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Key Points: 10 

• The Mean Absolute Percentage Error increased increases exponentially from 3.2% to 11 

17% for a reduction in group size from 600 to 5 households. 12 

• Past consumption data and household characteristics were are important predictors of 13 

consumption for smaller aggregations of properties. 14 

• The weather influence on consumption only became becomes visible for larger 15 

aggregations of properties. 16 

  17 

mailto:mx220@exeter.ac.uk)


Confidential manuscript submitted to Water Resources Research 

 

Abstract 18 

Understanding, comparing, and accurately predicting water demand at different spatial scales is 19 

an important goal that will allow effective targeting of the appropriate operational and 20 

conservation efforts under an uncertain future. This study used data relating to water 21 

consumption available at the household level, as well as postcode locations, household 22 

characteristics, and weather data in order to identify the relationships between spatial scale, 23 

influencing factors, and forecasting accuracy. For this purpose, a Gradient Boosting Machine 24 

(GBM) was used to predict water demand 1-7 days into the future. The results obtained show an 25 

exponential decay in prediction accuracy from a Mean Absolute Percentage Error (MAPE) of 26 

3.2% to 17%, for a reduction in group size from 600 to 5 households. Adding explanatory 27 

variables to the forecasting model achieved a reduction in MAPE of up to 20% for the peak days 28 

and smaller household groups (20-56 households), whereas for larger aggregations of properties 29 

(100-804 households), the range of improvement was much smaller (up to 1.2%). Results also 30 

showed that certain types of input variables (past consumption and household characteristics) 31 

become more important for smaller aggregations of properties whereas others (weather data) 32 

become less important. 33 

Keywords: water demand forecasting, Gradient Boosting Machines, spatial scales; smart 34 

demand data; weather influence;  35 

1 Introduction 36 

The effectiveness of future efforts, technologies, and conservation strategies is heavily dependent 37 

on accurately predicting water demand at the appropriate scale. From emerging technologies 38 

(e.g. gray water recycling at the household level) to conservation campaigns (e.g. changing 39 

customer’s attitudes) or even future investments (e.g. building new reservoirs), solutions are 40 

typically targeted at a certain level of spatial aggregation. Thus, accurately predicting demand at 41 

the appropriate scale is of the utmost importance for their success.  42 

As part of the commitment to sustainably manage their water resources, water companies are 43 

required to reduce per capita consumption (PCC) and leakage, in order to reduce the impact they 44 

have on the environment (Ofwat, 2017). According to the Office for National Statistics, PCC in 45 

the UK is the 5th highest in the EU (Bailey, 2019), amounting to a total of 114 l/capita/day. 46 

Gaining a better understanding of the factors that influence water use at different spatial scales 47 

can assist with developing improved water demand management strategies and curbing demand. 48 

Leakage also remains at relatively high rates, as approximately 23% of 49 

the total inflow into the network is lost through leaks (Ulanicki et al., 2009). Ofwat, one of 50 

the UK water industry’s regulators, has challenged water companies to reduce this figure by 15% 51 

by 2025 (Ofwat, 2019). 52 

Operators can choose to estimate leakage at different reporting levels, such as district meter areas 53 

(DMA), water resource zone levels or even an intermediate zone level within the distribution 54 

network (Ofwat, 2018). In order to do this, they need to be able to accurately forecast water 55 

demand at different levels within the network. Therefore, the forecasting accuracy that can be 56 

achieved at each level, as well as the factors that determine it need to be assessed. This will allow 57 

water companies to make informed decisions and their regulator to 58 

accurately assess their performance. 59 

 60 
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However, predicting water demand is not an easy task as there are many uncertainties involved 61 

in the process. The main challenges arise from the tight relationship between the human 62 

and natural systems in urban environments, where more than half of the population currently 63 

resides (House-Peters and Chang, 2011), as well as the many time- and space- dependent factors 64 

that can influence water consumption (Parker and Wilby, 2013). Furthermore, the 65 

maximum prediction accuracy that can be achieved as well as the most influential explanatory 66 

factors can vary greatly depending on the spatial scale. When aggregating large areas, the 67 

demand signal is fairly smooth since it averages out over a large number of water users. On the 68 

other hand, small-scale water use is likely to be associated 69 

with increased noise in the data, leading to a higher 70 

uncertainty and thus increased errors.  71 

This study explores in detail and quantifies the relationship between spatial scale and demand 72 

This study explores in detail and quantifies the relationship between spatial scale and demand 73 

This study explores in detail and quantifies the relationship between spatial scale and demand 74 

This study explores in detail and quantifies the relationship between spatial scale and demand 75 

This study explores in detail and quantifies the relationship between spatial scale and demand 76 

• What is the maximum demand forecasting accuracy that can be achieved at different 77 

spatial scales? 78 

• What are the most important influencing factors at each spatial scale? 79 

The current paper is organised as follows. The next section discusses the results and shortfalls of 80 

The current paper is organised as follows. The next section discusses the results and shortfalls of 81 

The current paper is organised as follows. The next section discusses the results and shortfalls of 82 

The current paper is organised as follows. The next section discusses the results and shortfalls of 83 

The current paper is organised as follows. The next section discusses the results and shortfalls of 84 

