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ABSTRACT 
 
For reasons ranging from public health to sustainable urban development, 
traffic planning as well as urban design aim to increase the modal share of 
bicycling at the cost of fossil fuel based transport. Despite this increasing 
interest in bicycling, most planning practices handle bicycling schematically, 
applying methods that rely on fixed speed and distance templates, paying little 
attention to the fact that bicycling speeds vary a lot depending on bicycle routes 
and the contexts of these routes. Since travel time is important for both route 
choice and mode choice, more refined methods for predicting bicycling speeds 
should be highly useful. This paper presents a bicycling speed model that 
combines parameters from two recent bikeability modelling studies. One is an 
urban form based study that identified urban form parameters significant for 
average bicycling speeds at segments of the bicycle route network.  The other 
study estimated likely speeds based on horizontal and vertical geometry of 
routes. The latter model used a statistical model to grasp dependence between 
contiguous road segments; based on so-called Markov-dependence, the model 
predicted continuous speed profiles along entire routes, and not only average 
speed levels on road segments seen independently. The new combined model 
is estimated using GPS tracking of real bicycle trips in combination with GIS-
based data of bicycle route networks and of the local urban form parameters 
along the routes. The covariates included in the model are route geometry, 
intersection impedances, type of bicycle-route, kind of surface, and density of 
entrances to buildings along route. The latter is a proxy for slower bicycling due 
to urban/vibrant context. The new model results in more detailed and realistic 
speed estimations than the previous models. This paper presents the model 
and some results from applying the model on bicycle routes in Gothenburg. 
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1. INTRODUCTION  
 
For reasons ranging from public health to sustainable urban development, 
traffic planning as well as urban design aim to increase the modal share of 
bicycling at the cost of fossil fuel based daily transport. In order to achieve this, 
there is a need for knowledge of the conditions influencing daily commuting in 
general and bicycling in particular. 
  
In most kinds of travel, both route choice and mode choice depend on time, 
cost and convenience, therefore reliable measures of these aspects are 
essential for understanding bicycle travel. In bicycle routing applications, the 
complexity of bicycle route choice is explicit by offering different options for 
selecting the route, for example the shortest, the fastest, the simplest, the 
safest, or the least slope routes. In bicycle planning, the methods of analysis 
usually apply the measure of distance. Explicitly stated or not, this is obtained 
by converting travel-time to a measure of travel-distance. Typically, convenient 
maximal distance of bicycling for daily commuting is considered to be about 3-
5 km (Scheiner, 2010; Rietveld, 2000). In cases where speed is constant, this 
concept of measuring distance rather than time works fine. However, when 
speeds vary a lot, which is often the case for bicycling, the measure of distance 
alone is less useful, and even possibly misleading. Bicycling speed depends on 
the kind of bicycle and bicyclist, as well as on the conditions and the context of 
the particular bicycle route. The speed, when travelling by bicycle, may range 
from slower than walking when you have to walk with the bike among a crowd 
of pedestrians, to the speed of a car when riding downhill. The strong effect of 
slope implies that even the speed of a specific route, for a particular bicyclist, 
varies a lot depending on the direction of travel (Arnesen et al., 2017). Due to 
these variations, methods that grasp speed differences along specific routes 
will likely be much more realistic than methods measuring distance alone.  
 
Today, identifying most useful bicycle routes in a street network at the city scale 
relies on comparing distances along numerous different routes, ignoring the 
effect of different speeds at different parts of the network. The inclusion of an 
improved speed model in accessibility and transport models, comparing travel 
time rather than distances, may provide the ground for a new generation of 
travel mode choice analyses as well as bicycle flow predictions. Such 
instruments should be highly relevant for planning authorities and consultants 
evaluating and comparing the likely performance of alternative project 
proposals within urban planning, urban development and traffic infrastructure.  
 
The aim of the research presented in this paper is to contribute to the 
development of an improved model for bicycle speed estimation, by estimating 
speeds along routes at a detailed level and including urban form parameters. 
In order to be able to analyse large route network systems, such as entire cities, 
the model should preferable rely on data that is commonly available and can 
be easily mapped in GIS. This includes geometry of routes, the type of bicycle 
route, intersection and route surface, as well as the urban context in terms of 
entrances to buildings along the route. Before presenting the proposed model 
and its application in the case of Gothenburg, the next sections present the 
research background on which the new model is based. 
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2. BACKGROUND  
 
2.1 Urban form and daily travel  
 
Numerous studies have examined the relationship between urban form and 
travel, from which one can conclude that there is a complex bi-directional 
interaction between urban form, socio-economic and attitudinal characteristics, 
and travel outcomes. Daily travel, described in a simple way, involves journeys 
between an origin and a destination, using a specific travel mode, and following 
an adequate route. But the components of this complex relationship influence 
the location and choice of both origin and destination, as well as the choice of 
travel mode and of travel route. For this reason, richer transport models that 
incorporate to different degrees these components are being developed. The 
better we model travel, the better we will be able to predict it, and make 
informed planning decisions addressing everyone’s needs. 
 
