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ABSTRACT 

Industry is currently seeking rapid methods to verify the accuracy of five-axis machine tools (5A-MTs) throughout 
their operational life. The ballbar has previously been reported as a tool used to identify position-independent 
geometric errors within the rotary axes of 5A-MTs. At present, a minimum of two separate ballbar testing set-ups 
are necessary to identify eight error sources inherent to two rotary axes. This paper presents a method to identify 
the same errors with the use of a single ballbar testing set-up. By completely removing the need for operator 
intervention during or between tests, automation leads to significant reductions in process duration. Error 
identification is first explained mathematically and later evaluated and proven on a commercial 5A-MT. Finally, 
compensation of these errors demonstrates significantly improved 5-axis contouring capability. 

1. INTRODUCTION 

All machine tools are subject to error in the relative positioning and orientation of the cutting tool and the 
workpiece. Thermo-mechanical, load-induced, dynamic and motion-control-related errors notwithstanding, geometric 
error sources can significantly affect part quality as a result of deviations in the position, shape and alignment of 
machine tool axes [1]. The increased mechanical complexity of Five-axis machine (5A-MTs) results in a greater 
number of potential error sources compared to three-axis machines [2]. One of the most widespread 5A-MT 
configurations exhibits three Cartesian linear axes, and two rotary axes housed within a tilting-rotary table assembly, as 
shown in Figure 1. The kinematic configuration of this machine may be denoted as Z  Y  X  A  C, from tool-tip 
to workpiece. In this case, the rotary axes ‘A’ and ‘C’ revolve about the X and Z-directions, respectively and this 
kinematic configuration shall form the focus of this paper. 

Due to accuracy limitations in assembly, error avoidance is now heavily supplemented by error identification and 
compensation. Hence, the development of measurement instrumentation and testing procedures to isolate and measure 
geometric error sources in 5A-MTs is a fertile research area [1], [2]. Since its conception by Bryan in 1982 [3], the 
telescoping magnetic ballbar (ballbar) has become an established tool in the identification of geometric, dynamic and 
motion control errors in three-axis machine tools [4]. However, in 1997, Sakamoto et al. [5] proposed that the 
repertoire of the ballbar may be extended to include the identification of position-independent geometric error sources 
(PIGES, hereafter) in rotary axes. Since then, a wide range of research has been undertaken in this area.  

This paper aims to build upon existing ballbar testing procedures used in the measurement of PIGES within 
tilting-rotary tables in three ways: (i) Reducing the number of necessary testing setups to improve testing durations; (ii) 
Automating the single setup testing procedure to alleviate the need to unnecessary manual intervention with testing 
equipment during and between tests; (iii) The development of error-identification methods that are independent of 
machine tool configuration. For each of these points, explanation of the operating principles is provided, followed by a 
demonstration of effectiveness on a commercial 5A-MT. 
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2. BALLBAR TESTING TO IDENTIFY PIGES IN 5-AXIS MACHINE TOOLS 

The telescoping magnetic ballbar (ballbar), shown in Figure 2a, utilises a precision linear transducer to detect 
deviations as the tool-cup undertakes a circular trajectory about the centre-pivot. An example ballbar setup for rotary 
axis testing is displayed in Figure 2b. In the emergent work of Sakamoto et al. [5], synchronised 3-axis motions 
(utilising a single rotary axis and two linear axes) were used to create a circular interpolation about the average line of 
the rotary axis. By maintaining a constant ballbar alignment throughout this motion, deviations from the nominal 
circular path could be detected and related to rotary-axis geometric errors. Since then, the use of the ballbar in five-axis 
machine tool applications has drawn significant attention in academic research [6]–[13]. 

This paper is concerned with the identification of PIGES within the tilting-rotary table of a five-axis machine tool. 
Termed ‘location’ errors in the ISO 230:1 and ISO 230:7 standards [14], [15], the definitions of these errors are 
outlined in Table 1 and Figures 1b and 1c. For simplification, it is often assumed that only the PIGES within the rotary 
axes e.g. [6], [7], [10] effect the extension of the ballbar. The research presented in this paper also operates using these 
assumptions. 