2 Background 85 

Several studies attempted to predict water consumption, using a great variety of data, models, 86 

methods, as well as explanatory variables (Prescott and Ulanicki, 2008; Herrera et al., 2010; 87 

Adamowski et al., 2012; Tiwari and Adamowski, 2013; Matos et al., 2014; Romano and 88 

Kapelan, 2014; Hutton and Kapelan, 2015; Anele et al., 2017; Brentan et al., 2017; Zubaidi et 89 

al., 2018; Xenochristou et al., 2020b). Some studies in the literature even accounted for the 90 

spatial variability of water demand (Balling at al., 2008; Lee et al., 2009; House-Peters et al., 91 

2010; Polebitski and Palmer, 2010; House-Peters and Chang, 2011; Maheepala et al., 2011; 92 

Rathnayaka et al., 2017a; Chen and Boccelli, 2018). Lee et al. (2010) used space-time variation 93 

and projections on population density to forecast water demand for the city of Phoenix over a 94 

time-space dependent grid. Although integrating future estimates in the forecasting methodology 95 

improved the forecasting accuracy, Lee et al. (2010) argued that additional input factors (other 96 

than population density) could improve the forecasting accuracy. Rathnayaka et al. (2017a) 97 

introduced a model that predicts water end-uses for different types of households at multiple 98 

temporal and spatial scales. Although this approach made use of a variety of household, 99 

temporal, and weather characteristics as predictors, it did not deal with consumption at each scale 100 

as a separate problem. Instead, the total consumption was constructed by merely adding the 101 

individual end-uses of the households in each aggregation of properties. A study by Balling et al. 102 

(2008) investigated water consumption among census tracts and the effect that several weather 103 

variables have on it. Using a variety of explanatory variables, it concluded that census tracts’ 104 



Confidential manuscript submitted to Water Resources Research 

 

sensitivity to drought depends heavily on their socio-economic and land-use characteristics 105 

(particularly the presence of pools). However, results were only tested at the census tract scale. 106 

House-Peters et al. (2010) investigated the drivers of water demand in Hilsboro, Oregon and 107 

concluded that drought condition was not a good predictor of water use at the study area level, 108 

although it was for certain census blocks containing large, new, affluent, and well-educated 109 

households. 110 

As it becomes apparent, although few studies implemented spatial variability in their forecasting 111 

models, there are certain limitations. One of the limits for comprehensive spatial analysis of 112 

water demand has been data availability at high spatial resolutions or in many cases the level of 113 

spatial aggregation of water consumption data not matching the scale of the explanatory 114 

variables. In order to overcome this problem, researchers often have to rely on interpolating or 115 

extrapolating data (Lee at al., 2010; House-Peters and Chang, 2011), i.e. 116 

estimating values for locations within the study area or outside the study area, respectively, 117 

which can be a  challenging process (Lee at al., 2010). Even when data is available at the 118 

household level, it often lacks spatial coordinates (House-Peters and Chang, 2011), sometimes 119 

due to privacy concerns. Another main problem derived from the current literature is the lack of 120 

a systematic comparison of accuracy and influencing factors at various spatial scales. 121 

Since the variables that influence water consumption and the range of temporal and spatial scales 122 

can vary greatly at different settings and case studies, this comparison cannot be derived by 123 

merely comparing the results of different studies in the literature. To summarise, although a 124 

substantial increase in data availability, computational power, and new technologies over the 125 

recent years has contributed in developing spatially explicit demand forecasting models and 126 

identifying and quantifying relationships among a variety of weather, social, and water 127 

consumption data (House-Peters and Chang, 2011; Rathnayaka et al., 2017; Xenochristou et al., 128 

2020b), there is still the need to develop methodologies that incorporate this information at 129 

multiple spatial scales (House-Peters and Chang, 2011). 130 

This study aims to address this gap by making use of a very rich dataset comprising of a variety 131 

of household characteristics, weather data, temporal characteristics, and past consumption. 132 

The aim is to use these data to identify and quantify the influence of the drivers of water 133 

demand at multiple spatial scales and determine how they contribute to the accuracy of demand 134 

forecasting models. 135 

3 Data 136 

3.1 Data Description 137 

The consumption data comes from a region in the southwest of 138 

England and relates to 1,793 properties. These were monitored by the water 139 

company using smart meters at 15-30 minute intervals, over a period of almost three years 140 

(October 2014 to September 2017). The raw dataset 141 

was carefully cleaned in order to exclude incorrect and missing data, empty properties, and 142 

leakage. A detailed description of the cleaning process can be found in Xenochristou et al. 143 

(2020a). 144 
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The water company also collected data related to the households’ characteristics and partial 145 

postcodes. Information regarding the garden size, occupancy rate, metering status, rateable value 146 

of the property, residents’ socio-economic status (ACORN), and council tax band became 147 

available at the household level. The occupancy rate of the household refers to the number of 148 

people living in the property, whereas the metering status reflects if the property is billed based 149 

on their meter reading or not. In the UK, approximately half of the properties are unmetered 150 

