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Abstract
It is shown that the recently proposed quantum analogue of classical energy equipartition
theorem for two paradigmatic, exactly solved models (i.e., a free Brownian particle and a
dissipative harmonic oscillator) also holds true for all quantum systems which are composed
of an arbitrary number of non-interacting or interacting particles, subjected to any confining
potentials and coupled to thermostat with arbitrary coupling strength.

Keywords Quantum systems · Equipartition of energy · Quantum analogue

1 Introduction

In classical statistical physics, the theorem on equipartition of kinetic energy is one of the
most universal relation [1,2]. It states that for a system in thermodynamic equilibrium of
temperatureT , themeankinetic energy Ek per onedegree of freedom is equal to Ek = kBT /2,
where kB is the Boltzmann constant [3,4]. It does not depend on a number of particles in the
system, the form of the potential force which acts on them, the form of interaction between
particles and strength of coupling between the system and thermostat. It depends only on the
thermostat temperature T . On the contrary, for quantum systems, the mean kinetic energy
is not equally shared among all degrees of freedom and the theorem fails. The quite natural
question arises whether one can formulate a similar and universal relation for the mean
kinetic energy of quantum systems at the thermodynamic equilibrium state. Recently, in a
series of papers [5–7], the authors have proposed quantum analogue of the classical energy
equipartition theorem. For a system of one degree of freedom this quantum counterpart,
which is called the energy partition theorem, has the following appealing form:

Ek =
∫ ∞

0
Ek(ω)P(ω) dω, (1)
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where

Ek(ω) = �ω

4
coth

[
�ω

2kBT

]
(2)

has the same form as thermally averaged kinetic energy of the harmonic oscillator with the
frequency ω weakly coupled to thermostat of temperature T [8]. The function P(ω) has all
properties of a probability density on a positive half-line of real numbers meaning that

P(ω) ≥ 0, (3)∫ ∞

0
P(ω) dω = 1. (4)

The explicit form of P(ω) has been derived for two exactly solved quantum systems: a
free Brownian particle [5] and a dissipative harmonic oscillator [6]. In these papers [5,6],
thermostat is composed of quantum harmonic oscillators (à la Caldeira–Leggett [9–11]) and
the above interpretation of Ek(ω) as their mean kinetic energy per one degree of freedom is
fully justified. Because P(ω) is a probability density, Eq. (1) can be rewritten in the form

Ek = 〈Ek〉, (5)

where 〈Ek〉 is a mean value of the function Ek(ξ) of some random variable ξ distributed
according to the probability density P. In the Caldeira–Leggett model, ξ can be interpreted
as a random frequency of harmonic oscillators forming the thermostat which should be
infinitely extended, i.e., the thermodynamic limit for the thermostat should be carried out in
order to guarantee a continuous spectrum of the thermostat oscillators frequencies.

2 Universal Relation for Kinetic Energy of Quantum Systems

Here, we want to prove a relation similar to Eq. (1) for a class of quantum systems for which
the concept of kinetic energy has sense (e.g spin systems are outside of this class). More
precisely, we study a quantum system S coupled to a heat bath (thermostat, environment) B.
The composite system S + B is in a Gibbs equilibrium state of temperature T defined by the
density operator

ρ = Z−1 e−H/kBT , Z = Tr
[
e−H/kBT

]
(6)

and

H = HS + Hint + HB (7)

is the Hamiltonian of the composite system S + B. Next,

HS =
∑
j

p2j
2Mj

+
∑
j

US(x j ) +
∑
j,k

VS(x j , xk) (8)

is the Hamiltonian of the system S and

Hint =
∑
j,n

λ jn V (x j , Xn) (9)

is the Hamiltonian of interaction of the system S with the thermostat B. Finally, HB is the
Hamiltonian of thermostat B. Its explicit form is now not relevant. The set of parameters
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Quantum Counterpart of Classical Equipartition of Energy 841

{λ jn} characterizes the coupling strength. The coordinate and momentum operators {x j , p j }
refer to the system S and the operators {Xn} refer to the thermostat B. All coordinate and
momentum operators obey canonical equal-time commutation relations. We assume that
all components of the Hamiltonian (7) fulfil required conditions to ensure a well defined
thermodynamic equilibrium state of the composite system S+ B in the thermodynamic limit
for the thermostat.

Theorem 1 The mean kinetic energy per one degree of freedom of the system S can be
expressed in a universal form as

E ( j)
k = 〈Ek〉( j) =

∫ ∞

0
Ek(ω)P j (ω) dω, (10)

where

E ( j)
k =

〈
p2j

2Mj

〉
= Tr

[
p2j

2Mj
ρ

]
(11)

and Ek(ω) is given by Eq. (2). The function P j (ω) is a probability density which obeys
conditions (3) and (4).

The explicit form of the probability density P j (ω) is presented below.

