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On a volume averaged measure of macroscopic reinforcement slip
in two-scale modelling of reinforced concrete

Adam Sciegaja,b,∗, Fredrik Larssonb, Karin Lundgrena, Kenneth Runessonb

aDepartment of Architecture and Civil Engineering, Chalmers University of Technology, Gothenburg,
Sweden

bDepartment of Industrial and Materials Science, Chalmers University of Technology, Gothenburg, Sweden

Abstract

A two-scale model for reinforced concrete, in which the large-scale problem formulation is
enriched by an effective reinforcement slip variable, is derived from the single-scale model
describing the response of plain concrete, reinforcement steel, as well as the bond between
them. The subscale problem on the Representative Volume Element (RVE) is correspond-
ingly defined as finding the response of the RVE subjected to effective variables (strain, slip,
and slip gradient) imposed from the large-scale. A novel volumetric definition of effective
reinforcement slip and its gradient is devised, and the corresponding subscale problem is
formulated. The newly-defined effective variables are imposed on the RVE in a weak sense
via Lagrange multipliers. The response of the RVEs of different sizes was investigated by
means of pull-through tests, and the novel boundary condition type was used in FE2 analyses
of a deep beam. Locally, prescribing the macroscopic reinforcement slip and its gradient in
the proposed manner resulted in reduced RVE-size dependency of effective work conjugates,
which allows for more objective description of reinforcement slip in two-scale modelling
of reinforced concrete. Globally, this formulation produced more consistent amplitudes of
effective slip fluctuations, as well as more consistent maximum crack width predictions.

Keywords: reinforced concrete, bond-slip, multiscale, computational homogenisation,
cracking, Lagrange multipliers

1. Introduction

The brittle nature of concrete, resulting in cracking even at moderate load levels, is a
factor that significantly influences the durability of the structure. Cracks on their own need
not necessarily result in structural failure, but rather pave the way for ingress of harmful
substances causing reinforcement corrosion [1, 2, 3]. Hence, it is important to be able
to model crack growth process in detail and the bond action between the concrete and
reinforcement need to be included [4, 5].
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The bond action in reinforced concrete can be ascribed to different mechanisms, fric-
tion being the most important. Several modelling approaches exist, with so-called bond-slip
models being particularly popular recently. These models describe the relation between the
frictional stresses along the reinforcement (called bond stresses) and the difference in defor-
mation between steel and concrete (called the reinforcement slip). The bond-slip relation
depends on many factors, such as e.g. the type and shape of the reinforcement, confine-
ment, concrete properties etc., but can in many cases be successfully used in modelling [6].
Bond-slip models have been widely used for modelling the response of reinforced concrete
structures. The effect of bond can be modelled in different ways, one option being suitable
enrichment of finite elements [7, 8, 9] based on extended finite element method or embedded
discontinuity formulation. Another popular option, available in most commercial codes is
to directly resolve the interface around the reinforcement with interface/cohesive zone ele-
ments. Since interface elements are usually included in the commercial codes, this option is
often preferred in practice, as it does not require any additional implementation.

A disadvantage of this approach is that the interface must be carefully resolved around
every reinforcement bar. For large structures, this results in sizeable and computationally
expensive models, which limits the aforementioned modelling approach to small structures
or even parts/regions of the structure. One possibility to reduce the computational effort is
to use multiscale modelling methods. In brief, these methods allow to obtain fine resolution
results in large-scale models at a fraction of the time it would take to analyse a fully resolved
structure. There are many different multiscale methods [10, 11, 12] suitable for this task.
Many of them have already been studied and used in modelling of plain concrete [10, 2,
13, 14, 15, 16, 17] and even reinforced concrete [18, 19, 20, 21, 22]. One method that
shows potential is the FE2 method [23, 24], which couples the scales in a nested way, i.e.,
the macroscopic response is obtained by computational homogenisation performed on the
fine-scale Representative Volume Elements (RVEs), cf. Figure 1. Even though FE2 is
computationally expensive, is well suited for parallel computing. Recently, this method
has been used for modelling reinforced concrete structures [21, 22], and several further
developments enabling the treatment of strain localisation have been made [25, 26, 27, 28].

However, only a few works considered detailed bond-slip modelling with multiscale meth-
ods [29, 30, 22]. In recent works by the authors [21, 22], a two-scale model of reinforced
concrete was developed and further enriched by a novel effective reinforcement slip macro-
scopic variable. The enrichment resulted in a localised effective strain field at the macroscale.
However, the effective slip variable and its gradient were imposed only on the RVE bound-
ary (Dirichlet boundary conditions), and it was shown that the physical interpretation and
effective response of the unit cells were RVE-size dependent, which is undesirable.

In this work, the aforementioned deficiency of the two-scale model is addressed, and
the effective reinforcement slip and its gradient are prescribed on the RVE in a volume
averaged sense. This weak enforcement of macroscopic variables is performed using Lagrange
multipliers, which correspond to the effective work conjugates.

The remainder of the paper is structured as follows: The single-scale problem is briefly
formulated in Section 2. In Section 3 the two-scale problem is extensively treated, the
volumetric definition of reinforcement slip is proposed, and the corresponding large-scale
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Figure 1: Illustration of the FE2 method.

and subscale problems are derived. The physical meaning of the Lagrange multipliers and
their relation to effective work conjugates is outlined. In Section 4, the subscale response of
a reinforced concrete RVE at reinforcement pull-through is presented. Section 5 discusses
the use of the novel boundary condition in a two-scale analysis of a reinforced deep beam.
The paper is concluded with Section 6, which contains some final remarks and an outlook
to future work.

2. Single-scale formulation

In this section, the single-scale boundary value problem for a general two-dimensional
reinforced concrete structure is briefly outlined. The reader is kindly referred to [21] for a
more detailed derivation. We consider a reinforced concrete structure occupying the prob-
lem domain, Ω, which comprises the concrete part, Ωc, and the reinforcement part, Γint,
schematically depicted in Figure 2. The external boundary is split into the essential (Γu)
and natural (Γt) parts, with either displacement or traction defined, respectively.

Denoting the thickness of the concrete tc, the body force and stress in the concrete b and
σc, respectively, we can state the strong form of momentum equilibrium:

− (tcσc) ·∇ = tcb in Ωc,

u = up on Γu,

t := σc · n = t̂ on Γt.

(1)

For the reinforcement, both longitudinal and transversal action is considered, i.e., both load
along and across rebars are allowed. Even though for most applications within modelling of
reinforced concrete structures, it would be enough to consider only the longitudinal stiffness
of the reinforcement, the transversal stiffness might prove important when modelling shear

3



t̂ on Γt

u = up on Γu

Ωc

el

e⊥

Γint

Figure 2: A two-dimensional reinforced concrete structure. For each reinforcement bar,
longitudinal and transverse unit vectors el and e⊥ are defined.

failure and shear cracking, where the reinforcement bars cross the inclined crack faces. Thus,
the proposed formulation maintains generality, and it can easily be simplified to include
only longitudinal action of the reinforcement, if needed. In the model, the normal force,
Ns, is linked to the bond stress, tΓ, which is distributed along the perimeter of the bar, Ss.
Subsequently, we shall assume Ss to be constant along each individual bar, whereas each
bar may be of different dimension. Similarly, the bending moment, Ms can be expressed
a function of the transverse load, λ. It is assumed, that there are no external forces (and
moments) at the ends of the bars. Hence, the strong form of equilibrium for the reinforcement
can be expressed as:

−∂Ns

∂l
+ SstΓ = 0 in Γint,

−∂
2Ms

∂l2
+ λ = 0 in Γint,

Ns = 0, Ts = 0, Ms = 0 on ∂Γint.

