

You have downloaded a document from RE-BUŚ
 repository of the University of Silesia in Katowice

Title: Functions Preserving the Biadditivity

Author: Radosław Łukasik, Paweł Wójcik

Citation style: Łukasik Radosław, Wójcik Paweł. (2020). Functions
Preserving the Biadditivity. "Results in Mathematics" Vol. 75, art. 82 (2020) DOI: 10.1007/s00025-020-01206-3

Uznanie autorstwa - Licencja ta pozwala na kopiowanie, zmienianie, rozprowadzanie, przedstawianie i wykonywanie utworu jedynie pod warunkiem oznaczenia autorstwa.

Functions Preserving the Biadditivity

Radosław Łukasik© and Paweł Wójcik

Abstract

In this paper we consider the generalization of the orthogonality equation. Let S be a semigroup, and let H, X be abelian groups. For two given biadditive functions $A: S^{2} \rightarrow X, B: H^{2} \rightarrow X$ and for two unknown mappings $f, g: S \rightarrow H$ the functional equation

$$
B(f(x), g(y))=A(x, y)
$$

will be solved under quite natural assumptions. This extends the wellknown characterization of the linear isometry.

Mathematics Subject Classification. Primary 39B52, 20M15; Secondary 20K25, 20K30.

Keywords. Biadditive function, orthogonality equation, divisible group, torsion-free group.

1. Introduction

Let H, K be unitary spaces. It is easy to check that, if $f: H \rightarrow K$ satisfies $\langle f(x) \mid f(y)\rangle=\langle x \mid y\rangle$, then f is an linear isometry. The above equation was generalized in normed spaces X, Y by considering a norm derivative $\rho_{+}^{\prime}(x, y):=\|x\| \cdot \lim _{t \rightarrow 0^{+}} \frac{\|x+t y\|-\|x\|}{t}$ instead of inner product, i.e.

$$
\begin{equation*}
\rho_{+}^{\prime}(f(x), f(y))=\rho_{+}^{\prime}(x, y), \quad x, y \in X \tag{1}
\end{equation*}
$$

with an unknown function $f: X \rightarrow Y$. Note that if the norm comes from an inner product $\langle\cdot, \cdot\rangle$, we obtain $\rho_{+}^{\prime}(x, y)=\langle x \mid y\rangle$. Another generalization of the orthogonality equation in Hilbert spaces H, K is to look for the solutions of

$$
\begin{equation*}
\langle f(x) \mid g(y)\rangle=\langle x \mid y\rangle, \quad x, y \in H \tag{2}
\end{equation*}
$$

where $f, g: H \rightarrow K$ are unknown functions. Solutions of (1) and (2) can be found in the authors' previous papers [3], [4], [6]. Another generalization of (2) we can find in the paper [5] where the author studies the equation

$$
\left\langle f(x) \mid g\left(y^{*}\right)\right\rangle=\left\langle x \mid y^{*}\right\rangle, \quad x \in E, y^{*} \in F^{*}
$$

where $f: E \rightarrow F, g: E^{*} \rightarrow F^{*}, E, F$ are Banach spaces, E^{*}, F^{*} are spaces dual to E and F respectively, and $\langle a \mid \varphi\rangle:=\varphi(a)$.

In this paper we will give a natural generalization of such functional equations in the case of abelian groups. In this case we will consider biadditive mappings instead of inner products.

2. Preliminaries

We start by recalling here some notions and results from the theory of groups and semigroups (see [2, Appendix A]).

Definition 1. A group is torsion if every element has the finite order.
A group is torsion-free if every element except the identity has the infinite order.

Definition 2. A semigroup $(H,+)$ is said to be divisible if

$$
\forall_{x \in H} \forall_{n \in \mathbb{N}} \exists_{y \in H} x=n y .
$$

Let p be a prime number. The Prüfer p-group is the unique p-group in which every element has p different p-th roots. Alternatively we can write $\mathbb{Z}\left(p^{\infty}\right)=\mathbb{Z}[1 / p] / \mathbb{Z}$, where $\mathbb{Z}[1 / p]=\left\{\frac{m}{p^{n}}: m \in \mathbb{Z}, n \in \mathbb{N}_{0}\right\}, \mathbb{N}_{0}:=\mathbb{N} \cup\{0\}$. It is known fact that Prüfer p-groups are divisible and torsion.

Definition 3. Let $A_{i}, i \in I$, be groups. The direct sum $\bigoplus_{i \in I} A_{i}$ is the set of tuples $\left(a_{i}\right)_{i \in I} \in \prod_{i \in I} A_{i}$ such that $a_{i} \neq 0$ for finitely many $i \in I$.

Remark 1. There exist an abelian divisible group G and divisible subgroups D, K of G such that $D \cap K$ is not divisible.

Lemma 1. Let G be an abelian group, D, K be divisible subgroups of G. Then $D+K$ is divisible.

Proof. Let $x \in D, y \in K, n \in \mathbb{N}$. Then there exist $u \in D$ and $v \in K$ such that $x=n u$ and $y=n v$. Hence $x+y=n(u+v)$.

Theorem 1. Let G be an abelian divisible group, D_{1}, D_{2} be divisible subgroups of G and $D_{1} \cap D_{2}$ be divisible. Then there exist divisible groups $K_{0}, K_{1}, K_{2}, K_{3}$ such that $G=\bigoplus_{i=0}^{3} K_{i}, D_{2}=K_{0} \oplus K_{1}, D_{1}=K_{0} \oplus K_{2}$.

Proof. Let $K_{0}=D_{1} \cap D_{2}$. Then there exist divisible groups K_{1}, K_{2} such that $D_{2}=K_{0} \oplus K_{1}, D_{1}=K_{0} \oplus K_{2}$. We show that $K_{1} \cap K_{2}=\{0\}$. Let $x \in K_{1} \cap K_{2}$, then $x \in D_{1} \cap D_{2}=K_{0}$. Hence $x=0$. Finally, there exists a divisible group K_{3} such that $G=\left(\underset{i=0}{\stackrel{2}{\bigoplus}} K_{i}\right) \oplus K_{3}$.

After these preparations we may now pass to multi-additive functions. By $\operatorname{Perm}(n)$ we denote the set of all bijections of the set $\{1, \ldots, n\}$.

Definition 4. Let S be a semigroup, H be a group, $n \in \mathbb{N}$. The function $A: S^{n} \rightarrow H$ is called n-additive if

$$
\begin{aligned}
& A\left(x_{1}, \ldots, x_{i-1}, x_{i}+y, x_{i+1}, \ldots, x_{n}\right) \\
& \quad=A\left(x_{1}, \ldots, x_{n}\right)+A\left(x_{1}, \ldots, x_{i-1}, y, x_{i+1}, \ldots, x_{n}\right)
\end{aligned}
$$

for all $y, x_{1}, \ldots, x_{n} \in S$ and $i \in\{1, \ldots, n\}$.
Moreover, A is called symmetric if

$$
A\left(x_{1}, \ldots, x_{n}\right)=A_{n}\left(x_{\sigma(1)}, \ldots, x_{\sigma(n)}\right)
$$

for all $x_{1}, \ldots, x_{n} \in S$ and $\sigma \in \operatorname{Perm}(n)$.
Lemma 2. Let H, X be groups, H be divisible. Let further $B: H^{2} \rightarrow X$ be a biadditive function. Then for every element $x \in H$ of the finite order we have

$$
B(x, y)=B(y, x)=0, y \in H
$$

Remark 2. The previous lemma can be easily extended to the n-additive functions for $n \geq 2$.

We use following two lemmas to show the existence of some biadditive map from \mathbb{Q}^{2} to $\mathbb{Z}\left(2^{\infty}\right)$.

Lemma 3. Let $k \in \mathbb{N}, l \in 2 \mathbb{N}-1$. Then there exists exactly one number $\varphi\left(2^{k}, l\right) \in\left\{1,3, \ldots 2^{k}-1\right\}$ such that $l \varphi\left(2^{k}, l\right) \equiv 1\left(\bmod 2^{k}\right)$.