(Xenochristou et al., 2020a) and their water bill is calculated based on an estimation, partly 151 

dependent on the property’s rateable value. The higher the rateable value of the property, the 152 

higher the water bill (for unmetered properties). ACORN is a geodemographic segmentation of 153 

the UK’s population in customer types, based on social factors and population behaviour (CACI 154 

Limited, 2014). According to the ACORN guide, customers are divided into groups A to Q, with 155 

groups A to E classified as affluent, F to J as comfortable, and K to Q as financially stretched. 156 

The council tax band reflects the council tax rate the property belongs to, based on its location. 157 

Council tax bands vary from A to H, from the lowest (A) to the highest (H) paying band. The 158 

garden size is the size in m2 of the property’s garden. Finally, postcodes in the UK are comprised 159 

of four parts, indicating the area, district, sector, and unit the house belongs to (Royal Mail, 160 

2012).  In this study, only the first two parts of the postcode, corresponding to the area and 161 

district, were available and used to group the properties. 162 

Each one of the above six household characteristics (garden size, rateable value, occupancy rate, 163 

council tax band, rateable value, and ACORN group) divides the dataset into different categories, 164 

depending on the individual attributes of each household in the dataset. For example, depending 165 

on the characteristic ‘garden size’, the households are divided into three 166 

categories, ‘large’, ‘medium’, and ‘small’, reflecting the size of the garden of the corresponding 167 

household. The categories created for each household characteristic are presented in 168 

Table 1. Out of all six characteristics, two of them (garden size and metering status) were 169 

Table 1. Out of all six characteristics, two of them (garden size and metering status) were 170 

Table 1. Out of all six 171 

characteristics, two of them (garden size and metering status) were organised into categories by 172 

the water company, whereas the rest of them (rateable value, acorn group, occupancy rate, 173 

council tax band) were divided by the authors. The aim in forming these categories was to create 174 

groups that were large enough to be representative, while at the same time being distinct enough 175 

from the rest of the groups to offer a certain explanatory value. A z-statistic was used here to 176 

assess the similarity between the groups. For example, the similarity between the distributions of 177 

daily consumption values over the three years in the data between council tax bands A, B, and C 178 

was assessed using a z-statistic and was deemed similar enough to group them together into 179 

category A-C. 180 

Furthermore, weather data on air temperature, soil temperature at 10 cm depth, humidity, 182 

sunshine duration, and rainfall became available by the UK’s Meteorological Office 183 

(Met Office). 184 

These data were recorded at the hourly or daily scale over the same period (October 2014 to 185 

September 2017), from hundreds of weather stations across the study area, as part of the Met 186 

Office Integrated Data Archive System (MIDAS) Land and Marine Surface Stations Data (Met 187 

Office, 2006a; Met Office, 2006b; Met Office, 2006c; Met Office, 2006d; Met Office, 2006e). 188 

When recorded hourly, the values were transformed to either mean or total daily values. 189 

One additional weather variable was created based on the rainfall data, indicating the 190 
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number of consecutive days without rain. Since weather data was gathered from hundreds of 191 

weather stations across the Southwest, one value for each weather variable was calculated as a 192 

weighted sum of the recorded values among all weather stations. Each property was assigned to 193 

the weather station in the closest proximity and the weight of each weather station was based on 194 

the number of properties assigned to it. The more properties a weather station was the closest to 195 

(more than any other station), the higher the weight of its recordings (Xenochristou et al., 196 

2020a). 197 

Figure 1 gives a brief overview of the distribution of the six weather variables over the period of 198 

the study. Weather in England is characterised by mild temperatures and consistent rainfall all 199 

year round. Generally, maximum air temperatures vary between 5°C and 25°C, with very few 200 

exceptions, mostly over the winter and summer months (Figure 1). Springs and summers are 201 

generally characterised by higher temperatures, increased sunshine hours and lower humidity, 202 

although seasonality is not as prominent as in continental climates. Finally, the total amount of 203 

rainfall seems to be reduced over the spring and summer months. The presence of rainfall 204 

however, which is often found to be the determining factor in water demand forecasting studies, 205 

is consistent over all seasons, although it appears to be lower over the winter months. 206 

Previous analysis explored the interactions and correlations between all available explanatory 207 

Previous analysis explored the interactions and correlations between all available explanatory 208 
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Previous analysis explored the interactions and correlations between all available explanatory 214 

4 Methodology 215 

4 Methodology 216 

4 Methodology 217 

4 Methodology 218 

4 Methodology 219 

4 Methodology 220 

4 Methodology 221 

4 Methodology 222 

This section describes the main steps of the model development process. These include the 223 

selection of the spatial aggregation levels and candidate input variables, as well as the 224 

description of the modelling technique and model technical implementation and assessment. 225 

4.1 Spatial Aggregation 226 

Initially, the households are grouped spatially based on their postcodes. This way, it is easy to 227 

ensure that properties that are grouped together are actually in close geographical proximity and 228 

each property is counted exactly one time. As a result, the following three levels of 229 

spatial aggregation are created: 230 

• Network grouping: No grouping criteria are used. Consumption is aggregated among all 231 

properties for each day in the data (Network, Figure 2a). Due to errors and 232 

inconsistencies, consumption is not available for every property over each day. Therefore 233 
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this group can vary in composition among different days, i.e. include a slightly different 234 

collection of properties. The network group consists of 1,056 data points (each data point 235 

represents one day), with 64-804 properties in each one, depending on data availability 236 

for the corresponding day.  237 

• Area-based grouping: The first part of the postcode (e.g. BA) is used to group the 238 

properties into one of six areas. This group consists of 6,336 data points (Areas, Figure 239 