Within the field of transport modelling in general, the use of utility functions is 
essential. In particular, for modelling mode choice and route choice (Ortuzar 
and Willumsen, 2012), both travel-distance and travel-time are inputs to such 
functions.  However, the latter input demands a considerably more detailed 
modelling approach given the numerous factors that can impact travel time. 
Typically, motorized travel modes, such as personal cars, have been devoted 
a lot of attention in terms of modelling speed as a function of exogenous 
variables and traffic flow, see for instance the reviews by Hassan and Sarhan 
(2011), Arnesen and Hjelkrem (2018), and many of the references therein. 
Walking and bicycling, the non-motorized, active and softer modes of travel 
have been treated much simpler, often with constant speeds and lesser 
dependence of environmental parameters. With increased focus on sustainable 
transport (Russo et al., 2016), more accurate modelling of non-motorized travel 
is necessary and has therefore been given an increased interest within the field 
of transport modelling research (see for instance Beheshtitabar et al., 2014; 
Bernardi and Rupi, 2015; Jiang et al., 2016).  
 
 
2.2 Modelling bicycling in particular 
 
Bicycle speed has to some degree been studied in the transport modelling 
literature (see for instance, El-Geneidy et al., 2007; Parkin and Rotheram, 2010; 
Figliozzi et al., 2013; Bernardi and Rupi, 2015; Ryeng et al., 2016; Strauss and 
Miranda-Moreno, 2017; Manum et al., 2017; Flügel et al., 2018). All the above 
works do, however, assume constant speed along homogeneous road 
segments, and do not include speed dependence between contiguous 
segments, typically resulting in disconnected speed levels between segments 
and unrealistic speed profiles in terms of variability. For some applications, 
within the transport modelling field, such simple models might be sufficient, for 
instance in mode choice models on aggregated level. Other applications, such 
as route choice models, energy calculations and travel time quotas in denser 
parts of cities, would benefit from more nuanced modeling approaches.  
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In Sweden, two of the few municipalities using traffic models that include 
bicycling are Linköping and Gothenburg. For estimating travel time quotas and 
aggregated bicycle flows on routes, they both use PTV Visum (http://vision-
traffic.ptvgroup.com/en-us/products/ptv-visum/). Linköping uses a speed 
between 20-25 km/h depending on “experience valuation” along the route. 
Depending on the type of crossing (signal, no signal, circulation) “time 
penalties” are then added. In Gothenburg, a speed of 20 km/h is initially 
assumed on all routes and then differentiated by type of route (commuter route, 
bicycle track, bicycle and walking track or streets with mixed traffic). Further, 
impedance is then added for slopes steeper than 4%, and signal crossings are 
handled with “time penalties”. These examples of transport planning practice 
include bicycling as a mode of transport, but lean on assumptions of bicycling 
speeds rather than on empirical research. In Norway, an Arc View application 
called “ATP-modellen” includes estimation of bicycle speed variation due to 
slope but not from other route conditions (Miljødirektoratet, 2002). 
 
Aiming at estimating speed variation along a route more in detail, the model 
proposed in this paper is based on two recent bicycle speed models that take 
more conditions of bicycle routes into account. The first model, in the following 
sections termed the average speed regression model or the average speed 
model (ASR-model), was developed by a study of bicycling speeds in 
Gothenburg, Sweden, and departs from architectural research studying spatial 
configurations of urban form and street networks (Manum et al., 2017). The 
second model was developed by a study of bicycling in Trondheim, Norway, 
and departs from transport research. By using Markov dependence between 
closely spaced points on a predefined route, this model, in the following termed 
the Markov model, estimates model parameters on very detailed GPS data of 
horizontal and vertical geometry of route (Arnesen et al., 2017). This model 
estimates very detailed speed variations along routes based on route geometry 
but does not include environmental covariates such as road surface, city 
environment and influence by other traffic. The following sections describe 
these two earlier models in more detail. 
 