Proof. Let $l(2 i-1) \equiv r_{i}\left(\bmod 2^{k}\right), 1 \leq r_{i}<2^{k}$ for $i \in\left\{1,2, \ldots 2^{k-1}\right\}$. We observe that $r_{i} \in 2 \mathbb{N}-1$ and $r_{i} \neq r_{j}$ for $i \neq j$. Indeed, if $r_{i}=r_{j}$, then $l(2 i-2 j) \equiv 0\left(\bmod 2^{k}\right)$ which means that $i=j$. Hence there exists exactly one j such that $l(2 j-1) \equiv 1\left(\bmod 2^{k}\right)$.

Lemma 4. Let $k, m \in \mathbb{N}, l, n \in 2 \mathbb{N}-1$. Then

$$
\begin{aligned}
n \varphi\left(2^{k}, l n\right) & \equiv \varphi\left(2^{k}, l\right)\left(\bmod 2^{k}\right) \\
\varphi\left(2^{k+m}, l\right) & \equiv \varphi\left(2^{k}, l\right)\left(\bmod 2^{k}\right)
\end{aligned}
$$

Proof. We have

$$
l\left(n \varphi\left(2^{k}, \ln \right)-\varphi\left(2^{k}, l\right)\right)=\ln \varphi\left(2^{k}, \ln \right)-l \varphi\left(2^{k}, l\right) \equiv 0\left(\bmod 2^{k}\right)
$$

$$
l \varphi\left(2^{k+m}, l\right)=1+c 2^{k+m}=1+\left(c 2^{m}\right) 2^{k} \equiv 1\left(\bmod 2^{k}\right) \equiv l \varphi\left(2^{k}, l\right)\left(\bmod 2^{k}\right)
$$

for some $c \in \mathbb{N}_{0}$ so

$$
l\left(\varphi\left(2^{k+m}, l\right)-\varphi\left(2^{k}, l\right)\right) \equiv 0\left(\bmod 2^{k}\right)
$$

which means that

$$
\varphi\left(2^{k+m}, l\right)-\varphi\left(2^{k}, l\right) \equiv 0\left(\bmod 2^{k}\right) .
$$

Theorem 2. There exists a biadditive and symmetric function $C: \mathbb{Q}^{2} \rightarrow \mathbb{Z}\left(2^{\infty}\right)$ such that $C(1,1)=\frac{1}{2}+\mathbb{Z}$.

Proof. A greatest common divisor in this proof will be denoted by GCD. Let $m, k \in \mathbb{Z}, n, l \in \mathbb{N}, \operatorname{GCD}(m, n)=\operatorname{GCD}(k, l)=1$. Let further $s_{n}, s_{l} \in \mathbb{N}_{0}$ be such that $2^{s_{n}}\left|n, 2^{s_{n}+1} \quad \chi l, 2^{s_{l}}\right| l, 2^{s_{l}+1} \quad \chi l$. We define C by the formula

$$
C\left(\frac{m}{n}, \frac{k}{l}\right):=m k \frac{\varphi\left(2^{s_{n}+s_{l}+1}, \frac{n l}{2^{s_{n}+s_{l}}}\right)}{2^{s_{n}+s_{l}+1}}+\mathbb{Z} .
$$

It is easy to see that C is symmetric, so we only show that C is additive in the first variable. Let $p \in \mathbb{Z}, q \in \mathbb{N}, \operatorname{GCD}(p, q)=1, d=\operatorname{GCD}(m q+n p, n q)$. Let further $s_{q}, s_{d} \in \mathbb{N}_{0}$ be such that $2^{s_{q}} \mid q, 2^{s_{q}+1} \quad \chi q$ and $2^{s_{d}} \mid d, 2^{s_{d}+1} \quad \chi d$. Using Lemma 4 we get

$$
\begin{aligned}
C & \left(\frac{m}{n}+\frac{p}{q}, \frac{k}{l}\right)=C\left(\frac{m q+n p}{n q}, \frac{k}{l}\right)=C\left(\frac{\frac{m q+n p}{d}}{\frac{n q}{d}}, \frac{k}{l}\right) \\
& =\left(\frac{m q+n p}{d} \cdot k\right) \frac{\varphi\left(2^{s_{n}+s_{q}-s_{d}+s_{l}+1}, \frac{n q l}{d 2^{s_{n}+s_{q}-s_{d}+s_{l}}}\right)}{2^{s_{n}+s_{q}-s_{d}+s_{l}+1}}+\mathbb{Z} \\
& =\left(\frac{m q+n p}{d} \cdot k \frac{d}{2^{s_{d}}}\right) \frac{\varphi\left(2^{s_{n}+s_{q}-s_{d}+s_{l}+1}, \frac{n q l}{d 2^{s_{n}+s_{q}-s_{d}+s_{l}}} \cdot \frac{d}{2^{s_{d}}}\right)}{2^{s_{n}+s_{q}-s_{d}+s_{l}+1}}+\mathbb{Z} \\
& =\left(\frac{m q+n p}{d} \cdot k \frac{d}{2^{s_{d}}}\right) \frac{\varphi\left(2^{s_{n}+s_{q}-s_{d}+s_{l}+1}, \frac{n q l}{2^{s_{n}+s_{q}+s_{l}}}\right)}{2^{s_{n}+s_{q}-s_{d}+s_{l}+1}}+\mathbb{Z} \\
& =\left(\frac{m q+n p}{d} \cdot k \frac{d}{2^{s_{d}}}\right) \frac{\varphi\left(2^{s_{n}+s_{q}+s_{l}+1}, \frac{n q l}{2^{s_{n}+s_{q}+s_{l}}}\right)}{2^{s_{n}+s_{q}-s_{d}+s_{l}+1}}+\mathbb{Z} \\
& =(m q+n p) k \frac{\varphi\left(2^{s_{n}+s_{q}+s_{l}+1}, \frac{n q l}{2^{s_{n}+s_{q}+s_{l}}}\right)}{2^{s_{n}+s_{q}+s_{l}+1}+\mathbb{Z}} \\
& =(m q k) \frac{\varphi\left(2^{s_{n}+s_{q}+s_{l}+1}, \frac{n q l}{2^{s_{n}+s_{q}+s_{l}}}\right)}{2^{s_{n}+s_{q}+s_{l}+1}+(n p k) \frac{\varphi\left(2^{s_{n}+s_{q}+s_{l}+1}, \frac{n q l}{2^{s_{q}+s_{n}+s_{l}}}\right)}{2^{s_{n}+s_{q}+s_{l}+1}}+\mathbb{Z}} \\
& =\left(m k 2^{s_{q}} \frac{q}{2^{s_{q}}}\right) \frac{\varphi\left(2^{s_{n}+s_{q}+s_{l}+1}, \frac{n l}{2^{s_{n}+s_{l}}} \cdot \frac{q}{2^{s_{q}}}\right)}{2^{s_{n}+s_{q}+s_{l}+1}}
\end{aligned}
$$

$$
\begin{aligned}
& +\left(p k 2^{s_{n}} \frac{n}{2^{s_{n}}}\right) \frac{\varphi\left(2^{s_{n}+s_{q}+s_{l}+1}, \frac{q l}{2^{s_{q}+s_{l}}} \cdot \frac{n}{2^{s_{n}}}\right)}{2^{s_{n}+s_{q}+s_{l}+1}}+\mathbb{Z} \\
= & (m k) \frac{\varphi\left(2^{s_{n}+s_{q}+s_{l}+1}, \frac{n l}{2^{s_{n}+s_{l}}}\right)}{2^{s_{n}+s_{l}+1}}+(p k) \frac{\varphi\left(2^{s_{n}+s_{q}+s_{l}+1}, \frac{q l}{2^{s_{q}+s_{l}}}\right)}{2^{s_{q}+s_{l}+1}}+\mathbb{Z} \\
= & (m k) \frac{\varphi\left(2^{s_{n}+s_{l}+1}, \frac{n l}{2^{s_{n}+s_{l}}}\right)}{2^{s_{n}+s_{l}+1}}+\mathbb{Z}+(p k) \frac{\varphi\left(2^{s_{q}+s_{l}+1}, \frac{q l}{2^{s_{q}+s_{l}}}\right)}{2^{s_{q}+s_{l}+1}}+\mathbb{Z} \\
= & C\left(\frac{m}{n}, \frac{k}{l}\right)+C\left(\frac{p}{q}, \frac{k}{l}\right) .
\end{aligned}
$$