Due to the ballbar’s single degree of freedom (i.e. extension), multiple error source components can combine to 
change the measured ballbar length. Hence, an enduring research challenge is to design testing toolpaths that help to 
isolate specific error source effects. This is generally achieved by maintaining a constant ballbar alignment throughout 
a circular trajectory created by a rotary axis in isolation, or through synchronised rotary and linear axis motion. This 
strategy has typically taken two forms, namely: aligning the ballbar to a Cartesian reference geometry (e.g. the X-axis) 
[5], [16], or using a cylindrical coordinate system to align the ballbar axially, radially or tangentially with respect to a 
rotary axis average line [6], [8]–[10]. A comparison of both approaches has identified the cylindrical coordinate system 
as a preferred method due to its reduced sensitivity to set-up errors i.e. poor placement of the centre-pivot or 
misalignment of the tool-cup in the spindle [10]. However, the Cartesian alignment has facilitate the capture of more 
complex position-dependent error source information, though this beyond the scope of this research. 

(c) (b) (a) 

Figure 1: (a) Example 5-axis machine tool, with tilting-rotary table, and PIGES associated with the C-axis (b) and A-axis (c) [14] 
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The aim of using different ballbar alignments is to isolate and then measure offset errors and tilt errors in a rotary 
axis average line. In almost all existing research, a radial ballbar alignment is used to identify the centre of rotation, 
which is analogous to the finding the offset errors of a rotary axis [5]–[8], [10], [11]. In contrast, a number of techniques 
have been used to identify tilt errors. The first of these is to use an axial ballbar alignment to measure the distance 
between two circular trajectories; one undertaken by the tool-cup and one traced by the centre-pivot as it rotates about 
the rotary axis [6], [10]. This test identifies the alignment of the plane of rotation of the rotary axis compared to the 
nominally parallel plane containing the tool-cup’s trajectory. An alternative test requires the radially aligned ballbar 
test to be undertaken in at least two axially separated locations along the rotary axis average line e.g. [11]. The line 
passing through each of the identified centres of rotation is then taken as a representation of the rotary axis average line. 
Another testing method exists in which an oblique ballbar alignment is used in conjunction with the radially test to 
identify tilt and offset errors [17].  More complex multi-axis toolpaths (4 or more axes), have also been used to identify 
geometric errors within 5-axis machine tools. The most recognised of these methods emulates a cone-frustum 
machining test using multi-axis control e.g. [9]. 

PIGES values may be separated from ballbar measurement data using analytical methods [6], [7], [10]. These 
methods consider the geometry of the machine tool and use ballbar measurements to identify the position and alignment 
of rotary axes. In the presence of measurement noise and other un-modelled effects, the least-squares fitting of key 
geometries (such as sinusoids, circles, ellipses and planes) is used to add robustness to error identification procedures. 
Alternative error identification methods utilize iterative optimisation algorithms to identify a set of error source values, 
that when inserted into the kinematic model of the machine tool, best explain the observed ballbar measurements [13]. 
In addition to tool-path and error extraction development, researchers have designed more complex centre-pivots and 
tool-cups. For example, [11] introduces a tool-cup with a universal joint, which is used to correct tool-cup 
misalignment errors. Additionally, [7] use a tool-cup and centre-pivot with 45 degree projections. These projections 
permit a full 360 degree rotation in either the Y Z or ZX plane during volumetric three-axis ballbar tests; usually limited 
to partial-arc testing.  

 Despite numerous research efforts, there is currently limited commercial support for ballbar testing used in the 
identification of offset and tilt errors within rotary axes. Possible reasons for this include: 

i. Until recently, there has been a lack of controller capability to generate simultaneous multi-axis 
interpolations; 

ii. The complexity of the toolpath programming has rendered five-axis ballbar testing an ‘expert’ process; 

iii. Multiple testing set-ups increase testing duration and inhibit automation. Additionally, complex / 
machine-specific error identification procedures lead to significant operator expertise requirements 

For the ballbar to be widely accepted in 5A-MT verification, these points must be addressed. Through the design of 
a single set-up ballbar testing procedure, the identification of PIGES within tilting-rotary tables may be highly 
automated, minimising machine down time and removing the need for interim operator intervention.  A secondary aim 
of this research is to use automation and machine-configuration-agnostic error extraction techniques to alleviate the 
current requirement for operator expertise when analysing 5-axis ballbar test results. 

