POST-STIMULUS TIME-DEPENDENT EVENT DESCRIPTOR

S. Harrigan, S. Coleman, D. Kerr, P. Yogarajah

Faculty of Computing,
Engineering and Built Environment
Ulster University
Northern Ireland, UK

ABSTRACT

Event-based image processing is a relatively new domain in
the field of computer vision. Much research has been car-
ried out on adapting event-based data to comply with estab-
lished techniques from frame-based computer vision. On the
contrary, this paper presents a descriptor which is designed
specifically for direct use with event-based data and therefore
can be considered to be a pure event-based vision descriptor
as it only uses events emitted from event-based vision devices
without transforming the data to accommodate frame-based
vision techniques. This novel descriptor is known as the Post-
stimulus Time-dependent Event Descriptor (P-TED). P-TED
is comprised of two features extracted from event data which
describe motion and the underlying pattern of transmission
respectively. Furthermore a framework is presented which
leverages the P-TED descriptor to classify motions within
event data. This framework is compared against another state-
of-the-art event-based vision descriptor as well as an estab-
lished frame-based approach.

Index Terms— Bio-inspired, Neuromorphic, Motion
Recognition, Multi-dimensional Signal Processing, Com-
puter Vision

1. INTRODUCTION

Event-based vision sensors are considerably different from
the frame-based vision sensors widely deployed today. Frame-
based vision sensors transmit data synchronously in the form
of 2D frames representing the photodetector pixel array
signals at the time of capture. Other than the biological-
inspiration of event-based vision devices, the main diver-
gence between frame-based and event-based devices is the
synchronous and asynchronous nature of data transmission.
The synchronized transmission in frame-based devices al-
lows for the capture of static scene details but contributes to
latency. Event-based devices overcome this transmitting data
corresponding to the location where a luminance change is
detected, asynchronously at event resolution times (e.g. 15
microseconds) [1].
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Research into processing event-based vision data initially
focussed on feature extraction such as the detection of edges
and corners [2], and often creates a standard frame-based
image from event data to achieve this. Another common
processing approach used throughout event-based vision pro-
cessing is the use of the time-surfaces [3]. The asynchronous
nature of event data means that most event data processing
techniques will need to rely on some form of memory in-
frastructure in order to interpret the data beyond individual
events which the time-surface fulfils. The time-surface is de-
signed to retain prominent spatio-temporal information using
a multidimensional lattice. Each cell of the lattice maps to
a event pixel within a device and retains the temporal infor-
mation of the most recent event activity from the pixel. The
time-surface is simply a means of converting event data into
a frame (known as an event-frame) at event resolutions and
many variations can be produced due to the innate extension
property (e.g. speed in-variance [4]) of the lattice.

Other approaches to event-data processing commonly rely
on machine learning [5], clustering [6] and/or converting the
data to frames or contrast maps in combinations with estab-
lished image processing techniques such as the Harris cor-
ner detector [7] or FAST [8]. With the growth of machine
learning in the field of computer vision, event-based image
processing currently mainly involves the use of some form
of machine learning technique such as a Support Vector Ma-
chine (SVM) [9], Random Forest [4], a Convolutional Neural
Network [10], a Spiking Neural Network (SNN) [11] [12],
Recurrent Neural Network (RNN) [13] or Deep Neural Net-
works (DNN) [14]. In [9] a novel descriptor based on retinal
transform theory has been used as data for a machine learning
pipeline in a classification problem setting.

Building on [15] we present a novel descriptor designed
specifically for event-based image processing known as Post-
stimulus Time-dependent Event Descriptor (P-TED). We
demonstrate that this can be combined with a matching
framework for robot motion. The presented framework is
evaluated with a state-of-the-art approach across two estab-
lished datasets. The P-TED descriptor and the presented
framework are found to be an efficient but robust means of



representing motions in event data. The remainder of the
paper is as follows: Section 2 describes the novel P-TED
approach in detail and Section 3 presents the classification
framework developed. Section 4 presents the various experi-
ments used and the performance evaluation. Finally the work
is concluded in Section 5.

2. POST-STIMULUS TIME-DEPENDENT EVENT
DESCRIPTOR (P-TED)

Event-based vision sensors, such as the Dynamic Vision Sen-
sor (DVS) [16], are inspired by the neural processing systems
in the retina. When a change in luminance is detected, an
event is triggered at that particular time ¢ along with the spe-
cific sensor in the pixel array [ where the luminance change
is detected. A polarity mechanism p which indicates if the
change in luminance was positive (luminance increased in-
dicating a brightening of the region) or negative (indicating
a darkening of the region) is utilised. An event e can then
be expressed as e € (t,1,p) where | = (x,y) with z,y cor-
responding to a pixel location within a 2-D pixel array. A
stream of events at any given time period can be denoted as
S(e1, .., em).

