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ABSTRACT

Multimodal integration is an important process in perceptual decision-making. In humans, this
process has often been shown to be statistically optimal, or near optimal: sensory information is
combined in a fashion that minimises the average error in perceptual representation of stimuli.
However, sometimes there are costs that come with the optimization, manifesting as illusory
percepts. We review audio-visual facilitations and illusions that are products of multisensory
integration, and the computational models that account for these phenomena. In particular, the
same optimal computational model can lead to illusory percepts, and we suggest that more
studies should be needed to detect and mitigate these illusions, as artefacts in artificial cognitive
systems. We provide cautionary considerations when designing artificial cognitive systems with
the view of avoiding such artefacts. Finally, we suggest avenues of research towards solutions
to potential pitfalls in system design. We conclude that detailed understanding of multisensory
integration and the mechanisms behind audio-visual illusions can benefit the design of artificial
cognitive systems.
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1 INTRODUCTION
Perception is a coherent conscious representation of stimuli that is arrived at, via processing signals sent
from various modalities, by a perceiver: either human or non-human animals (Goldstein, 2008). Humans
have evolved multiple sensory modalities, which include not only the classical five (sight, hearing, tactile,
taste, olfactory) but also more recently defined ones (for example, time, pain, balance, and temperature
(Rao et al., 2001; Fulbright et al., 2001; Fitzpatrick and McCloskey, 1994; Green, 2004)). While each
modality is capable of resulting in a modality-specific percept, it is often the case that stimulus information
gathered by two or more modalities is combined in an attempt to create the most robust representation
possible of a given environment in perception (Macaluso et al., 2000; Ramos-Estebanez et al., 2007).
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Understanding and mapping just how the human brain combines different types of stimulus information
from drastically different modalities is challenging. Behavioural studies have suggested optimal or near-
optimal integration of multi-modal information (Alais and Burr, 2004; Shams and Kim, 2010). In the
case of Alais and Burr (2004) they examined the classic spatial ventriloquist effect through the lens of
near optimal binding. The effect in question describes the apparent ‘capture’ of an auditory stimulus in
perceptual space that is then mapped to the perceptual location of a congruent visual stimulus, the famous
example being the ventriloquist’s voice appearing to emanate from the synchronously animated mouth of
the dummy on their knee. Alais and Burr (2004) demonstrated that this process of ‘binding’ the perceived
spatial location of an auditory stimulus to the perceived location of a visual stimulus is an example of near
optimal audio-visual integration. They achieved this by demonstrating that variations of the effect could be
reversed (i.e. a visual stimulus being ‘captured’ and shifted to the same perceptual space as an auditory
stimulus) when the auditory signal was less noisy relative to the visual stimulus (when extreme blurring
noise was added to the visual stimulus). Additionally, when visual stimuli was blurred, but not extremely
so, neither stimulus source captured the other and a mean spatial position was perceived. This in turns
hints at a weighting process in audio-visual integration modulated by the level of noise in a given source
signal. These findings are consistent with the notion of inverse effectiveness: when a characteristic of a
given stimulus has low resolution there tends to be in an increase in ‘strength’ of multisensory integration
(de Dieuleveult et al., 2017; Stevenson and James, 2009). See Holmes (2009) for potential issues when
measuring multisensory integration ‘strength’ from the perspective of inverse effectiveness.

However, the very existence of audio-visual illusions in these processes highlights that there can be a
cost associated with this optimal approach (Shams et al., 2005b); the perceptual illusions here are being
considered as unwanted artefacts (costs) that manifest due to optimal integration of signals from multiple
modalities. One such well established audio-visual illusion that combines information from both modalities
and arrives at an auditory percept altogether unique is the McGurk-MacDonald effect (McGurk and
MacDonald, 1976). When participants watch footage of someone moving their lips, while simultaneously
listening to an auditory stimulus (a single syllable repeated in time with the moving lips) that is incongruent
to the moving lips, they have a tendency to ‘hear’ a sound that matches neither the mouthed syllable or the
auditory stimulus. While not gazing at the moving lips, participants accurately report the auditory stimulus.

The McGurk effect demonstrates that the integration of audio-visual information is an effective process in
most natural settings (even when modalities provide competing information), but may occasionally result
in an imperfect representation of events. This auditory illusion suggests a “best guess” can sometimes
be arrived at when modalities provide contradictory information, where different weightings are given to
competing modalities. Crevecoeur et al. (2016) highlighted that the nervous system also considers temporal
feedback delays when performing optimal multi-sensory integration (for example, visual input followed by
muscle response is slower than proprioceptive input followed by a muscle response with a difference of
˜50ms). The faster of the two sensory cues is given a dominant weighting in integration. This shows that
temporal characteristics affect optimal integration of information from different modalities, and should be
a factor in any models of multi-modal integration.

If artefacts such as illusions can occur in an optimal multi-modal system, these artefacts become a
concern when designing artificial cognitive systems. The optimal approach of integrating information from
multiple sources may lead to inaccurate representation of an environment (an artefact), which in turn could
result in a potentially hazardous outcome. For example, if a autonomous vehicle was trained in a specific
environment and then relocated to a novel environment, an artefact manifested via optimal integration of
stimuli could compromise the safe navigation through the novel environment and any action decisions
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taken therein (this scenario is a combination of the “Safe Exploration” and “Robustness to Distributional
Shift” accident risks as outlined by Amodei et al. (2016)).

The remainder of the paper reviews the processes in audio-visual perception that offers explanations
for audio-visual illusions and effects, focusing mainly on how audition affects visual perception, and
what this tells us about the audio-visual integration system. We continue by building a case for audio-
visual integration as a process of evidence accumulation/discounting, where differing weights are given
to different modalities depending on the stimuli information (spatial, temporal, featural etc.) being
processed, which follows a hierarchical process (from within-modality discrimination to multi-modal
integration). We highlight how some processes are optimal and others suboptimal, and how each have their
own drawbacks. Following that, we review cognitive models of multi-modal integration which provide
computational accounts for illusions. We then outline the potential implications of the mechanisms behind
multisensory illusions for artificial intelligent systems, concluding with our views on future research
directions. Additionally, rather than assuming that all attributions of prior entry (discussed below) are
accurate, this paper expands on the definition of prior entry to encompass both response bias and undefined
non-attentional processes. Doing so circumvents the granular debates surrounding prior entry in favour
of better discussing the broader processes on the way to audio-visual integration, of which prior entry is
but one. We also consider impletion (discussed below) as a process distinct from prior entry, but one that
complements and/or competes with prior entry.

2 AUDIO-VISUAL INTEGRATION
2.1 Visual and Multi-modal Prior Entry

Prior entry, a term coined by E.B. Titchener in 1908, describes a process whereby a visual stimulus that
draws an observer’s attention is processed in the visual perceptual system before any unattended stimuli
in the perceptual field. This in turn results in the attended stimulus being processed “faster” relative to
subsequently attended stimuli (Spence et al., 2001). This suggests that when attention is drawn (usually
via a cue) to a specific region of space, a stimulus that is presented to that region is processed at a greater
speed than a stimulus presented to unattended space.