(2)

Considering the steel–concrete interface, for which all the acting forces are schematically
represented in Figure 3, we can state the equilibrium condition as[

t+c σ
+
c

]
· e⊥ −

[
t−c σ

−
c

]
· e⊥ + λe⊥ + SstΓel = 0. (3)

Here, the two directions represented by the unit vectors el and e⊥, are introduced. These
two vectors can be defined separately for each reinforcement bar comprising the domain Γint.
It is noteworthy, that these directions may vary throughout the structure. Moreover, even
though only orthogonal reinforcement layouts were studied, it is noted that reinforcement
orthogonality is not required for the single-scale formulation to maintain validity.

Next, we introduce the displacement fields us and uc pertinent to steel and concrete,
respectively. Along the interface Γint they can be decomposed into the longitudinal and
transversal parts, i.e.,

us = us,lel + us,⊥e⊥, (4)
uc = uc,lel + uc,⊥e⊥. (5)

4
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Figure 3: Steel–concrete interface. Boundary forces on the rebar cut out and concrete
boundary tractions omitted.

Even though reinforcement slip (difference in the longitudinal deformation of steel and con-
crete) is allowed, it is assumed that the contact deformation in the transverse direction is
negligible. Thus, the following interface constraint is adopted:

us,⊥ − uc,⊥ = 0 in Γint. (6)

Here, only implicit definitions of constitutive relations are considered, to maintain gener-
ality. In particular, this pertains to the relations between stress and strain in concrete,
longitudinal and transversal displacement and the normal forces/bending moments in the
steel, and the relation between slip and bond stress in the interface. The strong forms are
transformed into weak forms by multiplying the pertinent equations by suitable test func-
tions and integrating over the domain. Moreover, we neglect the body forces in (1) and
use the interface equilibrium (3). Hence, the single-scale quasi-static problem can now be
defined in the variational form as: Find uc, us,l, us,⊥, λ ∈ Uc ×Us,l ×Us,⊥ × L such that

ac (uc; δuc)− b (us,l − el · uc; el · δuc)− c (λ; e⊥ · δuc) = lc (δuc) ∀ δuc ∈ U0
c, (7)

al (us,l, us,⊥; δus,l) + b (us,l − el · uc; δus,l) = 0 ∀ δus,l ∈ Us,l, (8)
ab (us,l, us,⊥; δus,⊥) + c (λ; δus,⊥) = 0 ∀ δus,⊥ ∈ Us,⊥, (9)

c (δλ;us,⊥ − e⊥ · uc) = 0 ∀ δλ ∈ L, (10)

for suitable trial spaces Uc,Us,l,Us,⊥,L:

Uc =

{
u(x) : Ω 7→ R

2,

∫
Ωc

u2 + [u⊗∇]2 dΩ <∞,u = up on Γu

}
,

Us,l =

{
v(l) : Γint 7→ R,

∫
Γint

v2 +

(
∂v

∂l

)2

dΓ <∞
}
,

Us,⊥ =

{
v(l) : Γint 7→ R,

∫
Γint

v2 +

(
∂v

∂l

)2

+

(
∂2v

∂l2

)2

dΓ <∞
}
,

L =

{
λ(l) : Γint 7→ R,

∫
Γint

λ2dΓ <∞
}
,
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and the test space U0
c:

U
0
c =

{
u(x) : Ω 7→ R

2,

∫
Ωc

u2 + [u⊗∇]2 dΩ <∞,u = 0 on Γu

}
.

The coupling terms in the system (7)–(10) are defined as:

b (v;w) :=

∫
Γint

SstΓ(v)w dΓ, (11)

c (λ; v) :=

∫
Γint

λv dΓ. (12)

The following forms are introduced pertinent to:
(i) Concrete:

ac (uc; δuc) :=

∫
Ωc

tcσc (ε [uc]) : [δuc ⊗∇] dΩ, (13)

lc (δuc) :=

∫
Γext

tct̂ · δuc dΓ. (14)

(ii) Bar action of the rebars:

al (us,l, us,⊥; δus,l) :=

∫
Γint

Ns

(
∂us,l

∂l
,
∂2us,⊥
∂l2

)
∂δus,l

∂l
dΓ. (15)

(iii) Beam action of the rebars:

ab (us,l, us,⊥; δus,⊥) := −
∫

Γint

Ms

(
∂us,l

∂l
,
∂2us,⊥
∂l2

)
∂2δus,⊥
∂l2

dΓ. (16)

3. Two-scale formulation

In view of the fact, that the physical scale of the homogeneous concrete and distinct
reinforcement bars is clearly macroscopic, the terms macroscale and microscale, commonly
used in the literature are, in this paper, substituted (or used interchangeably) with the terms
large-scale and subscale.

3.1. Variationally Consistent Homogenisation
In this paper, we use the so-called Variationally Consistent Homogenisation [31] technique

to separate the scales. In short, the unknown fields uc and us are separated into smooth
(large-scale) and fluctuating (subscale) parts:

uc = uM
c + us

c, (17)
us = uM

s + us
s , (18)
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where the superscripts M and s represent large-scale and subscale components, respectively.
The decomposition of fields pertaining to longitudinal and transversal deformation of re-
inforcement is simply obtained by projecting the field us on the corresponding direction,
i.e.,

us,l = el · us = uMs,l + uss,l, (19)

us,⊥ = e⊥ · us = uMs,⊥ + uss,⊥. (20)

The natural ramification of this split is that each point in the problem domain is reflected at
two levels, and thus two different problems can be constructed. At the first level, the large-
scale problem is defined in terms of globally “smooth” fields, different from the unknown
fields defined in (17) and (18). At the second level, the substructure of the material can be
represented by the so-called Representative Volume Element (RVE) occupying the region
Ω� in the vicinity of the considered point. In the two-scale model setting, the local field is
replaced by the homogenised field, i.e. at each location x̄ ∈ Ω the field is approximated by
the volume average on Ω� (x̄). In particular, for given functions fΩ and fΓ defined on Ωc

and Γint, respectively, we have∫
Ωc

fΩ dΩ +

∫
Γint

fΓ dΓ 7→
∫

Ω

f� dΩ, (21)

where the subscale average f� is defined as:

f� =
1

|Ω�|

{∫
Ω�,c

fΩ dΩ +

∫
Γ�,int

fΓ dΓ

}
. (22)

Using the averages, the single-scale problem defined in (7)–(10) can be rewritten as∫
Ω

[a�,c(uc; δuc) + a�,l(us,l, us,⊥; δus,l) + a�,b(us,l, us,⊥; δus,⊥) + c�(λ; δus,⊥ − e⊥ · δuc)