Proof of Theorem 1 To prove the relation (10), we apply the fluctuation–dissipation relation
of the Callen–Welton type [12,13]. One can exploit the results derived e.g. in the Landau–
Lifshitz book [14] [see Eq. (124.10)] or in the Zubarev book [15] [see Eq. (17.19g)]. We
apply them to the momentum operator p j of the system S. Without loss of generality we
assume that the average momentum 〈p j 〉 = 0 at the equilibrium state and then one obtains

〈p2j 〉 = �

π

∫ ∞

0
coth

[
�ω

2kBT

]
χ ′′
j j (ω) dω, (12)

where χ ′′
j j (ω) is the imaginary part of the generalized susceptibility,

χ j j (ω) = χ ′
j j (ω) + iχ ′′

j j (ω). (13)

The real part is an even function and the imaginary part is an odd function,

χ ′
j j (ω) = χ ′

j j (−ω), χ ′′
j j (ω) = −χ ′′

j j (−ω). (14)

The generalized susceptibility χ j j (ω) is the Fourier transform

χ j j (ω) =
∫ ∞

−∞
eiωt G j j (t) dt (15)

of the response function G j j (t) which in fact is the retarded thermodynamic Green function
[15], namely,

G j j (t) = i

�
θ(t)〈[p j (t), p j (0)]〉, (16)

where θ(t) is the Heaviside step function and

p j (t) = exp(i Ht/�)p j (0) exp(−i Ht/�) (17)

is the Heisenberg representation of the momentum p j (0). The averaging in Eq. (16) is over
the Gibbs canonical statistical operator (6).
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842 J. Łuczka

Now, we compare Eqs. (10) and (12), and obtain the expression for P j (ω) in the form

P j (ω) = 2

πMj

χ ′′
j j (ω)

ω
. (18)

Hence, we obtain the formal expression for P j (ω). However, we have to show that it can be
interpreted as a probability density. ��

Corollary The function P j (ω) assumes non-negative values for all positive values of the
argument ω.

Proof We use the spectral representation of χ ′′
j j (ω) in the form (see e.g. the equation just

above Eq. (124.9) in the Landau–Lifshitz book [14]),

χ ′′
j j (ω) = π

�

(
1 − e−�ω/kBT

) ∑
m,n

ρn |pnm |2δ(�ω + En − Em), (19)

where pnm are the matrix elements of the momentum operator in the basis of the eigenstates
of the total Hamiltonian H , En are the eigenvalues of H and the population factor is ρn =
Z−1exp(−En/kBT ). From the form of this relation we see that for all positive ω the function
χ ′′
j j (ω) is positive and not zero. In fact, it is a well-known that χ ′′

j j (ω) is positive and is also
named an absorptive part of the susceptibility χ j j (ω), see also the text below Eq. (123.11)
in [14]. Hence, also P j (ω) given by Eq. (18) is positive for all positive values of ω. ��

Theorem 2 The function P j (ω) defined by Eq. (18) is normalized to unity,

∫ ∞

0
P j (ω) dω = 1

Mj

2

π

∫ ∞

0

χ ′′
j j (ω)

ω
dω = 1. (20)

Proof of Theorem 2 According to the Kramers–Kronig dispersion relation

χ ′
j j (ω) = 2

π
P

∫ ∞

0

uχ ′′
j j (u)

u2 − ω2 du, (21)

where P denotes the principal value of the integral. Its value at ω = 0 reads

χ j j (0) = 2

π
P

∫ ∞

0

χ ′′
j j (u)

u
du, (22)

where we utilize the relation χ ′
j j (0) = χ j j (0) which follows from (13) and (14) for ω = 0.

The rhs of this equation is related to Eq. (20). Alternatively, one can apply Eq. (123.19) in
the Landau–Lifshitz book [14] which reads

χ j j (iω) = 2

π

∫ ∞

0

uχ ′′
j j (u)

ω2 + u2
du (23)

and for ω = 0 it takes the same value as (22). On the other hand, from Eqs. (15) and (16) it
follows that

χ j j (0) =
∫ ∞

−∞
G j j (t) dt = i

�

∫ ∞

0
〈[p j (t), p j (0)]〉 dt . (24)
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Weobserve that the problem of normalization ofP j (ω) in Eq. (18) is converted to the problem
whether the equality

χ j j (0) = Mj (25)

holds true for the Hamiltonian (7)–(9).
This may seem surprising at first glance since χ j j (0) does not depend on the form of the

potential, interaction, temperature and parameters of the Hamiltonian, but it depends only on
mass Mj of the particle considered.