Prior entry as a phenomenon is important in multi-modal integration due to the fact that the temporal
perception of one modality can be significantly altered by stimuli in another modality (as well as within
a modality) (Shimojo et al., 1997). The mechanisms underlying prior entry have been the subject of
controversy (Cairney, 1975; Schneider and Bavelier, 2003; Downing and Treisman, 1997), but strong
evidence has been provided for its existence via orthogonally designed crossmodal experiments (Spence
et al., 2001; Zampini et al., 2005). In the case of the orthogonally designed experiments, related information
between the attended modality and the subsequent temporal order judgement task was removed, thus
ensuring no modality-specific bias.

A classic visual illusion that supports the tenets of prior entry, and demonstrates just how much temporal
perception can be affected by it, is the line motion illusion, first demonstrated by Hikosaka et al. (1993b)
using visual cues. A cue to one side of fixation prior to the presentation of a whole line to the display
can result in the illusion of the line being “drawn” from the cued side (Figure 1). Hikosaka et al. (1993a)
investigated this effect further and demonstrated illusory temporal order in a similar fashion: namely,
cueing one side of fixation in a temporal order judgement task prior to the simultaneous onset of both
visual targets. Both these effects were replicated using auditory cues by Shimojo et al. (1997).

Shimojo et al. (1997) demonstrated that the integration of auditory and visual stimuli can cause temporal
order perception in one modality to be significantly altered by information in another via audio-visual
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Figure 1. The paradigm of the line-motion illusion similar to that used by Hikosaka et al. (1993b) and
Shimojo et al. (1997). Participants were presented with a fixation cross followed by a cue (auditory in
this example) to one side of fixation followed by another fixation display. Finally the target stimulus
was presented. In this example the left side of the target stimulus was cued via an auditory tone. The
resulting perception would be that of the line being drawn from the same side as the cue as opposed to
being presented in its entirety at the same time.

prior entry. However, Downing and Treisman (1997) suggested that the original line motion illusion was
an example of what they termed “impletion”: in an ambiguous display multiple stimuli are combined to
reflect a single smooth event in perception. For example, when an illusion of apparent motion is created
using statically flashed stimuli in different locations (e.g. left space followed by right space), the stimuli
can appear to smoothly change from the first stimulus shape (circle) to the second stimulus shape (square)
(Kolers and von Grünau, 1976; Downing and Treisman, 1997). It is suggested that a discriminatory process
gathers all available stimuli information, combines them, and creates a coherent percept; or the most likely
real world outcome where it fills in the gaps on the way to perception. Downing and Treisman (1997)
demonstrated that the line motion illusion could in fact be a perception of the visual cue itself streaking
across the field of display akin to frames in an animation. Admittedly, when one takes into account the
findings of Shimojo et al. (1997) using auditory cues, it may be tempting to dismiss the account of impletion,
but illusory visual motion can be induced via auditory stimuli (Hidaka et al., 2009), which demonstrates
that auditory stimuli can also induce a perception of motion in visual modality independent of prior-entry.
Despite these alternative explanations for phenomena such as the line motion illusion, neuroscience has
provided strong evidence for the existence of prior entry: speeded processing when attention was directed
to the visual modality rather than the tactile (Vibell et al., 2007), speeded processing associated with
attending to an auditory stimulus (Folyi et al., 2012), and speeded processing during a visual task when an
auditory tone was presented prior to the onset of the visual stimuli (Seibold and Rolke, 2014).

Evidence thus suggests that prior entry, and indeed audio-visual prior entry, is a robust phenomenon.
Whether all effects attributed to prior entry are done so correctly is another matter, but ultimately may be
somewhat irrelevant (see Fuller and Carrasco (2009) where evidence for both prior entry and impletion
in the line motion illusion is presented, and suggests prior entry is not requisite). For instance, even if
response bias or some non-attentional processes are mistakenly attributed to prior entry, these effects are
still predictable, and replicable, and in fact these processes may enhance or exaggerate genuine prior entry
effects.
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The prior entry and impletion effects discussed above show that shifts in attention, or the combination
of separate stimuli into the perception of a single stimulus event, can result in illusory temporal visual
perception. It seems likely that evidence gathered from both the audio and visual modalities are combined
optimally with some sources of information being given greater weighting in this process. When and how
to assign weightings in an artificial system is an important consideration in design in order to avoid artefacts
such as those described above. While prior entry and/or impletion can result in an inaccurate representation
of temporal events, there exist audio-visual effects that are facilitatory in nature and thus desirable, which
we discuss next.

2.2 Temporal ventriloquism
Illusory visual temporal order, as shown above, can be induced by auditory stimuli. However, auditory

stimuli, when integrated with visual stimuli, can also facilitate visual temporal perception: Scheier et al.
(1999) discovered an audio-visual effect where spatially non-informative auditory stimuli affected the
temporal perception of a visual temporal order judgement task. This effect became known as temporal
ventriloquism, analogous to spatial ventriloquism where visual stimuli shifts the perception of auditory
localisation (Radeau and Bertelson, 1987; Willey et al., 1937; Thomas, 1941). Temporal ventriloquism was
further investigated by Morein-Zamir et al. (2003): when accompanied by auditory tones, performance in a
visual temporal order judgement task was enhanced (Figure 2). This enhancement was abolished when the
tones coincided with the visual stimuli in time. When the two tones were presented between the visual
stimuli in time (Figure 3), a detriment in performance was observed. In both conditions the tones appeared
to “pull” the perception of the visual stimuli in time towards the auditory stimuli temporal onsets: further
apart in the enhanced performance and closer together when a detriment in performance was observed (see
however Hairston et al. (2006) for an argument against the notion of introducing a temporal gap between
the stimuli in visual perception). The main driver of this effect was believed to be the temporal relationship
between the auditory and visual stimuli, where the higher temporal resolution of the auditory stimuli
carried more weight in integration. This is a potent example of how assigning weightings in multi-modal
integration can have both positive and negative outcomes in terms of system performance.

Morein-Zamir et al. (2003) hypothesized that the quantity of auditory stimuli must match the quantity of
visual stimuli in order for the temporal ventriloquism effects to occur. For example, when a single tone
was presented between the presentation of the visual stimuli in time, there was no reported change in
performance. Morein-Zamir et al. (2003) refer to the unity assumption: the more physically similar stimuli
are to each other across modalities, the greater the likelihood they will be perceived as having originated
from the same source (Welch, 1999), we discuss this in more detail later.

However, other research questions the assumption that a matching number of stimuli in both the auditory
and visual modality are required to induce temporal ventriloquism. Getzmann (2007) studied an apparent
motion paradigm, where participants perceive two sequentially presented visual stimuli behaving as one
stimulus moving from one position to another. They found that when a single click was presented between
the two visual stimuli, it increased the perception of apparent motion, essentially “pulling” the visual
stimuli closer together in time in perception. This casts doubt on the idea that the quantity of stimuli must
be equal across modalities in order for, in this instance, an auditory stimulus to affect the perception of
visual events.