+ b�(us,l − el · uc; δus,l − el · δuc) + c�(δλ;us,⊥ − e⊥ · uc) ] dΩ = lc(δuc), (23)

where we introduced the RVE-forms

a�,c(uc; δuc) :=
1

|Ω�|

∫
Ω�,c

tcσc : [δuc ⊗∇] dΩ, (24)

b�(v;w) :=
1

|Ω�|

∫
Γ�,int

SstΓ(v)w dΓ, (25)

c�(λ;w) :=
1

|Ω�|

∫
Γ�,int

λv dΓ, (26)

a�,l(us,l, us,⊥; δus,l) :=
1

|Ω�|

∫
Γ�,int

Ns
∂δus,l

∂l
dΓ, (27)

a�,b(us,l, us,⊥; δus,⊥) :=
1

|Ω�|

∫
Γ�,int

−Ms
∂2δus,⊥
∂l2

dΓ. (28)
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Since in practice, numerical integration is performed at Gauss points, it suffices to consider
the subscale problems at these locations, while solving the large-scale problem. The “smooth”
large-scale field is imposed on the RVEs with the help of Taylor expansion. In this paper,
first-order (expansion up to linear term) computational homogenisation is used, cf. [32].

3.2. Volumetric definition of the effective slip
In contrast to the classical structural formulation [21], we introduce two independent

large-scale fields, the effective displacement ū and the effective reinforcement slip s̄. Fol-
lowing the procedure proposed in [31], we aim at prolonging the large-scale components of
the resolved fields (17, 18) from the effective large-scale fields, i.e., we want to establish an
operator A such that (uM

c ,u
M
s ) = A(ū, s̄). More specifically, we consider a Taylor series

expansion of the large-scale fields inside Ω�, centered around x̄ =
1

|Ω�|
∫

Ω�
x dΩ, as follows:

uM
c (x̄,x) = ū(x̄) + ε̄(x̄) · [x− x̄], (29)
uMs,l (x̄,x) = el · uM

c (x̄,x) + el · s̄(x̄) + el · ḡd(x̄) · [x− x̄]

= el · [ū(x̄) + s̄(x̄)] + el · [ε̄(x̄) + ḡd(x̄)] · [x− x̄], (30)
uMs,⊥(x̄,x) = e⊥ · uM

c (x̄,x) = e⊥ · ū(x̄) + e⊥ · ε̄(x̄) · [x− x̄], (31)

where the large-scale strain and diagonal gradient of slip are defined as

ε̄ : = [ū⊗∇]sym, (32)
ḡd : = Id : [s̄⊗∇], (33)

respectively. Here, Id =
∑2

i=1 el,i ⊗ el,i ⊗ el,i ⊗ el,i extracts the diagonal part of [s̄ ⊗∇]
assuming only two orthogonal reinforcement directions (el,1, el,2) inside the RVE. As a result
from this modelling assumption, only large-scale gradients along a reinforcement bar will
be accounted for at the large-scale. The fact that it is only ε̄ and not the entire gradient
[ū ⊗∇] that is imposed to uM

c ,u
M
s follows from the invariance to rigid body motion, cf.

e.g. [21].
The homogenisation of fields, which in fact defines the large-scale fields, can be expressed

on an RVE by an operator A∗ such that (ū, s̄) = A∗(uc,us). Here (uc,us) denotes the parts
of the fields that are introduced in the prolongation (29)–(31). Hence, we need to introduce
measures on Ω� that define

ū = ū�(uc,us), ε̄ = ε̄�(uc,us), (34)
s̄ = s̄�(uc,us), ḡd = ḡd,�(uc,us). (35)

In order to guarantee a well-defined scale-coupling, we shall require that A∗A = I, i.e.,

ū�(uM
c ,u

M
s ) = ū, ε̄�(uM

c ,u
M
s ) = ε̄, (36)

s̄�(uM
c ,u

M
s ) = s̄, ḡd,�(uM

c ,u
M
s ) = ḡd. (37)
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for the prolongation given in eqs. (29) and (31). Together with the restriction of the subscale
fields A∗(us

c,u
s
s) = 0, the requirements in (36)–(37) certify that the large-scale fields is a

unique parameterisation of the (total) resolved field (uc,us).
Considering the displacement of concrete, the definitions of the large-scale displacement

and strain are standard, see e.g. [33],

ū�(uc,us) = ū�,c(uc) :=
1

|Ω�|

∫
Ω�

uc dΩ, (38)

ε̄�(uc,us) = ε̄�,c(uc) :=
1

|Ω�|

∫
Ω�

[uc ⊗∇]sym dΩ (39)

and do satisfy the corresponding criteria in (36)–(37). In particular, we note that the
expressions are independent of us, and thus s̄ and ḡd when considering uM

c .
As to the large-scale reinforcement slip, we propose to define it as the difference between

large-scale averaged displacements,

s̄�(uc,us) = ū�,s(us)− ū�,c(uc). (40)

Here, the concrete displacement is exactly that of the overall displacement, as introduced in
Equation (38), and the steel displacement is measured along each reinforcement bar as

ū�,s(us) =
1

|Ω�|

∫
Γ�,int

Ssus,lel dΓ ·Cs. (41)

The ansatz in Equation (41) contains a scaling tensor Cs that has to be determined in order
to satisfy the constraints in (36)–(37). It can be shown that setting

Cs = |Ω�|
[∫

Γ�,int

Ssel ⊗ el dΓ

]−1

. (42)

satisfies the mentioned criteria. For details concerning derivation, the reader is referred to
Appendix A. For the diagonal gradient of slip, we propose the definition

ḡ�(uc,us) = ḡd,�,s(us)− ḡd,�,c(uc), (43)

with the expressions

ḡd,�,c(uc) = Id : ε̄�,c(uc) =
1

|Ω�|

∫
Ω�

[uc ⊗∇]sym dΩ : Id, (44)

ḡd,�,s(us) =
1

|Ω�|

∫
Γ�,int

Ss
∂us,l

∂l
el ⊗ el dΓ ·Cg. (45)

Analogous to Equation (41), we here introduce a constant tensor for scaling the measure,
that has to be determined in order to satisfy the criteria (36)–(37). It can be shown that
setting

Cg = Cs (46)
9



satisfies the mentioned criteria. For the corresponding proof, the reader is referred to Ap-
pendix A. Recall that we assume each bar to have a uniform cross section. Hence, we may
use integration along each bar inside the RVE to obtain the identity

ḡd,�,s(us) =

[
1

|Ω�|
∑
i

(Ssenlus,lel ⊗ el)|xi

]
·Cs. (47)

Here, the set {xi} denotes the endpoints of bars, and enl = 1 and −1 at start- and endpoints1,
respectively.

3.3. Large-scale problem
The large-scale problem is defined in terms of the globally “smooth” fields ū and s̄. It can

be derived from the variational formulation (23) by restricting the choice of test functions
to the macroscopic part coming from the Variational MultiScale (VMS) ansatz, i.e.,∫

Ω

[
a�,c(•; δuM

c ) + b�(•; δuMs,l − el · δuM
c ) + c�(•; δuMs,⊥ − e⊥ · δuM

c ) + a�,l(•; δuMs,l )

+ a�,b(•; δuMs,⊥) ] dΩ = lc(δu
M
c ).

