higher trust in automation have been found to result in 
increased response times and more collisions, compared to lower trust levels (Körber, 
Baseler & Bengler, 2018;   Payre, Cestac & Delhomme, 2016).   

1.4 Human (cognitive) mechanisms and frameworks for 
explaining automation effects   

As discussed in previous chapters, when vehicle automation fails, drivers may have 
troubles performing as well as they do in manual driving (i.e. we observe automation 
effects during assisted driving and aftereffects after unsupervised automation). This 
effect of automation on the driver response process needs to be well understood, as it 
may have serious consequences such as crashes. Recall that safe and effective driving 
depends largely on the human ability to perceive detect and gather information about 
the environment, comprehend this information and act appropriately.  
 
Specifically, visual attention has been pointed out as one of the most significant aspects 
of safe manual routine-driving and event-response (Macadam, 2003; Victor et al., 
2015). Therefore, the knowledge of reduced monitoring because of increased 
automation as for example pointed out by Morando (2019), is an obvious safety 
concern. Unsupervised automation may even allow a reduced visual attention from the 
system design, since drivers are free to engage in non-driving-related activities and 
consequently do not need to pay attention to the forward road. However, during assisted 
driving there is a current challenge in how to secure appropriate visual attention levels, 
due to the knowledge of humans being poor at supervising (Warm, Parasuraman, & 
Matthews, 2008). Recall that appropriate attention levels (i.e. drivers that look on the 
forward road) are needed because during assisted driving the drivers are responsible for 
detecting and acting in safety-relevant events which may not be prompted by the 
system.  
 
One way to look at attention is in terms of a filter that guides or selects the information 
that will be part of higher-level human cognition (Lee et al., 2017). The environmental 
information we attend to depends on: the salience of the information (e.g. a very loud 
alarm), the effort needed (e.g. do we need to turn our head around), the expectancy of 
valuable information (e.g. a person often crosses the road at a certain place) and the 
value of (or cost of not) attending to a specific stimuli (e.g. if not looking at the forward 
road we may crash). However, just because humans look at something, it does not mean 
they attend to or perceive it. For example, the phenomenon known as attentional 
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blindness means that a fully visible object is missed because attention was devoted 
somewhere else (Lee et al., 2017).       
 
There are many proposed cognitive mechanisms (with links to visual attention) used to 
explain why humans perform worse after automation compared to after manual driving. 
For example a delayed response in safety-relevant events after automation may stem 
from reduced monitoring related to overtrust in the automated system (Parasuraman & 
Riley, 1997), a reduced situation awareness (Endsley, 1995, 2015), or drivers that are 
out-of-the-loop (Endsley & Kiris, 1995). The construct of situation awareness (SA) can 
shortly be described as: “internal conceptualization of the current situation” and is 
formed on following three levels: (a) drivers perceive elements of the environment 
(“Which information do I need?”), (b) they comprehend the meaning of these elements 
(“What does this mean to me?”), and (c) they predict their near-future status (“What do 
I think will happen next?”) (Bolstad et al., 2010). The out-of-the-loop construct is 
attributed to the possible loss of manual operational skills and a reduced situation 
awareness that may stem from the introduction of automation (Endsley & Kiris, 1995). 
Merat et al. (2019) proposed a definition of the out-of-the-loop in the context of vehicle 
automation. Within this context, the out-of-the-loop phenomena is defined as “not in 
physical control of the vehicle and not monitoring the driving situation, OR in physical 
control of the vehicle but not monitoring the driving situation”. For completeness, in-
the-loop is defined as: “in physical control of the vehicle and monitoring the driving 
situation” and on-the-loop “not in physical control of the vehicle, but monitoring the 
driving situation” (Merat et al., 2019). Other examples of proposed cognitive 
mechanisms associated with automation effects are, drivers that are mentally 
underloaded (Young & Stanton, 2002), drivers that have insufficient mental models of 
the automated system (Victor et al., 2018) or the disruption of the perceptual-motor 
loop as a consequence of automation (Mole et al., 2019).  
 
In addition to previously mentioned human mechanisms, several frameworks or models 
have been developed to understand how these human (cognitive) mechanisms interact 
with action to produce responses. For example, the information processing model of 
cognition represents the human information-processing as consisting of four stages 
between which information gets transformed (Lee et al., 2017; Wickens, 2002). That 
is, (a) we sense the environment, (b) we perceive it’s meaning based on what we sensed 
and prior knowledge (referred to as bottom-up and top-down processing), (c) we 
manipulate the information in our brain either through central processing (e.g. selects 
an action) or through transforming and remembering, and (d) we respond to the 
information (e.g. executes the action). All these stages are dependent on a limited pool 
of attentional resources: if one stage requires a lot of attention another step may be 
degraded. This division of information processing into different steps has also been 
proposed in other models (e.g. Endsley, 1995).  
 
Recently, another framework towards understanding the human cognition and action 
process in driving has been proposed. This new framework is called predictive 
processing, or short PP (Clark, 2013; Engström et al., 2018). It differs from the 
traditional information-processing assumption of a feed-forward stream of information 
from sensation to action. According to the PP framework, the brain continuously 
predicts sensory input from the external environment (e.g. looming – the visual 
expansion of an approaching lead vehicle on the retina) and minimizes deviations 
between predicted and perceived sensory inputs, through action (e.g. braking, steering) 
or by updating the prediction (Clark, 2013; Engström et al., 2018). These predictions 
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are generated by a hierarchical generative model, which is embodied in the brain and 
develops with experience.  
 
Engström et al. (2018) also proposed a way of explaining the out-of-the-loop 
phenomena in automated driving through the concept of active inference and the 
different levels of the driving task (Michon, 1985). In the context of manual driving, 
the continuous minimization of prediction errors by either updating predictions or 
acting (steering, braking) is referred to as active inference. Active inference may take 
place on both the operational, tactical and strategic levels of the driving task. Driving 
manually is to be part of active inference on all three levels (i.e. to be in the loop on all 
three levels). However, when automation is introduced, active inference may not take 
place on some of these levels (e.g. the operational or tactical levels), and consequently 
the driver may be out-of-the-loop on some of these levels. In assisted driving, when the 
vehicle performs longitudinal and lateral control, but the driver needs to monitor the 
environment, the driver is assumed to be engaged in perceptual inference rather than 
active inference on the operational level. This means that the driver may still make 
predictions on looming by observing a lead vehicle in front but is not involved in 
physical vehicle control on the operational level. Thus, the driver (if still making 
predictions on looming) may still be in the loop on the operational level, even if the 
type of inference (active vs. passive) is different from manual driving. However, if the 
driver is only monitoring the environment without making predictions about looming, 
s/he is assumed to be out of the operational loop but may still be involved in making 
inferences on the tactical and strategic loop (i.e. in-the-loop on these levels). During 
unsupervised automation when a driver disengages fully from the driving task and is 
engaged in a non-driving related task, the driver may be out of both the tactical and 
operational control loops.   