Indeed, Boyce et al. (2020) demonstrated that a detriment in response bias corresponding to actual visual
presentation order can be achieved with the presentation of a single tone in neutral space (different space to
the visual stimuli) in a visual ternary response task (temporal order judgement combined with simultaneity
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Figure 2. Trial events in the temporal ventriloquism paradigm that resulted in enhanced temporal order
judgement performance (Morein-Zamir et al., 2003). The stimulus onset asynchrony (SOA) between
illumination of LEDs varied. The first auditory tone was presented before the first LED illumination. The
second auditory tone was presented after the second LED illumination. The SOA between tones also varied.

Auditory Stimuli

LED 2

     SOA:
0 to 255ms

LED 1

Time

    SOA:
0 or 40ms

Figure 3. Trial events in the temporal ventriloquism paradigm that resulted in a detriment in temporal
order judgement performance (Morein-Zamir et al., 2003). The stimulus onset asynchrony (SOA) between
illumination of LEDs varied. The first auditory tone was presented after the first LED illumination. The
second auditory tone was presented before the second LED illumination. The SOA between tones also
varied.

judgements where the participant reports if stimuli were presented simultaneously). Importantly, this can be
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achieved consistently when presenting the single tone prior to the onset of the first visual stimulus (similar
to the trial in Figure 2 but without the second auditory stimulus). Often participants were as likely to make
a simultaneity judgement report as they were to make a temporal order judgement report corresponding to
actual sequential visual stimuli presentation order. This poses a problem for the temporal ventriloquism
narrative: a single tone before the sequential presentation of visual stimuli in a ternary task would be
expected to “pull” the perception of the first visual stimulus towards it in time, resulting in increased reports
corresponding to the sequential order of visual stimuli. Alternatively, it might “pull” the perception of
both visual stimuli in time with no observable effect on report bias should the matching quantity rule be
abandoned. The repeated demonstrations of a decrease in report bias corresponding to the sequential order
of visual stimuli suggest that the processes underlying temporal ventriloquism may be more flexible than
previously suggested, and may have impletion-esque elements. Specifically, characteristics of stimuli such
as their spatial and temporal relationship, and the featural similarity of stimuli within a single modality,
may be weighted to arrive at the most likely real world outcome in perception regardless of whether the
number of auditory stimuli equal the number of visual stimuli or not. Indeed, the number of auditory
stimuli relative to visual in this example appears to modulate the type of temporal ventriloquist effect that
might be expected to be observed.

Clearly not all conditions support the idea that the temporal relationship of an auditory stimulus to a visual
stimulus drives temporal ventriloquism and similar effects. However, while there are no easy explanations
for the audio-visual integration in temporal ventriloquism, efforts have been made to show that auditory
stimuli do indeed “pull” visual stimuli in temporal perception. Freeman and Driver (2008) created an
innovative paradigm that tested the idea that temporal ventriloquism is driven by auditory capture (in a
similar fashion to that of Getzmann (2007)), that is to say there is a “pulling” of visual stimuli towards
auditory stimuli in temporal perception. They began by determining the relative timings of visual stimuli
that resulted in illusory apparent visual motion (Figure 4). Once visual stimulus onset asynchronies (SOAs)
were established for the effect, Freeman and Driver (2008) adjusted the timings to remove bias in the
illusion (Figure 4b). Following that, they introduced auditory stimuli (Figure 4c) with the same SOAs used
to induce the effect in the visual-only condition (Figure 4a). In the presence of the auditory stimuli, both
visual stimuli were “pulled” towards each other in time perception, and participants perceived a bias in the
illusion.

This demonstrated that auditory stimuli had the ability to “pull” the respective visual stimuli in perceptual
time towards the respective auditory onsets. In doing so, the visual stimuli now appeared in perception
to have the same SOA as the auditory stimuli. This introduced a perceptual bias consistent with that
observed for the visual stimuli SOA (in the absence of auditory stimuli) necessary to induce the same bias
in illusory apparent visual motion. This meant predictable manipulation of the effect, and more specifically,
demonstrated auditory capture of visual events in time.

Freeman and Driver (2008) suggest that the timings of the flanker stimuli (the stimuli used to induce
temporal ventriloquism effects) in relation to the visual are the main drivers of temporal ventriloquism.
Roseboom et al. (2013b) demonstrated that, in fact, the featural similarity of the flanker stimuli used to
induce the effects described by Freeman and Driver (2008) have arguably as important a role to play at these
time scales. Specifically, Roseboom et al. (2013b) replicated the findings of Freeman and Driver (2008)
using auditory flankers. When flankers were featurally distinct (e.g. a sine wave and a white-noise burst) or
flanker types were mixed via audio-tactile flankers, a mitigated effect was observed. It was significantly
weaker compared to featurally identical audio-only or tactile-only flankers. This suggests that temporal
capture in-and-of-itself is not sufficient when describing the underlying mechanisms that account for this
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Visual Events
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Figure 4. Illusory apparent visual motion paradigm (Freeman and Driver, 2008); (a) the visual SOAs
(vSOA) between stimuli. ‘L’ denotes the left stimulus, and ‘R’ the right stimulus. When the vSOA was
333ms, apparent motion in the direction of the second stimulus was perceived. When there was a vSOA of
666ms, no apparent motion was perceived; (b): when vSOAs were 500ms, there was no bias in apparent
motion. (c): when vSOAs were 500ms but auditory stimuli were presented with an SOA (aSOA) of 333ms,
participants perceived apparent motion in the same direction as would be expected with a vSOA of 333ms.
When the aSOA was 666ms, illusory apparent visual motion was abolished.

effect, or temporal ventriloquism in general at the reported time scales. Roseboom et al. (2013b) also
demonstrated that the reported illusory apparent visual motion could be induced when the flanker stimuli
was presented synchronously with the target visual stimuli. This suggests that temporal ansynchrony is
not a requisite to induce this illusion in a directionally ambiguous display. Keetels et al. (2007) further
highlighted the importance of featural characteristics when inducing the temporal ventriloquism effect.
However, at shorter time scales, featural similarity appears not to play as large a role where timing is
reasserted as the main driver (Klimova et al., 2017; Kafaligonul and Stoner, 2010, 2012).

The above research is consistent with the unity assumption, where an observer makes an assumption about
two sensory signals, such as auditory and visual (or indeed, signals from the same modality), originating
from a single source or event (Vatakis and Spence, 2007, 2008; Chen and Spence, 2017). Vatakis and
Spence (2007) demonstrated that when auditory and visual stimuli were mismatched (for example, speech
presentation where the voice did not match the gender of the speaker) participants found it easier to judge
which stimulus was presented first; auditory or visual. The task difficulty increased when the stimuli were
matched suggesting an increased likelihood of perceiving the auditory and visual stimuli occurring at the
same time. This finding provides support for the unity assumption in audio-visual temporal integration
of speech via the process of temporal ventriloquism. See Vatakis and Spence (2008) for limitations of
the unity assumption’s influence over audio-visual temporal integration of complex non-speech stimuli.
See also Chen and Spence (2017) for a thorough review of the unity assumption and the myriad debates
surrounding it, and how it relates to Bayesian causal inference.

