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The Helmholtz equation in random media: well-posedness and a priori bounds*

O. R. Pembery’ and E. A. Spencef

Abstract. We prove well-posedness results and a priori bounds on the solution of the Helmholtz equation
V- (AVu)+ k*nu = —f, posed either in R? or in the exterior of a star-shaped Lipschitz obstacle, for
a class of random A and n, random data f, and for all k£ > 0. The particular class of A and n and
the conditions on the obstacle ensure that the problem is nontrapping almost surely. These are the
first well-posedness results and a priori bounds for the stochastic Helmholtz equation for arbitrarily
large k and for A and n varying independently of k. These results are obtained by combining recent
bounds on the Helmholtz equation for deterministic A and n and general arguments (i.e. not specific
to the Helmholtz equation) presented in this paper for proving a priori bounds and well-posedness of
variational formulations of linear elliptic stochastic PDEs. We emphasise that these general results
do not rely on either the Lax-Milgram theorem or Fredholm theory, since neither are applicable to
the stochastic variational formulation of the Helmholtz equation.

Key words. Helmholtz equation, random media, well-posedness, a priori bounds, high frequency, nontrapping

AMS subject classifications. 35J05, 35R60, 60H15

1. Introduction. The goals of this paper are to prove results on the well-posedness of
variational formulations of the stochastic Helmholtz equation

(1.1) V- (A(w)Vu(w)) + k2n(w)u(w) = —f(w),

as well as a priori bounds on its solution that are explicit in the wavenumber k& and the
material coefficients A and n.
We consider (1.1) with physical domain either R?, d = 2,3, or R4\ D_, where D_ (referred
to as the obstacle) is a bounded, Lipschitz, open set such that R?\ D_ is connected, and
e w is an element of the underlying probability space,
e Ais a symmetric-positive-definite matrix-valued random field such that ess supp(/—A)
is compact,
e n is a positive real-valued random field such that esssupp(l — n) is compact,
f is a real-valued random field such that esssupp f is compact, and
e k > 0 is the wavenumber,
and we are particularly interested in the case where the wavenumber k is large.

Motivation. The motivation for establishing well-posedness and proving a priori bounds
on the solution of (1.1) is the growing interest in Uncertainty Quantification (UQ) for the
Helmbholtz equation; see e.g. [55, 51, 8, 22, 18, 19, 36, 30, 4]. (In this PDE context, by ‘UQ’
we mean theory and algorithms for computing statistics of quantities of interest involving
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2 O. R. PEMBERY AND E. A. SPENCE

PDEs either posed on a random domain or having random coefficients.) There is a large
literature on UQ for the stationary diffusion equation

(1.2) = V- (k(w)Vu(w)) = fw),

due in part to its large number of applications (e.g. in modelling groundwater flow), and
a priori bounds on the solution are vital for the rigorous analysis of UQ algorithms; see
e.g. [3, 2, 24, 41, 15]. In contrast, whilst (1.1) has many applications (e.g. in geophysics and
electromagnetics), there is much less rigorous theory of UQ for the Helmholtz equation. The
main reason for this is that the (deterministic) PDE theory of (1.1) when k is large is much
more complicated that the analogous theory for (1.2).

Related previous work. To our knowledge, the only work that considers (1.1) with large &
and attempts to establish either (i) well-posedness of variational formulations or (ii) a priori
bounds is [18], which considers both (i) and (ii) for (1.1) posed in a bounded domain with an
impedance boundary condition. We discuss the results of [18] further in subsection 1.3, but we
highlight here that (a) [18] considers A = I and n = 147, with 7 random and the magnitude of
1 decreasing with k, whereas we consider classes of A and n that allow k-independent random
perturbations, and (b) in its well-posedness result, [18] invokes Fredholm theory to conclude
existence of a solution, but this relies on an incorrect assumption about compact inclusion
of Bochner spaces—see Appendix A below. In subsection 1.3 we also discuss the papers
[8, 31, 32, 30] on the theory of UQ for either (1.1) or the related time-harmonic Maxwell’s
equations; in these papers either the k-explicit well-posedness is not a primary concern or k
is assumed to be small. Our hope is that the results in the present paper can be used in the
rigorous theory of UQ for Helmholtz problems with large k.

The contributions of this paper. The main results in this paper, Theorems 1.4 and 1.8
below, concern well-posedness and a priori bounds for the solutions of various formulations of
the stochastic Helmholtz equation; these formulations include those used in sampling-based
UQ algorithms (Problems 1 and 2 below) and in the stochastic Galerkin method (Problem 3
below). These are the first such results for arbitrarily large k& and for A and n varying
independently of k. These results are proved by combining:

1. bounds for the Helmholtz equation in [25] with A and n deterministic but spatially-
varying, with

2. general arguments (i.e. not specific to Helmholtz) presented here for proving a priori

bounds and well-posedness of variational formulations of linear elliptic SPDEs.

Regarding 1: the k-dependence of the bounds on w in terms of f depends crucially on whether
or not A, n, and D_ are such that there exist trapped rays. In the trapping case, the solution
operator can grow exponentially in k (see [46, 9, 45, 11, 5] and [6, Section 2.5], and the reviews
in [40, Section 6], [13, Section 1.1], and [25, Section 1]); in contrast, in the nontrapping case,
the solution operator is bounded uniformly in & (see [52, 10] and the references therein). The
bounds in [25] are under conditions on A,n, and D_ that ensure nontrapping of rays; the
significance of these bounds is that they are the first (deterministic) bounds for the Helmholtz
scattering problem in which both A and n vary and the bounds are explicit in A and n (as
well as in k). This feature of being explicit in A and n is crucial in allowing us to prove the
results in this paper when A and n are random fields.

This manuscript is for review purposes only.
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THE HELMHOLTZ EQUATION IN RANDOM MEDIA 3

Regarding 2: the main reason these general arguments are needed is the fact that the vari-
ational formulations of both the deterministic and the stochastic Helmholtz equation are not
coercive, and so one cannot use the Lax—Milgram theorem to conclude well-posedness and an a
priori bound. In the deterministic case, the remedy for the lack of coercivity of the Helmholtz
equation is to use Fredholm theory, but this is not applicable to the stochastic variational
formulation of the Helmholtz equation because the necessary compactness results do not hold
in Bochner spaces (see Appendix A below). Our solution to this lack of coercivity and failure
of Fredholm theory is to use well-posedness results and bounds from the deterministic case
to prove results for the stochastic case. We work ‘pathwise’ by integrating the deterministic
results over probability space and identifying conditions under which the necessary quantities
are indeed integrable. Our approach is given in a general framework that, given (i) determin-
istic well-posedness results and a priori bounds that are explicit in all the coefficients, and (ii)
measurability and integrability conditions on the stochastic quantities, returns corresponding
well-posedness results, a priori bounds, and equivalence results for different formulations of
the stochastic problem. One reason we state our well-posedness results in general (i.e. not only
in the specific case of the Helmholtz equation) is that we expect that they can be used in the
future to prove well-posedness results for the time-harmonic Maxwell’s equations in random
media. A nontechnical summary of the ideas behind our well-posedness results is given in Re-
mark 2.12 below. Some of these results are similar in spirit to the results about the PDE (1.2)
in [24, 41] (which deal with the failure of Lax—Milgram for the stochastic variational problem
for (1.2) in the case when the coefficient x is not uniformly bounded above and below), and
our arguments use some of the ideas and technical tools from these two papers.

1.1. Statement of main results.

Notation and basic definitions. Let either (i) D_ C RY, d = 2,3, be a bounded Lipschitz
open set such that 0 € D_ and the open complement D, = R? \ D_ is connected, or (ii)
D_=0.Let I'p =9dD_. Fix R > 0 and let Bg be the ball of radius R centred at the origin.
Define I'r := 0Bpg and Dpg := D4 N Bp (see Figure 1.1). Let v denote the trace operator from
Dpg to 0Dg =I'p UT'g and define H(}’D(DR) = {v € H'(Dg) : yv =0 on FD}.

Let Tg : H'/*(I'r) — H~'/?(I'g) be the Dirichlet-to-Neumann map for the deterministic
equation Au + k?u = 0 posed in the exterior of B with the Sommerfeld radiation condition

ou

(1.3) -

(x) — iku(x) = 0(74@111)/2> as r = |x| = oo, uniformly in %;
see [42, Section 2.6.3] and [12, Equations 3.5 and 3.6] for an explicit expression for T in terms
of Hankel functions and Fourier series (d = 2)/spherical harmonics (d = 3). Let (-, ) be the
duality pairing on I'g between H~Y/2(I'g) and HY/?(I'g) and write d\ for Lebesgue measure.
Let L* (D+;RdXd) be the set of all matrix-valued functions A : D, — R%9 such that
A;j € L®(Di;R) for all 4,5 = 1,...,d. Where the range of functions is C we suppress
the second argument in a function space, e.g. we write L>°(D,) for L>°(D,;C). We write
Dy CC Dy if Dy is a compact subset of the open set Ds. Let (€2, F,P) be a complete probability
space. Throughout this paper, unless stated otherwise we equip a topological space with its
Borel o-algebra. See Appendix B for a summary of the measure-theoretic concepts used in
this paper. Let

This manuscript is for review purposes only.
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4 O. R. PEMBERY AND E. A. SPENCE

Figure 1.1. Examples of the domains D_ and Dgr, the set I'r, and essential supports of I — A, 1 —n and
f in the definition of the Helmholtz stochastic EDP.

e f:Q — L?(Dy) be such that esssupp f CC Bg almost surely
e n:Q — L>®(Di;R) be such that esssupp(l —n) CC Bgr almost surely and there exist
Nmin, Mmax © 2 — R such that 0 < npip(w) < n(w)(x) < Nmax(w) for almost every
x € D, almost surely, and
e A: Q) — L™ (D+; RdXd) be such that esssupp(I — A) CC Bg, Ai; = Aj; almost surely,
and there exist Amin, Amax : € — R such that 0 < Apin(w) < Amax(w) almost surely
and A (w)]€]? < (Aw)(x)€) - &€ < Amax(w)|€]? for almost every x € D, and for all
£ € C% almost surely.
If v : Q — Z for some function space Z of functions on R?, we abuse notation slightly and
write v(w, x) instead of v(w)(x).
Variational Formulations. We consider three different formulations of the Helmholtz stochas-
tic exterior Dirichlet problem (stochastic EDP); Problems 1-3 below.
Define the sesquilinear form a(w) on H&D(DR) X H&D(DR) by

(1.4) [a(w)](v1,v2) = / ((A(w)Vvl) -V — k?n(w) vy 72) dX — <TR’yvl,’yv2>rR,
Dpgr
and the antilinear functional L(w) on H& p(DRr) by

(L5) L)) = [ )75 dA.

f
Dpg
Define the sesquilinear form a on L? (Q;H&D(DR)) x L? (Q;H(%’D(DR)) and the antilinear
functional £ on L?(Q; H&D(DR)) by

(1.6) a(vi,v2) = /Q[a(w)](vl(w),vg(w))dP(w) and £(vy) = /Q[L(w)](vg(w))dIP’(w).

