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Abstract: Sustainable growth, environmental preservation, and improvement of life quality are
strategic fields of worldwide interest and cornerstones of international policies. Humanity health and
prosperity are closely related to our present choices on sustainable development. The main sources
of pollution concern industry, including mining, chemical companies, and refineries, wastewater
treatment; and consumers themselves. In order to guide and evaluate the effects of environmental
policies, diffuse monitoring campaigns and detailed (big) data analyses are needed. In this respect,
the development and availability of innovative sensor platforms for field analysis and remote sensing
are of crucial relevance. In this review, we provide an overview of the area, analyzing the major
needs, available technologies, novel approaches, and perspectives. Among environmental pollutants
that threaten the biosphere, we focus on inorganic and organic contaminants, which affect air and
water quality. We describe the technologies for their assessment in the environment and then draw
some conclusions and mention future perspectives opened by the integration of sensing technologies
with robotics and the Internet of Things. Without the ambition to be exhaustive in such a rapidly
growing field, this review is intended as a support for researchers and stakeholders looking for
current, state-of-the-art, and key enabling technologies for environmental monitoring.
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1. Introduction

Sustainable growth, environmental preservation, and improvement of life quality are strategic
fields of worldwide interest and cornerstones of international policies. As pointed out in the latest
United Nations Global Environment Outlook, GEO-6 [1], humanity health and prosperity are closely
related to our present choices on sustainable development. It is estimated that a quarter of premature
deaths and illnesses in the world are related to man-made pollution, which has seriously compromised
a large part of resources and conditions essential for human life and health, namely air, water, soil,
and food. As examples, the scarcity or absence of drinking water causes 1.4 million deaths per year,
while chemical agents as pesticides [2], industry waste effluent [3], and vehicle exhausts [4] potentially
cause even multi-generational effects. The main sources of pollution concern industry, including
mining, chemical companies, and refineries; wastewater treatment; and consumers themselves.

In order to guide and evaluate the effects of environmental policies, diffuse monitoring campaigns
and detailed (big) data analyses are needed. In this respect, the development and availability of
innovative sensor platforms for field analysis and remote sensing are of crucial relevance. In this review,

Micromachines 2020, 11, 491; doi:10.3390/mi11050491 www.mdpi.com/journal/micromachines

http://www.mdpi.com/journal/micromachines
http://www.mdpi.com
https://orcid.org/0000-0002-3908-4796
https://orcid.org/0000-0002-0729-8386
https://orcid.org/0000-0002-9265-134X
https://orcid.org/0000-0002-7195-267X
https://orcid.org/0000-0001-7669-0253
http://dx.doi.org/10.3390/mi11050491
http://www.mdpi.com/journal/micromachines
https://www.mdpi.com/2072-666X/11/5/491?type=check_update&version=2


Micromachines 2020, 11, 491 2 of 19

we provide a concise overview of this important area, analyzing the main environmental pollutants,
major needs, available technologies, novel approaches, and future perspectives. Among environmental
pollutants or xenobiotic compounds that threaten the biosphere, we will consider the main sources
of contamination, inorganic and organic, that affect air and water quality. Specifically, we focus
on particulate matter in air and microplastics in water, which share size ranges and some sensing
requirements; heavy metal ions in water; small molecules as combustion products; and hazardous
gases in air or pesticides/biocides in water. Hydrocarbons in oil form are not reviewed because they are
recently considered more from the bioremediation point of view. On the other hand, noise pollution is
also discussed as a physical more than particle/chemical source. For each contaminant, we summarize
the fundamental characteristics, health effects, and most used methods of detection, without going
into details of the techniques, but describing problems, challenges, and limits of detections. In order to
focus the reader on the general context, in terms of methodology, for each category, we mention a few
examples from the literature chosen on the basis of impact and relevance of the selected publications
according to the received citations, the journal impact factor, and their novelty (for example, the Web
of Science Database was employed, with the following search terms: “portable sensors combined
with environmental monitoring, particulate matter, microplastics, heavy metals, pesticides/biocides,
environmental noise pollution, air quality guidelines, water quality guidelines”; we used both seminal
publications with high impact on the field and recent articles published in the last five years). Without
the ambition to be exhaustive in such a rapidly growing field, this review is indeed intended as
a support for researchers and stakeholders looking for current, state-of-the-art, and key enabling
technologies for environmental monitoring.

In the following sections, we start discussing particulate matter and monitoring of microplastics in
Sections 2 and 3, and then we describe technologies for assessment of heavy metals and small molecules
pollution (combustion products and hazardous gases as well as pesticides/biocides) in Section 4,
Section 5, and Section 6. Successively, we review noise pollution assessment in Section 7, while in
Section 8, for each pollutant, we summarize the status in terms of guideline values, known health effects,
sources, and limits of detection before discussing the perspectives opened by the integration of sensing
technologies with robotics and the Internet of Things. Finally, in Section 9, we draw some conclusions.

2. Particulate Matter

A major risk for human health is exposure to air pollution owing to ambient particulate matter
(PM). The term PM refers to a complex and heterogeneous ensemble made of different components with
various physical characteristics. The constituents can be classified as primary and secondary particles,
based on the sources that produce them, natural and anthropic sources (from volcanic eruptions to
industrial processes), respectively, on one side [5], and nucleation, coagulation, and condensation of
molecules present in the gas phase on the other one [6]. In terms of PM chemical composition, we can
distinguish three main classes: inorganic ions, carbonaceous fraction, and crustal material; another
fourth part is related to the presence of water. The size of particles composing PM varies from a few
nanometers to tens of micrometers, but the literature reports a net distinction between particles smaller
than 2.5 µm, particles between 2.5 µm and 10 µm, and particles up to 100 µm; if the first ones penetrate
the alveoli and terminal bronchioles, the second ones mainly deposit in the primary bronchi, while the
latter ones are withheld by nasopharynx [5]. To have an idea of the impact and threat, it was estimated
that 2016 exposure to particle matter with diameters below 2.5 µm (PM2.5) reduced average global life
expectancy at birth by one year, with peaks of almost two years in Asia and Africa [7]. Among all
the PM, the ultrafine particles (with diameter less than 0.1 µm (PM0.1)) represent the worst hazard for
health as they are able to overstate the air–blood barrier near the lungs. The induced adverse health
outcomes result in strokes, lung cancer, chronic obstructive pulmonary disease, respiratory infections,
and ischemic heart disease.

Airborne particulate detection is traditionally carried out using optical and gravimetric approaches
such as ellipsometry, light scattering-based instruments, and tapered element oscillating microbalance
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spectrometers [8–10]. All these techniques have demonstrated high sensitivity and reliability, but require
long time analysis as well as heavy and expensive instrumentation, and are thus not usually available
as on-field tools. Recently, however, different approaches have been developed to decrease the volume
and cost of air particulate monitoring systems.