The findings by Roseboom et al. (2013b) and Keetels et al. (2007) show that there is often a much more
complex process of integration than simply auditory stimuli (or other stimuli of high temporal resolution)
capturing visual stimuli in perception. There would appear to be a process of evidence accumulation and
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evidence discounting: when two auditory events are featurally similar, and their temporal relationship with
visual stimuli is close, the auditory and visual stimuli are integrated. However, when two auditory stimuli
meet the temporal criteria for integration with visual stimuli, but these auditory stimuli are featurally
distinct and therefore deemed to be from unique sources, they are not wholly integrated with the visual
stimuli. In the second example, some of the accumulated temporal evidence is discounted due to evidence
of unique sources being present.

Taken together, this evidence builds a more complicated picture of temporal ventriloquism in general,
and the modulated illusory apparent visual motion direction effect (Freeman and Driver, 2008) in particular.
Indeed, the unity assumption potentially plays a role here when one considers the effect featural similarity
has on the apparent grouping of flankers.

2.3 Additional audio-visual effects
Most of the research discussed thus far has focused on the effects of audio-visual integration on space

and time perception in the visual modality. As highlighted by the McGurk effect, audio-visual integration
can also have other surprising outcomes in perception. Shams et al. (2002) demonstrated that when a single
flash of a uniform disk was accompanied by two or more tones, participants tended to perceive multiple
flashes of the disk (Figure 5). When multiple physical flashes were presented and accompanied by a single
tone, participants tended to perceive a single presentation of the disk (Andersen et al., 2004). These effects
were labelled as fission in the case of illusory flashes, and fusion in the case of illusory single presentation
of the disk. Fission and fusion differ from the likes of temporal ventriloquism and prior entry in that
they increase or decrease the quantity of perceived stimuli. After training, or when there was a monetary
incentive, qualitative differences were detectable between illusory and physical flashes (van Erp et al.,
2013; Rosenthal et al., 2009). However, the illusion persisted despite the ability to differentiate. Similarities
may be drawn between the effect reported by Shams et al. (2002) and Shipley (1964) where, when the
flutter rate of an auditory signal was increased, participants perceived an increased flicker frequency of
a visual signal. However, there was a relatively small quantitative change in flicker frequency, whereas
fission is a pronounced change in the visual percept (a single stimulus perceived as multiple stimuli).

Auditory Stimuli

Flash/es

7ms

17ms

7ms

 SOA:
 23ms

57ms

Figure 5. Trial events in the multiple flash illusion paradigm (Shams et al., 2002). A tone was presented
before visual stimulus onset, and a tone was presented after visual stimulus onset. The SOA between tones
was 57ms. This paradigm resulted in the perception of multiple flashes when in fact the visual stimulus
was presented only once for 17ms.
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Neuroimaging evidence provided further insights into fission/fusion effects. Specifically, in the presence
of auditory stimuli the BOLD response in the retinotopic visual cortex increased whether fission was
perceived or not (Watkins et al., 2006). The inverse was true when the fusion illusion was perceived.
This suggests that the auditory and visual perceptual systems are intrinsically linked, and reflects the
additive nature of the fission illusion and the suppressive nature of the fusion illusion that “removes”
information from visual perception (auditory stimuli has also been shown to have suppressive effects on
visual perception (Hidaka and Ide, 2015)).

Shams et al. (2002) proposed the discontinuity hypothesis as an underlying explanation for the fission
effect: discontinuous stimuli

must be present in one modality in order to “dominate” another modality during integration. However, as
alluded to above, Andersen et al. (2004) demonstrated that this was not the case via the fusion illusion.
Fission and fusion once again align with the ideas of impletion and the unity assumption. Consistent with
the influence featural similarity of flankers had on illusory apparent visual motion, the fission effect was
completely abolished when the tones used were distinct from each other: one a sine wave, the other a white
noise burst; or both featurally distinct sine wave tones (a 300Hz sine wave and a 3500Hz) (Roseboom et al.,
2013a; Boyce, 2016).

Another effect that seems to be governed by the featural similarity of auditory stimuli is the stream
bounce illusion. In this illusion, two uniform circles move towards each other from opposite space, and
when a tone presented at the point of overlap of the circles differed featurally to other presented tones, the
circles are perceived to “bounce” off each other. When multiple tones were featurally identical, the circles
often appeared to cross paths and continue on their original trajectory (Sekuler et al., 1997; Watanabe and
Shimojo, 2001). Taken with the above and similar research (Keetels et al., 2007; Cook and Van Valkenburg,
2009), this suggests that auditory streaming (where a sequence of auditory stimuli are assigned the same or
differing origins) processes play an integral role in audio-visual illusions and integration in general.

Auditory motion can also have a profound effect on visual perception where a static flashing visual target
is perceived to move in the same direction as auditory stimuli (Figure 6, see also Hidaka et al. (2011);
Fracasso et al. (2013)). Perceived location of apparent motion visual stimuli can also be modulated by
auditory stimuli (Teramotoa et al., 2012). The visual motion direction selective brain region MT/V5 is
activated in the presence of moving auditory stimuli, suggesting processing for auditory motion occurs
there (Poirier et al., 2005), which in turn hints at an intrinsic link between auditory and visual perceptual
systems. These effects taken together again point to evidence accumulation in audio-visual integration as
an optimal process, where different weight is given to auditory and visual inputs.

Consideration should be lent to how and when multiple stimuli in single modality should be grouped
together as originating from a single source, or not, before pairing with another modality. As demonstrated
above from neuropsychological evidences, and also from recent systems neuroscience evidences (Ghazanfar
and Schroeder, 2006; Meijer et al., 2019), the human audio-visual integration system appears to operate
in rather complex processing steps, in addition to the traditional thinking of hierarchical processing from
single modality. Hence, there is a need for modelling these cognitive processes. When designing artificial
cognitive systems, efforts should be made to isolate sources of auditory and visual stimuli, and identify
characteristics that would suggest they are related events. As shown above, relying on similar temporal
signatures alone is not a robust approach when integrating signals across modalities. The illusions discussed
above are summarised in Table 1.
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Time

Figure 6. Trial events in the sound induced illusory visual motion paradigm (Hidaka et al., 2011). The
flashing visual stimulus (white bar above) was presented with varying eccentricities from fixation (red dot)
depending on the trial condition. The auditory stimulus in the illusory condition was first presented to one
ear and panned to the opposing ear. This paradigm resulted in the illusion of motion often in the same
direction as that of the auditory stimulus motion.
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3 COMPUTATIONAL COGNITIVE MODELS
We have discussed how auditory stimuli can have a pronounced effect on the perception of visual events,
and vice versa, be it temporal or qualitative in nature. For auditory stimuli affecting the perception of
visual signals, some effects were additive, facilitatory, and others suppressive. Regardless of the outcome,
the influence of auditory stimuli on visual perception provides evidence of complexity of audio-visual
integration processes on the way to visual perception.