We consider the following three problems:

This manuscript is for review purposes only.
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THE HELMHOLTZ EQUATION IN RANDOM MEDIA 5

Problem 1 (Measurable EDP almost surely). Find a measurable u : @ — Hg ,(Dg) such
that

[a(w)](u(w),v) = [L(w)](v) for all v € H&D(DR) almost surely.
Problem 2 (Second-order EDP almost surely). Find u € L? (Q;H&D(DR)) such that
[a(w)](u(w),v) = [L(w)](v) for all v € H&D(DR) almost surely.
Problem 3 (Stochastic variational EDP). Find u € LQ(Q;H&D(DR)) such that
a(u,v) = £(v) for all v € L* (2 H&,D(DR)).

Problem 2 is the foundation of sampling-based UQ methods, such as Monte-Carlo and
Stochastic-Collocation methods; its analogue for the stationary diffusion equation is well-
studied in, e.g., [54, 2, 43, 14, 15, 50, 35, 29]. Similarly Problem 3 is the foundation of the
Stochastic Galerkin method (a finite element method in 2 x D, where D is the spatial domain),
and is studied for the Helmholtz Interior Impedance Problem in [18], and its analogue for the
stationary diffusion equation is considered in, e.g., [3, 34, 27].

Remark 1.1 (Why consider Problem 17).

The difference between Problems 1 and 2 is that Problem 1 requires no integrability of u
over 2, whereas Problem 2 requires u € L?(, Hé’ p(DRr)). Since all the theory for sampling-
based UQ methods assume some integrability of the solution, the natural question is: why
consider Problem 1 at all? The main reason we consider Problem 1 is that, given the existing
PDE theory for the Helmholtz equation, we can prove existence of a solution to Problem 1
under general conditions on A and n, but there is no current prospect of proving existence
of a solution to Problem 2 under general conditions on A and n. The explanation for this
consists of the following three points:

1. The only two known ways to obtain a solution to Problem 2 are: (i) obtain a de-
terministic a priori bound, explicit in all parameters, and integrate (followed, e.g., in
[15] for (1.2) with lognormal coefficients) and (ii) obtain a solution to Problem 3 and
show this is a solution to Problem 2. In the Helmholtz case, doing (ii) is difficult as
neither the Lax—Milgram theorem nor Fredholm theory is applicable (as explained in
the introduction), and so we follow the approach in (i).
2. The only known bounds on the solution of the Helmholtz equation explicit in all
parameters are those recently obtained for nontrapping scenarios in [25, 21].
3. Obtaining a bound explicit in all parameters for a general class of A and n, e.g.,
AecWwh>® (DR; RdXd) and n € L*°(Dpg;R) is well beyond current techniques. Indeed,
a general class of A and n will include both trapping and nontrapping scenarios, and
such a bound would need to capture the exponential blow-up in k for trapping A and
n, the uniform boundedness in k for nontrapping A and n, and be explicit in A and n.
Given this fact that there is no current prospect of proving existence of a solution to Problem 2
under general conditions on A and n we keep Problem 1 so that we prove an (albeit weaker)
existence result for the Helmholtz equation with general coefficients.

This manuscript is for review purposes only.
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6 O. R. PEMBERY AND E. A. SPENCE

Remark 1.2 (Measurability of w in Problem 1). It is natural to construct the solution of
Problem 1 pathwise; that is, one defines u(w) to be the solution of the deterministic problem
with coefficients A(w) and n(w). However, is it then not obvious that u is measurable. In the
proof of Theorem 1.4 below, we show that the measurability of u follows from (i) a natural
condition on the measurability of the coefficients and data (Condition C1 below), and (ii) the
continuity of the map taking the coefficients of the deterministic PDE to the solution of the
deterministic PDE (see Lemma 4.12 below).

In Theorems 1.4 and 1.8 we prove results on the well-posedness of Problems 1-3 under
conditions on A, n, f, and D_. Although A, n, and f are defined on D, since esssupp({ — A),
esssupp(l —n), and esssupp f are compactly contained in Dr we can consider A, n, and f as
functions on Dg.

Condition 1.3 (Regularity and stochastic regularity of f, A, and n). The random fields f, A,
and n satisfy f € L? (Q; LQ(DR)), A:Q— Whe (DR;RdXd) with A € L™ (Q; L™ (DR;]RdXd)),I
and n € L*(Q; L (Dg; R)).

Theorem 1.4 (Equivalence of variational problems). Under Condition 1.3:

e The maps a and £ (defined by (1.6)) are well-defined.

o uclL? (Q; H&’D(DR)) solves Problem 2 if and only if u solves Problem 3.

o IfucL? (Q;H&D(DR)) solves Problem 2, then any member of the equivalence class
of u solves Problem 1.

e The solution of Problem 1 exists and is unique up to modification on a set of measure

zero in €.
e The solution of Problems 2 and 3 is unique in L? (Q; H&D(DR)).

Observe that the only relationship between formulations not proved in Theorem 1.4 is:
ifu:Q — H&D(DR) solves Problem 1 then u € L? (Q;H&D(DR)) and u solves Problem 2.
Theorem 1.8 below includes this relationship, under additional assumptions on A, n, and D_.

Definition 1.5 (A particular class of (deterministic) nontrapping coefficients). Let u1, ua > 0,
Ay € W9 (Dp; R>*4) with ess supp(I—Ag) CC Bg, andng € WH>(Dg; R) with ess supp(1—
ng) CC Br. We write Ag € NT (1) and ng € NT,,(u2) if

(1.7) Ap(x) — (x-V)Aog(x) > 1 and  no(x) +x - Vng(x) > ua

for almost every x € D, where the first inequality holds in the sense of quadratic forms.

Condition 1.6 (k-independent nontrapping conditions on (random) A and n). The random
fields A and n satisfy A : Q — Wh (DR;]RdXd) and n : Q — WH*°(Dg;R). Furthermore,
there exist ui,puo : Q2 — R, independent of f, with pj(w),p2(w) > 0 almost surely and
1/p1,1/pue € L2(S;R) such that A(w) € NT 4(u1(w)) almost surely and n(w) € NT,,(uz(w))
almost surely.

Definition 1.7 (Star-shaped). The set D C R? is star-shaped with respect to the point xq
if for any x € D the line segment [xg,x] C D.

Theorem 1.8 (Equivalence of variational problems in a nontrapping case). Let D_ be star-
shaped with respect to the origin. Under Conditions 1.3 and 1.6:
o The maps a and £ (defined by (1.6)) are well-defined.

This manuscript is for review purposes only.
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e Problems 1-3 are all equivalent.
o The solution u € L? (Q;H&D(DR)) of these problems exists, is unique, and, given
ko > 0, satisfies the bound

(1.8) HVUH%Q(Q;LQ(DR)) + k2”u||%2(Q;L2(DR)) < ”ClﬂLl(Q)HfH%?(Q;B(DR))

for all k > kg, where C1 : Q) — R is given by

2 2
(1.9) Clzmax{1,1}<R+2<R—l—d_1> )
p1op2 ) \ p1 pe 2ko
As highlighted above, Theorem 1.8 is obtained from combining deterministic a priori
bounds from [25] with the general arguments in section 2 about well-posedness of variational
formulations of stochastic PDEs. Theorem 1.8 uses the most basic a priori bound proved in
[25] (from [25, Theorem 2.5]), but [25] contains several extensions of this bound. Remarks 1.9,

1.10, and 1.12-1.14 outline the implications that these (deterministic) extensions have for the
stochastic Helmholtz equation.

Remark 1.9 (Dirichlet boundary conditions on I'p and plane-wave incidence). The formu-
lations of the stochastic EDP above assume that w = 0 on the boundary I'p. An important
scattering problem for which u # 0 on I'p is when wu is the field scattered by an incident plane
wave; in this case yu = —yuy, where uy is the incident plane wave. The results in this paper
can be easily extended to the case when u # 0 on I'p using [25, Theorem 2.19(ii)] which
proves a priori (deterministic) bounds in this case. One subtlety, however, is that f is then
not necessarily independent of y; and po, indeed in this case f = —V - (AVus) — k*>nus. One
can produce an analogue of Theorem 1.8 in the case where f, u1, and us are dependent, but
one requires 1/p1,1/p2 € L*(Q) and f € L*(Q; L?(D)); see Remark 4.17 below.

Remark 1.10 (The case when either n =1 or A = I). When either n =1 or A = I, [25,
Theorem 2.19] gives deterministic bounds under weaker conditions on A and n respectively;
the corresponding results for the stochastic case are that: When n = 1 almost surely, the con-
dition A(w) € NT4(p1(w)) in Condition 1.6 can be improved to 2A(w) — (x- V)A(w) >
u1(w) for almost every x € D,, almost surely. When A = I almost surely, the con-
dition n(w) € NT,(u2(w)) in Condition 1.6 can be improved to: 2n(w) + x - Vn(w) >
u2(w) for almost every x € D, almost surely.

Remark 1.11 (Geometric interpretation of the conditions on A and n in Definition 1.5).
Recall that the k — oo asymptotics of solutions of the Helmholtz equation are governed by
the behaviour of rays (see, e.g., [1]). The Helmholtz EDP is nontrapping if all rays starting
in Dp escape from Dp after some uniform time (see, e.g., [10, Definition 1.1]); the EDP is
trapping otherwise. The k-dependence of the solution operator depends strongly on whether
the problem is trapping, and the type of trapping present; see, e.g., the overview discussions
in [25, Section 1], [13, Section 1.1]. The conditions on A and n in Condition 1.6 and the
star-shapedness restriction on D_ are sufficient for the Helmholtz stochastic EDP to be non-
trapping almost surely. For more details on how these conditions are related to trapping, see
[25, Theorem 7.7].