1.5 Research needs  
To achieve safe vehicle automation, the current understanding of the scenarios which 
are associated with automation effects needs to be enriched. There is a need to 
understand if the automation effects observed in driving simulators also exist in more 
realistic settings (e.g. on test track with a real vehicle). Specifically, the two automation 
types assisted driving and unsupervised automation requires more (and individual) 
attention. This is because: (a) assisted driving systems in on-market vehicles have been 
involved in crashes in real traffic, (b) the factors (contributing or mitigating) that 
influence these crashes are not fully understood, (c) factors influencing driver response 
in assisted driving may not be the same for unsupervised automation (due to different 
driver roles and system features e.g. presence of prompts, for the two automation types), 
and (d) future automated vehicles will likely be equipped with versions of these two 
types of automation. In fact, for both automation types, detailed investigations of the 
complete driver response process in safety-relevant events are a necessity. The reason 
is that automation effects may: (a) only occur some time after automation deactivation 
and would then be missed if only considering for example the TOT, (b) be influenced 
by the time needed for drivers to perform the actions in the response preparation phase 
(i.e. the preparation-action-time consequence as introduced in Section 1.3.3) or (c) be 
caused by some human mechanisms (cognitive or non-cognitive) that can be 
understood only by detailed investigations of the complete driver response process (e.g. 
a mechanism that may only influence the driver steering control after automation has 
been deactivated; Mole et al., 2019). Finally, a hands-on-wheel requirement and 
automation duration may influence driver response, but current evidence is either 
lacking or points in different directions.  
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2 Objectives  
The overall aim of this PhD project is to contribute to the development of safe vehicle 
automation, so that it can be objectively measurable. To obtain objectively measurable 
safe vehicle automation, there is a need to understand the factors that influence the 
existence of automation effects, and the components of these effects, through 
investigations of the driver response process. Importantly, there is also a need to 
advance the ecological validity of the current understanding of automation effects that 
mainly stems from driving simulator studies, by using data collected in more realistic 
settings. Specifically, this PhD project contributes to this overall aim, through empirical 
studies and analyses of the driver response process in safety-relevant events in 
automation from test-track and naturalistic data. To achieve this aim, five objectives 
were specified, out of which the first two are addressed in this licentiate thesis:  
 

1. To investigate the actions in the response preparation phase of the driver 
response process in a safety-relevant event in assisted driving when no prompt 
is present (ADS-non-prompted), and specifically the influence of a hands-on-
wheel requirement, on test track. 
 

2. To investigate the driver response process in a safety-relevant event in 
unsupervised automation when a prompt is present (ADS-prompted), and 
specifically the influence of automation duration and timings for the conflict 
onset and the prompt, on test track. 

The continued work in this PhD project will likely focus on:  

• Investigations of the driver response process in the same safety-relevant event 
as in objective 1 after a period unsupervised automation when a prompt is 
present (ADS-prompted), and specifically the influence of the duration between 
the timings for the conflict onset and the prompt, on test track. 
 

• Safety analyses of the driver response process in unsupervised automation when 
a prompt is present (ADS-prompted) before the driver needs to resume manual 
control from automation, in a naturalistic setting. 
 

• Modelling of the driver response process for different automation types 
(assisted driving and unsupervised automation) and prompts (TOR vs. ADS-
non-prompted) in a safety-relevant event.  

  



14 
 

  



15 
 

3 Methods  
This Chapter gives an overview of the methods, settings, and tools that can be used to 
study driver behaviour in automated driving, and specifically the combination of 
methods, settings, and tools that were used to study the driver response process in the 
two papers included in this thesis (Paper I and II). In addition, this Chapter introduces 
experimental protocols, driving measures, and statistical methods that can be used to 
assess the driver response process to safety-relevant events.   

3.1 Methods for studying driver behaviour in automated 
driving and participant selection   

Methods for studying driver behaviour typically require a compromise between the 
experimental control and realism (McLaughlin, Hankey, & Dingus, 2009). On one side, 
we find the controlled studies in which two or more independent variables are typically 
manipulated, whereas the remaining factors that may influence the measured dependent 
variable/s are kept fixed. Keeping some factors fixed may create an artificial 
environment which may influence how humans behave, and thus the extent to which 
results in such a setting generalizes to real-world settings remains unknown. On the 
other side of the spectrum are the naturalistic studies in which drivers are observed (i.e. 
their normal car is instrumented with sensors such as cameras) when they drive as they 
normally would. In these naturalistic studies, the degree of realism is high, whereas 
understanding relationships between different factors is a challenge because factors 
cannot be controlled.  
 
Examples of test environments for studying driving behaviour include driving 
simulators, test tracks, and public roads (McLaughin et al., 2009). A driving simulator 
enables experiments with a high degree of control and the possibility to include critical 
safety-relevant events that may result in crashes with little ethical concern (Fisher, 
Rizzo, Caird, & Lee, 2011). Even if driving simulators offer a safe and convenient way 
of measuring driving performance, the results of driving simulators may not generalize 
to driving in the real world. Specifically, driving simulators have not been found to be 
able to reproduce absolute values, and sometimes also not absolute differences between 
conditions (i.e. they lack absolute validity). However, driving simulators have been able 
to produce differences in the same direction (e.g. speed reduction), when compared to 
real-road testing (i.e. they have relative validity) (Fisher et al., 2011). Thus, when 
absolute values are required, tests in realistic environments such as as test-track 
experiments or public-road testing is generally necessary. Much of what is known today 
about the driver response process during assisted driving and unsupervised automation 
stems from driving simulator experiments.  
 
Test-track experiments offers a higher degree of realism than driving simulators (e.g. 
real visual and kinematic cues), but lack some of the control (McLaughin et al., 2009). 
In addition, test-track experiments can be more controlled than on-road studies, since 
safety-relevant events can be included with higher repeatability and safety compared to 
test on public road (even if some ethical restrictions apply to how critical these events 
can be). Test-track experiments also lack some degree of realism since an experimental 
leader is often present in the car. The data used in the two papers included in this thesis 
(Paper I and II) was collected in two test-track experiments which included two safety-
relevant events, which would not have been possible in a public road study and very 
artificial in a driving simulator. Experiments that do not require the safety and the 
control offered by experiments performed in driving simulators and on test track, can 
be performed on public roads. These studies offer the opportunity to test how drivers 
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may interact with systems in an environment with surrounding traffic and where normal 
driving hazards are present.  