The proof is complete.
Now we introduce some theory of the adjoint operator on groups.
Definition 5. Let S, H, X be groups, $A: S^{2} \rightarrow X, B: H^{2} \rightarrow X$ be biadditive functions. Let further $T: S \rightarrow H$ and

$$
D\left(T^{*}\right)=\left\{v \in H: \exists_{y \in S} \forall_{x \in S} B(T(x), v)=A(x, y)\right\} .
$$

A function $T^{*}: D\left(T^{*}\right) \rightarrow S$ is called a (B, A)-adjoint operator (to T) if and only if

$$
B(T(x), v)=A\left(x, T^{*}(v)\right), x \in S, v \in D\left(T^{*}\right)
$$

Lemma 5. Let S, H, X be groups, $A: S^{2} \rightarrow X, B: H^{2} \rightarrow X$ be biadditive functions. Let further $T: S \rightarrow H$ and $T^{*}: D\left(T^{*}\right) \rightarrow S$ be a (B, A)-adjoint operator to T,

$$
\begin{align*}
S_{A R} & :=\left\{y \in S: \forall_{x \in S} A(x, y)=0\right\}, \tag{3}\\
S_{A L T^{*}} & :=\left\{x \in S: \forall_{y \in i m} T^{*} A(x, y)=0\right\}, \tag{4}\\
H_{B T R} & :=3\left\{v \in H: \forall_{u \in i m} B(u, v)=0\right\}, \tag{5}\\
H_{B L D^{*}} & :=\left\{u \in H: \forall_{v \in D\left(T^{*}\right)} B(u, v)=0\right\} . \tag{6}
\end{align*}
$$

Then

1. $D\left(T^{*}\right)$ is a group, $S_{A R}, S_{A L T^{*}}$ are normal subgroups of $S, H_{B T R}, H_{B L D^{*}}$ are normal subgroups of H. Moreover in the case when X is torsion-free, if H is divisible, then $H_{B T R}, H_{B L D^{*}}$ are divisible, if S is divisible, then $S_{A R}, S_{A L T^{*}}$ are divisible, if S, H are divisible, then $D\left(T^{*}\right)$ is divisible;
2. $\forall_{x, y \in S} T(x+y)-T(y)-T(x) \in H_{B L D^{*}}$;
3. $\forall_{x, y \in S} x-y \in S_{A L T^{*}} \Leftrightarrow T(x)-T(y) \in H_{B L D^{*}}$;
4. $\forall_{u, v \in D\left(T^{*}\right)} T^{*}(u+v)-T^{*}(v)-T^{*}(u) \in S_{A R}$;
5. $\forall_{u, v \in D\left(T^{*}\right)} u-v \in H_{B T R} \Leftrightarrow T^{*}(u)-T^{*}(v) \in S_{A R}$;
6. $H_{B T R} \subset D\left(T^{*}\right)$;
7. Assume that H is abelian and divisible. Let K be a subgroup of H such that $H=K \oplus H_{B T R}, \varkappa: S \rightarrow S / S_{A R}$ be a canonical homomorphism. Then $D\left(T^{*}\right) \cap K$ is a group and $\widetilde{T}^{*}:=\varkappa \circ T^{*}: D\left(T^{*}\right) \cap K \rightarrow i m T^{*} / S_{A R}$ is an isomorphism.

Proof. 1. Since kernel of any homomorphism is a normal subgroup, then $S_{A R}, S_{A L T^{*}}$ are normal subgroups of $S, H_{B T R}, H_{B L D^{*}}$ are normal subgroups of H.
Moreover, if S is divisible and X is torsion-free, then for $x \in S_{A L T^{*}}$ and $n \in \mathbb{N}$ there exists $z \in S$ such that $n z=x$. We have

$$
n A\left(z, T^{*}(u)\right)=A\left(n z, T^{*}(u)\right)=A\left(x, T^{*}(u)\right)=0, u \in D\left(T^{*}\right)
$$

Since X is torsion-free, then $z \in S_{A L T *}$.
2. Let $x, y \in S, v \in D\left(T^{*}\right)$. Then

$$
\begin{aligned}
& B(T(x+y)-T(y)-T(x), v) \\
& \quad=B(T(x+y), v)-B(T(y), v)-B(T(x), v) \\
& \quad=A\left(x+y, T^{*}(v)\right)-A\left(y, T^{*}(v)\right)-A\left(x, T^{*}(v)\right) \\
& \quad=A\left(x+y-y-x, T^{*}(v)\right)=A\left(0, T^{*}(v)\right)=0
\end{aligned}
$$

which shows that $T(x+y)-T(y)-T(x) \in H_{B L D^{*}}$.
3. Let $x, y \in S, v \in D\left(T^{*}\right)$. Then

$$
\begin{aligned}
B(T(x)-T(y), v) & =B(T(x), v)-B(T(y), v) \\
& =A\left(x, T^{*}(v)\right)-A\left(y, T^{*}(v)\right)=A\left(x-y, T^{*}(v)\right)
\end{aligned}
$$

which shows that $x-y \in S_{A L T^{*}} \Leftrightarrow T(x)-T(y) \in H_{B L D^{*}}$.
4. Let $u, v \in D\left(T^{*}\right), x \in S$.

$$
\begin{aligned}
& A\left(x, T^{*}(u+v)-T^{*}(v)-T^{*}(u)\right) \\
& \quad=A\left(x, T^{*}(u+v)\right)-A\left(x, T^{*}(v)\right)-A\left(x, T^{*}(u)\right) \\
& \quad=B(T(x), u+v)-B(T(x), v)-B(T(x), u) \\
& \quad=B(T(x), u+v-v-u)=B(T(x), 0)=0
\end{aligned}
$$

which shows that $T^{*}(u+v)-T^{*}(v)-T^{*}(u) \in S_{A R}$.
5. Let $u, v \in D\left(T^{*}\right), x \in S$. Then

$$
\begin{aligned}
B(T(x), u-v) & =B(T(x), u)-B(T(x), v)=A\left(x, T^{*}(u)\right)-A\left(x, T^{*}(v)\right) \\
& =A\left(x, T^{*}(u)-T^{*}(v)\right)
\end{aligned}
$$

which shows that $u-v \in H_{B T R} \Leftrightarrow T^{*}(u)-T^{*}(v) \in S_{A R}$.
6. Let $u \in H_{B T R}$ and $y \in S_{A R}$. Then

$$
B(T(x), u)=0=A(x, y), x \in S
$$

which shows that $u \in D\left(T^{*}\right)$.
7. Let $u, v \in D\left(T^{*}\right)$. Then using property 4 we obtain

$$
\begin{aligned}
& \left(T^{*}(u)+S_{A R}\right)+\left(T^{*}(v)+S_{A R}\right)=T^{*}(u+v)+S_{A R} \\
& \left(T^{*}(u)+S_{A R}\right)+\left(T^{*}(-u)+S_{A R}\right)=T^{*}(0)+S_{A R}=S_{A R}
\end{aligned}
$$

so im $T^{*} / S_{A R}$ is a group. Using property 4 we obtain that \widetilde{T}^{*} is a homomorphism, from 5 we get that \widetilde{T}^{*} is injective. Let $y=T^{*}(u)$ for some
$u \in D\left(T^{*}\right)$. Since $H=K \oplus H_{B T R}$, then $u=u_{1}+u_{2}$, where $u_{1} \in K$, $u_{2} \in H_{B T R}$. From 6 we have $u_{1}=u-u_{2} \in D\left(T^{*}\right)$. Using property 5 we get $T^{*}(u)-T^{*}\left(u_{1}\right) \in S_{A R}$, so

$$
\widetilde{T}^{*}\left(u_{1}\right)=\varkappa\left(T^{*}\left(u_{1}\right)\right)=\varkappa\left(T^{*}(u)\right)=\varkappa(y),
$$

which shows that \widetilde{T}^{*} is surjective.