Light scattering is one of the most applied approaches in the realization of portable detectors
for the measurement of size and concentration of airborne particulate matter. For example, in [11],
the authors reported a miniaturized device exploiting a system of three Fresnel ring lenses for collecting
scattered light on two solid angle intervals. Particles coming into a measuring chamber cross a laser
beam and scatter light, which is collimated by a first Fresnel lens and then focused onto two avalanche
photodiodes by two separate Fresnel ring lenses. This innovative system enhancing the collected
signal allows to detect particle of size down to 150 nm. A simpler and low cost miniaturized PM
sensor based on the light scattering method was achieved in [12] (Figure 1a,b), where the authors
mounted a low power laser source and a photodiode at the diagonally opposite corners of a small
chamber of sizes 15 × 10 × 1 mm3 consisting of two stacked silicon submounts. Both laboratory and
field testings carried out on this sensor showed a good accuracy of less than 10 µg/m3 and a rapid
response to particle concentration variations.

Acoustic wave-based devices, such as quartz microbalance crystals (QCM) and surface acoustic
wave (SAW) devices, have been developed to replace the traditional gravimetric methods, in which
the particle mass concentration was determined by weighing the air filters before and after the
sampling period. In order to overcome this disadvantage and realize portable devices able to monitor
the exposure to aerosols in real time, it was proposed to collect the particles on the surface of the
electromechanical sensors (QCM or SAW) and to measure the accumulated mass as a shift of device
resonance frequency. QCM operates by using bulk acoustic waves excited through the application
of an AC voltage to the electrodes patterned on both sides of a piezoelectric substrate (i.e., AT-cut
quartz), whereas SAW transducers consist of interdigital electrodes whose periodicity matches the
SAW wavelength at a specific frequency. SAW-based sensors possess higher sensitivity toward mass
changes than QCM as the energy is confined on the surface region rather than in the bulk and the
working frequencies are at least an order of magnitude higher than QCM (up to GHz compared with
5−20 MHz of QCM).

In [13], a QCM sensor integrated in a three-dimensional printed virtual impactor was developed
for the separation and detection of particulate matter. The authors demonstrated that this system was
able to separate silicon dioxide particles with a diameter smaller than 2.5 µm from the inlet particle flow
(having a diameter in the range of 0.5–8 µm) and to detect them with a good sensitivity of 0.274 Hz/ng.

Concerning the detection of sub-micrometer particles, in [14], surface acoustic wave (SAW) delay
lines were comparatively investigated with electrochemical impedance spectroscopy (EIS)-based
devices. Specifically, both transduction methods were able to detect the presence of particulate matter
of size down to 200 nm, which is considered the most harmful as it is able to penetrate deep into
the lungs and blood streams. The SAW-based sensor (Figure 1c–d) was more performant in terms of
sensitivity and detection of nanoscale particles (down to 40 nm), although the EIS approach had a good
sensitivity considering also its even lower cost.

In [15], Thomas and collaborators investigated a two-port SAW resonator for detection of micron
and submicron sized particles, showing a mass sensitivity depending on the particle diameter (with
respect to the acoustic wavelength). In particular, this parameter is higher for particles having size
comparable or smaller than the acoustic penetration depth. Moreover, the authors demonstrated the
ability of the SAW resonator to detect masses below 1 ng with a higher sensitivity of 275 Hz/ng.
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Figure 1. (a) Schematic of a light scattering−based sensor and (b) its relative representative reading 
(reproduced from [12]). (c) Surface acoustic wave (SAW) delay lines connected to a printed circuit 
board and (d) relative phase shifts as a function of mass for particles of different diameter size 
(reproduced with permission from [14]).  
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The term microplastics refers to plastic particles of size in the range of 0.001–5 mm, resulting 
from the fragmentation of larger plastic objects (owing to oxidation, mechanical forces, UV radiation) 
or intentionally designed to be small for use in beauty and health products. Because of their physical 
dimension, microplastics can be accidentally ingested by aquatic life and birds, and thus get 
accumulated in the food chain, compromising ecosystems and human health. Microplastics can be 
collected using plankton nets of different mesh size [16] for analysis in a laboratory. The different 
properties of these small materials, such as shape, size distribution, and light appearance 
(transparency and translucent), as well as the refractive index close to water values, make their 
detection in practical field condition difficult. 

Traditionally, more than one analytical method has been employed for the identification of 
microplastics. The first step consists of the physical characterization of potential plastic through a 
visual inspection [17]. Specifically, whereas larger plastics (2–5 mm) can be easily detected with 
naked eye observation, plastic objects of hundred micrometers in size are generally identified by 
means of magnified images obtained using optical microscopy, which can give information about 
surface texture and structure. Indeed, a certain number of selection criteria, concerning geometry, 
color, and degradation stage, are proposed to aid the positive identification of plastic particles 
through the visual method [17]. However, this approach is not recommended for the detection of 
microplastics particles <500 µm (especially if transparent and without a specific shape), as it does not 
allow to discriminate, without doubt, plastic from other organic materials, and thus may lead with 
high probability to a false identification of plastic-like particle. 

Figure 1. (a) Schematic of a light scattering−based sensor and (b) its relative representative reading
(reproduced from [12]). (c) Surface acoustic wave (SAW) delay lines connected to a printed circuit board
and (d) relative phase shifts as a function of mass for particles of different diameter size (reproduced
with permission from [14]).

3. Microplastics

The term microplastics refers to plastic particles of size in the range of 0.001–5 mm, resulting
from the fragmentation of larger plastic objects (owing to oxidation, mechanical forces, UV radiation)
or intentionally designed to be small for use in beauty and health products. Because of their
physical dimension, microplastics can be accidentally ingested by aquatic life and birds, and thus get
accumulated in the food chain, compromising ecosystems and human health. Microplastics can be
collected using plankton nets of different mesh size [16] for analysis in a laboratory. The different
properties of these small materials, such as shape, size distribution, and light appearance (transparency
and translucent), as well as the refractive index close to water values, make their detection in practical
field condition difficult.

Traditionally, more than one analytical method has been employed for the identification of
microplastics. The first step consists of the physical characterization of potential plastic through
a visual inspection [17]. Specifically, whereas larger plastics (2–5 mm) can be easily detected with
naked eye observation, plastic objects of hundred micrometers in size are generally identified by
means of magnified images obtained using optical microscopy, which can give information about
surface texture and structure. Indeed, a certain number of selection criteria, concerning geometry,
color, and degradation stage, are proposed to aid the positive identification of plastic particles through
the visual method [17]. However, this approach is not recommended for the detection of microplastics
particles <500 µm (especially if transparent and without a specific shape), as it does not allow to
discriminate, without doubt, plastic from other organic materials, and thus may lead with high
probability to a false identification of plastic-like particle.
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Scanning electron microscopy (SEM) is able to solve this problem, providing high-resolution
images of small plastic particles. This technique is generally complemented with energy-dispersive
X-ray spectroscopy (EDS), which provides information about the elemental composition of the analyzed
objects [18]. Although the combination of SEM–EDS works well in the differentiation of microplastics
from other small samples, it is not appropriate for studying a large number of samples as it needs a lot
of time and effort for sample preparation and investigation.