3.1.1 Participant selection  
In order to understand how drivers respond in a safety-relevant event during assisted 
driving and after unsupervised automation, human subjects to be studied are needed. 
However, to make statements about a population based on a studied sample (i.e. a 
selection of participants from a population) it is important to consider who the selected 
participants are (e.g. age, gender, education) and where these participants come from 
(e.g. Sweden, a specific region in Sweden etc.; University of Michigan, 2018). The 
participants included in Paper I and II were all Volvo Car employees working in 
Gothenburg, Sweden. To minimize biases, the participants had no work duties 
associated with the development of automated driving, did not work as test drivers, and 
had not been part of similar studies before. All included participants had driven at least 
5000 km during the year prior to the study. Both samples were to the extent possible 
both age- and gender-balanced.  

3.2 Wizard-of-Oz vehicle   
While automated functions can be easily simulated in a driving simulator, test-track and 
public road testing requires a real vehicle with a reliable automated system. In lack of 
reliable unsupervised automated vehicles, there is a need to find other ways of 
investigating human collaboration with vehicle automation. One such approach is the 
Wizard-of-Oz technique. Generally within the field of human-computer interaction, a 
wizard-of-oz experiment (previously Oz paradigm) is an experiment in which 
participants think that they interact with an automated system, but in reality the 
automation is simulated by a human who is often partly or fully hidden (Kelley, 2018). 
Practically, the Wizard-of-Oz technique can be implemented in a real vehicle to study 
humans interact with vehicle systems, for example by enabling vehicle control to be 
executed from somewhere else than the drivers’ seat (Habibovic, Andersson, Nilsson, 
Lundgren, & Nilsson, 2016). These Wizard-of-Oz vehicles can be used for experiments 
on test track and on public roads.  
 
The two test-track experiments (Paper I and II) included a Wizard-of-Oz vehicle. This 
vehicle was a Volvo passenger car which was rebuilt to include a steering wheel and 
pedals positioned in front of the middle backseat. Both the steering wheel and the pedals 
were hidden from the participant in the driver seat. This setup enabled for a test driver 
(the Wizard) to control the vehicle from the backseat. The wizard-of-Oz vehicle used 
in the experiments for Paper I and II were equipped with three cameras that recorded 
the forward road, the driver’s face and the driver’s upper side body. In addition, typical 
vehicle signals (e.g. vehicle speed and acceleration), GPS signals, and signals that 
capture when the TOR was issued and when the driver had deactivated automation, 
were collected.  

3.3 Experimental protocols to investigate the driver 
response process during assisted driving and after 
unsupervised automation 

Experiments performed to be able to assess the driver response process after a period 
of assisted driving or unsupervised automation can be designed in different ways. 
Typically, the experimental protocols include a period of driving with an assisted-
driving- or an unsupervised-automation-system engaged, which leads up to a safety-
relevant event which require the drivers to start to drive manually to avoid a crash (Gold 
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et al., 2013; Happee et al, 2017; Louw et al., 2015; McDonald et al., 2019). The safety-
relevant event can for example consist of a braking lead vehicle combined with a silent 
ACC failure (Bianchi Piccinini et al., 2019), a cut-in or cut-out scenario (Larsson et al., 
2014; Victor et al., 2018), or a conflict object (e.g. a broken-down vehicle) in lane that 
drivers need to avoid by steering or braking (Gold et al., 2013; Louw et al., 2015).  
 
Specifically, the experimental protocols used in Paper I and Paper II included two 
safety-relevant events which included an object (the conflict object) that required for 
the drivers to act. In Paper I, this event was a cut-out scenario with either a garbage bag 
or a stationary vehicle as the conflict object positioned in the lane (Scenario 1 in Figure 
1 shows this setup). Note that the data used in Paper I was a subset of the complete 
dataset used in the work by Victor et al. (2018). In fact, Paper I aimed to enrich the 
understanding of conflict outcome (crashing or avoiding the conflict object) observed 
in Victor et al. (2018) by performing detailed analyses of the driver actions in the 
response preparation phase prior to the crash/avoid point. In Paper II, the event was a 
road-work zone built up of cones (the road-work zone will be referred to as the conflict 
object in this case) which was revealed by a lead vehicle that changed lane (Scenario 2 
in Figure 1 shows this setup). In Paper I, the need for drivers to start to drive manually 
to handle the cut-out scenario was ADS-non-prompted since the drivers needed to 
detect the upcoming conflict object (a garbage bag or a stationary balloon vehicle) and 
act not to crash with it. In Paper II, on the other hand, the need to start driving manually 
before the upcoming road-work zone was ADS-prompted since a TOR was issued 5-6 
seconds before the lead vehicle changed and the road-work zone became visible to the 
driver. 

3.3.1 The preparation-action time consequence  
In fact, the type of setup used in Paper II differed from previous studies (Gold et al., 
2013; Happee et al., 2017; Louw et al., 2015), since the TOR was issued before the 
conflict onset (Figure 2, bottom row). This setup enabled for the drivers to complete 
the actions within the response preparation phase (e.g. put their hands on the wheel) 
before the lead vehicle changed lane. Paper II also included a manual baseline. A 
manual baseline (Figure 2, top row) facilitates understanding of whether the observed 
driver behaviour (e.g. crashing) is due to the period of assisted driving or unsupervised 
automation, or simply happened because the situation was outside human ability. For 
example, a very critical safety-relevant event may not be avoided because of the fact 
that humans show time delays in reacting to stimuli (e.g. a suddenly appearing conflict 
object; Macadam, 2003).  
 
When the driver response process after unsupervised automation is compared to the 
driver response in manual driving, the timings for the prompt (TOR) relative to the 
conflict onset is important. This is because of the preparation-action time consequence 
which was introduced in Chapter 1, Section 1.3.2. Recall that this consequence refers 
to the automation effects that stem from the time needed for drivers to prepare for action 
after automation. When the timing for the prompt (TOR) and the timing for the conflict 
onset align (see Figure 2, middle row), the drivers in automation need to complete the 
actions within the response preparation phase before the driver action start, whereas the 
drivers in the manual condition can act directly assuming these drivers are fully engaged 
in the driving task. Thus, previous studies that have used the setup illustrated in Figure 
2 (middle row) may have been biased: they may have observed automation aftereffects 
(e.g. delayed response, a degraded manual driving performance, or crashing, after 
automation was deactivated) that were simply a consequence of the preparation-action 
time. In other words, this preparation-action time consequence means that the response 
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preparation introduces a time delay which is typically not needed when drivers are 
already in manual driving mode.   