 
2.3 Model I, the average speed regression model (the ASR-model)  
 
The study of bicycling speeds in Gothenburg, carried out on the commission of 
Gothenburg Traffic Office and initiated by Chalmers Technical University in 
collaboration with NTNU aimed at examining the relationship between urban 
form, urban environment and average bicycle speeds at street-segments 
(Manum et al., 2017). The empirical data collected were bicycling speeds from 
GPS-tracking of bicycling along eight pre-defined bicycle routes (Figure 1). The 
routes were selected for providing a representative sample of kinds of bicycle 
routes in Gothenburg. The bicycle routes were subdivided into segments of 
constant characteristics (n = 334), based on impedance variables that 
according to existing research should influence the speeds of bicycling.  
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Table 1 lists these variables and the units examined for each. In order to grasp 
the fact that bicycling speeds may differ in different directions on the same 
route, the route-network was modelled as a bi-directional system (see Figure1). 
The aim of the model was to estimate median speed in each direction on each 
of the route-segments. 
 
The GPS-tracking was conducted by 15 bicyclists, cycling in total 875 trips 
along the selected routes in rush hour traffic on two weekdays in May 2016 
(between 07:30-09:30 and 16:30-18:30), using the Traffic Office GPS app 
“Bicycle City”. The bicyclists were of different kinds regarding gender, self-
experienced bicycle type (slow normal, fast) and age group, selected for 
representing the variation of bicyclists along the selected routes in Gothenburg. 
The mix of bicyclists was identified by an observation study of 1946 bicyclists. 
The GPS data showed that median speeds differ significantly between 
segments on a route as well as between different routes in the city. Median 
speeds of individual segments range from 6 to 35 km/h (1,5 – 9,7 m/s), whereas 
speeds of entire routes range from 13 to 21 km/h (3,6 – 5,8 m/s). The total 
median speed for all segments were 17 km/h. Unfortunately, the GPS app was 
not able to track exact stop time at intersections. Due to this technical problem, 
the GPS tracking only resulted in median speed along individual segments.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1. Bicycle routes examined in Gothenburg. 
Routes colored by speed (km/h) as mapped by GPS-tracking.  
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Table 1.  Impedance measures assigned to street segments (* included in the 
model) 

 Impedance variable 
 

Categories / Units 

1 Kind of route *  Pedestrian street, (walking and 
bicycling merged) 

 Slow Bicycling street 

 Mixed traffic 

 Bicycle lane  

 One-way bicycle track 

 Two-directional bicycle track 
 

2 Width of bicycle lane 
 

 Metres 
 

3 Kind of bicycle lane surface 
material * 
 

 Asphalt 

 Concrete 

 Cobble stone 

 Gravel 
 

4 Kind of separation from 
pedestrians 
 

 Furniture, vegetation etc 

 Height difference (different level) 

 Different surfaces 
 

5 Slope * 
 

 Percentage (%) 
 

6 Horizontal curvature (radius) 
* 
 

 Metres 
 

7 Length of segment * 
 

 Metres 
 

8 Distance between junctions 
 

 Metres 

9 Segment connected to 
junction * 
 

 Yes \ No 
 

10 Entrances along segment, 
within 15m from segment 
 

 Count / 100 metres (All kinds of 
entrances to buildings, within 
straight line distance)  

11 Entrances along segment, 
within 30m from segment * 
 

 Count / 100 metres (as previous) 

12 Car parking  Yes \ No 
 

13  Bus stop  Yes \ No 
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All the impedances considered were then added to a statistical model for 
calculating their impact on median bicycle speeds on route segments. To find 
the most important independent variables and test their significance a multiple 
regression analysis (OLS) was performed. A number of significant variables (< 
1 %) were identified and kept in the model. These variables were the following: 
being connected to signal junction (or not); number of entrances along route 
(within 30 metres from street segment); slope; kind of route (pedestrian street 
or not, two-directional bicycle track or not); horizontal curvature; length of 
segment; and route surface (cobble stone or not). Finally, the R2 value was 
calculated to see how much of the measured variation could be explained by 
the chosen variables. The model showed good fit in terms of estimating median 
speed levels (adjusted R2 value of 0.53).  
 