(48)

The local field at the domain boundary Γext is assumed to be sufficiently smooth. Hence,
lc
(
δuM

c

)
≈ lc (δū). Employing the prolongation conditions (29)–(31), we have∫

Ω

σ̄ : ε̄[δū] + τ̄b · δs̄+ σ̄s : ḡd[δs̄] dΩ =

∫
Γext

tct̂ · δū dΓ, (49)

where the quantities σ̄, τ̄b, σ̄s are named the effective stress, effective transfer stress and
effective reinforcement stress, and are defined as:

σ̄ =
1

|Ω�|

{∫
Ω�,c

tcσc dΩ +

∫
Γ�,int

Nsel ⊗ el dΓ

}
, (50)

τ̄b =
1

|Ω�|

∫
Γ�,int

SstΓel dΓ, (51)

σ̄s = Id :
1

|Ω�|

∫
Γ�,int

SstΓel ⊗ [x− x̄] +Nsel ⊗ el dΓ. (52)

Hence, the large-scale problem is defined as: Find ū, s̄ ∈ Ū× S̄ such that∫
Ω

σ̄ : ε̄ [δū] dΩ =

∫
Γext

tct̂ · δū dΓ ∀δū ∈ Ū0, (53)∫
Ω

τ̄b · δs̄+ σ̄s : ḡd[δs̄] dΩ = 0 ∀δs̄ ∈ S̄, (54)

1Start- and endpoints of the bar are defined through the direction of el.
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Figure 4: Discrete forces and traction at the boundary Γ� of a unit cell.

with the suitable trial and test spaces

Ū =

{
u(x) : Ω 7→ R

2,

∫
Ω

u2 + [u⊗∇]2 dΩ <∞,u = up on Γu

}
, (55)

Ū
0 =

{
u(x) : Ω 7→ R

2,

∫
Ω

u2 + [u⊗∇]2 dΩ <∞,u = 0 on Γu

}
, (56)

S̄ =

{
s(x) : Ω 7→ R

2,

∫
Ω

s2 + [s⊗∇]2 dΩ <∞
}
. (57)

Remark:
We note that the regularity requirements on functions s̄ ∈ S̄ could be relaxed, since it is
only Id : [s̄⊗∇] that needs to be bounded. However, this detail (as well as the possibility
to use discontinuous FE approximation) is not considered further.

3.4. Subscale problem
The subscale problem on the RVE follows directly from (23), when restricting the choice

of test function to the fluctuation fields, according to the VMS split. However, it is often
more feasible from the computational point of view, to solve for the total fields, and not only
for the fluctuation parts. Moreover, since the RVE domain Ω� is usually much smaller than
the problem domain Ω, the assumption of vanishing end forces (and tractions) for the rein-
forcement and concrete is not valid. Hence, the discrete end forces and boundary tractions
terms need to be reflected in the formulation. In such a general case, it is advantageous
to state the problem in its canonical form, whereby the physical interpretation of imposed
Lagrange multipliers can be easily found.
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3.4.1. Canonical format
The subscale solution fields uc, us,l, us,⊥, ∈ U�,c ×U�,s,l ×U�,s,⊥ satisfy the canonical

equilibrium equations∫
Ω�,c

tcσc : [δuc ⊗∇] dΩ−
∫

Γ�,int

blel · δuc + b⊥e⊥ · δuc dΓ

−
∫

Γ�

tct̂ · δuc dΓ−
∫

Ω�,c

tcb̂ · δuc dΩ = 0 ∀ δuc ∈ U�,c,

(58)∫
Γ�,int

Ns
∂δus,l

∂l
+
[
bl − b̂l

]
δus,l dΓ−

∑
i

(
R̂Lδus,l

) ∣∣∣∣
xi

= 0 ∀ δus,l ∈ U�,s,l,

(59)∫
Γ�,int

−Ms
∂2δus,⊥
∂l2

+ b⊥δus,⊥ dΓ−
∑

i

(
R̂⊥δus,⊥ + R̂M

∂δus,⊥
∂l

) ∣∣∣∣
xi

= 0 ∀ δus,⊥ ∈ U�,s,⊥,

(60)

for suitable trial and test sets U�,c,U�,s,l,Us,⊥:

U�,c =

{
u(x) : Ω� 7→ R

2,

∫
Ω�

u2 + [u⊗∇]2 dΩ <∞
}
,

U�,s,l =

{
v(l) : Γ�,int 7→ R,

∫
Γ�,int

v2 +

(
∂v

∂l

)2

dΓ <∞
}
,

U�,s,⊥ =

{
v(l) : Γ�,int 7→ R,

∫
Γ�,int

v2 +

(
∂v

∂l

)2

+

(
∂2v

∂l2

)2

dΓ <∞
}
.

Here, the loads (per unit length) bl and b⊥ are the interaction forces between concrete and
reinforcement. In addition, there is a body force (per unit volume) b̂ acting on the concrete,
and a line load (per unit length) b̂l acting on the reinforcement. At the boundary Γ�, the
traction t̂ is acting on the concrete. At the endpoints of each reinforcement bar, denoted by
the set {xi}, R̂L, R̂⊥, and R̂M are the discrete end forces, cf. Figure 4.

3.4.2. RVE problem formulation
To complete the RVE problem, the constraints are imposed via Lagrange multipliers. In

this case the effective slip and slip gradient are imposed on the RVE in a weak (average) sense,
i.e., by a Neumann boundary condition. In short, we require that the effective (homogenised)
reinforcement slip and its gradient are equal to the imposed large-scale variables s̄ and ḡ,
namely

− [ū�,s(us)− ū�,c(uc)] · δτ̂ = −s̄ · δτ̂ , (61)
− [ḡd,�,s(us)− ḡd,�,c(uc)] : δσ̂s = −ḡd : δσ̂s. (62)

12



For the displacement field in concrete, we employ classical Dirichlet boundary conditions,
i.e., the fluctuation field vanishes at the boundary of the RVE and deformation there is
steered by the effective strain ε̄. The RVE problem can then be expressed as: Find uc, us,l,
us,⊥, λ, τ̂ , σ̂s ∈ UD

�,c(ε̄)×U�,s,l ×U�,s,⊥ × L� ×R2 ×R2×2
d

2 such that∫
Ω�,c

tcσc : [δuc ⊗∇] dΩ−
∫

Γ�,int

SstΓel · δuc dΓ−
∫

Γ�,int

λe⊥ · δuc dΓ

+

∫
Ω�,c

δuc dΩ · τ̂ = 0 ∀ δuc ∈ UD
�,c(0),

(63)∫
Γ�,int

Ns
∂δus,l

∂l
dΓ +

∫
Γ�,int

SstΓδus,l dΓ−
∫

Γ�,int

Ssδus,lel dΓ ·Cs · τ̂

−
∫

Γ�,int

Ss
∂δus,l

∂l
el ⊗ el dΓ ·Cs : σ̂s = 0 ∀ δus,l ∈ U�,s,l,

(64)

−
∫

Γ�,int

Ms
∂2δus,⊥
∂l2

dΓ +

∫
Γ�,int

λδus,⊥ dΓ = 0 ∀ δus,⊥ ∈ U�,s,⊥,

(65)∫
Γ�,int

[us,⊥ − e⊥ · uc] δλ dΓ = 0 ∀ δλ ∈ L�, (66)

−
[∫

Γ�,int

Ssus,lel dΓ ·Cs −
∫

Ω�

uc dΩ

]
· δτ̂ = −s̄ · δτ̂ |Ω�| ∀ δτ̂ ∈ R2, (67)

−
[∫

Γ�,int

Ss
∂us,l

∂l
el ⊗ el dΓ ·Cs

]
: δσ̂s = − [ḡd + ε̄] : δσ̂s |Ω�| ∀ δσ̂s ∈ R2×2

d ,

(68)

for the suitable trial set

U
D
�,c(ε̄) = {u ∈ U�,c : u = ε̄ · [x− x̄] on Γ�} ,

and the pertinent test spaces. This formulation does indeed satisfy A∗(us
c,u

s
s) = 0, thus

guaranteeing the well-posedness of the scale transition discussed in Section 3.2.