 
 

Figure 2 - A representation of how the timings of the prompt (TOR) and conflict onset matter 
for when drivers can start acting to avoid a conflict object as part of a safety-relevant event. 
Each row represents the same safety-relevant event which is encountered in manual driving 
(top tow) and unsupervised automation driving (middle and bottom row). The only 
difference between the middle row and the bottom row is when the prompt (TOR) is issued 
in relation to the conflict onset.  

3.4 Data processing and analysis   
The driver response process can be used to assess the driver response to a safety-
relevant event through: (a) decomposing reaction times into its consisting time-
components, and (b) analyses of the intervention profile (Lee et al., 2002). For example, 
Lee et al. (2002) analysed brake responses in a rear-end collision event through 
decomposing the brake reaction time (the time from a warning to the point when the 
driver began to decelerate) into four components (e.g. accelerator release reaction time, 
accelerator-to-brake transition time etc.) and used the mean and maximum brake 
accelerations as metrics for assessing the brake profile. The driver response process can 
also be used to assess drivers’ response to a safety-relevant event after a period of 
assisted driving or unsupervised automation (Morando, Victor, Bengler, & Dozza, 
2020, Gold et al., 2013). For example, Gold et al. (2013) decomposed the TOT into 
smaller components (e.g. reaction times for positioning hands on the steering wheel, 
redirecting eyes to the forward path). Further, Gold et al. (2013) assessed the manual 
intervention performance with for example lateral vehicle position trajectories in the 
safety-relevant event and with the utilization of the acceleration potential (i.e. the 
square-root of the sum of the squared maximum longitudinal and lateral accelerations).  
 
In order to capture the driver actions that make up the driver response process, video 
data is needed. That is, driving simulators and test cars can be equipped with video 
cameras that record the driver from different angles (e.g. a video camera positioned to 
capture the drivers face). Then, in order to extract time points for the driver actions of 
interest for the driver response process, manual video annotation is usually performed. 
That is, one or several people observe the video and markdown time stamps when a 
certain action appears (e.g. driver has at least one hand on the steering wheel). These 
time stamps can then be extracted and combined into a dataset which can be used to 
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analyse the response process. For analyses of the intervention and driving performance, 
a combination of discrete metrics (e.g. maximum lateral acceleration, minimum 
steering wheel angle) and continuous metrics (e.g. full vehicle speed signals) can be 
used. The risk of only using discrete metrics is to miss important information to be able 
to assess the safety of the driver response process. For example, a significantly different 
lane position directly after drivers have deactivated automation may be a sign of that 
the drivers repositioned the hands on the steering wheel and applied some torque, and 
nothing necessarily safety critical. However, while discrete metrics can easily be 
included in statistical analyses to understand effects and effects sizes, continuous 
metrics may require more advanced methods.    
 
In this thesis, the driver response process consists of two components: the response 
preparation phase and the manual intervention and stabilization phase (see Figure 3). 
The response preparation phase includes all actions that are performed up to the driver 
action start and the manual intervention and stabilization phase consists of the manual 
driving performance that follows after the driver has started driving manually.  

 
Figure 3 - A representation of the driver response process and its two components (the 
response preparation and the manual intervention and stabilization). The response 
preparation includes driver actions needed to be performed before the driver can start to 
drive manually, whereas the manual intervention and stabilization includes the manual 
driving performance that follows the driver action start.  

In order to analyse the driver response process in Paper I and Paper II, manual video 
annotation was performed to extract time points for driver actions performed in the 
safety-relevant events. Examples of these times points are: when a driver showed a 
surprise (SRT), put hands on wheel (HOW), started steering to avoid the conflict object 
(DS), redirected the eyes from the mounted tablet to the human-machine interface (EY 
HMI), started to look on the forward path (EY FWD) and when the drivers deactivated 
automation (AD DEACT; examples of these time points are shown in Figure 1). These 
time points (or metrics) were mainly used to assess the response preparation phase. In 
Paper I, the driving performance in the manual intervention and stabilization phase were 
simply assessed with the conflict outcome (i.e. if the drivers crashed with or avoided 
the conflict object). In Paper II, the analyses of the driving performance in the manual 
intervention and stabilization phase was extended to include more detailed analyses of 
the driver intervention performance (e.g. trajectories for vehicle speed and accelerations 
when drivers manoeuvred the road-work zone combined with metrics for discrete 
maximum speed and maximum lateral and longitudinal accelerations).    
 
To mathematically assess how meaningful an observed difference between two or more 
metrics (as part of the driver response process) are, statistical methods were used in 
both Paper I and II. In fact, two different types of statistical methods were used, namely 
frequentist methods (Paper I) and Bayesian methods (Paper II). Frequentist methods 
are by far the most commonly used within the human factors in automation literature, 
why it was also used in Paper I. However, frequentist methods (especially the so-called 
null hypothesis significance testing, NHST) have the disadvantage of inducing a black-
and-white thinking were effects either exists or do not exist (Kruschke & Liddell, 2018). 
The real world is often more nuanced, which Bayesian methods are better at capturing. 
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One reason is that the output of a Bayesian analysis is a distribution of a parameter (e.g. 
the mean) together with the uncertainty of this parameter value. Thus, the output 
includes both possible magnitudes as well as probabilities of these magnitudes. This is 
more informative than the information given in NHTS (i.e. if a p-value is rejected or 
accepted without explicit information about parameter magnitudes). Information about 
actual magnitudes enables researchers to assess the relevance of results in other 
contexts. For example, the difference between two parameters (e.g. difference in 
vehicle speed) may be proven statistically significant with a NHTS, but the actual 
difference in magnitude (e.g. 0.1 m/s) may be very small and not meaningful in a 
specific context, and Bayesian methods enables the reader to make this assessment. In 
Paper II, Bayesian methods were used to estimate differences between metrics across 
conditions (e.g. maximum vehicle speed after automation and after manual driving) 
together with the uncertainty of this difference.  
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4 Results  
This Licentiate thesis includes two journal papers, reported in Table 1. Paper I and 
Paper II are submitted to two of the leading journals within the human factors in 
automation field. This Chapter presents summaries of these two papers.  
 