2.4 Model II, the Markov model  
 
As opposed to the previous study, Arnesen et al. (2017) used a large amount 
of GPS data with little information on each road segment to estimate a model 
for bicycle speed based on horizontal and vertical curvature (see Figure 2 for 
an example of a logged bicycle trip). The data were collected from 15 individuals 
from one particular workplace, where the aim during the logging period was to 
increase the physical activity of the participants. The purpose of the observed 
bicycle trips ranges from bicycling for leisure, to bicycling to/from work, or 
bicycling for training. Although the many different types of bicycling and 
bicyclists are represented within this data set, this particular group of 
participants cannot be considered a representative sample for all bicycling in 
Norway, and there is probably a bias towards fast riding bicycling enthusiasts 
in the data set. In total, 2085 bicycle trips, consisting of approximately 550 000 
GPS observations (see Figure 3) were analyzed to construct a model 
estimating bicycle speed from the geometric curvature of the road.  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2. Example of a logged bicycle trip, with the collected covariates.   
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Figure 3. Bicycle GPS-observations examined in Trondheim. The observations 
are shown as a heatmap, where deeper red represents more observations.  

 
 
The model takes the speed from previous road segments and the presence of 
a sharp turn ahead into consideration when estimating the bicycle speed along 
a predefined route. The following equations denote the horizontal and vertical 
curvature by ℎ𝑖 and 𝑣𝑖, respectively. First, the authors of the study assume that 
bicycle speed is dependent on the slope through the regression term 
 
 𝑟𝑖 =  𝛽0exp {𝛽1𝑣𝑖𝐼(𝑣𝑖 ≥ 0) + (𝛽2𝑣𝑖 + 𝛽3𝑣𝑖

2)𝐼(𝑣𝑖 < 0)}, 
 

(1) 

 
Where 𝑟𝑖 in this framework is the speed a bicyclist will converge to under 
constant slope and zero horizontal curvature. Secondly, they introduce a 

Markov dependence in the model. Assuming that the distance between point 𝑖 
and the previous point 𝑖 − 1 is defined to be ||𝑤𝑖||, they assume the speed at 
point 𝑖 to be dependent on the speed in point 𝑖 − 1 by 
 
 𝜈𝑖 = 𝑦𝑖−1𝛼𝑖 + (1 − 𝛼𝑖)𝑟𝑖, and (2) 

 
 𝛼𝑖 = exp {−𝜔||𝑤𝑖||}, (3) 

 
where 0 < 𝛼𝑖 < 1 acts as a weight between the previous observed speed 
𝑦𝑖−1 and 𝑟𝑖, and where 𝜈𝑖 is the speed on a hypothetical road segment with no 

turnsahead. Moreover, assuming 𝜔 > 0, the dependency of the previously 

observed speed decreases as ||𝑤𝑖|| increases. This intuitively adapts Tobler’s 

first law of geography (Tobler, 1970), as points further apart on the route should 
be less correlated than points closer to each other. 
 



© AET 2018 and contributors 
                                                                          9 
 

Finally, the dependency between bicycling speed and horizontal curvature is 
described by 
 
 
 
 𝑦𝑖 =  𝜈𝑖 exp{𝛽4𝐻𝑖} + 𝜖𝑖, where 𝜖𝑖 ∼ 𝑁(0, 𝜎2), and (4) 

   
 

𝐻𝑖 = ℎ𝑖 + ∑
ℎ𝑗

𝐷(𝑖, 𝑗)
∀𝑗>𝑖:𝐷(𝑖,𝑗)≤𝜂

, 

 

(5) 

 

where 𝐷(𝑖, 𝑗) = ||𝑤𝑖|| + ||𝑤𝑖+1|| + ⋯ + ||𝑤𝑗||, is the total horizontal distance 

from point 𝑖 to point 𝑗, assuming 𝑗 > 𝑖, and where 𝜖 is assumed to be i.i.d. zero-
mean Gaussian noise. Through Equations (4) and (5) an adjustment to the 
modelled speed without horizontal curvature 𝑣𝑖 is introduced, assuming that 
turns less than 𝜂 meters ahead influence the speed of the bicyclist (𝜂 = 50). 
Moreover, it is assumed that this influence is stronger for sharper and closer 
turns, than for less sharp turns further away. 
 
 
3. METHOD  
 
The present study proposes a new bicycling speed model resulting from a 
combination of the ASR and the Markov models. The model is developed and 
tested based on the data set of Gothenburg GPS traces from Manum et al. 
(2017). Finally, the speed estimation results of the new model and of the 
independent models are compared and discussed.  
 
3.1   The new model  
 
To develop a model that unifies both approaches to speed modelling presented 
in section 2 (ASR and Markov models), and in particular to take advantage of 
their individual strengths, we propose the following approach.  
 
