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The Helmholtz equation in random media: well-posedness and a priori bounds∗1

O. R. Pembery† and E. A. Spence‡2

3

Abstract. We prove well-posedness results and a priori bounds on the solution of the Helmholtz equation4
∇· (A∇u) +k2nu = −f , posed either in Rd or in the exterior of a star-shaped Lipschitz obstacle, for5
a class of random A and n, random data f , and for all k > 0. The particular class of A and n and6
the conditions on the obstacle ensure that the problem is nontrapping almost surely. These are the7
first well-posedness results and a priori bounds for the stochastic Helmholtz equation for arbitrarily8
large k and for A and n varying independently of k. These results are obtained by combining recent9
bounds on the Helmholtz equation for deterministic A and n and general arguments (i.e. not specific10
to the Helmholtz equation) presented in this paper for proving a priori bounds and well-posedness of11
variational formulations of linear elliptic stochastic PDEs. We emphasise that these general results12
do not rely on either the Lax-Milgram theorem or Fredholm theory, since neither are applicable to13
the stochastic variational formulation of the Helmholtz equation.14

Key words. Helmholtz equation, random media, well-posedness, a priori bounds, high frequency, nontrapping15
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1. Introduction. The goals of this paper are to prove results on the well-posedness of17

variational formulations of the stochastic Helmholtz equation18

(1.1) ∇ · (A(ω)∇u(ω)) + k2n(ω)u(ω) = −f(ω),19

as well as a priori bounds on its solution that are explicit in the wavenumber k and the20

material coefficients A and n.21

We consider (1.1) with physical domain either Rd, d = 2, 3, or Rd\D−, where D− (referred22

to as the obstacle) is a bounded, Lipschitz, open set such that Rd \D− is connected, and23

• ω is an element of the underlying probability space,24

• A is a symmetric-positive-definite matrix-valued random field such that ess supp(I−A)25

is compact,26

• n is a positive real-valued random field such that ess supp(1− n) is compact,27

• f is a real-valued random field such that ess supp f is compact, and28

• k > 0 is the wavenumber,29

and we are particularly interested in the case where the wavenumber k is large.30

Motivation. The motivation for establishing well-posedness and proving a priori bounds31

on the solution of (1.1) is the growing interest in Uncertainty Quantification (UQ) for the32

Helmholtz equation; see e.g. [55, 51, 8, 22, 18, 19, 36, 30, 4]. (In this PDE context, by ‘UQ’33

we mean theory and algorithms for computing statistics of quantities of interest involving34
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2 O. R. PEMBERY AND E. A. SPENCE

PDEs either posed on a random domain or having random coefficients.) There is a large35

literature on UQ for the stationary diffusion equation36

(1.2) −∇ · (κ(ω)∇u(ω)) = f(ω),37

due in part to its large number of applications (e.g. in modelling groundwater flow), and38

a priori bounds on the solution are vital for the rigorous analysis of UQ algorithms; see39

e.g. [3, 2, 24, 41, 15]. In contrast, whilst (1.1) has many applications (e.g. in geophysics and40

electromagnetics), there is much less rigorous theory of UQ for the Helmholtz equation. The41

main reason for this is that the (deterministic) PDE theory of (1.1) when k is large is much42

more complicated that the analogous theory for (1.2).43

Related previous work. To our knowledge, the only work that considers (1.1) with large k44

and attempts to establish either (i) well-posedness of variational formulations or (ii) a priori45

bounds is [18], which considers both (i) and (ii) for (1.1) posed in a bounded domain with an46

impedance boundary condition. We discuss the results of [18] further in subsection 1.3, but we47

highlight here that (a) [18] considers A = I and n = 1+η, with η random and the magnitude of48

η decreasing with k, whereas we consider classes of A and n that allow k-independent random49

perturbations, and (b) in its well-posedness result, [18] invokes Fredholm theory to conclude50

existence of a solution, but this relies on an incorrect assumption about compact inclusion51

of Bochner spaces—see Appendix A below. In subsection 1.3 we also discuss the papers52

[8, 31, 32, 30] on the theory of UQ for either (1.1) or the related time-harmonic Maxwell’s53

equations; in these papers either the k-explicit well-posedness is not a primary concern or k54

is assumed to be small. Our hope is that the results in the present paper can be used in the55

rigorous theory of UQ for Helmholtz problems with large k.56

The contributions of this paper. The main results in this paper, Theorems 1.4 and 1.857

below, concern well-posedness and a priori bounds for the solutions of various formulations of58

the stochastic Helmholtz equation; these formulations include those used in sampling-based59

UQ algorithms (Problems 1 and 2 below) and in the stochastic Galerkin method (Problem 360

below). These are the first such results for arbitrarily large k and for A and n varying61

independently of k. These results are proved by combining:62

1. bounds for the Helmholtz equation in [25] with A and n deterministic but spatially-63

varying, with64

2. general arguments (i.e. not specific to Helmholtz) presented here for proving a priori65

bounds and well-posedness of variational formulations of linear elliptic SPDEs.66

Regarding 1: the k-dependence of the bounds on u in terms of f depends crucially on whether67

or not A, n, and D− are such that there exist trapped rays. In the trapping case, the solution68

operator can grow exponentially in k (see [46, 9, 45, 11, 5] and [6, Section 2.5], and the reviews69

in [40, Section 6], [13, Section 1.1], and [25, Section 1]); in contrast, in the nontrapping case,70

the solution operator is bounded uniformly in k (see [52, 10] and the references therein). The71

bounds in [25] are under conditions on A,n, and D− that ensure nontrapping of rays; the72

significance of these bounds is that they are the first (deterministic) bounds for the Helmholtz73

scattering problem in which both A and n vary and the bounds are explicit in A and n (as74

well as in k). This feature of being explicit in A and n is crucial in allowing us to prove the75

results in this paper when A and n are random fields.76
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THE HELMHOLTZ EQUATION IN RANDOM MEDIA 3

Regarding 2: the main reason these general arguments are needed is the fact that the vari-77

ational formulations of both the deterministic and the stochastic Helmholtz equation are not78

coercive, and so one cannot use the Lax–Milgram theorem to conclude well-posedness and an a79

priori bound. In the deterministic case, the remedy for the lack of coercivity of the Helmholtz80

equation is to use Fredholm theory, but this is not applicable to the stochastic variational81

formulation of the Helmholtz equation because the necessary compactness results do not hold82

in Bochner spaces (see Appendix A below). Our solution to this lack of coercivity and failure83

of Fredholm theory is to use well-posedness results and bounds from the deterministic case84

to prove results for the stochastic case. We work ‘pathwise’ by integrating the deterministic85

results over probability space and identifying conditions under which the necessary quantities86

are indeed integrable. Our approach is given in a general framework that, given (i) determin-87

istic well-posedness results and a priori bounds that are explicit in all the coefficients, and (ii)88

measurability and integrability conditions on the stochastic quantities, returns corresponding89

well-posedness results, a priori bounds, and equivalence results for different formulations of90

the stochastic problem. One reason we state our well-posedness results in general (i.e. not only91

in the specific case of the Helmholtz equation) is that we expect that they can be used in the92

future to prove well-posedness results for the time-harmonic Maxwell’s equations in random93

media. A nontechnical summary of the ideas behind our well-posedness results is given in Re-94

mark 2.12 below. Some of these results are similar in spirit to the results about the PDE (1.2)95

in [24, 41] (which deal with the failure of Lax–Milgram for the stochastic variational problem96

for (1.2) in the case when the coefficient κ is not uniformly bounded above and below), and97

our arguments use some of the ideas and technical tools from these two papers.98

1.1. Statement of main results.99

Notation and basic definitions. Let either (i) D− ⊂ Rd, d = 2, 3, be a bounded Lipschitz100

open set such that 0 ∈ D− and the open complement D+ := Rd \ D− is connected, or (ii)101

D− = ∅. Let ΓD = ∂D−. Fix R > 0 and let BR be the ball of radius R centred at the origin.102

Define ΓR := ∂BR and DR := D+∩BR (see Figure 1.1). Let γ denote the trace operator from103

DR to ∂DR = ΓD ∪ ΓR and define H1
0,D(DR) :=

{
v ∈ H1(DR) : γv = 0 on ΓD

}
.104

Let TR : H1/2(ΓR)→ H−1/2(ΓR) be the Dirichlet-to-Neumann map for the deterministic105

equation ∆u+ k2u = 0 posed in the exterior of BR with the Sommerfeld radiation condition106

(1.3)
∂u

∂r
(x)− iku(x) = o

(
1

r(d−1)/2

)
as r := |x| → ∞, uniformly in

x

|x|
;107

see [42, Section 2.6.3] and [12, Equations 3.5 and 3.6] for an explicit expression for TR in terms108

of Hankel functions and Fourier series (d = 2)/spherical harmonics (d = 3). Let 〈·, ·〉ΓR
be the109

duality pairing on ΓR between H−1/2(ΓR) and H1/2(ΓR) and write dλ for Lebesgue measure.110

Let L∞
(
D+;Rd×d) be the set of all matrix-valued functions A : D+ → Rd×d such that111

Ai,j ∈ L∞(D+;R) for all i, j = 1, . . . , d. Where the range of functions is C we suppress112

the second argument in a function space, e.g. we write L∞(D+) for L∞(D+;C). We write113

D1 ⊂⊂ D2 if D1 is a compact subset of the open set D2. Let (Ω,F ,P) be a complete probability114

space. Throughout this paper, unless stated otherwise we equip a topological space with its115

Borel σ-algebra. See Appendix B for a summary of the measure-theoretic concepts used in116

this paper. Let117
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4 O. R. PEMBERY AND E. A. SPENCE

D−

ΓR

ess supp(I − A) ess supp(1− n)

ess supp f

DR

Figure 1.1. Examples of the domains D− and DR, the set ΓR, and essential supports of I −A, 1− n and
f in the definition of the Helmholtz stochastic EDP.

• f : Ω→ L2(D+) be such that ess supp f ⊂⊂ BR almost surely118

• n : Ω→ L∞(D+;R) be such that ess supp(1−n) ⊂⊂ BR almost surely and there exist119

nmin, nmax : Ω → R such that 0 < nmin(ω) ≤ n(ω)(x) ≤ nmax(ω) for almost every120

x ∈ D+ almost surely, and121

• A : Ω→ L∞
(
D+;Rd×d) be such that ess supp(I−A) ⊂⊂ BR, Aij = Aji almost surely,122

and there exist Amin, Amax : Ω → R such that 0 < Amin(ω) < Amax(ω) almost surely123

and Amin(ω)|ξ|2 ≤
(
A(ω)(x)ξ

)
· ξ ≤ Amax(ω)|ξ|2 for almost every x ∈ D+ and for all124

ξ ∈ Cd almost surely.125

If v : Ω → Z for some function space Z of functions on Rd, we abuse notation slightly and126

write v(ω,x) instead of v(ω)(x).127

Variational Formulations. We consider three different formulations of the Helmholtz stochas-128

tic exterior Dirichlet problem (stochastic EDP); Problems 1–3 below.129

Define the sesquilinear form a(ω) on H1
0,D(DR)×H1

0,D(DR) by130

(1.4) [a(ω)](v1, v2) :=

∫
DR

(
(A(ω)∇v1) · ∇v2 − k2n(ω) v1 v2

)
dλ−

〈
TRγv1, γv2

〉
ΓR
,131

and the antilinear functional L(ω) on H1
0,D(DR) by132

(1.5) [L(ω)](v2) :=

∫
DR

f(ω) v2 dλ.133

Define the sesquilinear form a on L2
(
Ω;H1

0,D(DR)
)
× L2

(
Ω;H1

0,D(DR)
)

and the antilinear134

functional L on L2
(
Ω;H1

0,D(DR)
)

by135

(1.6) a(v1, v2) :=

∫
Ω

[a(ω)](v1(ω), v2(ω)) dP(ω) and L(v2) :=

∫
Ω

[L(ω)](v2(ω)) dP(ω).136

We consider the following three problems:137

This manuscript is for review purposes only.