This manuscript is for review purposes only.
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8 O. R. PEMBERY AND E. A. SPENCE

Remark 1.12 (The Helmholtz stochastic truncated exterior Dirichlet problem). It is common
to approximate the Dirichlet-to-Neumann map on I'g, i.e. Tk, by an ‘absorbing boundary
condition’, the simplest of which is the so-called impedance boundary condition. We call the
Helmholtz stochastic EDP posed in Dr with an impedance boundary condition on I'r the
stochastic truncated exterior Dirichlet problem (stochastic TEDP). The results in this paper
also hold for the stochastic TEDP (with arbitrary Lipschitz truncation boundary) under an
analogue of Condition 1.6 based on the deterministic bounds in [25, Theorem A.6(i)] instead
of [25, Theorem 2.5].

Remark 1.13 (Discontinuous A and n). The requirements on A and n in Definition 1.5
require A and n to be continuous. In addition to proving deterministic a priori bounds for
the class of A and n in Definition 1.5, the paper [25] also proves deterministic bounds for
discontinuous A and n satisfying (1.7) in a distributional sense; see [25, Theorem 2.7]. The
well-posedness results and a priori bounds in this paper can therefore be adapted to prove
results about the stochastic Helmholtz equation for a class of random A and n that allows
nontrapping jumps on randomly-placed star-shaped interfaces.

Remark 1.14 (k-dependent A and n). In this paper we focus on random fields A and n
varying independently of k; this corresponds to a fixed physical medium, characterised by A
and n, with waves of frequency k passing through. In subsection 1.2 below we construct A and
n as (k-independent) W1 perturbations of random fields Ag and ng satisfying Condition 1.6.
We note, however, that results for A and n being k-dependent L perturbations (i.e. rougher,
but k-dependent perturbations) of Ay and ng satisfying Condition 1.6 can easily be obtained.

The basis for these bounds is observing that deterministic a priori bounds hold when
(a) A € NT4(p1), n = no +n, where ng € NTy(u2) and K[| o (p, g is sufficiently small,
and (b) A = Ao + B, n = ng +n, where Ag € NTa(pu1), no € NTn(p2), k[l poo(pjir) and
k| Blly 1.0 (ppiraxay are both sufficiently small, and A, n, and D_ are such that u € H?(Dg)
(see, e.g., [39, Theorem 4.18(i)] for these latter requirements). Given these deterministic
bounds, the general arguments in this paper can then be used to prove well-posedness of the
analogous stochastic problems.

To understand why bounds hold in the case (a), observe that one can write the PDE as

(1.10) V- (AVu) + E*nou = —f — k*nu;

if k[0l oo (py;r) is sufficiently small then the contribution from the k*nu term on the right-
hand side of (1.10) can be absorbed into the k2||uH2L2( py) term appearing on the left-hand
side of the bound (the deterministic analogue of (1.8)). In the case ng = 1, this is essentially
the argument used to prove the a priori bound in [18, Theorem 2.4] (see [25, Remark 2.15]).
The reason bounds hold in the case (b) is similar, except now we need the H? norm of u on
the left-hand side of the bound (as well as the H! norm) to absorb the contribution from the
V - (BVu) term on the right-hand side.

1.2. Random fields satisfying Condition 1.6. The main focus of this paper is proving
well-posedness of the variational formulations of the stochastic Helmholtz equation, and a
priori bounds on the solution, for the most-general class of A and n allowed by the deterministic
bounds in [25]. However, in this section, motivated by the Karhunen-Loéve expansion (see
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e.g. [38, p. 201ff.]) and similar expansions of material coefficients for the stationary diffusion
equation [35, Section 2.1], we consider A and n as series expansions around known non-random
fields Ay and ng satisfying Condition 1.6 (i.e., Condition 1.6 is satisfied for ng, Ag independent
of w € Q, and therefore 1, us independent of w). Define

(1.11) Alw,x) = Ap(x) + ZY](w)\Il](x) and n(w,x)=no(x)+ Z Zj(w)j(x),
=1 =1

where:
e esssupp(l — Ayp), esssupp(I — ng) CC Bp,
e Ay and ng satisfy Condition 1.6 with g1 and ps independent of w € Q
o Y;, Z; ~ Unif(-1/2,1/2) iid.,
o U, € Wheo (DR;]RdXd) with esssupp¥; CC Bgi for all j =1,...,m,

o o
(112) ) esssupecp, | ¥)ll, < 240min  and ZH‘I’J‘HWWDR;RM < 00,
Jj=1 Jj=1

where Ag min > 0 is such that A07min]£]2 < (A(X)E) - & for almost every x € D, and
for all £ € C?, and where ||-||, is the operator norm induced by the Euclidean vector
norm on C? (i.e., ||-||5 is the spectral norm).

e ¢); € WL°(Dpg;R) with esssuppv; CC Bg for all j =1,...,m,

[e.e] [e.e]
(1.13) S sl e pmy < 20min and S I e o < 50
J=1 J=1
where 19 min ‘= essinfxep,, no(x), and
The first assumptions in (1.12) and (1.13) ensure that A > 0 (in the sense of quadratic
forms) and n > 0 almost surely, respectively. The second assumptions in (1.12) and (1.13)
are used to prove A and n are measurable, respectively; see [44, Appendix C]. The following
lemmas give sufficient conditions for the series in (1.11) to satisfy Condition 1.6.

Lemma 1.15 (Series expansion of A satisfies Condition 1.6). Let u > 0, § € (0,1). If
Ap € NT4(u), and

(1.14) S ess by |95 (%) — (x - V) ()], < 264,
j=1

then A € NT4((1 —0)u) almost surely.
Proof of Lemma 1.15. Since Ag € NT 4(u), we have

(115) ((Aw,x) = (x- V)A(w, %)) - & = ule + > (V@) (W) = (x- V)W (x))¢) - €
j=1

for all £ € C4, for almost every x € Dp, almost surely. As Y; ~ Unif(—1/2,1/2) for all j and
the bound (1.14) holds, the right-hand side of (1.15) is bounded below by (1 — &)u|¢|* almost
surely. Since £ € C? was arbitrary, it follows that A(w) € NT4((1 — 6)u)) almost surely, as
required. |
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10 O. R. PEMBERY AND E. A. SPENCE

Lemma 1.16 (Series expansion of n satisfies Condition 1.6). Let u > 0 and ¢ € (0,1). If
ng € NTy(p) and 3770 ||vh;(x) +x - Vi ()| oo (pir) < 204, then n € NTp((1 = 0)p).

The proof of Lemma 1.16 is omitted, since it is similar to the proof of Lemma 1.15; in fact
it is simpler, because it involves scalars rather than matrices.

1.3. Discussion of the main results in the context of other work on UQ for time-
harmonic wave equations. In this section we discuss existing results on well-posedness of
(1.1), as well as analogous results for the elastic wave equation and the time-harmonic Maxwell’sf]
equations. The most closely-related work to the current paper is [18] (and its analogue for
elastic waves [20]), in that a large component of [18] consists of attempting to prove well-
posedness and a priori bounds for the stochastic variational formulation (i.e. Problem 3) of
the Helmholtz Interior Impedance Problem; i.e., (1.1) with A = I and stochastic n posed in a
bounded domain with an impedance boundary condition du/dv —iku = g (see the discussion
of such boundary-value problems in Remark 1.12). Under the assumption of existence, [18]
shows that for any & > 0 the solution is unique and satisfies an a priori bound of the form (1.8)
(with different constant C7), provided n = 1 4 1 where the random field n satisfies (almost
surely) ||7]| .« < C/k for some C' > 0 independent of k. [18] then invokes Fredholm theory
to conclude existence, but this relies on an incorrect assumption about compact inclusion of
Bochner spaces—see Appendix A below. However, combining Theorem 1.4 and Remarks 1.12
and 1.14 with A = [ and ng = 1+ n (with n as above) produces an analogous result to
Theorem 1.8, and gives a correct proof of [18, Theorem 2.5]. Therefore the analysis of the
Monte Carlo interior penalty discontinuous Galerkin method in [18] can proceed under the
assumptions of Theorem 1.4 and Remarks 1.12 and 1.14.

The paper [30] considers the Helmholtz transmission problem with a stochastic interface,
ie. (1.1) posed in R? with both A and n piecewise constant and jumping on a common,
randomly-located interface. A component of this work is establishing well-posedness of Prob-
lem 1 for this setup. To do this, the authors make the assumption that k is small (to avoid
problems with trapping mentioned above—see the comments after [30, Theorem 4.3]); the
sesquilinear form a is then coercive and an a priori bound (in principle explicit in A and n)
follows [30, Lemma 4.5]. By Remark 1.13, the results of this paper can be used to obtain the
analogous well-posedness result for large k£ in the case of nontrapping jumps.

The paper [8] studies the Bayesian inverse problem associated to (1.1) with A = I and
n = 1 posed in the exterior of a Dirichlet obstacle with random boundary. A component of
the analysis in [8] is the well-posedness of the forward problem for an obstacle with a variable
boundary [8, Proposition 3.5]. Instead of mapping the problem to one with a fixed domain
and variable A and n, [8] instead works with the variability of the obstacle directly, using
boundary-integral equations. The k-dependence of the solution operator is not considered,
but would enter in [8, Lemma 3.1].

The papers [32] and [31] consider the time-harmonic Maxwell’s equations with (i) the
material coefficients e, u constant in the exterior of a perfectly-conducting random obstacle
and (ii) e, 4 piecewise constant and jumping on a common randomly located interface; in both
cases these problems are mapped to problems where the domain/interface is fixed and ¢ and
w are random and heterogeneous. The papers [32] and [31] essentially consider the analogue
of Problem 1 for the time-harmonic Maxwell’s equations, obtaining well-posedness from the
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THE HELMHOLTZ EQUATION IN RANDOM MEDIA 11

corresponding results for the related deterministic problems.

1.4. Outline of the paper. In subsection 1.3 we discuss our results in the context of
related literature. In section 2 we state general results on a priori bounds and well-posedness
for stochastic variational formulations. In section 3 we prove the results in section 2. In
section 4 we prove Theorems 1.4 and 1.8. In Appendix A we discuss the failure of Fredholm
theory for the stochastic variational formulation of Helmholtz problems. In Appendix B we
recap results from measure theory and the theory of Bochner spaces.