In the next step, we prove that the relation (25) indeed holds true for a general form of the
Hamiltonian (7). We start from the Heisenberg equations of motion for coordinate operators
of the system S, namely,

dx j (t)

dt
= i

�

[
H , x j (t)

] = p j (t)

Mj
. (26)

We insert it into Eq. (24) and obtain

χ j j (0) = iM j

�
lim

ε→0+

∫ ∞

0
e−εt d

dt
〈[x j (t), p j (0)]〉 dt

= iM j

�
e−εt 〈[x j (t), p j (0)]〉|∞0

+ iM j

�
lim

ε→0+ ε

∫ ∞

0
e−εt 〈[x j (t), p j (0)]〉 dt, (27)

where we use a well-known limiting procedure with the ε-term to ensure convergence of the
integral [16]. The integral in the last line is finite and therefore this term tends to zero as
ε → 0. In the first term, for the upper limit t → ∞ the expression tends to zero. For the lower
limit, 〈[x j (0), p j (0)]〉 = i�. Thus it finishes proofs of the relation (25) and normalization of
the function P j (ω) defined by Eq. (18). ��

3 Comments and Discussion

1. The formula (10) is a generalization of the classical energy equipartition theorem. It
fulfils elementary conditions for generalization: Indeed, in the high temperature limit

coth

[
�ω

2kBT

]
≈ 2kBT

�ω
, Ek(ω) ≈ kBT /2 (28)

and Eq. (10) reduces to its classical counterpart

E ( j)
k = 1

2
kBT

∫ ∞

0
P j (ω) dω = 1

2
kBT (29)

because of normalization of P j (ω). We want to notice that Callen and Welton in their
’historical’ paper [12] missed the normalization: see Eq. (4.11) therein.

2. It has to be stressed that the formula (10) is universal, however, the mean kinetic energy
E ( j)
k depends not only on temperature of the system (as in the classical case) but also,

via the probability density P j (ω), on a number of particles in the system, the form of the
potential which acts on them, the form of interaction between particles and strength of
coupling between the system and thermostat.
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3. If H is the Hamiltonian of the composite system S + B then all regimes, from weak
to strong coupling with thermostat, can be analyzed. However, if H = HS (there is
no explicit interaction with thermostat B) then it means that only the weak coupling
limit can be considered because averaging is over the Gibbs canonical density operator
ρS ∝ exp(−HS/kBT ) valid in the weak coupling limit.

4. There are no specific assumptions regarding thermostat B: It should be infinitely extended
and satisfying the Kubo–Martin–Schwinger conditions expressing periodicity of Green’s
functions in imaginary time [16,17].

5. The factor Ek(ω) in Eq. (10) is the same as mean kinetic energy of a quantum harmonic
oscillator in the Gibbs state ρO ∝ exp(−HO/kBT ), where HO is the Hamiltonian of the
harmonic oscillator [8],

Ek(ω) = 1

2m
〈p2〉 = �ω

4
coth

�ω

2kBT
. (30)

It depends on the frequency ω of the harmonic oscillator but not upon its mass m.
However, in the considered model (7)–(9), a harmonic oscillator does not occur at all. It
is a consequence of the above point 4 and the linear response theory [18].

6. As an example, we demonstrate how the above theory works for a free Brownian particle
coupled to thermostat which is a collection of harmonic oscillators [5]. What we need is
the explicit form of the momentum operator p(t) which has been calculated e.g. in Ref.
[5], see Eq. (7) therein. It reads

p(t) = R(t)p(0) −
∫ t

0
R(t − u)γ (u) du x(0)

+
∫ t

0
R(t − u)η(u) du, (31)

where R(t) and γ (t) are the response function and the memory kernel of the generalized
Langevin equation. The operator η(t) models quantum thermal noise and is expressed by
thermostat operators which commute with the system operators. In Eq. (16), only the second
term in r.h.s. of Eq. (31) contributes to the commutator yielding the Green function

G(t) = θ(t)
∫ t

0
R(t − u)γ (u) du. (32)

The susceptibility χ(ω) is a Fourier transform of the Green function G(t) which is a convo-
lution in (32) of two scalar functions R(t) and γ (t). Therefore as a result we obtain

χ(ω) = R̂L(−iω)γ̂L(−iω), (33)

i.e., it is expressed by a product of two Laplace transforms R̂L(z) and γ̂L(z) of the functions
R(t) and γ (t), respectively. For the free Brownian particle of mass M the Laplace transforms
of R(t) reads [5]

R̂L(z) = M

Mz + γ̂L(z)
(34)

and the generalized susceptibility takes the form

χ(ω) = M γ̂L(−iω)

−iωM + γ̂L(−iω)
. (35)

It is seen that for any form of the memory function γ (t) the value of susceptibility at zero
frequency is the particle mass, χ(0) = M .
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In conclusion, applying the fluctuation–dissipation relation we demonstrate that Eq. (10)
is valid for arbitrary quantum systems described by the Hamiltonian (7)–(9) and being at the
thermodynamic equilibrium state. The probability distribution is of the form (18), where the
susceptibility χ j j (ω) is the Fourier transform of the retarded thermodynamic Green function
(16). The formula (10) can be called the energy partition theorem for quantum systems
because: (i) it is universal; (ii) it is an extension of the formula for classical systems; (iii) it
reduces to the energy equipartition theorem for high temperatures.
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