Table 1: Appended papers  
Papers   
  
Paper I Driver conflict response during supervised automation: 

do hands on wheel matter?  
Pipkorn, L., Victor, T., Dozza, M., Tivesten, E. (2020). 
Driver conflict response during supervised automation: do 
hands on wheel matter? Transportation Research Part F: 
Traffic Psychology and Behaviour. Submitted.   
 

Paper II  Automation aftereffects: the influence of automation 
duration, test track and timings   
Pipkorn, L., Victor, T., Dozza, M., Tivesten, E. (2020). 
Automation aftereffects: the influence of automation 
duration, test track and timings. IEEE Transactions on 
Intelligent Transportation Systems. Submitted.  
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Paper I. Driver conflict response during supervised 
automation: do hands on wheel matter?  
 
Introduction Understanding how to secure appropriate driver response during 
supervised automation is an important step in achieving safe automation. However, in-
depth knowledge regarding the mechanisms affecting driver response process is 
lacking.  
 
Objective The first aim of this study was to investigate how driver conflict response in 
supervised automation differ for drivers that crash and drivers that avoid a conflict 
object in a critical event. The second aim was to understand the influence of three 
specific factors in the driver response process: a hands-on-wheel requirement (with vs. 
without), the conflict object type (garbage bag vs. stationary vehicle), and the driver 
trust level (high vs. low).  
 
Method Seventy-six participants supervised automation for 30 minutes on a test track, 
before encountering a conflict event. In the conflict event, the participants needed to 
avoid a conflict object which was revealed by a lead-vehicle cut-out. The driver conflict 
response was assessed through the response process: timepoints for driver surprise 
reaction, hands-on-wheel, drivers steering, and driver braking.  
 
Results Crashers generally responded later in all actions of the response process 
compared to non-crashers. A hands-on-wheel requirement did not influence driver 
conflict response: the drivers with and without hands on the wheel started steering to 
pass the conflict object at similar times. High-trust drivers generally responded later, 
than the low-trust drivers or not at all, and only high-trust drivers crashed. The larger 
stationary vehicle triggered an earlier surprise reaction compared to the garbage bag, 
while hands-on-wheel and steering response were similar for the two conflict object 
types.  
 
Discussion A hands-on-wheel requirement may not prevent drivers to respond late or 
crash, when drivers have supervised automation for some duration. To what extent this 
result generalises to other types of conflicts (e.g. sideswipes, lane exits) is currently 
unknown. In addition, further research is also needed to understand to what extent a 
hands-on-wheel requirement that also requires a certain amount of torque input would 
give other results.  
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Paper II. Automation aftereffects: the influence of 
automation duration, test track and timings  
 
Introduction Automation aftereffects (i.e. degraded manual driving performance, 
delayed responses, and more aggressive avoidance maneuvers) have been found in 
driving simulator studies. In addition, longer automation duration seems to result in 
more severe aftereffects, compared to shorter duration. The extent to which these 
findings generalize to real-world driving is currently unknown. 
 
Objective The aim of this study was to examine the effect of automation exposure and 
its duration on the driver take-over response and driving performance in a simulated 
road-work zone on test track. In addition, by comparing the present study’s results with 
previous driving simulator studies, this study also aimed at better understand the 
influence of different factors (e.g. test environment, experimental protocols) on the 
automation aftereffects.  
 
Method Seventeen participants followed a lead vehicle on a test track. They 
encountered the road-work zone three times: while driving manually, and after a short 
and a long duration of automation. The take-over request was issued 5-6 s before the 
lead vehicle performed a cut-out and revealed the road-work zone.  
 
Results All drivers managed to resume manual control in response to the take-over 
request, and then manoeuvre through the cone zone with a similar driving performance 
as in manual driving, and without colliding with any cones. The effects of automation 
(i.e. automation vs. manual) were greater than the effect of automation duration, but in 
contrast to previous driving simulator studies, the observed effects were minor. 
 
Discussion The automation aftereffects observed in the present study were not as large 
as previously found in driving simulator studies. To what extent this observation is due 
to the use of different test environments (driving simulator vs. test track) or different 
experimental protocols is unknown. However, independent of test environment, in the 
search for automation aftereffects it is important to consider the influence of the driver 
take-over response, on the observed aftereffects. That is, more work is needed to 
disentangle the aftereffects that is merely a result of a longer driver take-over response 
process, and the aftereffects that may be caused by some other human (cognitive) 
mechanism (e.g. situation awareness, out-of-the-loop, less calibrated sensorimotor 
control).  
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5 Discussion  
5.1 Driver response process during assisted driving  
Paper I shows that automation effects (e.g. delayed response, degraded driving 
performance, or crashing involvement) may exist when drivers need to act in a lead-
vehicle cut-out scenario during assisted driving when no prompt is present. In fact, 
despite having eyes on the threat, some drivers responded later in all actions of the 
response preparation phase of the driver response process (i.e. surprise reaction, hands 
on wheel, driver steering start), whereas some only showed a surprise reaction without 
putting hands on the wheel or attempting to steer. This delay in—or lack of—response 
observed in Paper I is in line with previous research on driver conflict response to ADS-
non-prompted events during driving with different degrees of assisted driving (such as 
ACC or ACC with Automated steering; Larsson et al., 2014; Bianchi Piccinini et al., 
2019; Strand et al., 2014; Young & Stanton, 2007).  

5.1.1 Advantages of the response preparation phase and the 
influence of a hands-on-wheel requirement   

Through its detailed analyses of the actions within the response preparation phase, 
Paper I enabled an enhanced understanding of the way these actions were associated 
with the conflict outcome as previously identified in Victor et al. (2018). In addition, 
these detailed analyses provided insights into how three individual factors (i.e. a hands-
on-wheel (HoW) requirement, driver trust, and conflict object type) influenced the 
actions and consequently the response process. For example, the findings suggest that: 
(a) some drivers crashed without putting their hands on the steering wheel, whereas 
others who also crashed mainly showed a delay in the hands-on-wheel- or steering 
response, (b) high-trust drivers generally put hands on wheel and started steering later 
than low-trust drivers, and (c) a larger conflict object only influenced the timing of the 
surprise reaction, but not the hands-on-wheel or steering response times. This detailed 
analysis of the response preparation phase is in contrast with previous research on driver 
conflict response to ADS-non-prompted events during assisted driving that mainly 
focus on a single response time such as the brake response time (Larsson et al., 2014; 
Bianchi Piccinini et al., 2019; Young & Stanton, 2007).  
 