Remark:
In deriving Equations (63) and (68), it was explicilty used that

1

|Ω�|

∫
Ω�,c

uc ⊗∇ dΩ = ε̄ and
1

|Ω�|

∫
Ω�,c

δuc ⊗∇ dΩ = 0, (69)

for uc ∈ UD
�,c(ε̄) and δuc ∈ UD

�,c(0), respectively.

2
R

2×2
d is a diagonal second order tensor with respect to orthogonal reinforcement directions (el,1, el,2)
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3.4.3. Physical interpretation of Lagrange multipliers
By comparing the RVE problem formulated in Section 3.4.2 with its canonical form

stated in Section 3.4.1, we can identify physical interpretation of the introduced Lagrange
multipliers in the proposed formulation. First, we note that the interaction forces between
concrete and reinforcement are exactly those presented in the single scale (reference) problem
in Eqs. (7)-(10),

bl = SstΓ, (70)
b⊥ = λ, (71)

where we recall that λ is a Lagrange multiplier preventing discontinuity in the transverse
direction. Secondly, we identify the introduced body forces as

b̂ = − τ̂
tc
, (72)

b̂l = Ssel ·Cs · τ̂ , (73)

i.e., the condition on the effective slip is met by introducing “fictitious” body forces on the
concrete and reinforcement bars, respectively. These forces are in equilibrium. Finally, we
identify the end forces on the reinforcement bars as

R̂L = [Ssenlel ·Cs ⊗ el] : σ̂s, (74)

R̂⊥ = R̂M = 0, (75)

where enl = ±1 at start- and endpoints as introduced in conjunction to Equation (47).
Hence, axial forces pertinent to the constraint on the gradient of slip are applied at the
endpoints, whereas no transverse forces or bending moments act on the reinforcement bar
ends. The boundary traction acting on the concrete, t̂, will be the (fluctuating) reaction
caused by the Dirichlet condition on uc on Γ�.

3.4.4. Effective work conjugates
Further analysis of Equation (64) together with the constraint equations (61)–(62) reveals

the quantitative link between the Lagrange multipliers τ̂ , σ̂s and the effective transfer and
reinforcement stresses τ̄b and σ̄s. First, by considering Eq. (64) for the test function
δus,l = el · δū, for a constant δū, we obtain the relation

δū ·
∫

Γ�,int

SstΓel dΓ = δū ·
∫

Γ�,int

Ssel ⊗ el dΓ ·Cs · τ̂ ∀δū ∈ R2.

By identifying the effective transfer stress from Eq. (51), and by using the identity

1

|Ω�|

∫
Γ�,int

Ssel ⊗ el dΓ ·Cs = I,

14



cf. Appendix A, we obtain the result

τ̄b = τ̂ . (76)

Secondly, selecting the test function δus,l = el · δḡd · [x− x̄] in Equation (64), for a constant
δḡd ∈ R2×2

d , we obtain the relation

δḡd :

[∫
Γ�,int

Nsel ⊗ el dΓ +

∫
Γ�,int

SstΓel ⊗ [x− x̄] dΓ

]

= δḡd :

[∫
Γ�,int

Ssel ⊗ [x− x̄]⊗ el dΓ ·Cs · τ̂+

∫
Γ�,int

Ssel ⊗ el ⊗ el ⊗ el dΓ ·Cs : σ̂s

]
∀δḡd ∈ R2×2

d .

(77)

As shown in Appendix A, the integrals∫
Γ�,int

Ssel ⊗ [x− x̄]⊗ el dΓ = 0 and
1

|Ω�|

∫
Γ�,int

Ssel ⊗ el ⊗ el ⊗ el dΓ ·Cs = Id,

where we recall that Cs = Cg. Using these identities in Equation (77), together with the
definition of the effective reinforcement stress from Equation (52), we obtain the result

σ̄s = σ̂s. (78)

In summary, we conclude that the Lagrange multipliers pertaining to the constraints on
effective slip and slip gradient, presented in Eqs. (61) and (62), are indeed identical to the
work conjugates being the transfer and reinforcement stress, respectively. It is noteworthy
that the results from Sections (3.4.1)–(3.4.4) correspond to the Hill-Mandel principle of
energy equivalence, see e.g. [34],

1

|Ω�|

[∫
Ω�,c

tcσc : [δuc ⊗∇] dΩ +

∫
Γ�,int

SstΓ [δus,l − el · δuc dΓ]

+

∫
Γ�,int

Ns
∂δus,l

∂l
−Ms

∂2δus,⊥
∂l2

dΓ

]
= σ̄ : δε̄+ σ̄s : δḡd + τ̄b · δs̄ (79)

4. Unit cell response at reinforcement pull-through

The performance of the novel formulation of prescribing the macroscopic slip and slip
gradient inside the RVE volume was studied by means of a series of simulations. The
so-called pull-through tests are structural simulations performed on the RVEs, where the
macroscopic slip is gradually increased, so that the reinforcement bars are eventually pulled
out from the concrete. Such tests were already performed by the authors in [22], with the
effective reinforcement slip being prescribed at the RVE boundary, but nothing about the
subscale variation was specified. It is noteworthy, that such formulation did not require any
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Table 1: Geometry of the unit cells.

RVE 1×1 2×2 3×3

φ1 – horizontal
φ2 – vertical

Diameter φ1 20 mm
Diameter φ2 8 mm
Thickness t 0.2 m
Side length L� 0.2m 0.4m 0.6m

volumetric/subscale definition of the effective variable. It was found out that the effective
work conjugate (transfer stress) was highly RVE size dependent, i.e., the definition of the
effective variable was not objective. In this section, the pull-through tests are repeated, and
the results obtained when prescribing the slip at the boundary are compared with the results
obtained when prescribing the slip in volume.

4.1. Test layout
Three different two-dimensional unit cells were considered for the test, each one in the

shape of square and with equal number of reinforcement bars in the horizontal and vertical
direction, cf. Table 1. Note that the spacing of reinforcement bars is equal in both directions
for all unit cells.