These complex mechanisms of how and when auditory stimuli alter visual perception have been clarified
through computational modelling. Chandrasekaran (2017) presents a review of computational models of
multisensory integration, categorizing the computational models into accumulator models, probabilistic
models, or neural network models. These types of models are also typically used in single-modal perceptual
decision-making (e.g. Ratcliff (1978); Wang (2002); Wong and Wang (2006)). In this review, we will only
focus on the accumulator and probabilistic models; the neural network (connectionist) models provide
finer-grained, more biologically plausible description of neural processes, but on the behavioral level are
mostly similar to the models reviewed here (Ma et al., 2006; Bogacz et al., 2006; Wong and Wang, 2006;
Roxin and Ledberg, 2008; Ma and Pouget, 2008; Liu et al., 2009; Pouget et al., 2013; Ursino et al., 2014;
Zhang et al., 2016; Ursino et al., 2019; Meijer et al., 2019).

3.1 Accumulator models
The race model is a simple model that accounts for choice distribution and reaction time phenomena,

e.g., faster reaction times of multisensory than unisensory stimuli (Raaja, 1962; Gondan and Minakata,
2016; Miller, 2016). More formally, the multisensory processing time DAV is the winner of two channel’s
processing times DA and DV for audio and visual signals:

DAV = min(DA, DV ) (1)

Another type of accumulator model, the coactivation model (Schwarz, 1994; Diederich, 1995), is based
on the classic accumulator-type drift diffusion model (DDM) of decision-making (Stone, 1960; Link, 1975;
Ratcliff, 1978; Ratcliff and Rouder, 1998). The DDM is a continuous analogue of a random walk model
(Bogacz et al., 2006), using a drift particle with state X at any moment in time to represent a decision
variable (relating in favour of one over another choice). This is obtained through integrating noisy sensory
evidence over time in the form of a stochastic differential equation, a biased Brownian motion equation:

dX = Adt+ cdW, (2)

where A is the stimulus signal (i.e. the drift rate), c is the noise level, and W represents the stochastic
Wiener process. Integration of the sensory evidence begins from an initial point (usually origin point 0), and
is bounded by the lower and upper decision thresholds, −z and z respectively. Each threshold corresponds
to a decision in favour of one of the two choices. Integration of the sensory information continues until the
drift particle encounters either the upper or the lower threshold, at which stage a decision is made in favour
of the corresponding option. The drift particle is then reset to the origin point to allow the next decision to
be processed. The DDM response time (RT) is calculated as the time taken for the drift particle to move
from its origin point to the either of the decision thresholds and can include a brief, fixed non-decision
latency. For the simplest DDM, the RT has a closed form analytical solution (Ratcliff, 1978; Bogacz et al.,
2006):

RT =
z

A
tanh(

Az

c2
) (3)
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Similarly, the corresponding analytical solution for the DDM’s error rate (ER) is:

ER =
1

1 + exp(2Az
c2

)
(4)

A simple unweighted coactivation model would combine evidence from two modalities and integrate it
over time using the DDM (Schwarz, 1994; Diederich, 1995). For example, with unimodal sensory evidence
X1 and X2 (e.g., auditory and visual information), the combined evidence is just a simple summation over
time using (2):

Xc = X1 +X2 (5)

3.2 Bayesian models
In contrast to these models, the Bayesian modeling framework offers an elegant approach to modeling

multisensory integration (Angelaki et al., 2009), although they share some similar characteristics with
drift-diffusion models (Bitzer et al., 2014; Fard et al., 2017). This approach can provide optimal or near
optimal integration of multimodal sensory cues by weighting the incoming evidences from each modality.
For example, if the modalities follow a Gaussian distribution, the optimal integration estimate Xc is
(Bülthoff and Yuille, 1996):

Xc =
k21

k21 + k22
X̂1 +

k22
k21 + k22

X̂2 (6)

where k1 = 1
σ21

and k2 = 1
σ22

and X̂1, X̂2, σ1 and σ2 are the means and standard deviations for modality
1 and 2, respectively. Interestingly, the model can show that the combined variance (noise) will always
be less than their individual estimates when the latter are statistically independent (Alais and Burr, 2004).
This justifies why combining the signals help reduce the overall noise. In fact, Beck et al. (2012) makes
a strong case for suboptimal inference, that the larger variability is due to deterministic, but suboptimal
computation, and that the latter, not internal or external noise, is the major cause of variability in behaviour.

A more complex model, TWIN (time window of integration), involves a combination of the race model
and the coactivation model (Colonius and Diederich, 2004). Specifically, whichever modality is first
registered (as in winning a “race”), the size of the window is dynamically adapted to the level of reliability
of the sensory modality. This would ensure, for instance, that if the less reliable modality wins the race,
the window would be increased to give the more reliable modality a relatively higher contribution in
multisensory integration. This model accounts for the illusory temporal order induced via a tone after visual
stimuli onset, where the more reliable temporal information (auditory stimulus) dictates the perceptual
outcome – illusory temporal order (Boyce et al., 2020).

The fission and fusion in audio-visual integration were suggested to result from statistically optimal com-
putational strategy (Shams and Kim, 2010), similar to Bayesian inference where audio-visual integration
implies decisions about weightings assigned to signals and decisions whether to integrate these signals.
Battaglia et al. (2003) applied this Bayesian approach to reconcile two seemingly separate audio-visual
integration theories. The first theory, called visual capture, is a “winner-take-all” model where the most
reliable signal (least variance) dominates, while the second theory used a maximum-likelihood estimation
to identify the weight average of the sensory input. The visual signal was shown to be dominant because
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of the subject perceptual bias, but the weighting given to auditory signals increased as visual reliability
decreased. Battaglia et al. (2003) showed that Equation (6) can naturally account for both theories by
having the weights to vary based on the signals’ variances.

To study how children and adults differ in audio-visual integration, Adams (2016) also used the same
Bayesian approach in addition to two other models of audio-visual integration: a focal switching model,
and a modality-switching model. The focal switching model stochastically sampled either auditory or
visual cues based on subjects’ reports of the observed stimulus. For the modality-switching model, the
stochastically sampled cues were probabilistically biased towards the likelihood of the stimulus being
observed. Adams (2016) found that the sub-optimal switching models modeled sensory integration in the
youngest study groups best. However, the older participants followed the partial integration of an optimal
Bayesian model.