THE HELMHOLTZ EQUATION IN RANDOM MEDIA 5

Problem 1 (Measurable EDP almost surely). Find a measurable u : Ω → H1
0,D(DR) such138

that139

[a(ω)](u(ω), v) = [L(ω)](v) for all v ∈ H1
0,D(DR) almost surely.140

Problem 2 (Second-order EDP almost surely). Find u ∈ L2
(
Ω;H1

0,D(DR)
)

such that141

[a(ω)](u(ω), v) = [L(ω)](v) for all v ∈ H1
0,D(DR) almost surely.142

Problem 3 (Stochastic variational EDP). Find u ∈ L2
(
Ω;H1

0,D(DR)
)

such that143

a(u, v) = L(v) for all v ∈ L2
(
Ω;H1

0,D(DR)
)
.144

Problem 2 is the foundation of sampling-based UQ methods, such as Monte-Carlo and145

Stochastic-Collocation methods; its analogue for the stationary diffusion equation is well-146

studied in, e.g., [54, 2, 43, 14, 15, 50, 35, 29]. Similarly Problem 3 is the foundation of the147

Stochastic Galerkin method (a finite element method in Ω×D, where D is the spatial domain),148

and is studied for the Helmholtz Interior Impedance Problem in [18], and its analogue for the149

stationary diffusion equation is considered in, e.g., [3, 34, 27].150

Remark 1.1 (Why consider Problem 1?).151

The difference between Problems 1 and 2 is that Problem 1 requires no integrability of u152

over Ω, whereas Problem 2 requires u ∈ L2(Ω, H1
0,D(DR)). Since all the theory for sampling-153

based UQ methods assume some integrability of the solution, the natural question is: why154

consider Problem 1 at all? The main reason we consider Problem 1 is that, given the existing155

PDE theory for the Helmholtz equation, we can prove existence of a solution to Problem 1156

under general conditions on A and n, but there is no current prospect of proving existence157

of a solution to Problem 2 under general conditions on A and n. The explanation for this158

consists of the following three points:159

1. The only two known ways to obtain a solution to Problem 2 are: (i) obtain a de-160

terministic a priori bound, explicit in all parameters, and integrate (followed, e.g., in161

[15] for (1.2) with lognormal coefficients) and (ii) obtain a solution to Problem 3 and162

show this is a solution to Problem 2. In the Helmholtz case, doing (ii) is difficult as163

neither the Lax–Milgram theorem nor Fredholm theory is applicable (as explained in164

the introduction), and so we follow the approach in (i).165

2. The only known bounds on the solution of the Helmholtz equation explicit in all166

parameters are those recently obtained for nontrapping scenarios in [25, 21].167

3. Obtaining a bound explicit in all parameters for a general class of A and n, e.g.,168

A ∈W 1,∞(DR;Rd×d) and n ∈ L∞(DR;R) is well beyond current techniques. Indeed,169

a general class of A and n will include both trapping and nontrapping scenarios, and170

such a bound would need to capture the exponential blow-up in k for trapping A and171

n, the uniform boundedness in k for nontrapping A and n, and be explicit in A and n.172

Given this fact that there is no current prospect of proving existence of a solution to Problem 2173

under general conditions on A and n we keep Problem 1 so that we prove an (albeit weaker)174

existence result for the Helmholtz equation with general coefficients.175
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6 O. R. PEMBERY AND E. A. SPENCE

Remark 1.2 (Measurability of u in Problem 1). It is natural to construct the solution of176

Problem 1 pathwise; that is, one defines u(ω) to be the solution of the deterministic problem177

with coefficients A(ω) and n(ω). However, is it then not obvious that u is measurable. In the178

proof of Theorem 1.4 below, we show that the measurability of u follows from (i) a natural179

condition on the measurability of the coefficients and data (Condition C1 below), and (ii) the180

continuity of the map taking the coefficients of the deterministic PDE to the solution of the181

deterministic PDE (see Lemma 4.12 below).182

In Theorems 1.4 and 1.8 we prove results on the well-posedness of Problems 1–3 under183

conditions on A, n, f, and D−. Although A,n, and f are defined on D+, since ess supp(I−A),184

ess supp(1−n), and ess supp f are compactly contained in DR we can consider A,n, and f as185

functions on DR.186

Condition 1.3 (Regularity and stochastic regularity of f, A, and n). The random fields f,A,187

and n satisfy f ∈ L2
(
Ω;L2(DR)

)
, A : Ω→W 1,∞(DR;Rd×d) withA ∈ L∞

(
Ω;L∞

(
DR;Rd×d)),188

and n ∈ L∞(Ω;L∞(DR;R)).189

Theorem 1.4 (Equivalence of variational problems). Under Condition 1.3:190

• The maps a and L (defined by (1.6)) are well-defined.191

• u ∈ L2
(
Ω;H1

0,D(DR)
)

solves Problem 2 if and only if u solves Problem 3.192

• If u ∈ L2
(
Ω;H1

0,D(DR)
)

solves Problem 2, then any member of the equivalence class193

of u solves Problem 1.194

• The solution of Problem 1 exists and is unique up to modification on a set of measure195

zero in Ω.196

• The solution of Problems 2 and 3 is unique in L2
(
Ω;H1

0,D(DR)
)
.197

Observe that the only relationship between formulations not proved in Theorem 1.4 is:198

if u : Ω → H1
0,D(DR) solves Problem 1 then u ∈ L2

(
Ω;H1

0,D(DR)
)

and u solves Problem 2.199

Theorem 1.8 below includes this relationship, under additional assumptions on A,n, and D−.200

Definition 1.5 (A particular class of (deterministic) nontrapping coefficients). Let µ1, µ2 > 0,201

A0 ∈W 1,∞(DR;Rd×d) with ess supp(I−A0) ⊂⊂ BR, and n0 ∈W 1,∞(DR;R) with ess supp(1−202

n0) ⊂⊂ BR. We write A0 ∈ NTA(µ1) and n0 ∈ NTn(µ2) if203

(1.7) A0(x)− (x · ∇)A0(x) ≥ µ1 and n0(x) + x · ∇n0(x) ≥ µ2204

for almost every x ∈ DR, where the first inequality holds in the sense of quadratic forms.205

Condition 1.6 (k-independent nontrapping conditions on (random) A and n). The random206

fields A and n satisfy A : Ω → W 1,∞(DR;Rd×d) and n : Ω → W 1,∞(DR;R). Furthermore,207

there exist µ1, µ2 : Ω → R, independent of f, with µ1(ω), µ2(ω) > 0 almost surely and208

1/µ1, 1/µ2 ∈ L2(Ω;R) such that A(ω) ∈ NTA(µ1(ω)) almost surely and n(ω) ∈ NTn(µ2(ω))209

almost surely.210

Definition 1.7 (Star-shaped). The set D ⊆ Rd is star-shaped with respect to the point x0211

if for any x ∈ D the line segment [x0,x] ⊆ D.212

Theorem 1.8 (Equivalence of variational problems in a nontrapping case). Let D− be star-213

shaped with respect to the origin. Under Conditions 1.3 and 1.6:214

• The maps a and L (defined by (1.6)) are well-defined.215
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• Problems 1–3 are all equivalent.216

• The solution u ∈ L2
(
Ω;H1

0,D(DR)
)

of these problems exists, is unique, and, given217

k0 > 0, satisfies the bound218

(1.8) ‖∇u‖2L2(Ω;L2(DR)) + k2‖u‖2L2(Ω;L2(DR)) ≤ ‖C1‖L1(Ω)‖f‖
2
L2(Ω;L2(DR))219

for all k ≥ k0, where C1 : Ω→ R is given by220

(1.9) C1 = max

{
1

µ1
,

1

µ2

}(
R2

µ1
+

2

µ2

(
R+

d− 1

2k0

)2
)
.221

As highlighted above, Theorem 1.8 is obtained from combining deterministic a priori222

bounds from [25] with the general arguments in section 2 about well-posedness of variational223

formulations of stochastic PDEs. Theorem 1.8 uses the most basic a priori bound proved in224

[25] (from [25, Theorem 2.5]), but [25] contains several extensions of this bound. Remarks 1.9,225

1.10, and 1.12–1.14 outline the implications that these (deterministic) extensions have for the226

stochastic Helmholtz equation.227

Remark 1.9 (Dirichlet boundary conditions on ΓD and plane-wave incidence). The formu-228

lations of the stochastic EDP above assume that u = 0 on the boundary ΓD. An important229

scattering problem for which u 6= 0 on ΓD is when u is the field scattered by an incident plane230

wave; in this case γu = −γuI , where uI is the incident plane wave. The results in this paper231

can be easily extended to the case when u 6= 0 on ΓD using [25, Theorem 2.19(ii)] which232

proves a priori (deterministic) bounds in this case. One subtlety, however, is that f is then233

not necessarily independent of µ1 and µ2, indeed in this case f = −∇ · (A∇uI)− k2nuI . One234

can produce an analogue of Theorem 1.8 in the case where f, µ1, and µ2 are dependent, but235

one requires 1/µ1, 1/µ2 ∈ L4(Ω) and f ∈ L4
(
Ω;L2(D)

)
; see Remark 4.17 below.236

Remark 1.10 (The case when either n = 1 or A = I). When either n = 1 or A = I, [25,237

Theorem 2.19] gives deterministic bounds under weaker conditions on A and n respectively;238

the corresponding results for the stochastic case are that: When n = 1 almost surely, the con-239

dition A(ω) ∈ NTA(µ1(ω)) in Condition 1.6 can be improved to 2A(ω) − (x · ∇)A(ω) ≥240

µ1(ω) for almost every x ∈ D+, almost surely. When A = I almost surely, the con-241

dition n(ω) ∈ NTn(µ2(ω)) in Condition 1.6 can be improved to: 2n(ω) + x · ∇n(ω) ≥242

µ2(ω) for almost every x ∈ D+, almost surely.243

Remark 1.11 (Geometric interpretation of the conditions on A and n in Definition 1.5).244

Recall that the k → ∞ asymptotics of solutions of the Helmholtz equation are governed by245

the behaviour of rays (see, e.g., [1]). The Helmholtz EDP is nontrapping if all rays starting246

in DR escape from DR after some uniform time (see, e.g., [10, Definition 1.1]); the EDP is247

trapping otherwise. The k-dependence of the solution operator depends strongly on whether248

the problem is trapping, and the type of trapping present; see, e.g., the overview discussions249

in [25, Section 1], [13, Section 1.1]. The conditions on A and n in Condition 1.6 and the250

star-shapedness restriction on D− are sufficient for the Helmholtz stochastic EDP to be non-251

trapping almost surely. For more details on how these conditions are related to trapping, see252

[25, Theorem 7.7].253
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8 O. R. PEMBERY AND E. A. SPENCE

Remark 1.12 (The Helmholtz stochastic truncated exterior Dirichlet problem). It is common254

to approximate the Dirichlet-to-Neumann map on ΓR, i.e. TR, by an ‘absorbing boundary255

condition’, the simplest of which is the so-called impedance boundary condition. We call the256