One of the main findings in Paper I was that a HoW requirement and supervision 
reminders during assisted driving did not help the drivers to avoid crashing nor did it 
elicit an earlier steering response. This finding is in line with previous studies that 
issued a TOR prior to a safety-relevant event (Naujoks et al., 2015, 2017), but contrasts 
to Llaneras, Cannon, & Green (2017) who used a HoW-requirement as an escalation of 
consequence when drivers ignored visual attention reminders in a (silent failure) lane-
drift event. Thus, a HoW requirement may still be beneficial in other types of conflicts 
(e.g. lateral lane drifts or incorrect system steering). The extent to which a modified 
HoW requirement in the present study would be able to mitigate crashing remains 
unknown. For example, a HoW requirement inspired by the work of  Llaneras et al. 
(2017) could include different types of required physical (hands-on-wheel) 
involvement which would depend on the drivers’ engagement in supervising the 
assisted driving system. For example, when a driver is examined as insufficiently 
engaged (and does not change behaviour in response to a requirement or reminder) s/he 
may first be required to rest the hands on the steering wheel, then resist the system-
initiated torque and finally may need to actively provide steering torque. These different 
types of hands-on driving represent different degrees of physical control, and thus could 
potentially be considered different types of being in-the-loop according to Merat et al. 
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(2019). To conclude, more work is needed to understand the physical involvement 
necessary to facilitate safe and appropriate response to a safety-relevant event during 
assisted driving when no prompt is present.  

5.1.2 Factors explaining delayed response and crashing during 
assisted driving  

Victor et al. (2018) concluded that the drivers crashed because of an automation 
expectation mismatch i.e. drivers crashed because they expected automation to avoid 
the object in the cut-out scenario, despite having eyes on the threat. This conclusion 
was based on interviews after the drive. In fact, the drivers who crashed  reported that 
they expected automation to act in the conflict, whereas the non-crashing drivers 
reported that they either were uncertain or did not expect automation to act (Gustavsson 
et al., 2018; Victor et al., 2018). Paper I confirmed that all drivers showed high levels 
of visual attention to the forward path in the safety-relevant event. In addition, Paper I 
enriched this understanding further by also finding that all drivers except one showed a 
surprise reaction in the safety-relevant event. This facial sign of surprise may be an 
indication of that the drivers were aware of the conflict object. Thus, Paper I confirms 
that drivers did not seem to crash merely because they did not detect or were not aware 
of the conflict (e.g. due to low levels of visual attention).  
 
In addition, Paper I found that  drivers that reported high trust in automation, responded 
later than the drivers that reported low trust in automation. The predictive processing 
(PP) framework (Clark, 2013) was introduced in Paper I as a possible explanation for 
the difference in conflict outcomes and response due to the reported trust in automation. 
Explaining the results within the PP framework was novel: despite the recent advances 
of the PP within cognitive neuroscience, this cognitive framework is rarely used to 
explain results in the literature on human factors in automation. Simply put, the delayed 
response and consequent crashing reported in Paper I may arise from the crashers and 
the non-crashers having different understandings of the assisted driving systems 
capabilities (in the PP framework, this mismatch can be explained as crashes and non-
crashes having different hierarchical generative models). Further, the difference in 
response for the high-trust drivers who crashed and the ones that avoided crashing may 
arise from these drivers being differently involved in the driving task on the operational 
level (Michon, 1985). In the PP framework, this can be explained as the high-trust 
drivers who avoided crashing was involved in perceptual inference (they were making 
predictions on looming) on the operational level, whereas the crashing high-trust 
drivers were not engaged in any inference on the operational level. Other frameworks 
or conceptual models may also be useful to explain the results, but these were not 
considered within the scope of this thesis.  

5.2 Driver response process after unsupervised 
automation  

The finding of automation effects in Paper I, that combined assisted driving, no prompt, 
and an unexpected critical event, motivated the work in Paper II which aimed to 
understand if automation effects would also be present in another scenario, namely a 
safety-relevant event that was assumed to be easier for the drivers to handle. This was 
realized in Paper II by combining unsupervised automation that could issue a prompt 
(TOR) prior to a safety-relevant event that was more expected than the one in Paper I 
because the drivers had already encountered the same event twice before.  
 
Interestingly, despite the increased automation and the fact that the drivers in Paper II 
were out-of-the-loop (the drivers were not involved in physical control and did not 
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monitor the driving environment; Merat et al. 2019), only minor automation aftereffects 
(i.e. automation effects specifically occurring after automation has been deactivated) 
were observed. That is, all drivers after automation, started their steering manoeuvre 
earlier or at similar timings, and showed a similar driving performance in the safety-
relevant event compared to the manual pre-event condition. The extent to which the 
difference in automation effects between Paper I and II depend on different types of 
safety-relevant events (i.e. both criticality and expectancy), type of automation, and 
presence/absence of a prompt prior to the safety-relevant event should be further 
investigated. Whereas, increased automation has been found to result in poorer 
performance (Onnasch et al., 2014), a less critical and more expected safety-relevant 
event is likely to result in improved driving performance compared to a more critical 
and less expected event. In addition, prompts that call for drivers’ attention have been 
found to decrease response times (Lee et al., 2002), and the presence of a TOR in Paper 
II, in contrast to Paper I, could therefore partly explain the appropriate response 
observed in Paper II.  
 
It also seems that, if a prompt (TOR) is triggered at a sufficient time before conflict 
onset, the drivers are able to  re-engage in the driving task on both the operational and 
tactical levels (Michon, 1985) and start making predictions on looming (as assumed 
within the PP framework) in a timely manner to avoid crashing in the safety-relevant 
event. The fact that the drivers responded in the event (i.e. the drivers acted) is evidence 
for that these drivers must have generated prediction errors to be acted upon, according 
to the PP framework (Clark et al, 2013; Engström et al. 2018). Assuming that the drivers 
were not making predictions on looming while in automated mode (i.e. the drivers 
looked on the game they played and not on path), these drivers must have then started 
to make predictions on looming in order to generate prediction errors to act upon.  
 