A graphical summary of the constitutive models used for the individual materials together
with the values of material parameters, are presented in Table 2. An isotropic continuum
damage model, commonly known as the Mazars’ model [35, 36], was used. In tension,
an exponential damage law was used [37]. In compression, the classical Mazars’ damage
formulation was kept. Bilinear quadrilateral elements with size of 0.02m were used. The
reinforcement was modelled as an elastoplastic material with strain hardening with the use
of beam elements. Standard interface elements were used to model steel/concrete bond,
according to the bond-slip input specified in Table 2.

In the simulations, the macroscopic reinforcement slip was imposed on the RVEs in
horizontal direction only, i.e., in steps of ∆s̄ = [5× 10−5 m, 0]T . The effective strain, ε̄, and
the effective slip gradient, ḡ, were kept constant at zero in all directions. The macroscopic
slip was prescribed using two alternatives: 1) only on the boundary of the RVE, and 2) in
the RVE volume. The simulations were performed in the open source C++ code OOFEM
(www.oofem.org) [38].

4.2. Results and discussion
The effective transfer stress, τ̄b, was computed after solving the subscale boundary value

problem on the unit cell. It is presented as a function of the macroscopic slip in Figure 5a
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Table 2: Material parameters for the concrete, steel, and the interface.

Concrete Steel Interface

εEc

fct

ε
GF

hfc

σ

σ

εεu

Es

fy

ft

σ

s3s2s1

τbf

τbmax

s

τ

fc [MPa] 38 fy [MPa] 500 s1 [mm] 1.0
fct [MPa] 2.9 ft [MPa] 540 s2 [mm] 2.0

Ec [GPa] 33.6 Es [GPa] 200 s3 [mm] φ8
s3 [mm] φ20

4.0
6.5

GF [J/m2] 140.5 εu [%] 5 τbmax [MPa] 15.4
νc 0.2 νs 0.3 τbf [MPa] 6.2

for both boundary and volumetric definition. The largest eigenvalue of the initial sensitivity
tensor associated with effective transfer stress and effective slip is plotted for the varying size
of the unit cell in Figure 5b. The corresponding local slip profiles along the rebars taken at
the macroscopic slip of 1.5mm (top plateau of bond-slip input) and 8mm (bottom plateau
of bond-slip input) are presented in Figure 6a and Figure 6b, respectively.

Comparing the transfer stress–macroscopic slip results from Figure 5a, it can be seen that
imposing the effective slip weakly via Lagrange multipliers results in RVE size independent
response; the bond-slip input is recovered directly for all unit cells. This was clearly not the
case when imposing the macroscopic slip at the boundary only; similar recovery took place
only for the smallest RVE. Due to introduced volumetric constraints, the slip distribution
along the rebars is almost constant along the bars. Moreover, the average value of the local
slip, computed according to the definition (40), is equal to the macroscopic value. For the
case when slip was prescribed only at the boundary, the local slip quickly reduced inside
the rebar, especially for longer bars. As a result, the average value was not equal to the
imposed one (for the larger RVEs), and thus the effective work conjugate, τ̄b was also smaller
than it would be expected, for the applied macroscopic slip. When the macroscopic slip is
prescribed in volume, the largest eigenvalue of the initial sensitivity tensor associated with
the transfer stress and slip reaches a converged value already for small unit cells and does not
change very much with size of the RVE. When the slip is prescribed only at boundary, larger
RVE (longer rebar) means lower slip (bond stress) in the interior of the rebar, thus making
the transfer stress also lower. It can therefore be expected for larger RVEs to have smaller
stiffness (sensitivity) in the interface, ∂τ̄b/∂s̄. This effect can be observed in Figure 5b. To
summarise, the RVE size dependence (with respect to effective slip and transfer stress) was
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Figure 5: (a) Transfer stress–macroscopic slip relations for different unit cells obtained when
prescribing the slip in RVE volume (Vol) and on RVE boundary (Bnd). (b) Variation of
largest eigenvalue of the initial sensitivity tensor ∂τ̄b/∂s̄ with the size of the unit cell.
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and boundary (Bnd) definition of effective reinforcement slip.
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Figure 7: Schematic of the uniformly reinforced deep beam. Geometry, reinforcement layout,
boundary conditions and mid-span deflection, δ, are indicated.

rectified by introducing the volumetric constraints via Lagrange multipliers. In contrast to
the classical boundary formulation, the interpretation of the effective reinforcement slip was
no longer size dependent.

5. Large-scale response

A simply supported reinforced concrete deep beam under four-point bending was con-
sidered for next numerical study. The structure was uniformly reinforced in both horizontal
(φ20 bars) and vertical (φ8 bars) directions. In view of the symmetry of the beam, it sufficed
to model half of it, cf. Figure 7 for details concerning geometry and reinforcement layout.
The thickness of the structure was 0.2m, and thus plane stress assumption was employed.

The purpose of this numerical study was to investigate the effect of prescribing the
macroscopic slip in volume /rather than on boundary) on the structural response in a two-
scale computational scheme. In particular, the effective strain and slip fields are of interest.
The influence of the mentioned definition of effective slip on predicting the maximum crack
width was also studied. The two-scale computational method used in this work was the FE2

method.
In the analysis, displacement control was used, with the vertical displacement under

the loading platen was increased in steps of 0.1mm. In the large-scale model, 8-node bi-
quadratic elements with 9 Gauss points were chosen. At the symmetry line, degrees of
freedom corresponding to horizontal displacement and reinforcement slip were locked. Since
the arrangement of reinforcement in the deep beam corresponded to the one used in RVEs
described in Section 4, they were directly used to represent the substructure of the material.
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Table 3: Macroscopic mesh diameter to subscale unit cell size ratios, h/L�, for the FE2

analyses

Mesh nel 1×1 RVE 2×2 RVE 3×3 RVE

18 2.814 1.407 0.938

42 1.842 0.921 0.614

84 1.302 0.651 0.434

136 1.024 0.512 0.341

253 0.750 0.375 0.250

It is noteworthy, that not only the size of the RVE, but also the size of the macroscopic
mesh has influence on the results, as shown by the authors in [22]. To this end, five differ-
ent large-scale meshes were constructed. Sampling ratios, i.e., the ratios of the macroscopic
mesh diameter (corresponding to single Gauss point) to unit cell size are given for all meshes
in Table 3. For the simulations, the open source C++ code OOFEM (www.oofem.org) [38]
was used.

5.1. Global load–deflection response
The load–mid-span deflection relation is a global result that can be directly used to eval-

uate structural performance of the studied beam. These relations are presented in Figures
(8)–(10) for different sizes of the unit cell and the type of definition of the macroscopic
slip. The mid–span deflection was measured at the top of the beam, according to Figure 7,
while the external force was computed as the reaction force at the loading platen. For
convenience, a result for a single-scale analysis in full resolution is also presented, cf. [22]
for more information about the single-scale model. From the graphs, a few things can be
concluded. First, it is evident that the type of definition did not influence the effective load–
deflection response. Secondly, the large-scale mesh dependence of the global response was
rather low. Moreover, since the macroscopic strain was prescribed on the RVEs via clas-
sical Dirichlet boundary condition, the structural stiffness (and load–deflection response)
was overestimated, which was already observed by the authors in [21, 22]. Since bond-slip
mechanism is very important only locally (e.g. for cracking), it could be expected that its
influence on the global structural response will be marginal.
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Figure 8: External load – mid-span deflection relation for two-scale analyses using 1×1 RVE
and prescribing the macroscopic slip in volume (Vol) and only at boundary (Bnd) of the
RVE.
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Figure 9: External load – mid-span deflection relation for two-scale analyses using 2×2 RVE
and prescribing the macroscopic slip in volume (Vol) and only at boundary (Bnd) of the
RVE.
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Figure 10: External load – mid-span deflection relation for two-scale analyses using 3×3
RVE and prescribing the macroscopic slip in volume (Vol) and only at boundary (Bnd) of
the RVE.