When the size of microplastics is lower than 1 mm, the microscopy analysis is supported by
a second step of chemical characterization for the confirmation of the material type under examination.
Plastic are long chains of polymers mainly composed of carbon, hydrogen, and oxygen. The polymer
composition of microplastics may be identified by means of spectroscopic techniques such as Fourier
transform infrared (FTIR) spectroscopy, Raman scattering, or thermal analysis as pyrolysis gas
chromatography-mass spectrometry (py-GC-MS).

Py-GC-MS spectrometry enables the determination of microplastics polymers by analyzing gases
that are thermally decomposed starting from polymers, and by comparing their characteristic pyrogram
with reference curves of known polymers [19]. Despite that this technique requires small amounts of
sample, making possible its application for trace analysis, it has the disadvantage of being a destructive
method and does not allow further analysis of microplastics samples.

FTIR spectroscopy is one of the most used techniques for chemical analysis of environmental
samples, able to reveal polymer composition, and providing an IR spectrum that contains individual
peaks corresponding to specific bonds in the chemical compound. IR spectra give information about
microplastics’ polymer types and its abundance, as well as the physiochemical weathering process,
by analyzing the relative composition of oxygenated bonds [17]. When the plastic particle size decreases
below 10 µm, IR spectra lose accuracy, making plastic identification difficult.

Raman spectroscopy is another recommended technique for studying the chemical structure of
suspected plastics, especially for microplastics fractions lower than 20 µm. It is based on inelastic
scattering of monochromatic light from a laser source by molecular bond vibrations. If combined with
microscopy (micro-Raman), this technique enables the spectra analysis of polymer particles of few
µm [20]. Furthermore, using Raman scattering with confocal laser microscopy, it is possible to detect
microplastics even in biological tissues [17]. The main drawback of the Raman techniques is that the
identification accuracy can be negatively affected by the presence of fluorescent pigments or additives
in microplastics, which alter the vibrational information.

Spectroscopic techniques are considered the most reliable techniques for the identification of
microplastics, but require a lot of time for analysis and complex and expensive equipment, not suitable
for on-field analysis.

An alternative strategy for the identification and quantification of microplastics analysis was
reported in [21], consisting of a fluorescence staining method in combination with density separation.
Sediments samples are treated with a fluorescent dye known as Nile Red, which causes microplastics
to brightly fluoresce when irradiated with blue light and enables them to be differentiated from
surrounding particles (Figure 2a). Using a simple camera and an orange filter, the authors detected
particles down to a few micrometers. Furthermore, the solvatochromic nature of Nile Red allows the
microplastics’ classification on the base of hydrophobicity of identified particles.

Notably, in another work, Asamoah et al. [22] developed a portable prototype optical sensor
(Figure 2b) to reveal the presence of both transparent and translucent microplastics in water
(polyethylene terephthalate (PET) and low density polyethyleneor (LDPE)). Combining two detection
modes on the specular reflection signal and the transmitted interference pattern from the light
microplastics in water, it is possible to distinguish the type and size of microplastics in a volume of
freshwater. The transparent polyethylene terephthalate showed a higher specular signal than the
translucent LPDE, which is conversely responsible for a distorted interference pattern.

So far, however, we miss broadly accepted portable techniques for monitoring the threat of
microplastics, and this is a key area for future development.
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4. Heavy Metals

Heavy metals pollutants including cadmium (Cd), chromium (Cr), zinc (Zn), mercury (Hg),
lead (Pb), arsenic (As), silver (Ag), copper (Cu), iron (Fe), and platinum (Pt) represent another serious
environmental risk when present either in the more toxic free form (labile complexes, hydrated
cations) or in stable complexes (with natural organic binders). They can be released naturally or
by anthropogenic sources and their toxicity frequently arises through exchange and co-ordination
mechanisms with proteins and enzymes then forming stable bio toxic compounds [23]. Heavy metal
disorders and symptoms mainly arise following their transfer to the food chain because, when they come
in contact with the soil, they tend to form minerals assimilated by the plants [24]; high concentrations
of heavy metals were associated with neurological disorders, cancer, liver damages, diseases of the
cardiovascular system, and hypophosphatemia, to name a few [25].

To determine the presence of heavy metals in solutions, electrochemical methods and in particular
anodic stripping voltammetry are often employed owing to their high sensitivity and ability to
distinguish between labile and non-labile species/complexes. Moreover, electrochemical sensors are
usually compact and can be miniaturized for on-field analysis. By anodic stripping voltammetry, it is
possible to exploit the specific redox potential associated with each heavy metal ion for their assessment
(identification) without a molecular recognition probe, while the anodic peak current value also allows
their quantification [26]. In this respect, nanostructured/modified electrodes represent a new approach,
where, for example, the employment of nanoparticles (NPs)-modified electrodes was shown to improve
the selectivity, especially for As3+ and Hg2+ detection [27,28], thus eliminating the memory effect.
On the other side, carbon nanomaterials can also ensure excellent electron transferability. In this way,
the lowest limits of detection reach 0.04 ppb for Pb2+, 0.02 ppb for Cd2+, and 15 ppb for Cu2+ [29,30];
typical curves on the evaluation of heavy metal ions concentrations through nanostructured carbon
black are reported in Figure 3a, based on differential pulse anodic stripping voltammetry (DP-ASV) [31].
In addition, the reduction of electrode size obviates problems such as a high potential for analyte
deposition, high stripping potential of the analyte, and low selectivity. Micro- and nano-electrodes
arrays were used, for example, to evaluate Cd2+ with a sensitivity until 40 ng/L in aqueous solution [32].
Microfluidics provides further valid support for long-term detection and setup miniaturization [33].

Remaining among electrical transduction approaches, field effect transistors (FETs) represent an
emerging field for heavy metals detection using nanowires, carbon-based nanotubes, graphene [34],
and NPs because of their high sensitivity, further emphasized with the employment of 1D and
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2D nanomaterials [35]. FETs are sensitive to concentrations of Hg2+ and Cd2+ of 10-7 M and 10-4

M, respectively. Hg2+ presence was also evaluated by realizing FETs with single-walled carbon
nanotubes [36], whose mechanism of detection is reported in Figure 3b; the device shows lower
sensitivity with respect to Si-nanowire gated FET, but a higher detection range, as illustrated in
Figure 3c. However, the highest sensitivity was reached recently by functionalizing graphene oxide on
an FET, then obtaining a limit of detection as low as 2.5 x 10-8 M for Hg2+ ions in drinking water [37,38].