Using property 7 from Lemma 5 we can accept the following
Definition 6. Let S, H, X be groups, H be abelian and divisible, $A: S^{2} \rightarrow X$, $B: H^{2} \rightarrow X$ be biadditive functions. Let further $T: S \rightarrow H$ and $T^{*}: D\left(T^{*}\right) \rightarrow$ S be a (B, A)-adjoint operator to $T, \operatorname{im} T^{*} / S_{A R}=S / S_{A R}, K$ be a subgroup of H such that $H=K \oplus H_{B T R}$. We define the function $\left(T^{*}\right)^{-1}: S \rightarrow D\left(T^{*}\right) \cap K$ by the formula

$$
\begin{equation*}
\left(T^{*}\right)^{-1}(x)=\left(\widetilde{T}^{*}\right)^{-1}(\varkappa(x)), x \in S \tag{7}
\end{equation*}
$$

Remark 3. The function $\left(T^{*}\right)^{-1}$ from the above definition is additive and $\operatorname{im}\left(T^{*}\right)^{-1}=D\left(T^{*}\right) \cap K$.

3. Main results

Assume that $(S,+)$ is a semigroup, $(H,+)$ is a divisible abelian group, $(X,+)$ is a torsion-free group, $A: S^{2} \rightarrow X, B: H^{2} \rightarrow X$ are biadditive functions.

Theorem 3. Let $f, g: S \rightarrow H$. Then (f, g) satisfies

$$
\begin{equation*}
B(f(x), g(y))=A(x, y), x, y \in S \tag{8}
\end{equation*}
$$

if and only if there exist divisible groups $H_{0}, H_{1}, H_{2}, H_{3}$, additive functions $f_{a}: S \rightarrow H_{2} \oplus H_{3}, g_{a}: S \rightarrow H_{1} \oplus H_{3}$ and functions $f_{r}: S \rightarrow H_{0} \oplus H_{1}, g_{r}: S \rightarrow$ $H_{0} \oplus H_{2}$ such that

$$
\begin{align*}
& H=\bigoplus_{i=0}^{3} H_{i} \text { and } H_{1}, H_{2}, H_{3} \text { are torsion-free, } \tag{9}\\
& f=f_{a}+f_{r}, g=g_{a}+g_{r} \tag{10}\\
& \left(H_{0} \oplus H_{1}\right) \times\left(H_{0} \oplus H_{2}\right) \subset B^{-1}(\{0\}) \tag{11}\\
& i m f_{a} \times\left(H_{0} \oplus H_{2}\right) \subset B^{-1}(\{0\}) \tag{12}\\
& \left(H_{0} \oplus H_{1}\right) \times i m g_{a} \subset B^{-1}(\{0\}) \tag{13}\\
& B\left(f_{a}(x), g_{a}(y)\right)=A(x, y), x, y \in S \tag{14}
\end{align*}
$$

Moreover, we can assume that $H_{0} \oplus H_{2}=\left\{v \in H: \forall_{u \in \operatorname{im} f} B(u, v)=0\right\}$.

Proof. (\Rightarrow) Let

$$
\begin{aligned}
& D_{1}:=\left\{v \in H: \forall_{u \in \operatorname{im} f} B(u, v)=0\right\}, \\
& D_{2}:=\left\{u \in H: \forall_{v \in \operatorname{im} g+D_{1}} B(u, v)=0\right\} .
\end{aligned}
$$

It is easy to see that above sets are groups. We show that $D_{1}, D_{2}, D_{1} \cap D_{2}$ are divisible.

Let $v \in D_{1}$ and $n \in \mathbb{N}$. Then there exists $w \in H$ such that $v=n w$. For every $u \in \operatorname{im} f$ we have

$$
n B(u, w)=B(u, n w)=B(u, v)=0
$$

and since X is torsion-free, then $w \in D_{1}$.
Let $u \in D_{2}$ and $n \in \mathbb{N}$. Then there exists $w \in H$ such that $u=n w$. For every $v \in \operatorname{im} g+D_{1}$ we have

$$
n B(w, v)=B(n w, v)=B(u, v)=0
$$

and since X is torsion-free, then $w \in D_{2}$.
Let $x \in D_{1} \cap D_{2}$ and $n \in \mathbb{N}$. Then there exists $z \in H$ such that $x=n z$. Let $u \in \operatorname{im} f$ and $v \in \operatorname{im} g+D_{1}$. We have

$$
\begin{aligned}
& n B(u, z)=B(u, n z)=B(u, x)=0 \\
& n B(z, v)=B(n z, v)=B(x, v)=0
\end{aligned}
$$

and since X is torsion-free, then $z \in D_{1} \cap D_{2}$.
In view of Theorem 1 there exist divisible groups $H_{0}, H_{1}, H_{2}, H_{3}$ such that $D_{2}=H_{0} \oplus H_{1}, D_{1}=H_{0} \oplus H_{2}$ and $H=\bigoplus_{i=0}^{3} H_{i}$. In view of Lemma 2 every element of H of the finite order belongs to $D_{1} \cap D_{2}=H_{0}$, so H_{1}, H_{2}, H_{3} are torsion-free. Let $f=f_{0}+f_{1}+f_{2}+f_{3}, g=g_{0}+g_{1}+g_{2}+g_{3}$, where $f_{i}, g_{i}: S \rightarrow H_{i}$ for $i \in\{0,1,2,3\}$. Let further $f_{a}:=f_{2}+f_{3}, g_{a}:=g_{1}+g_{3}$. Hence $f_{r}:=\left(f-f_{a}\right): S \rightarrow H_{0} \oplus H_{1}$ and $g_{r}:=\left(g-g_{a}\right): S \rightarrow H_{0} \oplus H_{2}$.

We observe also that

$$
\begin{aligned}
& \left(H_{0} \oplus H_{1}\right) \times\left(H_{0} \oplus H_{2}\right)=D_{2} \times D_{1} \subset B^{-1}(\{0\}), \\
& \operatorname{im~} f_{a} \times\left(H_{0} \oplus H_{2}\right) \subset\left(\operatorname{im} f+D_{2}\right) \times D_{1} \subset B^{-1}(\{0\}), \\
& \left(H_{0} \oplus H_{1}\right) \times \operatorname{im} g_{a} \subset D_{2} \times\left(\operatorname{im} g+D_{1}\right) \subset B^{-1}(\{0\}) .
\end{aligned}
$$

Now we show that f_{a} and g_{a} are additive. Let $x, y \in S, v \in D_{1}$. Then

$$
\begin{aligned}
& B\left(f_{a}(x+y)-f_{a}(y)-f_{a}(x), g(z)+v\right)=B(f(x+y)-f(y)-f(x), g(z)) \\
& \quad=B(f(x+y), g(z))-B(f(y), g(z))-B(f(x), g(z)) \\
& \quad=A(x+y, z)-A(y, z)-A(x, z)=0, \quad z \in S
\end{aligned}
$$

which means that $f_{a}(x+y)-f_{a}(y)-f_{a}(x) \in D_{2}$, so $f_{a}(x+y)=f_{a}(x)+f_{a}(y)$. Similarly for g_{a} we have

$$
\begin{aligned}
& B\left(f(z), g_{a}(x+y)-g_{a}(y)-g_{a}(x)\right)=B(f(z), g(x+y)-g(y)-g(x)) \\
& \quad=B(f(z), g(x+y))-B(f(z), g(y))-B(f(z), g(x)) \\
& \quad=A(z, x+y)-A(z, y)-A(z, x)=0, \quad z \in S
\end{aligned}
$$

which means that $g_{a}(x+y)-g_{a}(x)-g_{a}(y) \in D_{1}$, so $g_{a}(x+y)=g_{a}(x)+g_{a}(y)$.
Moreover, using (11)-(13) we have

$$
\begin{aligned}
B\left(f_{a}(x), g_{a}(y)\right)= & B\left(f_{a}(x), g_{a}(y)\right)+B\left(f_{r}(x), g_{a}(y)\right) \\
& +B\left(f_{a}(x), g_{r}(y)\right)+B\left(f_{r}(x), g_{r}(y)\right) \\
= & B\left(f_{a}(x)+f_{r}(x), g_{a}(y)+g_{r}(y)\right) \\
= & B(f(x), g(y))=A(x, y), \quad x, y \in S .
\end{aligned}
$$

(\Leftarrow) Assume that there exist divisible groups $H_{0}, H_{1}, H_{2}, H_{3}$, additive functions $f_{a}: S \rightarrow H_{2} \oplus H_{3}, g_{a}: S \rightarrow H_{1} \oplus H_{3}$ and functions $f_{r}: S \rightarrow H_{0} \oplus H_{1}$, $g_{r}: S \rightarrow H_{0} \oplus H_{2}$ such that conditions (9)-(14) holds. Then

$$
\begin{aligned}
B(f(x), g(y))= & B\left(f_{a}(x)+f_{r}(x), g_{a}(y)+g_{r}(y)\right) \\
= & B\left(f_{a}(x), g_{a}(y)\right)+B\left(f_{a}(x), g_{r}(y)\right) \\
& +B\left(f_{r}(x), g_{a}(y)\right)+B\left(f_{r}(x), g_{r}(y)\right) \\
= & B\left(f_{a}(x), g_{a}(y)\right)=A(x, y), \quad x, y \in S .
\end{aligned}
$$

The following example shows that we cannot drop the assumption that X is torsion-free in the previous theorem.

