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ABSTRACT

Neural coding schemes are powerful tools used within neuro-
science. This paper introduces three different neural coding
scheme formations for event-based vision data which are de-
signed to emulate the neural behaviour exhibited by neurons
under stimuli. Presented are phase-of-firing and two sparse
neural coding schemes. It is determined that machine learn-
ing approaches, i.e. Convolutional Neural Network combined
with a Stacked Autoencoder network, produce powerful de-
scriptors of the patterns within events. These coding schemes
are deployed in an existing action recognition template and
evaluated using two popular event-based data sets.

Index Terms— event-based vision, convolutional neural
network, encoding scheme, feature extraction, object recog-
nition

1. INTRODUCTION

Event-based vision pixels, such as the Dynamic Vision Sen-
sor (DVS) pixel, are biologically inspired sensors designed to
emulate the behaviour of the neural systems of the retina [1].
An event-based vision pixel emulates the retinal signal be-
haviour by producing an asynchronous spike, or event, when
a change of luminance which is detected by sensor goes be-
yond an adaptive threshold maintained at the hardware level.
Each event ei ∈ 〈t, l, p〉 where i = 0, . . . ,n, t is a microsec-
ond timestamp indicating when the change of luminance was
detected, l = (〈x,y)〉, where x,y correspond to pixel coordi-
nates within a 2-D pixel array and p is a binary set {1,−1}
indicating whether the change of luminance was positive
(increasing) or negative (decreasing). The processing of a
stream of event-based vision data S = {e0,e1, . . . ,enlast} is a
relatively new domain within the computer vision field and,
as such, lacks many of the established techniques, algorithms
and tools which are readily available within conventional
frame-based computer vision such as corner and edge detec-
tion. The datatype presented by event-based vision sensors
requires a step-change from conventional computer vision
processing paradigms.

This paper builds on existing work [2, 3], which intro-
duced a template matching system for action classification

known as Post-stimulus Time-dependent Event Descriptor
(P-TED). This approach consists of two histograms called
motion- and pattern-histogram. The motion histogram repre-
sents the underlying observed motion within event data while
the pattern histogram is a version of the Post-Stimulus-Time
Histogram (PSTH) neural coding scheme representing the
affect a temporal stimulus has on the excitation of the event-
based vision pixels (also known as the firing pattern). This
paper extends on the above work by replacing the P-TED
pattern histogram with alternative neural coding schemes
representing the underlying event data. The presented work
is compared against an existing work using the event-based
version of the popular MNIST handwriting dataset which is
known as MNIST-DVS and MNIST-FLASH-DVS [4].

Current approaches to the processing of event-based data
have mainly focussed on adapting event-based data to image
frames in order to work with conventional frame-based tech-
niques [5] and/or the use of machine learning in order to han-
dle the uniqueness of this data type [6, 7, 8, 9, 10]. The adap-
tion of event-based data for frame-based technique requires
the provision of a memory infrastructure which allows for
access to events which have occurred previously; this mem-
ory infrastructure often takes the form of a time-surface [11]
or Surface of Active Events (SAE) [12] which are 2-D lat-
tices which record certain historical properties of events and
can produce an energy (or heat) map. The 2-D lattice sub-
sequently allows frame-based techniques to be used to pro-
cess event-based data in a conventional frame-based manner.
The use of neural coding strategies for event-based process-
ing [13, 14] has received less attention than machine learning
and clustering approaches [15, 16, 17] yet neural coding can
be directly related to the biological structures on which event-
based vision is based [6].

2. EVENT DATA FRAME REPRESENTATION

Conventional frame-based techniques do not work directly
with event-based data because of the sparse and asynchronous
nature of event-based data produced by vision sensors such as
the DVS (Section 1). In this paper, the work presented in [18]
is used a means of representing event data as a frame for the
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neural coding schemes discussed in Section 3. Event data is
converted into frame-like representations with four channels.
Each cell within the frame-like lattice corresponds to a real-
world event-based vision pixel from the device sensor array.
The first two channels are used to contain the number of posi-
tive and negative events emitted from each event-based vision
pixel which can be used to represent the spatial characteris-
tics within the event data. The last two channels are used to
contain the temporal ratio Zi, j =

ti, j−t f irst
tlast−t f irst

where ti, j is equal to
the timestamp of last event occurring at pixel (i, j), t f irst is the
timestamp t of the first event e0 within the event data and tlast
is the timestamp t of the last event elast within the event data.
The ratios are used to estimate the lifetime of events [19].