Optical transduction enables further approaches. For example, colorimetric detection of Hg2+ and
Pb2+ were reported in [39] and [40] with limit of detection down to ten ppb for Hg2+. Chemiluminescence
enables to reduce this threshold by a factor of 10 [41]. Fluorescent sensors represent versatile tools for
the evaluation of the presence of heavy metals based on analyte-induced changes in the physicochemical
properties of fluorophores. In this respect, beyond traditional organic dyes, emerging fluorophores
include inorganic quantum dots (QDs) [42] and metallic nanoparticles [43], which are suitable for both
in vitro and in vivo detection of heavy metals. In fluorescence sensing, Pb2+ ions were detected either
by designing a QD–aptamer–graphene oxide (GO) sensor [44] or using DNAzyme–GO structures;
the aptamer-quenching or QD-quenching of the fluorescence in the QD–aptamer–GO frame leads to
evaluating the presence of Ag+ ions, beside Hg2+, reaching a limit of detection of almost 1 nM in aqueous
solution [45]. In a different work, Cu2+ and Pb2+ concentrations were monitored by exploiting the
surface plasmon resonance of Au or Ag NPs on a fluorescent sensor, giving a sensitivity of 2 ppt [46,47].
The presence of Hg2+, Pb2+, Cu2+, Cd2+, Mn2+, and other ions in aqueous solutions was also evaluated
by employing plasmonic sensors based on nucleotide-functionalized Au NPs, both by colorimetric
assessment and transmission localized surface plasmon resonance (SPR) spectroscopy [39,40,46,48].

The direct detection of heavy metal oxide groups was extensively carried out by exploiting surface
enhanced Raman scattering (SERS) [49], especially for actinides [50], VI B–VII B group ions [51],
and As3+ [52]. For this purpose, plasmonic nanostructures were functionalized with an organic ligand
that binds specifically to heavy ions. An example of the structures that come to be formed is the
self-assembled nanostar dimer based on the thymine-thymine pair of ssDNA, mediated by metal
ion [53]; through this structure, it was possible to achieve a limit of detection of 0.8 pg/mL with a linear
range from 0.002 to 1 ng/mL. The integration of the aforementioned sensors with high selectivity
in microfluidic layouts gives an opportunity to realize optofluidic sensors, which enables real-time
detection of multiple analytes [54].
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Figure 3. Heavy metal ions detection methods based on differential pulse stripping voltammetry
DP-ASV (a) and conductance measurements from single−walled carbon nanotube field effect transistor
(swCNT−FET) (b,c). In more detail, (a) calibration curves of the stripping peak currents at carbon
black−Nafion−glassy carbon electrode with increased concentrations of Cd(II) and Pb(II) (reproduced
from [31]). (b) Mechanism of detection for Hg2+ (upper) and Pb2+ (lower) by a swCNT−based FET
sensor. (c) Response to various metal ions with concentrations from 1 nM to 1 mM (reproduced with
permission from [36]).
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5. Combustion Products and Hazardous Gases

Combustion products and hazardous gases, such as CO, CO2, NOx, SO2, and volatile organic
compounds, are relevant threats for human health, severely affecting air quality and airways. Carbon
monoxide, CO, causes poisoning, and is generally a product of poorly combusted organic materials
and fossil fuels. Carbon dioxide, CO2, is present in air at relatively higher concentrations and is used
also for human purposes (e.g., extinguishers, carbonating drinks), but it is also a product of fuels
combustion, such as coal, methane, and petrol, and can be dangerous for the environment because it
absorbs infrared photons, producing the well-known greenhouse effect, jointly with other gases [55].
Other molecules of interest for environmental monitoring are NOx, mainly coming from the combustion
of fossil fuels in engines and industrial processes. NO2 is toxic, leading to health issues, especially
related to the lungs. Sulfur dioxide, SO2, mainly comes from industrial activity [55] and can cause
irritations in airways; acid rain is also a consequence of the presence of this gas in the environment.
Moreover, volatile organic compounds (VOCs) are also indoor pollutants; some examples are propanol,
toluene, ethanol, acetone, and so on. These are organic chemicals presenting a high vapor pressure
at ordinary room temperature, and hence they can be dispersed in the air in a certain concentration.
Owing to the increasing pollution in residential and industrial areas, there is an increasing need for
technologies to monitor hazardous gases in the environment. Key factors in these investigations are
portability, reusability, reliability, low cost, scalability, and real-time detection.

During the years, various detection methods have been developed. In this respect,
metal oxides-based gas sensors were widely investigated in the first 2000s decade [56], but a major
limiting factor is the requirement of a pre-heating phase to 100–400 ◦C, which also makes their
applications for explosive gas detection difficult. The sensing mechanism, in fact, is based on the
adsorption/desorption of O ions (e.g., O- and O2-), which is favored by the heating phase and makes the
material responsive to the gas analytes [55], resulting in changes of charge distribution on the material’s
surface, and thus a measurable variation of its conductivity. Owing to these limitations, a wide range
of novel active-layer materials have been developed. Among them, to date, nanostructured hybrid
materials appear to be among the best solutions, owing to their tunability and excellent sensing
performances [57]. For example, vacuum-deposited PANI-Fe:Al (80:20) nanocomposite thin films were
employed as active layer in sensors for rapid and selective detection of CO at ppb level, in the range of
0.06 to 0.3 ppm at room temperature [58] (Figure 4), with response times of the order of 10 s and good
performance in terms of reusability.
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6. Pesticides/Biocides

Another important class of hazardous contaminants concerns pesticides or biocides as chemical
substances widely employed in agriculture to defend the crop from proliferation of undesirable
biological organisms such as pest, insect, and weeds. Although the use of pesticides plays a significant
role in the enhancement of agricultural productivity, their residues can cause soil, water, and air
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pollution (moving from one ecosystem to another), and even enter into the food chain. Maximum
residue limits have been established by regulators, however, their bioaccumulation and the continuous
exposure to them continue to have a negative impact on the environment and human health.