Helmholtz stochastic EDP posed in DR with an impedance boundary condition on ΓR the257

stochastic truncated exterior Dirichlet problem (stochastic TEDP). The results in this paper258

also hold for the stochastic TEDP (with arbitrary Lipschitz truncation boundary) under an259

analogue of Condition 1.6 based on the deterministic bounds in [25, Theorem A.6(i)] instead260

of [25, Theorem 2.5].261

Remark 1.13 (Discontinuous A and n). The requirements on A and n in Definition 1.5262

require A and n to be continuous. In addition to proving deterministic a priori bounds for263

the class of A and n in Definition 1.5, the paper [25] also proves deterministic bounds for264

discontinuous A and n satisfying (1.7) in a distributional sense; see [25, Theorem 2.7]. The265

well-posedness results and a priori bounds in this paper can therefore be adapted to prove266

results about the stochastic Helmholtz equation for a class of random A and n that allows267

nontrapping jumps on randomly-placed star-shaped interfaces.268

Remark 1.14 (k-dependent A and n). In this paper we focus on random fields A and n269

varying independently of k; this corresponds to a fixed physical medium, characterised by A270

and n, with waves of frequency k passing through. In subsection 1.2 below we construct A and271

n as (k-independent) W 1,∞ perturbations of random fields A0 and n0 satisfying Condition 1.6.272

We note, however, that results for A and n being k-dependent L∞ perturbations (i.e. rougher,273

but k-dependent perturbations) of A0 and n0 satisfying Condition 1.6 can easily be obtained.274

The basis for these bounds is observing that deterministic a priori bounds hold when275

(a) A ∈ NTA(µ1), n = n0 + η, where n0 ∈ NTn(µ2) and k‖η‖L∞(DR;R) is sufficiently small,276

and (b) A = A0 + B, n = n0 + η, where A0 ∈ NTA(µ1), n0 ∈ NTn(µ2), k‖η‖L∞(DR;R) and277

k‖B‖W 1,∞(DR;Rd×d) are both sufficiently small, and A,n, and D− are such that u ∈ H2(DR)278

(see, e.g., [39, Theorem 4.18(i)] for these latter requirements). Given these deterministic279

bounds, the general arguments in this paper can then be used to prove well-posedness of the280

analogous stochastic problems.281

To understand why bounds hold in the case (a), observe that one can write the PDE as282

(1.10) ∇ · (A∇u) + k2n0u = −f − k2ηu;283

if k‖η‖L∞(DR;R) is sufficiently small then the contribution from the k2ηu term on the right-284

hand side of (1.10) can be absorbed into the k2‖u‖2L2(DR) term appearing on the left-hand285

side of the bound (the deterministic analogue of (1.8)). In the case n0 = 1, this is essentially286

the argument used to prove the a priori bound in [18, Theorem 2.4] (see [25, Remark 2.15]).287

The reason bounds hold in the case (b) is similar, except now we need the H2 norm of u on288

the left-hand side of the bound (as well as the H1 norm) to absorb the contribution from the289

∇ · (B∇u) term on the right-hand side.290

1.2. Random fields satisfying Condition 1.6. The main focus of this paper is proving291

well-posedness of the variational formulations of the stochastic Helmholtz equation, and a292

priori bounds on the solution, for the most-general class ofA and n allowed by the deterministic293

bounds in [25]. However, in this section, motivated by the Karhunen-Loève expansion (see294

This manuscript is for review purposes only.



THE HELMHOLTZ EQUATION IN RANDOM MEDIA 9

e.g. [38, p. 201ff.]) and similar expansions of material coefficients for the stationary diffusion295

equation [35, Section 2.1], we consider A and n as series expansions around known non-random296

fields A0 and n0 satisfying Condition 1.6 (i.e., Condition 1.6 is satisfied for n0, A0 independent297

of ω ∈ Ω, and therefore µ1, µ2 independent of ω). Define298

(1.11) A(ω,x) = A0(x) +

∞∑
j=1

Yj(ω)Ψj(x) and n(ω,x) = n0(x) +

∞∑
j=1

Zj(ω)ψj(x),299

where:300

• ess supp(1−A0), ess supp(I − n0) ⊂⊂ BR,301

• A0 and n0 satisfy Condition 1.6 with µ1 and µ2 independent of ω ∈ Ω302

• Yj , Zj ∼ Unif(−1/2, 1/2) i.i.d.,303

• Ψj ∈W 1,∞(DR;Rd×d) with ess supp Ψj ⊂⊂ BR for all j = 1, . . . ,m,304

(1.12)
∞∑
j=1

ess supx∈DR
‖Ψj‖2 < 2A0,min and

∞∑
j=1

‖Ψj‖W 1,∞(DR;Rd×d) <∞,305

where A0,min > 0 is such that A0,min|ξ|2 ≤
(
A(x)ξ

)
· ξ for almost every x ∈ D+ and306

for all ξ ∈ Cd, and where ‖·‖2 is the operator norm induced by the Euclidean vector307

norm on Cd (i.e., ‖·‖2 is the spectral norm).308

• ψj ∈W 1,∞(DR;R) with ess suppψj ⊂⊂ BR for all j = 1, . . . ,m,309

(1.13)
∞∑
j=1

‖ψj‖L∞(DR;R) < 2n0,min and
∞∑
j=1

‖ψj‖W 1,∞(DR;R) <∞,310

where n0,min := ess infx∈DR
n0(x), and311

The first assumptions in (1.12) and (1.13) ensure that A > 0 (in the sense of quadratic312

forms) and n > 0 almost surely, respectively. The second assumptions in (1.12) and (1.13)313

are used to prove A and n are measurable, respectively; see [44, Appendix C]. The following314

lemmas give sufficient conditions for the series in (1.11) to satisfy Condition 1.6.315

Lemma 1.15 (Series expansion of A satisfies Condition 1.6). Let µ > 0, δ ∈ (0, 1). If316

A0 ∈ NTA(µ), and317

(1.14)
∞∑
j=1

ess supx∈DR
‖Ψj(x)− (x · ∇)Ψj(x)‖2 ≤ 2δµ,318

then A ∈ NTA((1− δ)µ) almost surely.319

Proof of Lemma 1.15. Since A0 ∈ NTA(µ), we have320

(1.15)
(

(A(ω,x)− (x · ∇)A(ω,x))ξ
)
· ξ ≥ µ|ξ|2 +

∞∑
j=1

(
Yj(ω)(Ψj(x)− (x · ∇)Ψj(x))ξ

)
· ξ321

for all ξ ∈ Cd, for almost every x ∈ DR, almost surely. As Yj ∼ Unif(−1/2, 1/2) for all j and322

the bound (1.14) holds, the right-hand side of (1.15) is bounded below by (1− δ)µ|ξ|2 almost323

surely. Since ξ ∈ Cd was arbitrary, it follows that A(ω) ∈ NTA((1− δ)µ)) almost surely, as324

required.325
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Lemma 1.16 (Series expansion of n satisfies Condition 1.6). Let µ > 0 and δ ∈ (0, 1). If326

n0 ∈ NTn(µ) and
∑m

j=1‖ψj(x) + x · ∇ψj(x)‖L∞(DR;R) ≤ 2δµ, then n ∈ NTn((1− δ)µ).327

The proof of Lemma 1.16 is omitted, since it is similar to the proof of Lemma 1.15; in fact328

it is simpler, because it involves scalars rather than matrices.329

1.3. Discussion of the main results in the context of other work on UQ for time-330

harmonic wave equations. In this section we discuss existing results on well-posedness of331

(1.1), as well as analogous results for the elastic wave equation and the time-harmonic Maxwell’s332

equations. The most closely-related work to the current paper is [18] (and its analogue for333

elastic waves [20]), in that a large component of [18] consists of attempting to prove well-334

posedness and a priori bounds for the stochastic variational formulation (i.e. Problem 3) of335

the Helmholtz Interior Impedance Problem; i.e., (1.1) with A = I and stochastic n posed in a336

bounded domain with an impedance boundary condition ∂u/∂ν − iku = g (see the discussion337

of such boundary-value problems in Remark 1.12). Under the assumption of existence, [18]338

shows that for any k > 0 the solution is unique and satisfies an a priori bound of the form (1.8)339

(with different constant C1), provided n = 1 + η where the random field η satisfies (almost340

surely) ‖η‖L∞ ≤ C/k for some C > 0 independent of k. [18] then invokes Fredholm theory341

to conclude existence, but this relies on an incorrect assumption about compact inclusion of342

Bochner spaces—see Appendix A below. However, combining Theorem 1.4 and Remarks 1.12343

and 1.14 with A = I and n0 = 1 + η (with η as above) produces an analogous result to344

Theorem 1.8, and gives a correct proof of [18, Theorem 2.5]. Therefore the analysis of the345

Monte Carlo interior penalty discontinuous Galerkin method in [18] can proceed under the346

assumptions of Theorem 1.4 and Remarks 1.12 and 1.14.347

The paper [30] considers the Helmholtz transmission problem with a stochastic interface,348

i.e. (1.1) posed in Rd with both A and n piecewise constant and jumping on a common,349

randomly-located interface. A component of this work is establishing well-posedness of Prob-350

lem 1 for this setup. To do this, the authors make the assumption that k is small (to avoid351

problems with trapping mentioned above—see the comments after [30, Theorem 4.3]); the352

sesquilinear form a is then coercive and an a priori bound (in principle explicit in A and n)353

follows [30, Lemma 4.5]. By Remark 1.13, the results of this paper can be used to obtain the354

analogous well-posedness result for large k in the case of nontrapping jumps.355

The paper [8] studies the Bayesian inverse problem associated to (1.1) with A = I and356

n = 1 posed in the exterior of a Dirichlet obstacle with random boundary. A component of357

the analysis in [8] is the well-posedness of the forward problem for an obstacle with a variable358

boundary [8, Proposition 3.5]. Instead of mapping the problem to one with a fixed domain359

and variable A and n, [8] instead works with the variability of the obstacle directly, using360

boundary-integral equations. The k-dependence of the solution operator is not considered,361

but would enter in [8, Lemma 3.1].362

The papers [32] and [31] consider the time-harmonic Maxwell’s equations with (i) the363

material coefficients ε, µ constant in the exterior of a perfectly-conducting random obstacle364

and (ii) ε, µ piecewise constant and jumping on a common randomly located interface; in both365

cases these problems are mapped to problems where the domain/interface is fixed and ε and366

µ are random and heterogeneous. The papers [32] and [31] essentially consider the analogue367

of Problem 1 for the time-harmonic Maxwell’s equations, obtaining well-posedness from the368
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corresponding results for the related deterministic problems.369

1.4. Outline of the paper. In subsection 1.3 we discuss our results in the context of370

related literature. In section 2 we state general results on a priori bounds and well-posedness371

for stochastic variational formulations. In section 3 we prove the results in section 2. In372

section 4 we prove Theorems 1.4 and 1.8. In Appendix A we discuss the failure of Fredholm373

theory for the stochastic variational formulation of Helmholtz problems. In Appendix B we374

recap results from measure theory and the theory of Bochner spaces.375

2. General results on proving a priori bounds and well-posedness of stochastic varia-376

tional formulations. In this section we state general results for proving a priori bounds and377

well-posedness results for variational formulations of linear elliptic SPDEs.378

2.1. Notation and definitions of the variational formulations. Let (Ω,F ,P) be a com-379

plete probability space. Let X and Y be separable Banach spaces over a field F, (where F = R380

or C). Let B(X,Y ∗) denote the space of bounded linear maps X → Y ∗. Let C be a topological381

space with topology TC . Given maps382

c : Ω→ C, A : C → B(X,Y ∗), and L : C → Y ∗,383

let A : L2(Ω;X)→ L2(Ω;Y )∗ and L ∈ L2(Ω;Y )∗ be defined by384

(2.1)
[
A(u)

]
(v) :=

∫
Ω

[
Ac(ω)u(ω)

](
v(ω)

)
dP(ω) and L(v) :=

∫
Ω
Lc(ω)

(
v(ω)

)
dP(ω)385

for v ∈ L2(Ω;Y ). Recall that a bounded linear map X → Y ∗ is equivalent to a sesquilinear386

(or bilinear) form on X×Y ; see e.g. [48, Lemma 2.1.38]. To keep notation compact, we write387