2a), with 1-212 properties in each one (depending on data availability for the 240 

corresponding postcode and day). Each data point represents the consumption of an area 241 

for one day.  242 

• District-based grouping: The first and second part of the postcode (e.g. BA1) is used to 243 

group the properties into districts. This group consists of 76,032 data points (Districts, 244 

Figure 2a), with 1-56 properties in each one (depending on data availability for the 245 

corresponding postcode and day). Each data point represents the consumption of a district 246 

for one day.   247 

The three aggregation levels have a different range in household composition (i.e. the types of 248 

households they consist of) among the groups. The smaller (district) groups are a lot more 249 

diverse in terms of the types of households they contain, compared to the relatively homogenous 250 

network grouping. If there were no gaps in the data and information for all households was 251 

available for each day in the dataset, all days would contain information about the same 252 

properties. Therefore, no variation would exist when aggregating the whole network. More 253 

details regarding the household composition of each aggregation of properties are available in 254 

the Supporting Information. 255 

In order to create additional spatial scales, the household group size is set to a fixed number 256 

(from 5 to 600), for each postcode and level of spatial aggregation (Figure 2b). Each aggregation 257 

level has a set number of household groups for each day (this might slightly vary due to missing 258 

data), which is 63 for the district level, 6 for the area level, and 1 for the network level. When the 259 

household group size is set to a fixed number, the groups that are smaller than the threshold are 260 

excluded from the dataset, whereas the groups that are larger are reduced to the fixed number of 261 

properties. When this threshold is increased, the number of data points decreases, as groups with 262 

less than the required number of households are removed from the data. The result is nine 263 

different spatial scales, comprising of different household group sizes (Figure 2b). The group 264 

sizes are set to 5, 10 and 20 for the district groups, 40, 80 and 120 for the area groupings and 265 

200, 400, and 600 for the whole network. The dots in Figure 2b illustrate the number and size of 266 

household groups that correspond to each spatial scale, for each day in the data. 267 

4.2 Model Inputs 268 

As it was mentioned in the data section, a variety of input variables became available, including 269 

past consumption and weather data as well as postcodes and household characteristics. Based on 270 

their nature, the variables were divided into four distinct types: 271 

• Past consumption data: Past consumption data are aggregated temporally at the daily 272 

level and spatially at multiple scales. A sliding, 7-day window of past consumption is 273 

used as input in order to capture the weekly repetition of demand patterns. This means 274 

that for every day in the data, the mean daily consumption for each one of the seven days 275 

prior to it was used to make predictions.  276 
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• Household characteristics: These refer to the occupancy rate, acorn group, garden size, 277 

rateable value, council tax band, and metering status. Since each household group is 278 

composed of a variety of households with different characteristics, the percentage of 279 

households in each category is used as an explanatory variable, rather than the 280 

category itself. For example, for the characteristic ‘garden size’, there are 281 

three possible categories, ‘large’, ‘medium’ and ‘small’. Each category is used as a 282 

continuous explanatory variable in the model, with values varying from zero (0% of 283 

households) to one (100% of households). In the case of the garden size, a possible 284 

composition for a household group is 30% large gardens, 60% medium gardens and 10% 285 

small gardens. Thus, the garden size is represented by three explanatory values 286 

(0.30, 0.60, and 0.10), one for each category. The same applies to the rest of the 287 

household variables. 288 

• Temporal characteristics: These relate to the season and type of day (working day or 289 

weekend/holiday). People tend to have different habits over different times of the year as 290 

well as the week, thus temporal variables can be helpful in capturing the time variability 291 

of demand.  292 

• Weather: Weather information includes four weather variables, air temperature, sunshine 293 

hours, relative humidity, and number of consecutive days without rain. These can capture 294 

the weather-dependent variability of demand. 295 

 296 

 297 

 298 

 299 

 300 

The above four variable types are treated as separate entities in the demand forecasting models, as 301 

they have very distinct characteristics that relate to their availability, accessibility, reliability, and 302 

thus importance for network operators. Some of the variables are always easily accessible, reliable, 303 

and ready to use (temporal characteristics). Others can be expensive to acquire, store, and process, 304 

or even inaccurate, especially when they are based on forecasts and estimations (weather and past 305 

consumption data). Information about household characteristics can be anywhere in between; 306 

some are relatively easily accessible (council tax band, metering status, rateable value, and acorn), 307 

whereas others need to be collected through questionnaires and inspections (Xenochristou et al., 308 

2020a). 309 

Eight models with different configurations of the above input variables are tested at 310 

each level of spatial aggregation (Table 2). Models 1 to 4 include a combination of past 311 

consumption data and other characteristics as input whereas models 5 to 8 are built using only 312 

temporal, weather, and household characteristics. 313 

 314 

 315 

4.3 Gradient Boosting Machines 317 

Previous work (Xenochristou and Kapelan, 2020) focused on comparing a selection of 318 

machine learning models for water demand forecasting and identifying the one that 319 

achieves the best accuracy. In that case, the models were compared at a certain spatial scale, 320 
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specifically at the postcode area level. This spatial scale was chosen in order to avoid very small 321 

groups of properties that would have interfered with the accuracy of the results but also in order 322 

to have enough data points to train and test the model. The results obtained showed that the 323 