Among pesticides/biocides, those characterized by a high mortality rate are organochlorines
(OCs), herbicides, organophosphates (OPs), fungicides and carbamates, and polychlorinated biphenyls
(PCBs) [59] in general. In particular, the highest percentage of fatality is recorded following the
employment of paraquat, fenthion, endosulfan, dimethoate, carbosulfan, and propanil [60]. The effects
on human health after the assumption of contaminated drinking water or food range from acute
poisoning (at the expense of the digestive and cardiovascular systems) to chronic intoxication [59]
like acute respiratory distress syndrome (ARDS) with pulmonary fibrosis. Patients may also develop
other life-threatening complications, such as liver dysfunction, acute tubular necrosis, and kidney
failure [60]. Even the microorganisms useful for the aquatic ecosystems are heavily affected by the
biocides, as reported in [61]. For all these reasons, the detection of pesticides is a crucial request
to guarantee food safety and quality, protect the ecosystems, and safeguard human health from
possible hazard.

Traditionally, chromatographic techniques such as liquid chromatography (LC),
gas chromatography (GC), or capillary electrophoresis (CE) analysis have been used for
pesticides analysis. Although these methods are sensitive and possess high specificity, they suffer
from some drawbacks, such as time consuming procedures, high costs, sophisticated equipment
that require skilled personnel, and a laborious sample preparation that limits on-site and on-field
application. Therefore, research focused on the investigation of sensor technologies as an alternative
to the standard analytic techniques for determination of various pesticides (organophosphates,
organocloride, carbamates, and so on) in an easier, faster, low-cost, and user-friendly manner.

In the literature, several transduction mechanisms have been examined for pesticide detection
using different recognition elements, such as enzyme, antibody, aptamer, or molecular imprinted
polymers, as well as integrating nanomaterials to achieve higher sensitivity and selectivity. The most
common tools in this field are enzyme-mediated sensors, in which the pesticides can act as inhibitor
or as substrate for the enzymatic activity and detection is based on either indirect measurements of
enzyme inhibition or direct measurements of substances involved in the enzymatic reaction.

Organophosphate and carbamate are common insecticides typically detected measuring the
inhibition of acetylcholinesterase (AChE), an important enzyme for the functioning of the central
nervous system. AChE hydrolyzes acetylcholine (ACh) to choline and acetic acid. Some pesticides are
able to covalently bind at AChE active sites much more easily than ACh, inhibiting the enzyme activity.
The activity tests can be carried out measuring reactants and products variations by means of different
kinds of transducers (optical, electrochemical, piezoelectric). Fluorescence-based sensors are the
most commonly applied for field-use pesticide monitoring because the signal change can be recorded
through a portable spectrophotometer or visible by naked eye on site. For example, in [62], the authors
developed a novel biosensor for the detection in a real sample of organophosphorus pesticides, based
on the quenching of fluorescence of CdTe quantum dots in the presence of H2O2. The pesticides’
concentration can be also estimated by monitoring pH changes produced by the acid formation in
the enzymatic reaction using potentiometric sensors [63]. In [64], the authors developed a portable
amperometric biosensor for the rapid on-site detection of chlorpyrifos pesticides residues in fruits and
vegetables with a low detection limit 100 ng/L and a measurement time of 15 min. Enzymatic-based
biosensors are useful tools for rapid pesticide detection, but can suffer for a lack of selectivity as other
compounds like heavy metals, fluoride or nicotine can also inhibit the enzymes.

Immunosensors can be considered a valid alternative to enzyme-based devices as they are
able to distinguish different kinds of pesticides, being specific for a particular chemical moiety.
In particular, they are based on the detection of specific antigen–antibody interactions by a transducer
(electrochemical, optical, piezoelectric, and so on), which converts the biosensing event into a readable
form. Numerous studies were carried out by means of quartz crystal microbalance immunosensors
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(QCM) in sample water for detecting various pesticides, such as the well-known gliphosate (LOD
from 4 µg/L to 250 µg/L [65]). In [66], the authors developed a rapid immunochromotographic test
strip based on Ab-Ag strategy for organophosphorus pesticide metabolite (TCP) investigation with a
limit of detection of 1.0 ng/mL and a response time of 15 min. A high sensitive SPR immunosensor
was also reported by Guo et al. for monitoring thiazophos in agricultural crops and water, with an
LOD of 0.096 ng/mL and a linear range of 0.98–8.29 ng/mL [67]. The main drawback of the use of
immunosensors for detection of pesticides is the long and expensive production of specific antibodies
for these very small and highly toxic molecules.

A good alternative as recognition elements in the development of biosensors for pesticide
residues detection is represented by aptamers for their several advantages over antibodies such
as high specificity, low molecular weight, wide range of targets, easy synthesis, and modification.
Aptamers are single-stranded RNA or DNA sequences synthetized for selectively binding to target
molecules with high affinity. The aptamer molecules are used as receptors similarly to antibodies
in sensors with different transducer mechanisms (colorimetric, electrochemical, fluorescence, SERS).
Colorimetric aptasensors are widely applied for the detection in real time of pesticides pollutants
in environment and food for easy sample preparation and the possibility to observe the results
with naked eyes. For example, in [68], the authors developed a colorimetric aptamer assay for the
detection of organophosphorous omethoate, using the resistance of single-stranded DNA-wrapped
Au NPs against salt-induced aggregation. In the presence of pesticide, the aptamer binds to the
omethoate, separating from gold nanoparticles, which aggregate, resulting in a color solution change.
This aptasensor exhibited a good linearity between 0.1 and 10 µM and a low detection limit of 0.1 µM.
In [69], a double-stranded DNA was employed to prevent Au NP aggregation in salt solution for
colorimetric detection of pesticide malathion. In this case, a linear range from 5 pM to 10 nM and lower
detection limit of 1 pM were achieved. For its high sensitivity and low cost, electrochemical impedance
spectroscopy is the most commonly used strategy in the development of electrochemical aptasensors.
In [70], an ultrasensitive EIS aptasensor was built up by Fei et al. to detect residues of insecticide
acetamiprid at femtomole level (LOD of 17 fM), employing gold nanoparticles (Au NPs) decorated
multiwalled carbon nanotube-reduced graphene oxide nanoribbon composites as support for aptamer
immobilization (Figure 5a). Molecular imprinted polymers can be another valuable alternative to
antibodies and aptamers as specific molecular probes.
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Figure 5. (a) Schematic representation of impedimetric aptasensor for detection of acedamiprid
(reproduced with permission from [70]). (b) Image of smartphone−based detection setup and of
luminescence test paper, and upconversion luminescence (UCL) spectra upon additions of different
amounts of thiram (reproduced with permission from [71]).

Concerning fluorescence transduction mechanism, a smartphone-based prototype system
(Figure 5b) was developed for real-time detections of the highly toxic pesticide thiram on NaYF4:Yb/Tm
up-conversion nanoparticles modified test paper. The luminescence variation of nanoparticles fixed
onto filter paper is related to the amounts of thiram deposited on the surface and was monitored by
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a smartphone camera [71]. In [72], the authors realized flexible and controllable paper-based SERS
(surface enhanced Raman scattering) swabs with silver nanoparticles (Ag NPs) and graphene oxide (GO)
using the screen-printing technique for the determination of pesticide residues in fruits and vegetables.
This sensing platform was able to detect different types of pesticides such as thiram, thiabendazole,
and methylparathion, with detection limits of 0.26 ng/cm2, 28 ng/cm2, and 7.4 ng/cm2, respectively.