The finding of minor automation aftereffects in Paper II, differ from the findings of 
significant aftereffects in previous studies in driving simulators on unsupervised 
automation and prompted safety-relevant events (Gold et al., 2013; Louw et al., 2015; 
Happee et al., 2017). One likely reason explaining these different findings is that the 
drivers in Paper II were able to resume manual control before the conflict onset (Figure 
2, bottom row), whereas previous studies prompted the drivers at the conflict onset 
(Figure 2, middle row). Thus, Paper II indicated the importance of the preparation-
action-time consequence as a possible explanation for observed automation aftereffects. 
This means that automation aftereffects in terms of delayed response, a degraded 
driving performance and crashing, after a period of unsupervised automation, may stem 
from the time it takes for drivers to prepare for action after automation (e.g. reposition 
hands to the steering wheel). However, automation aftereffects may also stem from any 
of the cognitive mechanisms explained in Chapter 1, Section 1.4 (e.g. mental underload, 
reduced situation awareness). In other words, when automation prompts drivers to 
transition at the conflict onset, delayed response (and potentially crashing) can stem 
from drivers being less aware or mentally underloaded (cognitive mechanism), but is 
also affected by the time needed for drivers to become ready-to-act after automation 
(position hands to the steering wheel, deactivate automation etc.). Thus, careful 
experimental design, which considers the consequences of the preparation-action-time 
is needed before automation aftereffects may be attributed to some cognitive 
mechanism (e.g. reduced situation awareness). In addition, the preparation-action-time 
needs to be considered to understand the influence of automation on the steering 
behaviour (e.g. as hypothesized by Mole et al., 2019). The reason is that an observed 
degraded steering performance after automation may stem from less calibrated 
perceptual-motor control (Mole et al., 2019), but may also stem from the fact that 
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drivers after automation start steering closer to a conflict object and therefore are 
required by the situation to generate a more aggressive steering behaviour (as explained 
in Chapter 3, Section 3.3 and shown in Figure 2). 
 
Finally, the results in Paper II suggest that automation duration has a minor influence 
on the driver response process. This finding contrasts to Bourrelly et al. (2019) and 
Jarosch & Bengler (2018) who found that a longer automated drive resulted in more 
severe aftereffects (e.g. a more degraded driving performance), but is in line with the 
findings of Feldhütter et al. (2017). In fact, the only observed negative effect of 
automation duration in on driver response, in Paper II, was that four drivers, after being 
exposed to automation for 14 minutes, had problems deactivating automation at the first 
attempt, while all drivers successfully deactivated automation at the first attempt after 
4.5 minutes automation duration. This may be because a longer duration enables more 
time for drivers to forget the procedure for deactivating the automated system.     

5.3 Contributions to safe vehicle automation   
The overall aim of this PhD project is to contribute to the development of safe vehicle 
automation, so that it can be objectively measurable. This thesis demonstrates that both 
safe assisted driving and safe unsupervised automation can be achieved for most drivers 
in a realistic environment (on test track) because most of the drivers in Paper I and all 
drivers in Paper II were able to perform well in the safety-relevant event. However, 
since 28% of drivers still crashed in Paper I, more work is needed to understand how to 
prevent drivers from crashing in safety-relevant events encountered in assisted driving 
when no prompt is present. Paper II demonstrates that automation that prompts the 
driver to resume manual control may be highly efficient in helping drivers to respond 
appropriately in safety-relevant events that require driver actions to avoid crashing.  
 
This thesis also demonstrates that safe vehicle automation can be objectively measured 
by investigating the driver response process in a safety-relevant event. Understanding 
the components of (e.g. the response preparation actions) and the factors (e.g. a hands-
on-wheel requirement) that influence the driver response process is one important step 
towards developing safe vehicle automation. However, this information needs to be 
integrated in the design process in some way. Detailed understanding of the response 
process can be used to inform vehicle regulations for current and future assisted driving 
and unsupervised automation systems. For example, the findings in Paper I shows that 
requiring drivers to keep hands on wheel during assisted driving will not necessarily 
prompt earlier responses in longitudinal scenarios caused by automation limitation. 
However, as mentioned previously requiring drivers to keep hands on wheel may have 
other safety implications. The findings in Paper II suggest that drivers in unsupervised 
automation seem to be able to safely transition from automation to manual within 10 
seconds as currently required in UNECE (2020). In addition, knowledge about the 
response process can be used to develop quantitative driver models that can be: (a) 
included in computational simulations for assessing the safety impact of different 
design choices (e.g. HMI, prompt design) or (b) inform driver monitoring systems. 
Since the driver response process differs for assisted driving when no prompt is present 
and unsupervised automation when a prompt is present, there may be reason to develop 
separate models for these fundamentally different automation types and driver roles. In 
addition, driver models for assisted driving when the need to resume manual driving is 
ADS-non-prompted need to capture the behaviour of drivers that crash due to an 
expectation mismatch, possibly through a model based on the PP framework that 
includes different generative models.  
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Finally, this thesis can also impact system design principles (e.g. HMI for transitions).  
Whereas, a difference of 9.5 minutes duration unsupervised automated driving does not 
seem to have any implications of drivers’ ability to perform manual driving after a 
transitions, an improved HMI design can make the transition more intuitive and be less 
vulnerable for the tendency to forget how to deactivate the system after a long 
automation duration.       

5.4 Limitations  
The findings in Paper I and Paper II are based on experiments performed with a real 
vehicle on test track which provide a higher degree of realism than in driving 
simulators. However, a test-track study also has its limitations. The results may be 
influenced by the absence of real traffic, as well as the presence of a test leader and a 
safety driver in the vehicle. In addition, the conflict objects used in the two experiments 
lacked some realism for safety reasons. In experiment 1, the conflict object was a 
balloon car or a stuffed garbage bag, and in experiment 2 the conflict object was a 
simulated road-work zone built up of cones. However, it would not have been possible 
to perform a similar study which includes a safety-relevant event in a public road study 
with real traffic, even though the driver response process in non-critical scenarios could 
be investigated. In addition, the participants used in the two experiments were Volvo 
car employees in the Gothenburg area in Sweden who are not directly involved in 
product development of vehicle automation. Thus, the extent to which our results 
generalise to other populations remains unknown.   

5.5 Future work  
There is a need to understand in which way we can mitigate delayed response and 
crashing that may occur during assisted driving when no prompt is present. A first step 
could be to investigate if drivers would also crash in a lead vehicle cut-out scenario if 
this event is encountered during unsupervised automation when a prompt is present 
(since Paper II shows that drivers are able to response appropriately in an expected 
conflict). If drivers can respond appropriately in a safety-relevant event after having 
resumed manual control in response to a TOR, the expectation mismatch leading to 
crashes during assisted driving may be prevented in unsupervised automation when the 
system is capable of detecting the conflict and prompts the driver beforehand. As long 
as automation limitations contribute to crashes, however, we need to find ways to 
prevent these crashes from happening. For example, other types of designs that require 
the driver to put their hands on the steering wheel and apply torque occasionally may 
secure that the driver is sufficiently engaged in the driving task and respond to events 
when needed.  
 