The P-TED descriptor operates over a subset R of event
data S where the subset contains pairs of correlated events r;
from the time-surface 7". The pairs of correlated events r; are
considered to be events which have spatial-temporal close-
ness to other events within S. To correlate events, a Moore
neighbourhood [17] is used on a time-surface (a memory in-
frastructure which is used to track events in the past using a
2-D lattice) [3]. A Moore neighbourhood is a 2-D 3 x 3 lattice
with a centre cell C' and eight surrounding spatial neighbours
which are referred to by their cardinal and intercardinal posi-
tion relative to C' (N, NE, E, SE, S, SW, W, NW). Figure 1
illustrates a Moore neighbourhood with it’s cardinal and in-
tercardinal neighbours. Let the Moore neighbourhood be H.
Then, if a neighbour e,,, where n = {Hy, Hyxg, ..., Hyw}
and n # H¢, of the centre event e, contains an event, then
that event is deemed to be spatially close to e, and is therefore
added to the time-surface T'. To determine the temporal close-
ness §; of events, e;, in T the timestamp of the centre event
e, is compared with each event e; such that ; = e, — e;. The
event e;, which when compared with e, is closest in time
&y and less than a threshold A (e.g. 5 microseconds), it is
deemed to satisfy the temporal constraint and be temporally
closest. If an event e; is determined to satisfy the spatial-
temporal constraints, it is paired with e, to form r; and added
to the set of correlated events R. If no ¢; can be found to sat-
isfy the spatial-temporal closeness constraints then e. remains
on the time-surface 7.

The novel Post-stimulus Time-dependent Event Descrip-
tor (P-TED) is a pure event-based vision descriptor which is
applied directly to the set R of correlated events. P-TED con-
sists of two features, motion direction V' and pattern G (the

pattern of event pixels excitation over time). Motion direc-
tion V is discussed in detailed in Section 2.1 and pattern G is
discussed in detail in Section 2.2.

2.1. Motion Direction Feature

The motion direction vector V' represents the number of cor-
related pairs r; in each of the eight cardinal and intercardinal
directions of the Moore neighbourhood. For each pair of cor-
related events r; = {e.,e;} we calculate the angle between
e. and e; and determine which of the eight cardinal and inter-
cardinal direction bins it corresponds to. Therefore the values
in V correspond to the number of correlated pairs r; in each
of the directions (N, NE, E, SE, S, SW, W, NW).

For example, if it is found that there are 12 N-directional
correlated pairs, 4 NE-directional correlated pairs and 7 E-
directional correlated pairs, then V' = {12,4,7,0,0,0,0,0}
(observations occur in a clockwise fashion starting at /V'). The
use of the Moore neighbourhood allows us to express V' as a
motion direction which in this example the event motion is
predominantly to the north with a slightly eastern bearing in
this example.
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Fig. 1. Moore neighbhourhood

2.2. Pattern Feature

The pattern vector G is a rate encoding technique [18] which
determines the number of event pairs r; that occur within a
specific time bin. For any given stream of events 5, the ap-
propriate bin size /3 for the pattern vector G needs to be de-
termined. In order to do so we use the approach from [19]
in which G is initially divided into - bins of size 8 and the
number N; of event pairs r; that are in each bin j. We then
calculate the mean f and variance d of IN; within G, thus we
compute the cost function

(2f —d)/6° (1

Through an iterative process of varying the bin size 5 we
minimise the cost function (1) thus determining the optimal
B. Hence, computing the number of events that occur within



each ~y results in a pattern feature G of the event activity. This
is considered analogous to the established neuroscience find-
ing of time-to-first spike encoding [20].

3. CLASSIFICATION FRAMEWORK

A novel classification framework is designed that utilises
P-TED. We compute a set of corresponding P-TEDs for the
Motions of Interest (Mol) M which we wish to classify. The
framework makes use of a sliding window, J, which has
the same length as the Mol, operating over a live stream of
event data L.S, and computes a P-TED for each window. This
framework is illustrated in Figure 2.

For simplicity, the Mol P-TED feature vectors are denoted
as M (V') and M (G) for motion direction and pattern respec-
tively. Similarly, within a given window J the feature vectors
are denoted as J(V') and J(G). To determine the similarity
between the Mol and .J we consider the motion direction vec-
tor pair and the pattern vector pair respectively. The similarity
between the motion direction vectors is computed as:

=1 M) =J(V)

8
resulting in a continuous value, between 0 and 1 where 1 is a
perfect match, representing the similarity between the pattern
vector of Mol and the pattern vector of the current window.
The similarity between the pattern vectors is computed as:

5 {0 M(V) # J(V)
Sim(V) =

2

~
: J(Gi)
Sim(G) = —_— 3
im(G) IgM(Gi)Hl 3)
where € is an appropriately small number to avoid division
by zero. The outputs from equations (2) and (3) are used to
compute the overall similarity U such that:

U= Sim(G) - Sim (V) 4

— min(Sim(G), Sim(V)) + ¢ @

where € is an appropriately small number to avoid division by

zero. The similarity measure U is an overall numerical repre-

sentation of how similar the Mol is to J within the event data

stream. Therefore, this framework consists of two key com-

ponents, P-TED (Section 2) and the overall similarity mea-
sure.