Ac(ω) = (A ◦ c)(ω) and Lc(ω) = (L ◦ c)(ω).388

Remark 2.1 (Interpretation of the space C). The space C is the ‘space of inputs’. For the389

stochastic Helmholtz EDP in subsection 1.1 the space C is defined in Definition 4.5 below, but390

the upshot of this definition is that for any ω ∈ Ω the triple (A(ω), n(ω), f(ω)) is an element391

of C. The maps c, A, and L are given by c = (A,n, f), A = a, and L = L, where a and L392

are given by (1.4) and (1.5) respectively and the equality A = a is meant in the sense of the393

one-to-one correspondence between B(X,Y ∗) and sesquilinear forms on X × Y.394

The following three problems are the analogues in this general setting of Problems 1–3 in395

section 1.396

Problem MAS (Measurable variational formulation almost surely). Find a measurable func-397

tion u : Ω→ X such that398

(2.2) Ac(ω)u(ω) = Lc(ω) in Y ∗399

almost surely.400

Problem SOAS (Second-order moment variational formulation almost surely). Find u ∈401

L2(Ω;X) such that (2.2) holds almost surely.402

Problem SV (Stochastic variational formulation). Find u ∈ L2(Ω;X) such that403

(2.3) Au = L in L2(Ω;Y )∗.404
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Remark 2.2 (Immediate relationships between formulations). Since L2(Ω;X) ⊆ B(Ω, X)405

(the space of all measurable functions Ω→ X) it is immediate that if u solves Problem SOAS406

then every member of the equivalence class of u solves Problem MAS.407

2.2. Conditions on A, L, and c. We now state the conditions under which we prove408

results about the equivalence of Problems MAS–SV.409

Condition A1 (A is continuous). The function A : C → B(X,Y ∗) is continuous, where we410

place the norm topology on X, the dual norm topology on Y ∗, and the operator norm topology411

on B(X,Y ∗).412

Condition A2 (Regularity of A ◦ c). The map A ◦ c ∈ L∞(Ω; B(X,Y ∗)).413

We note that Condition A2 is violated in the well-studied case of a log-normal coefficient414

κ for the stationary diffusion equation (1.2); in order to ensure the stochastic variational415

formulation is well-defined in this case, one must change the space of test functions as in416

[24, 41]417

Condition L1 (L is continuous). The function L : C → Y ∗ is continuous, where we place418

the dual norm topology on Y ∗.419

Condition L2 (Regularity of L ◦ c). The map L ◦ c ∈ L2(Ω;Y ∗).420

Condition C1 (c is measurable). The function c : Ω→ C is measurable.421

To state the next condition, we need to recall the following definition.422

Definition 2.3 (P-essentially separably valued [47, p26]). Let (S, TS) be a topological space.423

A function h : Ω → S is P-essentially separably valued if there exists E ∈ F such that424

P(E) = 1 and h(E) is contained in a separable subset of S.425

Condition C2 (c is P-essentially separably valued). The map c : Ω → C is P-essentially426

separably valued.427

Remark 2.4 (Why do we need Condition C2?). The theory of Bochner spaces requires428

strong measurability of functions (see Definitions B.9 and B.14 below). However, the proof429

techniques used in this paper rely heavily on the measurability of functions (see Definition B.1430

below). In separable spaces these two notions are equivalent (see Corollary B.19). However,431

some of the spaces we encounter (such as L∞(DR;R)) are not separable. Therefore, in our432

arguments we use Condition C2 along with the Pettis Measurability Theorem (Theorem B.18433

below) to conclude that measurable functions are strongly measurable.434

Condition B (A priori bound almost surely). There exist Cj , fj : Ω→ R, j = 1, . . . ,m such435

that Cjfj ∈ L1(Ω) for all j = 1, . . . ,m and the bound436

(2.4) ‖u(ω)‖2X ≤
m∑
j=1

Cj(ω)fj(ω)437

holds almost surely.438

Remark 2.5 (Notation in the a priori bound). We use the notation fj in the right-hand439

side of (2.4) to emphasise the fact that typically these terms relate to the right-hand sides of440
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the PDE in question. For the stochastic Helmholtz EDP, m = 1, f1 = ‖f‖2L2(D), and C1 is441

given by (1.9).442

Condition U (Uniqueness almost surely). ker
(
Ac(ω)

)
= {0} P-almost surely.443

The condition ker
(
Ac(ω)

)
= {0} P-almost surely can be stated as: given G ∈ L2(Ω;Y )∗,444

for P-almost every ω ∈ Ω the deterministic problem Ac(ω)u0 = G has a unique solution,445

2.3. Results on the equivalence of Problems MAS, SOAS, and SV.446

Theorem 2.6 (Measurable solution implies second-order solution). Under Condition B, if u447

solves Problem MAS then u solves Problem SOAS and satisfies the stochastic a priori bound448

(2.5) ‖u‖2L2(Ω;X) ≤
m∑
j=1

‖Cjfj‖L1(Ω).449

Note that the right-hand side of the stochastic a priori bound (2.5) is the expectation of450

the right-hand side of the bound (2.4).451

Lemma 2.7 (Stochastic variational formulation well-defined). Under Conditions A1, A2,452

L1, L2, C1, and C2, the maps A and L defined by (2.1) are well-defined in the sense that453

(2.6) [A(v1)](v2), L(v2) <∞ for all v1 ∈ L2(Ω;X), for all v2 ∈ L2(Ω;Y ).454

Theorem 2.8 (Second-order solution implies stochastic variational solution). Under Condi-455

tions L1, L2, C1, and C2, if u solves Problem SOAS then u solves Problem SV.456

Theorem 2.9 (Stochastic variational solution implies second-order solution). If Problem SV457

is well-defined and u solves Problem SV, then u solves Problem SOAS.458

Theorems 2.6, 2.8, and 2.9 and Lemma 2.7 are summarised in Figure 2.1.459

Problem MAS

Problem SOAS

Problem SV

Under Condition B, get
stochastic a priori bound

(2.5) (Theorem 2.6)
Immediate

Under Conditions L1, L2,
C1, and C2, (Theorem 2.8)

If Problem SV is well-
defined (Theorem 2.9)

Well-defined under Conditions A1,
A2, L1, L2, C1, and C2 (Lemma 2.7)

Figure 2.1. The relationship between the variational formulations. An arrow from Problem P to Problem
Q with Conditions R indicates ‘under Conditions R, the solution of Problem P is a solution of Problem Q’

Remark 2.10 (Condition L2 in Theorem 2.8). In Theorem 2.8 we could replace Condi-460

tion L2 with Condition A2, and the result would still hold—see the proof for further details.461

However, Condition L2 is less restrictive than Condition A2, as it only requires L2 integrability462

of L ◦ c as opposed to essential boundedness of A ◦ c.463
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Lemma 2.11 (Showing uniqueness of the solution to Problems MAS–SV). If Condition U464

holds, then465

1. the solution to Problem MAS (if it exists) is unique up to modification on a set of466

P-measure 0 in Ω,467

2. the solution to Problem SOAS (if it exists) is unique in L2(Ω;X), and468

3. if Problem SV is well-defined, the solution to Problem SV (if it exists) is unique in469

L2(Ω;X).470

Remark 2.12 (Informal discussion on the ideas behind the equivalence results). The diagram471

in Figure 2.1 summarises the relationships between the variational formulations, and the472

conditions under which they hold. Moving ‘up’ the left-hand side of the diagram, we prove a473

solution of Problem SV is a solution of Problem SOAS in Theorem 2.9; the key idea in this474

theorem is to use a particular set of test functions and the general measure-theory result of475

Lemma B.22 below; this approach was used for the stationary diffusion equation (1.2) with476

log-normal coefficients in [24], and for a wider class of coefficients in [41].477

Moving ‘down’ the right-hand side, we prove a solution of Problem MAS is a solution478

of Problem SOAS in Theorem 2.6; the key part of this proof is that the bound in Condi-479

tion B gives information on the integrability of the solution u. (In the case of (1.2) with480

uniformly coercive and bounded coefficient κ, the analogous integrability result follows from481

the Lax–Milgram theorem; [14, Proposition 2.4] proves an equivalent result for (1.2) with482

lognormal coefficient κ with an isotropic Lipschitz covariance function.) Proving a solution483

of Problem SOAS is a solution of Problem SV in Theorem 2.8 essentially amounts to posing484

conditions such that the quantities
[
Ac(ω)(u(ω))

]
(v(ω)) and Lc(ω)(v(ω)) are Bochner inte-485

grable for any v ∈ L2(Ω;Y ), so that (2.3) makes sense. Lemma 2.7 shows that the stronger486

property (2.6) holds, and requires stronger assumptions than Theorem 2.8, since the proof of487

Theorem 2.8 uses the additional information that u solves Problem SOAS.488

Remark 2.13 (Changing the condition u ∈ L2(Ω;X)). Here we seek the solution u ∈489

L2(Ω;X) but we could instead require u ∈ Lp(Ω;X), for some p > 0 and require Au = L490

in Lq(Ω;Y )∗, for some q > 0 (i.e. use test functions in Lq(Ω;Y )). In this case, the proof491

of Theorem 2.9 would be nearly identical, as the space D of test functions used there is a492

subset of Lq(Ω;Y ) for all q > 0. One could also develop analogues of Theorems 2.6 and 2.8493

and Lemma 2.7 in this setting—see e.g. [24, Theorem 3.20] for an example of this approach494

for the stationary diffusion equation with lognormal diffusion coefficient.495

Remark 2.14 (Non-reliance on the Lax-Milgram theorem). The above results hold for496

an arbitrary sesquilinear form and hence are applicable to a wide variety of PDEs; their497

main advantage is that they apply to PDEs whose stochastic variational formulations are not498

coercive.499

Remark 2.15 (Overview of how these results are applied to the Helmholtz equation in sec-500

tion 4). We obtain the results for the Helmholtz equation via the following steps (which could501

also be applied to other SPDEs fitting into this framework):502

1. Define the map c (via A,n, and f) such that for almost every ω ∈ Ω there exists a503

solution of the deterministic Helmholtz EDP corresponding to c(ω).504

2. Define u : Ω→ X to map ω to the solution of the deterministic problem corresponding505
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to c(ω).506

3. Prove that Conditions A1, A2, L1, L2, C1, C2, B, and U hold, so that one can apply507

Theorems 2.6, 2.8, and 2.9 along with Lemmas 2.7 and 2.11 to show Problem 3 is508

well-defined and u is unique and satisfies Problems 1–3.509

Steps 1 and 2 can be thought of as constructing a solution pathwise.510

3. Proof of the results in section 2.511

3.1. Preliminary lemmas. To simplify notation, we introduce the following definition.512

Definition 3.1 (Pairing map). For fixed c : Ω→ C, A : Ω→ B(X,Y ∗), given v : Ω→ X we513

define the map πv : Ω→ Y ∗ by514

(3.1) πv(ω) := [(A ◦ c)(ω)](v(ω)).515

A key ingredient in proving that the stochastic variational formulation is well-defined516

(Lemma 2.7) is showing that the maps πu and L ◦ c are measurable. Showing that L ◦ c is517

measurable is straightforward (see Lemma 3.2 below), but showing that πu is measurable is518

not. This is because L◦ c depends on ω only through its dependence on c, but πu depends on519

ω through both the dependence of A ◦ c on ω and the dependence of u on ω; it is this dual520

dependence that causes the extra complication.521

Lemma 3.2 (L ◦ c is measurable). Under Conditions L1 and C1 the function L ◦ c is522

measurable.523

Proof of Lemma 3.2. The map c is measurable (by Condition C1) and L is continuous (by524

Condition L1), therefore Lemma B.4 implies that L ◦ c is measurable.525

Definition 3.3 (Product map). For v : Ω → X, let Pv : Ω → B(X,Y ∗) × X be defined by526

Pv(ω) =
(
(A ◦ c)(ω), v(ω)

)
.527

Lemma 3.4 (Product map is measurable). When B(X,Y ∗)×X is equipped with the product528

topology, if Conditions A1 and C1 hold, and if v : Ω → X is measurable, then Pv : Ω →529

