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ABSTRACT
With the increasing popularity of consumer wearable devices augmented with sensing capabilities
(smart bands, smart watches), there is a significant focus in extracting meaningful information about
human behaviour through large scale real-world wearable sensor data. The focus of this work is to
develop techniques to detect human activities, utilising a large datasets of wearable data where no
ground truth has been produced on the actual activities performed. We propose a deep learning
variational auto encoder activity recognition model - Motion2Vector. The model is trained using large
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amount of unlabelled human activity data to learn a representation of a time period of activity data.
The learned activity representations can be mapped into an embedded activity space and grouped
with regards to the nature of the activity type. In order to evaluate the proposed model, we have
applied our method on public dataset - The Heterogeneity Human Activity Recognition (HHAR)
dataset. The results showed that our method can achieve improved result over the HHAR dataset.
In addition, we have collected our own lab-based activitiy dataset. Our experimental results show
that our system achieves good accuracy in detecting such activities, and has the potential to provide
additional insights in understanding the real-world activity in the situations where there is no ground
truth available.
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INTRODUCTION
With the increasing popularity of consumer wearable devices augmented with sensing capabilities
(smart bands, smart watches), there is a significant focus in extracting meaningful information about
human behaviour through large scale real-world wearable sensor data [13]. Human activity recognition
(HAR) through wearable devices is recently considered a vital tool for future healthcare applications,
especially in support for elderly people and patients with certain long-term conditions [2–4]. HAR
can help patient with continuous care and rehabilitation needs at home and provides clinicians with
additional insight of the patients’ performance.
Traditional approaches in developing HAR systems, rely on the collection of properly labeled

training datasets, where the actual activities of the users are captured accurately either through
controlled experiments, or through self reports [1, 12, 14]. These approaches however suffer from
scalability issues as the process of collecting ground truth through self-report cannot be employed on
a large scale and over long periods of time. In order to progress with the wider application of HAR
systems there is a need for developing techniques were human activity classifiers can be developed
with minimum need for accurate ground truth from the participants.
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In this work we aim to explore the development of an unsupervised model to infer what people
do from wearable sensor data. Our focus is on the use of large scale wearable datasets, which do
not contain any prior labeling of the activities that users perform. Interpreting and using such data
imposes significant challenges in developing appropriate human activity recognition techniques,
without the need for accurately labelling data to produce a training dataset.

Specifically, we focus on the analysis of a large dataset of activity data captured through wearable
wrist-bands (Microsoft Band 2) as part of the Innovate UK funded project "Epilepsy Networks". The
dataset was produced by a cohort of 37 patients suffering from epilepsy, using wearable wrist-bands
during their daily lives, for a long period of time (approximately 6500 days in total, with an average of
112 days per participant). The dataset consists of raw accelerometer, gyroscope readings along with
physiological data (i.e. heart rate) as captured by the wearable device. During the deployment the
participants were not required to submit any ground truth about their daily activities.

Our aim is to develop a technique to detect the daily activities of participants through this unlabeled
dataset. To do this we propose an approach based on an auto-encoder deep learning model, called
Motion2Vector, which is developed through unsupervised training on this large dataset. The purpose
of the model is to convert a time period of activity data into a movement vector embedding within a
multidimensional space, as a representation of a certain activity type. That representation helps us
group similar activities together within the embedded space. The technique can help identify when
and for how long similar activities take place, but the actual meaning/context for such activities
requires limited knowledge of ground truth. We evaluate the approach through public dataset - HHAR
and our own lab-based activity dataset. The core contribution of this work includes:

• We propose a variational autoencoder (VAE) deep learning technique to train a model using a
large wrist-band dataset of real-world activities, without labelling. The proposed model enables
movement embedding utilising the raw input from wearable sensor data.

• We deploy our data collection system and collect the datasets in lab-based session in order to
evaluate our trained model. The lab-based session is accurately labelled by the researcher who
is carrying out the experiment.

• We validate our trained model on both public datasets and our collected datasets.

RELATEDWORK
Significant work in HAR focuses on the use of inertial sensor to detect human activities [10, 16, 18].
This is motivated primarily by the wide availability of such sensors on consumer devices such as
smartphones and smart watches. Most of these systems rely heavily on well labeled training datasets,
generated mostly through controlled lab experiments. The development and training of appropriate
machine learning classifiers typically involves the extraction of hand-crafted features from the raw
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data before being used to train an appropriate classifier. Manual extraction of features from raw data
typically requires appropriate domain knowledge on the type of activity that should be detected, or
would require extensive human observation.