2. General results on proving a priori bounds and well-posedness of stochastic varia-
tional formulations. In this section we state general results for proving a priori bounds and
well-posedness results for variational formulations of linear elliptic SPDEs.

2.1. Notation and definitions of the variational formulations. Let (2, F,P) be a com-
plete probability space. Let X and Y be separable Banach spaces over a field F, (where F = R
or C). Let B(X,Y™) denote the space of bounded linear maps X — Y™*. Let C be a topological
space with topology T¢. Given maps

c:Q—=C, A:C—BX,Y"), and L:C—Y",
let A: L2(Q; X) — L2(;Y)" and £ € L2(;Y)* be defined by

(2.1) [2A(w)] (v) ::/Q[.Ac(w)u(w)] (v(w)) dP(w) and £(v) ::/QEC(W)(U(w)) dP(w)

for v € L2(€;Y). Recall that a bounded linear map X — Y* is equivalent to a sesquilinear
(or bilinear) form on X x Y; see e.g. [48, Lemma 2.1.38]. To keep notation compact, we write

Acwy = (Aoc)(w) and L) = (Lo c)(w).

Remark 2.1 (Interpretation of the space C). The space C is the ‘space of inputs’. For the
stochastic Helmholtz EDP in subsection 1.1 the space C is defined in Definition 4.5 below, but
the upshot of this definition is that for any w € Q the triple (A(w),n(w), f(w)) is an element
of C. The maps ¢, A, and L are given by ¢ = (A,n, f), A = a, and £ = L, where a and L
are given by (1.4) and (1.5) respectively and the equality A = a is meant in the sense of the
one-to-one correspondence between B(X,Y™) and sesquilinear forms on X x Y.

The following three problems are the analogues in this general setting of Problems 1-3 in
section 1.

Problem MAS (Measurable variational formulation almost surely). Find a measurable func-
tion u : Q — X such that

(2.2) .Ac(w)u(w) = [,C(w) inY”
almost surely.

Problem SOAS (Second-order moment variational formulation almost surely).  Find u €
L2($2; X) such that (2.2) holds almost surely.

Problem SV (Stochastic variational formulation). Find u € L?(Q; X) such that
(2.3) Au = £ in L*(Y)"

This manuscript is for review purposes only.
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12 O. R. PEMBERY AND E. A. SPENCE

Remark 2.2 (Immediate relationships between formulations). Since L?(Q; X) C B(f, X)
(the space of all measurable functions 2 — X)) it is immediate that if u solves Problem SOAS
then every member of the equivalence class of u solves Problem MAS.

2.2. Conditions on A, £, and ¢. We now state the conditions under which we prove
results about the equivalence of Problems MAS-SV.

Condition A1l (A is continuous). The function A :C — B(X,Y™) is continuous, where we
place the norm topology on X, the dual norm topology on Y™, and the operator norm topology
on B(X,Y™).

Condition A2 (Regularity of Aoc¢). The map Aoc e L>®(Q;B(X,Y™)).

We note that Condition A2 is violated in the well-studied case of a log-normal coefficient
k for the stationary diffusion equation (1.2); in order to ensure the stochastic variational
formulation is well-defined in this case, one must change the space of test functions as in
24, 41]

Condition L1 (L is continuous). The function L : C — Y™ is continuous, where we place
the dual norm topology on Y*.

Condition L2 (Regularity of Loc). The map Loc € L*(Q;Y*).
Condition C1 (¢ is measurable). The function ¢ : Q@ — C is measurable.
To state the next condition, we need to recall the following definition.

Definition 2.3 (IP-essentially separably valued [47, p26]). Let (S, Tg) be a topological space.
A function h : Q — S is P-essentially separably valued if there exists E € F such that
P(E) =1 and h(E) is contained in a separable subset of S.

Condition C2 (c is P-essentially separably valued). The map ¢ : Q — C is P-essentially
separably valued.

Remark 2.4 (Why do we need Condition C27). The theory of Bochner spaces requires
strong measurability of functions (see Definitions B.9 and B.14 below). However, the proof
techniques used in this paper rely heavily on the measurability of functions (see Definition B.1
below). In separable spaces these two notions are equivalent (see Corollary B.19). However,
some of the spaces we encounter (such as L>°(Dpg;R)) are not separable. Therefore, in our
arguments we use Condition C2 along with the Pettis Measurability Theorem (Theorem B.18
below) to conclude that measurable functions are strongly measurable.

Condition B (A priori bound almost surely). There exist Cj, f; : Q@ = R, j=1,...,m such
that C;f; € LY(Q) for all j =1,...,m and the bound

(2.4) lu@)Ix < Cj(w) fi(w)
j=1

holds almost surely.

Remark 2.5 (Notation in the a priori bound). We use the notation f; in the right-hand
side of (2.4) to emphasise the fact that typically these terms relate to the right-hand sides of
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the PDE in question. For the stochastic Helmholtz EDP, m = 1, f; = ||f||%2(D), and C is
given by (1.9).

Condition U (Uniqueness almost surely). ker(.Ac(w)) = {0} P-almost surely.
The condition ker(Ac(w)) = {0} P-almost surely can be stated as: given G € L*(Q;Y)",
for P-almost every w € (2 the deterministic problem A,yup = G has a unique solution,

2.3. Results on the equivalence of Problems MAS, SOAS, and SV.

Theorem 2.6 (Measurable solution implies second-order solution). Under Condition B, if u
solves Problem MAS then u solves Problem SOAS and satisfies the stochastic a priori bound

m
(2.5) HUH%?(Q;X) < Z”ijjHLl(Q)'
i=1

Note that the right-hand side of the stochastic a priori bound (2.5) is the expectation of
the right-hand side of the bound (2.4).

Lemma 2.7 (Stochastic variational formulation well-defined).  Under Conditions A1, A2,
L1, L2, C1, and C2, the maps A and £ defined by (2.1) are well-defined in the sense that

(2.6) [A(v1)](v2), L(v2) < oo for all vy € L*(Q; X), for all vy € L*(Q;Y).

Theorem 2.8 (Second-order solution implies stochastic variational solution). Under Condi-
tions L1, L2, C1, and C2, if u solves Problem SOAS then u solves Problem SV.

Theorem 2.9 (Stochastic variational solution implies second-order solution). If Problem SV
1s well-defined and u solves Problem SV, then u solves Problem SOAS.

Theorems 2.6, 2.8, and 2.9 and Lemma 2.7 are summarised in Figure 2.1.

Problem MAS

Under Condition B, get
Immediate stochastic a priori bound
(2.5) (Theorem 2.6)

Problem SOAS

If Problem SV is well- Under Conditions L1, L2,
defined (Theorem 2.9) C1, and C2, (Theorem 2.8)

Problem SV

Well-defined under Conditions A1,
A2 L1, L2, C1, and C2 (Lemma 2.7)

Figure 2.1. The relationship between the variational formulations. An arrow from Problem P to Problem
Q with Conditions R indicates ‘under Conditions R, the solution of Problem P is a solution of Problem @Q’

Remark 2.10 (Condition L2 in Theorem 2.8). In Theorem 2.8 we could replace Condi-
tion L2 with Condition A2, and the result would still hold—see the proof for further details.
However, Condition L2 is less restrictive than Condition A2, as it only requires L? integrability
of L o ¢ as opposed to essential boundedness of A o c.
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Lemma 2.11 (Showing uniqueness of the solution to Problems MAS-SV). If Condition U
holds, then
1. the solution to Problem MAS (if it exists) is unique up to modification on a set of
P-measure 0 in 2,
2. the solution to Problem SOAS (if it exists) is unique in L*(Q; X), and
3. if Problem SV is well-defined, the solution to Problem SV (if it exists) is unique in
L2(9; X).

Remark 2.12 (Informal discussion on the ideas behind the equivalence results). The diagram
in Figure 2.1 summarises the relationships between the variational formulations, and the
conditions under which they hold. Moving ‘up’ the left-hand side of the diagram, we prove a
solution of Problem SV is a solution of Problem SOAS in Theorem 2.9; the key idea in this
theorem is to use a particular set of test functions and the general measure-theory result of
Lemma B.22 below; this approach was used for the stationary diffusion equation (1.2) with
log-normal coefficients in [24], and for a wider class of coefficients in [41].

Moving ‘down’ the right-hand side, we prove a solution of Problem MAS is a solution
of Problem SOAS in Theorem 2.6; the key part of this proof is that the bound in Condi-
tion B gives information on the integrability of the solution w. (In the case of (1.2) with
uniformly coercive and bounded coefficient k, the analogous integrability result follows from
the Lax—Milgram theorem; [14, Proposition 2.4] proves an equivalent result for (1.2) with
lognormal coefficient x with an isotropic Lipschitz covariance function.) Proving a solution
of Problem SOAS is a solution of Problem SV in Theorem 2.8 essentially amounts to posing
conditions such that the quantities [A.()(u(w))](v(w)) and L) (v(w)) are Bochner inte-
grable for any v € L*(Q;Y), so that (2.3) makes sense. Lemma 2.7 shows that the stronger
property (2.6) holds, and requires stronger assumptions than Theorem 2.8, since the proof of
Theorem 2.8 uses the additional information that u solves Problem SOAS.

Remark 2.13 (Changing the condition v € L?*(Q; X)). Here we seek the solution u €
L?(£2; X) but we could instead require v € LP(£); X), for some p > 0 and require 2u = £
in L9(Q;Y)*, for some ¢ > 0 (i.e. use test functions in L(2;Y)). In this case, the proof
of Theorem 2.9 would be nearly identical, as the space D of test functions used there is a
subset of LI(2;Y) for all ¢ > 0. One could also develop analogues of Theorems 2.6 and 2.8
and Lemma 2.7 in this setting—see e.g. [24, Theorem 3.20] for an example of this approach
for the stationary diffusion equation with lognormal diffusion coefficient.

Remark 2.14 (Non-reliance on the Lax-Milgram theorem).  The above results hold for
an arbitrary sesquilinear form and hence are applicable to a wide variety of PDEs; their
main advantage is that they apply to PDEs whose stochastic variational formulations are not
coercive.

Remark 2.15 (Overview of how these results are applied to the Helmholtz equation in sec-
tion 4). We obtain the results for the Helmholtz equation via the following steps (which could
also be applied to other SPDEs fitting into this framework):

1. Define the map ¢ (via A,n, and f) such that for almost every w € 2 there exists a
solution of the deterministic Helmholtz EDP corresponding to c(w).
2. Define v : 2 — X to map w to the solution of the deterministic problem corresponding
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to c(w).