Example 1. Let $S=\mathbb{Z}^{2}, H=\mathbb{Q}^{2}, X=\mathbb{Q} \times \mathbb{Z}\left(2^{\infty}\right), f, g: S \rightarrow H$ be functions given by formulas

$$
\begin{aligned}
& f(n, m)= \begin{cases}(n, 1) & n \in \mathbb{Z}, m \in 2 \mathbb{Z}+1 \\
\left(n, 2^{|m|+1}\right) & n \in \mathbb{Z}, m \in 2 \mathbb{Z}\end{cases} \\
& g(n, m)=(n, m), n, m \in \mathbb{Z}
\end{aligned}
$$

Let further $B: H^{2} \rightarrow X, A: S^{2} \rightarrow X$ be functions given by formulas

$$
\begin{aligned}
B((n, m),(p, q)) & =(n p, C(m, q)), n, m, p, q \in \mathbb{Q} \\
A(x, y) & =B(f(x), g(y)), x, y \in S
\end{aligned}
$$

where $C: \mathbb{Q}^{2} \rightarrow \mathbb{Z}\left(2^{\infty}\right)$ is a biadditive and symmetric function such that $C(1,1)=\frac{1}{2}+\mathbb{Z}$ (see Theorem 2).

It is easy to see that g is additive, B is biadditive and symmetric.

Since for all $x, y \in S$ we have $f(x+y)-f(x)-f(y) \in\{0\} \times 2 \mathbb{Z}$, then for every $z=\left(z_{1}, z_{2}\right) \in S$ there is an $n \in \mathbb{Z}$ such that

$$
\begin{aligned}
& A(x+y, z)-A(x, z)-A(y, z) \\
& \quad=B(f(x+y), z)-B(f(x), z)-B(f(y), z) \\
& \quad=B(f(x+y)-f(x)-f(y), z)=\left(0 \cdot z_{1}, C\left(2 n, z_{2}\right)\right) \\
& \quad=\left(0,2 n z_{2} C(1,1)\right)=\left(0,2 n z_{2} \frac{1}{2}+\mathbb{Z}\right)=(0, \mathbb{Z}) .
\end{aligned}
$$

Hence A is biadditive and (f, g) solves (8).
Suppose that there exist divisible groups $H_{0}, H_{1}, H_{2}, H_{3}$, additive functions $f_{a}: S \rightarrow H_{2} \oplus H_{3}, g_{a}: S \rightarrow H_{1} \oplus H_{3}$ and functions $f_{r}: S \rightarrow H_{0} \oplus H_{1}$, $g_{r}: S \rightarrow H_{0} \oplus H_{2}$ such that conditions (9)-(13) holds. Since

$$
\mathbb{Z}^{2}=\operatorname{im} g \subset \operatorname{im} g_{a}+\left(H_{0} \oplus H_{2}\right),
$$

then from (11), (13) we obtain

$$
\left(H_{0} \oplus H_{1}\right) \times \mathbb{Z}^{2} \subset B^{-1}(\{(0, \mathbb{Z})\})
$$

Let $(p, q) \in H_{0} \oplus H_{1}$. Then there exists $k \in \mathbb{N}$ such that $(k p, k q) \in \mathbb{Z}^{2}$. Hence, since $(k p, k q) \in H_{0} \oplus H_{1}$, we get

$$
(0, \mathbb{Z})=B((k p, k q),(1,1))=\left(k p, \frac{k q}{2}+\mathbb{Z}\right)
$$

so $p=0$ and $k q \in 2 \mathbb{Z}$. On the other hand, if $q \neq 0$ and $(0, k q) \in H_{0} \oplus H_{1}$, then, by Lemma $1,(0,1) \in H_{0} \oplus H_{1}$. Consequently,

$$
\begin{equation*}
(0, \mathbb{Z})=B((0,1),(0,1))=\left(0, \frac{1}{2}+\mathbb{Z}\right) \tag{15}
\end{equation*}
$$

a contradiction. Thus $H_{0}=H_{1}=\{0\}$ and $f_{a}=f$, but f is not additive, which give us a contradiction.

In the theorem below we investigate the preservation of the biadditivity by only one function, namely we solve the following generalization of the orthogonality equation.

Theorem 4. Let $f: S \rightarrow H$. Then f satisfies

$$
\begin{equation*}
B(f(x), f(y))=A(x, y), x, y \in S \tag{16}
\end{equation*}
$$

if and only if there exist divisible groups H_{0}, H_{1}, an additive function $F_{a}: S \rightarrow$ H_{1}, and a function $F_{r}: S \rightarrow H_{0}$ such that

$$
\begin{align*}
& H=H_{0} \oplus H_{1} \text { and } H_{1} \text { is torsion-free, } \tag{17}\\
& f=F_{a}+F_{r}, \tag{18}\\
& H_{0} \times\left(H_{0} \oplus i m F_{a}\right) \subset B^{-1}(\{0\}), \tag{19}\\
& \left(H_{0} \oplus i m F_{a}\right) \times H_{0} \subset B^{-1}(\{0\}), \tag{20}
\end{align*}
$$

$$
\begin{equation*}
B\left(F_{a}(x), F_{a}(y)\right)=A(x, y), x, y \in S \tag{21}
\end{equation*}
$$

Moreover, we can assume that $H_{0} \subset\left\{v \in H: \forall_{u \in \operatorname{im} f} B(u, v)=0\right\}$.
Proof. (\Rightarrow) In view of Theorem 3 there exist divisible groups $K_{0}, K_{1}, K_{2}, K_{3}$, additive functions $f_{a}: S \rightarrow K_{2} \oplus K_{3}, \tilde{f}_{a}: S \rightarrow K_{1} \oplus K_{3}$ and functions $f_{r}: S \rightarrow$ $K_{0} \oplus K_{1}, \widetilde{f_{r}}: S \rightarrow K_{0} \oplus K_{2}$ such that

$$
\begin{aligned}
& H=\bigoplus_{i=0}^{3} K_{i} \text { and } K_{1}, K_{2}, K_{3} \text { are torsion-free, } \\
& f=f_{a}+f_{r}=\widetilde{f}_{a}+\widetilde{f}_{r} \\
& \left(K_{0} \oplus K_{1}\right) \times\left(K_{0} \oplus K_{2}\right) \subset B^{-1}(\{0\}) \\
& \operatorname{im} f_{a} \times\left(K_{0} \oplus K_{2}\right) \subset B^{-1}(\{0\}) \\
& \left(K_{0} \oplus K_{1}\right) \times \operatorname{im} \widetilde{f}_{a} \subset B^{-1}(\{0\}) \\
& B\left(f_{a}(x), \widetilde{f}_{a}(y)\right)=A(x, y), x, y \in S
\end{aligned}
$$