5.2. Effective strain and slip fields
The most interesting large-scale results are arguably the effective strain and slip fields.

Figures 11a and 12a show the first principal effective strain, ε̄1, at a load step resembling
serviceability limit state, i.e., after cracking of concrete, but before yielding of reinforce-
ment. In the figures, the areas corresponding to individual Gauss points have been assigned
constant strain. As already shown in [22], the incorporation of slip as another macroscopic
variable results in effective strain localisation, and this effect can be observed here for both
types of macroscopic slip definition. Moreover, not only the size of the unit cell, but also
the resolution of macroscopic mesh was important in interpretation of the two-scale results.
By studying the results, it can be inferred that prescribing the effective slip in volume of
the RVE did not have a large influence on the global result. For the considered meshes, the
influence of the size of the unit cell was already small for both types of boundary conditions.
Overall, there was a small tendency for the effective strain obtained when prescribing the
slip in volume to go from more “smeared” strain patterns to more “localised” as the size of
the unit cell grows, with the process zone being more or less the same.

Locally, there is a correlation between reinforcement slip and crack patterns, with large
gradient in slip signifying a crack. If the crack discontinuity is chosen to be represented
weakly in model, i.e., by band of higher strains (as is the case for most smeared crack
models), the slip and crack patterns should be closely related. This strain-slip interplay
could also be observed for their effective counterparts in Figures 11b and 12b, where the
horizontal component of the effective slip vector was plotted for the two-scale analyses. The
effective slip values were readily available at nodes after solving the large-scale problem, and
could be plotted directly over the macroscopic mesh.

Even though there is a clear localisation of the effective strain reflected by the macro-
scopic slip field, it comes from the governing partial differential equations allowing for slip
transfer across large-scale elements. As such, it it not physically correct to interpret the
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Figure 11: First principal strain (a) and horizontal slip (b), in the large-scale domain ob-
tained when prescribing the effective slip in volume of the RVE. Location of the largest
principal strain indicated with dot.
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Figure 12: First principal strain (a) and horizontal slip (b), in the large-scale domain ob-
tained when prescribing the effective slip only at boundary of the RVE. Location of the
largest principal strain indicated with dot.
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Figure 13: Macroscopic slip profile along the line (0 m, 0.9 m)−−(5.7 m, 0.9 m) for volumetric
(Vol) and boundary (Bnd) definitions of effective slip. Large-scale mesh with nel = 18
elements.

localised effective strain as single macroscopic cracks. If local information, e.g., crack width
is sought, the subscale results must be further consulted.

5.3. Effective slip profiles
As already mentioned in Section 4, one of the benefits of prescribing the macroscopic slip

in the volume was that the physical interpretation of the effective variable was consistent
and independent of the unit cell size. Even though it was shown for the local pull-through
tests, this effect was not studied globally. In order to further assess this, the slip fields
presented in the previous section were studied closer. To this end, macroscopic slip profiles
along the line (0 m, 0.9 m) − −(5.7 m, 0.9 m) were extracted from the large-scale results in
Figures 11b and 12b, and are presented for all large-scale meshes in Figures 13 to 17.

Theoretically, if the physical meaning of the macroscopic variable was independent of
the RVE size, the slip fluctuations would ideally have the same amplitude and period.
Practically, this can be easily observed only for the coarsest large-scale mesh in Figure 13,
where the periods and amplitudes of the macroscopic slip were similar for all unit cells when
the slip is prescribed in volume. In case the slip was prescribed only at boundary of the unit
cell, the individual amplitudes are almost arbitrary, which signifies that the effective variable
must have a different physical interpretation depending on the unit cell size. For finer meshes
the picture becomes more complex, but overall it can be said that prescribing the slip in
volume produced more consistent effective slip profiles of lower amplitudes than prescribing
the slip at boundary. Moreover, it can be observed that on average, prescribing the effective
slip in volume of the RVE resulted in smaller amplitudes of the slip (and effective strain),
when compared to the case of prescribing the slip at RVE boundary only. It is noteworthy,
that the fields were still dependent on the resolution of the large-scale mesh.
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Figure 14: Macroscopic slip profile along the line (0 m, 0.9 m)−−(5.7 m, 0.9 m) for volumetric
(Vol) and boundary (Bnd) definitions of effective slip. Large-scale mesh with nel = 42
elements.
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Figure 15: Macroscopic slip profile along the line (0 m, 0.9 m)−−(5.7 m, 0.9 m) for volumetric
(Vol) and boundary (Bnd) definitions of effective slip. Large-scale mesh with nel = 84
elements.
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Figure 16: Macroscopic slip profile along the line (0 m, 0.9 m)−−(5.7 m, 0.9 m) for volumetric
(Vol) and boundary (Bnd) definitions of effective slip. Large-scale mesh with nel = 136
elements.
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Figure 17: Macroscopic slip profile along the line (0 m, 0.9 m)−−(5.7 m, 0.9 m) for volumetric
(Vol) and boundary (Bnd) definitions of effective slip. Large-scale mesh with nel = 253
elements.
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Figure 18: Maximum crack width for different sizes of unit cell and different macroscopic
mesh size obtained with volumetric definition (a) and boundary definition (b) of effective
slip.

5.4. Maximum crack width
As already mentioned, the ability to predict maximum crack width is of importance in

modelling of reinforced concrete structures. This is important especially in serviceability
limit state, where the structure can be expected to spend most of its lifetime. To this end,
the crack widths produced by the multi-scale model is studied and compared crack widths
obtained from a single-scale analysis in full resolution. Even though the crack width in
general varies considerably depending on the type of fracture formulation and regularisation
with respect to finite element mesh size, the focus of this study is to observe the impact
of the computational homogenisation procedure, keeping the constitutive models fixed in
both two-scale and single-scale models. Furthermore, the effect of the proposed volumetric
formulation is of particular interest. In order to obtain the largest crack width in the two-
scale model, the integration point with the largest principal strain is sought. Subscale results
in the unit cell are then consulted for the corresponding Gauss point. These results are by
default available in all integration points. However, in order to reduce the amount of data,
output for only few specific (or none at all) integration points can be requested. In this
case, after finding the macroscopic integration point with the largest principal strain, the
strain/slip/slip gradient history can be extracted and imposed on a chosen unit cell. Thus,
the subscale results can be obtained for an arbitrary macroscopic point in a quick and efficient
manner, since a single RVE problem is usually not very demanding in a computational sense.

The maximum crack widths for different large-scale mesh sizes and RVE sizes are pre-
sented in Figures 18 and 19 for both volumetric and boundary definition of effective slip.
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Figure 19: Maximum crack width for different sizes of unit cell and different macroscopic
mesh size obtained with volumetric definition (a) and boundary definition (b) of effective
slip.