3. Prove that Conditions Al, A2, L1, L2, C1, C2, B, and U hold, so that one can apply
Theorems 2.6, 2.8, and 2.9 along with Lemmas 2.7 and 2.11 to show Problem 3 is
well-defined and w is unique and satisfies Problems 1-3.

Steps 1 and 2 can be thought of as constructing a solution pathwise.

3. Proof of the results in section 2.

3.1. Preliminary lemmas. To simplify notation, we introduce the following definition.

Definition 3.1 (Pairing map). For fized ¢ : @ — C, A: Q — B(X,Y™), given v: Q@ — X we
define the map m, : Q@ — Y™ by

(3.1) myp(w) = [(A o ¢)(w)](v(w))-

A key ingredient in proving that the stochastic variational formulation is well-defined
(Lemma 2.7) is showing that the maps m, and £ o ¢ are measurable. Showing that £ o ¢ is
measurable is straightforward (see Lemma 3.2 below), but showing that m, is measurable is
not. This is because £ o ¢ depends on w only through its dependence on ¢, but m, depends on
w through both the dependence of A o ¢ on w and the dependence of u on w; it is this dual
dependence that causes the extra complication.

Lemma 3.2 (£ o ¢ is measurable).  Under Conditions L1 and C1 the function L o c is
measurable.

Proof of Lemma 3.2. The map c is measurable (by Condition C1) and £ is continuous (by
Condition L1), therefore Lemma B.4 implies that £ o ¢ is measurable. [ |

Definition 3.3 (Product map). For v : Q@ — X, let P, : Q — B(X,Y™) x X be defined by
Py(w) = (Ao ¢)(w),v(w)).

Lemma 3.4 (Product map is measurable). When B(X,Y™)x X is equipped with the product
topology, if Conditions Al and C1 hold, and if v : @ — X is measurable, then P, :  —
B(X,Y™) x X is measurable.

Proof of Lemma 3.4. By the result on the measurability of the Cartesian product of mea-
sureable functions (Lemma B.6), P, is measurable with respect to (F,B(B(X,Y™)) ® B(X))
(where B denotes the Borel o-algebra—see Definition B.2), as both of the coordinate func-
tions A o ¢ and v are measurable. Since B(X,Y™*) and X are both metric spaces, they
are both Hausdorff. As X is separable, Lemma B.7 on the product of Borel o-algebras
imples B(B(X,Y*)) ® B(X) = B(B(X,Y*) x X). Hence P, is measurable with respect to
(F,B(B(X,Y*) x X)). |

Definition 3.5 (Evaluation map). Let Z be a separable Banach space. The function nz« :
B(X,Z*) x X — Z* is defined by

(3.2) nz+((H,v)) =Hw) forH € B(X,Z*) andv € X.

Observe that the pairing, product, and evaluation maps (m,, P,, and, ny~ respectively)
are related by m, = ny= o P,.

This manuscript is for review purposes only.
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16 O. R. PEMBERY AND E. A. SPENCE

Lemma 3.6 (Evaluation map is continuous). Let Z be a separable Banach space. The map
Nz+ is continuous with respect to the product topology on B(X,Z*) x X and the dual norm
topology on Z*.

The proof of Lemma 3.6 is straightforward and omitted.

Lemma 3.7 (7, is measurable). If Conditions Al and C1 hold and v is measurable, then
the function m, as defined by (3.1) is measurable.

Proof of Lemma 3.7. By Lemma 3.4 P, is measurable and by Lemma 3.6 1y~ is continu-
ous. Therefore Lemma B.4 implies that 7, = ny+ o P, is measurable. [ ]

3.2. Proofs of Theorems 2.6, 2.8, and 2.9 and Lemmas 2.7 and 2.11.

Proof of Theorem 2.6. We need to show u :  — X is strongly measurable, satisfies the
bound (2.5), and therefore is Bochner integrable and is in the space L?(2; X). Our plan is to
use Corollary B.12 to show w is Bochner integrable, and establish (2.5) as a by-product. Since
u solves Problem MAS, u is measurable. As X is separable, it follows from Corollary B.19
that u is strongly measurable. Define N : X — R by N(v) == ||v|%. Since N is continuous,
Lemma B.4 implies N o u : 2 — R is measurable. Therefore, since both the left- and right-
hand sides of (2.4) are measurable and (2.4) holds for almost every w € {2 we can integrate
(2.4) over Q with respect to P and obtain

(3.3) /Q (@)% dBw) < SIC il 0
j=1

the right-hand side of which is finite since Condition B includes that C;f; € LY(2) for all j =
1,...,m. Since u is strongly measurable, the bound (3.3) and Corollary B.12 with p = 2 imply
that u is Bochner integrable. The norm [[u|[ 2o, xy is thus well-defined by Definition B.13 and
(3.3) shows that (2.5) holds, and so in particular [[u||12(q,x) < oo. [ ]

Proof of Lemma 2.7. We must show that for any vy € L?(2; X) and any ve € L?(;Y):
e The quantities [Agv1(w)] (v2(w)) and L, (v2(w)) are Bochner integrable, so that
the definitions of 2 and £ as integrals over {2 make sense.
e The maps A(v1) and £ are linear and bounded on L?(£2;Y), that is, 20 : L2(; X) —
L2(;Y)" and £ € L2(;Y)*.
It follows from these two points that 2 and £ are well-defined. Thanks to the groundwork
laid in subsection 3.1, the measurability of [Ac(,)v1(w)] (v2(w)) and L) (v2(w)) follows from
Lemmas 3.2 and 3.7 (which need Conditions A1-C2). Their P-essential separability follows
from Conditions A1-C2 and Lemma B.20 and thus their strong measurability follows from
Corollary B.19 on the equivalence of measurability and strong measurability when the image
is separable. Their Bochner integrability then follows from the Bochner integrability condition
in Theorem B.11 (with V' = F) and the Cauchy-Schwartz inequality since

(3-4) /Q\ﬁc(w) (v2(w)) [ dP(w) < [I£ 0 ¢l 20uy+) 020l L2 (v

which is finite by Condition L2, and

35) [ [ @)](22)| 4P < 40 ellpmqaeyoy oz el ey
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580  which is finite by Condition A2. We now show £ € L?(£;Y)* and 2 : L2(; X) — L2(;Y)".
581 Observe that [£(v2)] < [i|Le(w) (v2(w))] dP(w) and |[A(v1)](va2)] < [q| [Acq)v1 (W) ] (v2(w)) | dP(w)]]
582 and thus by (3.4) and (3.5) £ and 2((v;) are bounded. They are clearly linear, and so it follows

583 that £ € L2(;Y)* and A(v1) € L2 Y)Y, ie., A L2(Q; X) — L2(Q; V)" [ |
584 Proof of Theorem 2.8. In order to show that w solves Problem SV, we must show:

585 1. either the functional £ € L?(Q;Y)" or the functional A(u) € L?(Q;Y)*, and

586 2. the equality (2.3) holds.

587 For Point 1 we show that £ € L?(€;Y)", (since this is easier than showing A(u) €
588 L2(Q;Y)™); in fact the proof of this is contained in the proof of Lemma 2.7.

589 For Point 2, since u solves Problem SOAS, for P-almost every w € 2 we have A ,)u(w) =

90 L) in Y*. Hence, for any v € L2(£;Y) we have

591 (3.6) [Ac(w)u(w)] (v(w)) = Le(w) (v(w))

592 for P-almost every w € Q. Since £ € L?(Q;Y)*, the right-hand side of (3.6) is a strongly
593 measurable function with finite integral. Hence the left-hand side of (3.6) is as well, and we
594 integrate over Q) to conclude [2u](v) = £(v) for all v € L*(Q;Y), i.e., Au = £ in L*(Q; V)" M

595 The following lemma is needed for the proof of Theorem 2.9.

596 Lemma 3.8. Let 6 : Q x Y — F. Fory €Y, define Q, = {w € Q:0(w,y) =0} and define
507 Q={weQ:0w,y) =0 foralyeY}. If

598 o forallw e Q, d(w,-) is a continuous functional on'Y and

599 o for ally €Y, the map 6(-,y) : @ = F is measurable and P(Q,) = 1,

600  then P(2) = 1.

601 Proof of Lemma 3.8. We must show that the set Qe F, and IP’((Z) = 1. Observe that,
602 for any y € Y, the set Q, € F, since Q, = &(-,y)*({0}), which is the preimage under a
603 measurable map of a measurable set.

604 Since Y is a Hilbert space, it is separable, and therefore it has a countable dense subset
605 (Yn)pen- We will show that P(Muen@y,) = 1 and Q = Nyeny, . The set Nyen$y, € F, as F is
606 a o-algebra and P(U,en€2, ) < 32 oy P(€2 ) = 0, and hence P(N,en®y, ) = 1. To next show
607 € = Mnenfly, we observe that Q= Nyey$ly and Nyey 2y € Nyenily, . It therefore suffices to
608 show Npenfly, € Nyey 2y to conclude Q= Nnenfly, -

609 Fix y € Y. By density of (yn),,cn, there exists a subsequence (yn,, ),,cn such that y,,, —y
610 asm — 0o. Fix w € Npen 2y, . Note that w € Nyensly, ; that is, for all m € N, 6(w, yn,,) = 0.
611 As d(w,-) is a continuous function on Y, é(w,yn,, ) — d(w,y) as m — oco. But as previously
612 mnoted, d(w, yn,,) = 0 for all m € N. Hence we must have §(w,y) = 0, and thus w € §,,. Since
613 w € Npenly, was arbitrary, it follows that M,en$2y, C €1, and since y € Y was arbitrary, it
614 follows that Nyenfly, C Nyey 2y as required. |

615 Proof of Theorem 2.9. Let u € L?(£2; X) solve Problem SV. We need to show that u solves
616 Problem SOAS. Observe that u solving Problem SOAS means A, (u(w)) = (Le(w)) (w) in Y*
617 for almost every w € 2. We now use an idea from [24, Theorem 3.3]. Our plan is to use test
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18 O. R. PEMBERY AND E. A. SPENCE

functions of the form yl g, where y € Y and E € F to reduce Problem SV to the statement

/E [Acw) (u(w))] (y(w)) dP(w) = /E [(Lew) @) (y(w)) dP(w)  for all E € F
and then show this implies u satisfies Problem SOAS via Lemma B.22.
First let D := {ylg :y € Y, E € F} and observe that the elements of D are maps from 2
to Y. The fact that D C L?(Q;Y) follows via the following three steps:
1. The elements of D are measurable, indeed the indicator function of a measurable set
is a measurable function 2 — R, and multiplication by y € Y is a continuous function
R — Y. Hence elements of D are measurable by Lemma B.4.
2. As Y is a separable Hilbert space, it follows from Corollary B.19 that the elements of
D are strongly measurable.
3. ly1ell L2y = VPE)|ylly <ocforally €Y, E € F.
Since Problem SV is well-defined, and u solves Problem SV, and D C L?(Q;Y), we have
that [Au](v) = £(v) for all v € D. Therefore, we have

(3.7) /Q Ao (u())] (41 () dP(w) = /Q [Loo] (01(w)) dP(w)

forall y € Y and E € F. If we define § : @ x Y — F by 6(w,y) = [Axu)(u(w)) — Lew)] ()
then, by the definition of 1g, (3.7) becomes

(3.8) /Eé(w,y) dP(w) =0 forall £ € F.