More work is also needed to understand the influencing factors behind automation 
aftereffects in unsupervised automation. Importantly, to guide the design of 
countermeasures, vehicle regulations, and driver monitoring, we need to understand if 
these automation aftereffects are simply a result of 1) the test environments (driving 
simulators vs. test track), 2) the time needed for drivers to become ready-to-act (i.e. to 
complete the response preparation), or 3) a cognitive explanation (e.g. drivers that do 
not make predictions on looming i.e. out-of-the-loop on an operational level according 
to the PP framework) or 4) a combination of the three. First, a driving simulator study 
and a test track study with the exact same setup could be performed in order to 
understand if the larger automation aftereffects observed in driving simulators are due 
to the different test environments, or if it is more related to the timings of prompt (TOR) 
and conflict onset. Then, following on the observations in Paper II, a study that further 
examines the influence of the TOR timing and the conflict onset timing on the driver 
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response process is needed. Specifically, since the take-over-time-budget influences the 
driver response process (Gold et al. 2013; McDonald et al., 2019), this should be varied.  
 
Despite the advantages with test-track studies, there is still a need to understand how 
the driver response process may be influenced by the presence of real traffic with real 
threats. Thus, a study that investigates the driver response process in a more naturalistic 
setting (e.g. on public road) is needed. Finally, there is a need to develop driver models 
capturing the response process in safety-relevant events during assisted driving and 
unsupervised automation. The work by McDonald et al. (2019) represent a good start 
of the development of driver models for automated driving, by exploring how existing 
driver models (manual driving) may also be representative for predicting driver 
response in automation. As a step to continue that work, the analyses presented in this 
thesis could be turned into models representing the driver response to safety-relevant 
events during assisted driving and after unsupervised automation. As previously 
mentioned, such models could inform the design of driver monitoring systems and be 
used to assess the safety of certain design choices or countermeasures, in order to 
achieve safe vehicle automation.  
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6 Conclusions  
This thesis has advanced the knowledge of human factors in automation through 
detailed analyses of the driver response process using test track data for both assisted 
driving and unsupervised automation, and by investigating the influence of different 
factors on the driver response process. Specifically, this thesis has advanced the 
understanding of automation effects and aftereffects, as well as the contributing factors 
behind, and the applicability of the predictive processing to explain, these effects.  
 
Objective 1: To investigate the actions in the response preparation phase of the 
driver response process in a safety-relevant event in assisted driving when no 
prompt is present (ADS-non-prompted), and specifically the influence of a hands-
on-wheel requirement, on test track. 
 
Paper I showed that, all drivers may not be able to safely respond to a safety-relevant 
event (due to system limitation) during assisted driving, if they are not prompted by the 
automation. In fact, some drivers may show a delay in all actions (surprise reaction, 
hands on wheel, driver steering start) of the response process. Further, a hands-on-
wheel requirement may not help the driver avoid crashing or elicit earlier steering 
response times in longitudinal conflicts that requires driver action. However, keeping 
at least one hand on the steering wheel may still prevent drivers from attending to 
dangerous secondary tasks and can potentially help drivers become aware of incorrect 
or insufficient system steering such as in lane drift events. More work is needed to 
understand if other types of a hands-on-wheel requirements (e.g. that requires drivers 
to actively provide steering input) can sufficiently keep the driver in-the-loop.  
 
Objective 2: To investigate the driver response process in a safety-relevant event 
in unsupervised automation when a prompt is present (ADS-prompted), and 
specifically the influence of automation duration and timings for the conflict onset 
and the prompt, on test track. 
 
Paper II showed that drivers may be able to safely resume manual driving when 
prompted by unsupervised automation to take over and respond appropriately in a 
subsequent safety-relevant event when this event had been experienced before. Thus, 
the automation aftereffects observed were minor compared to previous studies 
performed in driving simulators. The observed minor aftereffects seems to be 
independent of automation durations below 15 minutes. The extent to which the test 
environment alone (i.e. test track vs driving simulator) may explain this observation, 
requires further investigation. Independently of the test environment, however, the 
preparation-action-time consequence (i.e. the relation between the timings for the 
prompt; TOR; and conflict onset) is an important factor for explaining automation 
aftereffects. When the TOR is triggered before the conflict onset (Figure 2, bottom row) 
drivers are given time to put hands on wheel, feet on the pedals, and deactivate 
automation before being presented with the conflict. Consequently, these drivers may 
then able to respond to a safety-relevant event without a delay and perform similarly as 
when the same event is encountered in manual driving. Thus, unsupervised automation 
is not always associated with significant aftereffects compared to manual driving. 
Further, a 14-minute automation duration may result in that drivers require multiple 
attempts to deactivate automation, in contrast to a 4.5-minute duration where one 
attempt may be sufficient. It is therefore important to design a human-machine interface 
that facilitates an easy and intuitive procedure for drivers to deactivate automation, 
since some drivers may be particularly challenged after a longer automation duration.  
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Implications on safe vehicle automation   
 
This thesis demonstrates that automation does not always result in detrimental 
automation effects in terms of unsafe driver response and performance in safety-
relevant events in realistic settings (on test track with real vehicles). In fact, most drivers 
(72% of the drivers in Paper I and 100% of the drivers in Paper II) were able to perform 
safe manual intervention and driving performance after a period of assisted driving and 
unsupervised automation. However, this thesis also demonstrates that, after having 
supervised an assisted driving system for thirty minutes, some drivers (28% of drivers 
in Paper I) may not understand the need to act in a safety-relevant event if it is not 
preceded by a system-prompt. These drivers may respond late and crash, despite having 
eyes on the threat and being aware of the imminent crash. Thus, assisted driving without 
prompts is a topic that requires further research to understand how to make sure that 
drivers understand their role and responsibility to act when system limitations occur. 
For example, more work is needed to understand if a prompt prior to the safety-relevant 
event would result in appropriate driver response. However, since prompts may not 
always be an alternative when system limitations occur, there is also a need to 
investigate the benefits of different supervision strategies (e.g. hands-on-wheel 
requirements that require active steering input). Further, the safety of vehicle 
automation can be objectively measured through investigations of the driver response 
process as safety-relevant events occur. Through such investigations, this thesis 
demonstrates that safe vehicle automation may depend on the ability of automation to 
prompt drivers before the safety-relevant event. However, as highlighted by Paper II 
the timing of this prompt (in relation to the conflict onset) is also important. Finally, 
more work is needed to understand how automation aftereffects may be a consequence 
of the preparation-action-time (i.e. the time drivers need to become ready-to-act after 
automation) or by an underlying human cognitive mechanism (e.g. reduced situation 
awareness).  
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