3. NEURAL CODING SCHEMES

Neural coding, within the context of the work presented here,
refers to the characterisation of the relationship between a
stimulus and neuronal responses (individual or ensemble). As
both digital and analog information can be encoded by neu-
rons [20], most neural coding strategies should be capable
of encoding the artificial neural responses represented within
event-based data as shown in [21]. The work presented in
[2, 3] focussed on the use of the PSTH neural coding scheme
operating over the stream of event data S and presented a
framework for action recognition known as P-TED. This pa-
per explores the use of sparse [22] and phase-of-firing [23]
coding schemes.

We first define the function SUM() which is used for sum-
ming events within a temporal range as:

SUM(S, t0, t1) = |H(S, t0, t1)| (1)

where the SUM() function returns the number of events be-
tween the temporal values of t0 and t1 such that t0 ≤ et ≤ t1
within H where S⊃ H(S, t0, t1) = {ei|t0 ≤ ei ≤ t1}.

3.1. Phase-of-Firing Coding

The phase-of-firing coding scheme is a temporal coding
scheme which counts the number of events in a temporal
window where the time references are based on oscillations
by mapping an event to the phase of a high frequency os-
cillation (Figure 1B) [24]. This type of encoding represents
the firing pattern characteristic of the event sensors during
specific periods of an oscillating amplitude A. Oscillations
are segmented into four partitions, allowing for four discrete
values to be obtained per oscillation (Figure 1D). In the work
presented here oscillations are simulated using a waveform
function characterised with a temporal increase from 0 to
+1 followed by an immediate reset (Figure 1C). Equation 2
shows the partitioning function B(A) for A to obtain the four

values for each partitions of the waveform.

B(A) =


0 0≤ |A| ≤ 0.25
1 0.25 < |A| ≤ 0.50
2 0.50 < |A| ≤ 0.75
3 0.75 < |A|< 1

(2)

where Domain(B) = {A∈R|0≤ A≤ 1}. In the case of A= 1,
A it subsequently becomes 0, indicating the beginning of the
next waveform.

Each waveform produces a feature vector P (Equation 3)
containing a value for each partition PB of the waveform,

P = PB = SUM(S, tstart , t f inish) (3)

where the SUM function (Equation 1) returns the num-
ber of events between the temporal values of tstart and t f inish.
Here, tstart is the starting time value of the current partition
and t f inish is the finishing time value of the current partition
determined by B. All P vectors are joined together to produce
the final output of the phase-of-firing coding scheme (Equa-
tion 4).

Codingphase =‖N
i=1 Pi = P1 ‖ . . . ‖ PN (4)

where N is the total number of waveforms produced.
The phase-of-firing coding scheme, in this work, makes

use of the spike count at specific time windows which are
controlled by reference to A. An added benefit of using the
phase-of-firing coding scheme is that events produced by
event-based vision pixels within a group are likely to occur
at the same period of the oscillation and have a strong prob-
ability of being encoded together by this scheme. Here, the
phase-of-firing coding scheme is referred to as P-TED(POF).

3.2. Sparse Coding

As the term suggests, sparse coding produces a sparse rep-
resentation of data compared with the original data series on
which it is based. Sparse autoencoders [25] are a popular
form of sparse coding. Sparse autoencoders are a type of arti-
ficial neural network that learn a function Q(S)≈ S such that
the number of output layer neurons is equal to the number
of input layer neurons. The autoencoder within the presented
work accepts the input of events coded using the phase-of-
firing scheme (Section 3.1) and uses a sigmoidal activation
function. Figure 3 illustrates an autoencoder network using
the phase-of-firing encoding (Section 3.1) as input to the net-
work P-TED(SPOF).

A deep-learning approach which combines a convolu-
tional neural network (CNN) with a stacked autoencoder
(SAE) architecture has been presented in [26] and this is
presented as P-TED(CNN). CNNs are neural networks con-
sisting of multiple layers with several convolution-pooling
layer pairs. CNNs are usually designed to recognize shapes
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Fig. 1: An illustration of a periodic 2 Hz sinusoidal oscilla-
tion (B) overlaying event data (A) each dot representing an
event triggered by a sensor on an array ranging from 0 to
M×N (where M and N are the width and height of the de-
vice array respectfully) and the computer simulation of the
oscillation (C) used to form the Codingphase histogram (D).
Example tstart and t f inish are also shown.

within images and are known to be location invariant to an
extent [27]. CNNs usually involve the convolution of several
2-D filters with an input image at the network convolutional
layer and subsampling the output to a smaller size in the pool-
ing layer. The back-propagation algorithm is normally used
to learn the weights and filters in order to decrease the overall
classification error. An SAE is a neural network consisting
of many layers of autoencoders. SAE networks consist of an
input layer, several unsupervised autoencoders and an output
layer. Each autoencoder is trained separately and the output
of one autoencoder within the hidden layer is used as input for
the next layer. P-TED(SPOF) and P-TED(CNN) replace the
P-TED pattern histogram within the P-TED framework. Fig-
ure 2 illustrates the architecture deployed in P-TED(CNN).
The P-TED(CNN) CNN accepts 128× 128× 4 event-frame
(Section 2) inputs which are passed to four convolutional lay-
ers operating a 3×3 filter with a step of 2 where the channels
for the four convolutional layers is 64, 128, 256 and 512 (as
illustrated in Figure 2).