Let $f=f_{0}+f_{1}+f_{2}+f_{3}$, where $f_{i}: S \rightarrow K_{i}$ for $i \in\{0,1,2,3\}$. Then $f_{a}=f_{2}+f_{3}$ and $\tilde{f}_{a}=f_{1}+f_{3}$. Hence f_{1}, f_{2}, f_{3} are additive. Let $H_{0}=K_{0}, H_{1}=\bigoplus_{i=1}^{3} K_{i}$, $F_{a}=f_{1}+f_{2}+f_{3}, F_{r}=f_{0}$. Then $F_{a}: S \rightarrow H_{1}$ is additive. We have also

$$
\begin{aligned}
& \left(H_{0} \oplus K_{1}\right) \times H_{0} \subset\left(K_{0} \oplus K_{1}\right) \times\left(K_{0} \oplus K_{2}\right) \subset B^{-1}(\{0\}), \\
& \operatorname{im} f_{a} \times H_{0} \subset \operatorname{im} f_{a} \times\left(K_{0} \oplus K_{2}\right) \subset B^{-1}(\{0\}), \\
& H_{0} \times\left(H_{0} \oplus K_{2}\right) \subset\left(K_{0} \oplus K_{1}\right) \times\left(K_{0} \oplus K_{2}\right) \subset B^{-1}(\{0\}), \\
& H_{0} \times \operatorname{im} \widetilde{f}_{a} \subset\left(K_{0} \oplus K_{1}\right) \times \operatorname{im} \widetilde{f}_{a} \subset B^{-1}(\{0\}),
\end{aligned}
$$

and since B is biadditive we obtain that

$$
\begin{aligned}
& \left(H_{0} \oplus \operatorname{im} F_{a}\right) \times H_{0} \subset\left(\operatorname{im} f_{a} \oplus H_{0} \oplus K_{1}\right) \times H_{0} \subset B^{-1}(\{0\}), \\
& H_{0} \times\left(H_{0} \oplus \operatorname{im} F_{a}\right) \subset H_{0} \times\left(\operatorname{im} \widetilde{f}_{a} \oplus H_{0} \oplus K_{2}\right) \subset B^{-1}(\{0\}) .
\end{aligned}
$$

Consequently

$$
\begin{aligned}
B\left(F_{a}(x), F_{a}(y)\right)= & B\left(F_{a}(x), F_{a}(y)\right)+B\left(F_{a}(x), F_{r}(y)\right)+B\left(F_{r}(x), F_{a}(y)\right) \\
& +B\left(F_{r}(x), F_{r}(y)\right) \\
= & B\left(F_{a}(x)+F_{r}(x), F_{a}(y)+F_{r}(y)\right)=A(x, y), \quad x, y \in S
\end{aligned}
$$

(\Leftarrow) Assume that there exist divisible groups H_{0}, H_{1}, an additive function $F_{a}: S \rightarrow H_{1}$, and a function $F_{r}: S \rightarrow H_{0}$ such that conditions (17)-(21) holds. Then

$$
\begin{aligned}
B(f(x), f(y))= & B\left(F_{a}(x)+F_{r}(x), F_{a}(y)+F_{r}(y)\right) \\
= & B\left(F_{a}(x), F_{a}(y)\right)+B\left(F_{a}(x), F_{r}(y)\right)+B\left(F_{r}(x), F_{a}(y)\right) \\
& +B\left(F_{r}(x), F_{r}(y)\right) \\
= & B\left(F_{a}(x), F_{a}(y)\right)=A(x, y), \quad x, y \in S .
\end{aligned}
$$

It is a natural question whether given a function f there exists a function g such that (f, g) satisfies equation (8). The theorem below give us an answer for this question.

Theorem 5. Assume that S is a group, $f, g: S \rightarrow H$. Then (f, g) satisfies equation (8) if and only if there exist divisible groups $H_{0}, H_{1}, H_{2}, H_{3}$, an additive function $T: S \rightarrow H_{2} \oplus H_{3}$, functions $f_{r}: S \rightarrow H_{0} \oplus H_{1}, g_{r}: S \rightarrow H_{0} \oplus H_{2}$ such that

$$
\begin{align*}
& H=\bigoplus_{i=0}^{3} H_{i} \text { and } H_{1}, H_{2}, H_{3} \text { are torsion-free, } \tag{22}\\
& \operatorname{im} T^{*} / S_{A R}=S / S_{A R} \tag{23}\\
& f=T+f_{r}, g=\left(T^{*}\right)^{-1}+g_{r} \tag{24}\\
& \left(H_{0} \oplus H_{1}\right) \times\left(H_{0} \oplus H_{2}\right) \subset B^{-1}(\{0\}) \tag{25}\\
& \operatorname{im} T \times\left(H_{0} \oplus H_{2}\right) \subset B^{-1}(\{0\}) \tag{26}\\
& \left(H_{0} \oplus H_{1}\right) \times\left(D\left(T^{*}\right) \cap K\right) \subset B^{-1}(\{0\}), \tag{27}
\end{align*}
$$

where $T^{*}: D\left(T^{*}\right) \rightarrow S$ is a (B, A)-adjoint operator to $T, S_{A R}$ is given by (3), $\left(T^{*}\right)^{-1}$ is defined by the formula (7) and K is a subgroup of H such that $H_{B T R} \oplus K=H$, where $H_{B T R}$ is given by (5).

Proof. (\Rightarrow) Assume that (f, g) satisfies equation (8). Then in view of Theorem 3 there exist divisible groups $H_{0}, H_{1}, H_{2}, H_{3}$, additive functions $f_{a}: S \rightarrow H_{2} \oplus$ $H_{3}, g_{a}: S \rightarrow H_{1} \oplus H_{3}$ and functions $f_{r}: S \rightarrow H_{0} \oplus H_{1}, g_{r}: S \rightarrow H_{0} \oplus H_{2}$ which satisfy conditions (9)-(14). Let $T=f_{a}$. In view of (14) im $g_{a} \subset D\left(T^{*}\right)$. Let $y \in S$. We have

$$
A(x, y)=B\left(T(x), g_{a}(y)\right)=A\left(x, T^{*}\left(g_{a}(y)\right)\right), x \in S
$$

so $y-T^{*}\left(g_{a}(y)\right) \in S_{A R}$ and $\varkappa(y)=\widetilde{T}^{*}\left(g_{a}(y)\right)$. Hence $S / S_{A R}=\operatorname{im} T^{*} / S_{A R}$ and

$$
\left(T^{*}\right)^{-1}(y)=\left(\widetilde{T}^{*}\right)^{-1}(\varkappa(y))=\left(\widetilde{T}^{*}\right)^{-1}\left(\widetilde{T}^{*}\left(g_{a}(y)\right)\right)=g_{a}(y) .
$$

In view of Remark 3 and (13) we get

$$
\begin{aligned}
& \left(H_{0} \oplus H_{1}\right) \times\left(D\left(T^{*}\right) \cap K\right)=\left(H_{0} \oplus H_{1}\right) \times \operatorname{im}\left(T^{*}\right)^{-1} \\
& \quad=\left(H_{0} \oplus H_{1}\right) \times \operatorname{im} g_{a} \subset B^{-1}(\{0\}) .
\end{aligned}
$$

Conditions (25), (26) are exactly the same as (11) and (12).
(\Leftarrow) Assume that there exist divisible groups $H_{0}, H_{1}, H_{2}, H_{3}$, an additive function $T: S \rightarrow H_{2} \oplus H_{3}$, functions $f_{r}: S \rightarrow H_{0} \oplus H_{1}, g_{r}: S \rightarrow H_{0} \oplus H_{2}$ which satisfy conditions (22)-(27).