.
3.2.1 Illusions as a by-product of optimal Bayesian integration

A variety of perceptual illusions have been shown to result from optimal Bayesian integration of
information coming from multiple sensory modalities. In the context of sound-induced flash illusion
(Figure 5), given independent auditory and visual sensory signals A, V , the ideal Bayesian observer
estimates posterior probabilities of the number of source signals as a normalized product of single-modality
likelihoods P (A|ZA) and P (V |ZV ) and joint priors P (ZA, ZV )

P (ZA, ZV |A, V ) =
P (A|ZA)P (V |ZV )P (ZA, ZV )

P (A, V )
. (7)

Regardless of the degree of consistency between auditory and visual stimuli, the optimal observer (7) have
been shown to be consistent with the performance of human observers (Shams et al., 2005b). Specifically,
when the discrepancy between the auditory and visual source signals is large, human observers rarely
integrate the corresponding percepts. However, when the source signals overlap to a large degree, the
two modalities are partially combined; in these cases the more reliable auditory modality shifts the visual
percepts, thereby leading to sound-induced flash illusion.

Existence of different causes for signals of different modalities is the key assumption of the optimal
observer model developed in (Shams et al., 2005b), which allowed it to capture both full and partial
integration of multisensory stimuli, with the latter resulting in illusions. Körding et al. (2007) suggested that
in addition to integration of sensory percepts, optimal Bayesian estimation is also used to infer the causal
relationship between the signals; this was consistent with spatial ventriloquist illusion found in human
participants. Alternative Bayesian accounts developed by Alais and Burr (2004) (using Equation (6)) and
Sato et al. (2007) also suggest that the spatial ventriloquist illusion stems from the near optimal integration
of spatial and auditory signals.

Evidence for optimal Bayesian integration as the primary mechanism behind perceptual illusions comes
from the paradigms involving not only audio-visual, but also other types of information. Wozny et al.
(2008) applied the model of Shams et al. (2005b) to trimodal, audio-visuo-tactile perception, through
simple extension of Equation (7). This Bayesian integration model accounted for cross-modal interactions
observed in human participants, including touch-induced auditory fission, and flash- and sound-induced
tactile fission (Wozny et al., 2008). Further evidence for Bayesian integration of visual, tactile, and
proprioceptive information is provided by the rubber hand illusion (Botvinick and Cohen, 1998), in which
a feeling of ownership of a dummy hand emerges soon after simultaneous tactile stimulation of both the
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concealed own hand of the participant and the visible dummy hand (see Lush (2020) for a critique of
control methods used in the ‘rubber hand’ illusion). The optimal causal inference model (Körding et al.,
2007) adapted for this scenario accounted for this illusion (Samad et al., 2015). Moreover, the model
predicted that if the distance between the real hand and the rubber hand is small, the illusion would not
require any tactile stimulation, which was also confirmed experimentally (Samad et al., 2015).

Finally, Bayesian integration has recently been shown to account even for those illusions which were
previously striking researchers as “anti-Bayesian”, for the reason that the empirically observed effects
had the direction opposite to the effects predicted by optimal integration. Such “anti-Bayesian” effects
are the size-weight illusion (Peters et al., 2016) (of the two objects with same mass but different size, the
larger object is perceived to be lighter), and the material-weight illusion (Peters et al., 2018) (of the two
objects with the same mass and size, the denser-looking object is perceived to be lighter). In both cases,
the models explaining these two illusions involved optimal Bayesian estimation of latent variables (e.g.,
density), which affected the final estimation of weight.

Altogether, the reviewed evidence from diverse perceptual tasks illustrates the ubiquity of optimal
Bayesian integration and its role in emergence of perceptual illusions.

3.2.2 Temporal dimension in Bayesian integration
Basic Bayesian modelling framework often does not come with a temporal component, unlike dynamical

models such as accumulator. However, a recent study shows that when optimal Bayesian model is combined
with the DDM, it can provide optimal and dynamic weightings to the individual sensory modalities. In
the case of visual and vestibular integration, using an experimental setup similar to that of Fetsch et al.
(2009), Drugowitsch et al. (2014) found a Bayes-optimal DDM to integrate vestibular and visual stimuli in
a heading discrimination task. It allowed the incorporation of time-variant features of the vestibular motion,
i.e. motion acceleration, and visual motion velocity. The Bayesian framework allowed the calculation of a
combined sensitivity profile d(t) from the individual stimulus sensitivities.

d(t) =

√
k2vis(c)

k2comb(c)
v2(t) +

k2vest(c)

k2comb(c)
a2(t) (8)

where kvis(c), kvest(c), and kcomb(c) are the visual, vestibular and combined stimulus sensitivities, and v(t)
and a(t) are the temporal sensitivities of the visual and vestibular stimuli, respectively. Drugowitsch et al.
(2014) found that Bayes-optimal DDM led to suboptimal integration of stimuli when subject response times
were ignored. However, when response times were considered, the decision-making process took longer
but resulted in more accurate responses. That said, a significant limitation of the study by Drugowitsch
et al. (2014) and related work is that it does not incorporate delays in information processing. More
generally, current Bayesian models do not consider how temporal delays impact sensory reliability. Delays
are particularly relevant for feedback control in the motor system and processes like audio-visual speech
because different sensory systems are affected by different temporal delays (McGrath and Summerfield,
1985; Jain et al., 2015; Crevecoeur et al., 2016).

So far, the modeling approaches do not generally take into account the effects of attention, motivation,
emotion, and other “top-down” or cognitive control factors that could potentially affect multimodal
integration. However, there are experimental studies of top-down influences, mainly attention (Talsma et al.,
2010). More recently, Maiworm et al. (2012) showed that aversive stimuli could reduce the ventriloquism
effect. Bruns et al. (2014) designed a task paradigm in which rewards were differentially allocated to
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different spatial locations (hemifields), creating a conflict between reward maximization and perceptual
reliance. The auditory stimuli were accompanied by task-irrelevant, spatially misaligned visual stimuli.
They showed that the hemifield with higher reward had a smaller ventriloquism effect. Hence, reward
expectation could modulate multimodal integration and illusion, possibly through some cognitive control
mechanisms. Future computational studies, e.g., using reward rate analysis (Bogacz et al., 2006; Niyogi
and Wong-Lin, 2013), should address how reward and punishment are associated with such effects.

4 AUDIO-VISUAL SYSTEMS IN THE ARTIFICIAL
Multimodal integration and sensor fusion in artificial systems have been an active research field for decades
(Luo and Kay, 1989, 2002), since using multiple sources of information can improve artificial systems
in many application areas, including smart environments, automation systems and robotics, intelligent
transportation systems. Integration of sensory modalities to generate a percept can occur at different stages,
from low (feature) to high (semantic) level. The integration of several sources of unimodal information at
middle and high level representations (Gómez-Eguı́luz et al., 2016; Wu et al., 1999) has clear advantages:
interpretability, simplicity of system design, and avoiding the problem of increasing dimensionality of the
resulting integrated feature. Although model dependent, lower dimensionality of the feature space typically
leads to better estimates of parametric models and computationally faster non-parametric models for a
fixed amount of training data, which in turn can reduce the number of judgement failures. However, percept
integration at the representation level lacks robustness and does not account for the way humans integrate
multisensory information (Calvert et al., 2001; Shams et al., 2005a; Stein et al., 2014; ?) to create these
percepts (Cohen, 2001). Temporal ventriloquism and the McGurk effect are just two examples of the result
of the lower-level integration of sensory modalities in humans to create percepts, yet the differences with
artificial systems go even further. While human perceptual decision-making is based on a dynamic process
of evidence accumulation of noisy sensory information over time (see above), artificial systems typically
follow a snapshot approach, i.e. percepts are created on the basis of instantaneous information, and only
from data over time-windows when the perception mainly unfolds over time. Therefore, we can distinguish
between decisions made over accumulated evidence, i.e. decision-making, and decisions made following
the snapshot approach, i.e. classification, even though sometimes these two approaches are combined.