7. Noise

Beyond being annoying, unwanted acoustic noise can also psychologically and physiologically
impact health [73], from hearing loss to lack of cognitive performances, sleep disturbance, up
to cardiovascular diseases [74]. In terms of regulation, World Health Organization (WHO)
defines periodically recommendations about limit values, regarding noise peaks and the so-called
Day-Evening-Night-Level (LDEN), which represents a measurement of acoustic intensity averaged in
a whole day, with “penalties” of 10 dB during the night and 5 dB during the evening. In the 2018
updated version for Europe [75], WHO suggested to maintain LDEN < 54 dB for road traffic noise,
LDEN < 53 dB near railways, and LDEN < 45 dB in airports. The first step to assess noise level is the
evaluation of the acoustic pressure in decibels (dB), with 20 µPa as reference value being the average
human limit of detection for a 1 kHz sound [73], but the sound frequency has to be specified because
of the changing sensitivity within the human’s hearing range (20 Hz–20 kHz, with a maximum at few
kHz) [76]. For this reason, the IEC61672-1:2002 standard suggests to normalize noise measurements at
the levels really perceived by the human’s auditory system by means of weighted filters [76].

The golden standard in acoustic noise assessment is the employment of professional sound level
meters (SLMs), which are continuously recording devices suitably positioned in the environment for
on-field measurements of the acoustic spectrum [77]. As disadvantages, they are not very user-friendly
and cheap enough for an average worker to buy and use. For this reason, Nast et al. in 2014 [78]
proposed individual sound level measurements by free smartphones applications. Their comparative
study showed that this technology was not as accurate as type 2 SLMs [78], but it is possible to
improve the performances through advanced calibration procedures and non-linearity correction,
approaching the professional SLM level. This procedure, however, must be performed by an expert,
again making it not possible for anyone to perform a noise self-assessment. Three years later, Zamora
et al. [79] performed a systematic study about the feasibility of mapping the noise inside an area
through a distributed noise sensing units consisting of different smartphone platforms by optimizing
several parameters from the algorithm to sampling and data gathering processes, finally obtaining
performances comparable to the employment of professional SLM devices, but the need to take into
account the different characteristics of smartphones coming from different vendors, the aptitude of
low-end devices to introduce errors more pronounced than high-end ones, and the difficulty to measure
the same space point for long time are features that complicate the application of this crowdsending
approach in noise pollution monitoring. Regarding indoor measurements, for example, in factories,
the actual trend is compliant with the present Internet Of Things philosophy employing a series of low
cost distributed sensors and integrating microcontroller units that gather the data from the sensing
expansion, perform a first manipulation (e.g., filtering), and send data to a cloud archive for further
heavier calculations. For example, in 2018, Risojević et al. [80] optimized the performances of limited
computational resources and cheap devices (any node costs about 41 €) to obtain a system able to
monitor the environmental noise for several days with a precision similar to that reachable with
professional sound meter devices. Recent advances have led to the implementation of this approach
not only to map the noise pollution in outdoor environment, but also to gather sound data that can be
analyzed by a server through convolutional neural networks in order to classify them by individuating
their source, as well as allowing the user able to receive and visualize noise maps, acoustic events
information, and noise statistics in a defined area [81].
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8. Discussion

Significant progresses have been achieved in the design and implementation of portable sensors
for environmental monitoring. Today, particulate matter, microplastics, heavy metals, small molecules
as combustion products, and hazardous gases in air or pesticides/biocides in water can be detected
with unprecedented capability. For each class, Table 1 summarizes the current guideline values,
health effects, sources, and achieved limit of detection, also mentioning the employed transduction
approaches in order to guide researchers, stakeholders, and regulators to define their strategies and
policies. It should be specified that the thresholds beyond which a product is considered harmful have
not been established for all the contaminants/pollutants reported in Table 1, as well as reliable detection
methods have not yet been established for each pollutant. Moreover, although the availability of novel
(nano)materials and fabrication capabilities created new opportunities for improving the figures of
merits, there are no ideal sensors for all scopes, but the technology of choice depends on the specific
application, the measurement/environmental constraints, the need for portability and field use, as well
as a compromise among costs and sensitivity requirements.

Table 1. Summary of contaminants characteristics, effects, and available sensing technologies for
their monitoring.

Pollutant Guideline Value Health Effects Sources Limit of Detection

PARTICULATE MATTER
(PM) [5]

PM2.5: 25 µg/m3 (1 d).
PM10: 50 µg/m3 (1 d).

Acute lower respiratory
infections,
cardiovascular disease,
chronic obstructive
pulmonary disease,
and lung cancer.

Mainly in developing
cities, in particular in
South East Asia and
countries in
Western Pacific Ocean.

PM with 0.3 um minimum
dimension: 1 µg/m3

[light-scattering photometry].

MICROPLASTICS [82,83]

polyethylene (PE),
polypropylene (PP),
polyvinyl chloride (PVC),
polystyrene (PS),
polyurethane (PUR),
polyethylene terephthalate
(PET)

Not yet established

Irritation on eyes,
respiratory tract symptoms,
liver and gastrointestinal
effects, neurobehavioral and
immunological changes in
children, miscarriage,
damage to immune system,
endocrine disruption,
decreased comprehension.

Bags, storage
containers, bottles,
gear, strapping, cool
boxes, floats, cups,
utensils, film, pipe,
fishing nets, rope,
boats, cigarette filters.

Not yet established

HEAVY METALS [84,85]

Sb, As, Cd, Cu, Pb, Se, Ag, U,
Hg, Fe, Cr, Zn

Sb: 0.02 mg/L;
As: 0.01 mg/L;
Cd: 3 µg/L;
Cu: 2 mg/L;
Cr: 0.05 mg/L;
PDMI of Fe: 0.8 mg/kg;
Pb: 0.01 µg/L;
Hg: 6 µg/L;
Ni: 0.07 mg/L;
U: 0.03 mg/L.

Hyper-pigmentation,
hypo-pigmentation,
neuropathy, skin and lung
cancer, gastrointestinal
disturbances, hypertension,
impaired fertility, tubular
necrosis, proteinuria,
hypoalbuminaemia, gastritis
haemorragic, argyria,
nephritis.

Corrosion of pipes and
steel during water
distribution, lubricant
agents in petrol,
lead-acid batteries,
steel industries and
alloys industries,
fertilizers, granites,
and nuclear power
stations.