Using the data set of Manum et al. (2017) we estimate a regression model for 
bicycle speed with the form 
 
 𝑦𝑖 = 𝑏0 exp{𝑏1𝐸𝑛𝑡𝑟𝑎𝑛𝑐𝑒30𝑚 + 𝑏2𝑆𝑡𝑟𝑒𝑒𝑡𝑃𝑒𝑑𝑒𝑠𝑡𝑟𝑖𝑎𝑛

+ 𝑏3𝑆𝑡𝑟𝑒𝑒𝑡𝐷𝑜𝑢𝑏𝑙𝑒𝐵𝑖𝑐𝑦𝑐𝑙𝑒𝐿𝑎𝑛𝑒 + 𝑏4𝑆𝑢𝑟𝑓𝑎𝑐𝑒𝑁𝑎𝑡𝑢𝑎𝑙𝑆𝑡𝑜𝑛𝑒}, 

(6) 

 
including new parameters (𝑏1, … , 𝑏4) estimated for the four covariates - number 
of entrances on 30 metres, pedestrian street, two-directional bicycle lane, and 
cobble stone - as these are not included in the model developed by Arnesen et 
al. (2017). This new model is constructed in this form so that it naturally fits into 
the regression term in equation 1 from Arnesen et al. (2017).  
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Simply combining these two expressions define the first term in the joint model, 
i.e. 
 
 𝑟𝑖 = 𝛽0 exp{𝛽1𝑣𝑖𝐼(𝑣𝑖 ≥ 0) + (𝛽2𝑣𝑖 + 𝛽3𝑣𝑖

2)𝐼(𝑣𝑖 < 0)

+ 𝑏1𝐸𝑛𝑡𝑟𝑎𝑛𝑐𝑒30𝑚 + 𝑏2𝑆𝑡𝑟𝑒𝑒𝑡𝑃𝑒𝑑𝑒𝑠𝑡𝑟𝑖𝑎𝑛

+ 𝑏3𝑆𝑡𝑟𝑒𝑒𝑡𝐷𝑜𝑢𝑏𝑙𝑒𝐵𝑖𝑐𝑦𝑐𝑙𝑒𝐿𝑎𝑛𝑒 + 𝑏4𝑆𝑢𝑟𝑓𝑎𝑐𝑒𝐶𝑜𝑏𝑏𝑙𝑒 𝑆𝑡𝑜𝑛𝑒}, 

(7) 

 
where we use the estimates 𝛽1, … , 𝛽3, 𝑏1, … , 𝑏4 as before, but where we estimate 

𝛽0from the Gothenburg data (details below). We use Equation (2) and (3) as 
defined above also in this joint model.  
 
The route data has coded the route end in crossings with light signals. We adopt 
the speed reduction on such a crossing with that equivalent of a turn by 
expanding Equation (4) and (5) in the following way: 
 
 
 𝑦𝑖 = 𝜈𝑖 exp{𝛽4(𝐻𝑖 + 𝛽5𝐵𝑖)} + 𝜖𝑖, where 𝜖𝑖 ∼ 𝑁(0, 𝜎2),  (8) 

   
 

𝐻𝑖 = ℎ𝑖 + ∑
ℎ𝑗

𝐷(𝑖, 𝑗)
∀𝑗>𝑖:𝐷(𝑖,𝑗)≤𝜂

,  
(9) 

   
 

𝐵𝑖 = 𝐼(𝑠𝑖𝑔𝑛𝑎𝑙 𝑐𝑟𝑜𝑠𝑠𝑖𝑛𝑔 𝑎𝑡 𝑖) + ∑
𝐼(𝑠𝑖𝑔𝑛𝑎𝑙 𝑐𝑟𝑜𝑠𝑠𝑖𝑛𝑔 𝑎𝑡 𝑗)

𝐷(𝑖, 𝑗)
∀𝑗>𝑖:𝐷(𝑖,𝑗)≤𝜂

, 
(10) 

 
 
where now 𝛽5 is a parameter that explains how much a bicyclist on average 

must slow down before a crossing. That is, 𝐵𝑖 is a covariate increasing as signal 
crossings approach and 𝛽5 is a parameter that represents the level of speed 
reductions, which must be estimated from the empirical data. Using the data 
set’s 𝛽0, the base level of bicycle speed, and 𝛽5 is estimated in the following 
way. The data set consists of several bicyclists riding a few defined routes, and 
the mean travelling times are calculated for each route. Using the mathematical  
optimisation function optim from the stats R package, 𝛽5 and 𝛽0 can be 

estimated by comparing the calculated travelling time from the model with the 
observed travelling time from the data with the square-root error between 
travelling times. 
 