To conclude u solves Problem SOAS we must show d(w,y) = 0 for all y € Y, almost surely.
We will use Lemma B.22, so the first step is to show that for all y € Y §(-,y) is Bochner
integrable. This follows from the fact that Problem SV is well-defined, and thus the quantities
[As)v1(w)] (v2(w)) and L (v2(w)) are Bochner integrable for any v; € L*(Q;X), vy €
L?(Q;Y). In particular, they are Bochner integrable when v; = u, and vy = ylg and thus
their difference § is Bochner integrable. Secondly, d(w, -) is a continuous function on Y since
Ac(w)(u(w)) and (Ec(w))(w) e Y™, for all w € Q.

We now show d(w,y) = 0 for all y € Y, almost surely. For y € Y define the set Q, =
{w e N:(w,y) =0}; by (3.8) and Lemma B.22 we have that P(2,) = 1 for all y € Y. By
Lemma 3.8, 6(w,y) = 0 for all y € Y, almost surely, that is, Ay u(w) = L) almost surely;
it follows that u solves Problem SOAS. [ |

Remark 3.9 (Connection with the argument in [41, Remark 2.2]). The argument in
Lemma 3.8 and the final part of Theorem 2.9 closely mirrors the result in [41, Remark 2.2].
Indeed, we prove in general that P(é(w,y) = O) =1 for all ¥y € Y implies ]P’((S(w,y) =1 for
all y € Y) =1, and [41, Remark 2.2] shows an analogous result for the stationary diffusion
equation (1.2) with non-uniformly coercive and unbounded coefficient k.

Proof of Lemma 2.11. Proof of Part 1. Suppose uy,us : 8 = X solve Problem MAS. Let
E = {weN:u(w) # u2(w)}. Denote by E; and Es the sets (of measure zero) where the
variational problems for u; and ug fail to hold, i.e. Ej, Fy € F with P(E;) = P(E2) = 0 and
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THE HELMHOLTZ EQUATION IN RANDOM MEDIA 19

Acw)(u1(w)) # Loy iff w € B, and Ay, (ua(w)) # Lo iff w € Fa. As ker(Ac(w)) = {0}
P-almost surely, there exists 3 € F such that P(E3) = 0 and ker(A.,)) # {0} iff w € Es.
We claim F C Ey U Ey U E3. Indeed, if ug(w) # uz(w) then either: (i) at least one of u; and
ug does not solve Problem MAS at w or (ii) u; and ug both solve Problem MAS at w, but
ker (Ac(,)) # {0}. Since P(E;) = 0,j = 1,2,3, we have P(E; U E» U E3) = 0. Therefore E € F
and P(F) = 0 since (2, F,P) is a complete probability space; hence u; = uy almost surely.

Proof of Part 2. By Remark 2.2, if ui,us € L?(2; X) solve Problem SOAS, then all the
representatives of the equivalence classes of u; and us solve Problem MAS. Hence, by Part 1,
any representatives of u; and ug differ only on some set (depending on the representatives) of
P-measure zero in €. Therefore u; = uy in L?(£2; X), by definition of L?(; X).

Proof of Part 3. As Problem SV is well-defined, by Remark 2.2 and Theorem 2.9, if u; and
ug solve Problem SV, then u; and us also solve Problem MAS. We then repeat the reasoning
in the proof of Part 2 to show u; = us in L?(£2; X). [ |

4. Proofs of Theorems 1.4 and 1.8. In subsection 4.1 we place the Helmholtz stochastic
EDP into the framework developed in section 2. In subsection 4.2 we give sufficient conditions
for the Helmholtz stochastic EDP to satisfy Conditions A1, L1, and C1, etc.. In subsection 4.3
we apply the general theory developed in section 2 to prove Theorems 1.4 and 1.8.

4.1. Placing the Helmholtz stochastic EDP into the framework of section 2. Recall
R > 0 is fixed. We let X =Y = Hj p(Dg) and define the norm HUHik = HV’UH%Q(DR) +

k2Hv||%2( Dp) o1 H& p(Dr). Throughout this section, Ag, ng, and fo will be deterministic func-
tions. Recall that since the supports of 1 —n, I — A, and f are compactly contained in Bg,
we can consider A,n, and f as functions on Dpg rather than on Dy. In order to define the
space C and the maps ¢, A, and £ we define the following function spaces on Dpg.

Definition 4.1 (Compact-support spaces). Let

L%(DR) = {fo € LQ(DR) s esssupp(fo) CC BR},
fﬁmin(DR;R) = {no € L*™°(Dpg;R) : esssupp(l — ng) CC Bg,
there exists cmy > 0 such that no(x) > oy, almost everywhere },
L% min (DR;RdXd) = {Ao € L™ <DR;]RdXd) : Ao(x) is symmetric almost everywhere,
esssupp(I — Ag) CC Bg, there exists aa, >0 s. t. ag, < Ap(x)

almost everywhere, in the sense of quadratic forms}, and

Wi (DR RP) = {4y € L35 (Dmi R 4g € W (Dps R) |,

Observe that the norm on L*(Dg; R) induces a metric on LF ;, (Dg; R), and similarly for

Ly (DR; RdXd), W}%”orsin (DR; RdXd), and L%(DR). These spaces are not vector spaces, and are

not complete, but completeness and being a vector space is not required in what follows—we
only need them to be metric spaces.

Definition 4.2 (Deterministic form and functional).
For (Ao, no, fo) € LE (DR;]RdXd) x LY . (Dr;R) x L%(DR) let the sesquilinear form aaq n,

R,min
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on H(%’D(DR) X H&D(DR) and the antilinear functional Ly, on H(%,D(DR) be given by

A Agmo(V1,02) = /

((AOVvl) - V1) — k>no v 172) dA — <Tva1, 71}2>FR, and
Dpg

Ly, (v2) :—/ fovz dX,  forvi,va € H&D(DR).
Dgr

Problem 4.3 (Helmholtz EDP). For (Ao, no, fo) € L5 (Dr; R>*?) x LS (Dg;R) x L%(Drg)
find ug € H&,D(DR) such that aa, n,(uo,v) = Ly, (v) for all v € H&D(DR).

Definition 4.4 (do, metric). Let (Xi1,d1),...,(Xm,dn) be metric spaces. The d metric
on the Cartesian product X1 X --- X X,,, is defined by

doo((fpla---vmm)a(ylv"wym)) = gnax dj(mJ"yj)'

7j=1,....m

Definition 4.5 (The input space C). We let C == W%, (Dr;R™?) x L% . (Dg;R) x

R,min R,min
L%(DR) with topology given by the d metric.
Definition 4.6 (The input map ¢). Define c¢: Q — C by c¢(w) = (A(w),n(w), f(w)).
Definition 4.7 (The maps A and L for the Helmholtz stochastic EDP). Let

(4.1) A((Ao, no, fo)) = aaemne and L((Ao,no, fo)) = Ly,

where the definition of A is understood in terms of the equivalence between B(X,Y™) and
sesquilinear forms on X xXY.

4.2. Verifying the Helmholtz stochastic EDP satisfies the conditions in section 2.

Lemma 4.8 (Conditions C1 and C2 for Helmholtz stochastic EDP). If A,n, and f are strongly
measurable, then ¢ defined by Definition 4.6 satisfies Conditions C1 and C2.

Proof. Since A,n, and f are strongly measurable, by Theorem B.18 they are measurable
and P-essentially separably valued. By Lemma B.6, it follows that ¢ is measurable, so ¢
satisfies Condition C1. By Lemma B.23, it follows that ¢ is P-essentially separably valued, so
c satisfies Condition C2. [ |

Lemma 4.9 (Conditions Al and L1 for Helmholtz stochastic EDP). The maps A and L given
by (4.1) satisfy Conditions Al and L1.

Proof of Lemma 4.9. We need to show that if (A, nm, fm) — (Ao, no, fo) in C then
A((Am, i, frm)) = A((Ao, no, fo)) in B(X, Y™), and similarly for £. By the Cauchy-Schwarz
inequality we have, for v; € X, vy €Y,

‘ [[A(Am, s fm) — A(Ao, n0, fo)] (Ul)] (v2)

< [Am = Aol (pp) VU1l 20 ) VU2l 22D

+ k2||nm - nOHLOO(DR;]R)HleL?(DR)HU?”L?(DR)
S 2doo((Am7 Nim, fm)7 (AO) no, fO))||v1Hl,k||v2”Lk’
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Hence if (Amanmvfm) - (AOan07f0) in C’ then A((Am7nma fm)) - A((A07n07f0)) in
B(X,Y™). We also have

_ [z
|[£((Ams 7ums fn), ) = £((Ao,m0, fo))] (v2)]| = ‘ /D (Fon = f0)72 AA| < fin = foll 2y —
R
Hence if (Am, s frn) — (Ao, 1o, fo) in C, then L((Am, o, frn)) — L((Ao, 10, fo)) in Y*. MW
Definition 4.10 (The solution operator S). Define S : C — H&}D(DR) by letting
S(Aop, no, fo) € H&’D(DR) be the solution of the Helmholtz EDP (Problem 4.3).

Theorem 4.11 (S is well defined). For (Ao, no, fo) € C the solution S((Ao,no, fo)) of the
Helmholtz EDP (Problem 4.3) exists, is unique, and depends continuously on fj.