Sb: 0.01 µg/L [AAS]; Cr: 0.05
µg/L [AAS]; Pb: 1 µg/L [AAS];
Hg: 0.05 µg/L [AAS]; Se: 0.5
µg/L [AAS]; As: 0.1 mg/L
[ICP-MS]; Cd: 0.01 µg/L
[ICP-MS]; Cu: 0.02 µg/L
[ICP-MS]; Ni: 0.1 µg/L [ICP-MS];
U: 0.01 µg/L [ICP-MS].

COMBUSTION-PRODUCTS
[86]
O3, NO2, SO2

O3: 100 µg/m3 (8-h)
NO2: 40 µg/m3 (1-y)
SO2: 20 µg/m3 (1-d)

Inflammation of airways,
asthma, chronic obstructive
pulmonary disease, reduced
lung function, proclivity to
infection of the respiratory
tract.

Photochemical smog,
reaction between NOx
and VOCs from
vehicles, solvents and
industry, burning of
fossils fuels, smelting
of mineral ores.

SO2: 0.1 ppm [EC];
O3: 0.01 ppm [EC];
NO2: 0.1 ppm [EC].

HAZARDOUS
GASES/HYDROCARBONS
[85]

Acrylamide, brominated
acetic acid, Carbon
tetrachloride, Chloral
hydrate, Chloramines,
2,4,6-Trichlorophenol,
Dialkyltins,
1,2-Dibromoethane,
Dichloroacetic acid,
1,2-Dichloroethane,
1,2-Dichloroethene,
Dichloromethane,
1,2-Dichloropropene,
Di(2-ethylhexyl)phthalate,
1,4-Dioxane, Edetic acid,
Epichlorohydrin,
Formaldehyde, MTBE, PAHs,
Styrene, Tetrachloroethene,
Vinyl chloride.

Acrylamide: 0.5 µg/L;
Carbon tetrachloride: 4
µg/L; Chloramines: 3 mg/L;
1,2-Dibromoethane: 0.4
µg/L; Dichloroacetic acid:
50 µg/L;
1,2-Dichloroethane: 30µg/L;
1,2-Dichloroethene: 50
µg/L; Dichloromethane: 20
µg/L; 1,2-Dichloropropene:
20 µg/L;
Di(2-ethylhexyl)phthalate:
8 µg/L; 1,4-Dioxane: 50
µg/L; Edetic acid: 0.6 mg/L;
PAHs: 0.7 µg/L; Styrene: 20
µg/L; Tetrachloroethene: 20
µg/L; Vinyl chloride: 0.3
µg/L.

Neurotoxicity, affection of
germ cells, impairment of
reproductive functions,
scrotal, thyroid, and adrenal
tumors, oral toxicity,
hepatomas, hepatocellular
carcinomas, mononuclear
cell leukaemia, forestomach
tumor, nasal cavity tumor,
increase of serum
glutamate-pyruvate
transaminase level, central
nervous system depression,
angiosarcoma, liver cancer.

Treatment of drinking
water, production of
plastics, resins and
other organic
chemicals, civil use
and industrial
materials treatment.

Acrylamide: 32 ng/L [GC];
Carbon tetrachloride: 0.1 µg/L
[GC-ECD/MS]; Chloramines: 10
µg/L [Col]; Dialkyltins: 0.01
µg/L [GC-MS]; 1,2-
1,2-Dichloroethane: 0.1 µg/L
[GC-ECD]; 1,2-Dichloroethene:
0.17 µg/L [GC-MS];
Dichloromethane: 0.3 µg/L
[GC-MS]; 1,2-Dichloropropene:
0.2 µg/L [GC-ECD];
Di(2-ethylhexyl) phthalate: 0.1
µg/L [GC-MS]; 1,4-Dioxane: 0.1
µg/L [GC-MS]; Edetic acid: 1
µg/L [potenziometric
stripping]; Epichlorohydrin:
0.01 µg/L [GC-ECD]; PAHs: 10
ng/L [GC-MS]; Styrene: 0.3 µg/L
[GC/PID-MS];
Tetrachloroethene: 0.2 µg/L
[GC-ECD]; Vinyl chloride: 10
ng/L [GC-ECD].
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Table 1. Cont.

Pollutant Guideline Value Health Effects Sources Limit of Detection

PESTICIDES [84]

alachlor, aldicarb, aldrin,
dieldrin, atrazine, bentazone,
carbaryl, carbofuran,
chlordane, chlorotoluron,
chloropyrifos, cyanazine,
2,4-D, 2,4-DB, DDT,
1,2-dichloropropane,
dichlorprop, dichlorvos,
dicofol, dimethoate, diquat,
endosulfan, entrin,
fenitrothion, fenoprop,
glyphosate, isoproturon,
lindane, malathion, MCPA,
mecoprop, methoxychlor,
methylparathion,
metolachlor, molinate,
parathion, pendimethalin,
pentachlorophenol, propanil,
simazine, 2,4,5-T,
terbuthylazine, trifluralin

Alachlor: 0.02 mg/L;
aldicarb:0.01 mg/L; aldrin,
dieldrin:0.03 µg/L;
atrazine:0.1 mg/L;
bentazone:0.5 mg/L;
carbaryl:50 µg/L;
carbofuran:7 µg/L;
chlordane:0.2 µg/L;
chlorotoluron:30 µg/L;
chloropyrifos:30 µg/L;
cyanazine:0.6 µg/L, 2,4-D:30
µg/L, 2,4-DB:90 µg/L;
DDT:1 µg/L; 1,2-DCP:20
µg/L; dichlorprop:100 µg/L;
dichlorvos:20 µg/L;
dicofol:10 µg/L;
dimethoate:6 µg/L;
diquat:30 µg/L; endosulfan:
20 µg/L; entrin:0.6 µg/L;
fenitrothion:8 µg/L;
fenoprop:9 mg/L;
glyphosate:0.9 mg/L;
isoproturon:9 µg/L;
lindane:2 µg/L; MCPA:0.7
mg/L; mecoprop:0.01 mg/L;
methoxychlor:0.02 mg/L;
metolachlor:0.01 mg/L;
molinate:6 µg/L;
parathion:10 µg/L;
pendimethalin:20 µg/L;
pentachlorophenol:9 µg/L;
simazine:2 µg/L, 2,4,5-T:9
µg/L; terbuthylazine:7 µg/L;
trifluralin:20 µg/L.

Turbinate, stomach, thyroid
cancer, inhibition of
acetylcholinesterase, liver
tumor, destruction of estrous
cycle, kidney toxicity,
inhibition of brain
acetylcholinesterase, soft
tissue sarcoma,
non-Hodgkin lymphoma,
mitogenic effects,
neurotoxicity, skin irritation,
anaemia, hyperglycaemia.