The P-TED(CNN) made use of the rectified linear unit
(ReLU) function as the output function of the P-TED(CNN)
CNN layers. The output of the CNN layer is given as input to
two ResBlock layers, both with 3×3 filtering and a stride of
1. The number of channels within the ResBlock layers is 512.
ResBlock was used to combat the vanishing feature problem
within CNN architectures because of the high sensitivity of
event data. The output of the ResBlock layers is input into
a fully connected layer with 1024 nodes. The output of the
fully connected layer is input into the auto-encoder structure

attached at the end. The SAE portion output uses the midpoint
of the final SAE layer (where the feature compression is at its
maximum) with the softmax function for classification. For
the CNN and the autoencoder, the cross entropy loss function
and the Adam optimiser [28] were used in training.

4. EXPERIMENTS

For each coding scheme (Section 3) a version of the P-TED
framework presented in [3] is generated with the pattern fea-
ture histogram ([3], Section 2) formed (or replaced in the
case of the machine learning approaches) in using the coding
schemes presented in this paper. Each version of the P-TED
framework is evaluated using two datasets discussed in Sec-
tion 4.1 and results are presented in Section 4.2.

4.1. Datasets

The MNIST-DVS and MNIST-FLASH-DVS [4] are event-
based datasets based on the popular MNIST handwriting
dataset. MNIST-DVS and MNIST-FLASH-DVS contains
30,000 samples consisting of 10 classes representing the
digit range 0− 9. Each sample within MNIST-DVS and
MNIST-FLASH-DVS contains the event-based response to
the corresponding handwriting sample. Each response was
captured by simulating programmatic motion (or in the case
of MNIST-FLASH-DVS the digit was flashed five times per
sample from a static position); the handwritten digit was dis-
played on a LCD screen for 2-3s with a high contrast and a
controlled refresh rate. The high contrast is used to minimise
refresh artifacts (as refreshing causes changes in luminance
therefore triggering events). MNIST-DVS presents a unique
challenges for recognition as event responses are continuous.
The first recorded sample of each of the 10 classes within
the dataset is selected to form the template which represents
that class. In the case of P-TED(POF) and P-TED(SPOF)
a 128Hz oscillation is used for the phase-of-firing coding
scheme (Section 3.1), as previous research has shown that
high oscillation frequency plays a significant role in visual
communication [24]. For each 2 second MNIST-DVS and
MNIST-FLASH-DVS sample, 1024 values are produced un-
der the phase-of-firing coding scheme. For the P-TED(CNN)
the datasets are split for training and testing in an 75% / 25%
ratio.

4.2. Results

Results obtained are presented in Table 1. Each row shows
the percentage accuracy obtained when running the P-TED
framework using the corresponding coding scheme for the
pattern histogram (Section 3). The machine learning coding
schemes of P-TED(CNN) and P-TED(SPOF) (Section 3.2)
outperform the other coding schemes, likely due to the ability
of the architectures to extract temporal features and learn to
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Table 1: Recognition accuracy using each type of neural
pattern coding scheme over the MNIST-DVS and MNIST-
FLASH-DVS datasets.

Coding Scheme Data Accuracy
MNIST-DVS(%) MNIST-FLASH-DVS(%)

P-TED 91.73 94.80
P-TED(POF) 91.19 96.28
P-TED(SPOF) 93.77 94.11
P-TED(CNN) 97.32 98.51

represent these efficiently. The P-TED(POF) coding scheme
(Section 3.1) was the best performing in terms of accuracy af-
ter the machine learning techniques (and ranked second in the
MNIST-FLASH-DVS portion). The original coding scheme
used within [3] was the second best performing in terms of
accuracy after the machine learning techniques (and ranked
third in the MNIST-FLASH-DVS portion).

5. CONCLUSIONS

This paper presents the use of three different neural coding
schemes within event-based template matching framework
first presented in [3] and compared with the original coding
scheme used. The neural coding schemes presented here are
phase-of-firing coding (Section 3.1) and two sparse coding
(Section 3.2) schemes. Coding schemes are evaluated using
the MNIST-DVS and MNIST-FLASH-DVS datasets and re-

sults demonstrate that coding schemes which are constructed
using machine learning techniques perform best followed
closely by phase-of-firing coding. Future work will involve
exploration of stacked autoencoders, active learning and
adapting other frameworks to work with the coding schemes.
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