B(X,Y ∗)×X is measurable.530

Proof of Lemma 3.4. By the result on the measurability of the Cartesian product of mea-531

sureable functions (Lemma B.6), Pv is measurable with respect to
(
F ,B

(
B(X,Y ∗)

)
⊗ B(X)

)
532

(where B denotes the Borel σ-algebra—see Definition B.2), as both of the coordinate func-533

tions A ◦ c and v are measurable. Since B(X,Y ∗) and X are both metric spaces, they534

are both Hausdorff. As X is separable, Lemma B.7 on the product of Borel σ-algebras535

imples B
(
B(X,Y ∗)

)
⊗ B(X) = B

(
B(X,Y ∗) × X

)
. Hence Pv is measurable with respect to536 (

F ,B
(
B(X,Y ∗)×X

))
.537

Definition 3.5 (Evaluation map). Let Z be a separable Banach space. The function ηZ∗ :538

B(X,Z∗)×X → Z∗ is defined by539

(3.2) ηZ∗
(
(H, v)

)
:= H(v) for H ∈ B(X,Z∗) and v ∈ X.540

Observe that the pairing, product, and evaluation maps (πv, Pv, and, ηY ∗ respectively)541

are related by πv = ηY ∗ ◦ Pv.542
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Lemma 3.6 (Evaluation map is continuous). Let Z be a separable Banach space. The map543

ηZ∗ is continuous with respect to the product topology on B(X,Z∗) × X and the dual norm544

topology on Z∗.545

The proof of Lemma 3.6 is straightforward and omitted.546

Lemma 3.7 (πv is measurable). If Conditions A1 and C1 hold and v is measurable, then547

the function πv as defined by (3.1) is measurable.548

Proof of Lemma 3.7. By Lemma 3.4 Pv is measurable and by Lemma 3.6 ηY ∗ is continu-549

ous. Therefore Lemma B.4 implies that πv = ηY ∗ ◦ Pv is measurable.550

3.2. Proofs of Theorems 2.6, 2.8, and 2.9 and Lemmas 2.7 and 2.11.551

Proof of Theorem 2.6. We need to show u : Ω → X is strongly measurable, satisfies the552

bound (2.5), and therefore is Bochner integrable and is in the space L2(Ω;X). Our plan is to553

use Corollary B.12 to show u is Bochner integrable, and establish (2.5) as a by-product. Since554

u solves Problem MAS, u is measurable. As X is separable, it follows from Corollary B.19555

that u is strongly measurable. Define N : X → R by N(v) := ‖v‖2X . Since N is continuous,556

Lemma B.4 implies N ◦ u : Ω → R is measurable. Therefore, since both the left- and right-557

hand sides of (2.4) are measurable and (2.4) holds for almost every ω ∈ Ω we can integrate558

(2.4) over Ω with respect to P and obtain559

(3.3)

∫
Ω
‖u(ω)‖2X dP(ω) ≤

m∑
j=1

‖Cjfj‖L1(Ω),560

the right-hand side of which is finite since Condition B includes that Cjfj ∈ L1(Ω) for all j =561

1, . . . ,m. Since u is strongly measurable, the bound (3.3) and Corollary B.12 with p = 2 imply562

that u is Bochner integrable. The norm ‖u‖L2(Ω;X) is thus well-defined by Definition B.13 and563

(3.3) shows that (2.5) holds, and so in particular ‖u‖L2(Ω;X) <∞.564

Proof of Lemma 2.7. We must show that for any v1 ∈ L2(Ω;X) and any v2 ∈ L2(Ω;Y ):565

• The quantities
[
Ac(ω)v1(ω)

](
v2(ω)

)
and Lc(ω)

(
v2(ω)

)
are Bochner integrable, so that566

the definitions of A and L as integrals over Ω make sense.567

• The maps A(v1) and L are linear and bounded on L2(Ω;Y ), that is, A : L2(Ω;X) →568

L2(Ω;Y )∗ and L ∈ L2(Ω;Y )∗.569

It follows from these two points that A and L are well-defined. Thanks to the groundwork570

laid in subsection 3.1, the measurability of
[
Ac(ω)v1(ω)

](
v2(ω)

)
and Lc(ω)

(
v2(ω)

)
follows from571

Lemmas 3.2 and 3.7 (which need Conditions A1–C2). Their P-essential separability follows572

from Conditions A1–C2 and Lemma B.20 and thus their strong measurability follows from573

Corollary B.19 on the equivalence of measurability and strong measurability when the image574

is separable. Their Bochner integrability then follows from the Bochner integrability condition575

in Theorem B.11 (with V = F) and the Cauchy–Schwartz inequality since576

(3.4)

∫
Ω

∣∣Lc(ω)

(
v2(ω)

)∣∣ dP(ω) ≤ ‖L ◦ c‖L2(Ω;Y ∗)‖v2‖L2(Ω;Y ),577

which is finite by Condition L2, and578

(3.5)

∫
Ω

∣∣∣[Ac(ω)v1(ω)
](
v2(ω)

)∣∣∣ dP(ω) ≤ ‖A ◦ c‖L∞(Ω;B(X,Y ∗))‖v1‖L2(Ω;X)‖v2‖L2(Ω;Y ),579
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which is finite by Condition A2. We now show L ∈ L2(Ω;Y )∗ and A : L2(Ω;X)→ L2(Ω;Y )∗.580

Observe that |L(v2)| ≤
∫

Ω

∣∣Lc(ω)(v2(ω))
∣∣dP(ω) and |[A(v1)](v2)| ≤

∫
Ω

∣∣[Ac(ω)v1(ω)
]
(v2(ω))

∣∣dP(ω)581

and thus by (3.4) and (3.5) L and A(v1) are bounded. They are clearly linear, and so it follows582

that L ∈ L2(Ω;Y )∗ and A(v1) ∈ L2(Ω;Y )∗, i.e., A : L2(Ω;X)→ L2(Ω;Y )∗.583

Proof of Theorem 2.8. In order to show that u solves Problem SV, we must show:584

1. either the functional L ∈ L2(Ω;Y )∗ or the functional A(u) ∈ L2(Ω;Y )∗, and585

2. the equality (2.3) holds.586

For Point 1 we show that L ∈ L2(Ω;Y )∗, (since this is easier than showing A(u) ∈587

L2(Ω;Y )∗); in fact the proof of this is contained in the proof of Lemma 2.7.588

For Point 2, since u solves Problem SOAS, for P-almost every ω ∈ Ω we have Ac(ω)u(ω) =589

Lc(ω) in Y ∗. Hence, for any v ∈ L2(Ω;Y ) we have590

(3.6)
[
Ac(ω)u(ω)

](
v(ω)

)
= Lc(ω)

(
v(ω)

)
591

for P-almost every ω ∈ Ω. Since L ∈ L2(Ω;Y )∗, the right-hand side of (3.6) is a strongly592

measurable function with finite integral. Hence the left-hand side of (3.6) is as well, and we593

integrate over Ω to conclude
[
Au
]
(v) = L(v) for all v ∈ L2(Ω;Y ), i.e., Au = L in L2(Ω;Y )∗.594

The following lemma is needed for the proof of Theorem 2.9.595

Lemma 3.8. Let δ : Ω × Y → F. For y ∈ Y, define Ωy := {ω ∈ Ω : δ(ω, y) = 0} and define596

Ω̃ := {ω ∈ Ω : δ(ω, y) = 0 for all y ∈ Y }. If597

• for all ω ∈ Ω, δ(ω, ·) is a continuous functional on Y and598

• for all y ∈ Y, the map δ(·, y) : Ω→ F is measurable and P(Ωy) = 1,599

then P(Ω̃) = 1.600

Proof of Lemma 3.8. We must show that the set Ω̃ ∈ F , and P(Ω̃) = 1. Observe that,601

for any y ∈ Y , the set Ωy ∈ F , since Ωy = δ(·, y)−1({0}), which is the preimage under a602

measurable map of a measurable set.603

Since Y is a Hilbert space, it is separable, and therefore it has a countable dense subset604

(yn)n∈N. We will show that P(∩n∈NΩyn) = 1 and Ω̃ = ∩n∈NΩyn . The set ∩n∈NΩyn ∈ F , as F is605

a σ-algebra and P
(
∪n∈NΩc

yn

)
≤
∑

n∈N P
(
Ωc
yn

)
= 0, and hence P(∩n∈NΩyn) = 1. To next show606

Ω̃ = ∩n∈NΩyn we observe that Ω̃ = ∩y∈Y Ωy and ∩y∈Y Ωy ⊆ ∩n∈NΩyn . It therefore suffices to607

show ∩n∈NΩyn ⊆ ∩y∈Y Ωy to conclude Ω̃ = ∩n∈NΩyn .608

Fix y ∈ Y. By density of (yn)n∈N, there exists a subsequence (ynm)m∈N such that ynm → y609

as m→∞. Fix ω ∈ ∩n∈NΩyn . Note that ω ∈ ∩m∈NΩynm
; that is, for all m ∈ N, δ(ω, ynm) = 0.610

As δ(ω, ·) is a continuous function on Y , δ(ω, ynm) → δ(ω, y) as m → ∞. But as previously611

noted, δ(ω, ynm) = 0 for all m ∈ N. Hence we must have δ(ω, y) = 0, and thus ω ∈ Ωy. Since612

ω ∈ ∩n∈NΩyn was arbitrary, it follows that ∩n∈NΩyn ⊆ Ωy, and since y ∈ Y was arbitrary, it613

follows that ∩n∈NΩyn ⊆ ∩y∈Y Ωy as required.614

Proof of Theorem 2.9. Let u ∈ L2(Ω;X) solve Problem SV. We need to show that u solves615

Problem SOAS. Observe that u solving Problem SOAS means Ac(ω)(u(ω)) =
(
Lc(ω)

)
(ω) in Y ∗616

for almost every ω ∈ Ω. We now use an idea from [24, Theorem 3.3]. Our plan is to use test617
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functions of the form y1E , where y ∈ Y and E ∈ F to reduce Problem SV to the statement618 ∫
E

[
Ac(ω)

(
u(ω)

)](
y(ω)

)
dP(ω) =

∫
E

[(
Lc(ω)

)
(ω)
](
y(ω)

)
dP(ω) for all E ∈ F619

and then show this implies u satisfies Problem SOAS via Lemma B.22.620

First let D := {y1E : y ∈ Y,E ∈ F} and observe that the elements of D are maps from Ω621

to Y. The fact that D ⊆ L2(Ω;Y ) follows via the following three steps:622

1. The elements of D are measurable, indeed the indicator function of a measurable set623

is a measurable function Ω→ R, and multiplication by y ∈ Y is a continuous function624

R→ Y. Hence elements of D are measurable by Lemma B.4.625

2. As Y is a separable Hilbert space, it follows from Corollary B.19 that the elements of626

D are strongly measurable.627

3. ‖y1E‖L2(Ω;Y ) =
√
P(E)‖y‖Y <∞ for all y ∈ Y,E ∈ F .628

Since Problem SV is well-defined, and u solves Problem SV, and D ⊆ L2(Ω;Y ), we have629

that [Au](v) = L(v) for all v ∈ D. Therefore, we have630

(3.7)

∫
Ω

[
Ac(ω)(u(ω))

]
(y1E(ω)) dP(ω) =

∫
Ω

[
Lc(ω)

]
(y1E(ω)) dP(ω)631

for all y ∈ Y and E ∈ F . If we define δ : Ω × Y → F by δ(ω, y) :=
[
Ac(ω)(u(ω))− Lc(ω)

]
(y)632

then, by the definition of 1E , (3.7) becomes633

(3.8)

∫
E
δ(ω, y) dP(ω) = 0 for all E ∈ F .634

To conclude u solves Problem SOAS we must show δ(ω, y) = 0 for all y ∈ Y, almost surely.635