Agriculture,
urban pest control.

Alachlor: 0.1 µg/L [G(L)C];
aldicarb: 1 µg/L [HPLC-FD];
aldrin: 0.003 µg/L [GC-ECD];
dieldrin: 0.002 µg/L [GC-ECD];
atrazine: 5 ng/L
[HPLC-UVPAD]; bentazone:
0.01 µg/L [LC-MS]; carbosulfan:
0.1 µg/L [HPLC-FD]; chlordane:
0.014 µg/L [GC-ECD];
chlorotoluron: 0.1 µg/L
[HPLC-UVD][EC];
chloropyrifos: 1 µg/L
[GC-ECD]; cyanazine: 0.01 µg/L
[GC-MS]; 2,4-D: 0.1 µg/L [G(L)C-
ECD]; 2,4-DB: 1 µg/L
[HPLC-ECD (UVD)];
chlorodiphenyltrichloroethane:
11 ng/L [GC-ECD];
1,2-dichloropropane: 20 ng/L
[GC-ECD]; 1,3-dichloropropene:
0.2 µg/L [GC-ECD]; dichlorprop:
1 µg/L [HPLC-ECD (UVD)];
dichlorvos: 10 ng/L [GC];
dicofol: 5 ng/L [GC];
dimethoate: diquat: 1 µg/L
[HPLC-UV]; entrin: 2 ng/L
[GC-ECD]; fenoprop: 0.2 µg/L
[GC-ECD]; isoproturon: 0.1
µg/L [ozonation]; lindane: 0.01
µg/L GC; MCPA: 90 ng/L
[GC-ECD]; mecoprop: 10 ng/L
[GC-ECD]; methoxychlor: 1
ng/L [GC]; metolachlor: 0.01
µg/L [HPLC-FD]; molinate: 10
ng/L [GC-MS]; parathion:
pendimethalin: 10 ng/L
[GC-MS]; pentachlorophenol: 5
ng/L [GC-ECD]; propanil:
simazine: 10 ng/L [GC-MS];
2,4,5-T: 20 ng/L [GC-ECD];
terbuthylazine: 0.1 µg/L
[HPLC-UVD]; trifluralin: 50
ng/L [GC- FD].

NOISE
LDEN: 54 dB (traffic).
LDEN: 53 dB (railways).
LDEN: 45 dB (aircraft).

Lack of cognitive
performances, sleep
disturbance,
cardiovascular disease,
hearing loss.

Traffic, railways,
aircrafts, factories’
instrumentation,
concerts

1 dB for type 1 sound level
meters

1 The acronyms for methods of analysis are [AAS]: atomic absorption spectroscopy; [ICP-MS]: inductively
coupled plasma mass spectrometry; [HPLC-FD]: high-performance liquid chromatography-fluorescence detection;
[HPLC-UVPAD]: high-performance liquid chromatography-ultraviolet photodiode array detection; [HPLC-ECD]:
high-performance liquid chromatography-electron capture detection; [HPLC-UV]: high-performance liquid
chromatography-ultraviolet detection; [GC]: gas chromatography (not specified); [Col]: colorimetric methods;
[GC-MS]: gas chromatography/mass spectrometry; [GC-ECD]: gas chromatography–electron capture detection;
[PID-MS]: photoinduced detection–mass spectroscopy; [EC]: electrochemical approach; [VOC]: volatile organic
compound. (8 h), (1 d), (1 y): exposure times to various pollutants/contaminants, corresponding to 8 h, 1 day, and 1
year, respectively.

To further increase the impact of environmental sensor technologies, their combination with
robotics and Internet of Things (IoT) can be exploited to achieve efficient, unmanned monitoring
at unprecedented scales, in conditions of particular interest such as after natural disasters and
environmental accidents, but also in unstructured environments, like damaged nuclear power
plants [87], active volcanoes [88], and deep oceans [89]. In particular, useful emerging trends in
robotics range from the establishment of cooperative robotic teams, to the improvement of the
interaction between robots and a wireless sensor network (WSN), from the planning of model-aided
paths to adaptive sampling. The realization of a group of vehicles equipped with sensor suites, moving
collectively and cooperatively, can pave the way to a revolution, because of its dynamicity, flexibility,
and suitability for multiple source localization, even if this approach requires fixing many technical
issues related to endurance, planning, coordination, communication, and cooperation. An example
of cooperative systems is reported in [90], while a review of the various approaches in this direction
is presented in [91]. On the other hand, a WSN composed of autonomous sensors is capable of
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measuring a number of environmental parameters and of locally processing and storing the acquired
data. While WSNs are perfect in monitoring the environment, they are very limited in reacting
to what they detect. In this respect, robots can act as interfaces to WSN, then enhancing them by
providing important benefits such as sensor deployment, calibration, failure detection, and power
management. The requirements characterizing the interaction among robots and WSN and how these
elements are being addressed in the design of the new communication framework are discussed
in [92]. For what concerns the model-aided path planning in robotics, its integration with forecast
models of environmental parameters allows to improve performance like orientation and endurance
in dynamics environments; the approach is based on the realization of early scientific environmental
models, the examples of which are reported in [93–95]. Furthermore, adaptive sampling represents
another solution when physical phenomena show unknown spatial distribution that also changes over
time; in these cases, it is possible to use multiscale algorithms for characterizing particular features,
as reported in [96].

Similarly, the development of the Internet of Things gives the possibility to deploy sensor networks
that acquire data in real time from sensor nodes in widely distributed areas. An intriguing perspective
can be represented by the Internet of Nano-things [97], which is achieved by incorporating nano-sensors
into many objects and by using nano-networks [98]. This recent conception pushes technology even
further towards the realization of wearable nano-sensors in spite of many current sensors, which do not
give the possibility to wear them because of their dimensions and the rigid materials of which they are
composed. In this direction, the convergence between nanobiotechnology and Internet of Things (IoT)
can be exploited for the implementation of monitoring systems and the optimization of environmental
conditions in plants, as well as with the use of UAVs (unmanned aerial vehicles) and with ground
stations. The requirements that nano-sensors must meet in view of their use with IoT and drones are
mainly the reliability in highly variable environmental conditions, simplicity in replacing the in-field
sensors, longevity, and the ability to communicate data. Given the assumptions, the promise of using
these new technologies for both air and drinking water monitoring can be maintained within the next
few years.

9. Conclusions

In conclusion, a wide ensemble of different pollutants threatens the environment and human
health. Their various forms set specific requirements for monitoring tools and campaigns. However,
thanks to significant progresses in sensor platforms, we now have available unprecedented
technologies and building blocks that are expected to enable breakthroughs for next-generation
environmental monitoring.
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