4. PERFORMANCE EVALUATION

In order to determine the accuracy and efficiency of the pro-
posed P-TED framework, we compare with a similar state-
of-the-art event data based framework known as Distribution
Aware Retinal Transform (DART) [9].

The DART descriptor encodes the event data using a log-
polar grid to simulate the distribution of photo-receptor cones

in the primate fovea [21]. The DART framework utilises
a Support Vector Machine (SVM) for motion classification.
Therefore the DART framework is composed of two key com-
ponents, the DART descriptor and the SVM.

The performance of P-TED and DART is compared
using the MNIST-DVS [22] and the CIFAR10-DVS [23]
datasets. MNIST-DVS is a neuromorphic version of the
popular MNIST dataset which contains 70,000 handwriting
samples of 10 classes representing a digit range of 0 - 9. The
MNIST-DVS contains 30,000 event vision sensor responses
to 30,000 handwriting samples. The controlled motion of
the MNIST handwriting sample is presented on a screen to
enable responses to be captured by a 128 x 128 DVS device.
Similarly, the CIFAR10-DVS is an event-based version of
the CIFAR10. It consists of 10,000 event data streams where
1,000 streams are used for each of the 10 classes (airplanes,
cars, birds, cats, deer, dogs, frogs, horses, ships and trucks).
Figure 3 shows example images and event frames for the
truck, automobile and frog classes for both CIFAR10 and
CIFAR10-DVS respectively.

Initially we directly compare the P-TED descriptor with
the DART descriptor within the DART framework (SVM).
Using the MNIST-DVS and the CIFAR10-DVS we calculate
both the recognition accuracy and the average run-time. Re-
sults are presented in Table 1. In Table 1 we can see that the
P-TED descriptor provides the highest accuracy performance
using both datasets. The average run-time the DART frame-
work is 10.3 ms.

Table 1. Recognition accuracy results from using the DART

framework
DATASET P-TED(%) | DART(%) | Time (ms)
MNIST-DVS 98.31 97.95 103
CIFARIO-DVS | 66.90 65.78 ’

For completeness we then compare the P-TED descrip-
tor with the DART descriptor within the P-TED framework
(Similarity measure U, Section 3). The results are presented
in Table 2 where we can see that again the P-TED descriptor
provides the highest performance accuracy for both datasets,
however the overall performance accuracy using the P-TED
framework is lower than that presented in Table 1. The aver-
age runtime for the P-TED framework is 2.7 ms demonstrat-
ing increased efficiency when calculating a similarity mea-
sure compared with using a clasification technique such as
the SVM.

Table 2. Recognition accuracy results from using the P-TED

framework
DATASET P-TED(%) | DART(%) | Time (ms)
MNIST-DVS 91.73 86.74 27
CIFARI0-DVS | 58.55 51.74 ’




Mol

Comparison
of M/J vectors

Event Segment

Live Stream
LS

TN

Time

X

Fig. 2. An illustration of the P-TED framework showing the Mol M, the live stream of events LS with an event segment .J
extracted using a sliding window over space-time and the comparison of the M and J vectors.
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Fig. 3. Examples from CIFAR10 and CIFAR10-DVS

Whilst the DART framework produced the highest results
using both P-TED and DART descriptors it must be noted that
using the P-TED descriptor in either framework produced the
highest accuracy score. The P-TED framework provides a
strong level of accuracy with a 4x speed-up compared with
the DART framework. An explanation for this contrasting
difference is that DART is heavily reliant on the spatial rela-
tionship of events within the correlation and transform stages
of the framework, P-TED only places the spatial constraint on
correlation and strives to represent the motion direction and
pattern components within the event data separately instead
of binding them as DART does.

5. CONCLUSION

This paper presents a novel approach to event-based data pro-

“ cessing known as Post-stimulus Time-dependent Event De-

scriptor (P-TED), comprising of two feature vectors repre-

_ senting motion direction and pattern. The P-TED descriptor

is combined with a novel similarity measure which enables
us to classify a range of different motions. This is demon-
strated by the performance evaluation which was conducted
using two well known event-based datasets. The P-TED de-
scriptor demonstrated superior performance compared with
the DART descriptor [9]. Analysis has shown us the pattern
histogram is affected by scale, thus future work will be fo-
cussed on making the P-TED framework scale invariant.
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