Figure 2: Examples of (a) QC20 ballbar equipment [4], and (b) typical testing setup descriptors for 5-axis axis testing 

(a) (b) 
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Table 1: 5-axis ballbar test setup parameters, A-axis location errors and C-axis location errors 

Setup Parameters A-Axis Error Parameters C-axis Error Parameters 

L0 Nominal (calibrated) ballbar 

length 

EY0A Error in position of A-axis in 

Y-axis direction 

EX0C Error in position of C-axis in 

X-axis direction 

Ox Perpendicular offset of the 

centre-pivot from the C-axis, 

in the X-axis direction 

EZ0A Error in position of A-axis in 

Z-axis direction 

EY0C Error in position of C-axis in 

X-axis direction 

Oz Perpendicular offset of the 

centre-pivot from the A-axis, 

in the Z-axis direction 

EB0A Error of orientation of A-axis 

in the B-axis direction; 

squareness of A to Z 

EA0C Error of orientation of C-axis in 

the A-axis direction 

  EC0A Error of orientation of A-axis 

in the C-axis direction; 

squareness of A to Y 

EB0C Error of orientation of C-axis in 

the C-axis direction 

3. PROPOSED MEASUREMENT METHOD 

As with existing methods, the testing procedure outlined in this research uses simultaneous three-axis interpolations 
to run ballbar tests in the axial and radial alignments for each rotary axis. However, unlike existing methods, this is 
achieved this using the single off-axis set-up illustrated in Figure 2b. 

3.1. Testing Setup 

The single testing set-up used throughout this paper may be characterised by the three parameters in Figure 2b, 
which are listed in Table 1. The spindle is driven to the desired centre-pivot location and the centre-pivot is positioned 
manually. This position is clamped and then set as the origin of the work-piece coordinate system using an available 
work offset. The location of the centre-pivot is then verified using three planar volumetric ballbar tests in the XY, Y Z 
and ZX-planes; originally proposed and described in [10]. The ballbar length measurements are used to describe three 
lines across the surface of a sphere, with the centre-pivot’s location at its centre. By transforming the ballbar lengths 
into X,Y and Z coordinates of the tool-tip, a least squares sphere is fitted to identify the centre coordinates. This fitting 
is achieved using the method outlined in [18]. 

3.2. Radial Ballbar Tests – Locating the Centre of Rotation 

The coordinates of the centre of rotation are identified in the two nominally perpendicular directions to the rotary 
axis average line. In the case of an A-axis (revolving about X), the Y and Z coordinates of the centre of rotation are 
found. If the rotary axis also has tilt errors, the centre of rotation will vary depending on the position of the centre-pivot 
on the table. It is proposed that this is permissible when only locations errors are present, as the combination of the 
centre of rotation, and the alignment of the rotary axis average line is sufficient to characterise the rotary axis for all 
positions. The toolpaths for the radial A-axis test and radial C-axis tests are shown in Figures 3a and 3b, respectively. 
The tool-cup location, [xTC, yTC, zTC]

T
, is calculated for a given rotary axis angle using the transformation in Equation 1, 

rotating a point [x, y, z]
T
, about a line passing through [a, b, c]

T
, with direction unit vector [u, v, w]

T
, through angle θ: 
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As the centre-pivot’s starting position is also the origin of the workpiece coordinate system, and the orientation of 
the rotary axis is yet to be identified, the following values are inserted into Equation 1: 
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The ‘±’ indicates whether the tool-cup rotates in a concentric circular path that has a larger or smaller radius than the 
path followed by the centre-pivot. In the event of perfect centre-pivot placement and a rotary axis that has no offset or 
tilt errors, the ideal centre-pivot location, xCP, may be similarly computed using Equation 1. However, for the Radial 
A-axis test, ‘z’ is changed from L0 to zero, and in the Radial C-axis ‘x’ is changed from L0 to zero. With the ideal 
tool-cup and centre-pivot positions calculated, a ballbar direction unit vector, uBB, is generated for the i

th
 rotary axis 

angle, θi. The ‘±’ indicates whether the tool-cup rotates in a concentric circular path that has a larger or smaller radius 
than the path followed by the centre-pivot. With the ideal tool-cup and centre-pivot positions calculated, a ballbar 
direction unit vector, uBB, is generated for the i