 
4 RESULTS  
 
4.1 Estimating the new model  
 
The new model is estimated in two steps, as explained above. First, estimating 
the parameters 𝑏1, … , 𝑏4 using the same data as in Manum et al (2017), next, 

estimating the speed level 𝛽0 and crossing parameter 𝛽5 by comparing 
calculated travelling time from the model with observed travelling time for all the 
available routes. All the resulting parameter values for the new joint model are 
shown in Table 2. 
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Table 2: Parameter estimates for the joint model. 
 

Parameter Associated covariate Value 

𝛽0 Constant speed level 5.79 [m/s] 

𝛽1 Uphill bicycling -9.04  

𝛽2 Downhill bicycling 5.66 

𝛽3 Downhill bicycling squared -1.18 

𝛽4 Horizontal curvature -10.26 

𝑏1 Number of entrances (30 m) -0.001 

𝑏2 Pedestrian street -0.16 

𝑏3 Two-directional bicycle lane 0.07 

𝑏4 Natural stone -0.07 

𝛽5 Crossing -0.41 

 
 
 
4.2 Results from applying the new model in the case of Gothenburg 
 
This section presents the results from applying the new model on the same 
bicycle routes in Gothenburg as examined by the average speed model. For 
location of the different routes, see Figure 1. Figures 4a – 4c show a sample of  
the routes. For each route, the bottom figure shows the horizontal curvature 
whereas the top figure shows the slope (gray line), the observed median speeds 
(blue dotted line), and the speeds estimated by the different speed modelling 
approaches. The circles indicate signal crossings.  
 

 
Figure 4a.  Route "Kyrkogatan"  

(top: slope and speeds, bottom: horizontal curvature)  
 
Legend of top diagram:  Blue dotted line:  Median observed speeds 

Green line:   The new model 
Red line:   The ASR model  
Black line:   The Markov model  

    Gray line:   Slope 
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Figure 4b (above). Route "Götaälvbron"  
 

 
 
Figure 4c (above). Route " Östra Hamngatan" 
 
Legend of top diagrams:  Blue dotted line:  Median observed speeds 

Green line:   The new model 
Red line:   The ASR model  
Black line:   The Markov model  
Gray line:   Slope 
Circles:   Signal crossings 

 
As we can see from the Figures 4a-4c, the green line represents a more 
nuanced and realistic speed profile in comparison to the mean speed levels for 
each segment. In addition, the diversity of speed parameters from the ASR 
model seem too often to adjust the speed levels to more realistic values 
compared to the Markov model that just includes geometric dependence. Also, 
the addition of a signal crossing parameter seems to improve the overall 
performance, suggesting more refined speed modelling of crossings to be an 
interesting topic for further research. The models are compared and discussed 
further in the next section. 
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4.3 Comparing the models in the cases of particular routes 
 
Taking a closer look at some modelling results of different routes, this section 
compares the models and highlights particular issues in more detail.    
 
4.3.1 Kyrkogatan  
 
Kyrkogatan is a straight route without any slope. On the one hand, this creates 
a potential for fast bicycling. On the other hand, the streets are covered with 
cobblestone and there are many entrances along the route, which reduces 
bicycling speeds (Manum et al., 2017). At Kyrkogatan, the median speed 
according to the GPS-data is 16 km/h, which is just below average (17km/h, 
see section 2.3).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5. Kyrkogatan (after 200 metres in the direction of figure 4a). 
 
 
As expected, due to the constant properties of the route, the speed at 
Kyrkogatan is continuous with small differences between the different street 
segments (see figure 4a). Comparing the models, we see that the new model 
estimates speeds similar to the ASR model and is significantly better than the 
Markov model, since the new model includes environmental characteristics. 
Looking closely at the Markov model results (black line in the top diagram of 
Figure 4a), the speeds are significantly faster than the observed speeds, which 
will likely have two reasons. One is that the speed reduction due to cobble stone 
is not included in the Markov model; a second is that the Markov model is 
estimated from the speeds of commuter bicyclists in Trondheim that are faster 
than the more diverse sample of bicyclists mapped in Gothenburg.  
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4.3.2  Götaälvbron 
 
This route includes the bridge over the river (Figure 6) and continues in a more 
traffic segregated environment with few stops and a separate bicycle track on 
each side of the road. The route has long parts without intersections but also 
wide horizontal turns and signal crossings. Overall, speed is affected by many 
variables.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6. Götaälvbron (after about 2 200 metres in the direction of figure 4b) 
 