Audio-visual information integration is one of the multi-sensory mechanisms that has increasingly
attracted research interests in the design of artificial intelligent systems. This is mainly due to the fact that
humans heavily rely on these sensing modalities, and advances in this area have been facilitated by the
high level of maturity of the individual areas involved, for instance signal processing, speech recognition,
machine learning, and computer vision. See Parisi et al. (2017) and Parisi et al. (2018) for examples of
how human multisensory integration in spatial ventriloquism has been used to model human-like spatial
localisation responses in artificial systems in which – given a scenario where sensor uncertainty exists in
audio-visual information streams – they propose artificial neural architectures for multisensory integration.
An interesting characteristic of audio-visual processing compared to other multimodal systems is the
fact that the information unfolds over time for audio signals, but also for visual systems when video is
considered instead of still images. However, most of the research in artificial visual systems follow the
snapshot approach mentioned above to build percepts, while video processing mainly focuses on integrating
and updating of these instantaneous percepts over time, which can be seen as evidence accumulation.
Like for other multimodal integration modalities, audio-visual integration in artificial systems can be
performed at different levels, although is generally used for classification purposes, while decision-making,
when performed, is based on the accumulation of classification results. Optimal temporal integration of
visual evidence together with audio information can be prone to the sort of illusory effects on percepts

Frontiers 17



W. P. Boyce et al. Optimality and limitations of audio-visual integration for cognitive systems

illustrated above in humans. However, because artificial systems are designed with very specific objectives,
an emergent deviation of the measurable targets of the system would be considered as a failure or bug of
the system. Therefore, although artificial systems can display features that could be the emergent results of
the multimodal integration, they will be regarded as failures to be avoided, and most likely not reported
in the literature. A close example related to reinforcement learning is the reward hacking effect (Amodei
et al., 2016), where a learning agent finds an unexpected (maybe undesired) optimal policy for a given
learning problem.

As stated earlier, multimodal integration is typically performed at high level, as low-level integration
generates higher dimensional data, thereby increasing the difficulty of processing and analysis. Moreover,
the low-level integration of raw data can have the additional problem of combining data of very different
nature. The dimensionality problem is magnified by the massive amount of data visual perception produces,
therefore most approaches to audio-visual processing in intelligent systems also address the problem of
integration at a middle and higher levels across diverse applications: object and person tracking (Beal
et al., 2003; Nakadai et al., 2002), speaker localization and identification (Gatica-Perez et al., 2007),
multimodal biometrics (Chibelushi et al., 2002), lip reading and speech recognition (Guitarte-Pérez et al.,
2005; Sumby and Pollack, 1954; Luettin and Thacker, 1997; Chen, 2001) and video annotation (Li et al.,
2004; Wang et al., 2000), and others. The computational models described above can be identified with
these techniques for artificial systems, as they generate percepts and perform decision-making on the basis
of middle-level fusion of evidence. However, some work in artificial systems deals with the challenging
problem of combining data at the signal level (Fisher et al., 2000; Fisher and Darrell, 2004). While artificial
visual systems were dominated by feature definition, extraction, and learning (Li and Allinson, 2008), the
success of deep learning and convolutional neural networks in particular has shifted the focus of computer
vision research. Likewise, speech processing is adopting this new learning paradigm, yet audio-visual
speech processing with deep learning is still based mainly on high-level integration (Noda et al., 2015;
Deng et al., 2013). Although the human audio-visual processing is not fully understood, our knowledge of
the brain strongly inspires (and biases) the design of artificial systems. Besides the well-known (yet not
widely reported) reward hacking in reinforcement learning and optimisation (Amodei et al., 2016), to the
best of our knowledge no illusory percepts have been reported in specific-purpose artificial systems, as
they are typically situations to be avoided.

5 DISCUSSION
The multi-modal integration processes and related illusions outlined above are closely related in terms
of how audition affects visual perception. Untangling whether prior entry (whatever form it may take),
impletion, temporal ventriloquism, or featural similarity of auditory stimuli are the drivers of audio-visual
effects can be a challenge, and may be missing the bigger picture when trying to understand how perception
is arrived at in a noisy world. The most likely explanation of the discussed effects is one of an overarching
unified process of evidence accumulation and evidence discounting. This perspective would state that
evidence is gathered via multiple modalities and is filtered through multiple sub-processes: prior entry,
auditory streaming, impletion, and temporal ventriloquism. Two or more of these sub-processes will often
interact, with various weightings given to each process. For example, prior entry using a single auditory
cue can induce an illusion of temporal order, but with the addition of a cue in the unattended side of space
after the presentation of both target visual stimuli, extra information in favour of temporal order can be
accumulated, which would increase the strength of the illusion (Boyce et al., 2020). Similarly, illusory
temporal order can be induced via spatially neutral tones (an orthogonal design), as demonstrated by
Boyce et al. (2020), which appears to combine prior entry and temporal ventriloquism, and impletion-like
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processes generally. The illusory temporal order induced via spatially neutral tones is significantly weaker
when compared to the spatially congruent audio and visual stimuli equivalent, highlighting the relative
weight given to spatial congruency. Additionally, when featurally distinct tones are used for both of these
effects, the prior entry illusory order is preserved while the illusory order induced by spatially neutral
tones is completely abolished (Boyce et al., 2020). This highlights how spatial information carries greater
weight than the featural information of the tones used when the auditory and visual stimuli are spatially
congruent. Conversely, it also highlights how featural characteristics carry greater weight in the absence of
audio-visual spatial congruency.

As outlined above, temporal ventriloquism effects can also interact with auditory streaming where the
features of auditory stimuli undergo a process of grouping, and the outcome can dictate whether the
stimuli is paired or not with visual stimuli. The mere fact that the temporal signature of stimuli is not
in-and-of-itself enough to induce an effect (at the times discussed here) suggests that sub-processes interact
across modalities. Specifically, when auditory stimuli are not grouped in the streaming process, there is
less evidence that they belong to the same source, and in turn it is less likely both auditory stimuli belong
to the same source as the visual events. These types of interactions taken with different outcomes in visual
perception, depending on the number of auditory stimuli used, point towards an overarching process that
fits an expanded version of impletion, or a unifying account of impletion (Boyce et al., 2020) (aligning
with Bayesian inference), where the most likely real world outcome is reflected in perception. The observer
weighs evidence from both modalities in multi-modal perception and also weighs evidence within a single
modality. This suggests an inherent weighted hierarchy, where spatial, featural, and temporal information
are all taken into account.