th
 rotary axis angle, θi. 
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When tilt and offset errors are minute, the ‘true’ centre-pivot location may be approximated by extending away 
from the tool-cup position, along the ballbar direction unit vector, by the measured ballbar length. Due to the radial 
alignment of the ballbar throughout the motion, the effects of tilt errors and synchronization errors between the linear 
and rotary axes are approximately perpendicular to the ballbar’s axis of extension. Hence, their effect on the measured 
ballbar length is negligible. With this in mind, the problem of identifying the centre of rotation simplifies to two 
dimensions. As such, a least squares circle may be fitted to the Y and Z-coordinates of the centre-pivot location. The 
centre-coordinates of this circle are then taken as the location of the centre of rotation. In the research presented in this 
paper, the least squares circle is fitted using the ‘Hyper-Fit’ algebraic least squares circle fitting algorithm described by 
Al-Sharadqah et al. [19]. Once identified, this centre of rotation may be transported back to the point of nominal 
intersection of the A and C-axes. This is achieved using the orientation of the rotary axis average and is discussed in the 
next section. 

3.3. Axial Ballbar Tests – Identifying the Orientation of the Plane of Rotation 

To identify the orientation of the plane of rotation, the axial ballbar alignment is used for each rotary axis, as shown 
in Figure 4a and 4b. These tests measure the distance from a known plane (traversed by the tool-cup) to the plane 
containing the centre-pivot motion. As the rotary axis is exercised through its working range, the relative orientation 
between these two planes becomes clear from the ballbar length measurements. The tool-cup and centre pivot positions 
are, again, calculated using Equation 1. The centre pivot uses the same parameters as the radial tests due to the fact that 
the centre-pivot has not moved. The tool-cup locations are calculated for the axial tests using the following parameters: 
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(a) (b) 

Figure 3: (a) Radial A-axis toolpath shown for an ideal and an offset A-axis,  
and (b) Radial C-axis toolpath for and ideal and offset C-axis 
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As with the radial tests, a ballbar direction unit vector is generated using Equation 2. Considering the axial 
alignment of the ballbar, radial offset errors are now perpendicular to the ballbar’s axis of extension. Hence, the 
measured length is predominantly affected by error sources acting in the axial direction. Assuming minute tilt angles, 
small angle approximations may be used to state that the tilt error moves the centre-pivot almost exclusively in the axial 
direction. This assumption is valid if the perpendicular separation of the centre-pivot and rotary axis average line is 
significantly larger than the expected error motion of the centre-pivot caused by axis tilt. In the axial tests, radial 
coordinates of the centre-pivot remain unchanged, but the ‘true’ axial coordinates are updated as follows: 

A-axis:   )()()()( iuiLixix BBmeasCP  ,   C-axis:    )()()()( iuiLiziz BBmeasCP   

Having established the ‘true’ centre-pivot positions throughout the axial toolpath motion, a least squares plane of 
best fit may be fitted to the three-dimensional coordinate data. Assuming the set-up has remained rigid throughout the 
test, this plane is, by definition, parallel to the plane of rotation of the rotary axis. The plane of best fit is defined as 
passing through the centroid of the three-dimensional coordinate data of the centre-pivot locations. For ‘m’ measured 
centre-pivot locations, the centroid is identified as the mean X, Y and Z positions of these points, namely: x , y and z . 
The centre-pivot locations are then centred about this centroid, and stored in a 3m matrix A . 
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Figure 4: Axial ballbar alignment tests for the (a) A-axis and (b) C-axis 

(a) (b) 

(a) 
(b) 

Figure 5: Examples of least squares plane fits to (a) Axial A-axis test data, and (b) Axial C-axis test data 
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Where U and V  are orthogonal matrices, and S is a diagonal matrix containing the singular values. The columns 
of V are the orthonormal basis of the data. The column of V that corresponds to the column of the smallest singular 
value in S  yields the unit vector of the least squares plane of best fit via a minimization of the orthogonal distance of 
the points to the plane. This unit vector and the centroid of the data are sufficient to characterize a plane that is parallel 
to the plane of rotation, as shown in Figure 5.  Any plane may be characterised by Equation 4, which states that a plane 
with normal unit vector, n, anchored to point, x0, and with x,y and z coordinates, x, is equal to zero. Hence, the centroid 
and unit vector from the axial test are used to complete this charaterisation. The previously identified centre of rotation 
from the corresponding radial test may be used with this plane equation to find the point of intersection between the 
rotary axis average line and the identified plane. With the normal unit vector of the plane of rotation and the coordinates 
of the point of intersection between the rotary axis average line and the plane of rotation, the errors identified in the 
offset position may be transported to the point of nominal intersection between the axes A and C. This leads to the 
identification of error source values in accordance with the definitions listed in Table 1 and Figure 1. 