 
Not surprisingly, the GPS-tracks show a relatively high average speed with 
large local variations along the route (blue dotted line in figure 4B, top). The 
median observed speed is 21 km/h, significantly faster than the 17km/h 
average. Looking at the other speed estimates (Figure 4b), the results of the 
new model are generally in line with observed median speeds. Looking more 
closely, for instance at about 80, 600 and 2400 meters along the route (Figure 
4b), there are some exceptions. Here, similarly to the case of Kyrkogatan, the 
new model seems to overestimate speed reduction due to horizontal curvature. 
The differences between the Markov model and the new model are small, the 
reason being that slope and horizontal curvature together with signal crossings 
strongly affect the speed on this route and these variables are already included 
in the Markov model. The new model differs from the observed speeds also on 
the first part of the route. This is likely due to the presence of signal crossings 
for which waiting times (i.e. stop-times) are not included in the GPS-speed data 
(see Manum et al. (2017) for more on this). Comparing the three models, the 
new model and the Markov model provide the most realistic speed profiles, see 
for instance how the speed gradually increases downhill from the top of the 
bridge at about 1800 meters along the route (Figure 4b). 
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4.3.3  Östra Hamngatan  
 
Östra Hamngatan is a central street in Gothenburg with bicyclists in a mixed 
traffic environment (Figure 7) including many pedestrians along as well as 
crossing the street. The speed limit is 30 km/h.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7. Östra Hamngatan (after 600 metres in the direction of figure 4c) 
 
 
The median speed of observed bicyclists is as low as 14 km/h, which is the 
lowest of the routes here compared (see Figure 1 and Figure 4a-c). The low 
speed is likely due to the urban environment of Östra Hamngatan highly 
reducing speeds of bicycling. For the same reason, since “urban context” is 
included in the ASR-model by the “number of entrances variable” (variable no. 
11 in Table 1), the ASR-model here generally performs better than in 
Kungsgatan and Götaälvsbron. Comparing the three models, the new model 
seems to best match the observed bicycle speed, but here again it slightly 
overestimates the effect of horizontal curvature in slowing down bicycle speeds.  
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5. DISCUSSION  
 
5.1  Average speeds with the new joint model 
   
Even though the Gothenburg data set was originally sampled as high-resolution 
GPS traces, sampling error near intersections resulted in only aggregated 
median speed levels for each segment. Therefore, it is not straight forward to 
quantitatively compare this with our new model, which predicts speed on 
segment vertices (or in general every defined point on a route), i.e. at a higher 
resolution than the segment level. As a check, however, we compare the ASM 
model, the (high-resolution) joint model, and a version of our joint model where 
the predicted speeds are aggregated to the segment level, to the ground truth 
segment level data, see table 3. 
 
Table 3: Sum of square error when comparing the ASM model estimates, the 
estimates from the new joint model, and a mean on each segment version of 
the new joint model to the calculated segment mean speeds from the 
Gothenburg study.   
 

Route ASM model Joint model Mean joint 
model 

Gota Alvbron 1 490 497 432 
Gota Alvbron 2  271 608 535 
Linholmsallen 1 156 61 57 
Linholmsallen 2 53 38 30 
Ostre Hamngatan 1 138 58 56 
Ostre Hamngatan 2 80 69 65 
Kyrkogatan 1 20 33 32 
Kyrkogatan 2 6 27 26 
Vestre Hamngatan 1 72 39 38 
Vestre Hamngatan 2 16 37 36 
Nya Allen 1 25 79 47 
Nya Allen 2 147 172 155 
Hagaparken 1 57 90 90 
Hagaparken 2 24 66 65 

SUM 1555 1874 1663 

 
As we can see, the increase in error with new the joint model when compared 
to the segment means is about 17 %. This result seems reasonable, given that 
1) the Gothenburg model is specifically designed to fit this dataset, and 2) the 
joint model inherits the segment variability form the Trondheim model in its 
estimates, and would naturally by punished when compared to mean 
calculations. To try to compensate for point 2) we have added the estimation 
result when the estimated speeds for the joint model are aggregated to mean 
speeds on each road segment, giving only a 6% increase in error compared to 
the Gothenburg model. All in all, we can conclude that the new model is 
comparable to the median speed observations for each segment, but the detail 
and realism level of the speed variability along the routes is increased.  
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5.2 Variables not included in the new model 
   
The environmental covariates included in the new joint model are route 
geometry, intersection impedances, type of bicycle-route, type of surface, and 
density of entrances along route. This implies that the model does not include 
the following variables that are relevant for bicycling speeds: weather and 
climate conditions, in particular winter with snow, but also local wind conditions; 
maintenance/standard of routes; impedances at intersections in greater detail, 
including variation of stop times at signal crossings, and variations of 
intersection-layouts and kind of streets; and type of bicycle and bicyclist, 
including e-bikes as separate category.. 
 