For $y \in S$ we have

$$
\varkappa\left(T^{*}\left(\left(T^{*}\right)^{-1}(y)\right)\right)=\widetilde{T}^{*}\left(\left(\widetilde{T}^{*}\right)^{-1}(\varkappa(y))\right)=\varkappa(y)
$$

which means that $y-T^{*}\left(\left(T^{*}\right)^{-1}(y)\right) \in S_{A R}$. From Remark 3 we get

$$
\left(H_{0} \oplus H_{1}\right) \times \operatorname{im}\left(T^{*}\right)^{-1}=\left(H_{0} \oplus H_{1}\right) \times\left(D\left(T^{*}\right) \cap K\right) \subset B^{-1}(\{0\})
$$

We have

$$
\begin{aligned}
A(x, y)= & A\left(x, y-T^{*}\left(\left(T^{*}\right)^{-1}(y)\right)\right)+A\left(x, T^{*}\left(\left(T^{*}\right)^{-1}(y)\right)\right) \\
= & 0+B\left(T(x),\left(T^{*}\right)^{-1}(y)\right)=B\left(T(x),\left(T^{*}\right)^{-1}(y)\right) \\
& +B\left(T(x), g_{r}(y)\right)+B\left(f_{r}(x),\left(T^{*}\right)^{-1}(y)\right)+B\left(f_{r}(x), g_{r}(y)\right) \\
= & B\left(T(x)+f_{r}(x),\left(T^{*}\right)^{-1}(y)+g_{r}(y)\right)=B(f(x), g(y)), \quad x, y \in S
\end{aligned}
$$

The following result shows us for which f defined on a group (16) holds.
Theorem 6. Assume that S is a group, $f: S \rightarrow H$. Then f satisfies (16) if and only if there exist divisible groups H_{0}, H_{1}, an additive function $T: S \rightarrow H_{1}$, and a function $F_{r}: S \rightarrow H_{0}$ such that

$$
\begin{align*}
& H=H_{0} \oplus H_{1} \text { and } H_{1} \text { is torsion-free, } \tag{28}\\
& \operatorname{im} T \subset D\left(T^{*}\right), \forall y \in S\left(T^{*} \circ T\right)(y)-y \in S_{A R}, \tag{29}\\
& f=T+F_{r}, \tag{30}\\
& H_{0} \times\left(H_{0} \oplus i m T\right) \subset B^{-1}(\{0\}), \tag{31}\\
& \left(H_{0} \oplus i m T\right) \times H_{0} \subset B^{-1}(\{0\}), \tag{32}
\end{align*}
$$

where $T^{*}: D\left(T^{*}\right) \rightarrow S$ is a (B, A)-adjoint operator to $T, S_{A R}$ is given by (3).
Proof. (\Rightarrow) Assume that f satisfies (16). In view of Theorem 4 there exist divisible groups H_{0}, H_{1}, an additive function $F_{a}: S \rightarrow H_{1}$, a function $F_{r}: S \rightarrow$ H_{0} which satisfy conditions (17)-(21). Let $T=F_{a}$. We notice that conditions (28), (30)-(32) hold. From (21) we obtain that im $T \subset D\left(T^{*}\right)$ and for $y \in S$ we have

$$
\begin{aligned}
A\left(x, T^{*}(T(y))-y\right) & =A\left(x, T^{*}(T(y))\right)-A(x, y) \\
& =B(T(x), T(y))-B(T(x), T(y))=0, x \in S
\end{aligned}
$$

which means that $T^{*}(T(y))-y \in S_{A R}$.
(\Leftarrow) Assume that there exist divisible groups H_{0}, H_{1}, an additive function $T: S \rightarrow H_{1}$, and a function $F_{r}: S \rightarrow H_{0}$ which satisfy conditions (28)-(32). We have

$$
\begin{aligned}
B(f(x), f(y)) & =B\left(T(x)+F_{r}(x), T(y)+F_{r}(y)\right) \\
& =B(T(x), T(y))+B\left(T(x), F_{r}(y)\right)+B\left(F_{r}(x), T(y)+F_{r}(y)\right) \\
& =B(T(x), T(y))=A\left(x, T^{*}(T(y))\right) \\
& =A\left(x, T^{*}(T(y))-y\right)+A(x, y)=A(x, y), \quad x, y \in S .
\end{aligned}
$$

4. Applications

In this part of the article we would like to present some applications of the main results from Section 3 in particular for normed spaces. It is helpful to recall (see [1, Theorem 2.1.1 and Remark 2.1.1]) that the following properties for a real normed space $(X,\|\cdot\|)$ are true:

If X is real and smooth, then $\rho_{+}^{\prime}(x, \cdot)$ is linear for all $x \in X$.
If X is real and smooth, then $\rho_{+}^{\prime}(\cdot, y)$ is homogeneous for all $y \in X$.

$$
\begin{equation*}
\left|\rho_{+}^{\prime}(x, y)\right| \leq\|x\| \cdot\|y\| \quad \text { and } \quad \rho_{+}^{\prime}(x, x)=\|x\|^{2} . \tag{34}
\end{equation*}
$$

Theorem 7. Let X, Y be real and smooth normed spaces, X be reflexive. Let $f: X \rightarrow Y$ be a mapping satisfying:

$$
\begin{equation*}
\rho_{+}^{\prime}(f(x), f(y))=\rho_{+}^{\prime}(x, y), \quad x, y \in X \tag{36}
\end{equation*}
$$

Suppose that $V \subset \operatorname{im} f$ is a closed subspace of Y such that $\operatorname{codim} V=1$ and cl $\operatorname{span} f^{-1}(V) \neq X$. Then f is a linear isometry.

Before we start the proof, some comments are needed. In the paper [6] this result was proved under the surjectivity assumption (and that X and Y are Banach and Y is separable). However our assumption (that $\operatorname{cl} \operatorname{span} f^{-1}(V) \neq$ $X)$ is weaker than the surjectivity. As regards the smoothness, this assumption seems to be reasonable. Indeed (see [6]), there are both smooth and strictly convex normed spaces Z_{1}, Z_{2} and nonlinear mappings $T: Z_{1} \rightarrow Z_{2}$ satisfying (36).

Proof. Let $W:=\operatorname{cl} \operatorname{span} f^{-1}(V)$. By the reflexivity, there is $x \in X$ such that $\|x\|=1$ and $\|x\|=\operatorname{dist}(x, W)$. We define two bilinear mappings $A_{x}: X^{2} \rightarrow$ $\mathbb{R}, B_{f(x)}: Y^{2} \rightarrow \mathbb{R}$ by the formulas $A_{x}(u, w):=\rho_{+}^{\prime}(x, u) \cdot \rho_{+}^{\prime}(x, w), B_{f(x)}(z, v)$: $=\rho_{+}^{\prime}(f(x), z) \cdot \rho_{+}^{\prime}(f(x), v)$. It follows from (36) that

$$
\begin{equation*}
A_{x}(u, w)=B_{f(x)}(f(u), f(w)), \quad u, w \in X \tag{37}
\end{equation*}
$$

Put $D_{1}:=\left\{z \in Y: \forall_{u \in X} B_{f(x)}(z, f(u))=0\right\}$. From this we get

$$
\begin{aligned}
D_{1} & =\left\{z \in Y: \forall_{u \in X} \rho_{+}^{\prime}(f(x), z) \cdot \rho_{+}^{\prime}(f(x), f(u))=0\right\} \\
& =\left\{z \in Y: \forall_{u \in X} \rho_{+}^{\prime}(f(x), z) \cdot \rho_{+}^{\prime}(x, u)=0\right\} \\
& =\left\{z \in Y: \rho_{+}^{\prime}(f(x), z)=0\right\} .
\end{aligned}
$$

Thus D_{1} is a closed linear subspace. In particular, D_{1} is a divisible abelian group. We have also

$$
\begin{equation*}
B_{f(x)}(u, v)=B_{f(x)}(v, u)=0, u \in D_{1}, v \in Y \tag{38}
\end{equation*}
$$

Moreover $Y=\operatorname{span}\{f(x)\} \oplus D_{1}$ and so $f=f_{a}+f_{r}$, where $f_{a}: X \rightarrow \operatorname{span}\{f(x)\}$, $f_{r}: X \rightarrow D_{1}$. From Theorem 4 there exist divisible groups H_{0}, H_{1}, an additive function $F_{a}: X \rightarrow H_{1}$, and a function $F_{r}: X \rightarrow H_{0}$ such that

$$
\begin{aligned}
& Y=H_{0} \oplus H_{1} \text { and } H_{0} \subset\left\{v \in Y: \forall u \in \operatorname{im} f B_{f(x)}(u, v)=0\right\}=D_{1}, \\
& f=F_{a}+F_{r} .
\end{aligned}
$$