Gradient Boosting Machine (GBM) method combines high prediction accuracy with ease of 324 

implementation hence was chosen for this work.  325 

The idea behind GBMs is to combine a set of weak, base learners in order to create one strong 326 

learner. In this study, the base learner is decision trees. The way decision trees work is by 327 

dividing the dataset at each branch in a way that maximises entropy, i.e. the homogeneity within 328 

each of the split groups. At each branch (node) of the tree, a variable as well as a threshold value 329 

are chosen for splitting the dataset. The tree will keep dividing until it reaches a limit, typically 330 

defined by the user, such as a maximum tree depth or minimum final node size.  331 

The GBM algorithm uses bagging, as well as boosting in order to achieve the best result. Each 332 

tree is trained on a subset of the original data, while at each node of the tree, the best variable for 333 

splitting is chosen among a random sample of the input variables (bagging). A334 

t each step, one regression tree is built on the residual errors of the previous tree with the aim to 335 

t each step, one regression tree is built on the residual errors of the previous tree with the aim to 336 

4.4 Model Implementation and Assessment 337 

In order to build the model, the dataset is randomly shuffled and divided into a training (70% of 338 

the data) and a test (30% of the data) set. The training set is used to train and tune the model for 339 

the optimum set of hyperparameters, whereas the test dataset does not participate in the model-340 

building phase and is used to carry an unbiased evaluation of the model’s prediction accuracy, 341 

based on unseen data. Model training is the process of fitting the model on the training data 342 

whereas the tuning step refers to the selection of a set of hyperparameters that are chosen before 343 

the training begins. These are important as they define how closely or loosely the model fits the 344 

training data. In order to enhance the robustness of the hyperparameter selection process, the 345 

performance of the hyperparameter values is tested on multiple subsets of the training data using 346 

a 5-fold cross validation process (Zhang, 1993). This means that the training set is divided into 347 

five parts and at every iteration, four parts are used for training while one is used to assess the 348 

model performance.  349 

The GBM is trained and tuned for the optimum set of hyperparameters using the ‘h2o’ package 350 

(LeDell et al., 2019) written for R (R core team, 2013), which serves as an interface for the ‘h2o’ 351 

machine learning platform (Aiello et al., 2019). Predictions are made for different model 352 

configurations, groups of properties, and forecast horizons. The model is retrained and retuned 353 

for every change in the input variables, forecast horizon, or spatial aggregation. The automated 354 

machine learning capability of ‘h2o’, called ‘automl’ (h2o.ai, 2019), is used to identify the 355 

optimum set of hyperparameters in each case, using a random search (Bergstra and Bengio, 356 

2012). The high number of hyperparameters that require tuning (nine in total) increases 357 

significantly the dimensionality of the search space. Thus, any exhaustive grid search manually 358 

implemented by the user would be counter-productive, especially since the aim is to train, tune, 359 

and compare a large number of models.  360 

Nine hyperparameters are tuned in this study for the GBM algorithm: the total number of trees 361 

that construct the final model (ntrees); the size of the subsample of the training dataset used to 362 
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train each tree (sample_rate); the maximum tree depth (max_depth); the number of variables that 363 

are sampled and tested for splitting at each node, for the overall model as well as for each tree 364 

(col_sample_rate and col_sample_rate_per_tree, respectively); the learning rate 365 

(learn_rate) of the algorithm, which is used to reduce the contribution of 366 

subsequent trees to the final result; the histogram type used to assist with the splitting 367 

selection process (histogram_type); and the minimum requirements for splitting at 368 

each node (min_split_improvement and min_rows)369 

. More information regarding the model hyperparameter 370 

can be found in the ‘h2o’ documentation (h2o.ai, 2019).  371 

After the model is properly trained and tuned, it is used on the test dataset to make predictions 372 

for daily consumption 1-7 days into the future. The model performance is 373 

assessed based on three criteria, the mean absolute percentage error (MAPE), mean square 374 

error (MSE), and R2 correlation coefficient, as each one of these provided slightly different 375 

information. The MAPE is intuitive 376 

and independent of the scale of the dependent variable, thus it can be used to compare results 377 

from different studies and variables of interest (e.g. per capita consumption and per household 378 

consumption). The MSE is sensitive to outliers, while the R2 shows the variance in the 379 

dependent variable that can be explained by changes in the independent variable (Xenochristou380 

, 2019). 381 

5 Results 382 

6.1 Demand forecasting accuracy at different spatial scales 383 

Increasing the level of spatial aggregation consequently decreases the randomness and variability 384 

of the water demand signal, making it easier to predict. However, it is unclear by how much. In 385 

the following, the relationship between household group size and prediction accuracy is 386 

investigated in detail.  387 

First, nine models are trained and tuned for the optimum set of hyperparameters, and 388 

consequently assessed for their ability to predict demand for different household group sizes, one 389 

day into the future. For comparison purposes, each model is trained with the same input, 7 390 

days of past consumption. Table 3 shows the aggregation level, group size, and number of data 391 

points that were used to train each model as well as the results acquired from each one based on 392 

three assessment criteria, the MAPE, MSE, and R2, for the training and test dataset. The 393 

results of the hyperparameter tuning process are summarised in the Supporting Information.  394 