With the increased popularity in deep learning models in machine learning, there has been also a
shift in applying deep learnign techniques in HAR [13]. In [17] a CNN model is used to automate
the feature extraction under the supervision of output labels. [5], a LSTM-RNN model is created in
order to explore the time dependencies of the human motion data. Supervised deep learning model
can save development time in creating the appropriate features, however, it still requires accurately
labelled datasets to train the model. Semi-supervised models aim to integrate the supervised learning
and unsupervised learning. They generally rely on small amounts of labelled data [6, 8]. However, in
situations where the collection of ground truth is not realistic or possible, semi-sueprvised models are
still not feasible solutions.

When considering scenarios where sensor data have been collected already, but without any prior
ground truth, exploring unsupervised learning techniques is the only viable approach. In unsupervised
learning there is no requirement for labelled data. The purpose is to find hidden patterns within the
data, and identify groups of similar activities [11]. Evaluating an unsupervised model is challenging
when no labeled data is available. In our work, we exploit a small set of labeled activity dataset as
part of the evaluation of the produced model.

Figure 1: Deep learning architecture Deep Learning Architecture
Our objective is to develop a HAR system that is trained on a large unlabeled dataset of sensor data
captured by smart wrist bands. The purpose of the HAR system is to be able to group similar activities
together. In order to achieve this we first need to train a model to encode raw inertial sensor data into
a vector that represents the movement characteristics captured by the sensor data.

Model Overview
The deep learning model used in this study is inspired by the variational autoencoder proposed by
Hu et.al [7] which is applied in generating sketch drawings in a vector format using a recurrent
neural network (RNN). In our work, we have made certain modifications to make the deep learning
architecture fit with the context of our problem. Figure 1 shows this deep learning architecture.
Raw sensor data are pre-processed and fed into an encoder neural network. The hidden layer is
N-dimensional encoded vector which is used as the representation of the activity. The decoder neural
network decodes the encoded vector and creates an output which has the exact same size as the input.
The cost function is trying to minimize the difference between the input and output. The details of the
deep learning network are described in the following subsections. After the model has been trained,
the encoded vector is uses as a good representation of the blocks of activity in the embedded space.



Motion2Vector: Unsupervised Learning in Human Activity Recognition Using Wrist-Sensing Data Ubicomp ’19, September 9, 2019, London, UK

Input Data Preparation
The input data for the training model, and the validation dataset, consist of raw accelerometer and
gyroscope data captured from the wearable wrist band. These datasets are pre-processed as described
below.

Accelerometer and Gyroscope Sensors. In processing the sensor data, our aim is to convert every sensor
data point with raw accelerometer and gyroscope data, into a data point that represents the relative
change of the position and orientation of the sensing device. Essentially each data point is to be
converted into a vector M=(∆Px , ∆Py , ∆Pz , gx , gy , gz ) where ∆Px ,y,z represent the change in position,
and gx ,y,z represent change in orientation. Activity within a short time period is composed of a set of
points.

Calculating the relative change of position. Extracting gravity from the raw data is used to identify a
global reference frame. Extracting gravity from accelerometer data can be done using a low-pass /
moving average filter: ∆G = G · α + (1 − α) · Accinput · (x)
The relative change of position is to calculate the position relative to the previous position with

respect to the global reference frame. In order to calculate the 3D relative position, the first step is to
compute the linear acceleration from raw acceleration and the second step is to double integrate the
linear acceleration. The input data to the auto encoder consists of a time window of multiple sensor
data points (M1, M2,. . . , Mn ).

Auto Encoder
The auto encoder consists of an encoder model that “compresses” the input data into a vector
representation, and a decoder that uses the generated vector to “decompress” the data to its original
form. The auto encoder is trained using a cost function that evaluate how well the encoding-decoding
process works.
For our encoder, we use a bidirectional Long Short-Term Memory (LSTM) to encode the input

blocks of pre-processed data.

Figure 2: bidirectional LSTM
As seen in Figure 2, two hidden states hf and hb are generated. Then the concatenation of these

hidden states will be used to generate two embedded vectors through a fully connected layer.
The embedded vector µ is our target in this study, it is a 128 dim vector and it is considered an

appropriate representation of the input movement within a particular time period.
As part of the training process, the µ vector is used by the decoder which is responsible for

regenerating the input data. In order to prepare the inputs for the decoder, a random vector υ is
created using µ and δ following a unit normalised distribution. The decoder takes the created vector
ν and all the inputs to generate the outputs.
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Cost function and training details
Our model is trained through a combination of two parts of loss - content loss and KL-divergence loss
[9]. As describe in Equation 1, the content loss is to minimize the difference between the input M and
output M’.

Lc =
1
N

N∑
i=1

(M ′ −M)2 (1)

The KL divergence loss is described in the Equation 2 below:

LKL = −
1
2n

N∑
i=1

(1 + lnσi − µ2i − σi ) · (x) (2)

The final loss is the optimisation of the content loss and the KL-divergence loss (see Equation 3).

L = Lc + γLKL (3)

Annealing technique is used to adjust the latent lost: 0.1<γ<1 The training result is shown in Figure
3.