We will use Lemma B.22, so the first step is to show that for all y ∈ Y δ(·, y) is Bochner636

integrable. This follows from the fact that Problem SV is well-defined, and thus the quantities637 [
Ac(ω)v1(ω)

](
v2(ω)

)
and Lc(ω)

(
v2(ω)

)
are Bochner integrable for any v1 ∈ L2(Ω;X), v2 ∈638

L2(Ω;Y ). In particular, they are Bochner integrable when v1 = u, and v2 = y1E and thus639

their difference δ is Bochner integrable. Secondly, δ(ω, ·) is a continuous function on Y since640

Ac(ω)(u(ω)) and
(
Lc(ω)

)
(ω) ∈ Y ∗, for all ω ∈ Ω.641

We now show δ(ω, y) = 0 for all y ∈ Y, almost surely. For y ∈ Y define the set Ωy :=642

{ω ∈ Ω : δ(ω, y) = 0}; by (3.8) and Lemma B.22 we have that P(Ωy) = 1 for all y ∈ Y. By643

Lemma 3.8, δ(ω, y) = 0 for all y ∈ Y , almost surely, that is, Ac(ω)u(ω) = Lc(ω) almost surely;644

it follows that u solves Problem SOAS.645

Remark 3.9 (Connection with the argument in [41, Remark 2.2]). The argument in646

Lemma 3.8 and the final part of Theorem 2.9 closely mirrors the result in [41, Remark 2.2].647

Indeed, we prove in general that P
(
δ(ω, y) = 0

)
= 1 for all y ∈ Y implies P

(
δ(ω, y) = 1 for648

all y ∈ Y
)

= 1, and [41, Remark 2.2] shows an analogous result for the stationary diffusion649

equation (1.2) with non-uniformly coercive and unbounded coefficient κ.650

Proof of Lemma 2.11. Proof of Part 1. Suppose u1, u2 : Ω→ X solve Problem MAS. Let651

E = {ω ∈ Ω : u1(ω) 6= u2(ω)}. Denote by E1 and E2 the sets (of measure zero) where the652

variational problems for u1 and u2 fail to hold, i.e. E1, E2 ∈ F with P(E1) = P(E2) = 0 and653

This manuscript is for review purposes only.



THE HELMHOLTZ EQUATION IN RANDOM MEDIA 19

Ac(ω)(u1(ω)) 6= Lc(ω) iff ω ∈ E1, and Ac(ω)(u2(ω)) 6= Lc(ω) iff ω ∈ E2. As ker
(
Ac(ω)

)
= {0}654

P-almost surely, there exists E3 ∈ F such that P(E3) = 0 and ker
(
Ac(ω)

)
6= {0} iff ω ∈ E3.655

We claim E ⊆ E1 ∪ E2 ∪ E3. Indeed, if u1(ω) 6= u2(ω) then either: (i) at least one of u1 and656

u2 does not solve Problem MAS at ω or (ii) u1 and u2 both solve Problem MAS at ω, but657

ker
(
Ac(ω)

)
6= {0}. Since P(Ej) = 0, j = 1, 2, 3, we have P(E1 ∪E2 ∪E3) = 0. Therefore E ∈ F658

and P(E) = 0 since (Ω,F ,P) is a complete probability space; hence u1 = u2 almost surely.659

Proof of Part 2. By Remark 2.2, if u1, u2 ∈ L2(Ω;X) solve Problem SOAS, then all the660

representatives of the equivalence classes of u1 and u2 solve Problem MAS. Hence, by Part 1,661

any representatives of u1 and u2 differ only on some set (depending on the representatives) of662

P-measure zero in Ω. Therefore u1 = u2 in L2(Ω;X), by definition of L2(Ω;X).663

Proof of Part 3. As Problem SV is well-defined, by Remark 2.2 and Theorem 2.9, if u1 and664

u2 solve Problem SV, then u1 and u2 also solve Problem MAS. We then repeat the reasoning665

in the proof of Part 2 to show u1 = u2 in L2(Ω;X).666

4. Proofs of Theorems 1.4 and 1.8. In subsection 4.1 we place the Helmholtz stochastic667

EDP into the framework developed in section 2. In subsection 4.2 we give sufficient conditions668

for the Helmholtz stochastic EDP to satisfy Conditions A1, L1, and C1, etc.. In subsection 4.3669

we apply the general theory developed in section 2 to prove Theorems 1.4 and 1.8.670

4.1. Placing the Helmholtz stochastic EDP into the framework of section 2. Recall671

R > 0 is fixed. We let X = Y = H1
0,D(DR) and define the norm ‖v‖21,k := ‖∇v‖2L2(DR) +672

k2‖v‖2L2(DR) on H1
0,D(DR). Throughout this section, A0, n0, and f0 will be deterministic func-673

tions. Recall that since the supports of 1 − n, I − A, and f are compactly contained in BR,674

we can consider A,n, and f as functions on DR rather than on D+. In order to define the675

space C and the maps c,A, and L we define the following function spaces on DR.676

Definition 4.1 (Compact-support spaces). Let677

L2
R(DR) :=

{
f0 ∈ L2(DR) : ess supp(f0) ⊂⊂ BR

}
,678

L∞R,min(DR;R) :=
{
n0 ∈ L∞(DR;R) : ess supp(1− n0) ⊂⊂ BR,679

there exists αn0 > 0 such that n0(x) ≥ αn0 almost everywhere
}
,680

L∞R,min

(
DR;Rd×d

)
:=
{
A0 ∈ L∞

(
DR;Rd×d

)
: A0(x) is symmetric almost everywhere,681

ess supp(I −A0) ⊂⊂ BR, there exists αA0 > 0 s. t. αA0 ≤ A0(x)682

almost everywhere, in the sense of quadratic forms
}
, and683

W 1,∞
R,min

(
DR;Rd×d

)
:=
{
A0 ∈ L∞R,min

(
DR;Rd×d

)
: A0 ∈W 1,∞

(
DR;Rd×d

)}
.684

685

Observe that the norm on L∞(DR;R) induces a metric on L∞R,min(DR;R), and similarly for686

L∞R
(
DR;Rd×d), W 1,∞

R,min

(
DR;Rd×d), and L2

R(DR). These spaces are not vector spaces, and are687

not complete, but completeness and being a vector space is not required in what follows—we688

only need them to be metric spaces.689

Definition 4.2 (Deterministic form and functional).690

For (A0, n0, f0) ∈ L∞R
(
DR;Rd×d)× L∞R,min(DR;R)× L2

R(DR) let the sesquilinear form aA0,n0691
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on H1
0,D(DR)×H1

0,D(DR) and the antilinear functional Lf0 on H1
0,D(DR) be given by692

aA0,n0(v1, v2) :=

∫
DR

(
(A0∇v1) · ∇v2〉 − k2n0 v1 v2

)
dλ−

〈
TRγv1, γv2

〉
ΓR
, and693

Lf0(v2) :=

∫
DR

f0 v2 dλ, for v1, v2 ∈ H1
0,D(DR).694

695

Problem 4.3 (Helmholtz EDP). For (A0, n0, f0) ∈ L∞R
(
DR;Rd×d)×L∞R (DR;R)×L2

R(DR)696

find u0 ∈ H1
0,D(DR) such that aA0,n0(u0, v) = Lf0(v) for all v ∈ H1

0,D(DR).697

Definition 4.4 (d∞ metric). Let (X1, d1), . . . , (Xm, dm) be metric spaces. The d∞ metric698

on the Cartesian product X1 × · · · ×Xm is defined by699

d∞((x1, . . . , xm), (y1, . . . , ym)) := max
j=1,...,m

dj(xj , yj).700

Definition 4.5 (The input space C). We let C := W 1,∞
R,min

(
DR;Rd×d) × L∞R,min(DR;R) ×701

L2
R(DR) with topology given by the d∞ metric.702

Definition 4.6 (The input map c). Define c : Ω→ C by c(ω) = (A(ω), n(ω), f(ω)).703

Definition 4.7 (The maps A and L for the Helmholtz stochastic EDP). Let704

(4.1) A((A0, n0, f0)) := aA0,n0 and L((A0, n0, f0)) := Lf0 ,705

where the definition of A is understood in terms of the equivalence between B(X,Y ∗) and706

sesquilinear forms on X × Y.707

4.2. Verifying the Helmholtz stochastic EDP satisfies the conditions in section 2.708

Lemma 4.8 (Conditions C1 and C2 for Helmholtz stochastic EDP). If A,n, and f are strongly709

measurable, then c defined by Definition 4.6 satisfies Conditions C1 and C2.710

Proof. Since A,n, and f are strongly measurable, by Theorem B.18 they are measurable711

and P-essentially separably valued. By Lemma B.6, it follows that c is measurable, so c712

satisfies Condition C1. By Lemma B.23, it follows that c is P-essentially separably valued, so713

c satisfies Condition C2.714

Lemma 4.9 (Conditions A1 and L1 for Helmholtz stochastic EDP). The maps A and L given715

by (4.1) satisfy Conditions A1 and L1.716

Proof of Lemma 4.9. We need to show that if (Am, nm, fm) → (A0, n0, f0) in C then717

A((Am, nm, fm))→ A((A0, n0, f0)) in B(X,Y ∗), and similarly for L. By the Cauchy–Schwarz718

inequality we have, for v1 ∈ X, v2 ∈ Y,719 ∣∣∣∣[[A(Am, nm, fm)−A(A0, n0, f0)
]
(v1)

]
(v2)

∣∣∣∣720

≤ ‖Am −A0‖L∞(DR)‖∇v1‖L2(DR)‖∇v2‖L2(DR)721

+ k2‖nm − n0‖L∞(DR;R)‖v1‖L2(DR)‖v2‖L2(DR)722

≤ 2d∞((Am, nm, fm), (A0, n0, f0))‖v1‖1,k‖v2‖1,k,723
724
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Hence if (Am, nm, fm)→ (A0, n0, f0) in C, then A((Am, nm, fm))→ A((A0, n0, f0)) in725

B(X,Y ∗). We also have726 ∣∣∣[L((Am, nm, fm), )− L((A0, n0, f0))
]
(v2)

∣∣∣ =

∣∣∣∣∫
DR

(fm − f0)v2 dλ

∣∣∣∣ ≤ ‖fm − f0‖L2(DR)

‖v2‖1,k
k

.727

Hence if (Am, nm, fm)→ (A0, n0, f0) in C, then L((Am, nm, fm))→ L((A0, n0, f0)) in Y ∗.728

Definition 4.10 (The solution operator S). Define S : C → H1
0,D(DR) by letting729

S(A0, n0, f0) ∈ H1
0,D(DR) be the solution of the Helmholtz EDP (Problem 4.3).730

Theorem 4.11 (S is well defined). For (A0, n0, f0) ∈ C the solution S((A0, n0, f0)) of the731

Helmholtz EDP (Problem 4.3) exists, is unique, and depends continuously on f0.732

Proof of Theorem 4.11. Since R(−〈TRγv, γv〉ΓR
) ≥ 0 for all v ∈ H1

0,D(DR) (see, e.g. [42,733

Theorem 2.6.4]), aA0,n0 satisfies a G̊arding inequality. Since the inclusion H1
0,D(DR) ↪→734

L2(DR) is compact, Fredholm theory shows that uniqueness implies well-posedness (see,735

e.g. [39, Theorem 2.34]). Since A is Lipschitz and n is L∞, uniqueness follows from the736

unique continuation results in [33, 23]; see [26, Section 2] for these results specifically applied737

to Helmholtz problems.738

Lemma 4.12 (Continuity of solution operator for Helmholtz stochastic EDP). For the739

Helmholtz stochastic EDP, the solution operator S : C → H1
0,D(DR) is continuous.740