According to Table 3, the prediction error (MAPE and MSE) 396 

decreases (i.e. improves) as the group size increases. The 397 

minimum MAPE corresponds to the largest aggregation, at the network level, with 398 

a group size of 600 households, which has an error of 3.2% for the test dataset 399 

(Group size = 600, Table 3). The largest MAPE on the other hand (MAPE = 17%) 400 

relates to the smallest aggregation scale, at the district level, with a group size of 5 households 401 
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(Group size = 5, Table 3). The R2 value also increases with the group size, but only within the 402 

same aggregation level. 403 

However, it is still not clear which point represents the best balance between prediction accuracy 404 

and household group size, i.e. at which spatial scale a further increase in group size does not 405 

offer a significant reduction in prediction errors. This is depicted in Figure 3, which represents 406 

the balance between the MAPE and spatial scale, for the test dataset. According to 407 

Figure 3, the model error increases exponentially as the household group size decreases. When 408 

everything else remains the same (model structure, input variables), increasing the prediction 409 

group size from 40 to 120 households reduces the MAPE by 2.6% 410 

(Figure 3). However, for group sizes below ~20 households, the MAPE 411 

increases significantly for a rather small decrease in group size. For example, 412 

the MAPE increases an additional 7%, from 10% to 17%, for a decrese of 15 413 

households per group (from 20 to 5). On the other hand, for group sizes above ~200 households, 414 

the MAPE decreases marginally for a high increase in group size (Figure 3). 415 

6.2 Variable importance at different spatial scales 416 

The three aggregation levels contain different household group sizes, with different ranges in 417 

their daily consumption and different amounts of data points (Table 4). In order to avoid 418 

increased prediction errors associated with very small groups (<20 households), whilst allowing 419 

to create distinct enough group sizes to allow for a meaningful comparison, the minimum group 420 

size is set to 20, 60, and 100, for the districts, areas, and network, respectively. The smaller the 421 

aggregation level, the smaller the mean group size and the larger the number of data points. In 422 

addition, as consumption becomes more erratic and variable for smaller household groups, the 423 

range in daily consumption also increases (Table 4).  424 

Results are summarised in Figure 4 and Table 5. Figure 4 shows the 425 

prediction accuracy, in terms of MAPE, for predictions 1-7 days ahead, 426 

over all days in the data (plots a-c, Figure 4), as well as peak days, i.e. 10% of the days with the 427 

highest consumption (plots d-f, Figure 4). Each plot represents one 428 

aggregation level (network, area, district) and eight model configurations, with each 429 

configuration corresponding to a different set of input variables (Table 2). Table 4 shows the 430 

MAPE for each model and each aggregation level, for one as well as seven 431 

days into the future, for all days and peak days. The hyperparameter values 432 

selected for each model are available in the Supporting Information.433 

The best performing model for the network level is the one that uses all explanatory variables to 434 

make predictions (model 1). When past consumption data is included in the model (models 1-4), 435 

temporal characteristics reduce the MAPE by 0.5%, for predictions 1 day ahead (model 3), while 436 

weather input further reduces errors by 0.4% (model 2) and household characteristics by 0.1% 437 

(model 1). For models 5-8 (no past consumption data), weather input reduces the MAPE by 0.4% 438 

(model 7), while household characteristics reduce it by 0.1% (model 6). Adding both household 439 

and temporal characteristics (model 5) reduces model errors by 0.9% (Table 5.5). 440 

Although the MAPE value and variance increase for peak days, results are overall very similar. 442 

The best performing model (MAPE = 4.6%), for one day lead time, is the one that uses all 443 
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predictors (model 1). However, for predictions seven days into the future, the model with 444 

temporal, household, and weather characteristics (model 5) performs better (MAPE = 6.1%) than 445 

the model (model 1) that also incorporates past consumption data (MAPE = 6.4%) (Table 5). 446 

Temporal characteristics, on top of past consumption, improve the MAPE by 2.5% (model 3), for 447 

one day lead time. Weather input further reduces errors by 0.2% (model 2) and household 448 

characteristics by 0.6% (model 1). For models 5-8 however (the ones excluding past 449 

consumption data), household and weather input reduce errors by 0.4% (model 6) and 0.1% 450 

(model 7), for predictions one day ahead. The combined effect of both of the above reduces the 451 

MAPE by 1.3%, a reduction much higher than the simple addition of their individual 452 

contributions (model 5). In both cases (all days & peak days), the model that includes only 453 

temporal and weather variables (model 7) performs better than the model that includes only past 454 

consumption data (Model 4) (Table 5). 455 

As the level of spatial aggregation decreases, the range in errors among the models drastically 456 

increases. The best performing model for the areas is still the one that includes all variables 457 