0)(  0xxn  (4)

 3.4. Automating the Measurement Process 

Throughout each of the four ballbar tests, the centre-pivot’s position remains unchanged, allowing automation of 
the entire measurement process. During the testing tool-paths, the axes are controlled using the tool centre-point 
management (TCPM) functionality, making for concise NC programming. To transition from the end of one test, to the 
start of another, TCPM is deactivated and a planar circular interpolation is used to maintain a fixed radius throughout 
the path to permit the ballbar to remain in situ. The operator is simply required to select the next program to run in the 
accompanying ballbar software. It was found that time savings of at least 40% could be made using the single-setup 
procedure, compared with the established two setup e.g. the method presented in [6]. 

4. VERIFICATION THROUGH EXPERIMENTATION 

To verify the efficacy of the proposed method, a HURCO VM10Ui machine tool was used. In these experiments, 
the machine tool was measured using the proposed method, the NC program was manipulated to compensate the 
tool-tip position, and the measurements were repeated. The results of repeating the testing procedure with compensated 
toolpaths are presented in Table 2. In six errors, the error values have undergone a reduction of 85 – 99%. This marks 
a significant improvement, demonstrating the value of the proposed method. In the case of error EZ0A, a reduction of 
47% has been achieved, which is still a marked improvement. Residual errors may be a result of an incorrectly 
measured tool-length, or residual error in the identification of the centre-pivot’s starting position. It is also highly likely 
that the linear axes of the machine tool did not conform to the assumption of near-nominal kinematic performance, 
which will have altered the results. The value EA0C has increased by 183%; it was initially very small and has been 
over-compensated such that its new value is of similar magnitude to the other error sources. 

5. CONCLUSIONS 

This paper has presented a new single set-up ballbar test for use in the identification of position-independent 
geometric error sources within a tilting-rotary table of a five-axis machine tool. It has been shown that a single set-up is 
sufficient to measure four offset and four tilt errors, and that compensation of the machine tool using these values can 
improve five-axis contouring accuracy by reducing error sources by up to 99%. Furthermore, time savings of at least 
40% could be made compared with existing two setup methods. These findings provide significant motivation for 
further development and evaluation of the single-setup method as a rapid machine tool verification technique. Further 
work shall assess the uncertainty of measurements taken using the single set-up method.  

Table 2: Pre and post-compensation error source values generated using the proposed single set-up method 

Error Uncomp. Comp. % Inc. Error Uncomp. Comp. % Inc. Units 

EY0A 0.0726 0.0100 -86.226 EX0C 0.0283 -0.0019 -93.286 [mm] 

EZ0A -0.0202 -0.0107 -47.030 EY0C 0.1041 -0.0023 -97.791 [mm] 

EB0A 1.1284 E-5 4.4256 E-7 -99.608 EA0C 5.1954E-6 -1.4715 E-5 (183.231) [rad.] 

EC0A -1.13006 E-4 1.6461 E-6 -98.734 EB0C -4.1544 E-5 1.3511 E-5 -67.478 [rad.] 



 Flexible Automation and Intelligent Manufacturing, FAIM2015,Wolverhampton, UK 

 

ACKNOWLEDGEMENTS 

The authors are pleased to thank the Engineering and Physical Science Research Council (EPSRC No. 
EP/K504245/1) and our industrial partner for their support during this research. 

REFERENCES 

[1] H. Schwenke, W. Knapp, H. Haitjema, A. Weckenmann, R. Schmitt, and F. Delbressine, “Geometric error measurement 

and compensation of machines—An update,” CIRP Ann. - Manuf. Technol., vol. 57, no. 2, pp. 660–675, Jan. 2008. 

[2]  S. Ibaraki and W. Knapp, “Indirect Measurement of Volumetric Accuracy for Three-Axis and Five-Axis Machine Tools : A 

Review,” Int. J. Autom. Technol., vol. 6, no. 2, pp. 110–124, 2012. 

[3] J. B. Bryan, “A simple method for testing measuring machines and machine tools,” Precis. Eng., vol. 4, no. 2, pp. 61–69, 

1982. 