Sketch Proof of Lemma 4.12. Let (A0, n0, f0), (A1, n1, f1) ∈ C, with S((A0, n0, f0)) = u0741

and S((A1, n1, f1)) = u1. Then for any v ∈ H1
0,D(DR) we have, for j = 0, 1,742

[[A((Aj , nj , fj))](uj)](v) = [L((Aj , nj , fj))](v).743

Continuity of S then follows from:744

1. Deriving the Helmholtz equation with coefficients A0 and n0 satisfied by ud := u0−u1.745

2. Recalling that the well-posedness result of Theorem 4.11 holds when f0 ∈ L2
R(DR) is746

replaced by a right-hand side in (H1
0,D(DR))∗; see, e.g., [39, Theorem 2.34].747

3. Applying the result in Point 2 to obtain a bound ‖ud‖1,k ≤ C(A0, n0)‖F‖(H1
0,D(DR))

∗ .748

4. Showing ‖F‖(H1
0,D(DR))

∗ depends on ‖∇u1‖L2(DR), ‖u1‖L2(DR), ‖A1 −A0‖L∞(DR;Rd×d),749

‖n1 − n0‖L∞(DR;R), and ‖f0 − f1‖L2(D).750

5. Eliminating the dependence on u1 by writing u1 = u0− ud and moving terms in ud to751

the left-hand side, to obtain a bound on ud of the form752

‖∇ud‖L2(DR) + k‖ud‖L2(DR)753

≤ C̃
(
u0, A0, n0, ‖A1 −A0‖L∞(DR;Rd×d), ‖n1 − n0‖L∞(DR;R), ‖f0 − f1‖L2(DR)

)
.754

755

6. Concluding that ud → 0 in H1
0,D(DR) as (A1, n1, f1)→ (A0, n0, f0) in C.756

Lemma 4.13 (Condition U for the Helmholtz stochastic EDP). The Helmholtz stochastic757

EDP satisfies Condition U.758

Proof of Lemma 4.13. This condition holds immediately from Theorem 4.11.759

To prove that Condition B holds for the Helmholtz stochastic EDP, we first state the760

deterministic analogues of Condition 1.6 and Theorem 1.8.761
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Condition 4.14 (Nontrapping condition for Helmholtz EDP [25, Condition 2.4]). d = 2, 3,762

D− is star-shaped with respect to the origin, A0 ∈W 1,∞(DR;Rd×d), n0 ∈W 1,∞(DR;R), and763

there exist τ1, τ2 > 0 such that, for almost every x ∈ D+, A0(x) − (x · ∇)A0(x) ≥ τ1 and764

n0(x) + x · ∇n0(x) ≥ τ2, where the first inequality holds in the sense of quadratic forms.765

Theorem 4.15 (Well-posedness of the Helmholtz EDP under Condition 4.14 [25, Theorem766

2.5]). Let (A0, n0, f0) ∈ C and suppose A0 and n0 satisfy Condition 4.14. Then the solution767

of the Helmholtz EDP (Problem 4.3) exists and is unique. Furthermore, given k0 > 0 for all768

k ≥ k0, the solution u0 of the Helmholtz EDP satisfies the bound769

(4.2)

τ1‖∇u0‖2L2(DR) + τ2k
2‖u0‖2L2(DR) ≤ C1‖f0‖2L2(DR), where C1 := 4

[
R2

τ1
+

1

τ2

(
R+

d− 1

2k0

)2
]
.770

We can now prove Condition B holds for the Helmholtz stochastic EDP.771

Lemma 4.16 (Condition B for Helmholtz stochastic EDP). If Conditions 1.3 and 1.6 hold,772

then Condition B holds for the Helmholtz stochastic EDP.773

Proof of Lemma 4.16. As Condition 1.6 holds, Condition 4.14 holds for P-almost every774

ω ∈ Ω (with A0 = A(ω), n0 = n(ω), τ1 = µ1(ω), and τ2 = µ2(ω)). Hence, by Theorem 4.15775

the bound (2.4) holds for all k ≥ k0, with X = H1
0,D(DR),m = 1,776

C1(ω) =
4

min{µ1(ω), µ2(ω)}

[
R2

µ1(ω)
+

1

µ2(ω)

(
R+

d− 1

2k0

)2
]
,777

and f1 = ‖f(ω)‖2L2(DR). It now remains to show that C1 ‖f‖2L2(DR) ∈ L1(Ω). We first show778

C1 ‖f‖2L2(DR) is measurable and then show that it lies in L1(Ω). To show measurability, we779

rewrite C1(ω) as780

C1(ω) = max

{
2R2

µ2
1(ω)

+
2

µ1(ω)µ2(ω)

(
R+

d− 1

2k0

)2

,
2R2

µ1(ω)µ2(ω)
+

2

µ2
2(ω)

(
R+

d− 1

2k0

)2
}
.781

The functions µ−1
1 and µ−1

2 are measurable by assumption; to conclude C1 is measurable we782

use the facts (see e.g. [28, Theorems 19.C, 20.A]): (i) the square of a measurable function783

is measurable, and (ii) the product, sum, and maximum of two measurable functions are784

measurable. Under Condition 1.3, the function f lies in the Bochner space L2
(
Ω;L2(DR)

)
.785

Therefore, f is strongly measurable and hence f is measurable by Theorem B.18. The map786

f 7→ ‖f‖2L2(DR) is clearly continuous, and therefore f1 is measurable by Lemma B.4. As the787

product of two measurable functions is measurable, it follows that C1 ‖f‖2L2(DR) is measurable.788

We now show that C1‖f‖2L2(DR) ∈ L1(Ω). The assumptions 1/µ1, 1/µ2 ∈ L2(Ω) and the789

Cauchy–Schwarz inequality imply 1/(µ1µ2) ∈ L1(Ω). Therefore the maps,790

ω 7→ 2R2

µ2
1(ω)

+
2

µ1(ω)µ2(ω)

(
R+

d− 1

2k0

)2

and ω 7→ 2R2

µ1(ω)µ2(ω)
+

2

µ2
2(ω)

(
R+

d− 1

2k0

)2

791
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are in L1(Ω). Since the maximum of two functions in L1(Ω) is also in L1(Ω), it follows that792

C1 ∈ L1(Ω). Condition 1.3 implies that ‖f‖2L2(DR) ∈ L1(Ω).793

To conclude C1‖f‖2L2(DR) ∈ L1(Ω), observe that the only dependence of C1 on ω is through794

µ1 and µ2. As µ1 and µ2 are assumed independent of f, and measurable functions of inde-795

pendent random variables are independent [37, p.236] it follows that C1 and ‖f‖2L2(DR) are796

independent, and therefore797

(4.3)∥∥∥C1‖f‖2L2(DR)

∥∥∥
L1(Ω)

=

∫
Ω
C1(ω)‖f(ω)‖2L2(DR) dP(ω) = ‖C1‖L1(Ω)

∥∥∥‖f‖2L2(DR)

∥∥∥
L1(Ω)

<∞.798

Therefore C1‖f‖2L2(D) ∈ L1(Ω) as required. We take the expectation (equivalently, the L1799

norm) of (4.2) (with A0 = A(ω) etc.) and use (4.3) to obtain (1.8).800

Remark 4.17 (The case when f, µ1, and µ2 are not independent). Remark 1.9 shows801

that for the physically relevant example of scattering by a plane wave, f, µ1, and µ2 may802

not be independent. In this case, if we replace the requirements in Condition 1.6 that f ∈803

L2
(
Ω;L2(D)

)
and 1/µ1, 1/µ2 ∈ L2(Ω) with the stronger requirements f ∈ L4

(
Ω;L2(D)

)
and804

1/µ1, 1/µ2 ∈ L4(Ω), then one can obtain the bound805

‖∇u‖2
L2(Ω;H1

0,D(DR)) + k2‖u‖2
L2(Ω;H1

0,D(DR)) ≤ ‖C1‖L2(Ω)‖f‖
2
L4(Ω;L2(DR)).806

Indeed, instead of independence, we use the Cauchy–Schwartz inequality in (4.3) to conclude807 ∥∥∥C1‖f‖2L2(DR)

∥∥∥
L1(Ω)

≤ ‖C1‖L2(Ω)

∥∥∥‖f‖2L2(DR)

∥∥∥
L2(Ω)

= ‖C1‖L2(Ω)‖f‖
2
L4(Ω;L2(DR)).808

Lemma 4.18 (Condition L2 for Helmholtz stochastic EDP). If f ∈ L2
(
Ω;L2(DR)

)
and A809

and n are strongly measurable, then Condition L2 holds for the Helmholtz stochastic EDP.810

Proof of Lemma 4.18. Since A,n, and f are strongly measurable, Conditions C1 and C2811

hold by Lemma 4.8; i.e., c is both measurable and P-essentially separably valued. Furthermore,812

by Theorem B.18 c is strongly measurable. By Lemma 4.9, Condition L1 holds, so the map813

L is continuous. Hence, by Lemma B.21, L ◦ c is strongly measurable. We also have that814

‖(L ◦ c)(ω)‖Y ∗ = ‖f(ω)‖L2(DR)/k, and thus L ◦ c ∈ L2(Ω;Y ∗) since f ∈ L2
(
Ω;L2(DR)

)
.815

Lemma 4.19 (Condition A2 for the Helmholtz stochastic EDP).816

If A ∈ L∞
(
Ω;L∞

(
DR;Rd×d)), n ∈ L∞(Ω;L∞(DR;R)), and f is strongly measurable, then817

Condition A2 holds for the Helmholtz stochastic EDP.818

Proof of Lemma 4.19. A near-identical argument to that at the beginning of the proof819

of Lemma 4.18 shows A ◦ c is strongly measurable. Recall that the Dirichlet-to-Neumann820

operator TR is continuous from H1/2(ΓR) to H−1/2(ΓR), see e.g. [42, Theorem 2.6.4]. Let821

v1 ∈ X, v2 ∈ Y, and observe that the Cauchy–Schwartz inequality and these properties of TR822
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imply that there exists C(k) > 0 such that823 ∣∣∣∣[[Ac(ω)

]
(v1)

]
(v2)

∣∣∣∣ ≤ ‖A(ω)‖L∞(DR;Rd×d)‖∇v1‖L2(DR)‖∇v2‖L2(DR)824

+ k2‖n(ω)‖L∞(DR;R)‖v1‖L2(DR)‖v2‖L2(DR)825

+ C(k)‖γv1‖H1/2(ΓR)‖γv2‖H1/2(ΓR),826
827

where we have used the fact that the two norms828

(4.4) ess supx∈DR
‖A(ω,x)‖2 and ‖A(ω)‖L∞(DR;Rd×d) := max

i,j∈{1,...,d}
‖Ai,j(ω)‖L∞(DR;R)829

are equivalent. Since the trace operator γ is continuous from H1(DR) to H1/2(ΓR) (see,830

e.g. [39, Theorem 3.38]), there exists C̃ > 0 such that831

‖(A ◦ c)(ω)‖B(X,Y ∗) ≤ C̃ max
{
‖A(ω)‖L∞(DR;Rd×d), ‖n(ω)‖L∞(DR;R), C(k)

}
‖v1‖1,k‖v2‖1,k.832

and hence A ◦ c ∈ L∞(Ω; B(X,Y ∗)).833

4.3. Proofs of Theorems 1.4 and 1.8.834

Proof of Theorem 1.4. We construct a solution of Problem 1 by letting u = S ◦ c (which835

is well-defined by Theorem 4.11); by construction, [a(ω)](u(ω), v) = [L(ω)](v) for all v ∈836

H1
0,D(DR) almost surely. It follows that u is measurable by Condition 1.3 and Lemmas 4.12,837

4.12, and B.4, and so u solves Problem 1. We therefore proceed to apply the general theory.838