The crack data pertains to the same load step as in the previous sections. For convenience,
the single-scale result was plotted as well. From the results, it is evident that most of the
two-scale analyses underestimate the maximum crack width, with only a few exceptions.
Overall, it can be observed that it was rather difficult for the smallest unit cell to predict
the correct crack width, although the results seem to improve with large-scale mesh refining.
Larger RVEs (and possibly finer large-scale meshes) were needed to predict the maximum
crack width reasonably well, in this case. However, it can also be observed that the variance
of the maximum crack width predictions was lower when the effective slip was prescribed in
volume. When the slip was prescribed at the boundary, the spread of the predictions was
bigger for the different large-scale meshes, c.f. Figures 18 and 19. This signifies that the
volumetric definition results in slightly more consistent predictions of the maximum crack
width.

6. Conclusions

In this paper, the already existing two-scale model for reinforced concrete with macro-
scopic variation of reinforced slip was further developed by introducing a novel definition of
the effective slip, whereby the slip and its gradient are imposed on the RVE in a weak man-
ner, i.e., by Lagrange multipliers. First, the single-scale structural problem for a reinforced
concrete structure was postulated in variational format, and the corresponding two-scale
formulation based on Variationally Consistent Homogenisation was derived. It is notewor-
thy, that not only the concrete, but also the reinforcement slip possessed both a macroscopic
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and fluctuation component. The pertinent large-scale (macroscopic) problem on “effective”
single-phase solid was formulated in terms of finding the unknown effective displacement and
slip fields. A novel volumetric definition of effective reinforcement slip and its gradient was
devised. At the subscale, the concrete, reinforcement and the bond between them was mod-
elled in detail. Standard linear variation of the macroscopic variables was considered for the
subscale unit cells, i.e., first-order computational homogenisation was employed. For the dis-
placement in concrete, standard Dirichlet assumption (vanishing fluctuations at boundary)
was chosen, while the effective slip and its gradient were prescribed on the Representative
Volume Element (RVE) weakly via Lagrange multipliers, which were shown to correspond
to the effective work conjugates associated with the macroscopic slip and its gradient.

The effect of the newly devised macroscopic slip definition was studied by means of rein-
forcement pull-through tests in the subscale unit cells. It was shown that the new volumetric
definition solved the problem of rapidly decreasing slip in the interior of reinforcement bars,
which was prevalent when the macroscopic slip was imposed only at the boundary of the
RVE. In the new formulation, the slip was uniformly distributed along the bars, even for
longer rebars, which resulted in RVE size independent interpretation of both the effective
slip and its work conjugate. Furthermore, the effective bond-slip behaviour could be directly
recovered even for larger unit cells, which was not the case for the former boundary type
formulation.

To study the influence on the global behaviour, a uniformly reinforced deep beam was
analysed with the multiscale method. The type of macroscopic definition did not have much
influence on the force–mid-span deflection relation. Effective strain localisation was obtained
for both volumetric and boundary definitions of macroscopic slip, with the volumetric defini-
tion producing slightly lower amplitudes of effective strain and slip. Macroscopic slip profiles
showed that prescribing the slip in RVE volume resulted in more consistent amplitude of
effective slip fluctuations. Maximum crack widths were underestimated by most multiscale
analyses. At the same time, the predictions were more consistent for the volumetric defini-
tion of slip, i.e., the variance between individual crack predictions was smaller than when
the slip was prescribed only at RVE boundary.

The main benefit of the proposed volumetric formulation for the effective slip is the
fact that an RVE size independent physical interpretation of the macroscopic slip and its
work conjugate, is obtained. This can be useful if effective bond-slip properties of uniformly
reinforced concrete are of interest.

For the future work, the two-scale model should be further developed for use in three
dimensions, in order to be able to model a greater variety of reinforced concrete structures.
In this setting, it is important to study three-dimensional reinforced concrete unit cells.
At the large-scale, a first step towards full three-dimensional setting would be to consider
computational homogenisation to effective plate/shell elements.
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Appendix A. Scaling tensors

In order to derive the scaling tensor Cs, the first relation in Equation (37) can be further
expanded with help of Equations (29)–(30) as

s̄�(uM
c ,u

M
s ) = ū ·

[
1

|Ω�|

∫
Γ�,int

Ssel ⊗ el dΓ ·Cs −
1

|Ω�|

∫
Ω�

I dΩ

]

+ ε̄T :

[
1

|Ω�|

∫
Γ�,int

Ss [x− x̄]⊗ el ⊗ el dΓ ·Cs −
1

|Ω�|

∫
Ω�

[x− x̄]⊗ I dΩ

]

+ s̄ ·
[

1

|Ω�|

∫
Γ�,int

Ssel ⊗ el dΓ ·Cs

]
+ ḡTd :

[
1

|Ω�|

∫
Γ�,int

Ss [x− x̄]⊗ el ⊗ el dΓ ·Cs

]
.

Accounting for
1

|Ω�|
∫

Ω�
x− x̄ dΩ = 0 and setting

Cs = |Ω�|
[∫

Γ�,int

Ssel ⊗ el dΓ

]−1

(A.1)

the homogenisation–prolongation identity becomes

s̄�(uM
c ,u

M
s ) = ū · 0 + s̄ · I + [ε̄+ ḡd]T :

[
1

|Ω�|

∫
Γ�,int

Ss [x− x̄]⊗ el ⊗ el dΓ ·Cs

]
︸ ︷︷ ︸

A

Assuming a symmetric layout of reinforcement in the unit cell, A = 0. Alternatively, we
would have to change x̄→ x̄s,1, x̄s,2 in Equation (30), so that

uMs,l (x̄,x) = el · [ū(x̄) + s̄(x̄)] + el · [ε̄(x̄) + ḡd(x̄)] · [x− x̄s,i] if el = el,i,

with
x̄s,i =

1

|Ω�|

∫
Γ�,int

Ss [x− x̄] el · el,i dΓ. (A.2)

In order to derive the scaling tensorCg, we look again at the second relation in Equation (37)
and expand it with help of Eqs. (29)–(30) as
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]
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Using that el ∈ {el,1, el,2} with el,1 ⊥ el,2, and assuming the shape of scaling as

Cg =
2∑

i=1

Cg,iiel,i ⊗ el,i, (A.3)

we may express the integrals as
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ε̄iiel,i ⊗ el,i

 1

|Ω�|

∫
Γ�,int

Ssel · el,i dΓ Cg,ii −
1

|Ω�|

∫
Ω�

dΩ︸ ︷︷ ︸
=1

 .
We are now in position to assure that

ḡd,�(uM
c ,u

M
s ) =

2∑
i=1

ḡd,iiel,i ⊗ el,i = ḡd,

if

Cg,ii = |Ω�|
[∫

Γ�,int

Ssel · el,i dΓ

]−1

. (A.4)

Moreover, is is noteworthy that

Cg = Cs =
2∑

i=1

el,i ⊗ el,i |Ω�|
[∫

Γ�,int

Ssel · el,i dΓ

]−1

(A.5)

is diagonal.
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