(model 1), for all days as well as peak days (Figure 4, (b) and (e)). In this case, temporal, 458 

weather, and household characteristics, on top of past consumption data, reduce errors by 0.7%, 459 

0.3%, and 0.1%, respectively, for all days, and 3.5%, 0.2%, and 0%, respectively, for peak days. 460 

Weather input for the models without past consumption reduces errors by 0.3% (model 7), for 461 

one day lead time, whereas household characteristics reduce it by 1.5% (model 6), for all days 462 

(Table 5). The combined effect of both household and weather characteristics outperforms again 463 

the mere addition of their individual contributions; the model that includes temporal, household, 464 

and weather variables (model 5) has a MAPE of 4.2% for predictions one day ahead (an 465 

improvement of 2.1%), an error almost as low as the best performing model (model 1) (Table 5). 466 

The same is true for peak days; weather (model 6) and household (model 7) input reduce errors 467 

by 1.6% each, whereas the combination of the two contributes to an error reduction of 4.1% 468 

(Table 5). Finally, for peak days, the model with temporal and weather input (model 7, MAPE = 469 

9.9%) performs better than the model with past consumption data (model 4, MAPE = 10.7%), for 470 

one day lead time. 471 

For the district groups, the MAPE range increases further, varying from 6.7% to 12%, 472 

for predictions one day ahead, for all days. In this case, past 473 

consumption data and household characteristics offer significant improvements, 474 

whereas weather is rather irrelevant (Figure 4c). The model that includes all variables 475 

as input (model 1) has once again the best performance (MAPE = 6.7%, for one day lead), 476 

although temporal, household, and weather input (model 5) can achieve a similar accuracy 477 

(MAPE = 6.8%), for all days in the data. For seven days ahead, models 1 and 5 perform equally 478 

well for all days in the data (MAPE = 6.8%), whereas model 5 performs slightly worse (MAPE = 479 

10.3%) compared to model 1 (MAPE = 10.0%) for peak days. Past consumption data (model 3) 480 

and household characteristics (model 6), on top of temporal characteristics, reduce errors by 481 

4.9%, from 12.0% to 7.1%, for 1 day lead time (Table 5.5). Weather input (models 2 and 7) 482 

offers hardly any benefit to the model for predictions across all days. However, it does improve 483 

the MAPE by a maximum of 0.6% on peak days (model 2), for predictions seven days ahead. 484 

Finally, the model that uses only weather and temporal characteristics (model 7) has almost 485 

double the MAPE for all days (MAPE = 12.0%) and triple for peak days (MAPE = 30.2%), 486 

compared to the best performing model (model 1). 487 
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It is worth noting the upward trend of all models that include past consumption as an explanatory 489 

factor (models 1-4), as predictions move further into the future. Since water consumption is 490 

highly auto-correlated from one day to the next one, predictions for one day ahead are more 491 

accurate than seven days ahead. However, adding weather and household input does reduce 492 

errors for predictions further into the future. On the other hand, for models 5-8 (no past 493 

consumption input), the forecast horizon does not have an effect on the model’s output (Figure 494 

5). The result of this is that the best model sometimes shifts depending on the forecast horizon, 495 

as models that include past consumption often perform best for one day lead time but are 496 

outperformed by the ones that have temporal, household, and weather input for increased lead 497 

times (e.g. seven days). 498 

7 Discussion 499 

This paper shows that if everything else stays the same, water demand prediction errors improve 500 

for larger aggregations of households, reaching constant prediction accuracy for groups larger 501 

than ~200 houses. This is likely due to the fact that as the household group size decreases, water 502 

demand becomes more variable as well as more random/erratic, and therefore more difficult to 503 

predict. This is illustrated by the level of water demand variability, which is clearly associated 504 

with the level of spatial aggregation; smaller groups have a much higher daily water 505 

consumption range (80-250 litres/capita/day for the district groups) compared to larger ones 506 

(115-175 litres/capita/day for the network grouping). As errors reduce for larger group sizes, 507 

the R2 value increases, but only within the same aggregation level. While the 508 

variance in the response variable (i.e. the water consumption) decreases as the group size 509 

increases, moving to a higher aggregation level (e.g. from 510 

districts to areas) also has a negative effect; grouping together houses that are further away from 511 

each other potentially creates less homogenous groups and thus reduces the explanatory 512 

value of the predictor variables, in this case past consumption. 513 

This demand variability in smaller household groups can be largely explained by different 514 

behaviours and habits and thus results can be improved by adding the right explanatory factors as 515 

model inputs. 516 

Past consumption data also became more important as the household group size reduced (Figure 517 

4). Household characteristics are embedded in past consumption, in addition to other factors that 518 

can define the consumption behaviour of a certain property or group of properties. Therefore, 519 

using past consumption data can be particularly valuable for smaller groups, since it can capture 520 

the individual behaviour that relates to the variability in their individual characteristics. This is 521 

demonstrated by examining the influence of the explanatory variables for the district areas 522 