Proof of Theorem 4.11. Since R(—(Tryv,yv)r,) > 0 for all v € H&D(DR) (see, e.g. [42,
Theorem 2.6.4]), aa,n, satisfies a Garding inequality. Since the inclusion H& p(DRr) —

L?(Dpg) is compact, Fredholm theory shows that uniqueness implies well-posedness (see,
e.g. [39, Theorem 2.34]). Since A is Lipschitz and n is L°°, uniqueness follows from the
unique continuation results in [33, 23]; see [26, Section 2] for these results specifically applied
to Helmholtz problems. |

Lemma 4.12 (Continuity of solution operator for Helmholtz stochastic EDP). For the
Helmholtz stochastic EDP, the solution operator S : C — H} (Dg) is continuous.

Sketch Proof of Lemma 4.12. Let (Ao, no, fo), (41,11, f1) € C, with S((Ao, no, fo)) = wo
and S((A1,n1, f1)) = u1. Then for any v € H&D(DR) we have, for 7 = 0,1,

[[A(CA;, g, f5))) ()l (v) = [L((Aj, 5, f3))](v).

Continuity of S then follows from:

1. Deriving the Helmholtz equation with coefficients Ag and ng satisfied by ug := ug— u1.
2. Recalling that the well-posedness result of Theorem 4.11 holds when fy € L%(Dg) is

replaced by a right-hand side in (H&’D(DR))*; see, e.g., [39, Theorem 2.34].

3. Applying the result in Point 2 to obtain a bound [[ugl|; 5, < C(AO,nO)HFH(H&D(DR))*.

4. Showing HF”(H(}D(DR))* depends on HVUIHLQ(DR)v HU1||L2(DR)7 A1 — AOHLOO(DR;Rdxd)’

In1 — nOHLOO(DR;R)7 and || fo — f1HL2(D)'
5. Eliminating the dependence on u; by writing u; = ugp — ug and moving terms in ug to
the left-hand side, to obtain a bound on ug4 of the form

IVuall2(p gy + Fllwall L2y
< C(Uo,Ao,nm 141 = Aol oo (p gyaxays 171 = 70l oo (1) 1 fo = f1HL2(DR))'
6. Concluding that ug — 0 in H&D(DR) as (A1, n1, f1) — (Ao, no, fo) in C. [ |

Lemma 4.13 (Condition U for the Helmholtz stochastic EDP). The Helmholtz stochastic
EDP satisfies Condition U.
Proof of Lemma 4.13. This condition holds immediately from Theorem 4.11. |

To prove that Condition B holds for the Helmholtz stochastic EDP, we first state the
deterministic analogues of Condition 1.6 and Theorem 1.8.
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Condition 4.14 (Nontrapping condition for Helmholtz EDP [25, Condition 2.4]). d = 2,3,
D_ is star-shaped with respect to the origin, Ag € Wh>® (DR; RdXd), no € WH°(Dg;R), and
there exist 7,70 > 0 such that, for almost every x € Dy, Ap(x) — (x - V)Ap(x) > 7 and
no(x) + x - Vno(x) > 7o, where the first inequality holds in the sense of quadratic forms.

Theorem 4.15 (Well-posedness of the Helmholtz EDP under Condition 4.14 [25, Theorem
2.5]). Let (Ap,no, fo) € C and suppose Ay and ng satisfy Condition 4.14. Then the solution
of the Helmholtz EDP (Problem 4.3) exists and is unique. Furthermore, given ky > 0 for all
k > ko, the solution ug of the Helmholtz EDP satisfies the bound

R? 1 d—1\?
—+—(R .
T1 +7’2< + 2]€0 > ]

(4.2)
We can now prove Condition B holds for the Helmholtz stochastic EDP.

Lemma 4.16 (Condition B for Helmholtz stochastic EDP). If Conditions 1.3 and 1.6 hold,
then Condition B holds for the Helmholtz stochastic EDP.

Proof of Lemma 4.16. As Condition 1.6 holds, Condition 4.14 holds for P-almost every
w e Q (with 4g = A(w), no = n(w), 11 = p1(w), and 72 = po(w)). Hence, by Theorem 4.15
the bound (2.4) holds for all k£ > ko, with X = H&D(DR),m =1,

R2 N 1 (R+d—1>2
pr(w)  po(w) 2k

1| Vol 2(pyy + 2k [uol72(py < Cillfoll72(pyy, where C1 = 4

4
min{ i (w), p2(w)}

C(w) =

)

and f1 = ||f(w)\|%z(DR). It now remains to show that C; HfH%?(DR) € LY(Q2). We first show

Cy|If ||%2( pp) is measurable and then show that it lies in L'(Q). To show measurability, we
rewrite C1(w) as

9 R2 9 d—1\> 2R 2 d—1)?
Cl(w)_max{u%<w>Ul(w)uz(w) (1“ 2k¢0> @@ T ) <R+ %o) }

The functions ufl and puy 1 are measurable by assumption; to conclude C} is measurable we
use the facts (see e.g. [28, Theorems 19.C, 20.A]): (i) the square of a measurable function
is measurable, and (ii) the product, sum, and maximum of two measurable functions are
measurable. Under Condition 1.3, the function f lies in the Bochner space L*(Q; L*(Dg)).
Therefore, f is strongly measurable and hence f is measurable by Theorem B.18. The map
f=If Hiz( py) 18 clearly continuous, and therefore f; is measurable by Lemma B.4. As the

product of two measurable functions is measurable, it follows that C || f ||%2( D) i measurable.
We now show that C'1Hf||?:2(DR) € L'(). The assumptions 1/u1,1/ps € L*(Q) and the
Cauchy—Schwarz inequality imply 1/(u1u2) € L'(). Therefore the maps,

s 2R2+ 2 <R+d—1)2 i o i 2R?2 N 2 <R+d—1>2
7 2ko p(w)pe(w)  pi(w)
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are in L'(€2). Since the maximum of two functions in L*() is also in L'(€2), it follows that
C; € LY(Q). Condition 1.3 implies that HfH%z(DR) € LY(Q).

To conclude Cy Hf||%2(DR) € L'(92), observe that the only dependence of C; on w is through
w1 and po. As p1 and po are assumed independent of f, and measurable functions of inde-
pendent random variables are independent [37, p.236] it follows that Cy and || f ”%2( Dy) are

independent, and therefore
(4.3)

|C11 12 om|

_ 2 _ 2
wm—LcmwﬂmwwwwwwwammwmmeDQ<m.

Therefore Ci||f ||%2( D) € LY(Q) as required. We take the expectation (equivalently, the L!
norm) of (4.2) (with Ag = A(w) etc.) and use (4.3) to obtain (1.8). [ ]

Remark 4.17 (The case when f, pi, and ua are not independent). Remark 1.9 shows
that for the physically relevant example of scattering by a plane wave, f, u1, and ps may
not be independent. In this case, if we replace the requirements in Condition 1.6 that f €
L?(; L*(D)) and 1/p1, 1/po € L*(Q) with the stronger requirements f € L*(Q; L?(D)) and
1/p1, 1/pe € LA(£2), then one can obtain the bound

HVUHiz(Q;H&D(DR)) + kQHUHiz(Q;H&D(DR)) < HCl||L2(Q)Hf”%‘l(Q;L?(DR))'

Indeed, instead of independence, we use the Cauchy—Schwartz inequality in (4.3) to conclude

(AT

<2112 0m) | o g = 1€t 221 (0220

L1(Q) L3 (Q)

Lemma 4.18 (Condition L2 for Helmholtz stochastic EDP). If f € L*(%; L?*(Dg)) and A
and n are strongly measurable, then Condition L2 holds for the Helmholtz stochastic EDP.

Proof of Lemma 4.18. Since A,n, and f are strongly measurable, Conditions C1 and C2
hold by Lemma 4.8; i.e., cis both measurable and P-essentially separably valued. Furthermore,
by Theorem B.18 ¢ is strongly measurable. By Lemma 4.9, Condition L1 holds, so the map
L is continuous. Hence, by Lemma B.21, £ o ¢ is strongly measurable. We also have that
(L o) @)lly~ = 1 f()llL2(py)/ks and thus Loce L*(Q;Y*) since f € L*(Q; L*(Dg)). W

Lemma 4.19 (Condition A2 for the Helmholtz stochastic EDP).
If A e L™ (Q;LOO (DR;RdXd)), n € L>®(Q; L>°(Dgr;R)), and f is strongly measurable, then
Condition A2 holds for the Helmholtz stochastic EDP.

Proof of Lemma 4.19. A near-identical argument to that at the beginning of the proof
of Lemma 4.18 shows A o ¢ is strongly measurable. Recall that the Dirichlet-to-Neumann
operator Tg is continuous from H'/2(T'g) to H~'/?(T'g), see e.g. [42, Theorem 2.6.4]. Let
v1 € X,v9 € Y, and observe that the Cauchy—Schwartz inequality and these properties of Tr
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imply that there exists C'(k) > 0 such that

’ “Ac(w)] (vl)} (v2)

< HA(W)HLOO(DR;RdXd)”VUIHL2(DR)”VWHL?(DR)
+ B2 0@ oo (D sy 01 2 (D 102l L2 )
+ C(k)HWlHHI/?(rR) ”W2HH1/2(FR)7

where we have used the fact that the two norms

(44)  esssupxepp A, x)ll; and AW Lo (ppmaxay = max 1 Ai (@)oo 0 m)

are equivalent. Since the trace operator v is continuous from H'(Dg) to H 12(TR) (see,
e.g. [39, Theorem 3.38]), there exists C' > 0 such that

140 ) @)lx vy < Cmax{ IA) | o (o) 1) o 0y OB ol el
and hence Aoce L>®(Q;B(X,Y™)). [ ]
4.3. Proofs of Theorems 1.4 and 1.8.
Proof of Theorem 1.4. We construct a solution of Problem 1 by letting u = S o ¢ (which
is well-defined by Theorem 4.11); by construction, [a(w)](u(w),v) = [L(w)](v) for all v €

H& p(Dr) almost surely. It follows that v is measurable by Condition 1.3 and Lemmas 4.12,
4.12, and B.4, and so u solves Problem 1. We therefore proceed to apply the general theory.