We observe that for $y, z \in X$ we have

$$
\begin{aligned}
f_{a}(y & +z)-f_{a}(y)-f_{a}(z)=f(y+z)-f(y)-f(z) \\
& -f_{r}(y+z)+f_{r}(y)+f_{r}(z)=F_{a}(y+z)-F_{a}(y)-F_{a}(z) \\
& +F_{r}(y+z)-F_{r}(y)-F_{r}(z)-f_{r}(y+z)+f_{r}(y)+f_{r}(z) \\
= & F_{r}(y+z)-F_{r}(y)-F_{r}(z)-f_{r}(y+z)+f_{r}(y)+f_{r}(z) \in H_{0}+D_{1} \subset D_{1},
\end{aligned}
$$

which means that f_{a} is additive.
Since $f_{a}(w) \in \operatorname{span}\{f(x)\}$ for $w \in X$, there exists a function $\varphi: X \rightarrow \mathbb{R}$ such that $f_{a}=\varphi f(x)$. Therefore, by the property of the set D_{1} and by (34) we have $\rho_{+}^{\prime}\left(f_{a}(w), f_{r}(y)\right)=0$ for $w, y \in X$. So, it and (33) and (35) yield

$$
\begin{aligned}
\left\|f_{a}(y)\right\|^{2}= & \rho_{+}^{\prime}\left(f_{a}(y), f_{a}(y)\right)+0=\rho_{+}^{\prime}\left(f_{a}(y), f_{a}(y)\right)+\rho_{+}^{\prime}\left(f_{a}(y), f_{r}(y)\right) \\
= & \rho_{+}^{\prime}\left(f_{a}(y), f_{a}(y)+f_{r}(y)\right) \leq\left\|f_{a}(y)\right\| \cdot\left\|f_{a}(y)+f_{r}(y)\right\| \\
& =\left\|f_{a}(y)\right\| \cdot\|f(y)\| .
\end{aligned}
$$

Since $\|f(y)\|=\|y\|$, it follows from the above inequalities that $\left\|f_{a}(y)\right\| \leq\|y\|$ for all $y \in X$, which implies that f_{a} is continuous and linear. Consequently $f_{a}(w)=\varphi(w) \cdot f(x)$ for every $w \in X$ with some $\varphi \in X^{*}$. Next, for all u, w in X we have

$$
\begin{aligned}
\rho_{+}^{\prime}(u, w) & =\rho_{+}^{\prime}(f(u), f(w))=\rho_{+}^{\prime}\left(f(u), f_{a}(w)+f_{r}(w)\right) \\
& =\rho_{+}^{\prime}\left(f(u), \varphi(w) \cdot f(x)+f_{r}(w)\right) \\
& =\varphi(w) \cdot \rho_{+}^{\prime}(f(u), f(x))+\rho_{+}^{\prime}\left(f(u), f_{r}(w)\right) \\
& =\varphi(w) \cdot \rho_{+}^{\prime}(u, x)+\rho_{+}^{\prime}\left(f(u), f_{r}(w)\right) .
\end{aligned}
$$

For given $u \in X$ we define a $\gamma_{u} \in X^{*}$ by the formula

$$
\gamma_{u}(w):=\rho_{+}^{\prime}(u, w)-\varphi(w) \rho_{+}^{\prime}(u, x), \quad w \in X
$$

It follows from the above equalities that $\gamma_{u}(w)=\rho_{+}^{\prime}\left(f(u), f_{r}(w)\right)$. Therefore for fixed $w, z \in X$ we get

$$
\begin{aligned}
\rho_{+}^{\prime} & \left(f(u), f_{r}(\alpha w+\beta z)-\alpha f_{r}(w)-\beta f_{r}(z)\right) \\
& =\rho_{+}^{\prime}\left(f(u), f_{r}(\alpha w+\beta z)\right)-\alpha \rho_{+}^{\prime}\left(f(u), f_{r}(w)\right)-\beta \rho_{+}^{\prime}\left(f(u), f_{r}(z)\right) \\
& =\gamma_{u}(\alpha w+\beta z)-\alpha \gamma_{u}(w)-\beta \gamma_{u}(z) \\
& =\gamma_{u}(\alpha w+\beta z-\alpha w-\beta z)=0 .
\end{aligned}
$$

To summarize, we proved

$$
\begin{equation*}
\forall_{u \in X} \rho_{+}^{\prime}\left(f(u), f_{r}(\alpha w+\beta z)-\alpha f_{r}(w)-\beta f_{r}(z)\right)=0 . \tag{39}
\end{equation*}
$$

Since $\|x\|=\operatorname{dist}(x, W)$, we have the inequality $\|x\| \leq\|x+w\|$ for all $w \in W$. In particular, for all $t>0$ we obtain $0 \leq\|x\| \cdot \frac{\|x+t w\|-\|x\|}{t}$. Letting $t \rightarrow 0^{+}$, we get $0 \leq \rho_{+}^{\prime}(x, w)$. Putting $-w$ in place of w (and applying again (33)) we get $0 \geq \rho_{+}^{\prime}(x, w)$. So, we proved that $\rho_{+}^{\prime}(x, c)=0$ for all $c \in W$.

Clearly $f^{-1}(V) \subset W$. In particular, for all c in $f^{-1}(V)$ we have $0=$ $\rho_{+}^{\prime}(x, c)=\rho_{+}^{\prime}(f(x), f(c))$. Thus $V \subset D_{1}$. Since co $\operatorname{dim} V=1=\operatorname{codim} D_{1}$, we obtain $V=D_{1}$. Since $f_{r}(\alpha w+\beta z)-\alpha f_{r}(w)-\beta f_{r}(z) \in D_{1}=V \subset \operatorname{im} f$, there is a $b_{0} \in X$ such that $f\left(b_{0}\right)=f_{r}(\alpha w+\beta z)-\alpha f_{r}(w)-\beta f_{r}(z)$. Hence, applying (39), we get

$$
\begin{aligned}
& \left\|f_{r}(\alpha w+\beta z)-\alpha f_{r}(w)-\beta f_{r}(z)\right\|^{2}=\left\|f\left(b_{0}\right)\right\|^{2}=\rho_{+}^{\prime}\left(f\left(b_{0}\right), f\left(b_{0}\right)\right) \\
& \quad=\rho_{+}^{\prime}\left(f\left(b_{0}\right), f_{r}(\alpha w+\beta z)-\alpha f_{r}(w)-\beta f_{r}(z)\right)=0
\end{aligned}
$$

It holds for all $w, z \in X$ and $\alpha, \beta \in \mathbb{R}$, which means that f_{r} is linear. Since f_{a}, f_{r} are linear then f also is linear mapping. The equality $\|f(w)\|=\|w\|$ for all w in X implies that f is an isometry.

Acknowledgements

University of Silesia in Katowice. The second author would like to thank NCN. This work was partially supported by National Science Center, Poland under Grant Miniatura 2, No. 2018/02/X/ST1/00313.

Open Access. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons. org/licenses/by/4.0/.

References

[1] Alsina, C., Sikorska, J., Tomás, M.S.: Norm Derivatives and Characterizations of Inner Product Spaces. World Scientific Publishing Co Pte. Ltd., Hackensack, NJ (2010)
[2] Hewitt, E., Ross, K.A.: Abstract Harmonic Analysis, vol. 1. Academic Press, New York (1962)
[3] Łukasik, R., Wójcik, P.: Decomposition of two functions in the orthogonality equation. Aequ. Math. 90(3), 495-499 (2016). https://doi.org/10.1007/ s00010-015-0385-8
[4] Lukasik, R.: A note on the orthogonality equation with two functions. Aequ. Math. 90(5), 961-965 (2016). https://doi.org/10.1007/s00010-016-0419-x
[5] Sadr, M.M.: Decomposition of functions between Banach spaces in the orthogonality equation. Aequ. Math. 91(4), 739-743 (2017). https://doi.org/10.1007/ s00010-017-0466-y
[6] Wójcik, P.: On an orthogonality equation in normed spaces. Funct. Anal. Appl. $52(3), 224-227$ (2018). https://doi.org/10.1007/s10688-018-0231-6

Radosław Łukasik
Institute of Mathematics
University of Silesia
ul. Bankowa 14
40-007 Katowice
Poland
e-mail: radoslaw.lukasik@us.edu.pl
Paweł Wójcik
Institute of Mathematics
Pedagogical University of Cracow
Podchorażych 2
30-084 Kraków
Poland
e-mail: pawel.wojcik@up.krakow.pl
Received: April 2, 2019.
Accepted: April 28, 2020.
Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