Conditions A1 and L1 hold by Lemma 4.9; Condition A2 holds by Lemma 4.19; Con-839

dition L2 holds by Lemma 4.18; Conditions C1 and C2 hold by Lemma 4.8 and Condi-840

tion 1.3; and Condition U holds by Lemma 4.13. Therefore we can apply Theorems 2.8841

and 2.9 and Lemmas 2.7 and 2.11 to conclude the results.842

Proof of Theorem 1.8. All the conclusions of Theorem 1.4 hold, and we only need to show843

that if u solves Problem 1 then it also solves Problem 2. Condition B holds by Conditions 1.3844

and 1.6 and Lemma 4.16. The result then follows from Theorem 2.6.845

Appendix A. Failure of Fredholm theory for the stochastic variational formulation of846

Helmholtz problems. The standard approach to proving existence and uniqueness of a847

(deterministic) Helmholtz BVP is to show that the associated sesquilinear form satisfies a848

G̊arding inequality, and then apply Fredholm theory to deduce that existence and uniqueness849

are equivalent; see, e.g., [39, Theorem 4.10]. This procedure relies on the fact that the inclusion850

H1
0,D(DR) ↪→ L2(DR) is compact; see, e.g., [39, Theorem 3.27].851

As noted in subsection 1.3, the analysis in [18] of Problem 3 for the Helmholtz Interior852

Impedance Problem mimics this approach and assums that L2
(
Ω;H1(D)

)
is compactly con-853

tained in L2
(
Ω;L2(D)

)
, where D is the spatial domain. Here we briefly show L2

(
Ω;H1(D)

)
854

is not compactly contained in L2
(
Ω;L2(D)

)
by giving an explicit example of a bounded se-855

quence in L2
(
Ω;H1(D)

)
that has no convergent subsequence in L2

(
Ω;L2(D)

)
. Necessary and856

sufficient conditions for a subset of Lp([0, T ];B), for B a Banach space, to be compact, can be857

found in [49]. In particular, [49] shows that a space C being compactly contained in a space858

B does not by itself imply L2([0, T ];C) is compactly contained in L2([0, T ];B).859
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Example A.1. Let (Ω,F ,P) = ([0, 1],B([0, 1]), λ). Let D be a compact subset of Rd. Since860

L2(Ω) is separable, it has an orthonormal basis, which we denote by (fm)m∈N. Let um ∈861

L2
(
Ω;H1(D)

)
be defined by um(ω)(x) := fm(ω), for all x ∈ D, i.e., for each value of ω,862

um(ω) is a constant function on D and so ‖um(ω)‖H1(D) = ‖um(ω)‖L2(D). Then863

‖um‖2L2(Ω;H1(D)) =

∫
Ω
‖um(ω)‖2H1(D) dP(ω) = λ(D)2

∫
Ω
|fm(ω)|2 dP(ω) = ‖fm‖2L2(Ω)λ(D)2,864

and so um is a bounded sequence in L2
(
Ω;H1(D)

)
. However, for n 6= m, we have865

‖um − un‖2L2(Ω;L2(D)) = λ(D)2

∫
Ω
|um(ω)− un(ω)|2 dP(ω) = λ(D)2‖fm − fn‖2L2(Ω) = 2λ(D)2

866

if n 6= m, since the fm form an orthonormal basis for L2(D). Therefore (um)m∈N is bounded867

in L2
(
Ω;H1(D)

)
but does not have a convergent subsequence in L2

(
Ω;L2(D)

)
, and thus the868

inclusion of L2
(
Ω;H1(D)

)
into L2

(
Ω;L2(D)

)
cannot be compact.869

Appendix B. Recap of basic material on measure theory and Bochner spaces. We870

include this section, not only for completeness, but also to aid readers of this paper who are871

more familiar with deterministic, as opposed to stochastic, Helmholtz problems. Recall that872

here, and in the rest of the paper, (Ω,F ,P) is a complete probability space.873

B.1. Recap of measure theory results. We first recall some results from measure theory,874

with our main reference [7]. Even though [7] mainly considers maps with image R, the results875

we quote for more general images are straightforward generalisations of the results in [7].876

Definition B.1 (Measurable map). If (M,M) and (N,N ) are measurable spaces, we say877

that f : M → N is measurable (with respect to (M,N )) if f−1(E) ∈M for all E ∈ N .878

Definition B.2 (Borel σ-algebra). If (S, TS) is a topological space, the Borel σ-algebra B(S)879

on S is the σ-algebra generated by TS .880

If V is any topological space (including a Hilbert, Banach, metric, or normed vector space)881

then we will take always the Borel σ-algebra on V unless stated otherwise.882

Lemma B.3 (Continuous maps are measurable [7, Theorem 2.1.2]). Any continuous func-883

tion between two topological spaces is measurable.884

Lemma B.4 (The composition of a measurable and a continuous map is measurable [7, p.885

146]). Let (M,M) be a measurable space and let (S, TS) and (T, TT ) be topological spaces.886

Let f : M → S be measurable and let h : S → T be continuous. Then h ◦ f is measurable.887

Definition B.5 (Product σ-algebra [17, Section IV.11]). Let (M1,M1), . . . , (Mm,Mm) be888

measurable spaces. The product σ-algebra M1⊗· · ·⊗Mm is defined as the σ-algebra generated889

by the set of measurable rectangles {R1 × · · · ×Rm : R1 ∈M1, . . . , Rm ∈Mm}.890

Lemma B.6 (Measurability of the Cartesian product of measurable functions).891

Let (M1,M1), . . . , (Mm,Mm) be measurable spaces and hj : Ω → Mj , j = 1, . . . ,m be892

measurable functions. Then the product map P : Ω → M1 × · · · × Mm given by P (ω) :=893

(h1(ω), . . . , hm(ω)) is measurable with respect to (F ,M1 ⊗ · · · ⊗Mm).894
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Sketch proof of Lemma B.6. Let Rect(M1, . . . ,Mm) denote the set of measurable rect-895

angles, as in Definition B.5. Let P :=
{
C ⊆M1 × · · · ×Mm : P−1(C) ∈ F

}
. The proof of the896

lemma consists of the following straightforward steps, whose proofs are omitted: (i) Show897

Rect(M1, . . . ,Mm) ⊆ P. (ii) Show P is a σ-algebra. (iii) DeduceM1⊗ · · · ⊗Mm ⊆ P (since898

M1 ⊗ · · · ⊗Mm is generated by measurable rectangles). (iv) Conclude P is measurable with899

respect to (F ,M1 ⊗ · · · ⊗Mm).900

Lemma B.7 (Product of Borel σ-algebras is Borel σ-algebra of the product [7, Lemma 6.2.1901

(i)]). Let H1, H2 be Hausdorff spaces and let H2 have a countable base (e.g. H2 could be a902

separable metric space). Then B(H1 ×H2) = B(H1)⊗B(H2), where B(H1 ×H2) is the Borel903

σ-algebra of the product topology on H1 ×H2.904

B.2. Recap of results on Bochner spaces. We now recap the theory of Bochner spaces,905

using [16] as our main reference. In what follows the space V is always a Banach space.906

Definition B.8 (Simple function). A function v : Ω→ V is simple if there exist v1, . . . , vm ∈907

V and E1, . . . , Em ∈ F such that v =
∑m

i=1 viχEi , where χEi is the indicator function on Ei.908

Definition B.9 (Strongly measurable). A function v : Ω → V is strongly measurable 1 if909

there exists a sequence of simple functions (vn)n∈N such that limn→∞‖vn − v‖V = 0, P-almost910

everywhere.911

Definition B.10 (Bochner integrable [16, p. 49]). A strongly measurable function v : Ω→ V912

is called Bochner integrable if there exists a sequence of simple functions (vn)n∈N such that913

limn→∞
∫

Ω‖vn(ω)− v(ω)‖V dP(ω) = 0.914

Theorem B.11 (Condition for Bochner integrability [16, Theorem II.2.2]). A strongly mea-915

surable function v : Ω→ V is Bochner integrable if and only if
∫

Ω‖v‖V dP <∞.916

Corollary B.12 (Sufficient condition for Bochner integrability). Let p ≥ 1. If a strongly917

measurable function v : Ω→ V has
∫

Ω‖v‖
p
V dP <∞, then v is Bochner integrable.918

Definition B.13 (Bochner norm). For a Bochner integrable function v : Ω→ V, let919

‖v‖Lp(Ω;V ) :=

(∫
Ω
‖v(ω)‖pV dP(ω)

)1/p

, 1 ≤ p <∞, and ‖v‖L∞(Ω;V ) := ess supω∈Ω‖v(ω)‖V .920

Definition B.14 (Bochner space). Let 1 ≤ p ≤ ∞. Then921

Lp(Ω;V ) :=
{
v : Ω→ V : v is Bochner integrable, ‖v‖Lp(Ω;V ) <∞

}
.922

Definition B.15 (Complete probability space). A probability space (Ω,F ,P) is complete if for923

every E1 ∈ F with P(E1) = 0, the inclusion E2 ⊆ E1 implies that E2 ∈ F .924

Definition B.16 (Separable space). A topological space is separable if it contains a count-925

able, dense subset.926

Definition B.17 (σ-finite). A probability space (Ω,F ,P) is σ-finite if there exist E1, E2, . . . ∈927

F with P(Em) <∞ for all m ∈ N such that Ω = ∪∞m=1Em.928

1In [16] the authors use the term µ-measurable instead of strongly measurable (where µ is the measure on
the domain of the functions under consideration).
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Theorem B.18 (Pettis measurability theorem [47, Proposition 2.15]). Let (Ω,F ,P) be a929

complete σ-finite measure space. The following are equivalent for a function v : Ω→ V : (i) v930

is strongly measurable, (ii) v is measurable and P-essentially separably valued.931

Corollary B.19 (Equivalence of measurable and strongly measurable when the image is sepa-932

rable). Let (Ω,F ,P) be a σ-finite measure space. If V is a separable Banach space, then a933

function v : Ω→ V is strongly measurable if, and only if, it is measurable.934

Lemma B.20 (The composition of a continuous map and a P-essentially separably valued935

map). Let (S, TS) and (T, TT ) be topological spaces. If f1 : Ω → S and f2 : S → T are936

such that f1 is P-essentially separably valued and f2 is continuous, then f2 ◦f1 is P-essentially937

separably valued.938

Proof of Lemma B.20. As f1 is P-essentially separably valued, there exists E ∈ F such939

that P(E) = 1 and f1(E) ⊆ G ⊆ S, where G is separable. As f2 is continuous, f2(G) is940

separable [53, Theorem 16.4(a)]. Therefore, since (f2 ◦ f1)(E) ⊆ f2(G), it follows that f2 ◦ f1941

is P-essentially separably valued.942

Lemma B.21 (The composition of a continuous map and a strongly measurable map). If B1943

and B2 are Banach spaces and there exist f1 : Ω → B1 and f2 : B1 → B2 such that f1 is944

strongly measurable and f2 is continuous, then f2 ◦ f1 is strongly measurable.945

Proof of Lemma B.21. By Theorem B.18, f1 is both measurable and P-essentially separa-946

bly valued. We then apply Lemmas B.4 and B.20 to conclude f2 ◦ f1 is both measurable and947

P-essentially separably valued. Hence by Theorem B.18 f2 ◦ f1 is strongly measurable.948

Lemma B.22 (Zero in all integrals implies zero almost everywhere [16, Corollary II.2.5]). If α949

is Bochner integrable and
∫
E α(ω) dP(ω) = 0 for each E ∈ F then α = 0 P-almost everywhere.950

Lemma B.23 (Cartesian product of P-essentially separably valued maps). Let951

(C1, TC1), . . . , (Cm, TCm) be topological spaces, and let sj : Ω→ Cj , j = 1, . . . ,m be P-essentially952

separably valued. Define C := C1 × · · · × Cm and equip C with the product topology. Then the953

map f : Ω→ C given by s(ω) := (s1(ω), . . . , sm(ω)) is P-essentially separably valued.954

The proof of Lemma B.23 is straightforward and omitted.955
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