Conditions A1 and L1 hold by Lemma 4.9; Condition A2 holds by Lemma 4.19; Con-
dition L2 holds by Lemma 4.18; Conditions C1 and C2 hold by Lemma 4.8 and Condi-
tion 1.3; and Condition U holds by Lemma 4.13. Therefore we can apply Theorems 2.8
and 2.9 and Lemmas 2.7 and 2.11 to conclude the results. |

Proof of Theorem 1.8. All the conclusions of Theorem 1.4 hold, and we only need to show
that if u solves Problem 1 then it also solves Problem 2. Condition B holds by Conditions 1.3
and 1.6 and Lemma 4.16. The result then follows from Theorem 2.6. |

Appendix A. Failure of Fredholm theory for the stochastic variational formulation of
Helmholtz problems. The standard approach to proving existence and uniqueness of a
(deterministic) Helmholtz BVP is to show that the associated sesquilinear form satisfies a
Garding inequality, and then apply Fredholm theory to deduce that existence and uniqueness
are equivalent; see, e.g., [39, Theorem 4.10]. This procedure relies on the fact that the inclusion
H(%’D(DR) < L%(Dg) is compact; see, e.g., [39, Theorem 3.27].

As noted in subsection 1.3, the analysis in [18] of Problem 3 for the Helmholtz Interior
Impedance Problem mimics this approach and assums that L? (Q; H 1(D)) is compactly con-
tained in L? (Q; LZ(D)), where D is the spatial domain. Here we briefly show L? (Q; Hl(D))
is not compactly contained in L? (Q; LQ(D)) by giving an explicit example of a bounded se-
quence in L? (Q; H 1(D)) that has no convergent subsequence in L? (Q; L? (D)) Necessary and
sufficient conditions for a subset of LP([0,T]; B), for B a Banach space, to be compact, can be
found in [49]. In particular, [49] shows that a space C' being compactly contained in a space
B does not by itself imply L?([0,T]; C) is compactly contained in L%([0,T]; B).
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Example A.1. Let (Q,F,P) = ([0,1],B([0,1]),\). Let D be a compact subset of R%. Since
L?(Y) is separable, it has an orthonormal basis, which we denote by (fm)men. Let upy, €
LQ(Q;Hl(D)) be defined by up(w)(x) = f(w), forallx € D, i.e., for each value of w,
U (w) is a constant function on D and so ||tm(w)| g1 py = llum (W)l p2(p)- Then

et 2egeutrioy = | N (@)l 0y AP@) = ADY? [ |fn()]? dP@) = [l fn 22 D)2,
Q Q
and 50 Uy, is a bounded sequence in L? (Q; HI(D)). However, for n # m, we have
lm = wnllZ2 (0 2(py) = AMD)? /Qlum(w) — un (@) dP(w) = A(D)?[| fm — fullf20) = 2MD)?

if n # m, since the fn, form an orthonormal basis for L*>(D). Therefore (tum)men is bounded
in L*(Q; H'(D)) but does not have a convergent subsequence in L*(Q; L*(D)), and thus the
inclusion of L*(; H'(D)) into L*(Q; L*(D)) cannot be compact.

Appendix B. Recap of basic material on measure theory and Bochner spaces. We
include this section, not only for completeness, but also to aid readers of this paper who are
more familiar with deterministic, as opposed to stochastic, Helmholtz problems. Recall that
here, and in the rest of the paper, (2, F,P) is a complete probability space.

B.1. Recap of measure theory results. We first recall some results from measure theory,
with our main reference [7]. Even though [7] mainly considers maps with image R, the results
we quote for more general images are straightforward generalisations of the results in [7].

Definition B.1 (Measurable map). If (M, M) and (N,N) are measurable spaces, we say
that f : M — N is measurable (with respect to (M, N)) if f~1(E) € M for all E € N.

Definition B.2 (Borel o-algebra). If (S, Tg) is a topological space, the Borel o-algebra B(S)
on S is the o-algebra generated by Tg.

If V' is any topological space (including a Hilbert, Banach, metric, or normed vector space)
then we will take always the Borel o-algebra on V' unless stated otherwise.

Lemma B.3 (Continuous maps are measurable [7, Theorem 2.1.2]). Any continuous func-
tion between two topological spaces is measurable.

Lemma B.4 (The composition of a measurable and a continuous map is measurable [7, p.
146]). Let (M, M) be a measurable space and let (S, Tgs) and (T,Tr) be topological spaces.
Let f: M — S be measurable and let h : S — T be continuous. Then ho f is measurable.

Definition B.5 (Product o-algebra [17, Section IV.11]). Let (M1, M1),...,(Mm, Mp,) be
measurable spaces. The product o-algebra M ®- - -® M, is defined as the o-algebra generated
by the set of measurable rectangles {Ry X -+ X Ry, : R1 € My,..., Ry, € My, }.

Lemma B.6 (Measurability of the Cartesian product of measurable functions).

Let (My, M1),...,(Mp, M,,) be measurable spaces and hj : Q@ — M;, j =1,...,m be
measurable functions. Then the product map P : Q — My X --- x M,, given by P(w) =
(h1(w), ..., hm(w)) is measurable with respect to (F,M1 ® -+ @ My,).
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Sketch proof of Lemma B.6. Let Rect(My,..., M,,) denote the set of measurable rect-
angles, as in Definition B.5. Let P := {C' C M; x --+ X My, : P"}(C) € F}. The proof of the
lemma consists of the following straightforward steps, whose proofs are omitted: (i) Show
Rect(My, ..., My,) C P. (ii) Show P is a o-algebra. (iii) Deduce M; ® --- @ M,,, C P (since
M ® -+ ® My, is generated by measurable rectangles). (iv) Conclude P is measurable with
respect to (F, M1 ® --- @ My,). [ |

Lemma B.7 (Product of Borel o-algebras is Borel o-algebra of the product [7, Lemma 6.2.1
(i)]). Let Hy, Hy be Hausdorff spaces and let Hy have a countable base (e.g. Hy could be a
separable metric space). Then B(Hy x Hy) = B(Hy) ® B(Hz), where B(Hy x Hs) is the Borel
o-algebra of the product topology on Hy x Ha.

B.2. Recap of results on Bochner spaces. We now recap the theory of Bochner spaces,
using [16] as our main reference. In what follows the space V is always a Banach space.

Definition B.8 (Simple function). A function v : Q — V is simple if there exist vy, ..., vy €
V and E,...,E, € F such that v = szzl ViXE;, where x g, is the indicator function on Ej.

Definition B.9 (Strongly measurable). A function v : Q — V is strongly measurable * if
there exists a sequence of simple functions (vp)nen such that lim,_oo||v, — v, = 0, P-almost
everywhere.

Definition B.10 (Bochner integrable [16, p. 49]). A strongly measurable function v : Q —V
is called Bochner integrable if there exists a sequence of simple functions (vp)nen such that

limy, o0 [ llvn(w) — v(w)|ly, dP(w) = 0.
Theorem B.11 (Condition for Bochner integrability [16, Theorem 11.2.2]). A strongly mea-
surable function v : Q0 — V is Bochner integrable if and only if fQH’UHV dP < oo.

Corollary B.12 (Sufficient condition for Bochner integrability). Let p > 1. If a strongly
measurable function v: Q =V has [||v]|}, dP < oo, then v is Bochner integrable.

Definition B.13 (Bochner norm). For a Bochner integrable function v : Q — V, let

1
el = ( [ o)1t a) ” 1< p < o0 and [0l = esssupocalv@ly-
Definition B.14 (Bochner space). Let 1 < p < co. Then
LP(; V) = {v : Q0 = V 1w is Bochner integrable, ||v]| o,y < oo}.
Definition B.15 (Complete probability space). A probability space (2, F,P) is complete if for

every By € F with P(Ey) = 0, the inclusion Ey C Ey implies that Ey € F.

Definition B.16 (Separable space). A topological space is separable if it contains a count-
able, dense subset.

Definition B.17 (o-finite). A probability space (2, F,P) is o-finite if there exist Eq, Eo, ... €
F with P(E,,) < oo for all m € N such that Q = U_ Ep,.

'In [16] the authors use the term p-measurable instead of strongly measurable (where p is the measure on
the domain of the functions under consideration).
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Theorem B.18 (Pettis measurability theorem [47, Proposition 2.15]).  Let (2, F,P) be a
complete o-finite measure space. The following are equivalent for a function v:Q — V: (i) v
is strongly measurable, (ii) v is measurable and P-essentially separably valued.

Corollary B.19 (Equivalence of measurable and strongly measurable when the image is sepa-
rable). Let (2, F,P) be a o-finite measure space. If V is a separable Banach space, then a
function v : Q — V is strongly measurable if, and only if, it is measurable.

Lemma B.20 (The composition of a continuous map and a P-essentially separably valued
map). Let (S,Ts) and (T,Tr) be topological spaces. If fi : Q@ — S and fo : S — T are
such that f1 is P-essentially separably valued and fo is continuous, then foo f1 is P-essentially
separably valued.

Proof of Lemma B.20. As f; is P-essentially separably valued, there exists E € F such
that P(E) = 1 and f1(E) € G C S, where G is separable. As fy is continuous, f2(G) is
separable [53, Theorem 16.4(a)]. Therefore, since (f2 o f1)(E) C f2(G), it follows that fz o fi
is P-essentially separably valued. |

Lemma B.21 (The composition of a continuous map and a strongly measurable map). If B;
and Bs are Banach spaces and there exist f1 :  — By and fo : By — Bo such that fi is
strongly measurable and fo is continuous, then fa o f1 is strongly measurable.

Proof of Lemma B.21. By Theorem B.18, f; is both measurable and P-essentially separa-
bly valued. We then apply Lemmas B.4 and B.20 to conclude fs o fi is both measurable and
P-essentially separably valued. Hence by Theorem B.18 f5 o f is strongly measurable. |

Lemma B.22 (Zero in all integrals implies zero almost everywhere [16, Corollary 11.2.5]). If «
is Bochner integrable and [, o(w) dP(w) = 0 for each E € F then o = 0 P-almost everywhere.

Lemma B.23 (Cartesian product of P-essentially separably valued maps). Let
(C1,7¢,), -+ (Cm, Tec,,) be topological spaces, and let s; : Q@ — Cj, j =1,...,m be P-essentially
separably valued. Define C :== Cy X -+ X Cp, and equip C with the product topology. Then the
map f:Q — C given by s(w) == (s1(w),...,sm(w)) is P-essentially separably valued.

The proof of Lemma B.23 is straightforward and omitted.
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