(Figure 4). When past consumption data is available, household characteristics do not further 523 

improve the prediction accuracy of the model. However, when past consumption is not used as 524 

model input, a combination of household, weather, and temporal characteristics can adequately 525 

be used to characterise and thus predict water demand with the same accuracy. For example, 526 

adding weather and household variables on top of past consumption reduced the MAPE a 527 

maximum of 1.6% for peak days and district areas whereas for the model that did not include 528 

past consumption, adding household and weather characteristics achieved a reduction of 19.7%, 529 

from 30% to 10.3%. 530 
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The effect of weather became noticeable only for larger groups of properties (Network & Areas, 531 

Figure 5), while it is rather irrelevant when attempting to predict consumption for smaller 532 

household groups (Districts, Figure 4). Previous studies found that the effect of weather on water 533 

consumption varies between households, days and times in the year (Xenochristou et al. 2019a). 534 

Out of all households in the dataset, only few of them will alter their consumption behaviour 535 

based on the weather and therefore using weather input cannot improve predictions at small 536 

levels of spatial aggregation. In these cases, the model would ‘learn’ based on the majority of the 537 

data points, for which weather does not actually have an influence on consumption. However, 538 

when aggregating all properties for each day in the data, the effect of weather can be seen in each 539 

data point (each day) used to train the model, therefore in this case weather is found to have a 540 

(slight) impact on consumption. Notably, the combined contribution of household and weather 541 

characteristics in the model was in most cases much higher than their individual contributions. 542 

This result confirms further what was already concluded from previous studies (Xenochristou et 543 

al., 2020a), that the influence of weather on water consumption is dynamic and it strongly 544 

depends on the type of property and residents. Therefore, providing additional context in terms 545 

of household characteristics on top of weather information can further improve results. 546 

Finally, implementing more dimensions to the problem, such as the temporal aggregation and 547 

model choice would provide more insights into their effect on the results. Here, a GBM model 548 

and daily scale is used to compare the forecasting accuracy and variables of interest at different 549 

spatial scales. The daily scale allowed to incorporate additional input variables in the model, 550 

such as the day of the week, and account for the weekly pattern of water consumption. The GBM 551 

model was chosen for its accuracy and ease of implementation, based on previous work that 552 

compared the forecasting accuracy of several machine learning models under different scenarios 553 

(Xenochristou and Kapelan, 2020). Ideally, all models should be tested under all different 554 

scenarios, including different spatial scales, in order to determine the best one for each 555 

application. In addition, further work is needed in order to develop a grid of spatial and temporal 556 

aggregations of consumption that will demonstrate the limitations and opportunities that arise at 557 

each scale. However, including each aspect of the water demand forecasting problem as an 558 

unknown variable would increase significantly the dimensionality of the problem. As a result, it 559 

would also increase disproportionally the computational and time requirements of the analysis, 560 

and equally the processing and understanding of the results. In this case, the model type was 561 

considered a fixed (rather than variable) value.  562 

8 Summary and Conclusions 563 

This study explored the effect of the spatial scale on water demand forecasting, both in terms of 564 

prediction accuracy and influencing factors. In order to achieve this, multiple models with 565 

different input variables were trained on real-life UK daily consumption records for different 566 

aggregations of consumption. Initially, three different levels of spatial aggregation were created 567 

using the properties’ postcode. One group included all the households in the network (up to 804 568 

properties/group) while the other two aggregated the properties in the dataset in 6 areas (up to 569 

262 households/group), or 63 districts (up to 56 households/group). At the same time, three 570 

household group sizes were fixed and tested for each aggregation level, varrying from 5 (for the 571 

districts) to 600 (for the network) properties per group per day. A Gradient Boosting Machine 572 

(GBM) was trained using each of the above configurations and a prediction was made for the 573 

water consumption of the same groups, for one day into the future, using only past consumption 574 
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as an explanatory factor. The purpose of this was to compare the modelling accuracy among 575 

models for different spatial scales. After this, different types of model input variables (temporal 576 

characteristics, weather data, household characteristics, past consumption) were used in order to 577 

improve the prediction accuracy at each level of spatial aggregation (Network, Areas, Districts) 578 

and identify the most influential input factors. 579 

The results obtained show the following: 580 

1. The level of spatial aggregation has a direct influence on the demand forecasting 581 

accuracy. In general, the higher the spatial scale of household aggregation, the more 582 

accurate are demand forecasts. For groups of fewer than 20 households, the prediction 583 

error measured via MAPE increases exponentially with a decrease in household group 584 

size. On the other hand, for group sizes above approximately 200 households, a further 585 

increase in group size only marginally reduces the MAPE. 586 

2. Demand forecasting errors can be reduced by using additional explanatory variables, 587 

especially in the case of smaller groups, where the error range varried significantly 588 

depending on the input factors used. In this study, the most influential input variables that 589 

improved the demand forecasting accuracy varied for different levels of spatial 590 

aggregation.  Past consumption became more important for smaller aggregations of 591 

properties, along with household characteristics, whilst weather data contributed to the 592 

model’s accuracy only for larger household groups.  593 

Although the effect of different levels of spatial aggregation was investigated in detail in this 594 

paper, this was done within a fixed set of environmental conditions. All of the above analysis 595 

reflected the consumption of houses in the southwest of England. In a different setting, 596 

with different prominent household and resident characteristics, as well as climate, these results 597 

could be very different. Although the above methodology could be replicated anywhere where 598 

the related data is available, it is important to note that the results could possibly vary.  599 
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