In relation to speed variations due to bicyclist or kind of bicycle, the new model 
works as a kind of average speed model. The model predicts speed variation 
along a bicycle route but not how those speeds depend on the bicycle and the 
bicyclist. For studying route choice or accessibility on an aggregated level, this 
is not a problem as long as the populations of bicyclists and bicycles in the 
sample examined correspond with the samples applied for calibrating the 
model. In other cases, where one is studying specific bicyclists or bicycles, 
these differ systematically from the average of the sample applied for calibrating 
the model.  
 
5.3  Bias of sample of bicyclists  
 
The new joint model is partly based on the Markov-model where the sample of 
bicyclists is not representative of an average bicyclist, but instead they are 
mainly fast riding bicycling enthusiasts. The implication is that the speed 
estimated in the Markov-model is higher than for the average bicyclist. In the 
new joint model, this is to some degree compensated for when using the speed 
data from Gothenburg to re-estimate this speed level. However, since the 
Gothenburg data set provides no GPS tracking of speed variation along 
segments, the parameters associated to geometric curvatures, see Equations 
(7)-(10), are still based exclusively on the Markov-model and not re-estimated. 
How well these parameters translate to the bicyclists in Gothenburg is therefore 
an unanswered question, requiring more GPS-data for being examined. For 
instance, the effect of reduced speed due to an uphill climb might be larger for 
the urban bicyclist in Gothenburg, compared to the fit bicycling enthusiasts 
represented in the GPS data set of the Markov-model. As previously 
mentioned, it can also be assumed that a faster bicyclist reduces speed more 
at sharp curves than a slow bicyclist does. To address this bias, the new joint 
model should be re-estimated using a new set of detailed speed data mapped 
from GPS. 
 
5.4 Further research  
 
As highlighted in previous the paragraph, further development of the proposed 
model would benefit from new data collection. In this data collection, one should 
create a large GPS based data set ensuring that the right level of detail, with 
respect to number of covariates, becomes available. With such a data set, the 
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proposed model can be estimated more carefully, obtaining higher precision 
and an expanded range of parameters. 
 
Preferably, the data set on bicycling speeds should be subdivided into two sets, 
one for calibrating the model and one for testing the model. The current dataset, 
which is the GPS-mapped bicycling speeds along a few routes in Gothenburg, 
does not contain sufficient data for doing this. Therefore, both the Gothenburg 
model and the new joint model are tested on within sample data, possibly 
resulting in overfitting the model estimates, compared to a more realistic case 
of using the models to predict speeds on new routes, for instance to evaluate 
planned routes.   
 
A refined model should preferably include input options for specifying different 
kinds of bicycle and bicyclist, either for modelling speeds for particular groups 
of bicyclist, or more comprehensively for being able to model average speeds 
of different bicyclist-populations. An example of the latter is to calculate bicycle 
flow of scenarios with different shares of electric-bicycles, where speed profiles 
are very different from traditional bicycles, which is a relevant issue in current 
planning for bicycling. 
 
Another point requiring further research is the speed reduction at crossings. 
Here we have adopted a bicyclist behaviour equivalent to a sharp turn to model 
the speed reduction around crossings, estimating a single parameter 
representing the level of speed reduction. However, there is no evidence that a 
bicyclist has the same speed reduction before, and acceleration strategy after, 
a crossing, compared to when doing a sharp turn. Especially, one should 
consider different types of crossings, where there can be different types of 
crossing manoeuvres (i.e. straight ahead crossing, left turn, right turn). In 
addition, one should consider waiting times at crossings. The proposed model 
looks at average speeds at every point of a route, and complete stopping at 
crossings is not an option. Therefore, one should estimate the waiting time of 
stopping completely at crossings, from this one would calculate the total travel 
times, then, finally, the average speed for the route segments.   
 
 
6. CONCLUSION  
 
A new proposed bicycling speed model, considering route geometry and a 
selection of variables representing quality and context of routes, provides 
detailed and realistic estimations of speed variation along routes. The model is 
an inspiring basis for further research along several tracks. For developing the 
model, larger empirical studies of bicycle speeds should be carried out and 
more variables relevant for bicycling speeds should be examined and included. 
Regarding application of the model, its potential for modelling accessibility by 
travel time should be explored, very likely leading to improved traffic models 
dealing with travel modes, route choice and aggregated bicycle flows. By 
including variables of explicit route layout as well as context of routes, the model 
also has potential to become a tool shared between traffic planners, urban 
planners and architects, and in that way inspire for stronger collaboration and 
mutual understanding of how urban form influences bicycle traffic.  
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