The discussed integration processes are often statistically optimal in nature (Shams and Kim, 2010; Alais
and Burr, 2004). This has implications for designing artificial cognitive systems. An optimal approach
may be an intuitive one: minimising the average error in perceptual representation of stimuli. However, as
discussed, this approach can come with costs in terms of illusions, or artefacts, despite a reduction in the
average error. Of course, some systems will not rely wholly on mimicking human integration of modalities,
and indeed will supersede human abilities: for example, a system may be designed to perform multiple
tasks simultaneously, something a human cannot do. However, future research should aim to identify when
an optimal approach is not suitable in multi-modal integration.

Using illusion research in human perception as a guide, researchers could identify and model when
artefacts occur in multi-modal integration, and apply these findings to system design. This might take the
shape of modulating the optimality of integration depending on conditions via increasing or decreasing
weightings as deemed appropriate. This approach could contribute to a database of “prior knowledge”
where specific conditions that can result in artefacts are catalogued and can inform the degree of integration
between sources in order to avoid undesired outcomes. For instance, Roach et al. (2006) examines audio-
visual integration from just such a perspective using a Bayesian model of integration, where prior knowledge
of events are taken into account and a balance between benefits and costs (optimal integration and potential
erroneous perception) of integration is reached. They examined interactions between auditory and visual
rate perception (where a judgement is made in a single modality and the other modality is ‘ignored’)
and found that there is a gradual transition between partial cue integration and complete cue segregation
as inter-modal discrepancy increases. The Bayesian model they implemented took into account prior
knowledge of the correspondence between audio and visual rate signals, when arriving at an appropriate
degree of integration.
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Similarly, a comparison between unimodal information and the final multi-modal integration might
offer a strategy for identifying artefacts. This strategy might be akin to the study of Sekiyama (1994),
which demonstrated that Japanese participants, in contrast to their American counterparts, have a different
audio-visual strategy in the McGurk paradigm: less weight was given to discrepant visual information,
which in turn affected the integration with auditory stimuli, ultimately resulting in a smaller McGurk effect.
The inverse was shown in the participants with cochlear implants who demonstrated a larger McGurk effect:
more weight was given to visual stimuli in general (Rouger et al., 2008). Magnotti and Beauchamp (2017)
suggested that a causal inference (determining if audio and visual stimuli have the same source) “type”
calculation is a step in multisensory speech perception, where some, but not all, incongruent audio-visual
speech stimuli are integrated based on the likelihood of a shared, or separate, sources. Should that be the
case, and this step is part of a near optimal strategy, a suboptimal process — such as a comparison of
unimodal information and final multi-modal integration, or adjusting relative stimulus feature weightings
when estimating likelihoods of source — could ensure that a McGurk-like effect is avoided. Additionally,
it is worth noting the research by Driver (1996) who demonstrated that when there are competing auditory
speech stimuli ostensibly from the same source and a matching visual speech stimuli from a different
spatial location this has the effect of ‘pulling’ the matching auditory stimuli in perceptual space towards
the visual stimuli improving separation of the auditory streams reflected in report accuracy.

Dynamic adjustment of prior expectations is a vital consideration when designing local “prior knowledge”
databases for artificial cognitive systems. This is illuminated by the fact that dynamically updated prior
expectations can increase the likelihood of audio-visual integration: When congruent audio-visual stimuli is
interspersed with incongruent McGurk audio-visual stimuli, the illusory McGurk effect emerges (Gau and
Noppeney, 2016). Essentially, when there is a high instance of audio-visual integration due to congruent
stimuli, incongruent stimuli have a greater chance of being deemed as originating from the same source
and therefore being integrated. These behavioural results were supported by fMRI recordings that showed
the left inferior frontal sulcus arbitrates between multisensory integration and segregation by combining
top-down prior congruent/incongruent expectations with bottom-up congruent/incongruent cues (Gau and
Noppeney, 2016). This suggests that in artificial cognitive systems, even though the prior knowledge
databeses should cater for updates, it should not be done so live and “in the wild”. If the probability of
audio and visual stimuli originating from the same source was calculated near-optimally in the manner
described by Gau and Noppeney (2016), dynamically it could result in artefacts in an artificial cognitive
system, where, for example, unrelated audio-visual events could be classified as being characteristics of the
same event. If a dynamic approach is required, an optimal strategy should be avoided for these reasons.

In addition to the approaches suggested above, it is important that temporal characteristics, such as
processing differences across artificial modalities are also taken into account. For instance, even though
light is many hundreds of thousands of times faster than sound, the human perceptual system processes
sound stimuli faster than visual stimuli (Recanzone, 2009). Indeed, it has been suggested that characteristics
such as processing speeds of auditory and visual stimuli changing as a person ages (for example, visual
processing slowing) may be responsible for increasing audio-visual integration in older participants where
auditory tones had a greater influence on the perceived number of flashes in the sound-induced flash illusion
compared to younger participants (DeLoss et al., 2013; McGovern et al., 2014). Similar considerations
should be made for artificial systems. Regardless of how sensitive or fast at processing a given artificial
sensor is, light will always reach a sensor before sound if the respective stimuli originate from the same
distance/location. Setting aside the physical attribute of the speed of light versus the speed of sound, there
is an additional level of complexity even in an artificial system where it presumably would require a lot
more computational power, and thus time, to process and separate the stimulus of interest in a given
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visual scene (with other factors such as feature resolution playing a role). Indeed, as mentioned previously,
temporal feedback delay in the nervous system is a factor in optimal multi-sensory integration (Crevecoeur
et al., 2016). Additionally, a unimodal auditory strategy for separating sources of auditory stimuli in a
noisy environment via extracting and segregating temporally coherent features into separate streams has
been developed by (Krishnan et al., 2014). These considerations taken with the multi-modal audio-visual
strategies deployed in speech (where temporal relationships of mouth movement and auditory onset play a
role, specifically the voice onsets between 100 and 300ms before the mouth visibly moves (Chandrasekaran
et al., 2009)) highlight the importance of temporal characteristics, correlations, and strategies when
designing artificial cognitive systems. Finally, to handle noisy sensory information, artificial cognitive
systems should perhaps consider incorporating temporal integration of sensory evidence (Yang et al., 2017;
Rañó et al., 2017; Mi et al., 2019) instead of employing snapshot decision processing.

In summary, we highlight a wide range of audio-visual illusory percepts from the psychological and
neuroscience literature, and discussed how computational cognitive models can account for some of these
illusions – through seemingly optimal multimodal integration. We provide cautions regarding the naı̈ve
adoption of these human multimodal integration computations for artificial cognitive systems, which may
lead to unwanted artefacts. Further investigations of the mechanisms of multimodal integration in humans
and machines can lead to efficient approaches for mitigating and avoiding unwanted artefacts in artificial
cognitive systems.
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