[4] Renishaw, “Renishaw QC20-W ballbar; new wireless product with volumetric testing capabilityTitle,” 

www.renishaw.com, 2013. [Online]. Available: http://www.renishaw.com/ [Accessed: 20-Sep-2013]. 

[5] S. Sakamoto, I. Inasaki, H. Tsukamoto, and T. Ichikizaki, “Identification of alignment errors in five-axis machining centers 

using telescoping ballbar,” Trans. Japan Soc. Mech. Eng., vol. 63, no. 605, pp. 262–267, 1997. 

[6] M. Tsutsumi and a. Saito, “Identification and compensation of systematic deviations particular to 5-axis machining 

centers,” Int. J. Mach. Tools Manuf., vol. 43, no. 8, pp. 771–780, Jun. 2003. 

[7] S. Ibaraki, Y. Kakino, T. Akai, N. Takayama, I. Yamaji, and K. Ogawa, “Identification of Motion Error Sources on 

Five-axis Machine Tools by Ball-bar Measurements (1st Report) – Classification ofMotion Error Components and 

Development of the Modified Ball Bar Device (DBB5) –,” Jounal Japan Soc. Precis. Eng., vol. 76, no. 3, pp. 333–337, 

2010. 

[8] S. H. H. Zargarbashi and J. R. R. Mayer, “Assessment of machine tool trunnion axis motion error, using magnetic double 

ball bar,” Int. J. Mach. Tools Manuf., vol. 46, no. 14, pp. 1823–1834, Nov. 2006. 

[9] M. S. Uddin, S. Ibaraki, A. Matsubara, and T. Matsushita, “Prediction and compensation of machining geometric errors of 

five-axis machining centers with kinematic errors,” Precis. Eng., vol. 33, no. 2, pp. 194–201, Apr. 2009. 

[10] M. Tsutsumi, S. Tone, N. Kato, and R. Sato, “Enhancement of geometric accuracy of five-axis machining centers based on 

identification and compensation of geometric deviations,” Int. J. Mach. Tools Manuf., vol. 68, pp. 11–20, May 2013. 

[11] K.-I. Lee and S.-H. Yang, “Measurement and verification of position-independent geometric errors of a five-axis machine 

tool using a double ball-bar,” Int. J. Mach. Tools Manuf., vol. 70, pp. 45–52, Jul. 2013. 

[12] M. Tsutsumi and A. Saito, “Identification of angular and positional deviations inherent to 5-axis machining centers with a 

tilting-rotary table by simultaneous four-axis control movements,” Int. J. Mach. Tools Manuf., vol. 44, no. 12–13, pp. 

1333–1342, Oct. 2004. 

[13]  Y. Abbaszadeh-Mir, J. R. R. Mayer, G. Cloutier, and C. Fortin, “Theory and simulation for the identification of the link 

geometric errors for a five- axis machine tool using a telescoping magnetic ball-bar,” Int. J. Prod. Res., vol. 40, no. 18, pp. 

4781–4797, 2002. 

[14] “ISO 230-1:2012: Test code for machine tools -- Part 1: Geometric accuracy of machines operating under no-load or 

quasi-static conditions.” International Organization for Standardization, Geneva, Switzerland. 

[15] “ISO 230-7:2006: Test code for machine tools -- Part 7: Geometric accuracy of axes of rotation.” International 

Organization for Standardization, Geneva, Switzerland. 

[16] “ISO 10791-6:2014: Test conditions for machining centres -- Part 6: Accuracy of sppeds and interpolations.” 

International Organization for Standardization, Geneva, Switzerland. 

[17] X. Jiang and R. J. Cripps, “A method of testing position independent geometric errors in rotary axes of a five-axis machine 

tool using a double ball bar,” Int. J. Mach. Tools Manuf., vol. 89, pp. 151–158, Feb. 2015. 

[18] “Least Squares Geometric Elements Library,” (NPL), The National Physical Laboratory, Distributed via EUROMETROS, 

2004. [Online]. Available: http://www.eurometros.org/gen_report.php?category=distributions&pkey=14&subform=yes. 

[19] A. Al-Sharadqah and N. Chernov, “Error analysis for circle fitting algorithms,” Electron. J. Stat., vol. 3, pp. 886–911, 

2009.  

 