EVALUATION

Figure 3: Loss graph for ourmodel trained
using our large cohort of data

Training Dataset
The training data has been captured as part of an Innovate UK funded project. The aim of the project
was to provide support for people suffering from epilepsy, and it included a large deployment of
wrist-worn devices to patients. During the study, each of the participant was given a Microsoft Band
2 and installed a mobile app able to log data from their wearable device. The app was also designed to
collect the patients’ self-reports on potential epileptic seizures, however no other ground truth was
captured regarding the daily activities of the participants. Wristband sensor data has been collected
on 37 patients fromMay 2017 until August 2018. Sensor data include tri-axis accelerometer and tri-axis
gyroscope data, sampled at 31Hz. In this study, we use this dataset as our training datasets.

Figure 4: The system structure of the wear-
able data collection system

Evaluation Dataset
In evaluating our trained model, we needed wearable data with ground truth so as to evaluate
the accuracy of the trained model. We relied on a combination of public HAR datasets, and in lab
experiments.
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Public Dataset. In order to evaluate our model, we selected the public HHAR dataset [15] which
includes datasets 9 participants. The data set contains data from 4 different models of smartwatches (2
LG watches, 2 Samsung Galaxy Gears). The sensor readings contain both accelerometer and gyroscope.

Figure 5: Data collection details for lab-
based data collection

Data collection. Most of the public available datasets are focused in collecting the general motion of
the human including the walking, running, cycling, sitting, etc. However, since our wrist sensor is worn
by the participant all the time, we are able to track some finer motion of the hand activity including
drinking, waving hand, typing, etc. In order to explore a wider range of activities we generated our
own labeled data, through a controlled experiment. 10 participant were invited for a 15 mins lab-based
session where they were asked to perform certain tasks wearing a wristband.

The lab-based session experiment is carried out in a research room at the University of Kent. During
this experiment session, the participant were asked to complete a range of different human daily
activity including walking, running, typing, writing, etc. Figure 5 shows the experimental flow of the
lab-based session. The ground truth is captured by the pad operated by the observer researcher. The
app developed for capturing the activity was able to record the start and end time of each of the
specific activities.

Table 1: The F1 Performance of different
Datasets

Classifier Public Dataset Our lab dataset

C4.5 86.91 % 84.63%
KNN 90.21 % 75.73 %

Random Forest 91.54% 88.75%

Evaluation Methods
For each dataset, through applying the trained model, we have gained 128 dimensional encoded
vectors. One method to evaluate the performance is to use 128 dimension vectors as features. Three
different classifiers have been used and the classification results are presented using F1 score. A
comparison have been made with other researcher’s work on the same dataset using hand crafted
features.
Additionally, another method based on the Euclidean distance have been proposed to evaluate

the results of the Embedding. A certain amount (30%) of data is used to create the word embedding
dictionary, and the Euclidean distance is calculated using the Equation (4) below for the distance
between the test dataset and the embedding dictionary. The activity predicted on the test dataset is
estimated as the activity of the closest vector in terms of euclidean distance.

D =

√√
(

n∑
i=1

(xi − yi )2 (4)

Results
Results Visualisation. In Figure 6, a visualisation of the Embedded space have been presented. Different
activities are grouped together in the space and from the left to right, the activity type is less active.
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t-NSE is applied to reduce the dimenstions and visulise the 128 dimension vectors in the embeded
space.

Classifier Validation. For both datasests, we have implement the first evaluation method using the
embedded 128 dimension vectors as the features. We train 3 different classifiers and the performance
F1 score are presented in Table 1. It is noted that the classifiers trained by using the embedded vectors
as the features outperform the standard approaches with the handcrafted features from a previous
study where the F1 scores of KNN and Random Forest all below 90% while the F1 score of C4.5 is less
than 85%. The F1 score of the lab-based dataset is slightly lower than that of the Public Dataset due
to the fact that our collect lab-based dataset is much more noisy and contain more activities.

Euclidean Distance Validation. For both datasets, we have also implemented the evaluation using the
Euclidean based method as described in the above Evaluation Methods section. The results of the
performance are presented in Table 2 for two different datasets.

Figure 6: Visualisation of resutls in Embed-
ded Space

Table 2: Activity recoginition Perfor-
mance based on embedding dictionary

Performance Public Dataset Our lab dataset

Precision 87% 73%
Recall 88 % 73%

F1-Score 87% 72 %

CONCLUSIONS
In this paper, we present an deep learning model for unsupervised activity recognition. The model
has been trained using a large dataset from epileptic patient activity data. The experiments on public
datasets and our collected datasets demonstrate the proposed model performance. In particular
when limited labeled data are available, our model can achieve higher performance than traditional
classification techniques, using hand-crafted features. In a fully unsupervised mode, our model can
achieve accuracy of higher than 87% when tested on public datasets.
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